Sample records for modifies neuroprotecting globins

  1. Running, swimming and diving modifies neuroprotecting globins in the mammalian brain

    PubMed Central

    Williams, Terrie M; Zavanelli, Mary; Miller, Melissa A; Goldbeck, Robert A; Morledge, Michael; Casper, Dave; Pabst, D. Ann; McLellan, William; Cantin, Lucas P; Kliger, David S

    2007-01-01

    The vulnerability of the human brain to injury following just a few minutes of oxygen deprivation with submergence contrasts markedly with diving mammals, such as Weddell seals (Leptonychotes weddellii), which can remain underwater for more than 90 min while exhibiting no neurological or behavioural impairment. This response occurs despite exposure to blood oxygen levels concomitant with human unconsciousness. To determine whether such aquatic lifestyles result in unique adaptations for avoiding ischaemic–hypoxic neural damage, we measured the presence of circulating (haemoglobin) and resident (neuroglobin and cytoglobin) oxygen-carrying globins in the cerebral cortex of 16 mammalian species considered terrestrial, swimming or diving specialists. Here we report a striking difference in globin levels depending on activity lifestyle. A nearly 9.5-fold range in haemoglobin concentration (0.17–1.62 g Hb 100 g brain wet wt−1) occurred between terrestrial and deep-diving mammals; a threefold range in resident globins was evident between terrestrial and swimming specialists. Together, these two globin groups provide complementary mechanisms for facilitating oxygen transfer into neural tissues and the potential for protection against reactive oxygen and nitrogen groups. This enables marine mammals to maintain sensory and locomotor neural functions during prolonged submergence, and suggests new avenues for averting oxygen-mediated neural injury in the mammalian brain. PMID:18089537

  2. The Full Globin Repertoire of Turtles Provides Insights into Vertebrate Globin Evolution and Functions.

    PubMed

    Schwarze, Kim; Singh, Abhilasha; Burmester, Thorsten

    2015-06-15

    Globins are small heme proteins that play an important role in oxygen supply, but may also have other functions. Globins offer a unique opportunity to study the functional evolution of genes and proteins. We have characterized the globin repertoire of two different turtle species: the Chinese softshell turtle (Pelodiscus sinensis) and the western painted turtle (Chrysemys picta bellii). In the genomes of both species, we have identified eight distinct globin types: hemoglobin (Hb), myoglobin, neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Therefore, along with the coelacanth, turtles are so far the only known vertebrates with a full globin repertoire. This fact allows for the first time a comparative analysis of the expression of all eight globins in a single species. Phylogenetic analysis showed an early divergence of neuroglobin and globin X before the radiation of vertebrates. Among the other globins, cytoglobin diverged first, and there is a close relationship between myoglobin and globin E; the position of globin Y is not resolved. The globin E gene was selectively lost in the green anole, and the genes coding for globin X and globin Y were deleted in chicken. Quantitative real-time reverse transcription polymerase chain reaction experiments revealed that myoglobin, neuroglobin, and globin E are highly expressed with tissue-specific patterns, which are in line with their roles in the oxidative metabolism of the striated muscles, the brain, and the retina, respectively. Histochemical analyses showed high levels of globin E in the pigment epithelium of the eye. Globin E probably has a myoglobin-like role in transporting O2 across the pigment epithelium to supply in the metabolically highly active retina. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. The Neuroprotective Disease-Modifying Potential of Psychotropics in Parkinson's Disease

    PubMed Central

    Lauterbach, Edward C.; Fontenelle, Leonardo F.; Teixeira, Antonio L.

    2012-01-01

    Neuroprotective treatments in Parkinson's disease (PD) have remained elusive. Psychotropics are commonly prescribed in PD without regard to their pathobiological effects. The authors investigated the effects of psychotropics on pathobiological proteins, proteasomal activity, mitochondrial functions, apoptosis, neuroinflammation, trophic factors, stem cells, and neurogenesis. Only findings replicated in at least 2 studies were considered for these actions. Additionally, PD-related gene transcription, animal model, and human neuroprotective clinical trial data were reviewed. Results indicate that, from a PD pathobiology perspective, the safest drugs (i.e., drugs least likely to promote cellular neurodegenerative mechanisms balanced against their likelihood of promoting neuroprotective mechanisms) include pramipexole, valproate, lithium, desipramine, escitalopram, and dextromethorphan. Fluoxetine favorably affects transcription of multiple genes (e.g., MAPT, GBA, CCDC62, HIP1R), although it and desipramine reduced MPTP mouse survival. Haloperidol is best avoided. The most promising neuroprotective investigative priorities will involve disease-modifying trials of the safest agents alone or in combination to capture salutary effects on H3 histone deacetylase, gene transcription, glycogen synthase kinase-3, α-synuclein, reactive oxygen species (ROS), reactive nitrogen species (RNS), apoptosis, inflammation, and trophic factors including GDNF and BDNF. PMID:22254151

  4. Removing peroxide impurities from ether improves the quality of globin chains for biosynthetic studies.

    PubMed

    Mirzazadeh, Roghieh; Khatami, Shohreh; Bayat, Parastoo; Zamani, Zahra; Sadeghi, Sedigheh; Roohi, Soghra; Saidi, Parinaz

    2005-01-01

    The diagnosis of the different forms of thalassemia is one of the important applications of analysis of globin chains. These analyses are done by high performance liquid chromatography (HPLC) using a MONO-S cation exchange column and ether is used for washing the globin powder in the final step. The presence of peroxide impurities in ether could change the structure of the globin chains. In the chromatograms, these modified globins appear as separated peaks next to the unmodified globin peaks. In these cases, the alpha/beta ratio exceed by artifact the correct value. Our study demonstrates that diagnostic centers should ensure that the ether they use is pure.

  5. Deletion of the human beta-globin LCR 5'HS4 or 5'HS1 differentially affects beta-like globin gene expression in beta-YAC transgenic mice.

    PubMed

    Fedosyuk, Halyna; Peterson, Kenneth R

    2007-01-01

    A 213 kb human beta-globin locus yeast artificial chromosome (beta-YAC) was modified by homologous recombination to delete 2.9 kb of cross-species conserved sequence similarity encompassing the LCR 5' hypersensitive site (HS) 4 (Delta5'HS4 beta-YAC). In three transgenic mouse lines, completion of the gamma- to beta-globin switch during definitive erythropoiesis was delayed relative to wild-type beta-YAC mice. In addition, quantitative per-copy human beta-like globin mRNA levels were similar to wild-type beta-YAC transgenic lines, although beta-globin gene expression was slightly decreased in the day 12 fetal liver of Delta5'HS4 beta-YAC mice. A 0.8 kb 5'HS1 fragment was similarly deleted in the YAC. Three Delta5'HS1 beta-YAC transgenic lines were established. epsilon-globin gene expression was markedly reduced, approximately 16 fold, during primitive erythropoiesis compared to wild-type beta-YAC mice, but gamma-globin expression levels were unaffected. However, during the fetal stage of definitive erythropoiesis, gamma-globin gene expression was decreased approximately 4 fold at day 12 and approximately 5 fold at day 14. Temporal developmental expression profiles of the beta-like globin genes were unaffected by deletion of 5'HS1. Decreased expression of the epsilon- and gamma-globin genes is the first phenotype ascribed to a 5'HS1 mutation in the human beta-globin locus, suggesting that this HS does indeed have a role in LCR function beyond simply a combined synergism with the other LCR HSs.

  6. Eos Negatively Regulates Human γ-globin Gene Transcription during Erythroid Differentiation

    PubMed Central

    Yu, Hai-Chuan; Zhao, Hua-Lu; Wu, Zhi-Kui; Zhang, Jun-Wu

    2011-01-01

    Background Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4), a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. Methodology/Principal Findings Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs). DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3) of the β-globin locus control region (LCR), the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C) assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. Conclusions/Significance Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation. PMID:21829552

  7. Molecular Characterization and Expression of α-Globin and β-Globin Genes in the Euryhaline Flounder (Platichthys flesus)

    PubMed Central

    Lu, Weiqun; Mayolle, Aurelie; Cui, Guoqiang; Luo, Lei; Balment, Richard J.

    2011-01-01

    In order to understand the possible role of globin genes in fish salinity adaptation, we report the molecular characterization and expression of all four subunits of haemoglobin, and their response to salinity challenge in flounder. The entire open reading frames of α1-globin and α2-globin genes were 432 and 435 bp long, respectively, whereas the β1-globin and β2-globin genes were both 447 bp. Although the head kidney (pronephros) is the predicted major site of haematopoiesis, real-time PCR revealed that expression of α-globin and β-globin in kidney (mesonephros) was 1.5 times higher than in head kidney. Notably, the α1-globin and β1-globin mRNA expression was higher than α2-globin and β2-globin in kidney. Expression levels of all four globin subunits were higher in freshwater- (FW-) than in seawater- (SW-)adapted fish kidney. If globins do play a role in salinity adaptation, this is likely to be more important in combating the hemodilution faced by fish in FW than the dehydration and salt loading which occur in SW. PMID:21969841

  8. Biomonitoring of carcinogenic substances: enzymatic digestion of globin for detecting alkylated amino acids

    NASA Astrophysics Data System (ADS)

    Bader, Michael; Rauscher, Dankwart; Geibel, Kurt; Angerer, Juergen

    1993-03-01

    We report the application of proteases for the total hydrolysis of globin with subsequent determination of amino acids. Optimization of the proteolysis was made with respect to enzyme concentration, time of incubation and type of protease. Ethylene oxide modified globin was used to compare the results of the analysis of the N-terminal amino acid valine after enzymatic cleavage to those obtained from the widely used modified Edman procedure. It is shown that the cleavage is of good reproducibility and yields more alkylated amino acid than the Edman procedure.

  9. Repair of Thalassemic Human β -globin mRNA in Mammalian Cells by Antisense Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Sierakowska, Halina; Sambade, Maria J.; Agrawal, Sudhir; Kole, Ryszard

    1996-11-01

    In one form of β -thalassemia, a genetic blood disorder, a mutation in intron 2 of the β -globin gene (IVS2-654) causes aberrant splicing of β -globin pre-mRNA and, consequently, β -globin deficiency. Treatment of mammalian cells stably expressing the IVS2-654 human β -globin gene with antisense oligonucleotides targeted at the aberrant splice sites restored correct splicing in a dose-dependent fashion, generating correct human β -globin mRNA and polypeptide. Both products persisted for up to 72 hr posttreatment. The oligonucleotides modified splicing by a true antisense mechanism without overt unspecific effects on cell growth and splicing of other pre-mRNAs. This novel approach in which antisense oligonucleotides are used to restore rather than to down-regulate the activity of the target gene is applicable to other splicing mutants and is of potential clinical interest.

  10. THE ANTIGENIC PROPERTIES OF GLOBIN CASEINATE

    PubMed Central

    Gay, Frederick P.; Robertson, T. Brailsford

    1913-01-01

    This study of globin and its compound with casein (globin caseinate) shows that globin fails to produce fixation antibodies in rabbits after repeated injections, thus agreeing with our own work and with that of others with similar histon bodies which are primarily toxic. When globin is combined with casein, however, it gives rise to antibodies that react not only with globin caseinate and casein but also with globin. The antibodies in antiglobin casein serum are apparently separate, one for globin and one for casein. In other words, the change in globin undergone on combination with casein has apparently rendered it antigenic. We did not succeed in demonstrating the genesis of this new antigenic property by anaphylaxis experiments. A further investigation of similar and more complex combined proteins is indicated and gives promise of more light on the nature of biological specificity. PMID:19867665

  11. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals

    PubMed Central

    Patel, Vidushi S; Cooper, Steven JB; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer AM

    2008-01-01

    Background Vertebrate alpha (α)- and beta (β)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the α- and β-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil β-globin gene (ω) in the marsupial α-cluster, however, suggested that duplication of the α-β cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous α- and β-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. Results The platypus α-globin cluster (chromosome 21) contains embryonic and adult α- globin genes, a β-like ω-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-ζ-ζ'-αD-α3-α2-α1-ω-GBY-3'. The platypus β-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-ε-β-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate α-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal β-globin clusters are embedded in olfactory genes. Thus, the mammalian α- and β-globin clusters are orthologous to the bird α- and β-globin clusters respectively. Conclusion We propose that α- and β-globin clusters evolved from an ancient MPG-C16orf35-α-β-GBY-LUC7L arrangement 410 million years ago. A copy of the original β (represented by ω in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of β-globin genes with different expression profiles in different lineages. PMID:18657265

  12. Platypus globin genes and flanking loci suggest a new insertional model for beta-globin evolution in birds and mammals.

    PubMed

    Patel, Vidushi S; Cooper, Steven J B; Deakin, Janine E; Fulton, Bob; Graves, Tina; Warren, Wesley C; Wilson, Richard K; Graves, Jennifer A M

    2008-07-25

    Vertebrate alpha (alpha)- and beta (beta)-globin gene families exemplify the way in which genomes evolve to produce functional complexity. From tandem duplication of a single globin locus, the alpha- and beta-globin clusters expanded, and then were separated onto different chromosomes. The previous finding of a fossil beta-globin gene (omega) in the marsupial alpha-cluster, however, suggested that duplication of the alpha-beta cluster onto two chromosomes, followed by lineage-specific gene loss and duplication, produced paralogous alpha- and beta-globin clusters in birds and mammals. Here we analyse genomic data from an egg-laying monotreme mammal, the platypus (Ornithorhynchus anatinus), to explore haemoglobin evolution at the stem of the mammalian radiation. The platypus alpha-globin cluster (chromosome 21) contains embryonic and adult alpha- globin genes, a beta-like omega-globin gene, and the GBY globin gene with homology to cytoglobin, arranged as 5'-zeta-zeta'-alphaD-alpha3-alpha2-alpha1-omega-GBY-3'. The platypus beta-globin cluster (chromosome 2) contains single embryonic and adult globin genes arranged as 5'-epsilon-beta-3'. Surprisingly, all of these globin genes were expressed in some adult tissues. Comparison of flanking sequences revealed that all jawed vertebrate alpha-globin clusters are flanked by MPG-C16orf35 and LUC7L, whereas all bird and mammal beta-globin clusters are embedded in olfactory genes. Thus, the mammalian alpha- and beta-globin clusters are orthologous to the bird alpha- and beta-globin clusters respectively. We propose that alpha- and beta-globin clusters evolved from an ancient MPG-C16orf35-alpha-beta-GBY-LUC7L arrangement 410 million years ago. A copy of the original beta (represented by omega in marsupials and monotremes) was inserted into an array of olfactory genes before the amniote radiation (>315 million years ago), then duplicated and diverged to form orthologous clusters of beta-globin genes with different expression

  13. Comparative inhibition of rabbit globin mRNA translation by modified antisense oligodeoxynucleotides.

    PubMed Central

    Cazenave, C; Stein, C A; Loreau, N; Thuong, N T; Neckers, L M; Subasinghe, C; Hélène, C; Cohen, J S; Toulmé, J J

    1989-01-01

    We have studied the translation of rabbit globin mRNA in cell free systems (reticulocyte lysate and wheat germ extract) and in microinjected Xenopus oocytes in the presence of anti-sense oligodeoxynucleotides. Results obtained with the unmodified all-oxygen compounds were compared with those obtained when phosphorothioate or alpha-DNA was used. In the wheat germ system a 17-mer sequence targeted to the coding region of beta-globin mRNA was specifically inhibitory when either the unmodified phosphodiester oligonucleotide or its phosphorothioate analogue were used. In contrast no effect was observed with the alpha-oligomer. These results were ascribed to the fact that phosphorothioate oligomers elicit an RNase-H activity comparable to the all-oxygen congeners, while alpha-DNA/mRNA hybrids were a poor substrate. Microinjected Xenopus oocytes followed a similar pattern. The phosphorothioate oligomer was more efficient to prevent translation than the unmodified 17-mer. Inhibition of beta-globin synthesis was observed in the nanomolar concentration range. This result can be ascribed to the nuclease resistance of phosphorothioates as compared to natural phosphodiester linkages, alpha-oligomers were devoid of any inhibitory effect up to 30 microM. Phosphorothioate oligodeoxyribonucleotides were shown to be non-specific inhibitors of protein translation, at concentrations in the micromolar range, in both cell-free systems and oocytes. Non-specific inhibition of translation was dependent on the length of the phosphorothioate oligomer. These non-specific effects were not observed with the unmodified or the alpha-oligonucleotides. Images PMID:2472605

  14. Axolotl hemoglobin: cDNA-derived amino acid sequences of two alpha globins and a beta globin from an adult Ambystoma mexicanum.

    PubMed

    Shishikura, Fumio; Takeuchi, Hiro-aki; Nagai, Takatoshi

    2005-11-01

    Erythrocytes of the adult axolotl, Ambystoma mexicanum, have multiple hemoglobins. We separated and purified two kinds of hemoglobin, termed major hemoglobin (Hb M) and minor hemoglobin (Hb m), from a five-year-old male by hydrophobic interaction column chromatography on Alkyl Superose. The hemoglobins have two distinct alpha type globin polypeptides (alphaM and alpham) and a common beta globin polypeptide, all of which were purified in FPLC on a reversed-phase column after S-pyridylethylation. The complete amino acid sequences of the three globin chains were determined separately using nucleotide sequencing with the assistance of protein sequencing. The mature globin molecules were composed of 141 amino acid residues for alphaM globin, 143 for alpham globin and 146 for beta globin. Comparing primary structures of the five kinds of axolotl globins, including two previously established alpha type globins from the same species, with other known globins of amphibians and representatives of other vertebrates, we constructed phylogenetic trees for amphibian hemoglobins and tetrapod hemoglobins. The molecular trees indicated that alphaM, alpham, beta and the previously known alpha major globin were adult types of globins and the other known alpha globin was a larval type. The existence of two to four more globins in the axolotl erythrocyte is predicted.

  15. Globin gene structure in a reptile supports the transpositional model for amniote α- and β-globin gene evolution.

    PubMed

    Patel, Vidushi S; Ezaz, Tariq; Deakin, Janine E; Graves, Jennifer A Marshall

    2010-12-01

    The haemoglobin protein, required for oxygen transportation in the body, is encoded by α- and β-globin genes that are arranged in clusters. The transpositional model for the evolution of distinct α-globin and β-globin clusters in amniotes is much simpler than the previously proposed whole genome duplication model. According to this model, all jawed vertebrates share one ancient region containing α- and β-globin genes and several flanking genes in the order MPG-C16orf35-(α-β)-GBY-LUC7L that has been conserved for more than 410 million years, whereas amniotes evolved a distinct β-globin cluster by insertion of a transposed β-globin gene from this ancient region into a cluster of olfactory receptors flanked by CCKBR and RRM1. It could not be determined whether this organisation is conserved in all amniotes because of the paucity of information from non-avian reptiles. To fill in this gap, we examined globin gene organisation in a squamate reptile, the Australian bearded dragon lizard, Pogona vitticeps (Agamidae). We report here that the α-globin cluster (HBK, HBA) is flanked by C16orf35 and GBY and is located on a pair of microchromosomes, whereas the β-globin cluster is flanked by RRM1 on the 3' end and is located on the long arm of chromosome 3. However, the CCKBR gene that flanks the β-globin cluster on the 5' end in other amniotes is located on the short arm of chromosome 5 in P. vitticeps, indicating that a chromosomal break between the β-globin cluster and CCKBR occurred at least in the agamid lineage. Our data from a reptile species provide further evidence to support the transpositional model for the evolution of β-globin gene cluster in amniotes.

  16. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.

    PubMed

    Schwarze, Kim; Burmester, Thorsten

    2013-09-01

    The (hemo-)globins are among the best-investigated proteins in biomedical sciences. These small heme-proteins play an important role in oxygen supply, but may also have other functions. In addition to well known hemoglobin and myoglobin, six other vertebrate globin types have been identified in recent years: neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Analyses of the genome of the "living fossil" Latimeria chalumnae show that the coelacanth is the only known vertebrate that includes all eight globin types. Thus, Latimeria can also be considered as a "globin fossil". Analyses of gene synteny and phylogenetic reconstructions allow us to trace the evolution and the functional changes of the vertebrate globin family. Neuroglobin and globin X diverged from the other globin types before the separation of Protostomia and Deuterostomia. The cytoglobins, which are unlikely to be involved in O2 supply, form the earliest globin branch within the jawed vertebrates (Gnathostomata), but do not group with the agnathan hemoglobins, as it has been proposed before. There is strong evidence from phylogenetic reconstructions and gene synteny that the eye-specific globin E and muscle-specific myoglobin constitute a common clade, suggesting a similar role in intracellular O2 supply. Latimeria possesses two α- and two β-hemoglobin chains, of which one α-chain emerged prior to the divergence of Actinopterygii and Sarcopterygii, but has been retained only in the coelacanth. Notably, the embryonic hemoglobin α-chains of Gnathostomata derive from a common ancestor, while the embryonic β-chains - with the exception of a more complex pattern in the coelacanth and amphibians - display a clade-specific evolution. Globin Y is associated with the hemoglobin gene cluster, but its phylogenetic position is not resolved. Our data show an early divergence of distinct globin types in the vertebrate evolution before the emergence of tetrapods. The subsequent loss of

  17. Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy.

    PubMed

    Buzina, Alla; Lo, Mandy Y M; Moffett, Angela; Hotta, Akitsu; Fussner, Eden; Bharadwaj, Rikki R; Pasceri, Peter; Garcia-Martinez, J Victor; Bazett-Jones, David P; Ellis, James

    2008-04-11

    The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of

  18. Chromatin structure of the LCR in the human β-globin locus transcribing the adult δ- and β-globin genes.

    PubMed

    Kim, Seoyeon; Kim, Yea Woon; Shim, Sung Han; Kim, Chul Geun; Kim, Aeri

    2012-03-01

    The β-like globin genes are transcribed in a developmental stage specific fashion in erythroid cells. The specific transcription of globin genes is conferred by the locus control region (LCR), but the chromatin structure of the LCR in the human adult β-globin locus transcribing the δ- and β-globin genes is not clear. Here, we employed hybrid MEL cells that contain a human chromosome 11. The δ- and β-globin genes were highly transcribed in hybrid MEL/ch11 cells after transcriptional induction. LCR HS3 and HS2 were strongly occupied by erythroid specific transcriptional activators and co-factors in the induced locus. These HSs, but not HS4 and HS1, were in close proximity with the active globin genes as revealed by high resolution 3C experiments. The active features at HS3 were markedly established after transcriptional induction, while HS2 was in a relatively active conformation before the induction. Unexpectedly, HS1 did not show notable active features except histone hyperacetylation. Taken together, the LCR of the human β-globin locus transcribing the adult δ- and β-globin genes has HS specific chromatin structure. The structure at each HS, which is different from the locus transcribing the fetal globin genes, might relate to its role in transcribing the adult genes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A Phylogenetic Analysis of the Globins in Fungi

    PubMed Central

    Hoogewijs, David; Dewilde, Sylvia; Vierstraete, Andy; Moens, Luc; Vinogradov, Serge N.

    2012-01-01

    Background All globins belong to one of three families: the F (flavohemoglobin) and S (sensor) families that exhibit the canonical 3/3 α-helical fold, and the T (truncated 3/3 fold) globins characterized by a shortened 2/2 α-helical fold. All eukaryote 3/3 hemoglobins are related to the bacterial single domain F globins. It is known that Fungi contain flavohemoglobins and single domain S globins. Our aims are to provide a census of fungal globins and to examine their relationships to bacterial globins. Results Examination of 165 genomes revealed that globins are present in >90% of Ascomycota and ∼60% of Basidiomycota genomes. The S globins occur in Blastocladiomycota and Chytridiomycota in addition to the phyla that have FHbs. Unexpectedly, group 1 T globins were found in one Blastocladiomycota and one Chytridiomycota genome. Phylogenetic analyses were carried out on the fungal globins, alone and aligned with representative bacterial globins. The Saccharomycetes and Sordariomycetes with two FHbs form two widely divergent clusters separated by the remaining fungal sequences. One of the Saccharomycete groups represents a new subfamily of FHbs, comprising a previously unknown N-terminal and a FHb missing the C-terminal moiety of its reductase domain. The two Saccharomycete groups also form two clusters in the presence of bacterial FHbs; the surrounding bacterial sequences are dominated by Proteobacteria and Bacilli (Firmicutes). The remaining fungal FHbs cluster with Proteobacteria and Actinobacteria. The Sgbs cluster separately from their bacterial counterparts, except for the intercalation of two Planctomycetes and a Proteobacterium between the Fungi incertae sedis and the Blastocladiomycota and Chytridiomycota. Conclusion Our results are compatible with a model of globin evolution put forward earlier, which proposed that eukaryote F, S and T globins originated via horizontal gene transfer of their bacterial counterparts to the eukaryote ancestor, resulting from

  20. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription.

    PubMed

    Yun, Won Ju; Kim, Yea Woon; Kang, Yujin; Lee, Jungbae; Dean, Ann; Kim, AeRi

    2014-04-01

    TAL1 is a key hematopoietic transcription factor that binds to regulatory regions of a large cohort of erythroid genes as part of a complex with GATA-1, LMO2 and Ldb1. The complex mediates long-range interaction between the β-globin locus control region (LCR) and active globin genes, and although TAL1 is one of the two DNA-binding complex members, its role is unclear. To explore the role of TAL1 in transcription activation of the human γ-globin genes, we reduced the expression of TAL1 in erythroid K562 cells using lentiviral short hairpin RNA, compromising its association in the β-globin locus. In the TAL1 knockdown cells, the γ-globin transcription was reduced to 35% and chromatin looping of the (G)γ-globin gene with the LCR was disrupted with decreased occupancy of the complex member Ldb1 and LMO2 in the locus. However, GATA-1 binding, DNase I hypersensitive site formation and several histone modifications were largely maintained across the β-globin locus. In addition, overexpression of TAL1 increased the γ-globin transcription and increased interaction frequency between the (G)γ-globin gene and LCR. These results indicate that TAL1 plays a critical role in chromatin loop formation between the γ-globin genes and LCR, which is a critical step for the transcription of the γ-globin genes.

  1. The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription

    PubMed Central

    Yun, Won Ju; Kim, Yea Woon; Kang, Yujin; Lee, Jungbae; Dean, Ann; Kim, AeRi

    2014-01-01

    TAL1 is a key hematopoietic transcription factor that binds to regulatory regions of a large cohort of erythroid genes as part of a complex with GATA-1, LMO2 and Ldb1. The complex mediates long-range interaction between the β-globin locus control region (LCR) and active globin genes, and although TAL1 is one of the two DNA-binding complex members, its role is unclear. To explore the role of TAL1 in transcription activation of the human γ-globin genes, we reduced the expression of TAL1 in erythroid K562 cells using lentiviral short hairpin RNA, compromising its association in the β-globin locus. In the TAL1 knockdown cells, the γ-globin transcription was reduced to 35% and chromatin looping of the Gγ-globin gene with the LCR was disrupted with decreased occupancy of the complex member Ldb1 and LMO2 in the locus. However, GATA-1 binding, DNase I hypersensitive site formation and several histone modifications were largely maintained across the β-globin locus. In addition, overexpression of TAL1 increased the γ-globin transcription and increased interaction frequency between the Gγ-globin gene and LCR. These results indicate that TAL1 plays a critical role in chromatin loop formation between the γ-globin genes and LCR, which is a critical step for the transcription of the γ-globin genes. PMID:24470145

  2. Molecular analysis of globin gene expression in different thalassaemia disorders: individual variation of β(E) pre-mRNA splicing determine disease severity.

    PubMed

    Tubsuwan, Alisa; Munkongdee, Thongperm; Jearawiriyapaisarn, Natee; Boonchoy, Chanikarn; Winichagoon, Pranee; Fucharoen, Suthat; Svasti, Saovaros

    2011-09-01

    Thalassaemia is characterized by the reduced or absent production of globins in the haemoglobin molecule leading to imbalanced α-globin/non α-globin chains. HbE, the result of a G to A mutation in codon 26 of the HBB (β-globin) gene, activates a cryptic 5' splice site in codon 25 leading to a reduction of correctly spliced β(E) -globin (HBB:c.79G>A) mRNA and consequently β(+) -thalassaemia. A wide range of clinical severities in bothα- and β-thalassaemia syndromes, from nearly asymptomatic to transfusion-dependent, has been observed. The correlation between clinical heterogeneity in various genotypes of thalassaemia and the levels of globin gene expression and β(E) -globin pre-mRNA splicing were examined using multiplex quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and allele-specific RT-qPCR. The α-globin/non α-globin mRNA ratio was demonstrated to be a good indicator for disease severity among different thalassaemia disorders. However, the α-globin/non α-globin mRNA ratio ranged widely in β-thalassaemia/HbE patients, with no significant difference between mild and severe phenotypes. Interestingly, the correctly to aberrantly spliced β(E) -globin mRNA ratio in 30% of mild β-thalassaemia/HbE patients was higher than that of the severe patients. The splicing process of β(E) -globin pre-mRNA differs among β-thalassaemia/HbE patients and serves as one of the modifying factors for disease severity. © 2011 Blackwell Publishing Ltd.

  3. α-Globin as a molecular target in the treatment of β-thalassemia

    PubMed Central

    Mettananda, Sachith; Gibbons, Richard J.

    2015-01-01

    The thalassemias, together with sickle cell anemia and its variants, are the world’s most common form of inherited anemia, and in economically undeveloped countries, they still account for tens of thousands of premature deaths every year. In developed countries, treatment of thalassemia is also still far from ideal, requiring lifelong transfusion or allogeneic bone marrow transplantation. Clinical and molecular genetic studies over the course of the last 50 years have demonstrated how coinheritance of modifier genes, which alter the balance of α-like and β-like globin gene expression, may transform severe, transfusion-dependent thalassemia into relatively mild forms of anemia. Most attention has been paid to pathways that increase γ-globin expression, and hence the production of fetal hemoglobin. Here we review the evidence that reduction of α-globin expression may provide an equally plausible approach to ameliorating clinically severe forms of β-thalassemia, and in particular, the very common subgroup of patients with hemoglobin E β-thalassemia that makes up approximately half of all patients born each year with severe β-thalassemia. PMID:25869286

  4. Evolution and Expression of Tissue Globins in Ray-Finned Fishes.

    PubMed

    Gallagher, Michael D; Macqueen, Daniel J

    2017-01-01

    The globin gene family encodes oxygen-binding hemeproteins conserved across the major branches of multicellular life. The origins and evolutionary histories of complete globin repertoires have been established for many vertebrates, but there remain major knowledge gaps for ray-finned fish. Therefore, we used phylogenetic, comparative genomic and gene expression analyses to discover and characterize canonical “non-blood” globin family members (i.e., myoglobin, cytoglobin, neuroglobin, globin-X, and globin-Y) across multiple ray-finned fish lineages, revealing novel gene duplicates (paralogs) conserved from whole genome duplication (WGD) and small-scale duplication events. Our key findings were that: (1) globin-X paralogs in teleosts have been retained from the teleost-specific WGD, (2) functional paralogs of cytoglobin, neuroglobin, and globin-X, but not myoglobin, have been conserved from the salmonid-specific WGD, (3) triplicate lineage-specific myoglobin paralogs are conserved in arowanas (Osteoglossiformes), which arose by tandem duplication and diverged under positive selection, (4) globin-Y is retained in multiple early branching fish lineages that diverged before teleosts, and (5) marked variation in tissue-specific expression of globin gene repertoires exists across ray-finned fish evolution, including several previously uncharacterized sites of expression. In this respect, our data provide an interesting link between myoglobin expression and the evolution of air breathing in teleosts. Together, our findings demonstrate great-unrecognized diversity in the repertoire and expression of nonblood globins that has arisen during ray-finned fish evolution.

  5. Evolution and Expression of Tissue Globins in Ray-Finned Fishes

    PubMed Central

    Gallagher, Michael D.

    2017-01-01

    The globin gene family encodes oxygen-binding hemeproteins conserved across the major branches of multicellular life. The origins and evolutionary histories of complete globin repertoires have been established for many vertebrates, but there remain major knowledge gaps for ray-finned fish. Therefore, we used phylogenetic, comparative genomic and gene expression analyses to discover and characterize canonical “non-blood” globin family members (i.e., myoglobin, cytoglobin, neuroglobin, globin-X, and globin-Y) across multiple ray-finned fish lineages, revealing novel gene duplicates (paralogs) conserved from whole genome duplication (WGD) and small-scale duplication events. Our key findings were that: (1) globin-X paralogs in teleosts have been retained from the teleost-specific WGD, (2) functional paralogs of cytoglobin, neuroglobin, and globin-X, but not myoglobin, have been conserved from the salmonid-specific WGD, (3) triplicate lineage-specific myoglobin paralogs are conserved in arowanas (Osteoglossiformes), which arose by tandem duplication and diverged under positive selection, (4) globin-Y is retained in multiple early branching fish lineages that diverged before teleosts, and (5) marked variation in tissue-specific expression of globin gene repertoires exists across ray-finned fish evolution, including several previously uncharacterized sites of expression. In this respect, our data provide an interesting link between myoglobin expression and the evolution of air breathing in teleosts. Together, our findings demonstrate great-unrecognized diversity in the repertoire and expression of nonblood globins that has arisen during ray-finned fish evolution. PMID:28173090

  6. Predicting Natural Neuroprotection in Marine Mammals: Environmental and Biological Factors Affecting the Vulnerability to Acoustically Mediated Tissue Trauma in Marine Species

    DTIC Science & Technology

    2013-09-30

    comparing both globin deposition profiles from carcasses ranging in age from neonates to adults, as well as the change in mass-specific metabolic demands...to acoustically mediated trauma, 1) molecular and biochemical evaluation of neuroprotection at the tissue level, and 2) whole animal /physiological...Noren, UCSC.) The second component of this study examined the susceptibility of marine mammals to decompression illness at the whole animal

  7. Alpha-globin gene haplotypes in South American Indians.

    PubMed

    Zago, M A; Melo Santos, E J; Clegg, J B; Guerreiro, J F; Martinson, J J; Norwich, J; Figueiredo, M S

    1995-08-01

    The haplotypes of the alpha-globin gene cluster were determined for 99 Indians from the Brazilian Amazon region who belong to 5 tribes: Wayampí, Wayana-Apalaí, Kayapó, Arára, and Yanomámi. Three predominant haplotypes were identified: Ia (present in 38.9% of chromosomes), IIIa (25.8%), and IIe (22.1%). The only alpha-globin gene rearrangement detected was alpha alpha alpha 3.7 I gene triplication associated with haplotype IIIa, found in high frequencies (5.6% and 10.6%) in two tribes and absent in the others. alpha-Globin gene deletions that cause alpha-thalassemia were not seen, supporting the argument that malaria was absent in these populations until recently. The heterogeneous distribution of alpha-globin gene haplotypes and rearrangements among the different tribes differs markedly from the homogeneous distribution of beta-globin gene cluster haplotypes and reflects the action of various genetic mechanisms (genetic drift, founder effect, consanguinity) on small isolated population groups with a complicated history of divergence-fusion events. The alpha-globin gene haplotype distribution has some similarities to distributions observed in Southeast Asian and Pacific Island populations, indicating that these populations have considerable genetic affinities. However, the absence of several features of the alpha-globin gene cluster that are consistently present among the Pacific Islanders suggests that the similarity of haplotypes between Brazilian Indians and people from Polynesia, Micronesia, and Melanesia is more likely to result of ancient common ancestry rather than the consequence of recent direct genetic contribution through immigration.

  8. Comparison of ligand migration and binding in heme proteins of the globin family

    NASA Astrophysics Data System (ADS)

    Karin, Nienhaus; Ulrich Nienhaus, G.

    2015-12-01

    The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins (via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family.

  9. Activation of beta-major globin gene transcription is associated with recruitment of NF-E2 to the beta-globin LCR and gene promoter.

    PubMed

    Sawado, T; Igarashi, K; Groudine, M

    2001-08-28

    The mouse beta-globin gene locus control region (LCR), located upstream of the beta-globin gene cluster, is essential for the activated transcription of genes in the cluster. The LCR contains multiple binding sites for transactivators, including Maf-recognition elements (MAREs). However, little is known about the specific proteins that bind to these sites or the time at which they bind during erythroid differentiation. We have performed chromatin immunoprecipitation experiments to determine the recruitment of the erythroid-specific transactivator p45 NF-E2/MafK (p18 NF-E2) heterodimer and small Maf proteins to various regions in the globin gene locus before and after the induction of murine erythroleukemia (MEL) cell differentiation. We report that, before induction, the LCR is occupied by small Maf proteins, and, on erythroid maturation, the NF-E2 complex is recruited to the LCR and the active globin promoters, even though the promoters do not contain MAREs. This differentiation-coupled recruitment of NF-E2 complex correlates with a greater than 100-fold increase in beta-major globin transcription, but is not associated with a significant change in locus-wide histone H3 acetylation. These findings suggest that the beta-globin gene locus exists in a constitutively open chromatin conformation before terminal differentiation, and we speculate that recruitment of NF-E2 complex to the LCR and active promoters may be a rate-limiting step in the activation of beta-globin gene expression.

  10. Interaction of an α-Globin Gene Triplication with β-Globin Gene Mutations in Iranian Patients with β-Thalassemia Intermedia.

    PubMed

    Farashi, Samaneh; Bayat, Nooshin; Faramarzi Garous, Negin; Ashki, Mehri; Montajabi Niat, Mona; Vakili, Shadi; Imanian, Hashem; Zeinali, Sirous; Najmabadi, Hossein; Azarkeivan, Azita

    2015-01-01

    The 3.7 kb triplicated α-globin gene (ααα(anti 3.7)) mutation has been found in most populations. It results from an unequal crossover between misaligned homologous segments in the α-globin gene cluster during meiosis. The pathophysiology and clinical severity of β-thalassemia (β-thal) are associated with the degree of α chain imbalance. The excess of α-globin chains plays an important role in the pathophysiology of β-thal. When heterozygous/homozygous β-thal coexists with an α gene numerical alteration, the clinical and hematological phenotype of thalassemia could change to mild anemia in case of an α deletion (-α/αα) or severe anemia in the case of an α triplication (αα/ααα). The coexistence of an ααα(anti 3.7) triplication is considered an important factor in the severity of β-thal, exacerbating the phenotypic severity of β-thal by causing more globin chain imbalance. This study shows that the ααα(anti 3.7) triplication is an important factor in the causation of β-thal intermedia (β-TI) in heterozygous β-thal. This type of phenotype modification has rarely been observed and reported in the Iranian population. Here we report the coinheritance of a triplicated α-globin gene arrangement and heterozygous/homozygous β-thal in 23 cases, presenting with a β-TI or β-thal major (β-TM) phenotype. Some of these patients were considered to have a mild β-TI phenotype as they needed no blood transfusions; some occasionally received blood transfusions in their lifetime (for example on delivery) but some are dependent on regular blood transfusions (every 20 to 40 days). Our study was focused on the importance of detecting the α-globin gene triplication in genotype/phenotype prediction in Iranian thalassemia patients.

  11. Evidence for a large expansion and subfunctionalisation of globin genes in sea anemones.

    PubMed

    Smith, Hayden L; Pavasovic, Ana; Surm, Joachim M; Phillips, Matthew J; Prentis, Peter J

    2018-06-27

    The globin gene superfamily has been well-characterised in vertebrates, however, there has been limited research in early-diverging lineages, such as phylum Cnidaria. This study aimed to identify globin genes in multiple cnidarian lineages, and use bioinformatic approaches to characterise the evolution, structure and expression of these genes. Phylogenetic analyses and in silico protein predictions showed that all cnidarians have undergone an expansion of globin genes, which likely have a hexacoordinate protein structure. Our protein modelling has also revealed the possibility of a single pentacoordinate globin lineage in anthozoan species. Some cnidarian globin genes displayed tissue and development specific expression with very few orthologous genes similarly expressed across species. Our phylogenetic analyses also revealed that eumetazoan globin genes form a polyphyletic relationship with vertebrate globin genes. Overall, our analyses suggest that a Ngb-like and GbX-like gene were most likely present in the globin gene repertoire for the last common ancestor of eumetazoans. The identification of a large-scale expansion and subfunctionalisation of globin genes in actiniarians provides an excellent starting point to further our understanding of the evolution and function of the globin gene superfamily in early-diverging lineages.

  12. LCR 5' hypersensitive site specificity for globin gene activation within the active chromatin hub.

    PubMed

    Peterson, Kenneth R; Fedosyuk, Halyna; Harju-Baker, Susanna

    2012-12-01

    The DNaseI hypersensitive sites (HSs) of the human β-globin locus control region (LCR) may function as part of an LCR holocomplex within a larger active chromatin hub (ACH). Differential activation of the globin genes during development may be controlled in part by preferential interaction of each gene with specific individual HSs during globin gene switching, a change in conformation of the LCR holocomplex, or both. To distinguish between these possibilities, human β-globin locus yeast artificial chromosome (β-YAC) lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (β(m)), coupled to an intact LCR, a 5'HS3 complete deletion (5'ΔHS3) or a 5'HS3 core deletion (5'ΔHS3c). The 5'ΔHS3c mice expressed β(m)-globin throughout development; γ-globin was co-expressed in the embryonic yolk sac, but not in the fetal liver; and wild-type β-globin was co-expressed in adult mice. Although the 5'HS3 core was not required for β(m)-globin expression, previous work showed that the 5'HS3 core is necessary for ε-globin expression during embryonic erythropoiesis. A similar phenotype was observed in 5'HS complete deletion mice, except β(m)-globin expression was higher during primitive erythropoiesis and γ-globin expression continued into fetal definitive erythropoiesis. These data support a site specificity model of LCR HS-globin gene interaction.

  13. Molecular Basis and Genetic Modifiers of Thalassemia.

    PubMed

    Mettananda, Sachith; Higgs, Douglas R

    2018-04-01

    Thalassemia is a disorder of hemoglobin characterized by reduced or absent production of one of the globin chains in human red blood cells with relative excess of the other. Impaired synthesis of β-globin results in β-thalassemia, whereas defective synthesis of α-globin leads to α-thalassemia. Despite being a monogenic disorder, thalassemia exhibits remarkable clinical heterogeneity that is directly related to the intracellular imbalance between α- and β-like globin chains. Novel insights into the genetic modifiers have contributed to the understanding of the correlation between genotype and phenotype and are being explored as therapeutic pathways to cure this life-limiting disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. [Main regulatory element (MRE) of the Danio rerio α/β-globin gene domain exerts enhancer activity toward the promoters of the embryonic-larval and adult globin genes].

    PubMed

    Kovina, A P; Petrova, N V; Razin, S V; Yarovaia, O V

    2016-01-01

    In warm-blooded vertebrates, the α- and β-globin genes are organized in domains of different types and are regulated in different fashion. In cold-blooded vertebrates and, in particular, the tropical fish Danio rerio, the α- and β-globin genes form two gene clusters. A major D. rerio globin gene cluster is in chromosome 3 and includes the α- and β-globin genes of embryonic-larval and adult types. The region upstream of the cluster contains c16orf35, harbors the main regulatory element (MRE) of the α-globin gene domain in warm-blooded vertebrates. In this study, transient transfection of erythroid cells with genetic constructs containing a reporter gene under the control of potential regulatory elements of the domain was performed to characterize the promoters of the embryonic-larval and adult α- and β-globin genes of the major cluster. Also, in the 5th intron of c16orf35 in Danio reriowas detected a functional analog of the warm-blooded vertebrate MRE. This enhancer stimulated activity of the promoters of both adult and embryonic-larval α- and β-globin genes.

  15. Towards β-globin gene-targeting with integrase-defective lentiviral vectors.

    PubMed

    Inanlou, Davoud Nouri; Yakhchali, Bagher; Khanahmad, Hossein; Gardaneh, Mossa; Movassagh, Hesam; Cohan, Reza Ahangari; Ardestani, Mehdi Shafiee; Mahdian, Reza; Zeinali, Sirous

    2010-11-01

    We have developed an integrase-defective lentiviral (LV) vector in combination with a gene-targeting approach for gene therapy of β-thalassemia. The β-globin gene-targeting construct has two homologous stems including sequence upstream and downstream of the β-globin gene, a β-globin gene positioned between hygromycin and neomycin resistant genes and a herpes simplex virus type 1 thymidine kinase (HSVtk) suicide gene. Utilization of integrase-defective LV as a vector for the β-globin gene increased the number of selected clones relative to non-viral methods. This method represents an important step toward the ultimate goal of a clinical gene therapy for β-thalassemia.

  16. Medical management of Parkinson's disease: focus on neuroprotection.

    PubMed

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Rios, Camilo

    2011-06-01

    Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson's disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy.

  17. Beta-globin locus activation regions: conservation of organization, structure, and function.

    PubMed Central

    Li, Q L; Zhou, B; Powers, P; Enver, T; Stamatoyannopoulos, G

    1990-01-01

    The human beta-globin locus activation region (LAR) comprises four erythroid-specific DNase I hypersensitive sites (I-IV) thought to be largely responsible for activating the beta-globin domain and facilitating high-level erythroid-specific globin gene expression. We identified the goat beta-globin LAR, determined 10.2 kilobases of its sequence, and demonstrated its function in transgenic mice. The human and goat LARs share 6.5 kilobases of homologous sequences that are as highly conserved as the epsilon-globin gene promoters. Furthermore, the overall spatial organization of the two LARs has been conserved. These results suggest that the functionally relevant regions of the LAR are large and that in addition to their primary structure, the spatial relationship of the conserved elements is important for LAR function. Images PMID:2236034

  18. DNase I hypersensitivity and epsilon-globin transcriptional enhancement are separable in locus control region (LCR) HS1 mutant human beta-globin YAC transgenic mice.

    PubMed

    Shimotsuma, Motoshi; Okamura, Eiichi; Matsuzaki, Hitomi; Fukamizu, Akiyoshi; Tanimoto, Keiji

    2010-05-07

    Expression of the five beta-like globin genes (epsilon, Ggamma, Agamma, delta, beta) in the human beta-globin locus depends on enhancement by the locus control region, which consists of five DNase I hypersensitive sites (5'HS1 through 5'HS5). We report here a novel enhancer activity in 5'HS1 that appears to be potent in transfected K562 cells. Deletion analyses identified a core activating element that bound to GATA-1, and a two-nucleotide mutation that disrupted GATA-1 binding in vitro abrogated 5'HS1 enhancer activity in transfection experiments. To determine the in vivo role of this GATA site, we generated multiple lines of human beta-globin YAC transgenic mice bearing the same two-nucleotide mutation. In the mutant mice, epsilon-, but not gamma-globin, gene expression in primitive erythroid cells was severely attenuated, while adult beta-globin gene expression in definitive erythroid cells was unaffected. Interestingly, DNaseI hypersensitivity near the 5'HS1 mutant sequence was eliminated in definitive erythroid cells, whereas it was only mildly affected in primitive erythroid cells. We therefore conclude that, although the GATA site in 5'HS1 is critical for efficient epsilon-globin gene expression, hypersensitive site formation per se is independent of 5'HS1 function, if any, in definitive erythroid cells.

  19. LCR 5′ hypersensitive site specificity for globin gene activation within the active chromatin hub

    PubMed Central

    Peterson, Kenneth R.; Fedosyuk, Halyna; Harju-Baker, Susanna

    2012-01-01

    The DNaseI hypersensitive sites (HSs) of the human β-globin locus control region (LCR) may function as part of an LCR holocomplex within a larger active chromatin hub (ACH). Differential activation of the globin genes during development may be controlled in part by preferential interaction of each gene with specific individual HSs during globin gene switching, a change in conformation of the LCR holocomplex, or both. To distinguish between these possibilities, human β-globin locus yeast artificial chromosome (β-YAC) lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (βm), coupled to an intact LCR, a 5′HS3 complete deletion (5′ΔHS3) or a 5′HS3 core deletion (5′ΔHS3c). The 5′ΔHS3c mice expressed βm-globin throughout development; γ-globin was co-expressed in the embryonic yolk sac, but not in the fetal liver; and wild-type β-globin was co-expressed in adult mice. Although the 5′HS3 core was not required for βm-globin expression, previous work showed that the 5′HS3 core is necessary for ε-globin expression during embryonic erythropoiesis. A similar phenotype was observed in 5′HS complete deletion mice, except βm-globin expression was higher during primitive erythropoiesis and γ-globin expression continued into fetal definitive erythropoiesis. These data support a site specificity model of LCR HS-globin gene interaction. PMID:23042246

  20. Erythroid Kruppel-like factor (EKLF) is recruited to the γ-globin gene promoter as a co-activator and is required for γ-globin gene induction by short-chain fatty acid derivatives

    PubMed Central

    Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.

    2011-01-01

    Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418

  1. β-Globin locus control region HS2 and HS3 interact structurally and functionally

    PubMed Central

    Jackson, David A.; McDowell, Jennifer C.; Dean, Ann

    2003-01-01

    The overall structure of the DNase I hypersensitive sites (HSs) that comprise the β-globin locus control region (LCR) is highly conserved among mammals, implying that the HSs have conserved functions. However, it is not well understood how the LCR HSs, either individually or collectively, activate transcription. We analyzed the interactions of HS2, HS3 and HS4 with the human ε- and β-globin genes in chromatinized episomes in fetal/embryonic K562 cells. Only HS2 activates transcription of the ε-globin gene, while all three HSs activate the β-globin gene. HS3 stimulates the β-globin gene constitutively, but HS2 and HS4 transactivation requires expression of the transcription factor EKLF, which is not present in K562 cells but is required for β-globin expression in vivo. To begin addressing how the individual HSs may interact with one another in a complex, we linked the β-globin gene to both the HS2 and HS3. HS2 and HS3 together resulted in synergistic stimulation of β-globin transcription. Unexpectedly, mutated, inactive forms of HS2 impeded the activation of the β-globin gene by HS3. Thus, there appear to be distinct interactions among the HSs and between the HSs and the globin genes. These preferential, non-exclusive interactions may underlie an important structural and functional cooperativity among the regulatory sequences of the β-globin locus in vivo. PMID:12582237

  2. Activation of the alpha-globin gene expression correlates with dramatic upregulation of nearby non-globin genes and changes in local and large-scale chromatin spatial structure.

    PubMed

    Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V

    2017-07-11

    In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing

  3. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR.

    PubMed

    Ganis, Jared J; Hsia, Nelson; Trompouki, Eirini; de Jong, Jill L O; DiBiase, Anthony; Lambert, Janelle S; Jia, Zhiying; Sabo, Peter J; Weaver, Molly; Sandstrom, Richard; Stamatoyannopoulos, John A; Zhou, Yi; Zon, Leonard I

    2012-06-15

    Globin gene switching is a complex, highly regulated process allowing expression of distinct globin genes at specific developmental stages. Here, for the first time, we have characterized all of the zebrafish globins based on the completed genomic sequence. Two distinct chromosomal loci, termed major (chromosome 3) and minor (chromosome 12), harbor the globin genes containing α/β pairs in a 5'-3' to 3'-5' orientation. Both these loci share synteny with the mammalian α-globin locus. Zebrafish globin expression was assayed during development and demonstrated two globin switches, similar to human development. A conserved regulatory element, the locus control region (LCR), was revealed by analyzing DNase I hypersensitive sites, H3K4 trimethylation marks and GATA1 binding sites. Surprisingly, the position of these sites with relation to the globin genes is evolutionarily conserved, despite a lack of overall sequence conservation. Motifs within the zebrafish LCR include CACCC, GATA, and NFE2 sites, suggesting functional interactions with known transcription factors but not the same LCR architecture. Functional homology to the mammalian α-LCR MCS-R2 region was confirmed by robust and specific reporter expression in erythrocytes of transgenic zebrafish. Our studies provide a comprehensive characterization of the zebrafish globin loci and clarify the regulation of globin switching. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Rapid and Sensitive Assessment of Globin Chains for Gene and Cell Therapy of Hemoglobinopathies

    PubMed Central

    Loucari, Constantinos C.; Patsali, Petros; van Dijk, Thamar B.; Stephanou, Coralea; Papasavva, Panayiota; Zanti, Maria; Kurita, Ryo; Nakamura, Yukio; Christou, Soteroulla; Sitarou, Maria; Philipsen, Sjaak; Lederer, Carsten W.; Kleanthous, Marina

    2018-01-01

    The β-hemoglobinopathies sickle cell anemia and β-thalassemia are the focus of many gene-therapy studies. A key disease parameter is the abundance of globin chains because it indicates the level of anemia, likely toxicity of excess or aberrant globins, and therapeutic potential of induced or exogenous β-like globins. Reversed-phase high-performance liquid chromatography (HPLC) allows versatile and inexpensive globin quantification, but commonly applied protocols suffer from long run times, high sample requirements, or inability to separate murine from human β-globin chains. The latter point is problematic for in vivo studies with gene-addition vectors in murine disease models and mouse/human chimeras. This study demonstrates HPLC-based measurements of globin expression (1) after differentiation of the commonly applied human umbilical cord blood–derived erythroid progenitor-2 cell line, (2) in erythroid progeny of CD34+ cells for the analysis of clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of the globin regulator BCL11A, and (3) of transgenic mice holding the human β-globin locus. At run times of 8 min for separation of murine and human β-globin chains as well as of human γ-globin chains, and with routine measurement of globin-chain ratios for 12 nL of blood (tested for down to 0.75 nL) or of 300,000 in vitro differentiated cells, the methods presented here and any variant-specific adaptations thereof will greatly facilitate evaluation of novel therapy applications for β-hemoglobinopathies. PMID:29325430

  5. Medical Management of Parkinson’s Disease: Focus on Neuroprotection

    PubMed Central

    Boll, Marie-Catherine; Alcaraz-Zubeldia, Mireya; Rios, Camilo

    2011-01-01

    Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson’s disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy. PMID:22131943

  6. Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene.

    PubMed

    Zhao, Huifen; Pestina, Tamara I; Nasimuzzaman, Md; Mehta, Perdeep; Hargrove, Phillip W; Persons, Derek A

    2009-06-04

    Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However, transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT), driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs, which can be administered to kill residual untransduced, diseased HSCs, whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells, transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin, leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.

  7. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.

    1988-11-01

    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitatesmore » an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.« less

  8. Genetic Basis and Genetic Modifiers of β-Thalassemia and Sickle Cell Disease.

    PubMed

    Thein, Swee Lay

    2017-01-01

    β-thalassemia and sickle cell disease (SCD) are prototypical Mendelian single gene disorders, both caused by mutations affecting the adult β-globin gene. Despite the apparent genetic simplicity, both disorders display a remarkable spectrum of phenotypic severity and share two major genetic modifiers-α-globin genotype and innate ability to produce fetal hemoglobin (HbF, α 2 γ 2 ).This article provides an overview of the genetic basis for SCD and β-thalassemia, and genetic modifiers identified through phenotype correlation studies. Identification of the genetic variants modifying HbF production in combination with α-globin genotype provide some prediction of disease severity for β-thalassemia and SCD but generation of a personalized genetic risk score to inform prognosis and guide management requires a larger panel of genetic modifiers yet to be discovered.Nonetheless, genetic studies have been successful in characterizing some of the key variants and pathways involved in HbF regulation, providing new therapeutic targets for HbF reactivation.

  9. MafK/NF-E2 p18 is required for beta-globin genes activation by mediating the proximity of LCR and active beta-globin genes in MEL cell line.

    PubMed

    Du, Mei-Jun; Lv, Xiang; Hao, De-Long; Zhao, Guo-Wei; Wu, Xue-Song; Wu, Feng; Liu, De-Pei; Liang, Chih-Chuan

    2008-01-01

    Evidences indicate that locus control region (LCR) of beta-globin spatially closes to the downstream active gene promoter to mediate the transcriptional activation by looping. DNA binding proteins may play an important role in the looping formation. NF-E2 is one of the key transcription factors in beta-globin gene transcriptional activation. To shed light on whether NF-E2 is involved in this process, DS19MafKsiRNA cell pools were established by specifically knocked down the expression of MafK/NF-E2 p18, one subunit of NF-E2 heterodimer. In the above cell pools, it was observed that the occupancy efficiency of NF-E2 on beta-globin gene locus and the expression level of beta-globin genes were decreased. H3 acetylation, H3-K4 methylation and the deposition of RNA polymerase II, but not the recruitment of GATA-1, were also found reduced at the beta-globin gene cluster. Chromosome Conformation Capture (3C) assay showed that the cross-linking frequency between the main NF-E2 binding site HS2 and downstream structural genes was reduced compared to the normal cell. This result demonstrated that MafK/NF-E2 p18 recruitment was involved in the physical proximity of LCR and active beta-globin genes upon beta-globin gene transcriptional activation.

  10. Mutations on the α2-Globin Gene That May Trigger α(+)-Thalassemia.

    PubMed

    Farashi, Samaneh; Vakili, Shadi; Garous, Negin F; Ashki, Mehri; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-01-01

    In the present study, a total of 11 individuals with hypochromic microcytic anemia who did not reveal the most common α-thalassemia (α-thal) deletions or mutations, were subjected to more investigations by DNA sequencing of the α-globin genes. Seven novel nondeletional α-thal mutations localized on the α2-globin gene in the heterozygous state were identified. These mutations either corrupted regulatory splice sites and consequently affected RNA processing or created unstable hemoglobin (Hb) variants. The mutations described here produced globin gene variants that lead to amino acid changes in critical regions of the globin chain. The clinical presentation of most patients was a persistent mild microcytic anemia similar to an α(+)-thal. In the last decade, numerous α-globin mutations have been observed leading to an α-thal phenotype and these studies have been considered to be important as discussed here.

  11. Electron paramagnetic resonance of globin proteins - a successful match between spectroscopic development and protein research

    NASA Astrophysics Data System (ADS)

    Van Doorslaer, Sabine; Cuypers, Bert

    2018-02-01

    At the start of the twenty-first century, the research into the haem-containing globins got a considerable impetus with the discovery of three new mammalian globins: neuroglobin, cytoglobin and androglobin. Globins are by now found in all kingdoms of life and, in many cases, their functions are still under debate. This revival in globin research increased the demand for adequate physico-chemical research tools to determine the structure-function relationships of these proteins. From early days onwards, electron paramagnetic resonance (EPR) has been used in globin research. In recent decades, the field of EPR has been revolutionised with the introduction of many new pulsed and high-field EPR techniques. In this review, we highlight how EPR has become an essential tool in globin research, and how globins equally provide ideal model systems to push technical developments in EPR.

  12. Butyrate Infusions in the Ovine Fetus Delay the Biologic Clock for Globin Gene Switching

    NASA Astrophysics Data System (ADS)

    Perrine, Susan P.; Rudolph, Abraham; Faller, Douglas V.; Roman, Christine; Cohen, Ruth A.; Chen, Shao-Jing; Kan, Yuet Wai

    1988-11-01

    The switch from fetal to adult hemoglobin expression is regulated in many mammalian species by a developmental clock-like mechanism and determined by the gestational age of the fetus. Prolonging fetal globin gene expression is of considerable interest for therapeutic potential in diseases caused by abnormal β -globin genes. Butyric acid, which is found in increased plasma concentrations in infants of diabetic mothers who have delayed globin gene switching, was infused into catheterized fetal lambs in utero during the time of the normal globin gene switch period. The globin gene switch was significantly delayed in three of four butyrate-treated fetuses compared with controls and was entirely prevented in one fetus in whom the infusion was begun before the globin switch was under way. These data provide a model for investigating and arresting the biologic clock of hemoglobin switching.

  13. Nucleotide Sequence Analysis of RNA Synthesized from Rabbit Globin Complementary DNA

    PubMed Central

    Poon, Raymond; Paddock, Gary V.; Heindell, Howard; Whitcome, Philip; Salser, Winston; Kacian, Dan; Bank, Arthur; Gambino, Roberto; Ramirez, Francesco

    1974-01-01

    Rabbit globin complementary DNA made with RNA-dependent DNA polymerase (reverse transcriptase) was used as template for in vitro synthesis of 32P-labeled RNA. The sequences of the nucleotides in most of the fragments resulting from combined ribonuclease T1 and alkaline phosphatase digestion have been determined. Several fragments were long enough to fit uniquely with the α or β globin amino-acid sequences. These data demonstrate that the cDNA was copied from globin mRNA and contained no detectable contaminants. Images PMID:4139714

  14. Understanding α-globin gene regulation and implications for the treatment of β-thalassemia.

    PubMed

    Mettananda, Sachith; Gibbons, Richard J; Higgs, Douglas R

    2016-03-01

    Over the past three decades, a vast amount of new information has been uncovered describing how the globin genes are regulated. This knowledge has provided significant insights into the general understanding of the regulation of human genes. It is now known that molecular defects within and around the α- and β-globin genes, as well as in the distant regulatory elements, can cause thalassemia. Unbalanced production of globin chains owing to defective synthesis of one, and the continued unopposed synthesis of another, is the central causative factor in the cellular pathology and pathophysiology of thalassemia. A large body of clinical, genetic, and experimental evidence suggests that altering globin chain imbalance by reducing the production of α-globin synthesis ameliorates the disease severity in patients with β-thalassemia. With the development of new genetic-based therapeutic tools that have a potential to decrease the expression of a selected gene in a tissue-specific manner, the possibility of decreasing expression of the α-globin gene to improve the clinical severity of β-thalassemia could become a reality. © 2015 New York Academy of Sciences.

  15. Specific repression of β-globin promoter activity by nuclear ferritin

    PubMed Central

    Broyles, Robert H.; Belegu, Visar; DeWitt, Christina R.; Shah, Sandeep N.; Stewart, Charles A.; Pye, Quentin N.; Floyd, Robert A.

    2001-01-01

    Developmental hemoglobin switching involves sequential globin gene activations and repressions that are incompletely understood. Earlier observations, described herein, led us to hypothesize that nuclear ferritin is a repressor of the adult β-globin gene in embryonic erythroid cells. Our data show that a ferritin-family protein in K562 cell nuclear extracts binds specifically to a highly conserved CAGTGC motif in the β-globin promoter at −153 to −148 bp from the cap site, and mutation of the CAGTGC motif reduces binding 20-fold in competition gel-shift assays. Purified human ferritin that is enriched in ferritin-H chains also binds the CAGTGC promoter segment. Expression clones of ferritin-H markedly repress β-globin promoter-driven reporter gene expression in cotransfected CV-1 cells in which the β-promoter has been stimulated with the transcription activator erythroid Krüppel-like factor (EKLF). We have constructed chloramphenicol acetyltransferase reporter plasmids containing either a wild-type or mutant β-globin promoter for the −150 CAGTGC motif and have compared the constructs for susceptibility to repression by ferritin-H in cotransfection assays. We find that stimulation by cotransfected EKLF is retained with the mutant promoter, whereas repression by ferritin-H is lost. Thus, mutation of the −150 CAGTGC motif not only markedly reduces in vitro binding of nuclear ferritin but also abrogates the ability of expressed ferritin-H to repress this promoter in our cell transfection assay, providing a strong link between DNA binding and function, and strong support for our proposal that nuclear ferritin-H is a repressor of the human β-globin gene. Such a repressor could be helpful in treating sickle cell and other genetic diseases. PMID:11481480

  16. The effect of globin scaffold on osteoblast adhesion and phenotype expression in vitro.

    PubMed

    Hamdan, Ahmad A; Loty, Sabine; Isaac, Juliane; Tayot, Jean-Louis; Bouchard, Philippe; Khraisat, Ameen; Bedral, Ariane; Sautier, Jean-Michel

    2012-01-01

    Different synthetic and natural biomaterials have been used in bone tissue regeneration. However, several limitations are associated with the use of synthetic as well as allogenous or xenogenous natural materials. This study evaluated, in an in vitro model, the behavior of rat osteoblastic cells cultured on a human globin scaffold. Rat osteoblastic cells were isolated from the calvaria of 21-day-old fetal Sprague-Dawley rats. They were then grown in the presence of globin. Real-time polymerase chain reaction (RT-PCR) was performed to study the expression of cyclin D1, integrin Β1, Msx2, Dlx5, Runx2, and osteocalcin on days 1, 5, and 9. Moreover, alkaline phosphatase activity was measured on days 1, 3, 5, and 7. Alizarin red staining was performed on day 9 to observe calcium deposition. Cells were able to adhere, proliferate, and differentiate on globin scaffolds. Moreover, RT-PCR showed that globin may stimulate some key genes of osteoblastic differentiation (Runx2, osteocalcin, Dlx5). Globin had an inhibitory effect on alkaline phosphatase activity. Calcium deposits were seen after 9 days of culture. These results indicate that purified human globin might be a suitable scaffold for bone tissue regeneration.

  17. β-globin gene cluster haplotypes in ethnic minority populations of southwest China

    PubMed Central

    Sun, Hao; Liu, Hongxian; Huang, Kai; Lin, Keqin; Huang, Xiaoqin; Chu, Jiayou; Ma, Shaohui; Yang, Zhaoqing

    2017-01-01

    The genetic diversity and relationships among ethnic minority populations of southwest China were investigated using seven polymorphic restriction enzyme sites in the β-globin gene cluster. The haplotypes of 1392 chromosomes from ten ethnic populations living in southwest China were determined. Linkage equilibrium and recombination hotspot were found between the 5′ sites and 3′ sites of the β-globin gene cluster. 5′ haplotypes 2 (+−−−), 6 (−++−+), 9 (−++++) and 3′ haplotype FW3 (−+) were the predominant haplotypes. Notably, haplotype 9 frequency was significantly high in the southwest populations, indicating their difference with other Chinese. The interpopulation differentiation of southwest Chinese minority populations is less than those in populations of northern China and other continents. Phylogenetic analysis shows that populations sharing same ethnic origin or language clustered to each other, indicating current β-globin cluster diversity in the Chinese populations reflects their ethnic origin and linguistic affiliations to a great extent. This study characterizes β-globin gene cluster haplotypes in southwest Chinese minorities for the first time, and reveals the genetic variability and affinity of these populations using β-globin cluster haplotype frequencies. The results suggest that ethnic origin plays an important role in shaping variations of the β-globin gene cluster in the southwestern ethnic populations of China. PMID:28205625

  18. Acute chest syndrome is associated with single nucleotide polymorphism-defined beta globin cluster haplotype in children with sickle cell anaemia

    PubMed Central

    Bean, Christopher J.; Boulet, Sheree L.; Yang, Genyan; Payne, Amanda B.; Ghaji, Nafisa; Pyle, Meredith E.; Hooper, W. Craig; Bhatnagar, Pallav; Keefer, Jeffrey; Barron-Casella, Emily A.; Casella, James F.; DeBaun, Michael R.

    2013-01-01

    Summary Genetic diversity at the human β-globin locus has been implicated as a modifier of sickle cell anaemia (SCA) severity. However, haplotypes defined by restriction fragment length polymorphism sites across the β-globin locus have not been consistently associated with clinical phenotypes. To define the genetic structure at the β-globin locus more thoroughly, we performed high-density single nucleotide polymorphism (SNP) mapping in 820 children who were homozygous for the sickle cell mutation (HbSS). Genotyping results revealed very high linkage disequilibrium across a large region spanning the locus control region and the HBB (β-globin gene) cluster. We identified three predominant haplotypes accounting for 96% of the βS-carrying chromosomes in this population that could be distinguished using a minimal set of common SNPs. Consistent with previous studies, fetal haemoglobin level was significantly associated with βS-haplotypes. After controlling for covariates, an association was detected between haplotype and rate of hospitalization for acute chest syndrome (ACS) (incidence rate ratio 0.51, 95% confidence interval 0.29–0.89) but not incidence rate of vaso-occlusive pain or presence of silent cerebral infarct (SCI). Our results suggest that these SNP-defined βS-haplotypes may be associated with ACS, but not pain or SCI in a study population of children with SCA. PMID:23952145

  19. The phylogenetic and evolutionary history of a novel alpha-globin-type gene in orangutans (Pongo pygmaeus).

    PubMed

    Steiper, Michael E; Wolfe, Nathan D; Karesh, William B; Kilbourn, Annelisa M; Bosi, Edwin J; Ruvolo, Maryellen

    2006-07-01

    The alpha-globin genes are implicated in human resistance to malaria, a disease caused by Plasmodium parasites. This study is the first to analyze DNA sequences from a novel alpha-globin-type gene in orangutans, a species affected by Plasmodium. Phylogenetic methods show that the gene is a duplication of an alpha-globin gene and is located 5' of alpha-2 globin. The alpha-globin-type gene is notable for having four amino acid replacements relative to the orangutan's alpha-1 and alpha-2 globin genes, with no synonymous differences. Pairwise K(a)/K(s) methods and likelihood ratio tests (LRTs) revealed that the evolutionary history of the alpha-globin-type gene has been marked by either neutral or positive evolution, but not purifying selection. A comparative analysis of the amino acid replacements of the alpha-globin-type gene with human hemoglobinopathies and hemoglobin structure showed that two of the four replaced sites are members of the same molecular bond, one that is crucial to the proper functioning of the hemoglobin molecule. This suggested an adaptive evolutionary change. Functionally, this locus may result in a thalassemia-like phenotype in orangutans, possibly as an adaptation to combat Plasmodium.

  20. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    PubMed

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  1. β-Globin chain abnormalities with coexisting α-thalassemia mutations

    PubMed Central

    Canataroglu, Abdullah; Unsal, Cagatay; Yildiz, Sule Menziletoglu; Turhan, Ferda Tekin; Bozdogan, Sevcan Tug; Dincer, Suleyman; Erkman, Hakan

    2012-01-01

    Introduction The frequency of hemoglobinopathies is still high in Adana, the biggest city of the Cukurova Region that is located in the southern part of Turkey. Our aim was to identify the concomitant mutations in α- and β-globin genes which lead to complex hemoglobinopathies and to establish an appropriate plan of action for each subject, particularly when prenatal diagnosis is necessary. Material and methods We studied the association between the β-globin gene and α-thalassemia genotypes. The reverse hybridization technique was employed to perform molecular analysis, and the results were confirmed by amplification refractory mutation system (ARMS) or restriction fragment length polymorphism (RFLP) technique. Results We evaluated 36 adult subjects (28 female and 8 male; age range: 18-52 years) with concomitant mutations in their α- and β-globin genes. The –α3.7/αα deletion was the commonest defect in the α-chain as expected, followed by α3.7/–α3.7 deletion. Twenty-five of 36 cases were sickle cell trait with coexisting α-thalassemia, while seven Hb S/S patients had concurrent mutations in their α-genes. The coexistence of αPolyA-2α/αα with Hb A/D and with Hb S/D, which is very uncommon, was also detected. There was a subject with compound heterozygosity for β-globin chain (–α3.7/αα with IVSI.110/S), and also a case who had –α3.7/αα deletion with IVSI.110/A. Conclusions Although limited, our data suggest that it would be valuable to study coexisting α-globin mutations in subjects with sickle cell disease or β-thalassemia trait during the screening programs for premarital couples, especially in populations with a high frequency of hemoglobinopathies. PMID:23056075

  2. The Promise of Neuroprotective Agents in Parkinson’s Disease

    PubMed Central

    Seidl, Stacey E.; Potashkin, Judith A.

    2011-01-01

    Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548

  3. Correction of Murine Sickle Cell Disease Using γ-Globin Lentiviral Vectors to Mediate High-level Expression of Fetal Hemoglobin

    PubMed Central

    Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A

    2008-01-01

    Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, γ-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different γ-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the γ-globin gene driven by 3.1 kb of β-globin regulatory sequences and a 130-bp β-globin promoter. The second vector, V5m3, was identical except that the γ-globin 3′-untranslated region (3′-UTR) was replaced with the β-globin 3′-UTR. Adult erythroid cells have β-globin mRNA 3′-UTR-binding proteins that enhance β-globin mRNA stability and we postulated this design might enhance γ-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human γ-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of γ-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a γ-globin lentiviral vector. PMID:19050697

  4. VNTR alleles associated with the {alpha}-globin locus are haplotype and population related

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, J.J.; Clegg, J.B.; Boyce, A.J.

    1994-09-01

    The human {alpha}-globin complex contains several polymorphic restriction-enzyme sites (i.e., RFLPs) linked to form haplotypes and is flanked by two hypervariable VNTR loci, the 5{prime} hypervariable region (HVR) and the more highly polymorphic 3{prime}HVR. Using a combination of RFLP analysis and PCR, the authors have characterized the 5{prime}HVR and 3{prime}HVR alleles associated with the {alpha}-globin haplotypes of 133 chromosomes, and they here show that specific {alpha}-globin haplotypes are each associated with discrete subsets of the alleles observed at these two VNTR loci. This statistically highly significant association is observed over a region spanning {approximately} 100 kb. With the exception ofmore » closely related haplotypes, different haplotypes do not share identically sized 3{prime}HVR alleles. Earlier studies have shown that {alpha}-globin haplotype distributions differ between populations; the current findings also reveal extensive population substructure in the repertoire of {alpha}-globin VNTRs. If similar features are characteristic of other VNTR loci, this will have important implications for forensic and anthropological studies. 42 refs., 5 figs., 5 tabs.« less

  5. Amoebozoa Possess Lineage-Specific Globin Gene Repertoires Gained by Individual Horizontal Gene Transfers

    PubMed Central

    Dröge, Jasmin; Buczek, Dorota; Suzuki, Yutaka; Makałowski, Wojciech

    2014-01-01

    The Amoebozoa represent a clade of unicellular amoeboid organisms that display a wide variety of lifestyles, including free-living and parasitic species. For example, the social amoeba Dictyostelium discoideum has the ability to aggregate into a multicellular fruiting body upon starvation, while the pathogenic amoeba Entamoeba histolytica is a parasite of humans. Globins are small heme proteins that are present in almost all extant organisms. Although several genomes of amoebozoan species have been sequenced, little is known about the phyletic distribution of globin genes within this phylum. Only two flavohemoglobins (FHbs) of D. discoideum have been reported and characterized previously while the genomes of Entamoeba species are apparently devoid of globin genes. We investigated eleven amoebozoan species for the presence of globin genes by genomic and phylogenetic in silico analyses. Additional FHb genes were identified in the genomes of four social amoebas and the true slime mold Physarum polycephalum. Moreover, a single-domain globin (SDFgb) of Hartmannella vermiformis, as well as two truncated hemoglobins (trHbs) of Acanthamoeba castellanii were identified. Phylogenetic evidence suggests that these globin genes were independently acquired via horizontal gene transfer from some ancestral bacteria. Furthermore, the phylogenetic tree of amoebozoan FHbs indicates that they do not share a common ancestry and that a transfer of FHbs from bacteria to amoeba occurred multiple times. PMID:25013378

  6. Nonthmicin, a Polyether Polyketide Bearing a Halogen-Modified Tetronate with Neuroprotective and Antiinvasive Activity from Actinomadura sp.

    PubMed

    Igarashi, Yasuhiro; Matsuoka, Noriaki; In, Yasuko; Kataura, Tetsushi; Tashiro, Etsu; Saiki, Ikuo; Sudoh, Yuri; Duangmal, Kannika; Thamchaipenet, Arinthip

    2017-03-17

    Nonthmicin (1), a new polyether polyketide bearing a chlorinated tetronic acid, was isolated from the culture extract of a soil-derived Actinomadura strain. The structure of 1 was elucidated by interpretation of NMR and MS spectroscopic data, and the absolute configuration of 1 was proposed on the basis of the crystal structure of its dechloro congener ecteinamycin (2) also isolated from the same strain. Tetronic acids modified by halogenation have never been reported from natural products. Compounds 1 and 2 were found to have neuroprotective activity and antimetastatic properties at submicromolar concentrations in addition to antibacterial activity.

  7. Characterization of the transcriptome profiles related to globin gene switching during in vitro erythroid maturation

    PubMed Central

    2012-01-01

    Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2

  8. High-Density SNP Genotyping to Define β-Globin Locus Haplotypes

    PubMed Central

    Liu, Li; Muralidhar, Shalini; Singh, Manisha; Sylvan, Caprice; Kalra, Inderdeep S.; Quinn, Charles T.; Onyekwere, Onyinye C.; Pace, Betty S.

    2014-01-01

    Five major β-globin locus haplotypes have been established in individuals with sickle cell disease (SCD) from the Benin, Bantu, Senegal, Cameroon, and Arab-Indian populations. Historically, β-haplotypes were established using restriction fragment length polymorphism (RFLP) analysis across the β-locus, which consists of five functional β-like globin genes located on chromosome 11. Previous attempts to correlate these haplotypes as robust predictors of clinical phenotypes observed in SCD have not been successful. We speculate that the coverage and distribution of the RFLP sites located proximal to or within the globin genes are not sufficiently dense to accurately reflect the complexity of this region. To test our hypothesis, we performed RFLP analysis and high-density single nucleotide polymorphism (SNP) genotyping across the β-locus using DNA samples from either healthy African Americans with normal hemoglobin A (HbAA) or individuals with homozygous SS (HbSS) disease. Using the genotyping data from 88 SNPs and Haploview analysis, we generated a greater number of haplotypes than that observed with RFLP analysis alone. Furthermore, a unique pattern of long-range linkage disequilibrium between the locus control region and the β-like globin genes was observed in the HbSS group. Interestingly, we observed multiple SNPs within the HindIII restriction site located in the Gγ-globin intervening sequence II which produced the same RFLP pattern. These findings illustrated the inability of RFLP analysis to decipher the complexity of sequence variations that impacts genomic structure in this region. Our data suggest that high density SNP mapping may be required to accurately define β-haplotypes that correlate with the different clinical phenotypes observed in SCD. PMID:18829352

  9. [The effect of DNA hydroxymethylase Tet2 on γ globin activation in the treatment of β-thalassemia].

    PubMed

    Li, W X; Ma, Q W; Zeng, F Y

    2018-03-01

    Objective: To study the function of ten-eleven translocation 2 (Tet2) in γ globin gene expression in patients with β- thalassemia. Methods: Gamma globin expression was induced by 5-azacytidine and Tet2 gene expression was knocked down by short hairpin RNA (shRNA) in a human immortalized myelogenous leukemia K562 cell line. The global 5-hydroxymethylcytosine (5hmC) level was measured by an ELISA kit. 5hmC level of γ globin gene was quantified by sulfite sequencing. The mRNA level of Tet2, γ globin, and related transcription factors Nfe4 and Klf1 were quantified by real-time PCR. Results: Tet2 knockdown resulted in a decreased global 5hmC level from 0.14% to 0.03% as of the control group in K562 cells. The expression of γ globin was enhanced after 5-azacytidine treatment in vitro. However, γ globin mRNA level in Tet2 knockdown cells was only 55% as that in control group. The CG sites on γ globin gene were unmethylated. As Tet2 was down-regulated, the expression levels of Nfe4 and Klf1 decreased by about 80% and increased to 3.5 folds, respectively. Conclusions: Tet2 appears to maintain 5hmC level and facilitates γ globin gene activation. Moreover, Tet2 more likely regulates γ globin expression via affecting transcription factors rather than the gene itself. Thus, Tet2 could be a potential therapeutic target for β thalassemias.

  10. Editing an α-globin enhancer in primary human hematopoietic stem cells as a treatment for β-thalassemia.

    PubMed

    Mettananda, Sachith; Fisher, Chris A; Hay, Deborah; Badat, Mohsin; Quek, Lynn; Clark, Kevin; Hublitz, Philip; Downes, Damien; Kerry, Jon; Gosden, Matthew; Telenius, Jelena; Sloane-Stanley, Jackie A; Faustino, Paula; Coelho, Andreia; Doondeea, Jessica; Usukhbayar, Batchimeg; Sopp, Paul; Sharpe, Jacqueline A; Hughes, Jim R; Vyas, Paresh; Gibbons, Richard J; Higgs, Douglas R

    2017-09-04

    β-Thalassemia is one of the most common inherited anemias, with no effective cure for most patients. The pathophysiology reflects an imbalance between α- and β-globin chains with an excess of free α-globin chains causing ineffective erythropoiesis and hemolysis. When α-thalassemia is co-inherited with β-thalassemia, excess free α-globin chains are reduced significantly ameliorating the clinical severity. Here we demonstrate the use of CRISPR/Cas9 genome editing of primary human hematopoietic stem/progenitor (CD34+) cells to emulate a natural mutation, which deletes the MCS-R2 α-globin enhancer and causes α-thalassemia. When edited CD34+ cells are differentiated into erythroid cells, we observe the expected reduction in α-globin expression and a correction of the pathologic globin chain imbalance in cells from patients with β-thalassemia. Xenograft assays show that a proportion of the edited CD34+ cells are long-term repopulating hematopoietic stem cells, demonstrating the potential of this approach for translation into a therapy for β-thalassemia.β-thalassemia is characterised by the presence of an excess of α-globin chains, which contribute to erythrocyte pathology. Here the authors use CRISP/Cas9 to reduce α-globin expression in hematopoietic precursors, and show effectiveness in xenograft assays in mice.

  11. Inhibition of G9a methyltransferase stimulates fetal hemoglobin production by facilitating LCR/γ-globin looping.

    PubMed

    Krivega, Ivan; Byrnes, Colleen; de Vasconcellos, Jaira F; Lee, Y Terry; Kaushal, Megha; Dean, Ann; Miller, Jeffery L

    2015-07-30

    Induction of fetal hemoglobin (HbF) production in adult erythrocytes can reduce the severity of sickle cell disease and β-thalassemia. Transcription of β-globin genes is regulated by the distant locus control region (LCR), which is brought into direct gene contact by the LDB1/GATA-1/TAL1/LMO2-containing complex. Inhibition of G9a H3K9 methyltransferase by the chemical compound UNC0638 activates fetal and represses adult β-globin gene expression in adult human hematopoietic precursor cells, but the underlying mechanisms are unclear. Here we studied UNC0638 effects on β-globin gene expression using ex vivo differentiation of CD34(+) erythroid progenitor cells from peripheral blood of healthy adult donors. UNC0638 inhibition of G9a caused dosed accumulation of HbF up to 30% of total hemoglobin in differentiated cells. Elevation of HbF was associated with significant activation of fetal γ-globin and repression of adult β-globin transcription. Changes in gene expression were associated with widespread loss of H3K9me2 in the locus and gain of LDB1 complex occupancy at the γ-globin promoters as well as de novo formation of LCR/γ-globin contacts. Our findings demonstrate that G9a establishes epigenetic conditions preventing activation of γ-globin genes during differentiation of adult erythroid progenitor cells. In this view, manipulation of G9a represents a promising epigenetic approach for treatment of β-hemoglobinopathies.

  12. Structural polymorphism at LCR and its role in beta-globin gene regulation.

    PubMed

    Kukreti, Shrikant; Kaur, Harpreet; Kaushik, Mahima; Bansal, Aparna; Saxena, Sarika; Kaushik, Shikha; Kukreti, Ritushree

    2010-09-01

    Information on the secondary structures and conformational manifestations of eukaryotic DNA and their biological significance with reference to gene regulation and expression is limited. The human beta-globin gene Locus Control Region (LCR), a dominant regulator of globin gene expression, is a contiguous piece of DNA with five tissue-specific DNase I-hypersensitive sites (HSs). Since these HSs have a high density of transcription factor binding sites, structural interdependencies between HSs and different promoters may directly or indirectly regulate LCR functions. Mutations and SNPs may stabilize or destabilize the local secondary structures, affecting the gene expression by changes in the protein-DNA recognition patterns. Various palindromic or quasi-palindromic segments within LCR, could cause structural polymorphism and geometrical switching of DNA. This emphasizes the importance of understanding of the sequence-dependent variations of the DNA structure. Such structural motifs might act as regulatory elements. The local conformational variability of a DNA segment or action of a DNA specific protein is key to create and maintain active chromatin domains and affect transcription of various tissue specific beta-globin genes. We, summarize here the current status of beta-globin LCR structure and function. Further structural studies at molecular level and functional genomics might solve the regulatory puzzles that control the beta-globin gene locus. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  13. Potentially Therapeutic Levels of Anti-Sickling Globin Gene Expression Following Lentivirus-mediated Gene Transfer in Sickle Cell Disease Bone Marrow CD34+ Cells

    PubMed Central

    Urbinati, Fabrizia; Hargrove, Philip W.; Geiger, Sabine; Romero, Zulema; Wherley, Jennifer; Kaufman, Michael L.; Hollis, Roger P.; Chambers, Christopher B.; Persons, Derek A.; Kohn, Donald B.; Wilber, Andrew

    2015-01-01

    Sickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell (HSC) transplant. However, this is only possible when a matched donor is available making the development of gene therapy using autologous HSCs a highly desired alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified β-globin (βAS3-FB) for production of anti-sickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation. Bone marrow CD34+ cells from three SCD patients were transduced using V5m3-400 or βAS3-FB and compared to mock transduced SCD or healthy donor CD34+ cells. Lentiviral transduction did not impair cell growth or differentiation, as gauged by proliferation and acquisition of erythroid markers. Vector copy number averaged ~1 copy per cell and corrective globin mRNA levels were increased more than 7-fold over mock-transduced controls. Erythroblasts derived from healthy donor and mock-transduced SCD cells produced a low level of HbF that was increased to 23.6 ± 4.1% per vector copy for cells transduced with V5m3-400. Equivalent levels of modified HbA of 17.6 ± 3.8% per vector copy were detected for SCD cells transduced with βAS3-FB. These levels of anti-sickling Hb production were sufficient to reduce sickling of terminal stage RBCs upon deoxygenation. We conclude that the achieved levels of HbF and modified HbA would likely prove therapeutic to SCD patients who lack matched donors. PMID:25681747

  14. Open and Lys–His Hexacoordinated Closed Structures of a Globin with Swapped Proximal and Distal Sites

    PubMed Central

    Teh, Aik-Hong; Saito, Jennifer A.; Najimudin, Nazalan; Alam, Maqsudul

    2015-01-01

    Globins are haem-binding proteins with a conserved fold made up of α-helices and can possess diverse properties. A putative globin-coupled sensor from Methylacidiphilum infernorum, HGbRL, contains an N-terminal globin domain whose open and closed structures reveal an untypical dimeric architecture. Helices E and F fuse into an elongated helix, resulting in a novel site-swapped globin fold made up of helices A–E, hence the distal site, from one subunit and helices F–H, the proximal site, from another. The open structure possesses a large cavity binding an imidazole molecule, while the closed structure forms a unique Lys–His hexacoordinated species, with the first turn of helix E unravelling to allow Lys52(E10) to bind to the haem. Ligand binding induces reorganization of loop CE, which is stabilized in the closed form, and helix E, triggering a large conformational movement in the open form. These provide a mechanical insight into how a signal may be relayed between the globin domain and the C-terminal domain of HGbRL, a Roadblock/LC7 domain. Comparison with HGbI, a closely related globin, further underlines the high degree of structural versatility that the globin fold is capable of, enabling it to perform a diversity of functions. PMID:26094577

  15. Replication of the Chicken β-Globin Locus: Early-Firing Origins at the 5′ HS4 Insulator and the ρ- and βA-Globin Genes Show Opposite Epigenetic Modifications

    PubMed Central

    Prioleau, Marie-Noëlle; Gendron, Marie-Claude; Hyrien, Olivier

    2003-01-01

    Chromatin structure is believed to exert a strong effect on replication origin function. We have studied the replication of the chicken β-globin locus, whose chromatin structure has been extensively characterized. This locus is delimited by hypersensitive sites (HSs) that mark the position of insulator elements. A stretch of condensed chromatin and another HS separate the β-globin domain from an adjacent folate receptor (FR) gene. We demonstrate here that in erythroid cells that express the FR but not the globin genes, replication initiates at four sites within the β-globin domain, one at the 5′ HS4 insulator and the other three near the ρ- and βA-globin genes. Three origins consist of G+C-rich sequences enriched in CpG dinucleotides. The fourth origin is A+T rich. Together with previous work, these data reveal that the insulator origin has unmethylated CpGs, hyperacetylated histones H3 and H4, and lysine 4-methylated histone H3. In contrast, opposite modifications are observed at the other G+C-rich origins. We also show that the whole region, including the stretch of condensed chromatin, replicates early in S phase in these cells. Therefore, different early-firing origins within the same locus may have opposite patterns of epigenetic modifications. The role of insulator elements in DNA replication is discussed. PMID:12724412

  16. Context-dependent EKLF responsiveness defines the developmental specificity of the human ɛ-globin gene in erythroid cells of YAC transgenic mice

    PubMed Central

    Tanimoto, Keiji; Liu, Qinghui; Grosveld, Frank; Bungert, Jörg; Engel, James Douglas

    2000-01-01

    We explored the mechanism of definitive-stage ɛ-globin transcriptional inactivity within a human β-globin YAC expressed in transgenic mice. We focused on the globin CAC and CAAT promoter motifs, as previous laboratory and clinical studies indicated a pivotal role for these elements in globin gene activation. A high-affinity CAC-binding site for the erythroid krüppel-like factor (EKLF) was placed in the ɛ-globin promoter at a position corresponding to that in the adult β-globin promoter, thereby simultaneously ablating a direct repeat (DR) element. This mutation led to EKLF-independent ɛ-globin transcription during definitive erythropoiesis. A second 4-bp substitution in the ɛ-globin CAAT sequence, which simultaneously disrupts a second DR element, further enhanced ectopic definitive erythroid activation of ɛ-globin transcription, which surprisingly became EKLF dependent. We finally examined factors in nuclear extracts prepared from embryonic or adult erythroid cells that bound these elements in vitro, and we identified a novel DR-binding protein (DRED) whose properties are consistent with those expected for a definitive-stage ɛ-globin repressor. We conclude that the suppression of ɛ-globin transcription during definitive erythropoiesis is mediated by the binding of a repressor that prevents EKLF from activating the ɛ-globin gene. PMID:11069894

  17. Small Molecule Anticonvulsant Agents with Potent In Vitro Neuroprotection

    PubMed Central

    Smith, Garry R.; Zhang, Yan; Du, Yanming; Kondaveeti, Sandeep K.; Zdilla, Michael J.; Reitz, Allen B.

    2012-01-01

    Severe seizure activity is associated with recurring cycles of excitotoxicity and oxidative stress that result in progressive neuronal damage and death. Intervention to halt these pathological processes is a compelling disease-modifying strategy for the treatment of seizure disorders. In the present study, a core small molecule with anticonvulsant activity has been structurally optimized for neuroprotection. Phenotypic screening of rat hippocampal cultures with nutrient medium depleted of antioxidants was utilized as a disease model. Increased cell death and decreased neuronal viability produced by acute treatment with glutamate or hydrogen peroxide were prevented by our novel molecules. The neuroprotection associated with this chemical series has marked structure activity relationships that focus on modification of the benzylic position of a 2-phenyl-2-hydroxyethyl sulfamide core structure. Complete separation between anticonvulsant activity and neuroprotective action was dependent on substitution at the benzylic carbon. Chiral selectivity was evident in that the S-enantiomer of the benzylic hydroxy group had neither neuroprotective nor anticonvulsant activity, while the R-enantiomer of the lead compound had full neuroprotective action at ≤40 nM and antiseizure activity in three animal models. These studies indicate that potent, multifunctional neuroprotective anticonvulsants are feasible within a single molecular entity. PMID:22535312

  18. Copy number variations of six and seven α-globin genes in a family with intermedia and major thalassemia phenotypes.

    PubMed

    Farashi, Samaneh; Vakili, Shadi; Faramarzi Garous, Negin; Ashki, Mehri; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-10-01

    Copy number variations in α-globin genes are results of unequal crossover between homologous segments in the α-globin gene cluster that misalign during the meiosis phase of the gametogenesis process. Reduction or augmentation of α-globin genes leads to imbalance of α/β chains in hemoglobin tetramer and consequently attenuate or worsen the β-thal clinical symptoms, respectively. Multiplications in α-globin genes have been found in some populations, justifying unexpected severe phenotype of β-thal carriers. Unexpected severe phenotype in the family members may result from coexistence of extra α-globin genes, which is an important factor in the causation of thalassemia intermedia and major in heterozygous β-thalassemia. We described different multiplications in α-globin locus in an Iranian family with one, two or three extra α-globin genes (ααα/αα, αααα/αα and αααα/ααα). The excess α-globin gene/genes cause increment in β/α chain imbalance and leads to worsening pathophysiology and clinical severity of β-thalassemia carriers.

  19. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome

    PubMed Central

    Opazo, Juan C.; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F.

    2015-01-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  20. Therapeutic fetal-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms.

    PubMed

    Dai, Yan; Sangerman, Jose; Luo, Hong Yuan; Fucharoen, Suthat; Chui, David H K; Faller, Douglas V; Perrine, Susan P

    2016-01-01

    Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ-globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Therapeutic γ-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms

    PubMed Central

    Dai, Yan; Sangerman, Jose; Hong, Yuan Luo; Fuchareon, Suthat; Chui, David H.K.; Faller, Douglas V.; Perrine, Susan P.

    2015-01-01

    Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy. PMID:26603726

  2. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease.

    PubMed

    Francardo, Veronica; Schmitz, Yvonne; Sulzer, David; Cenci, M Angela

    2017-12-01

    Disease-modifying treatments remain an unmet medical need in Parkinson's disease (PD). Such treatments can be operationally defined as interventions that slow down the clinical evolution to advanced disease milestones. A treatment may achieve this outcome by either inhibiting primary neurodegenerative events ("neuroprotection") or boosting compensatory and regenerative mechanisms in the brain ("neurorestoration"). Here we review experimental paradigms that are currently used to assess the neuroprotective and neurorestorative potential of candidate treatments in animal models of PD. We review some key molecular mediators of neuroprotection and neurorestoration in the nigrostriatal dopamine pathway that are likely to exert beneficial effects on multiple neural systems affected in PD. We further review past and current strategies to therapeutically stimulate these mediators, and discuss the preclinical evidence that exercise training can have neuroprotective and neurorestorative effects. A future translational task will be to combine behavioral and pharmacological interventions to exploit endogenous mechanisms of neuroprotection and neurorestoration for therapeutic purposes. This type of approach is likely to provide benefit to many PD patients, despite the clinical, etiological, and genetic heterogeneity of the disease. Copyright © 2017. Published by Elsevier Inc.

  3. Role of α-globin H helix in the building of tetrameric human hemoglobin: interaction with α-hemoglobin stabilizing protein (AHSP) and heme molecule.

    PubMed

    Domingues-Hamdi, Elisa; Vasseur, Corinne; Fournier, Jean-Baptiste; Marden, Michael C; Wajcman, Henri; Baudin-Creuza, Véronique

    2014-01-01

    Alpha-Hemoglobin Stabilizing Protein (AHSP) binds to α-hemoglobin (α-Hb) or α-globin and maintains it in a soluble state until its association with the β-Hb chain partner to form Hb tetramers. AHSP specifically recognizes the G and H helices of α-Hb. To investigate the degree of interaction of the various regions of the α-globin H helix with AHSP, this interface was studied by stepwise elimination of regions of the α-globin H helix: five truncated α-Hbs α-Hb1-138, α-Hb1-134, α-Hb1-126, α-Hb1-123, α-Hb1-117 were co-expressed with AHSP as two glutathione-S-transferase (GST) fusion proteins. SDS-PAGE and Western Blot analysis revealed that the level of expression of each truncated α-Hb was similar to that of the wild type α-Hb except the shortest protein α-Hb1-117 which displayed a decreased expression. While truncated GST-α-Hb1-138 and GST-α-Hb1-134 were normally soluble; the shorter globins GST-α-Hb1-126 and GST-α-Hb1-117 were obtained in very low quantities, and the truncated GST-α-Hb1-123 provided the least material. Absorbance and fluorescence studies of complexes showed that the truncated α-Hb1-134 and shorter forms led to modified absorption spectra together with an increased fluorescence emission. This attests that shortening the H helix leads to a lower affinity of the α-globin for the heme. Upon addition of β-Hb, the increase in fluorescence indicates the replacement of AHSP by β-Hb. The CO binding kinetics of different truncated AHSPWT/α-Hb complexes showed that these Hbs were not functionally normal in terms of the allosteric transition. The N-terminal part of the H helix is primordial for interaction with AHSP and C-terminal part for interaction with heme, both features being required for stability of α-globin chain.

  4. All of the human beta-type globin genes compete for LCR enhancer activity in embryonic erythroid cells of yeast artificial chromosome transgenic mice.

    PubMed

    Okamura, Eiichi; Matsuzaki, Hitomi; Campbell, Andrew D; Engel, James Douglas; Fukamizu, Akiyoshi; Tanimoto, Keiji

    2009-12-01

    In primitive erythroid cells of human beta-globin locus transgenic mice (TgM), the locus control region (LCR)-proximal epsilon- and gamma-globin genes are transcribed, whereas the distal delta- and beta-globin genes are silent. It is generally accepted that the beta-globin gene is competitively suppressed by gamma-globin gene expression at this developmental stage. Previously, however, we observed that epsilon-globin gene expression was severely attenuated when its distance from the LCR was extended, implying that beta-globin gene might also be silenced because of its great distance from the LCR. Here, to clarify the beta-globin gene silencing mechanism, we established TgM lines carrying either gamma- or epsilon- plus gamma-globin promoter deletions, without significantly altering the distance between the beta-globin gene and the LCR. Precocious expression of delta- and beta-globin genes was observed in primitive erythroid cells of mutant, but not wild-type TgM, which was most evident when both the epsilon and gamma promoters were deleted. Thus, we clearly demonstrated that the repression of the delta- and beta-globin genes in primitive erythroid cells is dominated by competitive silencing by the epsilon- and gamma-globin gene promoters, and that epsilon- and the other beta-like globin genes might be activated by two distinct mechanisms by the LCR.

  5. Stimulation of globin synthesis: relative responsiveness of reticulocytes and nucleated erythroid cells

    PubMed Central

    Waxman, Herbert S.

    1970-01-01

    The effects of iron, cobalt, hemin, and plasma on hemoglobin synthesis by suspensions of rabbit reticulocytes and nucleated bone marrow cells were studied. L-Leucine-14C and sodium pyruvate-3-14C were employed to measure globin and heme synthesis, respectively. Normal plasma (or serum) was found to stimulate the rate of globin synthesis in both systems. The stimulatory effects of iron and hemin were additive to those of plasma or serum only in the reticulocytes. Cobaltous ion, at concentrations less than 1.0 mmole/liter, was found to stimulate globin synthesis by reticulocytes as effectively as ferrous ion; cobalt was inhibitory only at concentrations greater than 3.0-5.0 mmoles/liter. Heme synthesis by reticulocytes was inhibited at all concentrations employed (0.2-5.0 mmoles/liter). In bone marrow nucleated erythroid cells, globin synthesis was markedly enhanced by exogenous hemin. In contrast to reticulocytes, however, bone marrow cells were unresponsive to either cobalt or transferrin-bound iron. Possible implications of these findings on regulation of the rate and mechanism of iron uptake and hemoglobin synthesis in vivo are discussed. PMID:5443172

  6. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.

    PubMed

    Opazo, Juan C; Lee, Alison P; Hoffmann, Federico G; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F

    2015-07-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  7. Relationship of the Interaction Between Two Quantitative Trait Loci with γ-Globin Expression in β-Thalassemia Intermedia Patients.

    PubMed

    NickAria, Shiva; Haghpanah, Sezaneh; Ramzi, Mani; Karimi, Mehran

    2018-05-10

    Globin switching is a significant factor on blood hemoglobin (Hb) level but its molecular mechanisms have not yet been identified, however, several quantitative trait loci (QTL) and polymorphisms involved regions on chromosomes 2p, 6q, 8q and X account for variation in the γ-globin expression level. We studied the effect of interaction between a region on intron six of the TOX gene, chromosome 8q (chr8q) and XmnI locus on the γ-globin promoter, chr11p on γ-globin expression in 150 β-thalassemia intermedia (β-TI) patients, evaluated by statistical interaction analysis. Our results showed a significant interaction between one QTL on intron six of the TOX gene (rs9693712) and XmnI locus that effect γ-globin expression. Interchromosomal interaction mediates through transcriptional machanisms to preserve true genome architectural features, chromosomes localization and DNA bending. This interaction can be a part of the unknown molecular mechanism of globin switching and regulation of gene expression.

  8. Immunomodulation as a neuroprotective and therapeutic strategy for Parkinson's disease.

    PubMed

    Olson, Katherine E; Gendelman, Howard E

    2016-02-01

    While immune control is associated with nigrostriatal neuroprotection for Parkinson's disease, direct cause and effect relationships have not yet been realized, and modulating the immune system for therapeutic gain has been openly debated. Here, we review how innate and adaptive immunity affect disease pathobiology, and how each could be harnessed for treatment. The overarching idea is to employ immunopharmacologics as neuroprotective strategies for disease. The aim of the current work is to review disease-modifying treatments that are currently being developed as neuroprotective strategies for PD in experimental animal models and for human disease translation. The long-term goal of this research is to effectively harness the immune system to slow or prevent PD pathobiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (HbαX).

    PubMed

    Keller, T C Stevenson; Butcher, Joshua T; Broseghini-Filho, Gilson Brás; Marziano, Corina; DeLalio, Leon J; Rogers, Stephen; Ning, Bo; Martin, Jennifer N; Chechova, Sylvia; Cabot, Maya; Shu, Xiahong; Best, Angela K; Good, Miranda E; Simão Padilha, Alessandra; Purdy, Michael; Yeager, Mark; Peirce, Shayn M; Hu, Song; Doctor, Allan; Barrett, Eugene; Le, Thu H; Columbus, Linda; Isakson, Brant E

    2016-12-01

    The ability of hemoglobin to scavenge the potent vasodilator nitric oxide (NO) in the blood has been well established as a mechanism of vascular tone homeostasis. In endothelial cells, the alpha chain of hemoglobin (hereafter, alpha globin) and endothelial NO synthase form a macromolecular complex, providing a sink for NO directly adjacent to the production source. We have developed an alpha globin mimetic peptide (named HbαX) that displaces endogenous alpha globin and increases bioavailable NO for vasodilation. Here we show that, in vivo, HbαX administration increases capillary oxygenation and blood flow in arterioles acutely and produces a sustained decrease in systolic blood pressure in normal and angiotensin II-induced hypertensive states. HbαX acts with high specificity and affinity to endothelial NO synthase, without toxicity to liver and kidney and no effect on p50 of O 2 binding in red blood cells. In human vasculature, HbαX blunts vasoconstrictive response to cumulative doses of phenylephrine, a potent constricting agent. By binding to endothelial NO synthase and displacing endogenous alpha globin, HbαX modulates important metrics of vascular function, increasing vasodilation and flow in the resistance vasculature. © 2016 American Heart Association, Inc.

  10. β-Globin-Expressing Definitive Erythroid Progenitor Cells Generated from Embryonic and Induced Pluripotent Stem Cell-Derived Sacs.

    PubMed

    Fujita, Atsushi; Uchida, Naoya; Haro-Mora, Juan J; Winkler, Thomas; Tisdale, John

    2016-06-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent a potential alternative source for red blood cell transfusion. However, when using traditional methods with embryoid bodies, ES cell-derived erythroid cells predominantly express embryonic type ɛ-globin, with lesser fetal type γ-globin and very little adult type β-globin. Furthermore, no β-globin expression is detected in iPS cell-derived erythroid cells. ES cell-derived sacs (ES sacs) have been recently used to generate functional platelets. Due to its unique structure, we hypothesized that ES sacs serve as hemangioblast-like progenitors capable to generate definitive erythroid cells that express β-globin. With our ES sac-derived erythroid differentiation protocol, we obtained ∼120 erythroid cells per single ES cell. Both primitive (ɛ-globin expressing) and definitive (γ- and β-globin expressing) erythroid cells were generated from not only ES cells but also iPS cells. Primitive erythropoiesis is gradually switched to definitive erythropoiesis during prolonged ES sac maturation, concurrent with the emergence of hematopoietic progenitor cells. Primitive and definitive erythroid progenitor cells were selected on the basis of glycophorin A or CD34 expression from cells within the ES sacs before erythroid differentiation. This selection and differentiation strategy represents an important step toward the development of in vitro erythroid cell production systems from pluripotent stem cells. Further optimization to improve expansion should be required for clinical application. Stem Cells 2016;34:1541-1552. © 2016 AlphaMed Press.

  11. Total alpha-globin gene cluster deletion has high frequency in Filipinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, J.A.; Haruyama, A.Z.; Chu, B.M.

    1994-09-01

    Most {alpha}-thalassemias [Thal] are due to large deletions. In Southeast Asians, the (--{sup SEA}) double {alpha}-globin gene deletion is common, 3 (--{sup Tot}) total {alpha}-globin cluster deletions are known: Filipino (--{sup Fil}), Thai (--{sup Thai}), and Chinese (--{sup Chin}). In a Hawaii Thal project, provisional diagnosis of {alpha}-Thal-1 heterozygotes was based on microcytosis, normal isoelectric focusing, and no iron deficiency. One in 10 unselected Filipinos was an {alpha}-Thal-1 heterozygote, 2/3 of these had a (--{sup Tot}) deletion: a {var_sigma}-cDNA probe consistently showed fainter intensity of the constant 5.5 kb {var_sigma}{sub 2} BamHI band, with no heterzygosity for {var_sigma}-globin region polymorphisms;more » {alpha}-cDNA or {var_sigma}-cDNA probes showed no BamHI or BglII bands diagnostic of the (--{sup SEA}) deletion; bands for the (-{alpha}) {alpha}-Thal-2 single {alpha}-globin deletions were only seen in Hb H cases. A reliable monoclonal anti-{var_sigma}-peptide antibody test for the (--{sup SEA}) deletion was always negative in (--{sup Tot}) samples. Southern digests with the Lo probe, a gift from D. Higgs of Oxford Univ., confirmed that 49 of 50 (--{sup Tot}) chromosomes in Filipinos were (--{sup Fil}). Of 20 {alpha}-Thal-1 hydrops born to Filipinos, 11 were (--{sup Fil}/--{sup SEA}) compound heterozygotes; 9 were (--{sup SEA}/--{sup SEA}) homozygotes, but none was a (--{sup Fil}/--{sup Fil}).« less

  12. A novel alpha-thalassemia nonsense mutation in HBA2: C.382 A > T globin gene.

    PubMed

    Hamid, Mohammad; Bokharaei Merci, Hanieh; Galehdari, Hamid; Saberi, Ali Hossein; Kaikhaei, Bijan; Mohammadi-Anaei, Marziye; Ahmadzadeh, Ahmad; Shariati, Gholamreza

    2014-07-01

    In this study, a new alpha globin gene mutation on the α2-globin gene is reported. This mutation resulted in a Lys > stop codon substitution at position 127 which was detected in four individuals (three males and one female). DNA sequencing revealed this mutation in unrelated persons in Khuzestan province, Southwestern Iran of Lor ethnicity. This mutation caused no severe hematological abnormalities in the carriers. From the nature of substituted residues in α2-globin, it is widely expected that this mutation leads to unstable and truncated protein and should be detected in couples at risk for α-thalassemia.

  13. Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site.

    PubMed

    Harju-Baker, Susanna; Costa, Flávia C; Fedosyuk, Halyna; Neades, Renee; Peterson, Kenneth R

    2008-05-01

    Autonomous silencing of gamma-globin transcription is an important developmental regulatory mechanism controlling globin gene switching. An adult stage-specific silencer of the (A)gamma-globin gene was identified between -730 and -378 relative to the mRNA start site. A marked copy of the (A)gamma-globin gene inserted between locus control region 5' DNase I-hypersensitive site 1 and the epsilon-globin gene was transcriptionally silenced in adult beta-globin locus yeast artificial chromosome (beta-YAC) transgenic mice, but deletion of the 352-bp region restored expression. This fragment reduced reporter gene expression in K562 cells, and GATA-1 was shown to bind within this sequence at the -566 GATA site. Further, the Mi2 protein, a component of the NuRD complex, was observed in erythroid cells with low gamma-globin levels, whereas only a weak signal was detected when gamma-globin was expressed. Chromatin immunoprecipitation of fetal liver tissue from beta-YAC transgenic mice demonstrated that GATA-1, FOG-1, and Mi2 were recruited to the (A)gamma-globin -566 or (G)gamma-globin -567 GATA site when gamma-globin expression was low (day 18) but not when gamma-globin was expressed (day 12). These data suggest that during definitive erythropoiesis, gamma-globin gene expression is silenced, in part, by binding a protein complex containing GATA-1, FOG-1, and Mi2 at the -566/-567 GATA sites of the proximal gamma-globin promoters.

  14. Glucocorticoids inhibit coordinated translation of. cap alpha. - and. beta. -globin mRNAs in Friend erythroleukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papaconstantinou, J.; Stewart, J.A.; Rabek, J.P.

    The dimethylsulfoxide (Me/sub 2/SO)-mediated induction of hemoglobin synthesis in Friend erythroleukemia cells is inhibited by the glucocorticoids hydrocortisone, dexamethasone, and fluocinolone acetonide; hydrocortisone, at concentrations of 10/sup -5/ to 10/sup -8/ M inhibits by 90-30% and fluocinolone acetonide at concentrations of 10/sup -8/ to 10/sup -11/ M shows a greater than 90% inhibition. At these concentrations the hormones have no effect on cell growth or viability. In this study it has been shown that there is a group of proteins, including the ..cap alpha..- and ..beta..-globins, whose regulation is associated with the induction of Friend erythroleukemia cell differentiation, and thatmore » the expression of these, in addition to ..cap alpha..- and ..beta..-globin, is affected by glucocorticoids. It is concluded that, although the translation of ..cap alpha..- and ..beta..-globin mRNA is a major site of inhibition by glucocorticoids, there is a detectable amount of ..cap alpha..- and ..beta..-globin mRNA translation which results in unequal amounts of globin synthesis and an overall more potent inhibition of hemoglobin formation.« less

  15. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    PubMed Central

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845

  16. Structural and Functional Analysis of an mRNP Complex That Mediates the High Stability of Human β-Globin mRNA

    PubMed Central

    Yu, Jia; Russell, J. Eric

    2001-01-01

    Human globins are encoded by mRNAs exhibiting high stabilities in transcriptionally silenced erythrocyte progenitors. Unlike α-globin mRNA, whose stability is enhanced by assembly of a specific messenger RNP (mRNP) α complex on its 3′ untranslated region (UTR), neither the structure(s) nor the mechanism(s) that effects the high-level stability of human β-globin mRNA has been identified. The present work describes an mRNP complex assembling on the 3′ UTR of the β-globin mRNA that exhibits many of the properties of the stability-enhancing α complex. The β-globin mRNP complex is shown to contain one or more factors homologous to αCP, a 39-kDa RNA-binding protein that is integral to α-complex assembly. Sequence analysis implicates a specific 14-nucleotide pyrimidine-rich track within its 3′ UTR as the site of β-globin mRNP assembly. The importance of this track to mRNA stability is subsequently verified in vivo using mice expressing human β-globin transgenes that contain informative mutations in this region. In combination, the in vitro and in vivo analyses indicate that the high stabilities of the α- and β-globin mRNAs are maintained through related mRNP complexes that may share a common regulatory pathway. PMID:11486027

  17. Developmental regulation of DNA replication timing at the human beta globin locus.

    PubMed

    Simon, I; Tenzen, T; Mostoslavsky, R; Fibach, E; Lande, L; Milot, E; Gribnau, J; Grosveld, F; Fraser, P; Cedar, H

    2001-11-01

    The human beta globin locus replicates late in most cell types, but becomes early replicating in erythroid cells. Using FISH to map DNA replication timing around the endogenous beta globin locus and by applying a genetic approach in transgenic mice, we have demonstrated that both the late and early replication states are controlled by regulatory elements within the locus control region. These results also show that the pattern of replication timing is set up by mechanisms that work independently of gene transcription.

  18. The role of fetal adrenal hormones in the switch from fetal to adult globin synthesis in the sheep.

    PubMed

    Wintour, E M; Smith, M B; Bell, R J; McDougall, J G; Cauchi, M N

    1985-01-01

    The switch from gamma (fetal) to beta (adult) globin production was studied by the analysis of globin synthesis in chronically cannulated ovine fetuses and newborn lambs. The gamma/alpha globin synthesis ratio decreased from 0.98 +/- 0.11 (S.D.) (n = 4 samples) at 100-120 days of gestation to 0.15 +/- 0.07 (n = 4) in lambs of 150-156 days post-conception, and the beta/alpha synthesis ratio increased from 0.04 +/- 0.06 (n = 4) to 1.13 +/- 0.21 (n = 4) over the same period. In bilaterally adrenalectomized fetuses, which survived in utero until 151-156 days, the gamma/alpha and beta/alpha synthesis ratios were 0.64 +/- 0.14 (n = 3) and 0.25 +/- 0.07 (n = 3) respectively in the 150- to 156-day period. Bilateral adrenalectomy did not affect the time of onset of beta globin synthesis, but significantly decreased the rate. In one bilaterally adrenalectomized fetus the infusion of increasing concentrations of cortisol restored the rate of beta globin synthesis to normal. Treatment of three intact fetuses with 100 micrograms cortisol/h for 3 weeks, from 100 to 121 days, did not affect the timing or rate of switch from gamma to beta globin synthesis. Thus fetal adrenal secretions, probably cortisol, affected the rate of change of gamma to beta globin synthesis but other factors must have been involved in the initiation of the switch.

  19. Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice.

    PubMed

    Boosalis, Michael S; Sangerman, Jose I; White, Gary L; Wolf, Roman F; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H; Li, Biaoru; Pace, Betty S; Nouraie, Mehdi; Faller, Douglas V; Perrine, Susan P

    2015-01-01

    High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.

  20. Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice

    PubMed Central

    Boosalis, Michael S.; Sangerman, Jose I.; White, Gary L.; Wolf, Roman F.; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H.; Li, Biaoru; Pace, Betty S.; Nouraie, Mehdi; Faller, Douglas V.; Perrine, Susan P.

    2015-01-01

    High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies. PMID:26713848

  1. Globins Scavenge Sulfur Trioxide Anion Radical*

    PubMed Central

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  2. Association of an α-globin gene cluster duplication and heterozygous β-thalassemia in a patient with a severe thalassemia syndrome.

    PubMed

    Jiang, Hua; Liu, Sha; Zhang, Yong-Ling; Wan, Jun-Hui; Li, Ru; Li, Dong-Zhi

    2015-01-01

    We describe a new case of a β-thalassemia (β-thal) heterozygote with the mutation IVS-II-654 (C>T) presenting with a transfusion-dependent phenotype. Multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (CGH) analyses of the α-globin gene cluster revealed a full duplication of the α-globin genes including the upstream regulatory element. The duplicated allele and the normal allele in trans resulted in a total of six active α-globin genes. The severe clinical phenotype seemed to be related to the considerable excess of the α- and β-globin deficit caused by the presence of the β-thal. α-Globin cluster duplication should be considered in patients heterozygous for β-thal who show a more severe phenotype than β-thal trait.

  3. Riboflavin Has Neuroprotective Potential: Focus on Parkinson’s Disease and Migraine

    PubMed Central

    Marashly, Eyad T.; Bohlega, Saeed A.

    2017-01-01

    With the huge negative impact of neurological disorders on patient’s life and society resources, the discovery of neuroprotective agents is critical and cost-effective. Neuroprotective agents can prevent and/or modify the course of neurological disorders. Despite being underestimated, riboflavin offers neuroprotective mechanisms. Significant pathogenesis-related mechanisms are shared by, but not restricted to, Parkinson’s disease (PD) and migraine headache. Those pathogenesis-related mechanisms can be tackled through riboflavin proposed neuroprotective mechanisms. In fact, it has been found that riboflavin ameliorates oxidative stress, mitochondrial dysfunction, neuroinflammation, and glutamate excitotoxicity; all of which take part in the pathogenesis of PD, migraine headache, and other neurological disorders. In addition, riboflavin-dependent enzymes have essential roles in pyridoxine activation, tryptophan-kynurenine pathway, and homocysteine metabolism. Indeed, pyridoxal phosphate, the active form of pyridoxine, has been found to have independent neuroprotective potential. Also, the produced kynurenines influence glutamate receptors and its consequent excitotoxicity. In addition, methylenetetrahydrofolate reductase requires riboflavin to ensure normal folate cycle influencing the methylation cycle and consequently homocysteine levels which have its own negative neurovascular consequences if accumulated. In conclusion, riboflavin is a potential neuroprotective agent affecting a wide range of neurological disorders exemplified by PD, a disorder of neurodegeneration, and migraine headache, a disorder of pain. In this article, we will emphasize the role of riboflavin in neuroprotection elaborating on its proposed neuroprotective mechanisms in opposite to the pathogenesis-related mechanisms involved in two common neurological disorders, PD and migraine headache, as well as, we encourage the clinical evaluation of riboflavin in PD and migraine headache patients

  4. Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance.

    PubMed

    Tian, Ran; Losilla, Mauricio; Lu, Ying; Yang, Guang; Zakon, Harold

    2017-02-13

    Nocturnally active gymnotiform weakly electric fish generate electric signals for communication and navigation, which can be energetically taxing. These fish mainly inhabit the Amazon basin, where some species prefer well-oxygenated waters and others live in oxygen-poor, stagnant habitats. The latter species show morphological, physiological, and behavioral adaptations for hypoxia-tolerance. However, there have been no studies of hypoxia tolerance on the molecular level. Globins are classic respiratory proteins. They function principally in oxygen-binding and -delivery in various tissues and organs. Here, we investigate the molecular evolution of alpha and beta hemoglobins, myoglobin, and neuroglobin in 12 gymnotiforms compared with other teleost fish. The present study identified positively selected sites (PSS) on hemoglobin (Hb) and myoglobin (Mb) genes using different maximum likelihood (ML) methods; some PSS fall in structurally important protein regions. This evidence for the positive selection of globin genes suggests that the adaptive evolution of these genes has helped to enhance the capacity for oxygen storage and transport. Interestingly, a substitution of a Cys at a key site in the obligate air-breathing electric eel (Electrophorus electricus) is predicted to enhance oxygen storage of Mb and contribute to NO delivery during hypoxia. A parallel Cys substitution was also noted in an air-breathing African electric fish (Gymnarchus niloticus). Moreover, the expected pattern under normoxic conditions of high expression of myoglobin in heart and neuroglobin in the brain in two hypoxia-tolerant species suggests that the main effect of selection on these globin genes is on their sequence rather than their basal expression patterns. Results indicate a clear signature of positive selection in the globin genes of most hypoxia-tolerant gymnotiform fishes, which are obligate or facultative air breathers. These findings highlight the critical role of globin genes in

  5. [Regulation of the β-globin gene family expression, useful in the search for new therapeutic targets for hemoglobinopathies].

    PubMed

    Scheps, Karen G; Varela, Viviana

    Different hemoglobin isoforms are expressed during the embryonic, fetal and postnatal stages. They are formed by combination of polypeptide chains synthesized from the α- and β-globin gene clusters. Based on the fact that the presence of high hemoglobin F levels is beneficial in both sickle cell disease and severe thalassemic syndromes, a revision of the regulation of the β-globin cluster expression is proposed, especially regarding the genes encoding the y-globin chains (HBG1 and HBG2). In this review we describe the current knowledge about transcription factors and epigenetic regulators involved in the switches of the β-globin cluster. It is expected that the consolidation of knowledge in this field will allow finding new therapeutic targets for the treatment of hemoglobinopathies.

  6. Silencing of Aγ-Globin Gene Expression during Adult Definitive Erythropoiesis Mediated by GATA-1-FOG-1-Mi2 Complex Binding at the −566 GATA Site▿ †

    PubMed Central

    Harju-Baker, Susanna; Costa, Flávia C.; Fedosyuk, Halyna; Neades, Renee; Peterson, Kenneth R.

    2008-01-01

    Autonomous silencing of γ-globin transcription is an important developmental regulatory mechanism controlling globin gene switching. An adult stage-specific silencer of the Aγ-globin gene was identified between −730 and −378 relative to the mRNA start site. A marked copy of the Aγ-globin gene inserted between locus control region 5′ DNase I-hypersensitive site 1 and the ɛ-globin gene was transcriptionally silenced in adult β-globin locus yeast artificial chromosome (β-YAC) transgenic mice, but deletion of the 352-bp region restored expression. This fragment reduced reporter gene expression in K562 cells, and GATA-1 was shown to bind within this sequence at the −566 GATA site. Further, the Mi2 protein, a component of the NuRD complex, was observed in erythroid cells with low γ-globin levels, whereas only a weak signal was detected when γ-globin was expressed. Chromatin immunoprecipitation of fetal liver tissue from β-YAC transgenic mice demonstrated that GATA-1, FOG-1, and Mi2 were recruited to the Aγ-globin −566 or Gγ-globin −567 GATA site when γ-globin expression was low (day 18) but not when γ-globin was expressed (day 12). These data suggest that during definitive erythropoiesis, γ-globin gene expression is silenced, in part, by binding a protein complex containing GATA-1, FOG-1, and Mi2 at the −566/−567 GATA sites of the proximal γ-globin promoters. PMID:18347053

  7. The population genetics of the alpha-2 globin locus of orangutans (Pongo pygmaeus).

    PubMed

    Steiper, Michael E; Wolfe, Nathan D; Karesh, William B; Kilbourn, Annelisa M; Bosi, Edwin J; Ruvolo, Maryellen

    2005-03-01

    In this study, the molecular population genetics of the orangutan's alpha-2 globin (HBA2) gene were investigated in order to test for the action of natural selection. Haplotypes from 28 orangutan chromosomes were collected from a 1.46-kilobase region of the alpha-2 globin locus. While many aspects of the data were consistent with neutrality, the observed heterogeneous distribution of polymorphisms was inconsistent with neutral expectations. Furthermore, a single amino acid variant, found in both the Bornean and the Sumatran orangutan subspecies, was associated with different alternative synonymous variants in each subspecies, suggesting that the allele may have spread separately through the two subspecies after two distinct origination events. This variant is not in Hardy-Weinberg equilibrium (HWE). These observations are consistent with neutral models that incorporate population structure and models that invoke selection. The orangutan Plasmodium parasite is a plausible selective agent that may underlie the variation at alpha-2 globin in orangutans.

  8. Electron transfer function versus oxygen delivery: a comparative study for several hexacoordinated globins across the animal kingdom.

    PubMed

    Kiger, Laurent; Tilleman, Lesley; Geuens, Eva; Hoogewijs, David; Lechauve, Christophe; Moens, Luc; Dewilde, Sylvia; Marden, Michael C

    2011-01-01

    Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O(2) and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O(2) as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O(2) actually binding to the iron atom, since the heme is oxidized by O(2) faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins.

  9. The First Report of a 290-bp Deletion in β-Globin Gene in the South of Iran

    PubMed Central

    Hamid, Mohammad; Nejad, Ladan Dawoody; Shariati, Gholamreza; Galehdari, Hamid; Saberi, Alihossein; Mohammadi-Anaei, Marziye

    2017-01-01

    Background: β-thalassemia is one of the most widespread diseases in the world, including Iran. In this study, we reported, for the first time, a 290-bp β-globin gene deletion in the south of Iran. Methods: Four individuals from three unrelated families with Arabic ethnic background were studied in Khuzestan Province. Red blood cell indices and hemoglobin analysis were carried out according to the standard methods. Genomic DNA was obtained from peripheral blood cells by salting out procedures. β-globin gene amplification, multiplex ligation-dependent probe amplification (MLPA), and DNA sequencing were performed. Results: The PCR followed by sequencing and MLPA test of the β-globin gene confirmed the presence of a 290-bp deletion in the heterozygous form, along with -88C>A mutation. All the individuals had elevated hemoglobin A2 and normal fetal hemoglobin levels. Conclusions: This mutation causes β0-thalassemia and can be highly useful for prenatal diagnosis in compound heterozygous condition with different β-globin gene mutations. PMID:26948378

  10. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  11. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools.

    PubMed

    Nafissi, Nafiseh; Foldvari, Marianna

    2015-01-01

    Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.

  12. Evaluation of microbial globin promoters for oxygen-limited processes using Escherichia coli.

    PubMed

    Lara, Alvaro R; Jaén, Karim E; Sigala, Juan-Carlos; Regestein, Lars; Büchs, Jochen

    2017-01-01

    Oxygen-responsive promoters can be useful for synthetic biology applications, however, information on their characteristics is still limited. Here, we characterized a group of heterologous microaerobic globin promoters in Escherichia coli . Globin promoters from Bacillus subtilis , Campylobacter jejuni , Deinococcus radiodurans , Streptomyces coelicolor , Salmonella typhi and Vitreoscilla stercoraria were used to express the FMN-binding fluorescent protein (FbFP), which is a non-oxygen dependent marker. FbFP fluorescence was monitored online in cultures at maximum oxygen transfer capacities (OTR max ) of 7 and 11 mmol L -1  h -1 . Different FbFP fluorescence intensities were observed and the OTR max affected the induction level and specific fluorescence emission rate (the product of the specific fluorescence intensity multiplied by the specific growth rate) of all promoters. The promoter from S. typhi displayed the highest fluorescence emission yields (the quotient of the fluorescence intensity divided by the scattered light intensity at every time-point) and rate, and together with the promoters from D. radiodurans and S. coelicolor , the highest induction ratios. These results show the potential of diverse heterologous globin promoters for oxygen-limited processes using E. coli .

  13. Neuroglobin and cytoglobin: two new members of globin family

    PubMed Central

    Tosqui, Priscilla; Colombo, Marcio Francisco

    2011-01-01

    The globin family has long been defined by myoglobin and hemoglobin, proteins with the functions of oxygen storage and transportation, respectively. Recently, two new members of this family were discovered: neuroglobin present in neurons and retinal cells and cytoglobin found in various types of tissue. The increased expression of these proteins in hypoxic conditions first suggested a role in oxygen supply. However structural and functional differences, such as the hexacoordinated heme, a high autoxidation rate and different concentrations between different cellular types, have dismissed this hypothesis. The protective role of these globins has already been established. In vitro and in vivo studies have demonstrated increased survival of neurons under stress in the presence of neuroglobin and increased resistance to neurodegenerative diseases. However the mechanism remains unknown. Functions, including detoxification of nitric oxide, free radical scavenging and as an antioxidant and signaling of apoptosis, have also been suggested for neuroglobin and an antifibrotic function for cytoglobin. PMID:23049323

  14. Coexistence of multiple globin genes conferring protection against nitrosative stress to the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.

    PubMed

    Coppola, Daniela; Giordano, Daniela; Milazzo, Lisa; Howes, Barry D; Ascenzi, Paolo; di Prisco, Guido; Smulevich, Giulietta; Poole, Robert K; Verde, Cinzia

    2018-02-28

    Despite the large number of globins recently discovered in bacteria, our knowledge of their physiological functions is restricted to only a few examples. In the microbial world, globins appear to perform multiple roles in addition to the reversible binding of oxygen; all these functions are attributable to the heme pocket that dominates functional properties. Resistance to nitrosative stress and involvement in oxygen chemistry seem to be the most prevalent functions for bacterial globins, although the number of globins for which functional roles have been studied via mutation and genetic complementation is very limited. The acquisition of structural information has considerably outpaced the physiological and molecular characterisation of these proteins. The genome of the Antarctic cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) contains genes encoding three distinct single-chain 2/2 globins, supporting the hypothesis of their crucial involvement in a number of functions, including protection against oxidative and nitrosative stress in the cold and O 2 -rich environment. In the genome of PhTAC125, the genes encoding 2/2 globins are constitutively transcribed, thus suggesting that these globins are not functionally redundant in their physiological function in PhTAC125. In the present study, the physiological role of one of the 2/2 globins, Ph-2/2HbO-2217, was investigated by integrating in vivo and in vitro results. This role includes the involvement in the detoxification of reactive nitrogen and O 2 species including NO by developing two in vivo and in vitro models to highlight the protective role of Ph-2/2HbO-2217 against reactive nitrogen species. The PSHAa2217 gene was cloned and over-expressed in the flavohemoglobin-deficient mutant of Escherichia coli and the growth properties and O 2 uptake in the presence of NO of the mutant carrying the PSHAa2217 gene were analysed. The ferric form of Ph-2/2HbO-2217 is able to catalyse peroxynitrite

  15. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects.

    PubMed

    Yan, Xiuju; Xu, Lixiao; Bi, Chenchen; Duan, Dongyu; Chu, Liuxiang; Yu, Xin; Wu, Zimei; Wang, Aiping; Sun, Kaoxiang

    2018-01-01

    Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson's disease (PD). Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs) and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD. The biodistribution of rotigotine nanoparticles (R-NPs) and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs. Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum) than R-NPs. The pharmacodynamic study revealed a significant difference ( P <0.05) in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf-R-NPs significantly alleviated nigrostriatal dopaminergic neurodegeneration in the rat model of 6-hydroxydopamine-induced PD. Our findings show that Lf-R-NPs deliver rotigotine more efficiently to the brain, thereby enhancing efficacy. Therefore, Lf-R-NPs might have therapeutic potential for the treatment of PD.

  16. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  17. Investigating alpha-globin structural variants: a retrospective review of 135,000 Brazilian individuals

    PubMed Central

    Kimura, Elza Miyuki; Oliveira, Denise Madureira; Jorge, Susan Elisabeth; Ribeiro, Daniela Maria; Zaccariotto, Tânia Regina; Santos, Magnun Nueldo Nunes; Almeida, Vanessa; Albuquerque, Dulcinéia Martins; Costa, Fernando Ferreira; Sonati, Maria de Fátima

    2015-01-01

    Background Brazil has a multiethnic population with a high diversity of hemoglobinopathies. While screenings for beta-globin mutations are far more common, alterations affecting alpha-globin genes are usually more silent and less well known. The aim of this study was to describe the results of a screening program for alpha-globin gene mutations in a representative sample of the Southeastern Brazilian population. Methods A total of 135,000 individuals, including patients with clinical suspicion of hemoglobinopathies and their family members, randomly chosen individuals submitted to blood tests and blood donors who were abnormal hemoglobin carriers were analyzed. The variants were screened by alkaline and acid electrophoreses, isoelectric focusing and cation-exchange high performance liquid chromatography (HPLC) and the abnormal chains were investigated by reverse-phase high performance liquid chromatography (RP-HPLC). Mutations were identified by molecular analyses, and the oxygen affinity, heme–heme cooperativity and Bohr effect of the variants were evaluated by functional tests. Results Four new and 22 rare variants were detected in 98 families. Some of these variants were found in co-inheritance with other hemoglobinopathies. Of the rare hemoglobins, Hasharon, Stanleyville II and J-Rovigo were the most common, the first two being S-like and associated with alpha-thalassemia. Conclusion The variability of alpha-globin alterations reflects the high degree of racial miscegenation and an intense internal migratory flow between different Brazilian regions. This diversity highlights the importance of programs for diagnosing hemoglobinopathies and preventing combinations that may lead to important clinical manifestations in multiethnic populations. PMID:25818820

  18. Genetic disruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system.

    PubMed

    Shariati, Laleh; Khanahmad, Hossein; Salehi, Mansoor; Hejazi, Zahra; Rahimmanesh, Ilnaz; Tabatabaiefar, Mohammad Amin; Modarressi, Mohammad Hossein

    2016-10-01

    β-thalassemia comprises a major group of human genetic disorders involving a decrease in or an end to the normal synthesis of the β-globin chains of hemoglobin. KLF1 is a key regulatory molecule involved in the γ- to β-globin gene switching process directly inducing the expression of the β-globin gene and indirectly repressing γ-globin. The present study aimed to investigate the ability of an engineered CRISPR/Cas9 system with respect to disrupting the KLF1 gene to inhibit the γ- to β-hemoglobin switching process in K562 cells. We targeted three sites on the KLF1 gene, two of which are upstream of codon 288 in exon 2 and the other site being in exon 3. The average indel percentage in the cells transfected with CRISPR a, b and c was approximately 24%. Relative quantification was performed for the assessment of γ-globin expression. The levels of γ-globin mRNA on day 5 of differentiation were 8.1-, 7.7- and 1.8-fold in the cells treated with CRISPR/Cas9 a, b and c, respectively,compared to untreated cells. The measurement of HbF expression levels confirmed the same results. The findings obtained in the present study support the induction of an indel mutation in the KLF1 gene leading to a null allele. As a result, the effect of KLF1 on the expression of BCL11A is decreased and its inhibitory effect on γ-globin gene expression is removed. Application of CRISPR technology to induce an indel in the KLF1 gene in adult erythroid progenitors may provide a method for activating fetal hemoglobin expression in individuals with β-thalassemia or sickle cell disease. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Effect of hyperbaric oxygen on BDNF-release and neuroprotection: Investigations with human mesenchymal stem cells and genetically modified NIH3T3 fibroblasts as putative cell therapeutics.

    PubMed

    Schulze, Jennifer; Kaiser, Odett; Paasche, Gerrit; Lamm, Hans; Pich, Andreas; Hoffmann, Andrea; Lenarz, Thomas; Warnecke, Athanasia

    2017-01-01

    Hyperbaric oxygen therapy (HBOT) is a noninvasive widely applied treatment that increases the oxygen pressure in tissues. In cochlear implant (CI) research, intracochlear application of neurotrophic factors (NTFs) is able to improve survival of spiral ganglion neurons (SGN) after deafness. Cell-based delivery of NTFs such as brain-derived neurotrophic factor (BDNF) may be realized by cell-coating of the surface of the CI electrode. Human mesenchymal stem cells (MSC) secrete a variety of different neurotrophic factors and may be used for the development of a biohybrid electrode in order to release endogenously-derived neuroprotective factors for the protection of residual SGN and for a guided outgrowth of dendrites in the direction of the CI electrode. HBOT could be used to influence cell behaviour after transplantation to the inner ear. The aim of this study was to investigate the effect of HBOT on the proliferation, BDNF-release and secretion of neuroprotective factors. Thus, model cells (an immortalized fibroblast cell line (NIH3T3)-native and genetically modified) and MSCs were repeatedly (3 x - 10 x) exposed to 100% oxygen at different pressures. The effects of HBO on cell proliferation were investigated in relation to normoxic and normobaric conditions (NOR). Moreover, the neuroprotective and neuroregenerative effects of HBO-treated cells were analysed by cultivation of SGN in conditioned medium. Both, the genetically modified NIH3T3/BDNF and native NIH3T3 fibroblasts, showed a highly significant increased proliferation after five days of HBOT in comparison to normoxic controls. By contrast, the number of MSCs was decreased in MSCs treated with 2.0 bar of HBO. Treating SGN cultures with supernatants of fibroblasts and MSCs significantly increased the survival rate of SGN. HBO treatment did not influence (increase / reduce) this effect. Secretome analysis showed that HBO treatment altered the protein expression pattern in MSCs.

  20. The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation

    PubMed Central

    Ragoczy, Tobias; Bender, M.A.; Telling, Agnes; Byron, Rachel; Groudine, Mark

    2006-01-01

    We have examined the relationship between nuclear localization and transcriptional activity of the endogenous murine β-globin locus during erythroid differentiation. Murine fetal liver cells were separated into distinct erythroid maturation stages by fluorescence-activated cell sorting, and the nuclear position of the locus was determined at each stage. We find that the β-globin locus progressively moves away from the nuclear periphery with increasing maturation. Contrary to the prevailing notion that the nuclear periphery is a repressive compartment in mammalian cells, βmajor-globin expression begins at the nuclear periphery prior to relocalization. However, relocation of the locus to the nuclear interior with maturation is accompanied by an increase in βmajor-globin transcription. The distribution of nuclear polymerase II (Pol II) foci also changes with erythroid differentiation: Transcription factories decrease in number and contract toward the nuclear interior. Moreover, both efficient relocalization of the β-globin locus from the periphery and its association with hyperphosphorylated Pol II transcription factories require the locus control region (LCR). These results suggest that the LCR-dependent association of the β-globin locus with transcriptionally engaged Pol II foci provides the driving force for relocalization of the locus toward the nuclear interior during erythroid maturation. PMID:16705039

  1. Production of β-globin and adult hemoglobin following G418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients

    PubMed Central

    Salvatori, Francesca; Breveglieri, Giulia; Zuccato, Cristina; Finotti, Alessia; Bianchi, Nicoletta; Borgatti, Monica; Feriotto, Giordana; Destro, Federica; Canella, Alessandro; Brognara, Eleonora; Lampronti, Ilaria; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2013-01-01

    In several types of thalassemia (including β039-thalassemia), stop codon mutations lead to premature translation termination and to mRNA destabilization through nonsense-mediated decay. Drugs (for instance aminoglycosides) can be designed to suppress premature termination, inducing a ribosomal readthrough. These findings have introduced new hopes for the development of a pharmacologic approach to the cure of this disease. However, the effects of aminoglycosides on globin mRNA carrying β-thalassemia stop mutations have not yet been investigated. In this study, we have used a lentiviral construct containing the β039- thalassemia globin gene under control of the β-globin promoter and a LCR cassette. We demonstrated by fluorescence-activated cell sorting (FACS) analysis the production of β-globin by K562 cell clones expressing the β039-thalassemia globin gene and treated with G418. More importantly, after FACS and high-performance liquid chromatography (HPLC) analyses, erythroid precursor cells from β039-thalassemia patients were demonstrated to be able to produce β-globin and adult hemoglobin after treatment with G418. This study strongly suggests that ribosomal readthrough should be considered a strategy for developing experimental strategies for the treatment of β0-thalassemia caused by stop codon mutations. PMID:19810011

  2. Human beta-globin gene polymorphisms characterized in DNA extracted from ancient bones 12,000 years old.

    PubMed

    Béraud-Colomb, E; Roubin, R; Martin, J; Maroc, N; Gardeisen, A; Trabuchet, G; Goosséns, M

    1995-12-01

    Analyzing the nuclear DNA from ancient human bones is an essential step to the understanding of genetic diversity in current populations, provided that such systematic studies are experimentally feasible. This article reports the successful extraction and amplification of nuclear DNA from the beta-globin region from 5 of 10 bone specimens up to 12,000 years old. These have been typed for beta-globin frameworks by sequencing through two variable positions and for a polymorphic (AT) chi (T) gamma microsatellite 500 bp upstream of the beta-globin gene. These specimens of human remains are somewhat older than those analyzed in previous nuclear gene sequencing reports and considerably older than those used to study high-copy-number human mtDNA. These results show that the systematic study of nuclear DNA polymorphisms of ancient populations is feasible.

  3. Oral ‘hydrogen water' induces neuroprotective ghrelin secretion in mice

    PubMed Central

    Matsumoto, Akio; Yamafuji, Megumi; Tachibana, Tomoko; Nakabeppu, Yusaku; Noda, Mami; Nakaya, Haruaki

    2013-01-01

    The therapeutic potential of molecular hydrogen (H2) is emerging in a number of human diseases and in their animal models, including in particular Parkinson's disease (PD). H2 supplementation of drinking water has been shown to exert disease-modifying effects in PD patients and neuroprotective effects in experimental PD model mice. However, H2 supplementation does not result in detectable changes in striatal H2 levels, indicating an indirect effect. Here we show that H2 supplementation increases gastric expression of mRNA encoding ghrelin, a growth hormone secretagogue, and ghrelin secretion, which are antagonized by the β1-adrenoceptor blocker, atenolol. Strikingly, the neuroprotective effect of H2 water was abolished by either administration of the ghrelin receptor-antagonist, D-Lys3 GHRP-6, or atenolol. Thus, the neuroprotective effect of H2 in PD is mediated by enhanced production of ghrelin. Our findings point to potential, novel strategies for ameliorating pathophysiology in which a protective effect of H2 supplementation has been demonstrated. PMID:24253616

  4. The beta -globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation.

    PubMed

    Sawado, Tomoyuki; Halow, Jessica; Bender, M A; Groudine, Mark

    2003-04-15

    To investigate the molecular basis of beta-globin gene activation, we analyzed factor recruitment and histone modification at the adult beta-globin gene in wild-type (WT)/locus control region knockout (DeltaLCR) heterozygous mice and in murine erythroleukemia (MEL) cells. Although histone acetylation and methylation (Lys 4) are high before and after MEL differentiation, recruitment of the erythroid-specific activator NF-E2 to the promoter and preinitiation complex (PIC) assembly occur only after differentiation. We reported previously that targeted deletion of the LCR reduces beta-globin gene expression to 1%-4% of WT without affecting promoter histone acetylation. Here, we report that NF-E2 is recruited equally efficiently to the adult beta-globin promoters of the DeltaLCR and WT alleles. Moreover, the LCR deletion reduces PIC assembly only twofold, but has a dramatic effect on Ser 5 phosphorylation of RNA polymerase II and transcriptional elongation. Our results suggest at least three distinct stages in beta-globin gene activation: (1) an LCR-independent chromatin opening stage prior to NF-E2 recruitment to the promoter and PIC assembly; (2) an intermediate stage in which NF-E2 binding (LCR-independent) and PIC assembly (partially LCR-dependent) occur; and (3) an LCR-dependent fully active stage characterized by efficient pol II elongation. Thus, in its native location the LCR functions primarily downstream of activator recruitment and PIC assembly.

  5. Erythroid activator NF-E2, TAL1 and KLF1 play roles in forming the LCR HSs in the human adult β-globin locus.

    PubMed

    Kim, Yea Woon; Yun, Won Ju; Kim, AeRi

    2016-06-01

    The β-like globin genes are developmental stage specifically transcribed in erythroid cells. The transcription of the β-like globin genes requires erythroid specific activators such as GATA-1, NF-E2, TAL1 and KLF1. However, the roles of these activators have not fully elucidated in transcription of the human adult β-globin gene. Here we employed hybrid MEL cells (MEL/ch11) where a human chromosome containing the β-globin locus is present and the adult β-globin gene is highly transcribed by induction. The roles of erythroid specific activators were analyzed by inhibiting the expression of NF-E2, TAL1 or KLF1 in MEL/ch11 cells. The loss of each activator decreased the transcription of human β-globin gene, locus wide histone hyperacetylation and the binding of other erythroid specific activators including GATA-1, even though not affecting the expression of other activators. Notably, sensitivity to DNase I was reduced in the locus control region (LCR) hypersensitive sites (HSs) with the depletion of activators. These results indicate that NF-E2, TAL1 and KLF1, all activators play a primary role in HSs formation in the LCR. It might contribute to the transcription of human adult β-globin gene by allowing the access of activators and cofactors. The roles of activators in the adult β-globin locus appear to be different from the roles in the early fetal locus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. High Fractional Occupancy of a Tandem Maf Recognition Element and Its Role in Long-Range β-Globin Gene Regulation

    PubMed Central

    Stees, Jared R.; Hossain, Mir A.; Sunose, Tomoki; Kudo, Yasushi; Pardo, Carolina E.; Nabilsi, Nancy H.; Darst, Russell P.; Poudyal, Rosha; Igarashi, Kazuhiko; Kladde, Michael P.

    2015-01-01

    Enhancers and promoters assemble protein complexes that ultimately regulate the recruitment and activity of RNA polymerases. Previous work has shown that at least some enhancers form stable protein complexes, leading to the formation of enhanceosomes. We analyzed protein-DNA interactions in the murine β-globin gene locus using the methyltransferase accessibility protocol for individual templates (MAPit). The data show that a tandem Maf recognition element (MARE) in locus control region (LCR) hypersensitive site 2 (HS2) reveals a remarkably high degree of occupancy during differentiation of mouse erythroleukemia cells. Most of the other transcription factor binding sites in LCR HS2 or in the adult β-globin gene promoter regions exhibit low fractional occupancy, suggesting highly dynamic protein-DNA interactions. Targeting of an artificial zinc finger DNA-binding domain (ZF-DBD) to the HS2 tandem MARE caused a reduction in the association of MARE-binding proteins and transcription complexes at LCR HS2 and the adult βmajor-globin gene promoter but did not affect expression of the βminor-globin gene. The data demonstrate that a stable MARE-associated footprint in LCR HS2 is important for the recruitment of transcription complexes to the adult βmajor-globin gene promoter during erythroid cell differentiation. PMID:26503787

  7. Bergamot (Citrus bergamia Risso) fruit extracts as γ-globin gene expression inducers: phytochemical and functional perspectives.

    PubMed

    Guerrini, Alessandra; Lampronti, Ilaria; Bianchi, Nicoletta; Zuccato, Cristina; Breveglieri, Giulia; Salvatori, Francesca; Mancini, Irene; Rossi, Damiano; Potenza, Rocco; Chiavilli, Francesco; Sacchetti, Gianni; Gambari, Roberto; Borgatti, Monica

    2009-05-27

    Epicarps of Citrus bergamia fruits from organic farming were extracted with the objective of obtaining derived products differently rich in coumarins and psoralens. The extracts were chemically characterized by (1)H nuclear magnetic resonance (NMR), gas chromatography-flame ionization detection (GC-FID), gas chromatography-mass spectrometry (GC-MS), and high-pressure liquid chromatography (HPLC) for detecting and quantifying the main constituents. Both bergamot extracts and chemical standards corresponding to the main constituents detected were then assayed for their capacity to increase erythroid differentiation of K562 cells and expression of γ-globin genes in human erythroid precursor cells. Three experimental cell systems were employed: (a) the human leukemic K562 cell line, (b) K562 cell clones stably transfected with a pCCL construct carrying green-enhanced green fluorescence protein (EGFP) under the γ-globin gene promoter, and (c) the two-phase liquid culture of human erythroid progenitors isolated from healthy donors. The results suggest that citropten and bergapten are powerful inducers of differentiation and γ-globin gene expression in human erythroid cells. These data could have practical relevance, because pharmacologically mediated regulation of human γ-globin gene expression, with the consequent induction of fetal hemoglobin, is considered to be a potential therapeutic approach in hematological disorders, including β-thalassemia and sickle cell anemia.

  8. A majority of mice show long-term expression of a human. beta. -globin gene after retrovirus transfer into hematopoietic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, M.A.; Gelinas, R.E.; Miller

    1989-04-01

    Murine bone marrow was infected with a high-titer retrovirus vector containing the human {beta}-globin and neomycin phosphotransferase genes. Anemic W/W/sup v/ mice were transplanted with infected marrow which in some cases had been exposed to the selective agent G418. Human {beta}-globin expression was monitored in transplanted animals by using a monoclonal antibody specific for human {beta}-globin polypeptide, and hematopoietic reconstitution was monitored by using donor and recipient mice which differed in hemoglobin type. In some experiments all transplanted mice expressed the human {beta}-globin polypeptide for over 4 months, and up to 50% of peripheral erythrocytes contained detectable levels of polypeptide.more » DNA analysis of transplanted animals revealed that virtually every myeloid cell contained a provirus. Integration site analysis and reconstitution of secondary marrow recipients suggested that every mouse was reconstituted with at least one infected stem cell which had extensive repopulation capability. The ability to consistently transfer an active {beta}-globin gene into mouse hematopoietic cells improves the feasibility of using these techniques for somatic cell gene therapy in humans.« less

  9. Target-based drug discovery for [Formula: see text]-globin disorders: drug target prediction using quantitative modeling with hybrid functional Petri nets.

    PubMed

    Mehraei, Mani; Bashirov, Rza; Tüzmen, Şükrü

    2016-10-01

    Recent molecular studies provide important clues into treatment of [Formula: see text]-thalassemia, sickle-cell anaemia and other [Formula: see text]-globin disorders revealing that increased production of fetal hemoglobin, that is normally suppressed in adulthood, can ameliorate the severity of these diseases. In this paper, we present a novel approach for drug prediction for [Formula: see text]-globin disorders. Our approach is centered upon quantitative modeling of interactions in human fetal-to-adult hemoglobin switch network using hybrid functional Petri nets. In accordance with the reverse pharmacology approach, we pose a hypothesis regarding modulation of specific protein targets that induce [Formula: see text]-globin and consequently fetal hemoglobin. Comparison of simulation results for the proposed strategy with the ones obtained for already existing drugs shows that our strategy is the optimal as it leads to highest level of [Formula: see text]-globin induction and thereby has potential beneficial therapeutic effects on [Formula: see text]-globin disorders. Simulation results enable verification of model coherence demonstrating that it is consistent with qPCR data available for known strategies and/or drugs.

  10. Lactoferrin-modified rotigotine nanoparticles for enhanced nose-to-brain delivery: LESA-MS/MS-based drug biodistribution, pharmacodynamics, and neuroprotective effects

    PubMed Central

    Bi, Chenchen; Duan, Dongyu; Chu, Liuxiang; Yu, Xin; Wu, Zimei; Wang, Aiping; Sun, Kaoxiang

    2018-01-01

    Introduction Efficient delivery of rotigotine into the brain is crucial for obtaining maximum therapeutic efficacy for Parkinson’s disease (PD). Therefore, in the present study, we prepared lactoferrin-modified rotigotine nanoparticles (Lf-R-NPs) and studied their biodistribution, pharmacodynamics, and neuroprotective effects following nose-to-brain delivery in the rat 6-hydroxydopamine model of PD. Materials and methods The biodistribution of rotigotine nanoparticles (R-NPs) and Lf-R-NPs after intranasal administration was assessed by liquid extraction surface analysis coupled with tandem mass spectrometry. Contralateral rotations were quantified to evaluate pharmacodynamics. Tyrosine hydroxylase and dopamine transporter immunohistochemistry were performed to compare the neuroprotective effects of levodopa, R-NPs, and Lf-R-NPs. Results Liquid extraction surface analysis coupled with tandem mass spectrometry analysis, used to examine rotigotine biodistribution, showed that Lf-R-NPs more efficiently supplied rotigotine to the brain (with a greater sustained amount of the drug delivered to this organ, and with more effective targeting to the striatum) than R-NPs. The pharmacodynamic study revealed a significant difference (P<0.05) in contralateral rotations between rats treated with Lf-R-NPs and those treated with R-NPs. Furthermore, Lf-R-NPs significantly alleviated nigrostriatal dopaminergic neurodegeneration in the rat model of 6-hydroxydopamine-induced PD. Conclusion Our findings show that Lf-R-NPs deliver rotigotine more efficiently to the brain, thereby enhancing efficacy. Therefore, Lf-R-NPs might have therapeutic potential for the treatment of PD. PMID:29391788

  11. HbVar: A relational database of human hemoglobin variants and thalassemia mutations at the globin gene server.

    PubMed

    Hardison, Ross C; Chui, David H K; Giardine, Belinda; Riemer, Cathy; Patrinos, George P; Anagnou, Nicholas; Miller, Webb; Wajcman, Henri

    2002-03-01

    We have constructed a relational database of hemoglobin variants and thalassemia mutations, called HbVar, which can be accessed on the web at http://globin.cse.psu.edu. Extensive information is recorded for each variant and mutation, including a description of the variant and associated pathology, hematology, electrophoretic mobility, methods of isolation, stability information, ethnic occurrence, structure studies, functional studies, and references. The initial information was derived from books by Dr. Titus Huisman and colleagues [Huisman et al., 1996, 1997, 1998]. The current database is updated regularly with the addition of new data and corrections to previous data. Queries can be formulated based on fields in the database. Tables of common categories of variants, such as all those involving the alpha1-globin gene (HBA1) or all those that result in high oxygen affinity, are maintained by automated queries on the database. Users can formulate more precise queries, such as identifying "all beta-globin variants associated with instability and found in Scottish populations." This new database should be useful for clinical diagnosis as well as in fundamental studies of hemoglobin biochemistry, globin gene regulation, and human sequence variation at these loci. Copyright 2002 Wiley-Liss, Inc.

  12. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG).

    PubMed

    Singh, Neha Atulkumar; Mandal, Abul Kalam Azad; Khan, Zaved Ahmed

    2016-06-07

    Neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD) enforce an overwhelming social and economic burden on society. They are primarily characterized through the accumulation of modified proteins, which further trigger biological responses such as inflammation, oxidative stress, excitotoxicity and modulation of signalling pathways. In a hope for cure, these diseases have been studied extensively over the last decade to successfully develop symptom-oriented therapies. However, so far no definite cure has been found. Therefore, there is a need to identify a class of drug capable of reversing neural damage and preventing further neural death. This review therefore assesses the reliability of the neuroprotective benefits of epigallocatechin-gallate (EGCG) by shedding light on their biological, pharmacological, antioxidant and metal chelation properties, with emphasis on their ability to invoke a range of cellular mechanisms in the brain. It also discusses the possible use of nanotechnology to enhance the neuroprotective benefits of EGCG.

  13. Molecular basis of length polymorphism in the human zeta-globin gene complex.

    PubMed Central

    Goodbourn, S E; Higgs, D R; Clegg, J B; Weatherall, D J

    1983-01-01

    The length polymorphism between the human zeta-globin gene and its pseudogene is caused by an allele-specific variation in the copy number of a tandemly repeating 36-base-pair sequence. This sequence is related to a tandemly repeated 14-base-pair sequence in the 5' flanking region of the human insulin gene, which is known to cause length polymorphism, and to a repetitive sequence in intervening sequence (IVS) 1 of the pseudo-zeta-globin gene. Evidence is presented that the latter is also of variable length, probably because of differences in the copy number of the tandem repeat. The homology between the three length polymorphisms may be an indication of the presence of a more widespread group of related sequences in the human genome, which might be useful for generalized linkage studies. PMID:6308667

  14. Altitudinal Variation at Duplicated β-Globin Genes in Deer Mice: Effects of Selection, Recombination, and Gene Conversion

    PubMed Central

    Storz, Jay F.; Natarajan, Chandrasekhar; Cheviron, Zachary A.; Hoffmann, Federico G.; Kelly, John K.

    2012-01-01

    Spatially varying selection on a given polymorphism is expected to produce a localized peak in the between-population component of nucleotide diversity, and theory suggests that the chromosomal extent of elevated differentiation may be enhanced in cases where tandemly linked genes contribute to fitness variation. An intriguing example is provided by the tandemly duplicated β-globin genes of deer mice (Peromyscus maniculatus), which contribute to adaptive differentiation in blood–oxygen affinity between high- and low-altitude populations. Remarkably, the two β-globin genes segregate the same pair of functionally distinct alleles due to a history of interparalog gene conversion and alleles of the same functional type are in perfect coupling-phase linkage disequilibrium (LD). Here we report a multilocus analysis of nucleotide polymorphism and LD in highland and lowland mice with different genetic backgrounds at the β-globin genes. The analysis of haplotype structure revealed a paradoxical pattern whereby perfect LD between the two β-globin paralogs (which are separated by 16.2 kb) is maintained in spite of the fact that LD within both paralogs decays to background levels over physical distances of less than 1 kb. The survey of nucleotide polymorphism revealed that elevated levels of altitudinal differentiation at each of the β-globin genes drop away quite rapidly in the external flanking regions (upstream of the 5′ paralog and downstream of the 3′ paralog), but the level of differentiation remains unexpectedly high across the intergenic region. Observed patterns of diversity and haplotype structure are difficult to reconcile with expectations of a two-locus selection model with multiplicative fitness. PMID:22042573

  15. Efficient Generation of β-Globin-Expressing Erythroid Cells Using Stromal Cell-Derived Induced Pluripotent Stem Cells from Patients with Sickle Cell Disease.

    PubMed

    Uchida, Naoya; Haro-Mora, Juan J; Fujita, Atsushi; Lee, Duck-Yeon; Winkler, Thomas; Hsieh, Matthew M; Tisdale, John F

    2017-03-01

    Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells represent an ideal source for in vitro modeling of erythropoiesis and a potential alternative source for red blood cell transfusions. However, iPS cell-derived erythroid cells predominantly produce ε- and γ-globin without β-globin production. We recently demonstrated that ES cell-derived sacs (ES sacs), known to express hemangioblast markers, allow for efficient erythroid cell generation with β-globin production. In this study, we generated several iPS cell lines derived from bone marrow stromal cells (MSCs) and peripheral blood erythroid progenitors (EPs) from sickle cell disease patients, and evaluated hematopoietic stem/progenitor cell (HSPC) generation after iPS sac induction as well as subsequent erythroid differentiation. MSC-derived iPS sacs yielded greater amounts of immature hematopoietic progenitors (VEGFR2 + GPA-), definitive HSPCs (CD34 + CD45+), and megakaryoerythroid progenitors (GPA + CD41a+), as compared to EP-derived iPS sacs. Erythroid differentiation from MSC-derived iPS sacs resulted in greater amounts of erythroid cells (GPA+) and higher β-globin (and βS-globin) expression, comparable to ES sac-derived cells. These data demonstrate that human MSC-derived iPS sacs allow for more efficient erythroid cell generation with higher β-globin production, likely due to heightened emergence of immature progenitors. Our findings should be important for iPS cell-derived erythroid cell generation. Stem Cells 2017;35:586-596. © 2016 AlphaMed Press.

  16. Flanking HS-62.5 and 3' HS1, and regions upstream of the LCR, are not required for beta-globin transcription.

    PubMed

    Bender, M A; Byron, Rachel; Ragoczy, Tobias; Telling, Agnes; Bulger, Michael; Groudine, Mark

    2006-08-15

    The locus control region (LCR) was thought to be necessary and sufficient for establishing and maintaining an open beta-globin locus chromatin domain in the repressive environment of the developing erythrocyte. However, deletion of the LCR from the endogenous locus had no significant effect on chromatin structure and did not silence transcription. Thus, the cis-regulatory elements that confer the open domain remain unidentified. The conserved DNaseI hypersensitivity sites (HSs) HS-62.5 and 3'HS1 that flank the locus, and the region upstream of the LCR have been implicated in globin gene regulation. The flanking HSs bind CCCTC binding factor (CTCF) and are thought to interact with the LCR to form a "chromatin hub" involved in beta-globin gene activation. Hispanic thalassemia, a deletion of the LCR and 27 kb upstream, leads to heterochromatinization and silencing of the locus. Thus, the region upstream of the LCR deleted in Hispanic thalassemia (upstream Hispanic region [UHR]) may be required for expression. To determine the importance of the UHR and flanking HSs for beta-globin expression, we generated and analyzed mice with targeted deletions of these elements. We demonstrate deletion of these regions alone, and in combination, do not affect transcription, bringing into question current models for the regulation of the beta-globin locus.

  17. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus

    PubMed Central

    Kim, Yea Woon; Lee, Sungkung; Yun, Jangmi; Kim, AeRi

    2015-01-01

    Enhancers are closely positioned with actively transcribed target genes by chromatin looping. Non-coding RNAs are often transcribed on active enhancers, referred to as eRNAs (enhancer RNAs). To explore the kinetics of enhancer–promoter looping and eRNA transcription during transcriptional activation, we induced the β-globin locus by chemical treatment and analysed cross-linking frequency between the β-globin gene and locus control region (LCR) and the amount of eRNAs transcribed on the LCR in a time course manner. The cross-linking frequency was increased after chemical induction but before the transcriptional activation of gene in the β-globin locus. Transcription of eRNAs was increased in concomitant with the increase in cross-linking frequency. These results show that chromatin looping and eRNA transcription precedes the transcriptional activation of gene. Concomitant occurrence of the two events suggests functional relationship between them. PMID:25588787

  18. Sequence Divergence in the 3′ Untranslated Regions of Human ζ- and α-Globin mRNAs Mediates a Difference in Their Stabilities and Contributes to Efficient α-to-ζ Gene Developmental Switching

    PubMed Central

    Russell, J. Eric; Morales, Julia; Makeyev, Aleksandr V.; Liebhaber, Stephen A.

    1998-01-01

    The developmental stage-specific expression of human globin proteins is characterized by a switch from the coexpression of ζ- and α-globin in the embryonic yolk sac to exclusive expression of α-globin during fetal and adult life. Recent studies with transgenic mice demonstrate that in addition to transcriptional control elements, full developmental silencing of the human ζ-globin gene requires elements encoded within the transcribed region. In the current work, we establish that these latter elements operate posttranscriptionally by reducing the relative stability of ζ-globin mRNA. Using a transgenic mouse model system, we demonstrate that human ζ-globin mRNA is unstable in adult erythroid cells relative to the highly stable human α-globin mRNA. A critical determinant of the difference between α- and ζ-globin mRNA stability is mapped by in vivo expression studies to their respective 3′ untranslated regions (3′UTRs). In vitro messenger ribonucleoprotein (mRNP) assembly assays demonstrate that the α- and ζ-globin 3′UTRs assemble a previously described mRNP stability-determining complex, the α-complex, with distinctly different affinities. The diminished efficiency of α-complex assembly on the ζ 3′UTR results from a single C→G nucleotide substitution in a crucial polypyrimidine tract contained by both the human α- and ζ-globin mRNA 3′UTRs. A potential pathway for accelerated ζ-globin mRNA decay is suggested by the observation that its 3′UTR encodes a shortened poly(A) tail. Based upon these data, we propose a model for ζ-globin gene silencing in fetal and adult erythroid cells in which posttranscriptional controls play a central role by providing for accelerated clearance of ζ-globin transcripts. PMID:9528789

  19. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson's disease.

    PubMed

    Naoi, Makoto; Maruyama, Wakako

    2009-08-01

    Neuroprotective therapy has been proposed for age-related neurodegenerative disorders, including Parkinson's disease. Inhibitors of type B monoamine oxidase (MAOB-Is), rasagiline and (-)deprenyl, are the most promising candidate neuroprotective drugs. Clinical trials of rasagiline in patients with Parkinson's disease suggest that rasagiline may have some disease-modifying effects. Results using animal and cellular models have proved that the MAOB-Is protect neurons by the intervention of 'intrinsic' mitochondrial apoptotic cascade and the induction of prosurvival antiapoptotic Bcl-2 and neurotrophic factors. Rasagiline-related MAOB-Is prevent mitochondrial permeability transition induced by various insults and activation of subsequent apoptotic cascades: cytochrome c release, casapase activation, and condensation and fragmentation of nuclear DNA. MAOB-Is increase transcription of prosurvival genes through activating the nuclear transcription factor-(NF) system. Rasagiline increases the protein and mRNA levels of GDNF in dopaminergic SH-SY5Y cells, whereas (-)deprenyl increases those of BDNF. Systemic administration of (-)deprenyl and rasagiline increases these neurotrophic factors in the cerebrospinal fluid from patients with Parkinson's disease and nonhuman primates. This review presents recent advances in our understanding of the neuroprotection offered by MAOB-Is and possible evaluation of neuroprotective efficacy in clinical samples is discussed.

  20. NEW STRATEGIES IN NEUROPROTECTION AND NEUROREPAIR

    PubMed Central

    Antonelli, Marta C.; Guillemin, Gilles J.; Raisman-Vozari, Rita; Del-Bel, Elaine A.; Aschner, Michael; Collins, Michael A.; Tizabi, Yousef; Moratalla, Rosario; West, Adrian K.

    2011-01-01

    There are currently few clinical strategies in place, which provide effective neuroprotection and repair, despite an intense international effort over the past decades. One possible explanation for this is that a deeper understanding is required of how endogenous mechanisms act to confer neuroprotection. This mini-review reports the proceedings of a recent workshop “Neuroprotection and Neurorepair: New Strategies” (Iguazu Falls, Misiones, Argentina, April 11–13, 2011, Satellite Symposium of the V Neurotoxicity Society Meeting, 2011) in which four areas of active research were identified to have the potential to generate new insights into this field. Topics discussed were i) metallothionein and other multipotent neuroprotective molecules; ii) oxidative stress and their signal mediated pathways in neuroregeneration; iii) neurotoxins in glial cells, and iv) drugs of abuse with neuroprotective effects. PMID:21861211

  1. Clinical trials for neuroprotection in ALS.

    PubMed

    Siciliano, G; Carlesi, C; Pasquali, L; Piazza, S; Pietracupa, S; Fornai, F; Ruggieri, S; Murri, L

    2010-07-01

    Owing to uncertainty on the pathogenic mechanisms underlying motor neuron degeneration in amyotrophic lateral sclerosis (ALS) riluzole remains the only available therapy, with only marginal effects on disease survival. Here we review some of the recent advances in the search for disease-modifying drugs for ALS based on their putative neuroprotective effetcs. A number of more or less established agents have recently been investigated also in ALS for their potential role in neuroprotection and relying on antiglutamatergic, antioxidant or antiapoptotic strategies. Among them Talampanel, beta-lactam antibiotics, Coenzyme Q10, and minocycline have been investigated. Progress has also been made in exploiting growth factors for the treatment of ALS, partly due to advances in developing effective delivery systems to the central nervous system. A number of new therapies have also been identified, including a novel class of compounds, such as heat-shock protein co-inducers, which upregulate cell stress responses, and agents promoting autophagy and mitochondriogenesis, such as lithium and rapamycin. More recently, alterations of mRNA processing were described as a pathogenic mechanism in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations. This knowledge is expected to improve our understanding of the pathogenetic mechanism in ALS and developing more effective therapies.

  2. A 21 Nucleotide Duplication on the α1- and α2-Globin Genes Involves a Variety of Hypochromic Microcytic Anemias, From Mild to Hb H Disease.

    PubMed

    Farashi, Samaneh; Faramarzi Garous, Negin; Zeinali, Fatemeh; Vakili, Shadi; Ashki, Mehri; Imanian, Hashem; Najmabadi, Hossein; Azarkeivan, Azita; Tamaddoni, Ahmad

    2015-01-01

    α-Thalassemia (α-thal) is a common genetic disorder in Iran and many parts of the world. Genetic defects in the α-globin gene cluster can result in α-thal that may develop into a clinical phenotype varying from almost asymptomatic to a lethal hemolytic anemia. Loss of one functional α gene, indicated as heterozygous α(+)-thal, shows minor hematological abnormalities. Homozygosity for α(+)- or heterozygosity for α(0)-thal have more severe hematological abnormalities due to a markedly reduced α chain output. At the molecular level, the absence of three α-globin genes resulting from the compound heterozygous state for α(0)- and α(+)-thal, lead to Hb H disease. Here we present a 21 nucleotide (nt) duplication consisting of six amino acids and 3 bp of intronic sequence at the exon-intron boundary, in both the α-globin genes, detected by direct DNA sequencing. This duplication was identified in three patients originating from two different Iranian ethnic groups and one Arab during more than 12 years. The clinical presentation of these individuals varies widely from a mild asymptomatic anemia (heterozygote in α1-globin gene) to a severely anemic state, diagnosed as an Hb H individual requiring blood transfusion (duplication on the α2-globin gene in combination with the - -(MED) double α-globin gene deletion). The third individual, who was homozygous for this nt duplication on the α1-globin gene, showed severe hypochromic microcytic anemia and splenomegaly. In the last decade, numerous α-globin mutations have demonstrated the necessity of prenatal diagnosis (PND) for α-thal, and this study has contributed another mutation as important enough that needs to be considered.

  3. Analysis of α1 and α2 globin genes among patients with hemoglobin Adana in Malaysia.

    PubMed

    Lee, T Y; Lai, M I; Ismail, P; Ramachandran, V; Tan, J A M A; Teh, L K; Othman, R; Hussein, N H; George, E

    2016-04-07

    Hemoglobin (Hb) Adana [HBA2: c179G>A (or HBA1); p.Gly60Asp] is a non-deletional α-thalassemia variant found in Malaysia. An improvement in the molecular techniques in recent years has made identification of Hb Adana much easier. For this study, a total of 26 Hb Adana α-thalassemia intermedia and 10 Hb Adana trait blood samples were collected from patients. Common deletional and non-deletional α-thalassemia genotypes were determined using multiplex gap polymerase chain reaction (PCR) and multiplex ARMS PCR techniques. Identification of the Hb Adana location on the α-globin gene was carried out using genomic sequencing and the location of the mutation was confirmed via restriction fragment length polymorphism-PCR. Among the 36 samples, 24 (66.7%) had the -α(3.7)/α(Cd59)α mutation, while the -α(3.7)/α(Cd59)α mutation accounted for 2 samples (5.6%) and the remaining 10 (27.8%) samples were α/α(Cd59)α. All 36 samples were found to have the Hb Adana mutation on the α2-globin gene. The position of the α-globin gene mutation found in our cases was similar to that reported in Indonesia (16%) but not to that in Turkey (0.6%). Our results showed that the Hb Adana mutation was preferentially present in the α2-globin genes in Malays compared to the other ethnicities in Malaysia. Thus, the Malays might have similar ancestry based on the similarities in the Hb Adana position.

  4. A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development

    PubMed Central

    Bultman, Scott J.; Gebuhr, Thomas C.; Magnuson, Terry

    2005-01-01

    The Brg1 catalytic subunit of SWI/SNF-related complexes has been implicated in many developmental and physiological processes, but null homozygotes die as blastocysts prior to implantation. To circumvent this early embryonic lethality, we performed an ENU mutagenesis screen and generated a Brg1 hypomorph mutation in the ATPase domain. The mutant Brg1 protein is stable, assembles into SWI/SNF-related complexes, and exhibits normal ATPase activity but is unable to establish DNase I hypersensitivity sites characteristic of open chromatin. Mutant embryos develop normally until midgestation but then exhibit a distinct block in the development of the erythroid lineage, leading to anemia and death. The mutant Brg1 protein is recruited to the β-globin locus, but chromatin remodeling and transcription are perturbed. Histone acetylation and DNA methylation are also affected. To our knowledge, Brg1 is the first chromatin-modifying factor shown to be required for β-globin regulation and erythropoiesis in vivo. Not only does this mutation establish a role for Brg1 during organogenesis, it also demonstrates that ATPase activity can be uncoupled from chromatin remodeling. PMID:16287714

  5. Plasmodium falciparum malaria skews globin gene expression balance in in-vitro haematopoietic stem cell culture system: Its implications in malaria associated anemia.

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2018-02-01

    Understanding the pathophysiology and associated host parasite interactions of the malaria infection is the prerequisite for developing effective prevention and treatment strategies. The exact mechanism underlying malaria associated ineffective and dyserythropoiesis is not yet fully understood. Being an important protein, haemoglobin serves as the main amino acid reservoir available to the intra-erythrocytic plasmodium. It is important to check the expression profiling of globin genes which may help us to understand host parasite interactions and its potential contribution to both infection and disease. Here, an in-vitro culture system was used to study the effect of different doses of Plasmodium falciparum on haematopoietic stem cell expansion, differentiation and expression of globin genes. Upon exposure to the different doses of P. falciparum parasites of strains 3D7, Dd2 and RKL9 (intact and lysed form) at different stages of erythroid development, cells demonstrated suppression in growth and differentiation. At almost all stages of erythroid development upon parasite exposure, the γ globin gene was found to be downregulated and the α/β as well as α/non- α globin mRNA ratios in late stage erythroid cells were found to be reduced (p < .01) compared to the untreated controls. The imbalance in globin chain expression might be considered as one of the factors involved in malaria associated inappropriate erythropoietic responses. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Mi2β Is Required for γ-Globin Gene Silencing: Temporal Assembly of a GATA-1-FOG-1-Mi2 Repressor Complex in β-YAC Transgenic Mice

    PubMed Central

    Costa, Flávia C.; Fedosyuk, Halyna; Chazelle, Allen M.; Neades, Renee Y.; Peterson, Kenneth R.

    2012-01-01

    Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the −566 GATA motif of the Aγ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of Aγ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the −566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1–mediated repressor complex was disrupted by the −566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting −566 Aγ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis. PMID:23284307

  7. Mi2β is required for γ-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in β-YAC transgenic mice.

    PubMed

    Costa, Flávia C; Fedosyuk, Halyna; Chazelle, Allen M; Neades, Renee Y; Peterson, Kenneth R

    2012-01-01

    Activation of γ-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the -566 GATA motif of the (A)γ-globin gene. We show that Mi2β is essential for γ-globin gene silencing using Mi2β conditional knockout β-YAC transgenic mice. In addition, increased expression of (A)γ-globin was detected in adult blood from β-YAC transgenic mice containing a T>G HPFH point mutation at the -566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type β-YAC transgenic mice. Recruitment of the GATA-1-mediated repressor complex was disrupted by the -566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of γ-globin gene expression and that either a trans-acting Mi2β knockout deletion mutation or the cis-acting -566 (A)γ-globin HPFH point mutation disrupts establishment of repression, resulting in continued γ-globin gene transcription during adult definitive erythropoiesis.

  8. Mutation spectrum of β-globin gene in thalassemia patients at Hasan Sadikin Hospital - West Java Indonesia.

    PubMed

    Maskoen, Ani Melani; Rahayu, Nurul S; Reniarti, Lelani; Susanah, Susi; Laksono, Bremmy; Fauziah, Prima Nanda; Zada, Almira; Hidayat, Dadang S

    2017-12-30

    Thalassemia is the most common hereditary haemolytic anemia in Southeast Asia, in which Indonesia is among countries that are at a high risk for thalassemia. It has been reported that mutation in the beta-globin gene is responsible in severe Thalassemia. However, the spectrum of beta-globin gene mutations in Indonesian population varies in different regions . Thus, this study aimed to identify the most prevalent mutation of Thalassemia patients from the Hasan Sadikin Hospital, Bandung, using this as a reference hospital for Thalassemia in West Java. The three most prevalent mutations of beta globin (IVS1nt5, Cd26 (HbE), and IVS1nt1), were conducted in the beginning of this study. Mutations of 291 samples were detected by PCR-RFLP in the Molecular Genetic Laboratory, Faculty of Medicine Universitas Padjadjaran, Bandung. The prevalence of the beta globin gene mutation types were 47.4% IVS1nt5 homozygote, 9.9% compound heterozygote IVS1nt5/HbE, 5.4% compound heterozygote IVS1nt5/IVS1nt1, 1.4% compound heterozygote HbE/IVS1nt1, 1% HbE homozygote, 14.4% Compound heterzygote IVS1nt5/… (no paired mutation), 2.06% compound heterozygote HbE/… (no paired mutation), 1.3% compound heterozygote IVS1nt1/… (no paired mutation), and 7 samples were unidentified. The thalassemia mutation IVS1nt5 homozygote is the most common mutation found in Thalassemia patients at Hasan Sadikin Hospital, Bandung. The samples with unidentified results might carry mutations other than the three that are observed in the present study.

  9. In Silico Analysis of Single Nucleotide Polymorphism (SNPs) in Human β-Globin Gene

    PubMed Central

    Alanazi, Mohammed; Abduljaleel, Zainularifeen; Khan, Wajahatullah; Warsy, Arjumand S.; Elrobh, Mohamed; Khan, Zahid; Amri, Abdullah Al; Bazzi, Mohammad D.

    2011-01-01

    Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies- the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB) gene mutations, such as that producing sickle cell hemoglobin (HbS), HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT) server we have searched for the SNPs, which showed that 200 (80%) non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40%) non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K), HbD (E→Q), HbE (E→K) and HbS (E→V). Atomic Non-Local Environment Assessment (ANOLEA), Yet Another Scientific Artificial Reality Application (YASARA), CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref) of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid residues

  10. The higher structure of chromatin in the LCR of the beta-globin locus changes during development.

    PubMed

    Fang, Xiangdong; Yin, Wenxuan; Xiang, Ping; Han, Hemei; Stamatoyannopoulos, George; Li, Qiliang

    2009-11-27

    The beta-globin locus control region (LCR) is able to enhance the expression of all globin genes throughout the course of development. However, the chromatin structure of the LCR at the different developmental stages is not well defined. We report DNase I and micrococcal nuclease hypersensitivity, chromatin immunoprecipitation analyses for histones H2A, H2B, H3, and H4, and 3C (chromatin conformation capture) assays of the normal and mutant beta-globin loci, which demonstrate that nucleosomes at the DNase I hypersensitive sites of the LCR could be either depleted or retained depending on the stages of development. Furthermore, MNase sensitivity and 3C assays suggest that the LCR chromatin is more open in embryonic erythroblasts than in definitive erythroblasts at the primary- and secondary-structure levels; however, the LCR chromatin is packaged more tightly in embryonic erythroblasts than in definitive erythroblasts at the tertiary chromatin level. Our study provides the first evidence that the occupancy of nucleosomes at a DNase I hypersensitive site is a developmental stage-related event and that embryonic and adult cells possess distinct chromatin structures of the LCR.

  11. Rapid determination of human globin chains using reversed-phase high-performance liquid chromatography.

    PubMed

    Wan, Jun-Hui; Tian, Pei-Ling; Luo, Wei-Hao; Wu, Bing-Yi; Xiong, Fu; Zhou, Wan-Jun; Wei, Xiang-Cai; Xu, Xiang-Min

    2012-07-15

    Reversed-phase high-performance liquid chromatography (RP-HPLC) of human globin chains is an important tool for detecting thalassemias and hemoglobin variants. The challenges of this method that limit its clinical application are a long analytical time and complex sample preparation. The aim of this study was to establish a simple, rapid and high-resolution RP-HPLC method for the separation of globin chains in human blood. Red blood cells from newborns and adults were diluted in deionized water and injected directly onto a micro-jupiter C18 reversed-phase column (250 mm × 4.6 mm) with UV detection at 280 nm. Under the conditions of varying pH or the HPLC gradient, the globin chains (pre-β, β, δ, α, (G)γ and (A)γ) were denatured and separated from the heme groups in 12 min with a retention time coefficient of variation (CV) ranging from 0.11 to 1.29% and a peak area CV between 0.32% and 4.86%. Significant differences (P<0.05) among three groups (normal, Hb H and β thalassemia) were found in the area ratio of α/pre-β+β applying the rapid elution procedure, while P≥0.05 was obtained between the normal and α thalassemia silent/trait group. Based on the ANOVA results, receiver operating characteristic (ROC) curve analysis of the δ/β and α/pre-β+β area ratios showed a sensitivity of 100.0%, and a specificity of 100.0% for indicating β thalassemia carriers, and a sensitivity of 96.6% and a specificity of 89.6% for the prediction of hemoglobin H (Hb H) disease. The proposed cut-off was 0.026 of δ/β for β thalassemia carriers and 0.626 of α/pre-β+β for Hb H disease. In addition, abnormal hemoglobin hemoglobin E (Hb E) and Hb Westmead (Hb WS) were successfully identified using this RP-HPLC method. Our experience in developing this RP-HPLC method for the rapid separation of human globin chains could be of use for similar work. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Coexpression of Human α- and Circularly Permuted β-Globins Yields a Hemoglobin with Normal R State but Modified T State Properties†

    PubMed Central

    Asmundson, Anna L.; Taber, Alexandria M.; van der Walde, Adella; Lin, Danielle H.; Olson, John S.; Anthony-Cahill, Spencer J.

    2009-01-01

    For the first time, a circularly permuted human β-globin (cpβ) has been coexpressed with human α-globin in bacterial cells and shown to associate to form α-cpβ hemoglobin in solution. Flash photolysis studies of α-cpβ show markedly biphasic CO and O2 kinetics with the amplitudes for the fast association phases being dominant due the presence of large amounts of high-affinity liganded hemoglobin dimers. Extensive dimerization of liganded but not deoxygenated α-cpβ was observed by gel chromatography. The rate constants for O2 and CO binding to the R state forms of α-cpβ are almost identical to those of native HbA (k′R(CO) ≈ 5.0 μM−1 s−1; k′R(O2) ≈ 50 μM−1 s−1), and the rate of O2 dissociation from fully oxygenated α-cpβ is also very similar to that observed for HbA (kR(O2) ≈ 21–28 s−1). When the equilibrium deoxyHb form of α-cpβ is reacted with CO in rapid mixing experiments, the observed time courses are monophasic and the observed bimolecular association rate constant is ∼1.0 μM−1 s−1, which is intermediate between the R state rate measured in partial photolysis experiments (∼5 μM−1 s−1) and that observed for T state deoxyHbA (k′T(CO) ≈ 0.1 to 0.2 μM−1 s−1). Thus the deoxygenated permutated β subunits generate an intermediate, higher affinity, deoxyHb quaternary state. This conclusion is supported by equilibrium oxygen binding measurements in which α-cpβ exhibits a P50 of ∼1.5 mmHg and a low n-value (∼1.3) at pH 7, 20 °C, compared to 8.5 mmHg and n ≈ 2.8 for native HbA under identical, dilute conditions. PMID:19397368

  13. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    PubMed

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  14. Understanding the kinetics of ligand binding to globins with molecular dynamics simulations: the necessity of multiple state models.

    PubMed

    Estarellas Martin, Carolina; Seira Castan, Constantí; Luque Garriga, F Javier; Bidon-Chanal Badia, Axel

    2015-10-01

    Residue conformational changes and internal cavity migration processes play a key role in regulating the kinetics of ligand migration and binding events in globins. Molecular dynamics simulations have demonstrated their value in the study of these processes in different haemoglobins, but derivation of kinetic data demands the use of more complex techniques like enhanced sampling molecular dynamics methods. This review discusses the different methodologies that are currently applied to study the ligand migration process in globins and highlight those specially developed to derive kinetic data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Discovery of phenylsulfonylfuroxan derivatives as gamma globin inducers by histone acetylation.

    PubMed

    Melo, Thais Regina Ferreira de; Kumkhaek, Chutima; Fernandes, Guilherme Felipe Dos Santos; Lopes Pires, Maria Elisa; Chelucci, Rafael Consolin; Barbieri, Karina Pereira; Coelho, Fernanda; Capote, Ticiana Sidorenko de Oliveira; Lanaro, Carolina; Carlos, Iracilda Zeppone; Marcondes, Sisi; Chegaev, Konstantin; Guglielmo, Stefano; Fruttero, Roberta; Chung, Man Chin; Costa, Fernando Ferreira; Rodgers, Griffin P; Dos Santos, Jean Leandro

    2018-05-28

    N-oxide derivatives 5(a-b), 8(a-b), and 11(a-c) were designed, synthesized and evaluated in vitro and in vivo as potential drugs that are able to ameliorate sickle cell disease (SCD) symptoms. All of the compounds demonstrated the capacity to releasing nitric oxide at different levels ranging from 0.8 to 30.1%, in vivo analgesic activity and ability to reduce TNF-α levels in the supernatants of monocyte cultures. The most active compound (8b) protected 50.1% against acetic acid-induced abdominal constrictions, while dipyrone, which was used as a control only protected 35%. Compounds 8a and 8b inhibited ADP-induced platelet aggregation by 84% and 76.1%, respectively. Both compounds increased γ-globin in K562 cells at 100 μM. The mechanisms involved in the γ-globin increase are related to the acetylation of histones H3 and H4 that is induced by these compounds. In vitro, the most promising compound (8b) was not cytotoxic, mutagenic and genotoxic. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. CD34+ cells from dental pulp stem cells with a ZFN-mediated and homology-driven repair-mediated locus-specific knock-in of an artificial β-globin gene.

    PubMed

    Chattong, S; Ruangwattanasuk, O; Yindeedej, W; Setpakdee, A; Manotham, K

    2017-07-01

    In humans, mutations in the β-globin gene (HBB) have two important clinical manifestations: β-thalassemia and sickle cell disease. The progress in genome editing and stem cell research may be relevant to the treatment of β-globin-related diseases. In this work, we employed zinc-finger nuclease (ZFN)-mediated gene integration of synthetic β-globin cDNA into HBB loci, thus correcting almost all β-globin mutations. The integration was achieved in both HEK 293 cells and isolated dental pulp stem cell (DPSCs). We also showed that DPSCs with an artificial gene knock-in were capable of generating stable six-cell clones and were expandable at least 10 8 -fold; therefore, they may serve as a personalized stem cell factory. In addition, transfection with non-integrated pCAG-hOct4 and culturing in a conditioned medium converted the genome-edited DPSCs to CD34 + HSC-like cells. We believe that this approach may be useful for the treatment of β-globin-related diseases, especially the severe form of β-thalassemia.

  17. [Neuroprotective effects of curcumin].

    PubMed

    Li, Yong; Wang, Pengwen

    2009-12-01

    Traditionally, turmeric has been put to use as a food additive and herbal medicine in Asia. Curcumin is an active principle of the perennial herb curcuma longa (commonly known as turmeric). Recent evidence suggests that curcumin has activities with potential for neuroprotective efficacy, including anti-inflammatory, antioxidant, and antiprotein-aggregate activities. In the current review, we provide the newly evidence for the potential role of curcumin in the neuroprotective effects of neurodegenerative diseases like Alzheimer's disease (AD).

  18. Nuclear proteins that bind the human gamma-globin gene promoter: alterations in binding produced by point mutations associated with hereditary persistence of fetal hemoglobin.

    PubMed Central

    Gumucio, D L; Rood, K L; Gray, T A; Riordan, M F; Sartor, C I; Collins, F S

    1988-01-01

    The molecular mechanisms responsible for the human fetal-to-adult hemoglobin switch have not yet been elucidated. Point mutations identified in the promoter regions of gamma-globin genes from individuals with nondeletion hereditary persistence of fetal hemoglobin (HPFH) may mark cis-acting sequences important for this switch, and the trans-acting factors which interact with these sequences may be integral parts in the puzzle of gamma-globin gene regulation. We have used gel retardation and footprinting strategies to define nuclear proteins which bind to the normal gamma-globin promoter and to determine the effect of HPFH mutations on the binding of a subset of these proteins. We have identified five proteins in human erythroleukemia cells (K562 and HEL) which bind to the proximal promoter region of the normal gamma-globin gene. One factor, gamma CAAT, binds the duplicated CCAAT box sequences; the -117 HPFH mutation increases the affinity of interaction between gamma CAAT and its cognate site. Two proteins, gamma CAC1 and gamma CAC2, bind the CACCC sequence. These proteins require divalent cations for binding. The -175 HPFH mutation interferes with the binding of a fourth protein, gamma OBP, which binds an octamer sequence (ATGCAAAT) in the normal gamma-globin promoter. The HPFH phenotype of the -175 mutation indicates that the octamer-binding protein may play a negative regulatory role in this setting. A fifth protein, EF gamma a, binds to sequences which overlap the octamer-binding site. The erythroid-specific distribution of EF gamma a and its close approximation to an apparent repressor-binding site suggest that it may be important in gamma-globin regulation. Images PMID:2468996

  19. A novel mutation of the beta-globin gene promoter (-102 C>A) and pitfalls in family screening.

    PubMed

    Aguilar-Martinez, Patricia; Jourdan, Eric; Brun, Sophie; Cunat, Séverine; Giansily-Blaizot, Muriel; Pissard, Serge; Schved, Jean-François

    2007-12-01

    We describe a family with beta-thalassemia in which several pitfalls of genetic diagnoses were present. These include coherent family phenotypes with discrepancies in molecular findings because of nonpaternity, and a false beta-globin gene homozygous genotype due to a large deletion in the second locus. These findings underline the difficulties of family genetic studies and the need for tight relationship between professionals involved in laboratory studies and those in-charge of the clinical follow-up and genetic counselling. In this family, we also report a new silent beta-thalassemia mutation, -102 (C>A), in the distal CACCC box of the beta-globin gene promoter.

  20. A Mouse β-Globin Mutant That Is an Exact Model of Hemoglobin Rainier in Man

    PubMed Central

    Peters, J.; Andrews, S. J.; Loutit, J. F.; Clegg, J. B.

    1985-01-01

    A mutation induced by ethylnitrosourea in a spermatogonial stem cell of a 101/H mouse has resulted in a structurally altered β-diffuse major globin in one of his offspring. The mutant hemoglobin is associated with polycythemia, rubor, increased oxygen affinity and decreased hem-hem interaction. The mutant haplotype has been designated Hbb d4, polycythemia. Amino acid analysis of the mutant globin has shown that a single substitution β145 Tyr → Cys has occurred, and it is proposed that ethylnitrosourea induced an A → G transition in the tyrosine codon (TAC → TGC). This murine polycythemia is homologous with hemoglobin Rainier in man, in which the amino acid substitution is also β145 Tyr → Cys and which is associated with similar physiological consequences. PMID:3839762

  1. Real-time PCR assays using internal controls for quantitation of HPV-16 and beta-globin DNA in cervicovaginal lavages.

    PubMed

    Lefevre, Jonas; Hankins, Catherine; Pourreaux, Karina; Voyer, Hélène; Coutlée, François

    2003-12-01

    High-risk human papillomavirus 16 (HPV-16) DNA viral load has been measured with real-time PCR assays by amplifying HPV-16 and a human gene. However, these assays have not used internal controls (ICs) to screen for the presence of inhibitors contained in samples. To quantitate HPV-16 DNA and cell content with real-time PCR, ICs for HPV-16 DNA and beta-globin were synthesised and used to control for inhibition. The assays were sensitive and linear over 5 logs. Good reproducibility was achieved with inter-run coefficients of variation of 23% (10(2) HPV-16 copies), 12% (10(4) HPV-16 copies), 17% (274 beta-globin DNA copies) and 7% (27,400 beta-globin DNA copies). Samples containing 56,800,000, 306,000, 18,000, and 4,070 HPV-16 copies/microg of cellular DNA were tested blindly and estimated to contain 48,800,000, 479,000, 20,300, and 6,620 HPV-16 copies/microg of DNA (mean ratio of measured to expected viral load of 1.27+/-0.32). Inhibition of amplification of HPV-16 and beta-globin ICs by six samples known to contain PCR inhibitors was variable: four inhibited both ICs while two inhibited only the HPV-16 IC. The use of internal controls with real-time PCR for HPV-16 quantitation allows to screen for the presence of inhibitors that do not affect equally primer-driven genomic amplification.

  2. The globins of cyanobacteria and algae.

    PubMed

    Johnson, Eric A; Lecomte, Juliette T J

    2013-01-01

    Approximately, 20 years ago, a haemoglobin gene was identified within the genome of the cyanobacterium Nostoc commune. Haemoglobins have now been confirmed in multiple species of photosynthetic microbes beyond N. commune, and the diversity of these proteins has recently come under increased scrutiny. This chapter summarizes the state of knowledge concerning the phylogeny, physiology and chemistry of globins in cyanobacteria and green algae. Sequence information is by far the best developed and the most rapidly expanding aspect of the field. Structural and ligand-binding properties have been described for just a few proteins. Physiological data are available for even fewer. Although activities such as nitric oxide dioxygenation and oxygen scavenging are strong candidates for cellular function, dedicated studies will be required to complete the story on this intriguing and ancient group of proteins. © 2013 Elsevier Ltd. All rights reserved.

  3. Neuroprotective effects of Lepidium meyenii (Maca).

    PubMed

    Pino-Figueroa, Alejandro; Nguyen, Diane; Maher, Timothy J

    2010-06-01

    The neuroprotective activity of the plant Lepidium meyenii (Maca) was studied in two experimental models: in vitro and in vivo. Crayfish neurons were pretreated with vehicle or the pentane extract from Maca, subjected to H(2)O(2), and their viability determined microscopically and chemically. A significant concentration-neuroprotective effect relationship was demonstrated. The pentane extract was then administered intravenously to rats prior to and following middle cerebral artery occlusion. While infarct volumes were decreased for the lower dose, higher doses increased infarct volumes compared to controls. These results suggest a potential application of Maca as a neuroprotectant.

  4. Analyzing 5'HS3 and 5'HS4 LCR core regions and NF-E2 in Iranian thalassemia intermedia patients with normal or carrier status for beta-globin mutations.

    PubMed

    Neishabury, Maryam; Azarkeivan, Azita; Oberkanins, Christian; Abedini, Seyedeh Sedigheh; Zamani, Shahbaz; Najmabadi, Hossein

    2011-03-15

    Our data on 114 Iranian individuals with thalassemia intermedia phenotype revealed homozygous or compound heterozygous beta-globin mutations to be the predominant disease factor in 86.2% of cases. However, 8.2% of these individuals were found to be heterozygous or wild type for beta-globin mutations. In search for determinants outside of the beta-globin gene, which could be responsible for the unexpected thalassemia intermedia phenotype in these subjects, we screened the alpha-globin genes, the 5'HS3 and 5'HS4 regions of the beta-globin LCR, and the NF-E2 transcription factor for sequence variations in selected individuals. The -3.7 deletion was the only alpha-globin mutation detected, and no alterations were found in 5'HS3 and NF-E2. Sequence analysis of the 5'HS4 LCR core region identified three known SNPs in a single patient, who required irregular blood transfusions. The A/G polymorphism in the 5'HS4 palindromic region was also observed to be variable. Family studies were carried out on a female G/G homozygous patient, who received irregular blood transfusions. Her father, who had the same heterozygous IVSII-1 beta-globin mutation but the A/G genotype at the 5'HS4 palindromic site, presented with mild anemia and no requirement for blood transfusions. This suggests an impact of SNPs in the 5'HS4 LCR core region on the thalassemia phenotype and offers an interesting subject for further investigations in the Iranian population. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Sequence change in the HS2-LCR and Ggamma-globin gene promoter region of sickle cell anemia patients.

    PubMed

    Adorno, E V; Moura-Neto, J P; Lyra, I; Zanette, A; Santos, L F O; Seixas, M O; Reis, M G; Goncalves, M S

    2008-02-01

    The fetal hemoglobin (HbF) levels and betaS-globin gene haplotypes of 125 sickle cell anemia patients from Brazil were investigated. We sequenced the Ggamma- and Agamma-globin gene promoters and the DNase I-2 hypersensitive sites in the locus control regions (HS2-LCR) of patients with HbF level disparities as compared to their betaS haplotypes. Sixty-four (51.2%) patients had CAR/Ben genotype; 36 (28.8%) Ben/Ben; 18 (14.4%) CAR/CAR; 2 (1.6%) CAR/Atypical; 2 (1.6%) Ben/Cam; 1 (0.8%) CAR/Cam; 1 (0.8%) CAR/Arab-Indian, and 1 (0.8%) Sen/Atypical. The HS2-LCR sequence analyses demonstrated a c.-10.677G>A change in patients with the Ben haplotype and high HbF levels. The Gg gene promoter sequence analyses showed a c.-157T>C substitution shared by all patients, and a c.-222_-225del related to the Cam haplotype. These results identify new polymorphisms in the HS2-LCR and Gg-globin gene promoter. Further studies are required to determine the correlation between HbF synthesis and the clinical profile of sickle cell anemia patients.

  6. Neuroprotection of Sex Steroids

    PubMed Central

    Liu, Mingyue; Kelley, Melissa H.; Herson, Paco S.; Hurn, Patricia D.

    2011-01-01

    Sex steroids are essential for reproduction and development in animals and humans, and sex steroids also play an important role in neuroprotection following brain injury. New data indicate that sex-specific responses to brain injury occur at the cellular and molecular levels. This review summarizes the current understanding of neuroprotection by sex steroids, particularly estrogen, androgen, and progesterone, based on both in vitro and in vivo studies. Better understanding of the role of sex steroids under physiological and pathological conditions will help us to develop novel effective therapeutic strategies for brain injury. PMID:20595940

  7. H3 K79 dimethylation marks developmental activation of the beta-globin gene but is reduced upon LCR-mediated high-level transcription.

    PubMed

    Sawado, Tomoyuki; Halow, Jessica; Im, Hogune; Ragoczy, Tobias; Bresnick, Emery H; Bender, M A; Groudine, Mark

    2008-07-15

    Genome-wide analyses of the relationship between H3 K79 dimethylation and transcription have revealed contradictory results. To clarify this relationship at a single locus, we analyzed expression and H3 K79 modification levels of wild-type (WT) and transcriptionally impaired beta-globin mutant genes during erythroid differentiation. Analysis of fractionated erythroid cells derived from WT/Delta locus control region (LCR) heterozygous mice reveals no significant H3 K79 dimethylation of the beta-globin gene on either allele prior to activation of transcription. Upon transcriptional activation, H3 K79 di-methylation is observed along both WT and DeltaLCR alleles, and both alleles are located in proximity to H3 K79 dimethylation nuclear foci. However, H3 K79 di-methylation is significantly increased along the DeltaLCR allele compared with the WT allele. In addition, analysis of a partial LCR deletion mutant reveals that H3 K79 dimethylation is inversely correlated with beta-globin gene expression levels. Thus, while our results support a link between H3 K79 dimethylation and gene expression, high levels of this mark are not essential for high level beta-globin gene transcription. We propose that H3 K79 dimethylation is destabilized on a highly transcribed template.

  8. Synergistic and additive properties of the beta-globin locus control region (LCR) revealed by 5'HS3 deletion mutations: implication for LCR chromatin architecture.

    PubMed

    Fang, Xiangdong; Sun, Jin; Xiang, Ping; Yu, Man; Navas, Patrick A; Peterson, Kenneth R; Stamatoyannopoulos, George; Li, Qiliang

    2005-08-01

    Deletion of the 234-bp core element of the DNase I hypersensitive site 3 (5'HS3) of the locus control region (LCR) in the context of a human beta-globin locus yeast artificial chromosome (beta-YAC) results in profound effects on globin gene expression in transgenic mice. In contrast, deletion of a 2.3-kb 5'HS3 region, which includes the 234-bp core sequence, has a much milder phenotype. Here we report the effects of these deletions on chromatin structure in the beta-globin locus of adult erythroblasts. The 234-bp 5'HS3 deletion abolished histone acetylation throughout the beta-globin locus; recruitment of RNA polymerase II (pol II) to the LCR and beta-globin gene promoter was reduced to a basal level; and formation of all the 5' DNase I hypersensitive sites of the LCR was disrupted. The 2.3-kb 5'HS3 deletion mildly reduced the level of histone acetylation but did not change the profile across the whole locus; the 5' DNase I hypersensitive sites of the LCR were formed, but to a lesser extent; and recruitment of pol II was reduced, but only marginally. These data support the hypothesis that the LCR forms a specific chromatin structure and acts as a single entity. Based on these results we elaborate on a model of LCR chromatin architecture which accommodates the distinct phenotypes of the 5'HS3 and HS3 core deletions.

  9. Versatile Cosmid Vectors for the Isolation, Expression, and Rescue of Gene Sequences: Studies with the Human α -globin Gene Cluster

    NASA Astrophysics Data System (ADS)

    Lau, Yun-Fai; Kan, Yuet Wai

    1983-09-01

    We have developed a series of cosmids that can be used as vectors for genomic recombinant DNA library preparations, as expression vectors in mammalian cells for both transient and stable transformations, and as shuttle vectors between bacteria and mammalian cells. These cosmids were constructed by inserting one of the SV2-derived selectable gene markers-SV2-gpt, SV2-DHFR, and SV2-neo-in cosmid pJB8. High efficiency of genomic cloning was obtained with these cosmids and the size of the inserts was 30-42 kilobases. We isolated recombinant cosmids containing the human α -globin gene cluster from these genomic libraries. The simian virus 40 DNA in these selectable gene markers provides the origin of replication and enhancer sequences necessary for replication in permissive cells such as COS 7 cells and thereby allows transient expression of α -globin genes in these cells. These cosmids and their recombinants could also be stably transformed into mammalian cells by using the respective selection systems. Both of the adult α -globin genes were more actively expressed than the embryonic zeta -globin genes in these transformed cell lines. Because of the presence of the cohesive ends of the Charon 4A phage in the cosmids, the transforming DNA sequences could readily be rescued from these stably transformed cells into bacteria by in vitro packaging of total cellular DNA. Thus, these cosmid vectors are potentially useful for direct isolation of structural genes.

  10. TRPV1 may increase the effectiveness of estrogen therapy on neuroprotection and neuroregeneration.

    PubMed

    Ramírez-Barrantes, Ricardo; Marchant, Ivanny; Olivero, Pablo

    2016-08-01

    Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote regeneration, plasticity and health of the nervous system. Their diminution is associated with impaired cognitive and mental health and increased risk of neurodegenerative diseases. Then, restoring neuroendocrine axes during aging can be key to enhance brain health through neuroprotection and neuroregeneration, depending on the modulation of plasticity mechanisms. Estrogen-dependent transient receptor potential cation channel, subfamily V, member 1 (TRPV1) expression induces neuroprotection, neurogenesis and regeneration on damaged tissues. Agonists of TRPV1 can modulate neuroprotection and repair of sensitive neurons, while modulators as other cognitive enhancers may improve the survival rate, differentiation and integration of neural stem cell progenitors in functional neural network. Menopause constitutes a relevant clinical model of steroidal production decline associated with progressive cognitive and mental impairment, which allows exploring the effects of hormone therapy in health outcomes such as dysfunction of CNS. Simulating the administration of hormone therapy to virtual menopausal individuals allows assessing its hypothetical impact and sensitivity to conditions that modify the effectiveness and efficiency.

  11. Novel arylalkenylpropargylamines as neuroprotective, potent, and selective monoamine oxidase B inhibitors for the treatment of Parkinson's disease.

    PubMed

    Huleatt, Paul B; Khoo, Mui Ling; Chua, Yi Yuan; Tan, Tiong Wei; Liew, Rou Shen; Balogh, Balázs; Deme, Ruth; Gölöncsér, Flóra; Magyar, Kalman; Sheela, David P; Ho, Han Kiat; Sperlágh, Beáta; Mátyus, Péter; Chai, Christina L L

    2015-02-12

    To develop novel neuroprotective agents, a library of novel arylalkenylpropargylamines was synthesized and tested for inhibitory activities against monoamine oxidases. From this, a number of highly potent and selective monoamine oxidase B inhibitors were identified. Selected compounds were also tested for neuroprotection in in vitro studies with PC-12 cells treated with 6-OHDA and rotenone, respectively. It was observed that some of the compounds tested yielded a marked increase in survival in PC-12 cells treated with the neurotoxins. This indicates that these propargylamines are able to confer protection against the effects of the toxins and may also be considered as novel disease-modifying anti-Parkinsonian agents, which are much needed for the therapy of Parkinson's disease.

  12. A new gene deletion in the alpha-like globin gene cluster as the molecular basis for the rare alpha-thalassemia-1(--/alpha alpha) in blacks: HbH disease in sickle cell trait.

    PubMed

    Steinberg, M H; Coleman, M B; Adams, J G; Hartmann, R C; Saba, H; Anagnou, N P

    1986-02-01

    A novel deletion of at least 26 kilobase of DNA, including both alpha-globin genes, the psi alpha- and psi zeta-globin genes, but sparing the functional zeta-gene was found in a 10-year-old black boy with HbH disease and sickle cell trait. This particular deletion has not previously been described in blacks. Its existence makes it likely that the absence of Hb Barts hydrops fetalis in blacks is due to the rarity of the chromosome lacking two alpha-globin genes rather than a result of early embryonic death due to the failure to synthesize embryonic hemoglobins because of deletion of functional zeta-globin genes.

  13. A randomized Phase I/II Trial of HQK-1001, an oral fetal globin gene inducer, in β–thalassaemia intermedia and HbE/β–thalassaemia

    PubMed Central

    Fucharoen, Suthat; Inati, Adlette; Siritanaratku, Noppadol; Thein, Swee Lay; Wargin, William C.; Koussa, Suzanne; Taher, Ali; Chaneim, Nattawara; Boosalis, Michael; Berenson, Ronald; Perrine, Susan P.

    2014-01-01

    β–thalassemia intermedia syndromes (BTI) cause hemolytic anemia, ineffective erythropoiesis, and widespread complications. Higher fetal globin expression within genotypes reduces globin imbalance and ameliorates anemia. Sodium 2,2 dimethylbutyrate (HQK-1001), an orally bioavailable short-chain fatty acid derivative, induces γ-globin expression experimentally and is well-tolerated in normal subjects. Accordingly, a randomized, blinded, placebo-controlled, Phase I/II trial was performed in 21 adult BTI patients (14 with HbE/β0 thalassemia and 7 with β+/β0 thalassemia intermedia, to determine effective doses for fetal globin induction, safety, and tolerability. HQK-1001 or placebo were administered once daily for 8 weeks at four dose levels (10, 20, 30, or 40 mg/kg/day), and subjects were monitored for laboratory and clinical events. Pharmacokinetic profiles demonstrated a t1/2 of 10–12 hours. Adverse events with HQK-1001 treatment were not significantly different from placebo treatment. Median HbF increased with the 20 mg/kg treatment doses above baseline levels by 6.6% and 0.44 g/dL (p <0.01) in 8/9 subjects; total hemoglobin (Hgb) increased by a mean of 1.1 gm/dL in 4/9 subjects. These findings identify a safe oral therapeutic which induces fetal globin in BTI. Further investigation of HQK-1001 with longer dosing to definitively evaluate its hematologic potential appears warranted. PMID:23530969

  14. mNotch1 signaling and erythropoietin cooperate in erythroid differentiation of multipotent progenitor cells and upregulate beta-globin.

    PubMed

    Henning, Konstanze; Schroeder, Timm; Schwanbeck, Ralf; Rieber, Nikolaus; Bresnick, Emery H; Just, Ursula

    2007-09-01

    In many developing tissues, signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Notch receptors are expressed on hematopoietic cells and cognate ligands on bone marrow stromal cells. Here, we investigate the role of mNotch1 signaling in the control of erythroid differentiation of multipotent progenitor cells. Multipotent FDCP-mix cell lines engineered to permit the conditional induction of the constitutively active intracellular domain of mNotch1 (mN1(IC)) by the 4-hydroxytamoxifen (OHT)-inducible system were used to analyze the effects of activated mNotch1 on erythroid differentiation and on expression of Gata1, Fog1, Eklf, NF-E2, and beta-globin. Expression was analyzed by Northern blotting and real-time polymerase chain reaction. Enhancer activity of reporter constructs was determined with the dual luciferase system in transient transfection assays. Induction of mN1(IC) by OHT resulted in increased and accelerated differentiation of FDCP-mix cells along the erythroid lineage. Erythroid maturation was induced by activated Notch1 also under conditions that normally promote self-renewal, but required the presence of erythropoietin for differentiation to proceed. While induction of Notch signaling rapidly upregulated Hes1 and Hey1 expression, the expression of Gata1, Fog1, Eklf, and NF-E2 remained unchanged. Concomitantly with erythroid differentiation, activated mNotch1 upregulated beta-globin RNA. Notch signaling transactivated a reporter construct harboring a conserved RBP-J (CBF1) binding site in the hypersensitive site 2 (HS2) of human beta-globin. Transactivation by activated Notch was completely abolished when this RBP-J site was mutated to prevent RBP-J binding. Our results show that activation of mNotch1 induces erythroid differentiation in cooperation with erythropoietin and upregulates beta-globin expression.

  15. Early neuroprotection after cardiac arrest.

    PubMed

    Dell'anna, Antonio M; Scolletta, Sabino; Donadello, Katia; Taccone, Fabio S

    2014-06-01

    Many efforts have been made in the last decades to improve outcome in patients who are successfully resuscitated from sudden cardiac arrest. Despite some advances, postanoxic encephalopathy remains the most common cause of death among those patients and several investigations have focused on early neuroprotection in this setting. Therapeutic hypothermia is the only strategy able to provide effective neuroprotection in clinical practice. Experimental studies showed that therapeutic hypothermia was even more effective when it was started immediately after the ischemic event. In human studies, the use of prehospital hypothermia was able to reduce the time to target temperature but did not result in higher survival rate or neurological recovery in patients with out-of-hospital cardiac arrest, when compared with standard in-hospital therapeutic hypothermia. Thus, intra-arrest hypothermia (i.e., initiated during cardiopulmonary resuscitation) may be a valid alternative to improve the effectiveness of therapeutic hypothermia in this setting; however, more clinical data are needed to demonstrate any potential benefit of such intervention on neurological outcome. Together with cooling, early hemodynamic optimization should be considered to improve cerebral perfusion in cardiac arrest patients and minimize any secondary brain injury. Nevertheless, only scarce data are available on the impact of early hemodynamic optimization on the development of organ dysfunction and neurological recovery in such patients. Some new protective strategies, including inhaled gases (i.e., xenon, argon, nitric oxide) and intravenous drugs (i.e., erythropoietin) are emerging in experimental studies as promising tools to improve neuroprotection, especially when combined with therapeutic hypothermia. Early cooling may contribute to enhance neuroprotection after cardiac arrest. Hemodynamic optimization is mandatory to avoid cerebral hypoperfusion in this setting. The combination of such

  16. Neuroprotection in glaucoma

    PubMed Central

    Vasudevan, Sushil K; Gupta, Viney; Crowston, Jonathan G

    2011-01-01

    Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells and their axons. Recent evidence suggests that intraocular pressure (IOP) is only one of the many risk factors for this disease. Current treatment options for this disease have been limited to the reduction of IOP; however, it is clear now that the disease progression continues in many patients despite effective lowering of IOP. In the search for newer modalities in treating this disease, much data have emerged from experimental research the world over, suggesting various pathological processes involved in this disease and newer possible strategies to treat it. This review article looks into the current understanding of the pathophysiology of glaucoma, the importance of neuroprotection, the various possible pharmacological approaches for neuroprotection and evidence of current available medications. PMID:21150020

  17. Epigenetics and therapeutic targets mediating neuroprotection.

    PubMed

    Qureshi, Irfan A; Mehler, Mark F

    2015-12-02

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. This article is part of a Special Issue entitled SI: Neuroprotection. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A Luciferase Reporter Gene System for High-Throughput Screening of γ-Globin Gene Activators.

    PubMed

    Xie, Wensheng; Silvers, Robert; Ouellette, Michael; Wu, Zining; Lu, Quinn; Li, Hu; Gallagher, Kathleen; Johnson, Kathy; Montoute, Monica

    2016-01-01

    Luciferase reporter gene assays have long been used for drug discovery due to their high sensitivity and robust signal. A dual reporter gene system contains a gene of interest and a control gene to monitor non-specific effects on gene expression. In our dual luciferase reporter gene system, a synthetic promoter of γ-globin gene was constructed immediately upstream of the firefly luciferase gene, followed downstream by a synthetic β-globin gene promoter in front of the Renilla luciferase gene. A stable cell line with the dual reporter gene was cloned and used for all assay development and HTS work. Due to the low activity of the control Renilla luciferase, only the firefly luciferase activity was further optimized for HTS. Several critical factors, such as cell density, serum concentration, and miniaturization, were optimized using tool compounds to achieve maximum robustness and sensitivity. Using the optimized reporter assay, the HTS campaign was successfully completed and approximately 1000 hits were identified. In this chapter, we also describe strategies to triage hits that non-specifically interfere with firefly luciferase.

  19. Neuroprotective properties of Valeriana officinalis extracts.

    PubMed

    Malva, João O; Santos, Sandra; Macedo, Tice

    2004-01-01

    Valeriana officinalis have been used in traditional medicine for its sedative, hypnotic, and anticonvulsant effects. There are several reports in the literature supporting a GABAergic mechanism of action for valerian. The rationale of the present work is based on the concept that by decreasing neuronal network excitability valerian consumption may contribute to neuroprotection. The aim of our investigation was to evaluate the neuroprotective effects of V. officinalis against the toxicity induced by amyloid beta peptide 25-35 Abeta(25-35). Cultured rat hippocampal neurons were exposed to Abeta(25-35) (25 microM) for 24-48 h, after which morphological and biochemical properties were evaluated. The neuronal injury evoked by Abeta, which includes a decrease in cell reducing capacity and associated neuronal degeneration, was prevented by valerian extract. Analysis of intracellular free calcium (Ca(2+)i) indicated that the neuroprotective mechanisms may involve the inhibition of excess influx of Ca2+ following neuronal injury. Moreover, membrane peroxidation in rat hippocampal synaptosomes was evaluated, and our data indicate that valerian extract partially inhibited ascorbate/iron-induced peroxidation. In conclusion we show evidence that the signalling pathways involving Ca(2+)i and the redox state of the cells may play a central role in the neuroprotective properties of V. officinalis extract against Abeta toxicity. The novelty of the findings of the present work, indicating neuroprotective properties of valerian against Abeta toxicity may, at the long-term, contribute to introduction of a new relevant use of valerian alcoholic extract to prevent neuronal degeneration in aging or neurodegenerative disorders.

  20. Monomethylfumarate Induces γ-Globin Expression and Fetal Hemoglobin Production in Cultured Human Retinal Pigment Epithelial (RPE) and Erythroid Cells, and in Intact Retina

    PubMed Central

    Promsote, Wanwisa; Makala, Levi; Li, Biaoru; Smith, Sylvia B.; Singh, Nagendra; Ganapathy, Vadivel; Pace, Betty S.; Martin, Pamela M.

    2014-01-01

    Purpose. Sickle retinopathy (SR) is a major cause of vision loss in sickle cell disease (SCD). There are no strategies to prevent SR and treatments are extremely limited. The present study evaluated (1) the retinal pigment epithelial (RPE) cell as a hemoglobin producer and novel cellular target for fetal hemoglobin (HbF) induction, and (2) monomethylfumarate (MMF) as an HbF-inducing therapy and abrogator of oxidative stress and inflammation in SCD retina. Methods. Human globin gene expression was evaluated by RT–quantitative (q)PCR in the human RPE cell line ARPE-19 and in primary RPE cells isolated from Townes humanized SCD mice. γ-Globin promoter activity was monitored in KU812 stable dual luciferase reporter expressing cells treated with 0 to 1000 μM dimethylfumarate, MMF, or hydroxyurea (HU; positive control) by dual luciferase assay. Reverse transcriptase–qPCR, fluorescence-activated cell sorting (FACS), immunofluorescence, and Western blot techniques were used to evaluate γ-globin expression and HbF production in primary human erythroid progenitors, ARPE-19, and normal hemoglobin producing (HbAA) and homozygous βs mutation (HbSS) RPE that were treated similarly, and in MMF-injected (1000 μM) HbAA and HbSS retinas. Dihydroethidium labeling and nuclear factor (erythroid-derived 2)-like 2 (Nrf2), IL-1β, and VEGF expression were also analyzed. Results. Retinal pigment epithelial cells express globin genes and synthesize adult and fetal hemoglobin MMF stimulated γ-globin expression and HbF production in cultured RPE and erythroid cells, and in HbSS mouse retina where it also reduced oxidative stress and inflammation. Conclusions. The production of hemoglobin by RPE suggests the potential involvement of this cell type in the etiology of SR. Monomethylfumarate influences multiple parameters consistent with improved retinal health in SCD and may therefore be of therapeutic potential in SR treatment. PMID:24825111

  1. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin.

    PubMed

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-03-21

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H(+) through the polymersome membrane was 5.659 × 10(-26) cm(2) s(-1), while that of liposomes was 1.017 × 10(-24) cm(2) s(-1). The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  2. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Jiang, Xinguo; Gong, Shuyu; Feng, Liang; Zhong, Yanqiang; Pang, Zhiqing

    2014-02-01

    Biotherapeutics such as peptides possess strong potential for the treatment of intractable neurological disorders. However, because of their low stability and the impermeability of the blood-brain barrier (BBB), biotherapeutics are difficult to transport into brain parenchyma via intravenous injection. Herein, we present a novel poly(ethylene glycol)-poly(d,l-lactic-co-glycolic acid) polymersome-based nanomedicine with self-assembled bilayers, which was functionalized with lactoferrin (Lf-POS) to facilitate the transport of a neuroprotective peptide into the brain. The apparent diffusion coefficient (D*) of H+ through the polymersome membrane was 5.659 × 10-26 cm2 s-1, while that of liposomes was 1.017 × 10-24 cm2 s-1. The stability of the polymersome membrane was much higher than that of liposomes. The uptake of polymersomes by mouse brain capillary endothelial cells proved that the optimal density of lactoferrin was 101 molecules per polymersome. Fluorescence imaging indicated that Lf101-POS was effectively transferred into the brain. In pharmacokinetics, compared with transferrin-modified polymersomes and cationic bovine serum albumin-modified polymersomes, Lf-POS obtained the greatest BBB permeability surface area and percentage of injected dose per gram (%ID per g). Furthermore, Lf-POS holding S14G-humanin protected against learning and memory impairment induced by amyloid-β25-35 in rats. Western blotting revealed that the nanomedicine provided neuroprotection against over-expression of apoptotic proteins exhibiting neurofibrillary tangle pathology in neurons. The results indicated that polymersomes can be exploited as a promising non-invasive nanomedicine capable of mediating peptide therapeutic delivery and controlling the release of drugs to the central nervous system.

  3. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm.

    PubMed

    Gardiner-Garden, M; Ballesteros, M; Gordon, M; Tam, P P

    1998-06-01

    Most DNA in human sperm is bound to highly basic proteins called protamines, but a small proportion is complexed with histones similar to those found in active chromatin. This raises the intriguing possibility that histones in sperm are marking sets of genes that will be preferentially activated during early development. We have examined the chromatin structure of members of the beta-globin gene family, which are expressed at different times in development, and the protamine 2 gene, which is expressed in spermatids prior to the widespread displacement of histones by transition proteins. The genes coding for epsilon and gamma globin, which are active in the embryonic yolk sac, contain regions which are histone associated in the sperm. No histone-associated regions are present at the sites tested within the beta- and delta-globin genes which are silent in the embryonic yolk sac. The trends of histone or protamine association are consistent for samples from the same person, and no significant between-subject variations in these trends are found for 13 of the 15 fragments analyzed in the two donors. The results suggest that sperm chromatin structures are generally similar in different men but that the length of the histone-associated regions can vary. The association of sperm DNA with histones or protamines sometimes changes within as little as 400 bp of DNA, suggesting that there is fine control over the retention of histones.

  4. Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence.

    PubMed

    Romeo-Guitart, David; Forés, Joaquim; Herrando-Grabulosa, Mireia; Valls, Raquel; Leiva-Rodríguez, Tatiana; Galea, Elena; González-Pérez, Francisco; Navarro, Xavier; Petegnief, Valerie; Bosch, Assumpció; Coma, Mireia; Mas, José Manuel; Casas, Caty

    2018-01-30

    Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on mathematical solutions. Solutions allowed us to identify combinations of repurposed drugs as potential neuroprotective agents and we validated them in our preclinical models. The best one, NeuroHeal, neuroprotected motoneurons, exerted anti-inflammatory properties and promoted functional locomotor recovery. NeuroHeal endorsed the activation of Sirtuin 1, which was essential for its neuroprotective effect. These results support the value of network-centric approaches for drug discovery and demonstrate the efficacy of NeuroHeal as adjuvant treatment with surgical repair for nervous system trauma.

  5. Neuroprotective properties of epoetin alfa.

    PubMed

    Cerami, Anthony; Brines, Michael; Ghezzi, Pietro; Cerami, Carla; Itri, Loretta M

    2002-01-01

    Erythropoietin and its receptor function as primary mediators of the normal physiological response to hypoxia. Erythropoietin is recognized for its central role in erythropoiesis, but studies in which recombinant human erythropoietin (epoetin alfa) is injected directly into ischaemic rodent brain show that erythropoietin also mediates neuroprotection. Abundant expression of the erythropoietin receptor has been observed at brain capillaries, which could provide a route for circulating erythropoietin to enter the brain. In confirmation of this hypothesis, systemic administration of epoetin alfa before or up to 6 h after focal brain ischaemia reduced injury by 50-75%. Epoetin alfa also limited the extent of concussive brain injury, the immune damage in experimental autoimmune encephalomyelitis and excitotoxicity induced by kainate. Thus, systemically administered epoetin alfa in animal models has neuroprotective effects, demonstrating its potential use after brain injury, trauma and multiple sclerosis. It is evident that erythropoietin has biological activities in addition to increasing red cell mass. Given the excellent safety profile of epoetin alfa, clinical trials evaluating systemically administered epoetin alfa as a general neuroprotective treatment are warranted.

  6. Bivalent compound 17MN exerts neuroprotection through interaction at multiple sites in a cellular model of Alzheimer’s disease

    PubMed Central

    Liu, Kai; Chojnacki, Jeremy E.; Wade, Emily E.; Saathoff, John M.; Lesnefsky, Edward J.; Chen, Qun; Zhang, Shijun

    2016-01-01

    Multiple pathogenic factors have been suggested in playing a role in the development of Alzheimer’s disease (AD). The multifactorial nature of AD also suggests the potential use of compounds with polypharmacology as effective disease-modifying agents. Recently, we have developed a bivalent strategy to include cell membrane anchorage into the molecular design. Our results demonstrated that the bivalent compounds exhibited multifunctional properties and potent neuroprotection in a cellular AD model. Herein, we report the mechanistic exploration of one of the representative bivalent compounds, 17MN, in MC65 cells. Our results established that MC65 cells die through a necroptotic mechanism upon the removal of tetracycline (TC). Furthermore, we have shown that mitochondrial membrane potential (MMP) and cytosolic Ca2+ levels are increased upon removal of TC. Our bivalent compound 17MN can reverse such changes and protect MC65 cells from TC removal induced cytotoxicity. The results also suggest that 17MN may function between the Aβ species and RIPK1 in producing its neuroprotection. Colocalization studies employing a fluorescent analog of 17MN and confocal microscopy demonstrated the interactions of 17MN with both mitochondria and endoplasmic reticulum (ER), thus suggesting that 17MN exerts its neuroprotection via a multiple-site mechanism in MC65 cells. Collectively, these results strongly support our original design rationale of bivalent compounds and encourage further optimization of this bivalent strategy to develop more potent analogs as novel disease-modifying agents for AD. PMID:26401780

  7. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. VNTR internal structure mapping at the {alpha}-globin 3{prime}HVR locus reveals a hierachy of related lineages in oceania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinson, J.J.; Clegg, J.B.; Boyce, A.J.

    1994-09-01

    Analysis of the {alpha}-globin gene complex in Oceania has revealed many different rearrangements which remove one of the adult globin genes. Frequencies of these deletion chromosomes are elevated by malarial resistance conferred by the resulting {alpha}-thalassaemia. One particular deletion chromosome, designated -{alpha}{sup 3.7}III, is found at high levels in Melanesia and Polynesia: RFLP haplotype analysis shows that this deletion is always found on chromosomes bearing the IIIa haplotype and is likely to be the product of one single rearrangement event. A subset of the -{alpha}{sup 3.7}III chromosomes carries a more recent mutation which generates the haemoglobin variant HbJ{sup Tongariki}. Wemore » have characterized the allelic variation at the 3{prime}HVR VNTR locus located 6 kb from the globin genes in each of these groups of chromosomes. We have determined the internal structure of these alleles by RFLP mapping of PCR-amplified DNA: within each group, the allelic diversity results from the insertion and/or deletion of small {open_quotes}motifs{close_quotes} of up to 6 adjacent repeats. Mapping of 3{prime}HVR alleles associated with other haplotypes reveals that these are composed of repeat arrays that are substantially different to those derived from IIIa chromosomes, indicating that interchromosomal recombination between heterologous haplotypes does not account for any of the diversity seen to date. We have recently shown that allelic size variation at the two VNTR loci flanking the {alpha}-globin complex is very closely linked to the haplotypes known to be present at this locus. Here we show that, within a haplotype, VNTR alleles are very closely related to each other on the basis of internal structure and demonstrate that intrachromosomal mutation processes involving small numbers of tandem repeats are the main cause of variation at this locus.« less

  9. The gammaPE complex contains both SATB1 and HOXB2 and has positive and negative roles in human gamma-globin gene regulation.

    PubMed

    Case, S S; Huber, P; Lloyd, J A

    1999-11-01

    A large nuclear protein complex, termed gammaPE (for gamma-globin promoter and enhancer binding factor), binds to five sites located 5' and 3' of the human y-globin gene. Two proteins, SATB1 (special A-T-rich binding protein 1) and HOXB2, can bind to yPE binding sites. SATB1 binds to nuclear matrix-attachment sites, and HOXB2 is a homeodomain protein important in neural development that is also expressed during erythropoiesis. The present work showed that antisera directed against either SATB1 or HOXB2 reacted specifically with the entire gammaPE complex in electrophoretic mobility shift assays (EMSAs), suggesting that the two proteins can bind to the gammaPE binding site simultaneously. When SATB1 or HOXB2 was expressed in vitro, they could bind independently to gammaPE binding sites in EMSA. Interestingly, the proteins expressed in vitro competed effectively with each other for the gammaPE binding site, suggesting that this may occur under certain conditions in vivo. Transient cotransfections of a HOXB2 cDNA and a y-globin-luciferase reporter gene construct into cells expressing SATB1 suggested that SATB1 has a positive and HOXB2 a negative regulatory effect on transcription. Taking into account their potentially opposing effects and binding activities, SATB1 and HOXB2 may modulate the amount of gamma-globin mRNA expressed during development and differentiation.

  10. Gene expression in cerebral ischemia: a new approach for neuroprotection.

    PubMed

    Millán, Mónica; Arenillas, Juan

    2006-01-01

    Cerebral ischemia is one of the strongest stimuli for gene induction in the brain. Hundreds of genes have been found to be induced by brain ischemia. Many genes are involved in neurodestructive functions such as excitotoxicity, inflammatory response and neuronal apoptosis. However, cerebral ischemia is also a powerful reformatting and reprogramming stimulus for the brain through neuroprotective gene expression. Several genes may participate in both cellular responses. Thus, isolation of candidate genes for neuroprotection strategies and interpretation of expression changes have been proven difficult. Nevertheless, many studies are being carried out to improve the knowledge of the gene activation and protein expression following ischemic stroke, as well as in the development of new therapies that modify biochemical, molecular and genetic changes underlying cerebral ischemia. Owing to the complexity of the process involving numerous critical genes expressed differentially in time, space and concentration, ongoing therapeutic efforts should be based on multiple interventions at different levels. By modification of the acute gene expression induced by ischemia or the apoptotic gene program, gene therapy is a promising treatment but is still in a very experimental phase. Some hurdles will have to be overcome before these therapies can be introduced into human clinical stroke trials. Copyright 2006 S. Karger AG, Basel.

  11. Anesthetic neuroprotection: antecedents and an appraisal of preclinical and clinical data quality.

    PubMed

    Ishida, Kazuyoshi; Berger, Miles; Nadler, Jacob; Warner, David S

    2014-01-01

    Anesthetics have been studied for nearly fifty years as potential neuroprotective compounds in both perioperative and resuscitation medicine. Although anesthetics present pharmacologic properties consistent with preservation of brain viability in the context of an ischemic insult, no anesthetic has been proven efficacious for neuroprotection in humans. After such effort, it could be concluded that anesthetics are simply not neuroprotective in humans. Moreover, pharmacologic neuroprotection with non-anesthetic drugs has also repeatedly failed to be demonstrated in human acute brain injury. Recent focus has been on rectification of promising preclinical neuroprotection data and subsequent failed clinical trials. This has led to consensus guidelines for the process of transferring purported therapeutics from bench to bedside. In this review we first examined the history of anesthetic neuroprotection research. Then, a systematic review was performed to identify major clinical trials of anesthetic neuroprotection. Both the preclinical neuroprotection portfolio cited to justify a clinical trial and the design and conduct of that clinical trial were evaluated using modern standards that include the Stroke Therapy Academic Industry Roundtable (STAIR) and Consolidated Standards of Reporting Trials (CONSORT) guidelines. In publications intended to define anesthetic neuroprotection, we found overall poor quality of both preclinical efficacy analysis portfolios and clinical trial designs and conduct. Hence, using current translational research standards, it was not possible to conclude from existing data whether anesthetics ameliorate perioperative ischemic brain injury. Incorporation of advances in translational neuroprotection research conduct may provide a basis for more definitive and potentially successful clinical trials of anesthetics as neuroprotectants.

  12. Multi Target Neuroprotective and Neurorestorative Anti-Parkinson and Anti-Alzheimer Drugs Ladostigil and M30 Derived from Rasagiline

    PubMed Central

    2013-01-01

    Present anti-PD and -AD drugs have limited symptomatic activity and devoid of neuroprotective and neurorestorative property that is needed for disease modifying action. The complex pathology of PD and AD led us to develop several multi-target neuroprotective and neurorestorative drugs with several CNS targets with the ability for possible disease modifying activity. Employing the pharmacophore of our anti-parkinson drug rasagiline (Azilect, N-propagrgyl-1-R-aminoindan), we have developed a series of novel multi-functional neuroprotective drugs (A) [TV-3326 (N-propargyl-3R-aminoindan-5yl)-ethyl methylcarbamate)], with both cholinesterase-butyrylesterase and brain selective monoamine-oxidase (MAO) A/B inhibitory activities and (B) the iron chelator-radical scavenging-brain selective monoamine oxidase (MAO) A/B inhibitor and M30 possessing the neuroprotective and neurorescuing propargyl moiety of rasagiline, as potential treatment of AD, DLB and PD with dementia. Another series of multi-target drugs (M30, HLA-20 series) which are brain permeable iron chelators and potent selective brain MAO inhibitors were also developed. These series of drugs have the ability of regulating and processing amyloid precursor protein (APP) since APP and alpha-synuclein are metaloproteins (iron-regulated proteins), with an iron responsive element 5"UTR mRNA similar to transferring and ferritin. Ladostigil inhibits brain acetyl and butyrylcholinesterase in rats after oral doses. After chronic but not acute treatment, it inhibits MAO-A and -B in the brain. Ladostigil acts like an anti-depressant in the forced swim test in rats, indicating a potential for anti-depressant activity. Ladostigil prevents the destruction of nigrostriatal neurons induced by infusion of neurotoxin MPTP in mice. The propargylamine moiety of ladostigil confers neuroprotective activity against cytotoxicity induced by ischemia and peroxynitrite in cultured neuronal cells. The multi-target iron chelator M30 has all the

  13. Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease

    PubMed Central

    Lauterbach, Edward C.

    2013-01-01

    Psychotropics (antipsychotics, mood stabilizers, antidepressants, anxiolytics, etc.) are commonly prescribed to treat Huntington’s disease (HD). In HD preclinical models, while no psychotropic has convincingly affected huntingtin gene, HD modifying gene, or huntingtin protein expression, psychotropic neuroprotective effects include upregulated huntingtin autophagy (lithium), histone acetylation (lithium, valproate, lamotrigine), miR-222 (lithium-plus-valproate), mitochondrial protection (haloperidol, trifluoperazine, imipramine, desipramine, nortriptyline, maprotiline, trazodone, sertraline, venlafaxine, melatonin), neurogenesis (lithium, valproate, fluoxetine, sertraline), and BDNF (lithium, valproate, sertraline) and downregulated AP-1 DNA binding (lithium), p53 (lithium), huntingtin aggregation (antipsychotics, lithium), and apoptosis (trifluoperazine, loxapine, lithium, desipramine, nortriptyline, maprotiline, cyproheptadine, melatonin). In HD live mouse models, delayed disease onset (nortriptyline, melatonin), striatal preservation (haloperidol, tetrabenazine, lithium, sertraline), memory preservation (imipramine, trazodone, fluoxetine, sertraline, venlafaxine), motor improvement (tetrabenazine, lithium, valproate, imipramine, nortriptyline, trazodone, sertraline, venlafaxine), and extended survival (lithium, valproate, sertraline, melatonin) have been documented. Upregulated CREB binding protein (CBP; valproate, dextromethorphan) and downregulated histone deacetylase (HDAC; valproate) await demonstration in HD models. Most preclinical findings await replication and their limitations are reviewed. The most promising findings involve replicated striatal neuroprotection and phenotypic disease modification in transgenic mice for tetrabenazine and for sertraline. Clinical data consist of an uncontrolled lithium case series (n = 3) suggesting non-progression and a primarily negative double-blind, placebo-controlled clinical trial of lamotrigine. PMID:24248060

  14. Neuroprotective Mechanisms of Taurine against Ischemic Stroke.

    PubMed

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-06-03

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke.

  15. Neuroprotective Mechanisms of Taurine against Ischemic Stroke

    PubMed Central

    Menzie, Janet; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Ischemic stroke exhibits a multiplicity of pathophysiological mechanisms. To address the diverse pathophysiological mechanisms observed in ischemic stroke investigators seek to find therapeutic strategies that are multifaceted in their action by either investigating multipotential compounds or by using a combination of compounds. Taurine, an endogenous amino acid, exhibits a plethora of physiological functions. It exhibits antioxidative properties, stabilizes membrane, functions as an osmoregulator, modulates ionic movements, reduces the level of pro-inflammators, regulates intracellular calcium concentration; all of which contributes to its neuroprotective effect. Data are accumulating that show the neuroprotective mechanisms of taurine against stroke pathophysiology. In this review, we describe the neuroprotective mechanisms employed by taurine against ischemic stroke and its use in clinical trial for ischemic stroke. PMID:24961429

  16. Sequential changes in chromatin structure during transcriptional activation in the beta globin LCR and its target gene.

    PubMed

    Kim, Kihoon; Kim, AeRi

    2010-09-01

    Chromatin structure is modulated during transcriptional activation. The changes include the association of transcriptional activators, formation of hypersensitive sites and covalent modifications of histones. To understand the order of the various changes accompanying transcriptional activation, we analyzed the mouse beta globin gene, which is transcriptionally inducible in erythroid MEL cells over a time course of HMBA treatment. Transcription of the globin genes requires the locus control region (LCR) consisting of several hypersensitive sites (HSs). Erythroid specific transcriptional activators such as NF-E2, GATA-1, TAL1 and EKLF were associated with the LCR in the uninduced state before transcriptional activation. The HSs of the LCR were formed in this state as revealed by high sensitivity to DNase I and MNase attack. However the binding of transcriptional activators and the depletion of histones were observed in the promoter of the beta globin gene only after transcriptional activation. In addition, various covalent histone modifications were sequentially detected in lysine residues of histone H3 during the activation. Acetylation of K9, K36 and K27 was notable in both LCR HSs and gene after induction but before transcriptional initiation. Inactive histone marks such as K9me2, K36me2 and K27me2 were removed coincident with transcriptional initiation in the gene region. Taken together, these results indicate that LCR has a substantially active structure in the uninduced state while transcriptional activation serially adds active marks, including histone modifications, and removes inactive marks in the target gene of the LCR. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  17. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data.

    PubMed

    Lauterbach, Edward C; Victoroff, Jeff; Coburn, Kerry L; Shillcutt, Samuel D; Doonan, Suzanne M; Mendez, Mario F

    2010-01-01

    This manuscript reviews the preclinical in vitro, ex vivo, and nonhuman in vivo effects of psychopharmacological agents in clinical use on cell physiology with a view toward identifying agents with neuroprotective properties in neurodegenerative disease. These agents are routinely used in the symptomatic treatment of neurodegenerative disease. Each agent is reviewed in terms of its effects on pathogenic proteins, proteasomal function, mitochondrial viability, mitochondrial function and metabolism, mitochondrial permeability transition pore development, cellular viability, and apoptosis. Effects on the metabolism of the neurodegenerative disease pathogenic proteins alpha-synuclein, beta-amyloid, and tau, including tau phosphorylation, are particularly addressed, with application to Alzheimer's and Parkinson's diseases. Limitations of the current data are detailed and predictive criteria for translational clinical neuroprotection are proposed and discussed. Drugs that warrant further study for neuroprotection in neurodegenerative disease include pramipexole, thioridazine, risperidone, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, fluoxetine, buspirone, clonazepam, diphenhydramine, and melatonin. Those with multiple neuroprotective mechanisms include pramipexole, thioridazine, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, clonazepam, and melatonin. Those best viewed circumspectly in neurodegenerative disease until clinical disease course outcomes data become available, include several antipsychotics, lithium, oxcarbazepine, valproate, several tricyclic antidepressants, certain SSRIs, diazepam, and possibly diphenhydramine. A search for clinical studies of neuroprotection revealed only a single study demonstrating putatively positive results for ropinirole. An agenda for research on potentially neuroprotective agent is provided.

  18. Adenosine A1 receptor: A neuroprotective target in light induced retinal degeneration.

    PubMed

    Soliño, Manuel; López, Ester María; Rey-Funes, Manuel; Loidl, César Fabián; Larrayoz, Ignacio M; Martínez, Alfredo; Girardi, Elena; López-Costa, Juan José

    2018-01-01

    Light induced retinal degeneration (LIRD) is a useful model that resembles human retinal degenerative diseases. The modulation of adenosine A1 receptor is neuroprotective in different models of retinal injury. The aim of this work was to evaluate the potential neuroprotective effect of the modulation of A1 receptor in LIRD. The eyes of rats intravitreally injected with N6-cyclopentyladenosine (CPA), an A1 agonist, which were later subjected to continuous illumination (CI) for 24 h, showed retinas with a lower number of apoptotic nuclei and a decrease of Glial Fibrillary Acidic Protein (GFAP) immunoreactive area than controls. Lower levels of activated Caspase 3 and GFAP were demonstrated by Western Blot (WB) in treated animals. Also a decrease of iNOS, TNFα and GFAP mRNA was demonstrated by RT-PCR. A decrease of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. Electroretinograms (ERG) showed higher amplitudes of a-wave, b-wave and oscillatory potentials after CI compared to controls. Conversely, the eyes of rats intravitreally injected with dipropylcyclopentylxanthine (DPCPX), an A1 antagonist, and subjected to CI for 24 h, showed retinas with a higher number of apoptotic nuclei and an increase of GFAP immunoreactive area compared to controls. Also, higher levels of activated Caspase 3 and GFAP were demonstrated by Western Blot. The mRNA levels of iNOS, nNOS and inflammatory cytokines (IL-1β and TNFα) were not modified by DPCPX treatment. An increase of Iba 1+/MHC-II+ reactive microglial cells was shown by immunohistochemistry. ERG showed that the amplitudes of a-wave, b-wave, and oscillatory potentials after CI were similar to control values. A single pharmacological intervention prior illumination stress was able to swing retinal fate in opposite directions: CPA was neuroprotective, while DPCPX worsened retinal damage. In summary, A1 receptor agonism is a plausible neuroprotective strategy in LIRD.

  19. Cooperativeness of the higher chromatin structure of the beta-globin locus revealed by the deletion mutations of DNase I hypersensitive site 3 of the LCR.

    PubMed

    Fang, Xiangdong; Xiang, Ping; Yin, Wenxuan; Stamatoyannopoulos, George; Li, Qiliang

    2007-01-05

    High-level transcription of the globin genes requires the enhancement by a distant element, the locus control region (LCR). Such long-range regulation in vivo involves spatial interaction between transcriptional elements, with intervening chromatin looping out. It has been proposed that the clustering of the HS sites of the LCR, the active globin genes, as well as the remote 5' hypersensitive sites (HSs) (HS-60/-62 in mouse, HS-110 in human) and 3'HS1 forms a specific spatial chromatin structure, termed active chromatin hub (ACH). Here we report the effects of the HS3 deletions of the LCR on the spatial chromatin structure of the beta-globin locus as revealed by the chromatin conformation capture (3C) technology. The small HS3 core deletion (0.23 kb), but not the large HS3 deletion (2.3 kb), disrupted the spatial interactions among all the HS sites of the LCR, the beta-globin gene and 3'HS1. We have previously demonstrated that the large HS3 deletion barely impairs the structure of the LCR holocomplex, while the structure is significantly disrupted by the HS3 core deletion. Taken together, these results suggest that the formation of the ACH is dependent on a largely intact LCR structure. We propose that the ACH indeed is an extension of the LCR holocomplex.

  20. Combination of mild hypothermia with neuroprotectants has greater neuroprotective effects during oxygen-glucose deprivation and reoxygenation-mediated neuronal injury

    PubMed Central

    Gao, Xiao-Ya; Huang, Jian-Ou; Hu, Ya-Fang; Gu, Yong; Zhu, Shu-Zhen; Huang, Kai-Bin; Chen, Jin-Yu; Pan, Su-Yue

    2014-01-01

    Co-treatment of neuroprotective reagents may improve the therapeutic efficacy of hypothermia in protecting neurons during ischemic stroke. This study aimed to find promising drugs that enhance the neuroprotective effect of mild hypothermia (MH). 26 candidate drugs were selected based on different targets. Primary cultured cortical neurons were exposed to oxygen-glucose deprivation and reoxygenation (OGD/R) to induce neuronal damage, followed by either single treatment (a drug or MH) or a combination of a drug and MH. Results showed that, compared with single treatment, combination of MH with brain derived neurotrophic factor, glibenclamide, dizocilpine, human urinary kallidinogenase or neuroglobin displayed higher proportion of neuronal cell viability. The latter three drugs also caused less apoptosis rate in combined treatment. Furthermore, co-treatment of those three drugs and MH decreased the level of reactive oxygen species (ROS) and intracellular calcium accumulation, as well as stabilized mitochondrial membrane potential (MMP), indicating the combined neuroprotective effects are probably via inhibiting mitochondrial apoptosis pathway. Taken together, the study suggests that combined treatment with hypothermia and certain neuroprotective reagents provide a better protection against OGD/R-induced neuronal injury. PMID:25404538

  1. Neuroprotective role of Agmatine in Neurological Diseases.

    PubMed

    Xu, Weilin; Gao, Liansheng; Li, Tao; Shao, Anwen; Zhang, Jianmin

    2017-08-08

    Neurological diseases have always been one of the leading cause of mobility and mortality world-widely. However, it is still lack of efficient agents. Agmatine, an endogenous polyamine, exerts its diverse biological characteristics and therapeutic potential in varied aspects. Moreover, there has been numerous studies demonstrated the neuroprotective effect of agmatine in varied types of neurological diseases, including acute attack (stroke and trauma brain injury) and chronic neurodegenerative diseases (Parkinson's disease, Alzheimer's disease). The potential mechanism of agmatine -induced neuroprotection includes anti-oxidation, anti-apoptosis, anti-inflammation, brain blood barrier (BBB) protection and brain edema prevention. In this review, we will introduce the neuroprotective effects of agmatine and the underlying mechanisms in the setting of neurological diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review.

    PubMed

    Sowndhararajan, Kandhasamy; Deepa, Ponnuvel; Kim, Minju; Park, Se Jin; Kim, Songmun

    2018-06-11

    Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.

  3. Screening of (-SEA) α-thalassaemia using an immunochromatographic strip assay for the ζ-globin chain in a population with a high prevalence and heterogeneity of haemoglobinopathies.

    PubMed

    Jomoui, Wittaya; Fucharoen, Goonnapa; Sanchaisuriya, Kanokwan; Fucharoen, Supan

    2017-01-01

    The presence of the ζ-globin chain is a good marker of (-- SEA ) α 0 -thalassaemia. We evaluated an immunochromatographic (IC) strip assay for ζ-globin in screening for (-- SEA ) α 0 -thalassaemia in a population with a high prevalence and heterogeneity of haemoglobinopathies. The study was carried out on 300 screen positive blood samples of Thai individuals. The IC strip assay for the ζ-globin chain was performed on all samples. The results were interpreted with thalassaemia genotyping using standard haemoglobin and DNA analyses. Several thalassaemia genotypes were noted. Among the 300 subjects investigated, 79 had a positive IC strip assay for ζ-globin and (-- SEA ) α 0 -thalassaemia was identified in 40 of them. No (-- SEA ) α 0 -thalassaemia was detected in the remaining 39 samples with a positive IC strip test result or in the 221 samples with a negative IC strip test result. Further DNA analysis identified α + -thalassaemia in 25 of the 39 (-- SEA ) α 0 -thalassaemia negative samples. Using this IC strip assay in combination with a conventional screening protocol for (-- SEA ) α 0 -thalassaemia could provide sensitivity and specificity of 100% and 90.4%, respectively. IC strip assay for ζ-globin is simple, rapid and does not require sophisticated equipment. Use of this test in addition to the existing screening protocol could detect potential (-- SEA ) α 0 -thalassaemia leading to a significant reduction in the workload of DNA analysis. This could be used in areas where haemoglobinopathies are prevalent and heterogeneous but molecular testing is not available. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. Progesterone and Neuroprotection

    PubMed Central

    Singh, Meharvan; Su, Chang

    2012-01-01

    Summary Numerous studies aimed at identifying the role of estrogen on the brain have used the ovariectomized rodent as the experimental model. And while estrogen intervention in these animals have, at least partially, restored cholinergic, neurotrophin and cognitive deficits seen in the ovariectomized animal, it is worth considering that the removal of the ovaries results in the loss of not only circulating estrogen but of circulating progesterone as well. As such, the various deficits associated with ovariectomy may be attributed to the loss of progesterone as well. Similarly, one must also consider the fact that the human menopause results in the precipitous decline of not just circulating estrogens, but in circulating progesterone as well and as such, the increased risk for diseases such as Alzheimer’s disease during the postmenopausal period could also be contributed by this loss of progesterone. In fact, progesterone has been shown to exert neuroprotective effects, both in cell models, animal models and in humans. Here, we review the evidence that supports the neuroprotective effects of progesterone and discuss the various mechanisms that are thought to mediate these protective effects. We also discuss the receptor pharmacology of progesterone’s neuroprotective effects and present a conceptual model of progesterone action that supports the complementary effects of membrane-associated and classical intracellular progesterone receptors. In addition, we discuss fundamental differences in the neurobiology of progesterone and the clinically used, synthetic progestin, medroxyprogesterone acetate that may offer an explanation for the negative findings of the combined estrogen/progestin arm of the Women’s Health Initiative-Memory Study (WHIMS) and suggest that the type of progestin used may dictate the outcome of either pre-clinical or clinical studies that addresses brain function. PMID:22732134

  5. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson's Disease

    PubMed Central

    Bayliss, Jacqueline A.; Lemus, Moyra B.; Stark, Romana; Santos, Vanessa V.; Thompson, Aiysha; Rees, Daniel J.; Galic, Sandra; Elsworth, John D.; Kemp, Bruce E.; Davies, Jeffrey S.

    2016-01-01

    Calorie restriction (CR) is neuroprotective in Parkinson's disease (PD) although the mechanisms are unknown. In this study we hypothesized that elevated ghrelin, a gut hormone with neuroprotective properties, during CR prevents neurodegeneration in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. CR attenuated the MPTP-induced loss of substantia nigra (SN) dopamine neurons and striatal dopamine turnover in ghrelin WT but not KO mice, demonstrating that ghrelin mediates CR's neuroprotective effect. CR elevated phosphorylated AMPK and ACC levels in the striatum of WT but not KO mice suggesting that AMPK is a target for ghrelin-induced neuroprotection. Indeed, exogenous ghrelin significantly increased pAMPK in the SN. Genetic deletion of AMPKβ1 and 2 subunits only in dopamine neurons prevented ghrelin-induced AMPK phosphorylation and neuroprotection. Hence, ghrelin signaling through AMPK in SN dopamine neurons mediates CR's neuroprotective effects. We consider targeting AMPK in dopamine neurons may recapitulate neuroprotective effects of CR without requiring dietary intervention. SIGNIFICANCE STATEMENT The neuroprotective mechanisms of calorie restriction (CR) in Parkinson's disease are unknown. Indeed, the difficulty to adhere to CR necessitates an alternative method to recapitulate the neuroprotective benefits of CR while bypassing dietary constraints. Here we show that CR increases plasma ghrelin, which targets substantia nigra dopamine to maintain neuronal survival. Selective deletion on AMPK beta1 and beta2 subunits only in DAT cre-expressing neurons shows that the ghrelin-induced neuroprotection requires activation of AMPK in substantia nigra dopamine neurons. We have discovered ghrelin as a key metabolic signal, and AMPK in dopamine neurons as its target, which links calorie restriction with neuroprotection in Parkinson's disease. Thus, targeting AMPK in dopamine neurons may provide novel neuroprotective benefits in Parkinson's disease. PMID

  6. Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest a different evolutionary history from other rodents

    PubMed Central

    Marková, S; Searle, J B; Kotlík, P

    2014-01-01

    Gene duplication plays an important role in the origin of evolutionary novelties, but the mechanisms responsible for the retention and functional divergence of the duplicated copy are not fully understood. The α-globin genes provide an example of a gene family with different numbers of gene duplicates among rodents. Whereas Rattus and Peromyscus each have three adult α-globin genes (HBA-T1, HBA-T2 and HBA-T3), Mus has only two copies. High rates of amino acid evolution in the independently derived HBA-T3 genes of Peromyscus and Rattus have been attributed to positive selection. Using RACE PCR, reverse transcription-PCR (RT–PCR) and RNA-seq, we show that another rodent, the bank vole Clethrionomys glareolus, possesses three transcriptionally active α-globin genes. The bank vole HBA-T3 gene is distinguished from each HBA-T1 and HBA-T2 by 20 amino acids and is transcribed 23- and 4-fold lower than HBA-T1 and HBA-T2, respectively. Polypeptides corresponding to all three genes are detected by electrophoresis, demonstrating that the translated products of HBA-T3 are present in adult erythrocytes. Patterns of codon substitution and the presence of low-frequency null alleles suggest a postduplication relaxation of purifying selection on bank vole HBA-T3. PMID:24595364

  7. Neuroprotective Effects of Intravenous Anesthetics: A New Critical Perspective

    PubMed Central

    Bilotta, Federico; Stazi, Elisabetta; Zlotnik, Alexander; Gruenbaum, Shaun E.; Rosa, Giovanni

    2015-01-01

    Perioperative cerebral damage can result in various clinical sequela ranging from minor neurocognitive deficits to catastrophic neurological morbidity with permanent impairment and death. The goal of neuroprotective treatments is to reduce the clinical effects of cerebral damage through two major mechanisms: increased tolerance of neurological tissue to ischemia and changes in intra-cellular responses to energy supply deprivation. In this review, we present the clinical evidence of intravenous anesthetics on perioperative neuroprotection, and we also provide a critical perspective for future studies. The neuroprotective efficacy of the intravenous anesthetics thiopental, propofol and etomidate is unproven. Lidocaine may be neuroprotective in non-diabetic patients who have undergoing cardiac surgery with cardiopulmonary bypass (CBP) or with a 48-hour infusion, but conclusive data are lacking. There are several limitations of clinical studies that evaluate postoperative cognitive dysfunction (POCD), including difficulties in identifying patients at high-risk and a lack of consensus for defining the “gold-standard” neuropsychological testing. Although a battery of neurocognitive tests remains the primary method for diagnosing POCD, recent evidence suggests a role for novel biomarkers and neuroimaging to preemptively identify patients more susceptible to cognitive decline in the perioperative period. Current evidence, while inconclusive, suggest that intravenous anesthetics may be both neuroprotective and neurotoxic in the perioperative period. A critical analysis on data recorded from randomized control trials (RCTs) is essential in identifying patients who may benefit or be harmed by a particular anesthetic. RCTs will also contribute to defining methodologies for future studies on the neuroprotective effects of intravenous anesthetics. PMID:24669972

  8. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models

    PubMed Central

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-01-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  9. Microglia and neuroprotection: implications for Alzheimer's disease.

    PubMed

    Streit, Wolfgang J

    2005-04-01

    The first part of this paper summarizes some of the key observations from experimental work in animals that support a role of microglia as neuroprotective cells after acute neuronal injury. These studies point towards an important role of neuronal-microglial crosstalk in the facilitation of neuroprotection. Conceptually, injured neurons are thought to generate rescue signals that trigger microglial activation and, in turn, activated microglia produce trophic or other factors that help damaged neurons recover from injury. Against this background, the second part of this paper summarizes recent work from postmortem studies conducted in humans that have revealed the occurrence of senescent, or dystrophic, microglial cells in the aged and Alzheimer's disease brain. These findings suggest that microglial cells become increasingly dysfunctional with advancing age and that a loss of microglial cell function may involve a loss of neuroprotective properties that could contribute to the development of aging-related neurodegeneration.

  10. Neuroprotective, neurotherapeutic, and neurometabolic effects of carbon monoxide.

    PubMed

    Mahan, Vicki L

    2012-12-27

    Studies in animal models show that the primary mechanism by which heme-oxygenases impart beneficial effects is due to the gaseous molecule carbon monoxide (CO). Produced in humans mainly by the catabolism of heme by heme-oxygenase, CO is a neurotransmitter important for multiple neurologic functions and affects several intracellular pathways as a regulatory molecule. Exogenous administration of inhaled CO or carbon monoxide releasing molecules (CORM's) impart similar neurophysiological responses as the endogenous gas. Its' involvement in important neuronal functions suggests that regulation of CO synthesis and biochemical properties may be clinically relevant to neuroprotection and the key may be a change in metabolic substrate from glucose to lactate. Currently, the drug is under development as a therapeutic agent and safety studies in humans evaluating the safety and tolerability of inhaled doses of CO show no clinically important abnormalities, effects, or changes over time in laboratory safety variables. As an important therapeutic option, inhaled CO has entered clinical trials and its clinical role as a neuroprotective and neurotherapeutic agent has been suggested. In this article, we review the neuroprotective effects of endogenous CO and discuss exogenous CO as a neuroprotective and neurotherapeutic agent.

  11. Prehospital use of magnesium sulfate as neuroprotection in acute stroke.

    PubMed

    Saver, Jeffrey L; Starkman, Sidney; Eckstein, Marc; Stratton, Samuel J; Pratt, Franklin D; Hamilton, Scott; Conwit, Robin; Liebeskind, David S; Sung, Gene; Kramer, Ian; Moreau, Gary; Goldweber, Robert; Sanossian, Nerses

    2015-02-05

    Magnesium sulfate is neuroprotective in preclinical models of stroke and has shown signals of potential efficacy with an acceptable safety profile when delivered early after stroke onset in humans. Delayed initiation of neuroprotective agents has hindered earlier phase 3 trials of neuroprotective agents. We randomly assigned patients with suspected stroke to receive either intravenous magnesium sulfate or placebo, beginning within 2 hours after symptom onset. A loading dose was initiated by paramedics before the patient arrived at the hospital, and a 24-hour maintenance infusion was started on the patient's arrival at the hospital. The primary outcome was the degree of disability at 90 days, as measured by scores on the modified Rankin scale (range, 0 to 6, with higher scores indicating greater disability). Among the 1700 enrolled patients (857 in the magnesium group and 843 in the placebo group), the mean (±SD) age was 69±13 years, 42.6% were women, and the mean pretreatment score on the Los Angeles Motor Scale of stroke severity (range, 0 to 10, with higher scores indicating greater motor deficits) was 3.7±1.3. The final diagnosis of the qualifying event was cerebral ischemia in 73.3% of patients, intracranial hemorrhage in 22.8%, and a stroke-mimicking condition in 3.9%. The median interval between the time the patient was last known to be free of stroke symptoms and the start of the study-drug infusion was 45 minutes (interquartile range, 35 to 62), and 74.3% of patients received the study-drug infusion within the first hour after symptom onset. There was no significant shift in the distribution of 90-day disability outcomes on the global modified Rankin scale between patients in the magnesium group and those in the placebo group (P=0.28 by the Cochran-Mantel-Haenszel test); mean scores at 90 days did not differ between the magnesium group and the placebo group (2.7 in each group, P=1.00). No significant between-group differences were noted with respect to

  12. Individual specific DNA fingerprints from a hypervariable region probe: alpha-globin 3'HVR.

    PubMed

    Fowler, S J; Gill, P; Werrett, D J; Higgs, D R

    1988-06-01

    A probe detecting a hypervariable region (HVR) 3' to the alpha globin locus on chromosome 16 has been used to produce DNA fingerprints. Segregation analysis has revealed multiple, randomly dispersed DNA fragments inherited in a Mendelian fashion with minimal allelism and linkage. The fingerprints are highly polymorphic (probability of chance association between random individuals much less than 10(-14]. The probe is, therefore, a powerful discriminating tool: it is envisaged that this probe will have forensic applications, including paternity cases, and will be informative in linkage analysis.

  13. Bicuculline reverts the neuroprotective effects of meloxicam in an oxygen and glucose deprivation (OGD) model of organotypic hippocampal slice cultures.

    PubMed

    Landucci, Elisa; Llorente, Irene L; Anuncibay-Soto, Berta; Pellegrini-Giampietro, Domenico E; Fernández-López, Arsenio

    2018-06-24

    We previously demonstrated that the non-steroidal anti-inflammatory agent meloxicam has neuroprotective effects in an oxygen and glucose deprivation model (OGD) of rat organotypic hippocampal slice cultures. We wondered if GABAergic transmission changed the neuroprotective effects of meloxicam and if meloxicam was able to modulate endoplasmic reticulum stress (ER stress) in this model. Mortality was measured using propidium iodide. Western blot assays were performed to measure levels of cleaved and non-cleaved caspase-3 to quantify apoptosis, while levels of GRP78, GRP94 and phosphorylated eIF2α were used to detect unfolded protein response (UPR). Transcript levels of GRP78, GRP94 and GABAergic receptor α, β, and γ subunits were measured by real-time quantitative polymerase chain reaction (qPCR). In the present study, we show that the presence of meloxicam in a 30 min OGD assay, followed by 24 h of normoxic conditions, presented an antiapoptotic effect. The simultaneous presence of the GABA A receptor antagonist, bicuculline, in combination with meloxicam blocked the neuroprotective effect provided by the latter. However, in light of its effects on caspase 3 and PARP, bicuculline did not seem to promote the apoptotic pathway. Our results also showed that meloxicam modified the unfolded protein response (UPR), as well as the transcriptional response of different genes, including the GABA A receptor, alpha1, beta3 and gamma2 subunits. We concluded that meloxicam has a neuroprotective anti-apoptotic action, is able to enhance the UPR independently of the systemic anti-inflammatory response and its neuroprotective effect can be inhibited by blocking GABA A receptors. Copyright © 2018. Published by Elsevier Ltd.

  14. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2016-06-01

    antioxidant, SS-31 in the pilocarpine (PILO) model of status epilepticus (SE), the kindling seizure model and the tetanus toxin (Tx) model of epilepsy...neuroprotective and antiepileptogenic agent in three experimental models of epilepsy. The pilocarpine-induced model of status epilepticus (PILO) was...neuroprotection, seizures, status epilepticus OVERALL PROJECT SUMMARY: SS-31 was created by Dr. Szeto but the rights to the drug are controlled by Stealth

  15. Disease Modifying Therapy in Multiple Sclerosis

    PubMed Central

    Williams, U. E.; Oparah, S. K.; Philip-Ephraim, E. E.

    2014-01-01

    Multiple sclerosis is an autoimmune disease of the central nervous system characterized by inflammatory demyelination and axonal degeneration. It is the commonest cause of permanent disability in young adults. Environmental and genetic factors have been suggested in its etiology. Currently available disease modifying drugs are only effective in controlling inflammation but not prevention of neurodegeneration or accumulation of disability. Search for an effective neuroprotective therapy is at the forefront of multiple sclerosis research. PMID:27355035

  16. The 2007 Feinberg lecture: a new road map for neuroprotection.

    PubMed

    Donnan, Geoffrey A

    2008-01-01

    There have now been numerous phase III trials of neuroprotection that have failed to live up to the expectations created by preclinical testing in animal models, the most recent of which was the second pivotal trial of the spin trap agent NXY-059. We have reached a stage at which research in this area should stop altogether or radical new approaches adopted. The purpose of this article is to review how we reached this stage and make recommendations for a new approach to neuroprotection research. The background to neuroprotection research is reviewed and its problems are highlighted based on the research of others and of our own research group. From this, a series of questions are posed that require answers if the field is to progress. A road map for future research is then proposed. The road map involves the following steps for putative neuroprotectants: (1) better proof of efficacy in animal models; (2) in vivo evidence of efficacy in human tissue using cell cultures or brain slices; (3) in vivo studies of their distribution in the normal and ischemic human brain, particularly focusing on the ischemic penumbra; (4) demonstration of efficacy in novel human models of cerebral ischemia; and (5) phase II and III clinical trails with penumbral selection using imaging techniques. The accumulated evidence suggests that neuroprotection failure in clinical trial is due to identifiable preclinical and clinical factors. Neuroprotection research should be pursued but with a very different and more rigorous approach.

  17. Wine Polyphenols: Potential Agents in Neuroprotection

    PubMed Central

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols. PMID:22829964

  18. Epigenetics and Therapeutic Targets Mediating Neuroprotection

    PubMed Central

    Qureshi, Irfan A.; Mehler, Mark F.

    2015-01-01

    The rapidly evolving science of epigenetics is transforming our understanding of the nervous system in health and disease and holds great promise for the development of novel diagnostic and therapeutic approaches targeting neurological diseases. Increasing evidence suggests that epigenetic factors and mechanisms serve as important mediators of the pathogenic processes that lead to irrevocable neural injury and of countervailing homeostatic and regenerative responses. Epigenetics is, therefore, of considerable translational significance to the field of neuroprotection. In this brief review, we provide an overview of epigenetic mechanisms and highlight the emerging roles played by epigenetic processes in neural cell dysfunction and death and in resultant neuroprotective responses. PMID:26236020

  19. Wine polyphenols: potential agents in neuroprotection.

    PubMed

    Basli, Abdelkader; Soulet, Stéphanie; Chaher, Nassima; Mérillon, Jean-Michel; Chibane, Mohamed; Monti, Jean-Pierre; Richard, Tristan

    2012-01-01

    There are numerous studies indicating that a moderate consumption of red wine provides certain health benefits, such as the protection against neurodegenerative diseases. This protective effect is most likely due to the presence of phenolic compounds in wine. Wine polyphenolic compounds are well known for the antioxidant properties. Oxidative stress is involved in many forms of cellular and molecular deterioration. This damage can lead to cell death and various neurodegenerative disorders, such as Parkinson's or Alzheimer's diseases. Extensive investigations have been undertaken to determine the neuroprotective effects of wine-related polyphenols. In this review we present the neuroprotective abilities of the major classes of wine-related polyphenols.

  20. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2014-10-01

    antiepiletogenic properties of a mitochondrial-targeted antioxidant, SS-31 in the pilocarpine (PILO) model of status epilepticus (SE), the kindling...The pilocarpine-induced model of status epilepticus (PILO) will be used to test SS-31 as a neuroprotectant, the kindling model will be used to test...the neuroprotective and anticonvulsant properties of SS-31 in the pilocarpine model of status epilepticus (SE) in the rat. In this model, prolonged

  1. Neuroprotection and Anti-Epileptogenesis with Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2015-10-01

    properties of a mitochondrial-targeted antioxidant, SS-31 in the pilocarpine (PILO) model of status epilepticus (SE), the kindling seizure model and the...of epilepsy. The pilocarpine-induced model of status epilepticus (PILO) will be used to test SS-31 as a neuroprotectant, the kindling model will be...dysfunction. Aim #1 – Test the neuroprotective and anticonvulsant properties of SS-31 in the pilocarpine model of status epilepticus (SE) in the

  2. Closed gateways--can neuroprotectants shield the retina in glaucoma?

    PubMed

    Velpandian, Thirumurthy

    2010-01-01

    Neuroprotection for glaucoma is a therapeutic approach that aims to prevent optic nerve damage or cell death. An appropriate drug that reaches an adequate concentration across the blood retinal barrier is expected to shield the retina in glaucoma. Several in vitro and in vivo attempts in experimental models indicate the possibility of successful neuroprotection. However, clinical trials might not show the same level of neuroprotection as a result of subtherapeutic concentrations of the drug in the eye. The study by Zhong et al. in this issue of Drugs in R&D could not attribute the observed improvement in visual field indices to any one of the individual active constituents of Erigeron breviscapus (vant.) Hand. Mazz. (EBHM). One of the major constituents of EBHM is scutellarin, which is known to have poor oral bioavailability and an unclear ability to penetrate inside the eye. Therefore, before recognizing EBHM as a neuroprotectant in glaucoma for further clinical studies and practice, its active constituents and their pharmacokinetics (systemic as well as ocular) need to be explored.

  3. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy.

    PubMed

    Hernández, Cristina; Dal Monte, Massimo; Simó, Rafael; Casini, Giovanni

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed.

  4. Neuroprotection as a Therapeutic Target for Diabetic Retinopathy

    PubMed Central

    Hernández, Cristina; Simó, Rafael

    2016-01-01

    Diabetic retinopathy (DR) is a multifactorial progressive disease of the retina and a leading cause of vision loss. DR has long been regarded as a vascular disorder, although neuronal death and visual impairment appear before vascular lesions, suggesting an important role played by neurodegeneration in DR and the appropriateness of neuroprotective strategies. Upregulation of vascular endothelial growth factor (VEGF), the main target of current therapies, is likely to be one of the first responses to retinal hyperglycemic stress and VEGF may represent an important survival factor in early phases of DR. Of central importance for clinical trials is the detection of retinal neurodegeneration in the clinical setting, and spectral domain optical coherence tomography seems the most indicated technique. Many substances have been tested in animal studies for their neuroprotective properties and for possible use in humans. Perhaps, the most intriguing perspective is the use of endogenous neuroprotective substances or nutraceuticals. Together, the data point to the central role of neurodegeneration in the pathogenesis of DR and indicate neuroprotection as an effective strategy for treating this disease. However, clinical trials to determine not only the effectiveness and safety but also the compliance of a noninvasive route of drug administration are needed. PMID:27123463

  5. Neuroprotective vaccination with copolymer-1 decreases laser-induced retinal damage

    NASA Astrophysics Data System (ADS)

    Belokopytov, Mark; Dubinsky, Galina; Belkin, Michael; Rosner, Mordechai

    2003-06-01

    The retinal damage induced by laser photocoagulation increases manifold by the secondary degeneration process whereby tissues adjacent to the primary lesion are destroyed. The neuroprotective effect of immunization by glatiramer acetate (Copolymer-1, Cop-1) in adjuvant was previously demonstrated in models of retina, optic nerve, brain, and spinal cord lesions. The present study tested the neuroprotective ability of Cop-1 to reduce the spread of laser-induced retinal damage. Standard argon laser lesions were created in 72 DA pigmented rats divided into four groups: two Cop-1 treated groups (animals treated seven days before or immediately after the laser session) and two control groups treated respectively by saline or the effective but toxic neuroprotective compound MK-801. The histological and morphological evaluations of the lesions 3, 20, and 60 days after the injury revealed significant reduction in photoreceptor loss of the retinas of the pre-immunized animals. Cop-1 given after the laser injury did not prevent cell loss significantly, while the neuroprotective effect of MK-801 was observed only on the third day after the laser injury. The results show that pre-immunization with Cop-1 is neuroprotective in unmyelinated (gray matter) neural tissue such as the retina. This approach may be of clinical significance in ameliorating laser-induced retinal injuries in humans.

  6. Genetic dissection of the α-globin super-enhancer in vivo

    PubMed Central

    Hay, Deborah; Hughes, Jim R.; Rode, Christina; Li, Pik-Shan; Pennacchio, Len A.; Sloane-Stanley, Jacqueline A.; Ayyub, Helena; Butler, Sue; Sauka-Spengler, Tatjana; Gibbons, Richard J.; Smith, Andrew J.H.; Wood, William G.; Higgs, Douglas R.

    2016-01-01

    Many genes determining cell identity are regulated by clusters of mediator-bound enhancer elements collectively referred to as super-enhancers. These have been proposed to manifest higher-order properties important in development and disease. Here, we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer singly and in informative combinations, we demonstrate that each constituent enhancer appears to act independently and in an additive fashion with respect to hematologic phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation. PMID:27376235

  7. New multipotent tetracyclic tacrines with neuroprotective activity.

    PubMed

    Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; García, Antonio G; López, Manuela G; Villarroya, Mercedes

    2006-12-15

    The synthesis and the biological evaluation (neuroprotection, voltage dependent calcium channel blockade, AChE/BuChE inhibitory activity and propidium binding) of new multipotent tetracyclic tacrine analogues (5-13) are described. Compounds 7, 8 and 11 showed a significant neuroprotective effect on neuroblastoma cells subjected to Ca(2+) overload or free radical induced toxicity. These compounds are modest AChE inhibitors [the best inhibitor (11) is 50-fold less potent than tacrine], but proved to be very selective, as for most of them no BuChE inhibition was observed. In addition, the propidium displacement experiments showed that these compounds bind AChE to the peripheral anionic site (PAS) of AChE and, consequently, are potential agents that can prevent the aggregation of beta-amyloid. Overall, compound 8 is a modest and selective AChE inhibitor, but an efficient neuroprotective agent against 70mM K(+) and 60microM H(2)O(2). Based on these results, some of these molecules can be considered as lead candidates for the further development of anti-Alzheimer drugs.

  8. Oxaloacetate: a novel neuroprotective for acute ischemic stroke.

    PubMed

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Castillo, José

    2012-02-01

    It is well established that glutamate acts as an important mediator of neuronal degeneration during cerebral ischemia. Different kind of glutamate antagonists have been used to reduce the deleterious effects of glutamate. However, their preclinical success failed to translate into practical treatments. Far from the classical use of glutamate antagonists employed so far, the systemic administration of oxaloacetate represents a novel neuroprotective strategy to minimize the deleterious effect of glutamate in the brain tissue after ischemic stroke. The neuroprotective effect of oxaloacetate is based on the capacity of this molecule to reduce the brain and blood glutamate levels as a result of the activation of the blood-resident enzyme glutamate-oxaloacetate transaminase. Here we review the recent experimental and clinical results where it is demonstrated the potential applicability of oxaloacetate as a novel and powerful neuroprotective treatment against ischemic stroke. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Exploring the Common Dynamics of Homologous Proteins. Application to the Globin Family

    PubMed Central

    Maguid, Sandra; Fernandez-Alberti, Sebastian; Ferrelli, Leticia; Echave, Julian

    2005-01-01

    We present a procedure to explore the global dynamics shared between members of the same protein family. The method allows the comparison of patterns of vibrational motion obtained by Gaussian network model analysis. After the identification of collective coordinates that were conserved during evolution, we quantify the common dynamics within a family. Representative vectors that describe these dynamics are defined using a singular value decomposition approach. As a test case, the globin heme-binding family is considered. The two lowest normal modes are shown to be conserved within this family. Our results encourage the development of models for protein evolution that take into account the conservation of dynamical features. PMID:15749782

  10. Neuroprotective antioxidants from marijuana.

    PubMed

    Hampson, A J; Grimaldi, M; Lolic, M; Wink, D; Rosenthal, R; Axelrod, J

    2000-01-01

    Cannabidiol and other cannabinoids were examined as neuroprotectants in rat cortical neuron cultures exposed to toxic levels of the neurotransmitter, glutamate. The psychotropic cannabinoid receptor agonist delta 9-tetrahydrocannabinol (THC) and cannabidiol, (a non-psychoactive constituent of marijuana), both reduced NMDA, AMPA and kainate receptor mediated neurotoxicities. Neuroprotection was not affected by cannabinoid receptor antagonist, indicating a (cannabinoid) receptor-independent mechanism of action. Glutamate toxicity can be reduced by antioxidants. Using cyclic voltametry and a fenton reaction based system, it was demonstrated that Cannabidiol, THC and other cannabinoids are potent antioxidants. As evidence that cannabinoids can act as an antioxidants in neuronal cultures, cannabidiol was demonstrated to reduce hydroperoxide toxicity in neurons. In a head to head trial of the abilities of various antioxidants to prevent glutamate toxicity, cannabidiol was superior to both alpha-tocopherol and ascorbate in protective capacity. Recent preliminary studies in a rat model of focal cerebral ischemia suggest that cannabidiol may be at least as effective in vivo as seen in these in vitro studies.

  11. A bimetallic nanocomposite modified genosensor for recognition and determination of thalassemia gene.

    PubMed

    Hamidi-Asl, Ezat; Raoof, Jahan Bakhsh; Naghizadeh, Nahid; Akhavan-Niaki, Haleh; Ojani, Reza; Banihashemi, Ali

    2016-10-01

    The main roles of DNA in the cells are to maintain and properly express genetic information. It is important to have analytical methods capable of fast and sensitive detection of DNA damage. DNA hybridization sensors are well suited for diagnostics and other purposes, including determination of bacteria and viruses. Beta thalassemias (βth) are due to mutations in the β-globin gene. In this study, an electrochemical biosensor which detects the sequences related to the β-globin gene issued from real samples amplified by polymerase chain reaction (PCR) is described for the first time. The biosensor relies on the immobilization of 20-mer single stranded oligonucleotide (probe) related to βth sequence on the carbon paste electrode (CPE) modified by 15% silver (Ag) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode and hybridization of this oligonucleotide with its complementary sequence (target). The extent of hybridization between the probe and target sequences was shown by using linear sweep voltammetry (LSV) with methylene blue (MB) as hybridization indicator. The selectivity of sensor was investigated using PCR samples containing non-complementary oligonucleotides. The detection limit of biosensor was calculated about 470.0pg/μL. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Neuroprotective "agents" in surgery. Secret "agent" man, or common "agent" machine?

    NASA Technical Reports Server (NTRS)

    Andrews, R. J.

    1999-01-01

    The search for clinically-effective neuroprotective agents has received enormous support in recent years--an estimated $200 million by pharmaceutical companies on clinical trials for traumatic brain injury alone. At the same time, the pathophysiology of brain injury has proved increasingly complex, rendering the likelihood of a single agent "magic bullet" even more remote. On the other hand, great progress continues with technology that makes surgery less invasive and less risky. One example is the application of endovascular techniques to treat coronary artery stenosis, where both the invasiveness of sternotomy and the significant neurological complication rate (due to microemboli showering the cerebral vasculature) can be eliminated. In this paper we review aspects of intraoperative neuroprotection both present and future. Explanations for the slow progress on pharmacologic neuroprotection during surgery are presented. Examples of technical advances that have had great impact on neuroprotection during surgery are given both from coronary artery stenosis surgery and from surgery for Parkinson's disease. To date, the progress in neuroprotection resulting from such technical advances is an order of magnitude greater than that resulting from pharmacologic agents used during surgery. The progress over the last 20 years in guidance during surgery (CT and MRI image-guidance) and in surgical access (endoscopic and endovascular techniques) will soon be complemented by advances in our ability to evaluate biological tissue intraoperatively in real-time. As an example of such technology, the NASA Smart Probe project is considered. In the long run (i.e., in 10 years or more), pharmacologic "agents" aimed at the complex pathophysiology of nervous system injury in man will be the key to true intraoperative neuroprotection. In the near term, however, it is more likely that mundane "agents" based on computers, microsensors, and microeffectors will be the major impetus to improved

  13. The effects of old and recent migration waves in the distribution of HBB*S globin gene haplotypes

    PubMed Central

    Lindenau, Juliana D.; Wagner, Sandrine C.; de Castro, Simone M.; Hutz, Mara H.

    2016-01-01

    Abstract Sickle cell hemoglobin is the result of a mutation at the sixth amino acid position of the beta (β) globin chain. The HBB*S gene is in linkage disequilibrium with five main haplotypes in the β-globin-like gene cluster named according to their ethnic and geographic origins: Bantu (CAR), Benin (BEN), Senegal (SEN), Cameroon (CAM) and Arabian-Indian (ARAB). These haplotypes demonstrated that the sickle cell mutation arose independently at least five times in human history. The distribution of βS haplotypes among Brazilian populations showed a predominance of the CAR haplotype. American populations were clustered in two groups defined by CAR or BEN haplotype frequencies. This scenario is compatible with historical records about the slave trade in the Americas. When all world populations where the sickle cell gene occurs were analyzed, three clusters were disclosed based on CAR, BEN or ARAB haplotype predominance. These patterns may change in the next decades due to recent migrations waves. Since these haplotypes show different clinical characteristics, these recent migrations events raise the necessity to develop optimized public health programs for sickle cell disease screening and management. PMID:27706371

  14. Synergistic neuroprotective therapies with hypothermia

    PubMed Central

    Cilio, Maria Roberta; Ferriero, Donna M.

    2010-01-01

    summary Neuroprotection is a major health care priority, given the enormous burden of human suffering and financial cost caused by perinatal brain damage. With the advent of hypothermia as therapy for term hypoxic–ischemic encephalopathy, there is hope for repair and protection of the brain after a profound neonatal insult. However, it is clear from the published clinical trials and animal studies that hypothermia alone will not provide complete protection or stimulate the repair that is necessary for normal neurodevelopmental outcome. This review critically discusses drugs used to treat seizures after hypoxia–ischemia in the neonate with attention to evidence of possible synergies for therapy. In addition, other agents such as xenon, N-acetylcysteine, erythropoietin, melatonin and cannabinoids are discussed as future potential therapeutic agents that might augment protection from hypothermia. Finally, compounds that might damage the developing brain or counteract the neuroprotective effects of hypothermia are discussed. PMID:20207600

  15. Insulation of the Chicken β-Globin Chromosomal Domain from a Chromatin-Condensing Protein, MENT

    PubMed Central

    Istomina, Natalia E.; Shushanov, Sain S.; Springhetti, Evelyn M.; Karpov, Vadim L.; A. Krasheninnikov, Igor; Stevens, Kimberly; Zaret, Kenneth S.; Singh, Prim B.; Grigoryev, Sergei A.

    2003-01-01

    Active genes are insulated from developmentally regulated chromatin condensation in terminally differentiated cells. We mapped the topography of a terminal stage-specific chromatin-condensing protein, MENT, across the active chicken β-globin domain. We observed two sharp transitions of MENT concentration coinciding with the β-globin boundary elements. The MENT distribution profile was opposite to that of acetylated core histones but correlated with that of histone H3 dimethylated at lysine 9 (H3me2K9). Ectopic MENT expression in NIH 3T3 cells caused a large-scale and specific remodeling of chromatin marked by H3me2K9. MENT colocalized with H3me2K9 both in chicken erythrocytes and NIH 3T3 cells. Mutational analysis of MENT and experiments with deacetylase inhibitors revealed the essential role of the reaction center loop domain and an inhibitory affect of histone hyperacetylation on the MENT-induced chromatin remodeling in vivo. In vitro, the elimination of the histone H3 N-terminal peptide containing lysine 9 by trypsin blocked chromatin self-association by MENT, while reconstitution with dimethylated but not acetylated N-terminal domain of histone H3 specifically restored chromatin self-association by MENT. We suggest that histone H3 modification at lysine 9 directly regulates chromatin condensation by recruiting MENT to chromatin in a fashion that is spatially constrained from active genes by gene boundary elements and histone hyperacetylation. PMID:12944473

  16. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential

    PubMed Central

    Orhan, Ilkay Erdogan

    2012-01-01

    This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L.) Urban, also known as “Gotu Kola.” The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words “Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory” through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed, and Google Scholar. According to the literature survey, C. asiatica (gotu kola) has been reported to have a comprehensive neuroprotection by different modes of action such as enzyme inhibition, prevention of amyloid plaque formation in Alzheimer's disease, dopamine neurotoxicity in Parkinson's disease, and decreasing oxidative stress. Therefore, C. asiatica could be suggested to be a desired phytopharmaceutical with neuroprotective effect emerged from traditional medicine. PMID:22666298

  17. Centella asiatica (L.) Urban: From Traditional Medicine to Modern Medicine with Neuroprotective Potential.

    PubMed

    Orhan, Ilkay Erdogan

    2012-01-01

    This paper covers the studies relevant to neuroprotective activity of Centella asiatica (L.) Urban, also known as "Gotu Kola." The plant is native to the Southeast Asia and has been used traditionally as brain tonic in ayurvedic medicine. The neuroprotective effect of C. asiatica has been searched using the key words "Centella, Centella asiatica, gotu kola, Asiatic pennywort, neuroprotection, and memory" through the electronic databases including Sciencedirect, Web of Science, Scopus, Pubmed, and Google Scholar. According to the literature survey, C. asiatica (gotu kola) has been reported to have a comprehensive neuroprotection by different modes of action such as enzyme inhibition, prevention of amyloid plaque formation in Alzheimer's disease, dopamine neurotoxicity in Parkinson's disease, and decreasing oxidative stress. Therefore, C. asiatica could be suggested to be a desired phytopharmaceutical with neuroprotective effect emerged from traditional medicine.

  18. Genetic dissection of the α-globin super-enhancer in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, Deborah; Hughes, Jim R.; Babbs, Christian

    Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less

  19. Genetic dissection of the α-globin super-enhancer in vivo

    DOE PAGES

    Hay, Deborah; Hughes, Jim R.; Babbs, Christian; ...

    2016-07-04

    Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less

  20. Neuroprotective compounds of Tilia amurensis

    PubMed Central

    Lee, Bohyung; Weon, Jin Bae; Eom, Min Rye; Jung, Youn Sik; Ma, Choong Je

    2015-01-01

    Background: Tilia amurensis (Tiliacese) has been used for anti-tumor and anti-inflammatory in Korea, China, and Japan. Objective: In this study, we isolated five compounds from T. amurensis and determined whether protected neuronal cells against glutamate-induced oxidative stress in HT22 cells. Materials and Methods: Compounds were isolated using chromatographic techniques including silica gel, Sephadex LH-20 open column and high performance liquid chromatography analysis, and evaluated neuroprotective effect in HT22 cells by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: β-D-fructofuranosyl α-D-glucopyranoside (1), (-)-epicatechin (2), nudiposide (3), lyoniside (4), and scopoletin (5) were isolated by bioactivity-guided fractionation from the ethyl acetate fraction of T. amurensis. Among them, (-)-epicatechin, nudiposide, lyoniside, and scopoletin had significant neuroprotective activities against glutamate-injured neurotoxicity in HT22 cells. Conclusion: These results demonstrated that compound two, three, four, and five have a pronounced protective effect against glutamate-induced neurotoxicity in HT22 cells. PMID:26664019

  1. Cannabinoids: between neuroprotection and neurotoxicity.

    PubMed

    Sarne, Yosef; Mechoulam, Raphael

    2005-12-01

    Cannabinoids, such as the delta9-tetrahydrocannabinol (THC), present in the cannabis plant, as well as anandamide and 2-arachidonoyl glycerol, produced by the mammalian body, have been shown to protect the brain from various insults and to improve several neurodegenerative diseases. The current review summarizes the evidence for cannabinoid neuroprotection in vivo, and refers to recent in vitro studies, which help elucidate possible molecular mechanisms underlying this protective effect. Some of these mechanisms involve the activation of CB1 and CB2 cannabinoid receptors, while others are not dependent on them. In some cases, protection is due to a direct effect of the cannabinoids on neuronal cells, while in others, it results from their effects on non-neuronal elements within the brain. In many experimental set-ups, cannabinoid neurotoxicity, particularly by THC, resides side by side with neuroprotection. The current review attempts to shed light on this dual activity, and to dissociate between the two contradictory effects.

  2. Inhalation gases or gaseous mediators as neuroprotectants for cerebral ischaemia.

    PubMed

    Sutherland, Brad A; Harrison, Joanne C; Nair, Shiva M; Sammut, Ivan A

    2013-01-01

    Ischaemic stroke is one of the leading causes of morbidity and mortality worldwide. While recombinant tissue plasminogen activator can be administered to produce thrombolysis and restore blood flow to the ischaemic brain, therapeutic benefit is only achieved in a fraction of the subset of patients eligible for fibrinolytic intervention. Neuroprotective therapies attempting to restrict the extent of brain injury following cerebral ischaemia have not been successfully translated into the clinic despite overwhelming pre-clinical evidence of neuroprotection. Therefore, an adequate treatment for the majority of acute ischaemic stroke patients remains elusive. In the stroke literature, the use of therapeutic gases has received relatively little attention. Gases such as hyperbaric and normobaric oxygen, xenon, hydrogen, helium and argon all possess biological effects that have shown to be neuroprotective in pre-clinical models of ischaemic stroke. There are significant advantages to using gases including their relative abundance, low cost and feasibility for administration, all of which make them ideal candidates for a translational therapy for stroke. In addition, modulating cellular gaseous mediators including nitric oxide, carbon monoxide, and hydrogen sulphide may be an attractive option for ischaemic stroke therapy. Inhalation of these gaseous mediators can also produce neuroprotection, but this strategy remains to be confirmed as a viable therapy for ischaemic stroke. This review highlights the neuroprotective potential of therapeutic gas therapy and modulation of gaseous mediators for ischaemic stroke. The therapeutic advantages of gaseous therapy offer new promising directions in breaking the translational barrier for ischaemic stroke.

  3. Creatine for women in pregnancy for neuroprotection of the fetus.

    PubMed

    Dickinson, Hayley; Bain, Emily; Wilkinson, Dominic; Middleton, Philippa; Crowther, Caroline A; Walker, David W

    2014-12-19

    Creatine is an amino acid derivative and, when phosphorylated (phosphocreatine), is involved in replenishing adenosine triphosphate (ATP) via the creatine kinase reaction. Cells obtain creatine from a diet rich in fish, meat, or dairy and by endogenous synthesis from the amino acids arginine, glycine, and methionine in an approximate 50:50 ratio. Animal studies have shown that creatine may provide fetal neuroprotection when given to the mother through her diet in pregnancy. It is important to assess whether maternally administered creatine in human pregnancy (at times of known, suspected, or potential fetal compromise) may offer neuroprotection to the fetus and may accordingly reduce the risk of adverse neurodevelopmental outcomes, such as cerebral palsy and associated impairments and disabilities arising from fetal brain injury. To assess the effects of creatine when used for neuroprotection of the fetus. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 November 2014). We planned to include all published, unpublished, and ongoing randomised trials and quasi-randomised trials. We planned to include studies reported as abstracts only as well as full-text manuscripts. Trials using a cross-over or cluster-randomised design were not eligible for inclusion.We planned to include trials comparing creatine given to women in pregnancy for fetal neuroprotection (regardless of the route, timing, dose, or duration of administration) with placebo, no treatment, or with an alternative agent aimed at providing fetal neuroprotection. We also planned to include comparisons of different regimens for administration of creatine. We identified no completed or ongoing randomised controlled trials. We found no randomised controlled trials for inclusion in this review. As we did not identify any randomised controlled trials for inclusion in this review, we are unable to comment on implications for practice. Although evidence from animal studies has supported a

  4. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR.

    PubMed

    Makani, Vishruti; Jang, Yong-Gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  5. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR

    PubMed Central

    Makani, Vishruti; Jang, Yong-gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua

    2016-01-01

    An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB

  6. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  7. Brain neuroprotection by scavenging blood glutamate.

    PubMed

    Zlotnik, Alexander; Gurevich, Boris; Tkachov, Sergei; Maoz, Ilana; Shapira, Yoram; Teichberg, Vivian I

    2007-01-01

    Excess glutamate in brain fluids characterizes acute brain insults such as traumatic brain injury and stroke. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As blood glutamate scavenging has been demonstrated to increase the efflux of excess glutamate from brain into blood, we tested the prediction that oxaloacetate-mediated blood glutamate scavenging causes neuroprotection in a pathological situation such as closed head injury (CHI), in which there is a well established deleterious increase of glutamate in brain fluids. We observed highly significant improvements of the neurological status of rats submitted to CHI following an intravenous treatment with 1 mmol oxaloacetate/100 g rat weight which decreases blood glutamate levels by 40%. No detectable therapeutic effect was obtained when rats were treated IV with 1 mmol oxaloacetate together with 1 mmol glutamate/100 g rat. The treatment with 0.005 mmol/100 g rat oxaloacetate was no more effective than saline but when it was combined with the intravenous administration of 0.14 nmol/100 g of recombinant glutamate-oxaloacetate transaminase, recovery was almost complete. Oxaloacetate provided neuroprotection when administered before CHI or at 60 min post CHI but not at 120 min post CHI. Since neurological recovery from CHI was highly correlated with the decrease of blood glutamate levels (r=0.89, P=0.001), we conclude that blood glutamate scavenging affords brain neuroprotection Blood glutamate scavenging may open now new therapeutic options.

  8. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    PubMed Central

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-01-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia. PMID:26807119

  9. Anesthetic Neuroprotection in Experimental Stroke in Rodents: A Systematic Review and Meta-analysis.

    PubMed

    Archer, David P; Walker, Andrew M; McCann, Sarah K; Moser, Joanna J; Appireddy, Ramana M

    2017-04-01

    Patients undergoing endovascular therapy for acute ischemic stroke may require general anesthesia to undergo the procedure. At present, there is little clinical evidence to guide the choice of anesthetic in this acute setting. The clinical implications of experimental studies demonstrating anesthetic neuroprotection are poorly understood. Here, the authors evaluated the impact of anesthetic treatment on neurologic outcome in experimental stroke. Controlled studies of anesthetics in stroke using the filament occlusion model were identified in electronic databases up to December 15, 2015. The primary outcome measures, infarct volume, and neurologic deficit score were used to calculate the normalized mean difference for each comparison. Meta-analysis of normalized mean difference values provided estimates of neuroprotection and contributions of predefined factors: study quality, the timing of treatment, and the duration of ischemia. In 80 retrieved publications anesthetic treatment reduced neurologic injury by 28% (95% CI, 24 to 32%; P < 0.0001). Internal validity was high: publication bias enhanced the effect size by 4% or less, effect size increased with study quality (P = 0.0004), and approximately 70% of studies were adequately powered. Apart from study quality, no predefined factor influenced neuroprotection. Neuroprotection failed in animals with comorbidities. Neuroprotection by anesthetics was associated with prosurvival mechanisms. Anesthetic neuroprotection is a robust finding in studies using the filament occlusion model of ischemic stroke and should be assumed to influence outcomes in studies using this model. Neuroprotection failed in female animals and animals with comorbidities, suggesting that the results in young male animals may not reflect human stroke.

  10. Estrogen receptors and ischemic neuroprotection: who, what, where, and when?

    PubMed

    Schreihofer, Derek A; Ma, Yulin

    2013-06-13

    Estrogens, particularly 17β-estradiol (E2), are powerful neuroprotective agents in animal models of cerebral ischemia. Loss of endogenous E2 in women at menopause or after surgical oopherectomy leads to an increase risk of stroke, neurodegenerative disease, and cognitive decline. However, several clinical trials found detrimental effects of E2 therapy after menopause, including increased stroke risk and dementia. Recent animal and human studies now support the "critical period" hypothesis for E2 neuroprotection whereby E2 therapy must begin soon after the loss of endogenous E2 production to have a beneficial effect. Although a wide array of mechanisms has been proposed for estradiol (E2)-dependent neuroprotection in cerebral ischemia and neurodegenerative disease, most of these mechanisms involve interactions of E2 with one of its cognate receptors, estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), or the G protein-coupled estrogen receptor (GPER). However, these receptors are not uniformly distributed throughout the brain, across different cell types, and within cellular compartments. Such differences likely play a role in the ability of E2 and ER selective ligands to protect the brain from ischemia. This review examines the changes in ER expression and location that may underlie the loss of E2 neuroprotection seen with aging and long-term estrogen deprivation (LTED). Recent results suggest that the loss of ERα that accompanies aging and LTED plays an important role in the loss of E2-dependent neuroprotection. This article is part of a Special Issue entitled Hormone Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Molecular mechanisms of neuroprotective action of immunosuppressants--facts and hypotheses.

    PubMed

    Kaminska, Bozena; Gaweda-Walerych, Katarzyna; Zawadzka, Malgorzata

    2004-01-01

    Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target--calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.

  12. Neuroprotective Interventions: Is It Too Late?

    PubMed Central

    Jenkins, Dorothea; Chang, Eugene; Singh, Inderjit

    2013-01-01

    In most cases of neonatal hypoxic-ischemic encephalopathy, the exact timing of the hypoxic-ischemic event is unknown, and we have few reliable biomarkers to precisely identify the phase of injury or recovery in an individual patient. However, it is becoming increasingly clear that for neuroprotection in neonates to succeed, an understanding of the phase of injury is important to ascertain. In addition, in utero antecedents of chronic hypoxia, hypoxic preconditioning, intrauterine infection, and fetal gender may change the expected time course of injury. Neuroprotective interventions, such as hypothermia and N-acetylcysteine, currently have efficacy in human and animal studies only if instituted early in the inflammatory cascade. While these cascades are currently being investigated, molecular mechanisms of recovery have received little attention and may ultimately reveal a window for therapeutic intervention that is much longer than current paradigms. PMID:19745093

  13. Meta-Analysis of Creatine for Neuroprotection Against Parkinson's Disease.

    PubMed

    Attia; Ahmed, Hussien; Gadelkarim, Mohamed; Morsi, Mahmoud; Awad, Kamal; Elnenny, Mohamed; Ghanem, Esraa; El-Jaafary, Shaimaa; Negida, Ahmed

    2017-01-01

    Creatine is an antioxidant agent that showed neuroprotective effects in animal models of Parkinson's disease (PD). Creatine was selected by the National Institute of Neurological Disorders and Stroke as a possible disease modifying agent for Parkinson's disease. Therefore, many clinical trials evaluated the efficacy of creatine for patients with PD. The aim of this systematic review and meta-analysis is to synthesize evidence from published randomized controlled trials (RCTs) about the efficacy of Creatine for patients with PD. We followed PRISMA statement guidelines during the preparation of this systematic review and meta-analysis. A computer literature search for PubMed, EBSCO, web of science and Ovid Midline was carried out. We included RCTs comparing creatine with placebo in terms of motor functions and quality of life. Outcomes of total Unified Parkinson's Disease Rating Scale (UPDRS), UPDRS I, UPDRS II, and UPDRS III were pooled as mean difference (MD) between two groups from baseline to the endpoint. Statistical heterogeneity was assessed by visual inspection of the forest plot and measured by chi-square and I square tests. Three RCTs (n=1935) were included in this study. The overall effect did not favor either of the two groups in terms of: UPDRS total score (MD 1.07, 95% CI [3.38 to 1.25], UPDRS III (MD 0.62, 95% CI [2.27 to 1.02]), UPDRS II (MD 0.03, 95% CI [0.81 to 0.86], or UPDRS I (MD 0.03, 95% CI [0.33 to 0.28]). Current evidence does not support the use of creatine for neuroprotection against PD. Future well-designed, randomized controlled trials are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. On the horizon: possible neuroprotective role for glatiramer acetate.

    PubMed

    Kreitman, Rivka Riven; Blanchette, François

    2004-06-01

    Inflammation and neurodegeneration characterize the pathogenesis of multiple sclerosis (MS). Slow axonal degeneration, rather than acute inflammation, is considered the cause of chronic disability in MS. The signs of acute axonal damage and loss have been shown to occur early in the lesion development of patients with chronic MS and often correlate with demyelination and inflammation. While immune activity in the central nervous system has traditionally been considered to be a detrimental event in MS, recent studies have found that autoimmune T cells may play an important role in protecting neurons from the ongoing spreading damage. Neuroprotection in MS is a new and evolving concept, and many questions remain with regard to potential targets for therapeutic intervention. Preliminary studies, both in animals and in humans, have suggested that glatiramer acetate (GA) may confer neuroprotective activity in addition to bystander suppression. Additional research is needed to determine if these promising neuroprotective effects correlated with the long-term effect of GA in MS.

  15. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection.

    PubMed

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M

    2017-02-24

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  16. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection

    PubMed Central

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M.

    2017-01-01

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus. PMID:28245590

  17. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.

    PubMed

    West, Andrew B

    2017-12-01

    In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  18. Current perspective of neuroprotection and glaucoma

    PubMed Central

    Tian, Kailin; Shibata-Germanos, Shannon; Pahlitzsch, Milena; Cordeiro, M Francesca

    2015-01-01

    Glaucoma is the second leading cause of blindness worldwide and is most notably characterized by progressive optic nerve atrophy and advancing loss of retinal ganglion cells (RGCs). The main concomitant factor is the elevated intraocular pressure (IOP). Existing treatments are focused generally on lowering IOP. However, both RGC loss and optic nerve atrophy can independently occur with IOP at normal levels. In recent years, there has been substantial progress in the development of neuroprotective therapies for glaucoma in order to restore vital visual function. The present review intends to offer a brief insight into conventional glaucoma treatments and discuss exciting current developments of mostly preclinical data in novel neuroprotective strategies for glaucoma that include recent advances in noninvasive diagnostics going beyond IOP maintenance for an enhanced global view. Such strategies now target RGC loss and optic nerve damage, opening a critical therapeutic window for preventative monitoring and treatment. PMID:26635467

  19. Curcumin: a potential neuroprotective agent in Parkinson's disease.

    PubMed

    Mythri, R B; Bharath, M M Srinivas

    2012-01-01

    Parkinson's disease (PD) is an age-associated neurodegenerative disease clinically characterized as a movement disorder. The motor symptoms in PD arise due to selective degeneration of dopaminergic neurons in the substantia nigra of the ventral midbrain thereby depleting the dopamine levels in the striatum. Most of the current pharmacotherapeutic approaches in PD are aimed at replenishing the striatal dopamine. Although these drugs provide symptomatic relief during early PD, many patients develop motor complications with long-term treatment. Further, PD medications do not effectively tackle tremor, postural instability and cognitive deficits. Most importantly, most of these drugs do not exhibit neuroprotective effects in patients. Consequently, novel therapies involving natural antioxidants and plant products/molecules with neuroprotective properties are being exploited for adjunctive therapy. Curcumin is a polyphenol and an active component of turmeric (Curcuma longa), a dietary spice used in Indian cuisine and medicine. Curcumin exhibits antioxidant, anti-inflammatory and anti-cancer properties, crosses the blood-brain barrier and is neuroprotective in neurological disorders. Several studies in different experimental models of PD strongly support the clinical application of curcumin in PD. The current review explores the therapeutic potential of curcumin in PD.

  20. Hb Dartmouth (HBA2: c.200T>C): An α2-Globin Gene Associated with Hb H Disease in One Homozygous Patient.

    PubMed

    Farashi, Samaneh; Faramarzi Garous, Negin; Ashki, Mehri; Vakili, Shadi; Zeinali, Fatemah; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-01-01

    Hb H (β4) disease is caused by deletion or inactivation of three out of four α-globin genes. A high incidence of Hb H disease has been reported all over the world. There is a wide spectrum of phenotypic presentations, from clinically asymptomatic to having significant hepatosplenomegaly and requiring occasional or even regular blood transfusions, even more severe anemia, Hb Bart's (γ4) hydrops fetalis syndrome that can cause death in the affected fetuses late in gestation. We here present a case who was diagnosed with Hb H disease that represents a new genotype for this hereditary disorder. Hb Dartmouth is a variant caused by a missense mutation at codon 66 of the α2-globin gene (HBA2: c.200T>C), resulting in the substitution of leucine by proline. We here emphasize the importance of this point mutation involving Hb H disease and also the necessity for prenatal diagnosis (PND) for those who carry this point mutation in the heterozygous state.

  1. Neuroprotective actions of the synthetic estrogen 17alpha-ethynylestradiol in the hippocampus.

    PubMed

    Picazo, Ofir; Becerril-Montes, Adriana; Huidobro-Perez, Delia; Garcia-Segura, Luis M

    2010-07-01

    17alpha-ethynylestradiol (EE2), a major constituent of many oral contraceptives, is similar in structure to 17beta-estradiol, which has neuroprotective properties in several animal models. This study explored the potential neuroprotective actions of EE2 against kainic and quinolinic acid toxicity in the hippocampus of adult ovariectomized Wistar rats. A decrease in the number of Nissl-stained neurons and the induction of vimentin immunoreactivity in astrocytes was observed in the hilus of the dentate gyrus of the hippocampus after the administration of either kainic acid or quinolinic acid. EE2 prevented the neuronal loss and the induction of vimentin immunoreactivity induced by kainic acid at low (1 microg/rat) and high (10-100 microg/rat) doses and exerted a protection against quinolinic acid toxicity at a low dose (1 microg/rat) only. These observations demonstrate that EE2 exerts neuroprotective actions against excitotoxic insults. This finding is relevant for the design of new neuroprotective estrogenic compounds.

  2. Neuroprotection in Hypoxic-Ischemic Brain Injury Targeting Glial Cells.

    PubMed

    Mucci, Sofia; Herrera, Maria Ines; Barreto, George E; Kolliker-Frers, Rodolfo; Capani, Francisco

    2017-01-01

    Brain injury constitutes a disabling health condition of several etiologies. One of the major causes of brain injury is hypoxia-ischemia. Until recently, pharmacological treatments were solely focused on neurons. In the last decades, glial cells started to be considered as alternative targets for neuroprotection. Novel treatments for hypoxia-ischemia intend to modulate reactive forms of glial cells, and/or potentiate their recovery response. In this review, we summarize these neuroprotective strategies in hypoxia-ischemia and discuss their mechanisms of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. β-Globin gene sequencing of hemoglobin Austin revises the historically reported electrophoretic migration pattern.

    PubMed

    Racsa, Lori D; Luu, Hung S; Park, Jason Y; Mitui, Midori; Timmons, Charles F

    2014-06-01

    Hemoglobin (Hb) Austin was defined in 1977, using amino acid sequencing of samples from 3 unrelated Mexican-Americans, as a substitution of serine for arginine at position 40 of the β-globin chain (Arg40Ser). Its electrophoretic migration on both cellulose acetate (pH 8.4) and citrate agar (pH 6.2) was reported between Hb F and Hb A, and this description persists in reference literature. OBJECTIVES.-To review the clinical features and redefine the diagnostic characteristics of Hb Austin. Eight samples from 6 unrelated individuals and 2 siblings, all with Hispanic surnames, were submitted for abnormal Hb identification between June 2010 and September 2011. High-performance liquid chromatography, isoelectric focusing (IEF), citrate agar electrophoresis, and bidirectional DNA sequencing of the entire β-globin gene were performed. DNA sequencing confirmed all 8 individuals to be heterozygous for Hb Austin (Arg40Ser). Retention time on high-performance liquid chromatography and migration on citrate agar electrophoresis were consistent with that identification. Migration on IEF, however, was not between Hb F and Hb A, as predicted from the report of cellulose acetate electrophoresis. By IEF, Hb Austin migrated anodal to ("faster than") Hb A. Hemoglobin Austin (Arg40Ser) appears on IEF as a "fast," anodally migrating, Hb variant, just as would be expected from its amino acid substitution. The cited historic report is, at best, not applicable to IEF and is probably erroneous. Our observation of 8 cases in 16 months suggests that this variant may be relatively common in some Hispanic populations, making its recognition important. Furthermore, gene sequencing is proving itself a powerful and reliable tool for definitive identification of Hb variants.

  4. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons.

    PubMed

    Tárnok, K; Kiss, E; Luiten, P G M; Nyakas, C; Tihanyi, K; Schlett, K; Eisel, U L M

    2008-12-01

    Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine's effects on PBRs. Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1-50microM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25microM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25microM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective. In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.

  5. Putative neuroprotective agents in neuropsychiatric disorders.

    PubMed

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity.

    PubMed

    Nadal, Xavier; Del Río, Carmen; Casano, Salvatore; Palomares, Belén; Ferreiro-Vera, Carlos; Navarrete, Carmen; Sánchez-Carnerero, Carolina; Cantarero, Irene; Bellido, Maria Luz; Meyer, Stefan; Morello, Gaetano; Appendino, Giovanni; Muñoz, Eduardo

    2017-12-01

    Phytocannabinoids are produced in Cannabis sativa L. in acidic form and are decarboxylated upon heating, processing and storage. While the biological effects of decarboxylated cannabinoids such as Δ 9 -tetrahydrocannabinol have been extensively investigated, the bioactivity of Δ 9 -tetahydrocannabinol acid (Δ 9 -THCA) is largely unknown, despite its occurrence in different Cannabis preparations. Here we have assessed possible neuroprotective actions of Δ 9 -THCA through modulation of PPARγ pathways. The effects of six phytocannabinoids on PPARγ binding and transcriptional activity were investigated. The effect of Δ 9 -THCA on mitochondrial biogenesis and PPARγ coactivator 1-α expression was investigated in Neuro-2a (N2a) cells. The neuroprotective effect was analysed in STHdh Q111/Q111 cells expressing a mutated form of the huntingtin protein and in N2a cells infected with an adenovirus carrying human huntingtin containing 94 polyQ repeats (mHtt-q94). The in vivo neuroprotective activity of Δ 9 -THCA was investigated in mice intoxicated with the mitochondrial toxin 3-nitropropionic acid (3-NPA). Cannabinoid acids bind and activate PPARγ with higher potency than their decarboxylated products. Δ 9 -THCA increased mitochondrial mass in neuroblastoma N2a cells and prevented cytotoxicity induced by serum deprivation in STHdh Q111/Q111 cells and by mutHtt-q94 in N2a cells. Δ 9 -THCA, through a PPARγ-dependent pathway, was neuroprotective in mice treated with 3-NPA, improving motor deficits and preventing striatal degeneration. In addition, Δ 9 -THCA attenuated microgliosis, astrogliosis and up-regulation of proinflammatory markers induced by 3-NPA. Δ 9 -THCA shows potent neuroprotective activity, which is worth considering for the treatment of Huntington's disease and possibly other neurodegenerative and neuroinflammatory diseases. © 2017 The British Pharmacological Society.

  7. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury

    PubMed Central

    Robertson, Courtney L.; Fidan, Emin; Stanley, Rachel M.; MHSA; Noje, Corina; Bayir, Hülya

    2016-01-01

    Objective To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury (TBI), and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric TBI. Data Sources National Library of Medicine PubMed literature review. Data Selection The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of TBI are summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult TBI is reviewed. Data Extraction and Synthesis Progesterone is a pleotropic agent with beneficial effects on secondary injury cascades that occur after TBI, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after TBI in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human Phase II trials of progesterone for adult TBI have been published, and two multi-center Phase III trials are underway. Conclusions The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of TBI. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children, and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, statue epilepticus). PMID

  8. Resveratrol Neuroprotection in Stroke and Traumatic CNS injury

    PubMed Central

    Lopez, Mary; Dempsey, Robert J; Vemuganti, Raghu

    2015-01-01

    Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection. PMID:26277384

  9. Phenobarbital Augments Hypothermic Neuroprotection

    PubMed Central

    Barks, John D.; Liu, Yi-Qing; Shangguan, Yu; Silverstein, Faye S.

    2010-01-01

    Seizures are associated with adverse outcome in infants with hypoxic-ischemic encephalopathy. We hypothesized that early administration of the anticonvulsant phenobarbital after cerebral hypoxia-ischemia could enhance the neuroprotective efficacy of delayed-onset hypothermia. We tested this hypothesis in a neonatal rodent model. Seven-day-old rats (n=104) underwent right carotid ligation, followed by 90 min 8%O2 exposure; 15 min later, they received injections of phenobarbital (40 mg/kg) or saline. One or 3h later, all were treated with hypothermia (30°C, 3h). Function and neuropathology were evaluated after 7 days (“early outcomes”) or 1 month (“late outcomes”). Early outcome assessment demonstrated better sensorimotor performance and less cortical damage in phenobarbital-treated groups; there were no differences between groups in which the hypothermia delay was shortened from 3h to 1h. Late outcome assessment confirmed sustained benefits of phenobarbital+hypothermia treatment; sensorimotor performance was better (persistent attenuation of contralateral forepaw placing deficits and absence of contralateral forepaw neglect); neuropathology scores were lower (medians, phenobarbital 2, saline 8.5, p<0.05), and less ipsilateral cerebral hemisphere %Damage (mean±SD, 11±17 vs. 28±22, p<0.05). These results suggest that early post-hypoxia-ischemia administration of phenobarbital may augment the neuroprotective efficacy of therapeutic hypothermia. PMID:20098339

  10. Dantrolene: mechanisms of neuroprotection and possible clinical applications in the neurointensive care unit

    PubMed Central

    Muehlschlegel, Susanne; Sims, John R.

    2009-01-01

    Background and aims Calcium plays a central role in neuronal function and injury. Dantrolene, an inhibitor of the ryanodine receptor, inhibits intracellular calcium release from the sarcoendoplasmic reticulum and might serve as novel agent for neuroprotection and other applications in the Neurointensive Care Unit. Methods We reviewed the available data of dantrolene as a potential neuroprotective agent through literature searches on Ovid, Pubmed and Google Scholar. Results Dantrolene provides neuroprotection in multiple in vitro models and some in vivo models of neural injury. Its efficacy has an early and narrow time-window of protection. We briefly summarize its other pharmacologic effects that may have potential applications for patients in the neurointensive care unit. Areas with the need for continued research are identified. Conclusion Targeted use of dantrolene in selected ICU disease models of anticipated neural injury, such as impending ischemia from vasospastic syndromes, might provided neuroprotection. PMID:18696266

  11. The neuroprotective properties of palmitoylethanolamine against oxidative stress in a neuronal cell line

    PubMed Central

    2009-01-01

    Background N-acylethanolamines (NAEs) are lipids upregulated in response to cell and tissue injury and are involved in cytoprotection. Arachidonylethanolamide (AEA) is a well characterized NAE that is an endogenous ligand at cannabinoid and vanilloid receptors, but it exists in small quantities relative to other NAE types. The abundance of other NAE species, such as palmitoylethanolamine (PEA), together with their largely unknown function and receptors, has prompted us to examine the neuroprotective properties and mechanism of action of PEA. We hypothesized that PEA protects HT22 cells from oxidative stress and activates neuroprotective kinase signaling pathways. Results Indeed PEA protected HT22 cells from oxidative stress in part by mediating an increase in phosphorylated Akt (pAkt) and ERK1/2 immunoreactivity as well as pAkt nuclear translocation. These changes take place within a time frame consistent with neuroprotection. Furthermore, we determined that changes in pAkt immunoreactivity elicited by PEA were not mediated by activation of cannabinoid receptor type 2 (CB2), thus indicating a novel mechanism of action. These results establish a role for PEA as a neuroprotectant against oxidative stress, which occurs in a variety of neurodegenerative diseases. Conclusions The results from this study reveal that PEA protects HT22 cells from oxidative stress and alters the localization and expression levels of kinases known to be involved in neuroprotection by a novel mechanism. Overall, these results identify PEA as a neuroprotectant with potential as a possible therapeutic agent in neurodegenerative diseases involving oxidative stress. PMID:20003317

  12. Use of a wire extender during neuroprotected vertebral artery angioplasty and stenting.

    PubMed

    Lesley, Walter S; Kumar, Ravi; Rangaswamy, Rajesh

    2010-09-01

    The off-label use of an extender wire during vertebral artery stenting and angioplasty with or with neuroprotection has not been previously reported. Retrospective, single-patient, technical report. After monorail balloon angioplasty was performed on a proximal left vertebral artery stenosis, the 190 cm long Accunet neuroprotection filter device was not long enough for delivery of an over-the-wire stent. After mating a 145 cm long, 0.014 inch extension wire to the filter device, a balloon-mounted Liberté stent was implanted with good angiographic and clinical results. The off-label use of an extender wire permits successful over-the-wire stenting on a monorail neuroprotection device for vertebral artery endosurgery.

  13. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More

    PubMed Central

    Costa, Lucio G.; Garrick, Jacqueline M.; Roquè, Pamela J.; Pellacani, Claudia

    2016-01-01

    Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection. PMID:26904161

  14. The Prevalence and Molecular Spectrum of α- and β-Globin Gene Mutations in 14,332 Families of Guangdong Province, China

    PubMed Central

    Xu, Longchang; Wu, Li; Zhang, Liang; Ma, Yuanzhu; Chen, Tingting; Gao, Shuang; Liang, Juqing; Guo, Hao; Qin, Danqing; Wang, Jicheng; Yuan, Tenglong; Wang, Yixia; Huang, Wei-wei; He, Wen-Fei; Zhang, Yanxia; Liu, Chang; Xia, Sujian; Chen, Qingshan; Zhao, Qingguo; Zhang, Xiaozhuang

    2014-01-01

    Objective To reveal the familial prevalence and molecular variation of α- and β-globin gene mutations in Guangdong Province. Methods A total of 40,808 blood samples from 14,332 families were obtained and analyzed for both hematological and molecular parameters. Results A high prevalence of α- and β-globin gene mutations was found. Overall, 17.70% of pregnant women, 15.94% of their husbands, 16.03% of neonates, and 16.83% of couples (pregnant women and their husbands) were heterozygous carriers of α- or β-thalassemia. The regions with the highest prevalence were the mountainous and western regions, followed by the Pearl River Delta; the region with the lowest prevalence was Chaoshan. The total familial carrier rate (both spouses were α- or β-thalassemia carriers) was 1.87%, and the individual carrier rates of α- and β-thalassemia were 1.68% and 0.20%, respectively. The total rate of moderate-to-severe fetal thalassemia was 12.78% among couples in which both parents were carriers. Conclusions There was a high prevalence of α- and β-thalassemia in Guangdong Province. This study will contribute to the development of thalassemia prevention and control strategies in Guangdong Province. PMID:24587075

  15. Translation of globin messenger RNA by the mouse ovum

    PubMed Central

    Brinster, R. L.; Chen, H. Y.; Trumbauer, M. E.; Avarbock, M. R.

    2016-01-01

    It has been demonstrated that the Xenopus oocyte can translate rabbit haemoglobin messenger RNA (mRNA) following microinjection of the message into the cell1. The Xenopus oocyte has since been shown to be capable of translating a variety of messenger RNAs from different species2–4. This system has proved useful in understanding the mechanism of message translation and has also provided information about the translation capability of the Xenopus oocyte5,6. Several other cell types, including HeLa cells and fibroblasts, can also translate exogenous message injected into the cell7,8. However, there have been no reports of injection of mRNA into oocytes or fertilised one-cell ova of mammalian species. Nevertheless, the latter system could be of considerable use in studying the processing of exogenous messages in a mammalian system undergoing development, as well as providing insight into the way the early embryo processes injected messages and the protein products of such messages. We report here the results of injecting message into the fertilised one-cell mouse ovum and show that both mouse and rabbit globin mRNA are translated in this system. PMID:7352032

  16. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    PubMed Central

    Matteucci, Andrea; Varano, Monica; Gaddini, Lucia; Mallozzi, Cinzia; Villa, Marika; Pricci, Flavia; Malchiodi-Albedi, Fiorella

    2014-01-01

    In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 μM) and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG) was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 μM. At the concentration of 100 μM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms. PMID:24736780

  17. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury

    PubMed Central

    Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique

    2013-01-01

    One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720

  18. Running exercise alleviates trabecular bone loss and osteopenia in hemizygous β-globin knockout thalassemic mice.

    PubMed

    Thongchote, Kanogwun; Svasti, Saovaros; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2014-06-15

    A marked decrease in β-globin production led to β-thalassemia, a hereditary anemic disease associated with bone marrow expansion, bone erosion, and osteoporosis. Herein, we aimed to investigate changes in bone mineral density (BMD) and trabecular microstructure in hemizygous β-globin knockout thalassemic (BKO) mice and to determine whether endurance running (60 min/day, 5 days/wk for 12 wk in running wheels) could effectively alleviate bone loss in BKO mice. Both male and female BKO mice (1-2 mo old) showed growth retardation as indicated by smaller body weight and femoral length than their wild-type littermates. A decrease in BMD was more severe in female than in male BKO mice. Bone histomorphometry revealed that BKO mice had decreases in trabecular bone volume, trabecular number, and trabecular thickness, presumably due to suppression of osteoblast-mediated bone formation and activation of osteoclast-mediated bone resorption, the latter of which was consistent with elevated serum levels of osteoclastogenic cytokines IL-1α and -1β. As determined by peripheral quantitative computed tomography, running increased cortical density and thickness in the femoral and tibial diaphyses of BKO mice compared with those of sedentary BKO mice. Several histomorphometric parameters suggested an enhancement of bone formation (e.g., increased mineral apposition rate) and suppression of bone resorption (e.g., decreased osteoclast surface), which led to increases in trabecular bone volume and trabecular thickness in running BKO mice. In conclusion, BKO mice exhibited pervasive osteopenia and impaired bone microstructure, whereas running exercise appeared to be an effective intervention in alleviating bone microstructural defect in β-thalassemia. Copyright © 2014 the American Physiological Society.

  19. Neuroprotection against Surgically-Induced Brain Injury

    PubMed Central

    Jadhav, Vikram; Solaroglu, Ihsan; Obenaus, Andre; Zhang, John H.

    2007-01-01

    Background Neurosurgical procedures are carried out routinely in health institutions across the world. A key issue to be considered during neurosurgical interventions is that there is always an element of inevitable brain injury that results from the procedure itself due to the unique nature of the nervous system. Brain tissue at the periphery of the operative site is at risk of injury by various means including incisions and direct trauma, electrocautery, hemorrhage, and retractor stretch. Methods/Results In the present review we will elaborate upon this surgically-induced brain injury and also present a novel animal model to study it. Additionally, we will summarize preliminary results obtained by pretreatment with PP1, a src tyrosine kinase inhibitor reported to have neuroprotective properties in in-vivo experimental studies. Any form of pretreatment to limit the damage to the susceptible functional brain tissue during neurosurgical procedures may have a significant impact on the patient recovery. Conclusion This brief review is intended to raise the question of ‘neuroprotection against surgically-induced brain injury’ in the neurosurgical scientific community and stimulate discussions. PMID:17210286

  20. Neuroprotective Strategies after Neonatal Hypoxic Ischemic Encephalopathy

    PubMed Central

    Dixon, Brandon J.; Reis, Cesar; Ho, Wing Mann; Tang, Jiping; Zhang, John H.

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) is a devastating disease that primarily causes neuronal and white matter injury and is among the leading cause of death among infants. Currently there are no well-established treatments; thus, it is important to understand the pathophysiology of the disease and elucidate complications that are creating a gap between basic science and clinical translation. In the development of neuroprotective strategies and translation of experimental results in HIE, there are many limitations and challenges to master based on an appropriate study design, drug delivery properties, dosage, and use in neonates. We will identify understudied targets after HIE, as well as neuroprotective molecules that bring hope to future treatments such as melatonin, topiramate, xenon, interferon-beta, stem cell transplantation. This review will also discuss some of the most recent trials being conducted in the clinical setting and evaluate what directions are needed in the future. PMID:26389893

  1. Docosahexaenoic acid confers enduring neuroprotection in experimental stroke.

    PubMed

    Hong, Sung-Ha; Belayev, Ludmila; Khoutorova, Larissa; Obenaus, Andre; Bazan, Nicolas G

    2014-03-15

    Recently we demonstrated that docosahexaenoic acid (DHA) is highly neuroprotective when animals were allowed to survive during one week. This study was conducted to establish whether the neuroprotection induced by DHA persists with chronic survival. Sprague-Dawley rats underwent 2h of middle cerebral artery occlusion (MCAo) and treated with DHA or saline at 3h after MCAo. Animals received neurobehavioral examination (composite neuroscore, rota-rod, beam walking and Y maze tests) followed by ex vivo magnetic resonance imaging and histopathology at 3 weeks. DHA improved composite neurologic score beginning on day 1 by 20%, which persisted throughout weeks 1-3 by 24-41% compared to the saline-treated group. DHA prolonged the latency in rota-rod on weeks 2-3 by 162-178%, enhanced balance performance in the beam walking test on weeks 1 and 2 by 42-51%, and decreased the number of entries in the Y maze test by 51% and spontaneous alteration by 53% on week 2 compared to the saline-treated group. DHA treatment reduced tissue loss (computed from T2-weighted images) by 24% and total and cortical infarct volumes by 46% and 54% compared to the saline-treated group. These results show that DHA confers enduring ischemic neuroprotection. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Neurotrophic and neuroprotective potential of human limbus-derived mesenchymal stromal cells.

    PubMed

    Liang, Chang-Min; Weng, Shao-Ju; Tsai, Tung-Han; Li, I-Hsun; Lu, Pin-Hui; Ma, Kuo-Hsing; Tai, Ming-Cheng; Chen, Jiann-Torng; Cheng, Cheng-Yi; Huang, Yuahn-Sieh

    2014-10-01

    The purpose of this study was to examine neurotrophic and neuroprotective effects of limbus stroma-derived mesenchymal stromal cells (L-MSCs) on cortical neurons in vitro and in vivo. Cultured L-MSCs were characterized by flow cytometry and immunofluorescence through the use of specific MSC marker antibodies. Conditioned media were collected from normoxia- and hypoxia-treated L-MSCs to assess neurotrophic effects. Neuroprotective potentials were evaluated through the use of in vitro hypoxic cortical neuron culture and in vivo rat focal cerebral ischemia models. Neuronal morphology was confirmed by immunofluorescence with the use of anti-MAP2 antibody. Post-ischemic infarct volume and motor behavior were assayed by means of triphenyltetrazolium chloride staining and open-field testing, respectively. Human growth antibody arrays and enzyme-linked immunoassays were used to analyze trophic/growth factors contained in conditioned media. Isolated human L-MSCs highly expressed CD29, CD90 and CD105 but not CD34 and CD45. Mesenchymal lineage cell surface expression pattern and differentiation capacity were identical to MSCs derived form human bone marrow and adipose tissue. The L-MSC normoxic and hypoxic conditioned media both promoted neurite outgrowth in cultured cortical neurons. Hypoxic conditioned medium showed superior neurotrophic function and neuroprotective potential with reduced ischemic brain injury and improved functional recovery in rat focal cerebral ischemia models. Human growth factor arrays and enzyme-linked immunoassays measurements showed neuroprotective and growth-associated cytokines (vascular endothelial growth factor [VEGF], VEGFR3, brain-derived neurotrophic factor, insulin-like growth factor -2 and hepatocyte growth factor) contained in conditioned media. Hypoxic exposure caused VEGF and brain-derived neurotrophic factor upregulation, possibly contributing to neurotrophic and neuroprotective effects. L-MSCs can secrete various neurotrophic factors

  3. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection.

    PubMed

    Lin, Hung Wen; Thompson, John W; Morris, Kahlilia C; Perez-Pinzon, Miguel A

    2011-05-15

    Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia.

  4. Neuroprotective and cognitive enhancing activity of the fermented Bozhougyiqi-Tang

    PubMed Central

    Weon, Jin Bae; Lee, Bohyoung; Yun, Bo-Ra; Lee, Jiwoo; Ma, Jin Y; Ma, Choong Je

    2014-01-01

    Background: Alzheimer's disease is a neurodegenerative disease related to memory impairments and neuronal cell death. Bozhougyiqi-Tang (BZYQT), a traditional herbal medicine, has been therapeutically used for the treatment of pulmonary tuberculosis. Objective: The aim of this study is to evaluated the neuroprotective effect of the fermented BZYQT and compared with unfermented BZYQT in HT22 cells by MTT assay and tested the beneficial effect on memory impairments induced by scopolamine (1 mg/kg, i.p.) using the passive avoidance and Morris water maze tests. Results: Compared with unfermented BZYQT, the neuroprotective effect of fermented BZYQT on glutamate induced neurotoxicity in HT22 cells increased at a concentration of 100 μg/mL. Fermented BZYQT increased the step-through latency of the passive avoidance response. Furthermore, in Morris water maze test for evaluation of spatial learning and memory, escape latency time was significantly reduced by fermented BZYQT. Conclusion: These results suggest that the fermentation process of BZYQT led to improve neuroprotective and cognitive enhancing effect. PMID:24991099

  5. Neuroprotective Dose Response in RCS Rats Implanted with Microphotodiode Arrays

    PubMed Central

    Pardue, Machelle T.; Kim, Moon K.; Walker, Tiffany A.; Faulkner, Amanda E.; Chow, Alan Y.; Ciavatta, Vincent T.

    2012-01-01

    Purpose Neuropreservation of retinal function and structure in RCS rats following implantation of a microphotodiode array (MPA) has been shown in previous studies(Pardue et al. 2005a; Pardue et al. 2005b). Since microphotodiodes produce electrical currents in proportion to the intensity of incident light, increased light exposure may result in greater neuroprotective effects. Our previous studies suggested that the frequency of light exposure to electroretinogram (ERG) flash stimuli might provide increased neuroprotection. Thus, in this study, we examined the dose response of subretinal electrical stimulation by exposing RCS rats implanted with MPAs to variable durations and combinations of two different lighting regimens: pulsing incandescent bulbs and xenon stimuli from an ERG Ganzfeld. While incandescent light regimens did not produce any significant differences in ERG function, we found significantly greater dark-adapted ERG b-wave amplitudes in RCS rats that received weekly versus biweekly ERGs over the course of 8 weeks of follow-up. These results suggest that subretinal electrical stimulation may be optimized to produce greater neuroprotective effects by dosing with periodic higher current. PMID:22183323

  6. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  7. Neonatal Neuroprotection: Bringing Best Practice to the Bedside in the NICU.

    PubMed

    Lockridge, Terrie

    Preterm birth interrupts the precise process of fetal maturation, forcing critical neurologic growth to continue within the Neonatal Intensive Care Unit (NICU). Concern for the impact of the NICU experience on the developing brain led to a unit-based Quality Improvement (QI) project to promote best outcomes for our graduates. The objective was to implement a standard of care for neonatal neuroprotection in a large urban tertiary center. A multidisciplinary committee researched and developed the Neonatal Neuroprotective Best Practice Guidelines to identify optimal interventions, as well as provide physiologic rationales to reinforce importance of these practices. An educational initiative accompanied release of this document to support consistency in clinical practice and to stress the critical role that every caregiver played in a child's outcome. As the Best Practice Guidelines encompassed virtually all aspects of caregiving in the NICU, it was impractical to measure the impact of such a broad range of interventions in a methodical manner. The full effect of these interventions will not likely be evident until NICU graduates have grown into childhood and adolescence. These constraints limited the scope of this QI project to the practicalities of identifying neuroprotective best practice and bringing it to the bedside. When combined with evidence-based medical and nursing care, neuroprotective care represents the best means of facilitating normal development and minimizing disability for our NICU graduates.

  8. Neuroprotective effects of a new skin care formulation following ultraviolet exposure.

    PubMed

    Fonseca, B L; dos Santos, B C; Martins, P; Bonorino, C; Corte, T W F; da Silva, V D; Bauer, M E

    2012-02-01

    Chronic ultraviolet (UV) exposure is a major environmental factor involved in extrinsic skin ageing (photo-ageing). Skin nerve fibres are significantly reduced in number following UV irradiation and new skincare compounds with neuroprotective effects are thus highly warranted. We developed a new skincare formulation from a plant extract and evaluated its neuroprotective effects of ex vivo UV irradiation. The new skincare emulsion was formulated from Echinacea purpurea extract and was enriched with antioxidants (patent no. PROV020110087075). Skin samples were obtained from 20 healthy patients enrolled for plastic surgery and were immediately treated with placebo (SPF 15) or test emulsions. Skin samples were exposed to UVA and UVB for 60 min. Nerve fibres were identified by immunofluorescence using a monoclonal antibody, anti-human CD56. Cell damage was quantified by image analysis. UVA and UVB significantly reduced (40-60%) densities of nerve endings in control samples treated with placebo (P < 0.001). Samples treated with test emulsion completely blocked UV-related effects on skin nerve endings. These neuroprotective effects were similarly observed regardless of age or tissue analysed (breast versus abdomen). Our new skincare formulation obtained from E. purpurea provides important neuroprotective effects of UV irradiation and could be used together with SPFs to prevent chronic deleterious effects of solar exposure. © 2011 Blackwell Publishing Ltd.

  9. The Neuroprotective Role of Acupuncture and Activation of the BDNF Signaling Pathway

    PubMed Central

    Lin, Dong; De La Pena, Ike; Lin, Lili; Zhou, Shu-Feng; Borlongan, Cesar V.; Cao, Chuanhai

    2014-01-01

    Recent studies have been conducted to examine the neuroprotective effects of acupuncture in many neurological disorders. Although the neuroprotective effects of acupuncture has been linked to changes in signaling pathways, accumulating evidence suggest the participation of endogenous biological mediators, such as the neurotrophin (NT) family of proteins, specifically, the brain derived neurotrophic factor (BDNF). Accordingly, acupuncture can inhibit neurodegeneration via expression and activation of BDNF. Moreover, recent studies have reported that acupuncture can increase ATP levels at local stimulated points. We have also demonstrated that acupuncture could activate monocytes and increase the expression of BDNF via the stimulation of ATP. The purpose of this article is to review the recent findings and ongoing studies on the neuroprotective roles of acupuncture and therapeutic implications of acupuncture-induced activation of BDNF and its signaling pathway. PMID:24566146

  10. Preconditioning in neuroprotection: From hypoxia to ischemia

    PubMed Central

    Li, Sijie; Hafeez, Adam; Noorulla, Fatima; Geng, Xiaokun; Shao, Guo; Ren, Changhong; Lu, Guowei; Zhao, Heng; Ding, Yuchuan; Ji, Xunming

    2017-01-01

    Sublethal hypoxic or ischemic events can improve the tolerance of tissues, organs, and even organisms from subsequent lethal injury caused by hypoxia or ischemia. This phenomenon has been termed hypoxic or ischemic preconditioning (HPC or IPC) and is well established in the heart and the brain. This review aims to discuss HPC and IPC with respect to their historical development and advancements in our understanding of the neurochemical basis for their neuroprotective role. Through decades of collaborative research and studies of HPC and IPC in other organ systems, our understanding of HPC and IPC-induced neuroprotection has expanded to include: early- (phosphorylation targets, transporter regulation, interfering RNA) and late- (regulation of genes like EPO, VEGF, and iNOS) phase changes, regulators of programmed cell death, members of metabolic pathways, receptor modulators, and many other novel targets. The rapid acceleration in our understanding of HPC and IPC will help facilitate transition into the clinical setting. PMID:28110083

  11. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia.

    PubMed

    Alonso-Alconada, Daniel; Alvarez, Antonia; Arteaga, Olatz; Martínez-Ibargüen, Agustín; Hilario, Enrique

    2013-04-29

    One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.

  12. Neuroprotective Effect of Melatonin: A Novel Therapy against Perinatal Hypoxia-Ischemia

    PubMed Central

    Alonso-Alconada, Daniel; Álvarez, Antonia; Arteaga, Olatz; Martínez-Ibargüen, Agustín; Hilario, Enrique

    2013-01-01

    One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events. PMID:23629670

  13. Design and Synthesis of Neuroprotective Methylthiazoles and Modification as NO-Chimeras for Neurodegenerative Therapy

    PubMed Central

    Qin, Zhihui; Luo, Jia; VandeVrede, Lawren; Tavassoli, Ehsan; Fa’, Mauro; Teich, Andrew; Arancio, Ottavio; Thatcher, Gregory R. J.

    2012-01-01

    Learning and memory deficits in Alzheimer’s disease (AD) result from synaptic failure and neuronal loss, the latter caused in part by excitotoxicity and oxidative stress. A therapeutic approach is described, which uses NO-chimeras directed at restoration of both synaptic function and neuroprotection. 4-Methylthiazole (MZ) derivatives were synthesized, based upon a lead neuroprotective pharmacophore acting in part by GABAA receptor potentiation. MZ derivatives were assayed for protection of primary neurons against oxygen-glucose deprivation and excitotoxicity. Selected neuroprotective derivatives were incorporated into NO-chimera prodrugs, coined nomethiazoles. To provide proof of concept for the nomethiazole drug class, selected examples were assayed for: restoration of synaptic function in hippocampal slices from AD-transgenic mice; reversal of cognitive deficits; and, brain bioavailability of the prodrug and its neuroprotective MZ metabolite. Taken together the assay data suggest that these chimeric nomethiazoles may be of use in treatment of multiple components of neurodegenerative disorders, such as AD. PMID:22779770

  14. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2000-10-01

    to evaluate the neuroprotective effect of memantine in our rat model of laser-induced retinal-lesions. Methods: Argon laser retinal lesions were...inflicted in the eyes of 36 pigmented rats. The treated group received memantine 10 mg/kg dissolved in saline, immediately after exposure to laser and then

  15. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants.

    PubMed

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg(2+)-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  16. Phenytoin: neuroprotection or neurotoxicity?

    PubMed

    Keppel Hesselink, Jan M; Kopsky, David J

    2017-06-01

    Phenytoin is an 80-year young molecule and new indications are still emerging. The neuroprotective potential of phenytoin has been evaluated for decades. Recently, a positive phase II trial supported its further development in the treatment of optic neuritis in multiple sclerosis. In 1942, however, peripheral neuritis was first reported to be an adverse event of phenytoin, and since then a small but steady stream of publications discussed peripheral polyneuropathy as being a possible adverse event of phenytoin. We have reviewed the literature and concluded there is some supportive evidence for a reversible polyneuropathy after the oral use of phenytoin, though with no evidence for clear neurotoxicity on the level of peripheral nerves. This is probably due to the fact that the pharmacological effects of phenytoin, based on the stabilizing effect of the voltage-gated sodium channels, make impairment of nerve conduction in asymptomatic and symptomatic reversible polyneuropathies plausible. Clear toxically-induced phenytoin-related polyneuropathies, however, are extremely rare and are always related to high dose or high plasma levels of phenytoin, mostly developing during many years of therapy. We could only find one case of a probable reversible chronic phenytoin intoxication resulting in a biopsy proven axonal atrophy with secondary demyelination and signs of remyelination. All case series and case reports published are insufficient in detail to prove a clear causal relation between phenytoin intake and the induction of a peripheral polyneuropathy. Phenytoin does not lead to irreversible toxicity of the peripheral nerves and might, on the other hand, have neuroprotective properties.

  17. Prevalence of βS-globin gene haplotypes, α-thalassemia (3.7 kb deletion) and redox status in patients with sickle cell anemia in the state of Paraná, Brazil

    PubMed Central

    Shimauti, Eliana LitsukoTomimatsu; Silva, Danilo Grunig Humberto; de Souza, Eniuce Menezes; de Almeida, Eduardo Alves; Leal, Francismar Prestes; Bonini-Domingos, Claudia Regina

    2015-01-01

    The aim of this study was to determine the frequency of beta S-globin gene (βS globin) haplotypes and alpha thalassemia with 3.7 kb deletion (−α3.7kb thalassemia) in the northwest region of Paraná state, and to investigate the oxidative and clinical-hematological profile of βS globin carriers in this population. Of the 77 samples analyzed, 17 were Hb SS, 30 were Hb AS and 30 were Hb AA. The βSglobin haplotypes and −α3.7kb thalassemia were identified using polymerase chain reaction.Trolox equivalent antioxidant capacity (TEAC) and lipid peroxidation (LPO) were assessed spectophotometrically. Serum melatonin levels were determined using high-performance liquid chromatography coupled to coulometric electrochemical detection. The haplotype frequencies in the SS individuals were as follows: Bantu- 21 (62%), Benin - 11 (32%) and Atypical- 2 (6%). Bantu/Benin was the most frequent genotype. Of the 47 SS and AS individuals assessed, 17% (n = 8) had the −α3.7kb mutation. Clinical manifestations, as well as serum melatonin, TEAC and LPO levels did not differ between Bantu/Bantu and Bantu/Benin individuals (p > 0.05). Both genotypes were associated with high LPO and TEAC levels and decreased melatonin concentration. These data suggest that the level of oxidative stress in patients with Bantu/Bantu and Bantu/Benin genotypes may overload the antioxidant capacity. PMID:26500435

  18. Neuroprotective effects of resveratrol in Alzheimer disease pathology.

    PubMed

    Rege, Shraddha D; Geetha, Thangiah; Griffin, Gerald D; Broderick, Tom L; Babu, Jeganathan Ramesh

    2014-01-01

    Alzheimer's disease is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular mechanisms underlying AD pathogenesis; however, the therapeutic options available to treat this disease are inadequate. In the past few years, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol (3, 5, 4'-trihydroxy-trans-stilbene) when used with in vitro and in vivo models of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of resveratrol on AD and its multiple potential mechanisms of action. In addition, because the naturally occurring forms of resveratrol have a very limited half-life in plasma, a description of potential analogs aimed at increasing the bioavailability in plasma is also discussed.

  19. Evolutionary context for the association of γ-globin, serum uric acid, and hypertension in African Americans.

    PubMed

    Shriner, Daniel; Kumkhaek, Chutima; Doumatey, Ayo P; Chen, Guanjie; Bentley, Amy R; Charles, Bashira A; Zhou, Jie; Adeyemo, Adebowale; Rodgers, Griffin P; Rotimi, Charles N

    2015-11-05

    Hyperuricemia and associated cardio-metabolic disorders are more prevalent in African Americans than in European Americans. We used genome-wide admixture mapping and association testing to identify loci with ancestry effects on serum uric acid levels. We analyzed 1,976 African Americans from Washington, D.C, including 1,322 individuals from 328 pedigrees and 654 unrelated individuals, enrolled in the Howard University Family Study. We performed admixture mapping and genome-wide association testing using ~800 k autosomal single-nucleotide polymorphisms (SNPs). We performed fine mapping by dense genotyping. We assessed functionality by a combination of bioinformatic annotation, reporter gene assays, and gel shift experiments. We also analyzed 12,641 individuals enrolled in the National Health and Nutrition Examination Survey. We detected a genome-wide significant locus on chromosome 11p15.4 at which serum uric acid levels increased with increasing African ancestry, independent of kidney function. Fine-mapping identified two independent signals in the β-globin locus. The ancestral allele at SNP rs2855126, located upstream of the hemoglobin, gamma A gene HBG1, was associated with increased serum uric acid levels and higher expression of a reporter gene relative to the derived allele. Hyperuricemia was associated with increased risk of hypertension in 3,767 African Americans (Odds Ratio = 2.48, p = 2.71 × 10(-19)). Given that increased expression of γ-globin leads to increased levels of fetal hemoglobin which confers protection against malaria, we hypothesize that evolution in Africa of protection against malaria may have occurred at the cost of increased serum uric acid levels, contributing to the high rates of hyperuricemia and associated cardio-metabolic disorders observed in African Americans.

  20. Neuroprotective strategies against calpain-mediated neurodegeneration

    PubMed Central

    Yildiz-Unal, Aysegul; Korulu, Sirin; Karabay, Arzu

    2015-01-01

    Calpains are calcium-dependent proteolytic enzymes that have deleterious effects on neurons upon their pathological over-activation. According to the results of numerous studies to date, there is no doubt that abnormal calpain activation triggers activation and progression of apoptotic processes in neurodegeneration, leading to neuronal death. Thus, it is very crucial to unravel all the aspects of calpain-mediated neurodegeneration in order to protect neurons through eliminating or at least minimizing its lethal effects. Protecting neurons against calpain-activated apoptosis basically requires developing effective, reliable, and most importantly, therapeutically applicable approaches to succeed. From this aspect, the most significant studies focusing on preventing calpain-mediated neurodegeneration include blocking the N-methyl-d-aspartate (NMDA)-type glutamate receptor activities, which are closely related to calpain activation; directly inhibiting calpain itself via intrinsic or synthetic calpain inhibitors, or inhibiting its downstream processes; and utilizing the neuroprotectant steroid hormone estrogen and its receptors. In this review, the most remarkable neuroprotective strategies for calpain-mediated neurodegeneration are categorized and summarized with respect to their advantages and disadvantages over one another, in terms of their efficiency and applicability as a therapeutic regimen in the treatment of neurodegenerative diseases. PMID:25709452

  1. Barriers and enablers to implementing antenatal magnesium sulphate for fetal neuroprotection guidelines: a study using the theoretical domains framework.

    PubMed

    Bain, Emily; Bubner, Tanya; Ashwood, Pat; Van Ryswyk, Emer; Simmonds, Lucy; Reid, Sally; Middleton, Philippa; Crowther, Caroline A

    2015-08-18

    Strong evidence supports administration of magnesium sulphate prior to birth at less than 30 weeks' gestation to prevent very preterm babies dying or developing cerebral palsy. This study was undertaken as part of The WISH (Working to Improve Survival and Health for babies born very preterm) Project, to assess health professionals' self-reported use of antenatal magnesium sulphate, and barriers and enablers to implementation of 2010 Australian and New Zealand clinical practice guidelines. Semi-structured, one-to-one interviews were conducted with obstetric and neonatal consultants and trainees, and midwives in 2011 (n = 24) and 2012-2013 (n = 21) at the Women's and Children's Hospital, South Australia. Transcribed interview data were coded using the Theoretical Domains Framework (describing 14 domains related to behaviour change) for analysis of barriers and enablers. In 2012-13, health professionals more often reported 'routinely' or 'sometimes' administering or advising their colleagues to administer magnesium sulphate for fetal neuroprotection (86% in 2012-13 vs. 46% in 2011). 'Knowledge and skills', 'memory, attention and decision processes', 'environmental context and resources', 'beliefs about consequences' and 'social influences' were key domains identified in the barrier and enabler analysis. Perceived barriers were the complex administration processes, time pressures, and the unpredictability of preterm birth. Enablers included education for staff and women at risk of very preterm birth, reminders and 'prompts', simplified processes for administration, and influential colleagues. This study has provided valuable data on barriers and enablers to implementing magnesium sulphate for fetal neuroprotection, with implications for designing and modifying future behaviour change strategies, to ensure optimal uptake of this neuroprotective therapy for very preterm infants.

  2. Cardiorespiratory Fitness and Cognitive Function in Midlife: Neuroprotection or Neuroselection?

    PubMed Central

    Belsky, Daniel W.; Caspi, Avshalom; Israel, Salomon; Blumenthal, James A.; Poulton, Richie; Moffitt, Terrie E.

    2015-01-01

    Objective To determine if better cognitive functioning at midlife among more physically fit individuals reflects “neuroprotection,” in which fitness protects against age-related cognitive decline, or “neuroselection,” in which children with higher cognitive functioning select into more active lifestyles. Methods Children in the Dunedin Longitudinal Study (N=1,037) completed the Wechsler Intelligence Scales and the Trail-Making, Rey-Delayed-Recall, and Grooved-Pegboard tasks as children and again at midlife (age-38). Adult cardiorespiratory fitness was assessed using a submaximal exercise test to estimate maximum-oxygen-consumption-adjusted-for-body-weight in milliliters/minute/kilogram (VO2max). We tested if more-fit individuals had better cognitive functioning than their less-fit counterparts (which could be consistent with neuroprotection), and if better childhood cognitive functioning predisposed to better adult cardiorespiratory fitness (neuroselection). Finally, we examined possible mechanisms of neuroselection. Results Participants with better cardiorespiratory fitness had higher cognitive test scores at midlife. However, fitness-associated advantages in cognitive functioning were present already in childhood. After accounting for childhood-baseline performance on the same cognitive tests, there was no association between cardiorespiratory fitness and midlife cognitive functioning. Socioeconomic and health advantages in childhood, and healthier lifestyles during young adulthood explained most of the association between childhood cognitive functioning and adult cardiorespiratory fitness. Interpretation We found no evidence for a neuroprotective effect of cardiorespiratory fitness as of midlife. Instead, children with better cognitive functioning are selecting into healthier lives. Fitness interventions may enhance cognitive functioning. But, observational and experimental studies testing neuroprotective effects of physical fitness should consider

  3. Recent Updates in Neuroprotective and Neuroregenerative Potential of Centella asiatica

    PubMed Central

    Lokanathan, Yogeswaran; Omar, Norazzila; Ahmad Puzi, Nur Nabilah; Saim, Aminuddin; Hj Idrus, Ruszymah

    2016-01-01

    Centella asiatica, locally well known in Malaysia as pegaga, is a traditional herb that has been used widely in Ayurvedic medicine, traditional Chinese medicine, and in the traditional medicine of other Southeast Asian countries including Malaysia. Although consumption of the plant is indicated for various illnesses, its potential neuroprotective properties have been well studied and documented. In addition to past studies, recent studies also discovered and/or reconfirmed that C. asiatica acts as an antioxidant, reducing the effect of oxidative stress in vitro and in vivo. At the in vitro level, C. asiatica promotes dendrite arborisation and elongation, and also protects the neurons from apoptosis. In vivo studies have shown that the whole extract and also individual compounds of C. asiatica have a protective effect against various neurological diseases. Most of the in vivo studies on neuroprotective effects have focused on Alzheimer’s disease, Parkinson’s disease, learning and memory enhancement, neurotoxicity and other mental illnesses such as depression and anxiety, and epilepsy. Recent studies have embarked on finding the molecular mechanism of neuroprotection by C. asiatica extract. However, the capability of C. asiatica in enhancing neuroregeneration has not been studied much and is limited to the regeneration of crushed sciatic nerves and protection from neuronal injury in hypoxia conditions. More studies are still needed to identify the compounds and the mechanism of action of C. asiatica that are particularly involved in neuroprotection and neuroregeneration. Furthermore, the extraction method, biochemical profile and dosage information of the C. asiatica extract need to be standardised to enhance the economic value of this traditional herb and to accelerate the entry of C. asiatica extracts into modern medicine. PMID:27540320

  4. Signal Transducers and Activators of Transcription: STATs-Mediated Mitochondrial Neuroprotection

    PubMed Central

    Lin, Hung Wen; Thompson, John W.; Morris, Kahlilia C.

    2011-01-01

    Abstract Cerebral ischemia is defined as little or no blood flow in cerebral circulation, characterized by low tissue oxygen and glucose levels, which promotes neuronal mitochondria dysfunction leading to cell death. A strategy to counteract cerebral ischemia-induced neuronal cell death is ischemic preconditioning (IPC). IPC results in neuroprotection, which is conferred by a mild ischemic challenge prior to a normally lethal ischemic insult. Although many IPC-induced mechanisms have been described, many cellular and subcellular mechanisms remain undefined. Some reports have suggested key signal transduction pathways of IPC, such as activation of protein kinase C epsilon, mitogen-activated protein kinase, and hypoxia-inducible factors, that are likely involved in IPC-induced mitochondria mediated-neuroprotection. Moreover, recent findings suggest that signal transducers and activators of transcription (STATs), a family of transcription factors involved in many cellular activities, may be intimately involved in IPC-induced ischemic tolerance. In this review, we explore current signal transduction pathways involved in IPC-induced mitochondria mediated-neuroprotection, STAT activation in the mitochondria as it relates to IPC, and functional significance of STATs in cerebral ischemia. Antioxid. Redox Signal. 14, 1853–1861. PMID:20712401

  5. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases

    PubMed Central

    Wu, Haijian; Niu, Huanjiang; Shao, Anwen; Wu, Cheng; Dixon, Brandon J.; Zhang, Jianmin; Yang, Shuxu; Wang, Yirong

    2015-01-01

    Neurological diseases, which consist of acute injuries and chronic neurodegeneration, are the leading causes of human death and disability. However, the pathophysiology of these diseases have not been fully elucidated, and effective treatments are still lacking. Astaxanthin, a member of the xanthophyll group, is a red-orange carotenoid with unique cell membrane actions and diverse biological activities. More importantly, there is evidence demonstrating that astaxanthin confers neuroprotective effects in experimental models of acute injuries, chronic neurodegenerative disorders, and neurological diseases. The beneficial effects of astaxanthin are linked to its oxidative, anti-inflammatory, and anti-apoptotic characteristics. In this review, we will focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms in the setting of neurological diseases. PMID:26378548

  6. Neuroprotection and antioxidants

    PubMed Central

    Lalkovičová, Maria; Danielisová, Viera

    2016-01-01

    Ischemia as a serious neurodegenerative disorder causes together with reperfusion injury many changes in nervous tissue. Most of the neuronal damage is caused by complex of biochemical reactions and substantial processes, such as protein agregation, reactions of free radicals, insufficient blood supply, glutamate excitotoxicity, and oxidative stress. The result of these processes can be apoptotic or necrotic cell death and it can lead to an irreversible damage. Therefore, neuroprotection and prevention of the neurodegeneration are highly important topics to study. There are several approaches to prevent the ischemic damage. Use of many modern therapeutical methods and the incorporation of several substances into the diet of patients is possible to stimulate the endogenous protective mechanisms and improve the life quality. PMID:27482198

  7. Synthesis of hemoglobin Gun Hill: increased synthesis of the heme-free βGH globin chain and subunit exchange with a free α-chain pool

    PubMed Central

    Rieder, Ronald F.

    1971-01-01

    Hemoglobin Gun Hill is an unstable mutant hemoglobin associated with mild compensated hemolysis. This abnormal protein has a deletion of five amino acids in the β-chains. The deletion includes the heme-binding proximal histidine at position 92. The β-chains of hemoglobin Gun Hill lack heme groups. Approximately 32% of the circulating hemoglobin in heterozygous subjects consists of the mutant hemoglobin. When reticulocytes were incubated with radioactive amino acid the specific activity of hemoglobin Gun Hill was three to six times that of hemoglobin A. Total incorporation of radioactivity into hemoglobin Gun Hill was two to three times that into hemoglobin A. There were 20-50% more total counts in β-Gun Hill (βGH) than in βA. These results indicate that in reticulocytes there was greater synthesis of the abnormal β-chains than βA-chains. The ratio of the specific activities of the α-chains of hemoglobin Gun Hill to the α-chains of hemoglobin A was 20: 1. There was evidence of a free pool of α-chains in the reticulocytes containing hemoglobin Gun Hill. After 10 min of incubation approximately 40% of the total α-chain radioactivity was in the free pool. When protein synthesis was blocked by incubation of reticulocytes with puromycin, the specific activity of the α-chains of hemoglobin Gun Hill continued to increase due to direct exchange of α-subunits between the free pool and preformed hemoglobin Gun Hill. Studies of the assembly of βA and βGH revealed that the rates of translation of the two polypeptide chains were equal and uniform. No evidence was obtained for the existence of “slow points” in the process of globin chain assembly. The studies also suggest that lack of strong heme-globin binding does not hinder the synthesis of globin chains. PMID:5540175

  8. Effects of common hemoglobin variants on HbA1c measurements in China: results for α- and β-globin variants measured by six methods.

    PubMed

    Xu, Anping; Chen, Weidong; Xia, Yong; Zhou, Yu; Ji, Ling

    2018-04-07

    HbA1c is a widely used biomarker for diabetes mellitus management. Here, we evaluated the accuracy of six methods for determining HbA1c values in Chinese patients with common α- and β-globin chains variants in China. Blood samples from normal subjects and individuals exhibiting hemoglobin variants were analyzed for HbA1c, using Sebia Capillarys 2 Flex Piercing (C2FP), Bio-Rad Variant II Turbo 2.0, Tosoh HLC-723 G8 (ver. 5.24), Arkray ADAMS A1c HA-8180V fast mode, Cobas c501 and Trinity Ultra2 systems. DNA sequencing revealed five common β-globin chain variants and three common α-globin chain variants. The most common variant was Hb E, followed by Hb New York, Hb J-Bangkok, Hb G-Coushatta, Hb Q-Thailand, Hb G-Honolulu, Hb Ube-2 and Hb G-Taipei. Variant II Turbo 2.0, Ultra2 and Cobas c501 showed good agreement with C2FP for most samples with variants. HLC-723 G8 yielded no HbA1c values for Hb J-Bangkok, Hb Q-Thailand and Hb G-Honolulu. Samples with Hb E, Hb G-Coushatta, Hb G-Taipei and Hb Ube-2 produced significant negative biases for HLC-723 G8. HA-8180V showed statistically significant differences for Hb E, Hb G-Coushatta, Hb G-Taipei, Hb Q-Thailand and Hb G-Honolulu. HA-8180V yielded no HbA1c values for Hb J-Bangkok. All methods showed good agreement for samples with Hb New York. Some common hemoglobin variants can interfere with HbA1c determination by the most popular methods in China.

  9. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and

  10. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells.

    PubMed

    Friedemann, Thomas; Otto, Benjamin; Klätschke, Kristin; Schumacher, Udo; Tao, Yi; Leung, Alexander Kai-Man; Efferth, Thomas; Schröder, Sven

    2014-08-08

    The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action. Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2 h or 24 h followed by 2 h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted. Two hours of exposure to 100 µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100 µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR. Due to its neuroprotective properties CRE might be a potential

  11. Human neuron-astrocyte 3D co-culture-based assay for evaluation of neuroprotective compounds.

    PubMed

    Terrasso, Ana Paula; Silva, Ana Carina; Filipe, Augusto; Pedroso, Pedro; Ferreira, Ana Lúcia; Alves, Paula Marques; Brito, Catarina

    Central nervous system drug development has registered high attrition rates, mainly due to the lack of efficacy of drug candidates, highlighting the low reliability of the models used in early-stage drug development and the need for new in vitro human cell-based models and assays to accurately identify and validate drug candidates. 3D human cell models can include different tissue cell types and represent the spatiotemporal context of the original tissue (co-cultures), allowing the establishment of biologically-relevant cell-cell and cell-extracellular matrix interactions. Nevertheless, exploitation of these 3D models for neuroprotection assessment has been limited due to the lack of data to validate such 3D co-culture approaches. In this work we combined a 3D human neuron-astrocyte co-culture with a cell viability endpoint for the implementation of a novel in vitro neuroprotection assay, over an oxidative insult. Neuroprotection assay robustness and specificity, and the applicability of Presto Blue, MTT and CytoTox-Glo viability assays to the 3D co-culture were evaluated. Presto Blue was the adequate endpoint as it is non-destructive and is a simpler and reliable assay. Semi-automation of the cell viability endpoint was performed, indicating that the assay setup is amenable to be transferred to automated screening platforms. Finally, the neuroprotection assay setup was applied to a series of 36 test compounds and several candidates with higher neuroprotective effect than the positive control, Idebenone, were identified. The robustness and simplicity of the implemented neuroprotection assay with the cell viability endpoint enables the use of more complex and reliable 3D in vitro cell models to identify and validate drug candidates. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    PubMed

    Sun, Bao-Liang; He, Mei-Qing; Han, Xiang-Yu; Sun, Jing-Yi; Yang, Ming-Feng; Yuan, Hui; Fan, Cun-Dong; Zhang, Shuai; Mao, Lei-Lei; Li, Da-Wei; Zhang, Zong-Yong; Zheng, Cheng-Bi; Yang, Xiao-Yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  13. Analysis of gene expression profiles of CR80, a neuroprotective 1,8-Naphthyridine.

    PubMed

    Ramos, Eva; Romero, Alejandro; Egea, Javier; Marco-Contelles, José; Del Pino, Javier; de Los Ríos, Cristóbal

    2018-06-01

    The 1,8-naphthyridine CR80 (ethyl 5-amino-2-methyl-6,7,8,9-tetrahydrobenzo[b] [1,8]naphthyridine-3-carboxylate) has shown interesting neuroprotective properties in in vitro and in vivo models of neurodegeneration. In spite of these promising outcomes, the molecular and cellular mechanisms underlying CR80 actions need to be further explored. We herein report the signal transduction pathways involved in developmental, neuroprotective and stress-activated processes, as well as the gene expression regulation by CR80 in SH-SY5Y neuroblastoma cells. The CR80 exposure upregulated several antioxidant enzymes (HO-1, GSR, SQSTM1, and TRXR1) and anti-apoptotic proteins (Bcl-xL, Bcl-2, P21, and Wnt6). The observed changes in gene expression would afford new insights on the neuroprotective profile of CR80.

  14. Multivariate analysis of matrix-assisted laser desorption/ionization mass spectrometric data related to glycoxidation products of human globins in nephropathic patients.

    PubMed

    Lapolla, Annunziata; Ragazzi, Eugenio; Andretta, Barbara; Fedele, Domenico; Tubaro, Michela; Seraglia, Roberta; Molin, Laura; Traldi, Pietro

    2007-06-01

    To clarify the possible pathogenetic role of oxidation products originated from the glycation of proteins, human globins from nephropathic patients have been studied by matrix-assisted laser desorption/ionization mass spectrometry (MALDI), revealing not only unglycated and monoglycated globins, but also a series of different species. For the last ones, structural assignments were tentatively done on the basis of observed masses and expectations for the Maillard reaction pattern. Consequently, they must be considered only propositive, and the discussion which will follow must be considered in this view. In our opinion this approach does not seem to compromise the intended diagnostic use of the data because distinctions are valid even if the assignments are uncertain. We studied nine healthy subjects and 19 nephropathic patients and processed the data obtained from the MALDI spectra using a multivariate analysis. Our results showed that multivariate analytical techniques enable differential aspects of the profile of molecular species to be identified in the blood of end stage nephropathic patients. A correct grouping can be achieved by principal component analysis (PCA) and the results suggest that several products involved in carbonyl stress exist in nephropathic patients. These compounds may have a relevant role as specific markers of the pathological state.

  15. Argon gas: a potential neuroprotectant and promising medical therapy

    PubMed Central

    2014-01-01

    Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential. PMID:24533741

  16. Neuroprotective effects of resveratrol in Alzheimer disease pathology

    PubMed Central

    Rege, Shraddha D.; Geetha, Thangiah; Griffin, Gerald D.; Broderick, Tom L.; Babu, Jeganathan Ramesh

    2014-01-01

    Alzheimer’s disease is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive and behavioral abilities. Extracellular senile plaques and intracellular neurofibrillary tangles are hallmarks of AD. Researchers aim to analyze the molecular mechanisms underlying AD pathogenesis; however, the therapeutic options available to treat this disease are inadequate. In the past few years, several studies have reported interesting insights about the neuroprotective properties of the polyphenolic compound resveratrol (3, 5, 4′-trihydroxy-trans-stilbene) when used with in vitro and in vivo models of AD. The aim of this review is to focus on the neuroprotective and antioxidant effects of resveratrol on AD and its multiple potential mechanisms of action. In addition, because the naturally occurring forms of resveratrol have a very limited half-life in plasma, a description of potential analogs aimed at increasing the bioavailability in plasma is also discussed. PMID:25309423

  17. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  18. A Novel Frameshift Mutation at Codons 138/139 (HBB: c.417_418insT) on the β-Globin Gene Leads to β-Thalassemia.

    PubMed

    Jiang, Fan; Huang, Lv-Yin; Chen, Gui-Lan; Zhou, Jian-Ying; Xie, Xing-Mei; Li, Dong-Zhi

    2017-01-01

    We describe a new β-thalassemic mutation in a Chinese subject. This allele develops by insertion of one nucleotide (+T) between codons 138 and 139 in the third exon of the β-globin gene. The mutation causes a frameshift that leads to a termination codon at codon 139. In the heterozygote, this allele has the phenotype of classical β-thalassemia (β-thal) minor.

  19. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro.

    PubMed

    Kaneko, Yuji; Pappas, Colleen; Tajiri, Naoki; Borlongan, Cesar V

    2016-10-21

    Oxytocin protects against ischemia-induced inflammation and oxidative stress, and is associated with GABA (γ-aminobutyric acid, an inhibitory neurotransmitter) signaling transduction in neurons. However, the molecular mechanism by which oxytocin affords neuroprotection, especially the interaction between oxytocin receptor and GABA A receptor (GABA A R), remains to be elucidated. Primary rat neural cells were exposed to oxytocin before induction of experimental acute stroke model via oxygen-glucose deprivation-reperfusion (OGD/R) injury. Pretreatment with oxytocin increased cell viability, decreased the cell damage against oxidative stress, and prevented the release of high mobility group box1 during OGD/R. However, introduction of oxytocin during OGD/R did not induce neuroprotection. Although oxytocin did not affect the glutathione-related cellular metabolism before OGD, oxytocin modulated the expression levels of GABA A R subunits, which function to remove excessive neuronal excitability via chloride ion influx. Oxytocin-pretreated cells significantly increased the chloride ion influx in response to GABA and THIP (δ-GABA A R specific agonist). This study provides evidence that oxytocin regulated GABA A R subunits in affording neuroprotection against OGD/R injury.

  20. Optimal parameters of transcorneal electrical stimulation (TES) to be neuroprotective of axotomized RGCs in adult rats.

    PubMed

    Morimoto, Takeshi; Miyoshi, Tomomitsu; Sawai, Hajime; Fujikado, Takashi

    2010-02-01

    We previously showed that transcorneal electrical stimulation (TES) promoted the survival of axotomized retinal ganglion cells (RGCs) of rats. However the relationship between the parameters of TES and the neuroprotective effect of TES on axotomized RGCs was unclear. In the present study, we determined whether the neuroprotective effect of TES is affected by the parameters of TES. Adult male Wistar rats received TES just after transection of the left optic nerve (ON). The pulse duration, current intensity, frequency, waveform, and numbers of sessions of the TES were changed systematically. The alterations of the retina were examined histologically seven days or fourteen days after the ON transection. The optimal neuroprotective parameters were pulse duration of 1 and 2 ms/phase (P < 0.001, each), current intensity of 100 and 200 muA (P < 0.05, each), and stimulation frequency of 1, 5, and 20 Hz (P < 0.001, respectively). More than 30 min of TES was necessary to have a neuroprotective effect (P < 0.001). Symmetric pulses without an inter-pulse interval were most effective (P < 0.001). Repeated TES was more neuroprotective than a single TES at 14 days after ON transection (P < 0.001). Our results indicate that there is a range of optimal neuroprotective parameters of TES for axotomized RGCs of rats. These values will provide a guideline for the use of TES in patients with different retinal and optic nerve diseases. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Neuroprotection by Paeoniflorin in the MPTP mouse model of Parkinson's disease.

    PubMed

    Zheng, Meizhu; Liu, Chunming; Fan, Yajun; Yan, Pan; Shi, Dongfang; Zhang, Yuchi

    2017-04-01

    Paeoniflorin (PF) is a major bioactive ingredient in Radix Paeonia alba roots that has low toxicity and has been shown to have neuroprotective effects. Our in vitro experiments suggested that PF affords a significant neuroprotective effect against MPP + -induced damage and apoptosis in PC12 cells through Bcl-2/Bax/caspase-3 pathway. The objectives of the present study were to explore the potential neuroprotective effect of PF in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated mouse model of Parkinson's disease (PD). Our results demonstrated that PF treatment ameliorated the behavioral deficits of "in spontaneous motor activity and latency to fall of the rotarod test", and reduced dopaminergic cell loss that were induced by MPTP in a dose-dependent manner in an in vivo model of PD. In addition, we found that treatment of PF protected dopaminergic neurons by preventing MPTP-induced decreases in striatal and substantia nigra dopaminergic transporter (DAT) and tyrosine hydroxylase (TH) protein levels, and by changing dopamine catabolism and inhibiting dopamine turnover. Furthermore, it was also associated with up-regulation of the Bcl-2/BAD ratio, and inhibition of the activation of caspase-9 and caspase-3. These results showed that PF promoted dopamine neuron survival in vivo due to the MAO-B inhibition, and the PI3K/Akt signaling pathway may have mediated the protection of PF against MPTP, suggesting that PF treatment might represent a neuroprotective treatment for PD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.D.; Cooper, P.; Fung, J.

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression ofmore » human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.« less

  3. Bioactive Compounds and Their Neuroprotective Effects in Diabetic Complications

    PubMed Central

    Oh, Yoon Sin

    2016-01-01

    Hyperglycemia, hyperlipidemia and impaired insulin signaling during the development of diabetes can cause diabetic complications, such as diabetic neuropathy, resulting in significant morbidity and mortality. Although various therapeutics are available for the treatment of diabetic neuropathy, no absolute cure exists, and additional research is necessary to comprehensively understand the underlying pathophysiological pathways. A number of studies have demonstrated the potential health benefits of bioactive compounds, i.e., flavonoids and vitamins, which may be effective as supplementary treatments for diabetes and its complications. In this review, we highlight the most recent reports about the mechanisms of action of bioactive compounds (flavonoids and vitamins) possessing potential neuroprotective properties in diabetic conditions. Additional clinical studies are required to determine the appropriate dose and duration of bioactive compound supplementation for neuroprotection in diabetic patients. PMID:27483315

  4. Estrogen-IGF-1 interactions in neuroprotection: Ischemic Stroke as a case study

    PubMed Central

    Sohrabji, Farida

    2014-01-01

    The steroid hormone 17b-estradiol and the peptide hormone insulin-like growth factor (IGF)-1 independently exert neuroprotective actions in neurologic diseases such as stroke. Only a few studies have directly addressed the interaction between the two hormone systems, however, there is a large literature that indicates potentially greater interactions between the 17b-estradiol and IGF-1 systems. The present review focuses on key issues related to this interaction including IGF-1 and sex differences and common activation of second messenger systems. Using ischemic stroke as a case study, this review also focuses on independent and cooperative actions of estrogen and IGF-1 on neuroprotection, blood brain barrier integrity, angiogenesis, inflammation and post-stroke epilepsy. Finally, the review also focuses on the astrocyte, a key mediator of post stroke repair, as a local source of 17b-estradiol and IGF-1. This review thus highlights areas where significant new research is needed to clarify the interactions between these two neuroprotectants. PMID:24882635

  5. Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review

    PubMed Central

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2017-01-01

    Angelica gigas Nakai is an important medicinal plant with health promoting properties that is used to treat many disorders. In traditional herbal medicine, the root of this plant is used to promote blood flow, to treat anemia, and is used as sedative or tonic agent. The root contains various bioactive metabolites; in particular, decursin and decursinol (pyranocoumarin type components) have been reported to possess various pharmacological properties. Recently, several in vitro and in vivo studies have reported that the crude extracts and isolated components from the root of A. gigas exhibited neuroprotective and cognitive enhancement effects. Neuronal damage or death is the most important factor for many neurodegenerative diseases. In addition, recent studies have clearly demonstrated the possible mechanisms behind the neuroprotective action of extracts/compounds from the root of A. gigas. In the present review, we summarized the neuroprotective and cognitive enhancement effects of extracts and individual compounds from A. gigas root. PMID:28452965

  6. Neuroprotective and Cognitive Enhancement Potentials of Angelica gigas Nakai Root: A Review.

    PubMed

    Sowndhararajan, Kandhasamy; Kim, Songmun

    2017-04-28

    Angelica gigas Nakai is an important medicinal plant with health promoting properties that is used to treat many disorders. In traditional herbal medicine, the root of this plant is used to promote blood flow, to treat anemia, and is used as sedative or tonic agent. The root contains various bioactive metabolites; in particular, decursin and decursinol (pyranocoumarin type components) have been reported to possess various pharmacological properties. Recently, several in vitro and in vivo studies have reported that the crude extracts and isolated components from the root of A. gigas exhibited neuroprotective and cognitive enhancement effects. Neuronal damage or death is the most important factor for many neurodegenerative diseases. In addition, recent studies have clearly demonstrated the possible mechanisms behind the neuroprotective action of extracts/compounds from the root of A. gigas . In the present review, we summarized the neuroprotective and cognitive enhancement effects of extracts and individual compounds from A. gigas root.

  7. Progesterone Inhibition of Neuronal Calcium Signaling Underlies Aspects of Progesterone-Mediated Neuroprotection

    PubMed Central

    Luoma, Jessie I; Stern, Christopher M; Mermelstein, Paul G.

    2011-01-01

    Progesterone is being utilized as a therapeutic means to ameliorate neuron loss and cognitive dysfunction following traumatic brain injury Although there have been numerous attempts to determine the means by which progesterone exerts neuroprotective effects, studies describing the underlying molecular mechanisms are lacking What has become clear, however, is the notion that progesterone can thwart several physiological processes that are detrimental to neuron function and survival, including inflammation, edema, demyelination and excitotoxicity One clue regarding the means by which progesterone has restorative value comes from the notion that these aforementioned biological processes all share the common theme of eliciting pronounced increases in intracellular calcium. Thus, we propose the hypothesis that progesterone regulation of calcium signaling underlies its ability to mitigate these cellular insults, ultimately leading to neuroprotection. Further, we describe recent findings that indicate neuroprotection is achieved via progesterone block of voltage-gated calcium channels, although additional outcomes may arise from blockade of various other ion channels and neurotransmitter receptors. PMID:22101209

  8. Discovery of Benzofuran Derivatives that Collaborate with Insulin-Like Growth Factor 1 (IGF-1) to Promote Neuroprotection.

    PubMed

    Wakabayashi, Takeshi; Tokunaga, Norihito; Tokumaru, Kazuyuki; Ohra, Taiichi; Koyama, Nobuyuki; Hayashi, Satoru; Yamada, Ryuji; Shirasaki, Mikio; Inui, Yoshitaka; Tsukamoto, Tetsuya

    2016-05-26

    A series of benzofuran derivatives with neuroprotective activity in collaboration with IGF-1 was discovered using a newly developed cell-based assay involving primary neural cells prepared from rat hippocampal and cerebral cortical tissues. A structure-activity relationship study identified compound 8 as exhibiting potent activity and brain penetrability. An in vitro pharmacological study demonstrated that although IGF-1 and 8 individually exhibited the neuroprotective effect, the latter acted in collaboration with IGF-1 to enhance neuroprotective activity.

  9. Beta-globin gene cluster haplotypes of Amerindian populations from the Brazilian Amazon region.

    PubMed

    Guerreiro, J F; Figueiredo, M S; Zago, M A

    1994-01-01

    We have determined the beta-globin cluster haplotypes for 80 Indians from four Brazilian Amazon tribes: Kayapó, Wayampí, Wayana-Apalaí, and Arára. The results are analyzed together with 20 Yanomámi previously studied. From 2 to 4 different haplotypes were identified for each tribe, and 7 of the possible 32 haplotypes were found in a sample of 172 chromosomes for which the beta haplotypes were directly determined or derived from family studies. The haplotype distribution does not differ significantly among the five populations. The two most common haplotypes in all tribes were haplotypes 2 and 6, with average frequencies of 0.843 and 0.122, respectively. The genetic affinities between Brazilian Indians and other human populations were evaluated by estimates of genetic distance based on haplotype data. The lowest values were observed in relation to Asians, especially Chinese, Polynesians, and Micronesians.

  10. Identification of Potentially Neuroprotective Genes Upregulated by Neurotrophin Treatment of CA3 Neurons in the Injured Brain

    PubMed Central

    Malik, Saafan Z.; Motamedi, Shahab; Royo, Nicolas C.; LeBold, David

    2011-01-01

    Abstract Specific neurotrophic factors mediate histological and/or functional improvement in animal models of traumatic brain injury (TBI). In previous work, several lines of evidence indicated that the mammalian neurotrophin NT-4/5 is neuroprotective for hippocampal CA3 pyramidal neurons after experimental TBI. We hypothesized that NT-4/5 neuroprotection is mediated by changes in the expression of specific sets of genes, and that NT-4/5-regulated genes are potential therapeutic targets for blocking delayed neuronal death after TBI. In this study, we performed transcription profiling analysis of CA3 neurons to identify genes regulated by lateral fluid percussion injury, or by treatment with the trkB ligands NT-4/5 or brain-derived neurotrophic factor (BDNF). The results indicate extensive overlap between genes upregulated by neurotrophins and genes upregulated by injury, suggesting that the mechanism behind neurotrophin neuroprotection may mimic the brain's endogenous protective response. A subset of genes selected for further study in vitro exhibited neuroprotection against glutamate excitotoxicity. The neuroprotective genes identified in this study were upregulated at 30 h post-injury, and are thus expected to act during a clinically useful time frame of hours to days after injury. Modulation of these factors and pathways by genetic manipulation or small molecules may confer hippocampal neuroprotection in vivo in preclinical models of TBI. PMID:21083427

  11. Role of Methylene Blue in Trauma Neuroprotection and Neuropsychiatric Diseases.

    PubMed

    Batista-Filho, Mário Márcio Vasconcelos; Kandratavicius, Ludmyla; Nunes, Emerson Arcoverde; Tumas, Vitor; Colli, Benedicto O; Hallak, Jaime E C; Maia-de-Oliveira, João Paulo; Evora, Paulo Roberto B

    2016-01-01

    The prevalence of central nervous system trauma, neurodegenerative and psychiatric diseases has significantly increased in recent years. Most of these diseases show multifactorial causes and several progression mechanisms. The search for a medication which positively interferes in these mechanisms and thereby changes the course of these diseases is of great scientific interest. The aim of the present review is to assess current literature on the possible role of methylene blue (MB) in the central nervous system due to the increasing number of citations in spite of the few articles available on the subject which suggest growing interest in the protective effects of MB on the central nervous system. Searches were performed on PubMed and Thomson Reuters Web of Knowledge. Therefore, we provide an overview of existing articles concerning: 1) MB actions; 2) MB neuroprotection and cardiac arrest; 3) MB neuroprotection and degenerative brain diseases; 4) MB neuroprotection and psychiatric diseases. PubMed was chosen because it holds the highest number of articles on the subject, Thomson Reuters was chosen due to its functionality which evaluates citations through analytic graphs. We conclude that MB has a beneficial effect and acts through many mechanisms and pathways of the central nervous system, being a potential alternative for the treatment of many neurodegenerative and psychiatric diseases.

  12. Treatment of laser-induced retinal injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1997-05-01

    Retinal laser photocoagulation treatments are often complicated with immediate side-effect of visual impairment. To determine whether glutamate-receptor blockers can serve as adjuvant neuroprotective therapy, we examined the effect of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Argon laser retinal lesions were created in the retina of 36 DA rats. Treatment with intraperitoneal injections of MK-801 or saline was started immediately after the laser photocoagulation. The animals were sacrificed after 3, 20 or 60 days and the retinal lesions were evaluated histologically and morphometrically. Photoreceptor-cell loss was significantly smaller in MK-801-treated rats than controls. The proliferative membrane composed of retinal pigment epithelial cells which was seen at the base of the lesion in control retinas, was smaller in the MK-801-treated retinas. MK-801 exhibited neuroprotective and anti-proliferative properties in the retina. Glutamate-receptor blockers should be further investigated for serving as adjuvant therapy to retinal photocoagulation treatments.

  13. Sigma receptors as potential therapeutic targets for neuroprotection.

    PubMed

    Nguyen, Linda; Kaushal, Nidhi; Robson, Matthew J; Matsumoto, Rae R

    2014-11-15

    Sigma receptors comprise a unique family of proteins that have been implicated in the pathophysiology and treatment of many central nervous system disorders, consistent with their high level of expression in the brain and spinal cord. Mounting evidence indicate that targeting sigma receptors may be particularly beneficial in a number of neurodegenerative conditions including Alzheimer׳s disease, Parkinson׳s disease, stroke, methamphetamine neurotoxicity, Huntington׳s disease, amyotrophic lateral sclerosis, and retinal degeneration. In this perspective, a brief overview is given on sigma receptors, followed by a focus on common mechanisms of neurodegeneration that appear amenable to modulation by sigma receptor ligands to convey neuroprotective effects and/or restorative functions. Within each of the major mechanisms discussed herein, the neuroprotective effects of sigma ligands are summarized, and when known, the specific sigma receptor subtype(s) involved are identified. Together, the literature suggests sigma receptors may provide a novel target for combatting neurodegenerative diseases through both neuronal and glial mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Pharmacological treatment of laser eye injuries by neuroprotection

    NASA Astrophysics Data System (ADS)

    Solberg, Yoram; Rosner, Mordechai; Belkin, Michael

    1996-04-01

    Many retinal injuries result in an irreversible neuronal loss, which can not yet be reduced by pharmacological methods. To determine whether glutamate-receptor blockers can serve as neuroprotective agents in the retina, as they do in the central nervous system, we examined the effects of MK-801, an NMDA-receptor antagonist, on laser-induced retinal injury in a rat model. Immediately and 8 h after argon laser retinal photocoagulation, rats were treated with intraperitoneal injections of MK-801 (3 mg/kg) or saline. After 3, 20 or 60 days the animals were sacrificed and their retinal lesions were evaluated histologically and morphometrically. Photoreceptor cell loss, both immediately and up to 2 months after laser irradiation, was significantly smaller in MK-801-treated rats than controls. MK-801 exhibits neuroprotective property in the retina. This points to the involvement of glutamate in the laser-induced retinal neuronal damage. Glutamate-receptor blockers should be further investigated for therapy of retinal diseases characterized by neuronal cell destruction.

  15. Neuroprotection by 6-(methylsulfinyl)hexyl isothiocyanate in a 6-hydroxydopamine mouse model of Parkinson׳s disease.

    PubMed

    Morroni, Fabiana; Sita, Giulia; Tarozzi, Andrea; Cantelli-Forti, Giorgio; Hrelia, Patrizia

    2014-11-17

    A number of pathogenic factors have been implicated in the progression of Parkinson׳s disease (PD), including oxidative stress, mitochondrial dysfunction, inflammation, excitotoxicity, and signals mediating apoptosis cascade. 6-(methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major component in wasabi, a very popular spice in Japan and a member of the Brassica family of vegetables. This study was designed to investigate the neuroprotective effects of 6-MSITC in a PD mouse model. Mice were treated with 6-MSITC (5mg/kg twice a week) for four weeks after the unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). On the 28th day, 6-OHDA-injected mice showed behavioral impairments, a significant decrease in tyrosine hydroxylase (TH) and an increase in apoptosis. In addition, lesioned mice showed reduced glutathione levels and glutathione-S-transferase and glutathione reductase activities. Notably, 6-MSITC demonstrated neuroprotective effects in our experimental model strongly related to the preservation of functional nigral dopaminergic neurons, which contributed to the reduction of motor dysfunction induced by 6-OHDA. Furthermore, this study provides evidence that the beneficial effects of 6-MSITC could be attributed to the decrease of apoptotic cell death and to the activation of glutathione-dependent antioxidant systems. These findings may render 6-MSITC as a promising molecule for further pharmacological studies on the investigation for disease-modifying treatment in PD. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Biological basis of neuroprotection and neurotherapeutic effects of Whole Body Periodic Acceleration (pGz).

    PubMed

    Adams, Jose A; Uryash, Arkady; Bassuk, Jorge; Sackner, Marvin A; Kurlansky, Paul

    2014-06-01

    Exercise is a well known neuroprotective and neurotherapeutic strategy in animal models and humans with brain injury and cognitive dysfunction. In part, exercise induced beneficial effects relate to endothelial derived nitric oxide (eNO) production and induction of the neurotrophins; Brain Derived Neurotrophic Factor (BDNF) and Glial Derived Neurotrophic Factor (GDNF). Whole Body Periodic Acceleration (WBPA (pGz), is the motion of the supine body headward to footward in a sinusoidal fashion, at frequencies of 100-160 cycles/min, inducing pulsatile shear stress to the vascular endothelium. WBPA (pGz) increases eNO in the cardiovascular system in animal models and humans. We hypothesized that WBPA (pGz) has neuroprotective and neurotherapeutic effects due to enhancement of biological pathways that include eNOS, BDNF and GDNF. We discuss protein expression analysis of these in brain of rodents. Animal and observational human data affirm a neuroprotective and neurotherapeutic role for WBPA (pGz). These findings suggest that WBPA (pGz) in addition to its well known beneficial cardiovascular effects can be a simple non-invasive neuroprotective and neurotherapeutic strategy with far reaching health benefits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Insights into the molecular aspects of neuroprotective Bacoside A and Bacopaside I.

    PubMed

    Sekhar, Vini C; Viswanathan, Gayathri; Baby, Sabulal

    2018-04-19

    Bacopa monnieri, commonly known as Brahmi, has been extensively used as a neuromedicine for various disorders such as anxiety, depression and memory loss. Chemical characterization studies revealed the major active constituents of the herb as the triterpenoid saponins, bacosides. Bacoside A, the vital neuroprotective constituent, is composed of four constituents viz., bacoside A3, bacopaside II, jujubogenin isomer of bacopasaponin C (bacopaside X) and bacopasaponin C. B. monnieri extracts as well as bacosides successfully establish a healthy antioxidant environment in various tissues especially in liver and brain. Free radical scavenging, suppression of lipid peroxidation and activation of antioxidant enzymes by bacosides help to attain a physiological state of minimized oxidative stress. The molecular basis of neuroprotective activity of bacosides is attributed to the regulation of mRNA translation and surface expression of neuroreceptors such as AMPAR, NMDAR and GABAR in the various parts of the brain. Bioavailability as well as binding of neuroprotective agents (such as bacosides) to these receptors is controlled by the Blood Brain Barrier (BBB). However, nano conversion of these drug candidates easily resolves the BBB restriction and carries a promising role in future therapies. This review summarizes the neuroprotective functions of the B. monnieri extracts as well as its active compounds (bacoside A, bacopaside I) and the molecular mechanisms responsible for these pharmacological activities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. A Pharmacological Screening Approach for Discovery of Neuroprotective Compounds in Ischemic Stroke

    PubMed Central

    Beraki, Simret; Litrus, Lily; Soriano, Liza; Monbureau, Marie; To, Lillian K.; Braithwaite, Steven P.; Nikolich, Karoly; Urfer, Roman; Oksenberg, Donna; Shamloo, Mehrdad

    2013-01-01

    With the availability and ease of small molecule production and design continuing to improve, robust, high-throughput methods for screening are increasingly necessary to find pharmacologically relevant compounds amongst the masses of potential candidates. Here, we demonstrate that a primary oxygen glucose deprivation assay in primary cortical neurons followed by secondary assays (i.e. post-treatment protocol in organotypic hippocampal slice cultures and cortical neurons) can be used as a robust screen to identify neuroprotective compounds with potential therapeutic efficacy. In our screen about 50% of the compounds in a library of pharmacologically active compounds displayed some degree of neuroprotective activity if tested in a pre-treatment toxicity assay but just a few of these compounds, including Carbenoxolone, remained active when tested in a post-treatment protocol. When further examined, Carbenoxolone also led to a significant reduction in infarction size and neuronal damage in the ischemic penumbra when administered six hours post middle cerebral artery occlusion in rats. Pharmacological testing of Carbenoxolone-related compounds, acting by inhibition of 11-β-hydroxysteroid dehydrogenase-1 (11β-HSD1), gave rise to similarly potent in vivo neuroprotection. This indicates that the increase of intracellular glucocorticoid levels mediated by 11β-HSD1 may be involved in the mechanism that exacerbates ischemic neuronal cell death, and inhibiting this enzyme could have potential therapeutic value for neuroprotective therapies in ischemic stroke and other neurodegenerative disorders associated with neuronal injury. PMID:23874920

  19. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    DTIC Science & Technology

    2001-10-01

    to evaluate the neuroprotective effect of dextromethorphan, memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods: Argon...dextromethorphan, memantine or brimonidine. The control groups (18 rats for each compound) received the solvent at the same volume and schedule as...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Systemic treatments with dextromethorphan, memantine or brimonidine

  20. Bench-to-bedside review: Molecular pharmacology and clinical use of inert gases in anesthesia and neuroprotection

    PubMed Central

    2010-01-01

    In the past decade there has been a resurgence of interest in the clinical use of inert gases. In the present paper we review the use of inert gases as anesthetics and neuroprotectants, with particular attention to the clinical use of xenon. We discuss recent advances in understanding the molecular pharmacology of xenon and we highlight specific pharmacological targets that may mediate its actions as an anesthetic and neuroprotectant. We summarize recent in vitro and in vivo studies on the actions of helium and the other inert gases, and discuss their potential to be used as neuroprotective agents. PMID:20836899

  1. Selecting Patients for Intra-arterial Therapy in the Context of a Clinical Trial for Neuroprotection

    PubMed Central

    Lyden, Patrick; Weymer, Sara; Coffey, Chris; Cudkowicz, Merit; Berg, Samantha; O’Brien, Sarah; Fisher, Marc; Haley, E. Clarke; Khatri, Pooja; Saver, Jeff; Levine, Steven; Levy, Howard; Rymer, Marilyn; Wechsler, Lawrence; Jadhav, Ashutosh; McNeil, Elizabeth; Waddy, Salina; Pryor, Kent

    2016-01-01

    Background and Purpose The advent of intra-arterial neurothrombectomy (IAT) for acute ischemic stroke opens a potentially transformative opportunity to improve neuroprotection studies. Combining a putative neuroprotectant with recanalization could produce more powerful trials but could introduce heterogeneity and adverse event possibilities. We sought to demonstrate feasibility of IAT in neuroprotectant trials by defining IAT selection criteria for an ongoing neuroprotectant clinical trial. Methods The study drug, 3K3A-APC, is a pleiotropic cytoprotectant and may reduce thrombolysis associated hemorrhage. The NeuroNEXT trial NN104 (RHAPSODY) is designed to establish a maximally tolerated dose of 3K3A-APC. Each trial site provided their IAT selection criteria. An expert panel reviewed site criteria and published evidence. Finally, the trial leadership designed IAT selection criteria. Results Derived selection criteria reflected consistency among the sites and comparability to published IAT trials. A protocol amendment allowing IAT (and relaxed age, NIHSS, and time limits) in the RHAPSODY trial was implemented on June 15, 2015. Recruitment before and after the amendment improved from 8 enrolled patients (601 screened, 1.3%) to 51 patients (821 screened, 6.2%), OR [95%CL] of 4.9 [2.3,10.4], p<0.001). Gross recruitment was 0.11 patients/site/month vs. 0.43 patients/site/month, respectively, before and after the amendment. Conclusions It is feasible to include IAT in a neuroprotectant trial for acute ischemic stroke. Criteria are presented for including such patients in a manner that is consistent with published evidence for IAT while still preserving the ability to test the role of the putative neuroprotectant. Clinical Trial Registration Clinical Trial Registration-URL: http://www.clinicaltrials.gov. Unique identifier: NCT02222714. PMID:27803392

  2. Selecting Patients for Intra-Arterial Therapy in the Context of a Clinical Trial for Neuroprotection.

    PubMed

    Lyden, Patrick; Weymer, Sara; Coffey, Chris; Cudkowicz, Merit; Berg, Samantha; O'Brien, Sarah; Fisher, Marc; Haley, E Clarke; Khatri, Pooja; Saver, Jeff; Levine, Steven; Levy, Howard; Rymer, Marilyn; Wechsler, Lawrence; Jadhav, Ashutosh; McNeil, Elizabeth; Waddy, Salina; Pryor, Kent

    2016-12-01

    The advent of intra-arterial neurothrombectomy (IAT) for acute ischemic stroke opens a potentially transformative opportunity to improve neuroprotection studies. Combining a putative neuroprotectant with recanalization could produce more powerful trials but could introduce heterogeneity and adverse event possibilities. We sought to demonstrate feasibility of IAT in neuroprotectant trials by defining IAT selection criteria for an ongoing neuroprotectant clinical trial. The study drug, 3K3A-APC, is a pleiotropic cytoprotectant and may reduce thrombolysis-associated hemorrhage. The NeuroNEXT trial NN104 (RHAPSODY) is designed to establish a maximally tolerated dose of 3K3A-APC. Each trial site provided their IAT selection criteria. An expert panel reviewed site criteria and published evidence. Finally, the trial leadership designed IAT selection criteria. Derived selection criteria reflected consistency among the sites and comparability to published IAT trials. A protocol amendment allowing IAT (and relaxed age, National Institutes of Health Stroke Scale, and time limits) in the RHAPSODY trial was implemented on June 15, 2015. Recruitment before and after the amendment improved from 8 enrolled patients (601 screened, 1.3%) to 51 patients (821 screened, 6.2%; odds ratio [95% confidence limit] of 4.9 [2.3-10.4]; P<0.001). Gross recruitment was 0.11 patients per site month versus 0.43 patients per site per month, respectively, before and after the amendment. It is feasible to include IAT in a neuroprotectant trial for acute ischemic stroke. Criteria are presented for including such patients in a manner that is consistent with published evidence for IAT while still preserving the ability to test the role of the putative neuroprotectant. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02222714. © 2016 American Heart Association, Inc.

  3. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study.

    PubMed

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-06-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain-blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke.

  4. [60]Fullerene-based monolayers as neuroprotective biocompatible hybrid materials.

    PubMed

    Giust, Davide; Albasanz, José Luis; Martín, Mairena; Marega, Riccardo; Delforge, Arnaud; Bonifazi, Davide

    2011-10-14

    Here we report on the surface immobilization of redox-active [60]fullerene derivatives and the consequent neuroprotective effects toward l-glutamate induced excitotoxicity in human derived undifferentiated neuroblastoma cells. This journal is © The Royal Society of Chemistry 2011

  5. Neuroprotective therapy for argon-laser-induced retinal injury

    NASA Astrophysics Data System (ADS)

    Belkin, Michael; Rosner, Mordechai; Solberg, Yoram; Turetz, Yosef

    1999-06-01

    Laser photocoagulation treatment of the central retina is often complicated by an immediate side effect of visual impairment, caused by the unavoidable laser-induced destruction of the normal tissue lying adjacent to the lesion and not affected directly by the laser beam. Furthermore, accidental laser injuries are at present untreatable. A neuroprotective therapy for salvaging the normal tissue might enhance the benefit obtained from treatment and allow safe perifoveal photocoagulation. We have developed a rat model for studying the efficacy of putative neuroprotective compounds in ameliorating laser-induced retinal damage. Four compounds were evaluated: the corticosteroid methylprednisolone, the glutamate-receptor blocker MK-801, the anti-oxidant enzyme superoxide dismutase, and the calcim-overload antagonist flunarizine. The study was carried out in two steps: in the first, the histopathological development of retinal laser injuries was studied. Argon laser lesions were inflicted in the retinas of 18 pigmented rats. The animals were sacrificed after 3, 20 or 60 days and their retinal lesions were evaluated under the light microscope. The laser injury mainly involved the outer layers of the retina, where it destroyed significant numbers of photoreceptor cells. Over time, evidence of two major histopathological processes was observed: traction of adjacent nomral retinal cells into the central area of the lesion forming an internal retinal bulging, and a retinal pigmented epithelial proliferative reaction associated with subretinal neovascularization and invations of the retinal lesion site by phagocytes. The neuroprotective effects of each of the four compounds were verified in a second step of the study. For each drug tested, 12 rats were irradiated wtih argon laser inflictions: six of them received the tested agent while the other six were treated with the corresponding vehicle. Twenty days after laser expsoure, the rats were sacrificed and their lesions were

  6. [Similarity of cycloprolylglycine to piracetam in antihypoxic and neuroprotective effects].

    PubMed

    Kolisnikova, K N; Gudasheva, T A; Nazarova, G A; Antipov, T A; Voronina, T A; Seredenin, S B

    2012-01-01

    The antihypoxic activity of the endogenous cyclic dipeptide cycloprolylglycine (CPG) has been studied on a model of normobaric hypoxia with hypercapnia and its neuroprotective activity has been studied on a model of human neuroblastoma SH-SY5Y cell damage by 6-hydroxydopamine. It is established that CPG exhibits the antihypoxic activity at doses of 0.5 and 1.0 mg/kg (i.p.) on outbred and BALB/c mice, but not on C57B1/6 mice. The neuroprotective activity of CPG was detected in 10(-5) - 10(-8) M concentration range only when the treatment was carried out 24h before toxin introduction. The obtained data confirm the hypothesis that piracetam is a mimetic of the endogenous CPG neuropeptide.

  7. Cognitive and neuroprotective effects of chlorogenic acid.

    PubMed

    Heitman, Erin; Ingram, Donald K

    2017-01-01

    The aim of this review was to provide an overview of studies conducted to determine the effects of chlorogenic acid (CGA) on cognition and neurological health. A literature search was conducted using PubMed and various search terms including chlorogenic acid, CGA, memory, neuroscience, cognition, nutrition, antioxidant, pharmacokinetics, neuroprotection, and neurodegeneration. Many studies have linked CGA consumption to a wide range of health benefits, including neuroprotection, cardioprotection, weight loss, chemopreventive properties, anti-inflammatory activity, decreased blood pressure, decreased diet-induced insulin resistance, decreased blood pressure, anxiolytic effects, and antihyperalgesic effects. Pre-clinical and clinical studies both provide evidence that CGA supplementation could protect against neurological degeneration and the resulting diseases associated with oxidative stress in the brain; however, no formal, well-controlled studies have been performed to date. Recent research suggests that dietary consumption of CGA could produce a wide range of health benefits and physiological effects. There is also mounting evidence that the consumption of polyphenols, including CGA, in the diet could reduce the risk of developing neurodegenerative conditions. Further studies should be conducted with a focus on the effects of CGA on cognition and the nervous system and employing well-designed clinical studies.

  8. Striatal Pleiotrophin Overexpression Provides Functional and Morphological Neuroprotection in the 6-Hydroxydopamine Model

    PubMed Central

    Gombash, Sara E; Lipton, Jack W; Collier, Timothy J; Madhavan, Lalitha; Steece-Collier, Kathy; Cole-Strauss, Allyson; Terpstra, Brian T; Spieles-Engemann, Anne L; Daley, Brian F; Wohlgenant, Susan L; Thompson, Valerie B; Manfredsson, Fredric P; Mandel, Ronald J; Sortwell, Caryl E

    2012-01-01

    Neurotrophic factors are integrally involved in the development of the nigrostriatal system and in combination with gene therapy, possess great therapeutic potential for Parkinson's disease (PD). Pleiotrophin (PTN) is involved in the development, maintenance, and repair of the nigrostriatal dopamine (DA) system. The present study examined the ability of striatal PTN overexpression, delivered via psueudotyped recombinant adeno-associated virus type 2/1 (rAAV2/1), to provide neuroprotection and functional restoration from 6-hydroxydopamine (6-OHDA). Striatal PTN overexpression led to significant neuroprotection of tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc) and THir neurite density in the striatum, with long-term PTN overexpression producing recovery from 6-OHDA-induced deficits in contralateral forelimb use. Transduced striatal PTN levels were increased threefold compared to adult striatal PTN expression and approximated peak endogenous developmental levels (P1). rAAV2/1 vector exclusively transduced neurons within the striatum and SNpc with approximately half the total striatal volume routinely transduced using our injection parameters. Our results indicate that striatal PTN overexpression can provide neuroprotection for the 6-OHDA lesioned nigrostriatal system based upon morphological and functional measures and that striatal PTN levels similar in magnitude to those expressed in the striatum during development are sufficient to provide neuroprotection from Parkinsonian insult. PMID:22008908

  9. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies.

    PubMed

    Maalouf, Marwan; Rho, Jong M; Mattson, Mark P

    2009-03-01

    Both calorie restriction and the ketogenic diet possess broad therapeutic potential in various clinical settings and in various animal models of neurological disease. Following calorie restriction or consumption of a ketogenic diet, there is notable improvement in mitochondrial function, a decrease in the expression of apoptotic and inflammatory mediators and an increase in the activity of neurotrophic factors. However, despite these intriguing observations, it is not yet clear which of these mechanisms account for the observed neuroprotective effects. Furthermore, limited compliance and concern for adverse effects hamper efforts at broader clinical application. Recent research aimed at identifying compounds that can reproduce, at least partially, the neuroprotective effects of the diets with less demanding changes to food intake suggests that ketone bodies might represent an appropriate candidate. Ketone bodies protect neurons against multiple types of neuronal injury and are associated with mitochondrial effects similar to those described during calorie restriction or ketogenic diet treatment. The present review summarizes the neuroprotective effects of calorie restriction, of the ketogenic diet and of ketone bodies, and compares their putative mechanisms of action.

  10. Contribution of long-range interactions to the secondary structure of an unfolded globin.

    PubMed

    Fedyukina, Daria V; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C; Eun, Ye-Jin; Cavagnero, Silvia

    2010-09-08

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an alpha-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable alpha-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Contribution of Long-Range Interactions to the Secondary Structure of an Unfolded Globin

    PubMed Central

    Fedyukina, Daria V.; Rajagopalan, Senapathy; Sekhar, Ashok; Fulmer, Eric C.; Eun, Ye-Jin; Cavagnero, Silvia

    2010-01-01

    This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an α-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable α-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins. PMID:20816043

  12. Neuroprotective Treatment of Laser-Induced Retinal Injuries.

    DTIC Science & Technology

    1999-10-01

    evaluate the neuroprotective effect of dextromethorphan , which is FDA approved and clinically used drug, in our rat model of laser-induced retinal...lesions. Methods: Argon laser retinal lesions were inflicted in the eyes of 36 pigmented rats. The treated group received dextromethorphan 50 mg/kg...size and the magnitude of photoreceptor nuclei loss within the lesions. Conclusions: Dextromethorphan treatment is not effective in ameliorating the

  13. Neuroprotective effects of bisperoxovanadium on cerebral ischemia by inflammation inhibition.

    PubMed

    Mao, Lun-Lin; Hao, Dong-Lin; Mao, Xiao-Wei; Xu, Yuan-Feng; Huang, Ting-Ting; Wu, Bo-Na; Wang, Li-Hui

    2015-08-18

    PTEN is a dual specificity phosphatase and is implicated in inflammation and apoptosis of cerebral ischemia and reperfusion (I/R) injury. Bisperoxovanadium (Bpv), a specific inhibitor of PTEN's phosphatase activity, has demonstrated powerful neuroprotective properties. We investigated the neuroprotective roles of Bpv in the rat model of middle cerebral artery occlusion (MCAO) cerebral I/R injury, and explored the modulation of inflammatory mediators and PI3K/Akt/GSK-3β pathways by Bpv. Our results showed that treatment with Bpv (0.2 mg/kg/day) significantly decreased neurological deficit scores at 7 days after MCAO and infarct volume at 4 days after MCAO. The IL-10 concentration was increased and TNF-α concentration was decreased in the ischemic boundary zone of the cerebral cortex at 4 days after MCAO by Bpv. Furthermore, Bpv (0.2 mg/kg/day) treatment significantly reduced PTEN mRNA and protein levels and increased PI3K, Akt and p-GSK-3β proteins expression in the ischemic boundary zone of the cerebral cortex at 4 days after MCAO. In conclusions, Bpv treatment demonstrates neuroprotective effects on cerebral ischemia and reperfusion injury of ischemic stroke rats and is associated with its modulation of inflammatory mediator production and up-regulation of PTEN downstream proteins PI3K, Akt and p-GSK-3β. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Thrombolysis and neuroprotection in cerebral ischemia.

    PubMed

    Gutiérrez, M; Díez Tejedor, E; Alonso de Leciñana, M; Fuentes, B; Carceller, F; Roda, J M

    2006-01-01

    Stroke is a major cause of death and disability worldwide. The resulting burden on society grows with the increase in the incidence of stroke. The term brain attack was introduced to describe the acute presentation of stroke and emphasize the need for urgent action to remedy the situation. Though a large number of therapeutic agents, like thrombolytics, NMDA receptor antagonists, calcium channel blockers and antioxidants, have been used or are being evaluated, there is still a large gap between the benefits of these agents and the properties of an ideal drug for stroke. So far, only thrombolysis with rtPA within a 3-hour time window has been shown to improve the outcome of patients with ischemic stroke. Understanding the mechanisms of injury and neuroprotection in these diseases is important to target news sites for treating ischemia. Better evaluation of the drugs and increased similarity between the results of animal experimentation and in the clinical setting requires critical assessment of the selection of animal models and the parameters to be evaluated. Our laboratory has employed a rat embolic stroke model to investigate the combination of rtPA with citicoline as compared to monotherapy alone and investigated whether neuroprotection should be provided before or after thrombolysis in order to achieve a greater reduction of ischemic brain damage. Copyright 2006 S. Karger AG, Basel.

  15. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia.

    PubMed

    Herrmann, Oliver; Tarabin, Victoria; Suzuki, Shigeaki; Attigah, Nicolas; Coserea, Irinel; Schneider, Armin; Vogel, Johannes; Prinz, Simone; Schwab, Stefan; Monyer, Hannah; Brombacher, Frank; Schwaninger, Markus

    2003-04-01

    Although the function of fever is still unclear, it is now beyond doubt that body temperature influences the outcome of brain damage. An elevated body temperature is often found in stroke patients and denotes a bad prognosis. However, the pathophysiologic basis and treatment options of elevated body temperature after stroke are still unknown. Cerebral ischemia rapidly induced neuronal interleukin-6 (IL-6) expression in mice. In IL-6-deficient mice, body temperature was markedly decreased after middle cerebral artery occlusion (MCAO), but infarct size was comparable to that in control mice. If body temperature was controlled by external warming after MCAO, IL-6-deficient mice had a reduced survival, worse neurologic status, and larger infarcts than control animals. In cell culture, IL-6 exerted an antiapoptotic and neuroprotective effect. These data suggest that IL-6 is a key regulator of body temperature and an endogenous neuroprotectant in cerebral ischemia. Neuroprotective properties apparently compensate for its pyretic action after MCAO and enhance the safety of this endogenous pyrogen.

  16. Loss of Neuroprotective Factors in Neurodegenerative Dementias: The End or the Starting Point?

    PubMed Central

    Benussi, Luisa; Binetti, Giuliano; Ghidoni, Roberta

    2017-01-01

    Recent clinical, genetic and biochemical experimental evidences highlight the existence of common molecular pathways underlying neurodegenerative diseases. In this review, we will explore a key common pathological mechanism, i.e., the loss of neuroprotective factors, across the three major neurodegenerative diseases leading to dementia: Alzheimer's disease (AD), Frontotemporal dementia (FTD) and Lewy body dementia (LBD). We will report evidences that the Brain Derived Neurotrophic Factor (BDNF), the most investigated and characterized brain neurotrophin, progranulin, a multi-functional adipokine with trophic and growth factor properties, and cystatin C, a neuroprotective growth factor, are reduced in AD, FTD, and LBD. Moreover, we will review the molecular mechanism underlying the loss of neuroprotective factors in neurodegenerative diseases leading to dementia, with a special focus on endo-lysosomal pathway and intercellular communication mediated by extracellular vesicles. Exploring the shared commonality of disease mechanisms is of pivotal importance to identify novel potential therapeutic targets and to develop treatments to delay, slow or block disease progression. PMID:29249935

  17. Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NFkappaB.

    PubMed

    Dhandapani, Krishnan M; Wade, F Marlene; Wakade, Chandramohan; Mahesh, Virendra B; Brann, Darrell W

    2005-10-01

    Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NFkappaB, which was also important for neuroprotection. Akt inhibition prevented NFkappaB binding, suggesting a role for Akt in SCF-induced NFkappaB. Pharmacological inhibition of NFkappaB or dominant negative IkappaB also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NFkappaB-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NFkappaB-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease.

  18. To what extent have functional studies of ischaemia in animals been useful in the assessment of potential neuroprotective agents?

    PubMed

    Hunter, A J; Mackay, K B; Rogers, D C

    1998-02-01

    A general consensus is being reached on the use of a combination of mortality and functional end-points in clinical trials of neuroprotective agents. However, to date, few preclinical studies have examined the effects of putative neuroprotective agents on functional outcome after ischaemia. The data described in this review show the importance of combining both histopathological and neurobehavioural studies when evaluating the neuroprotective efficacy of anti-ischaemic agents in animal models of cerebral ischaemia. Here, Jackie Hunter, Ken Mackay and Derek Rogers argue that measures of functional improvement in models of ischaemia should be incorporated to characterize further the neuroprotection afforded by a compound that could aid the selection of doses and end-point measures in early clinical trials.

  19. Prenatal diagnosis of hemoglobinopathies: evaluation of techniques for analysing globin-chain synthesis in blood samples obtained by fetoscopy.

    PubMed Central

    Congote, L. F.; Hamilton, E. F.; Chow, J. C.; Perry, T. B.

    1982-01-01

    Three techniques for analysing hemoglobin synthesis in blood samples obtained by fetoscopy were evaluated. Of the fetuses studied, 12 were not at risk of genetic disorders, 10 were at risk of beta-thalassemia, 2 were at risk of sickle cell anemia and 1 was at risk of both diseases. The conventional method of prenatal diagnosis of hemoglobinopathies, involving the separation of globin chains labelled with a radioactive isotope on carboxymethyl cellulose (CMC) columns, was compared with a method involving globin-chain separation by high-pressure liquid chromatography (HPLC) and with direct analysis of labelled hemoglobin tetramers obtained from cell lysates by chromatography on ion-exchange columns. The last method is technically the simplest and can be used for diagnosing beta-thalassemia and sickle cell anemia. However, it gives spuriously high levels of adult hemoglobin in samples containing nonlabelled adult hemoglobin. HPLC is the fastest method for prenatal diagnosis of beta-thalassemia and may prove as reliable as the CMC method. Of the 13 fetuses at risk for hemoglobinopathies, 1 was predicted to be affected, and the diagnosis was confirmed in the abortus. Of 12 predicted to be unaffected, 1 was aborted spontaneously and was unavailable for confirmatory studies, as were 3 of the infants; however, the diagnosis was confirmed in seven cases and is awaiting confirmation when the infant in 6 months old in one case. Couples at risk of bearing a child with a hemoglobinopathy should be referred for genetic counselling before pregnancy or, at the latest, by the 12th week of gestation so that prenatal diagnosis can be attempted by amniocentesis, safer procedure, with restriction endonuclease analysis of the amniotic fluid cells. PMID:7139502

  20. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?

    PubMed Central

    Masino, Susan A.; Geiger, Jonathan D.

    2015-01-01

    Abnormal neuronal signaling caused by metabolic changes characterizes several neurological disorders, and in some instances metabolic interventions provide therapeutic benefits. Indeed, altering metabolism either by fasting or by maintaining a low-carbohydrate (ketogenic) diet might reduce epileptic seizures and offer neuroprotection in part because the diet increases mitochondrial biogenesis and brain energy levels. Here we focus on a novel hypothesis that a ketogenic diet-induced change in energy metabolism increases levels of ATP and adenosine, purines that are critically involved in neuron–glia interactions, neuromodulation and synaptic plasticity. Enhancing brain bioenergetics (ATP) and increasing levels of adenosine, an endogenous anticonvulsant and neuroprotective molecule, might help with understanding and treating a variety of neurological disorders. PMID:18471903

  1. Meclizine-induced enhanced glycolysis is neuroprotective in Parkinson disease cell models.

    PubMed

    Hong, Chien Tai; Chau, Kai-Yin; Schapira, Anthony H V

    2016-05-05

    Meclizine is a well-tolerated drug routinely used as an anti-histamine agent in the management of disequilibrium. Recently, meclizine has been assessed for its neuroprotective properties in ischemic stroke and Huntington disease models. We found that meclizine protected against 6-hydroxydopamine-induced apoptosis and cell death in both SH-SY5Y cells and rat primary cortical cultures. Meclizine increases the level of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which activates phosphofructokinase, a rate-determining enzyme of glycolysis. This protection is therefore mediated by meclizine's ability to enhance glycolysis and increase mitochondrial hyperpolarization. Meclizine represents an interesting candidate for further investigation to re-purpose for its potential to be neuroprotective in Parkinson disease.

  2. Decaffeinated Coffee and Nicotine-Free Tobacco Provide Neuroprotection in Drosophila Models of Parkinson's Disease through an NRF2-Dependent Mechanism

    PubMed Central

    Trinh, Kien; Andrews, Laurie; Krause, James; Hanak, Tyler; Lee, Daewoo; Gelb, Michael

    2010-01-01

    Epidemiological studies have revealed a significantly reduced risk of Parkinson's disease (PD) among coffee and tobacco users, although it is unclear whether these correlations reflect neuroprotective/symptomatic effects of these agents or preexisting differences in the brains of tobacco and coffee users. Here, we report that coffee and tobacco, but not caffeine or nicotine, are neuroprotective in fly PD models. We further report that decaffeinated coffee and nicotine-free tobacco are as neuroprotective as their caffeine and nicotine-containing counterparts and that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco are also evident in Drosophila models of Alzheimer's disease and polyglutamine disease. Finally, we report that the neuroprotective effects of decaffeinated coffee and nicotine-free tobacco require the cytoprotective transcription factor Nrf2 and that a known Nrf2 activator in coffee, cafestol, is also able to confer neuroprotection in our fly models of PD. Our findings indicate that coffee and tobacco contain Nrf2-activating compounds that may account for the reduced risk of PD among coffee and tobacco users. These compounds represent attractive candidates for therapeutic intervention in PD and perhaps other neurodegenerative diseases. PMID:20410106

  3. The critical limiting temperature and selective brain cooling: neuroprotection during exercise?

    PubMed

    Marino, Frank E

    2011-01-01

    There is wide consensus that long duration exercise in the heat is impaired compared with cooler conditions. A common observation when examining exercise tolerance in the heat in laboratory studies is the critical limiting core temperature (CLT) and the apparent attenuation in central nervous system (CNS) drive leading to premature fatigue. Selective brain cooling (SBC) purportedly confers neuroprotection during exercise heat stress by attenuating the increase in brain temperature. As the CLT is dependent on heating to invoke a reduction in efferent drive, it is thus not compatible with SBC which supposedly attenuates the rise in brain temperature. Therefore, the CLT and SBC hypotheses cannot be complimentary if the goal is to confer neuroprotection from thermal insult as it is counter-intuitive to selectively cool the brain if the purpose of rising brain temperature is to down-regulate skeletal muscle recruitment. This presents a circular model for which there is no apparent end to the ultimate physiological outcome; a 'hot brain' selectively cooled in order to reduce the CNS drive to skeletal muscle. This review will examine the postulates of the CLT and SBC with their relationship to the avoidance of a 'hot brain' which together argue for a theoretical position against neuroprotection as the key physiological strategy in exercise-induced hyperthermia.

  4. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study

    PubMed Central

    Campos, Francisco; Sobrino, Tomás; Ramos-Cabrer, Pedro; Argibay, Bárbara; Agulla, Jesús; Pérez-Mato, María; Rodríguez-González, Raquel; Brea, David; Castillo, José

    2011-01-01

    As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain–blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke. PMID:21266983

  5. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster.

    PubMed

    Hosamani, Ravikumar; Muralidhara

    2009-11-01

    Bacopa monnieri, Linn. (Brahmi, BM), traditionally used to improve mental health in Indian ayurvedic system of medicine is known to possess various neuropharmacolgical properties. In the recent past, Drosophila has been widely used as a model to study various neurodegenerative diseases. Environmental toxins like rotenone, a specific inhibitor of complex I is employed to increase oxidative stress mediated neuropathology and sporadic Parkinson's disease. In this study, we examined the neuroprotective properties of BM against rotenone induced oxidative damage and neurotoxicity. Flies (Oregon K strain, adult males) exposed to a standardized BM powder for 7 days in the diet exhibited significant diminution in the levels of endogenous oxidative markers viz., malondialdehyde, hydroperoxide and protein carbonyl content. Further, BM offered complete protection against rotenone (500 microM) induced oxidative stress and markedly inhibited dopamine depletion (head region, 33%; body region, 44%) in flies. Flies exposed to rotenone+BM exhibited a lower incidence of mortality (40-66% protection) and performed better in a negative geotaxis assay (45-65%) both suggesting the neuroprotective potential of BM. Interestingly, BM also conferred significant resistance (43-54% protection) in a paraquat oxidative stress bioassay. The neuroprotective effects of BM were highly comparable to those of a commercially available Brahmi preparation. Although the precise mechanism/s underlying the neuroprotective efficacy of BM are not clear, it is hypothesized that it is wholly or in part related to its ability to mitigate rotenone induced oxidative stress. Further, our approach confirms the utility of the Drosophila model in screening putative neuroprotective phytomedicines prior to their use in mammalian models.

  6. The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity

    PubMed Central

    Yang, Hye Jin; Weon, Jin Bae; Lee, Bohyoung; Ma, Choong Je

    2011-01-01

    Background: Hwangryunhaedok-tang is a traditional herbal prescription that has sedative activity, hypotensive and anti-bacterial effects. Objective: In this study, we investigated the alteration of contents of components in Hwangryunhaedok-tang, antioxidant activity and neuroprotective activity by fermentation with Lactobacillus acidophilus KFRI 128. Materials and Methods: Contents of three marker compounds (geniposide, berberine and palmatine) and unknown compounds in the Hwangryunhaedok-tang (HR) and the fermented Hwangryunhaedok-tang (FHR) were measured and compared using the established high-performance liqued chromatograph coupled with a photodiode (HPLC-DAD) method. The antioxidant activity of HR and FHR were determined by DPPH free radical and hydrogen peroxide (H2O2) scavenging assay. Also, the neuroprotective activities of HR and FHR against glutamate-induced oxidative stress in a mouse hippocampal cell line (HT22) were evaluated by MTT assay. Results: The contents of geniposide and palmatine were decreased but the content of berberine was increased in the FHR. And the contents of unknown compounds (1), (2), (3), (4) and (5) in the HR were altered by fermentation. Electron donating activity (EDA, %) value of FHR was higher than HR for DPPH radical scavenging activity and H2O2 scavenging activity, respectively. In the MTT assay, FHR showed more potent neuroprotective activity than HR by 513.90%. Conclusion: The FHR using microorganism could convert compounds in HR and enhance the antioxidant and neuroprotective activity. PMID:21969791

  7. Neuroprotective effect of lidocaine: is there clinical potential?

    PubMed Central

    Leng, Tiandong; Gao, Xiuren; Dilger, James P; Lin, Jun

    2016-01-01

    Local anesthetic lidocaine has been shown to be protective in animal models of focal and global ischemia as well as in in vitro hypoxic models. Lidocaine has been tested in patients for its potential protective effect on postoperative cognitive dysfunction. This mini-review summarizes the laboratory and clinical evidences and discusses its clinical applications as neuroprotective agent. PMID:27186318

  8. Synthesis and Evaluation of Neuroprotective Selenoflavanones

    PubMed Central

    Choi, Yong-Sung; Kim, Dong-Myung; Kim, Yoon-Jung; Yang, Sai; Lee, Kyung-Tae; Ryu, Jong Hoon; Jeong, Jin-Hyun

    2015-01-01

    The physicochemical properties and antioxidant activity of a molecule could be improved by the substitution of an oxygen atom in a molecule with selenium. We synthesized selenoflavanones and flavanones to evaluate their neuroprotective effects. The selenoflavanones showed improved physicochemical properties, suggestive of the ability to pass through the blood-brain barrier (BBB). They showed in vitro antioxidant effects against hydrogen peroxide, and did not result in severe cytotoxicity. Moreover, infarction volumes in a transient ischemia mouse model were significantly reduced by the selenoflavanone treatments. PMID:26690420

  9. Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin

    PubMed Central

    Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela

    2012-01-01

    Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidant activity and can also increase the intracellular levels of glutathione (GSH), the major endogenous antioxidant. In addition, fisetin has both neurotrophic and anti-inflammatory activity. However, its relatively high EC50 in cell based assays, low lipophilicity, high tPSA and poor bioavailability suggest that there is room for medicinal chemical improvement. Here we describe a multi-tiered approach to screening that has allowed us to identify fisetin derivatives with significantly enhanced activity in an in vitro neuroprotection model while at the same time maintaining other key activities. PMID:22192055

  10. [The role of VEGF, HSP-70 and protein S-100B in the potentiation effect of the neuroprotective effect of hypercapnic hypoxia].

    PubMed

    Bespalov, A G; Tregub, P P; Kulikov, V P; Pijanzin, A I; Belousov, A A

    2014-01-01

    Studied the role of VEGF, HSP-70 and S-100B in potentiating hypercapnia neuroprotective effect of hypoxia. Demonstrated that neuroprotective effects when exposed hypercapnic hypoxia-mediated protein synthesis increased S-100B, mainly due to the action of carbon dioxide, and not oxygen deficiency. Neuroprotective effects of HSP-70 due to hypoxia, but the combined effect of hypoxia and hypercapnia gives a significant increase in the synthesis of HSP-70 in comparison with the isolated effect of hypoxia. Vascularization activated equally as hypoxia and hypercapnia, without adding significant effects in combination. This suggests dominant effect hypercapnia, hypoxia compared in neuroprotection mechanisms related to protein S-100B, but not the protein VEGF, hypercapnia and potentiate the neuroprotective efficacy of hypoxia-related protein HSP-70.

  11. Neuroprotective Effects of Galantamine on Nerve Agent-Induced Neuroglial and Biochemical Changes.

    PubMed

    Golime, RamaRao; Palit, Meehir; Acharya, J; Dubey, D K

    2018-05-01

    Neuroprotection from nerve agent such as soman-induced neural damage is a major challenge for existing drugs. Nerve agent exposure can cause many neural effects in survivors arising mainly due to acetylcholinesterase (AChE) inhibition or death within minutes. Unraveling the mechanisms underlying the nerve agent-induced multiple neurological effects is useful to develop better and safe drugs. The present study aimed to understand the molecular response during soman exposure and to evaluate the neuroprotective efficacy of galantamine on nerve agent-induced neurotoxic changes. mRNA expression studies using quantitative real-time PCR revealed significant changes in S-100β, Gfap, c-fos, and Bdnf in the hippocampus and piriform cortex after soman (90 μg/kg, s.c) exposure. Immunoblot analysis showed acute soman exposure significantly increased the protein levels of neuroglial markers (S100-β and GFAP); c-Fos and protein oxidation in discrete rat brain areas indicate their role in nerve agent-induced neurotoxicity. Induction of BDNF levels during soman exposure may indicate the recovery mechanisms activation. AChE was inhibited in the blood and brain up to 82% after soman exposure. Antidotal treatment with galantamine alone (3 mg/kg) and galantamine plus atropine (10 mg/kg) has protected animals from nerve agent-induced intoxication, death, and soman-inhibited AChE up to 45% in the blood and brain. Animal received galantamine displayed increased levels of neuroprotective genes (nAChRα-7, Bcl-2, and Bdnf) in the brain suggest the neuroprotective value of galantamine. Neuroglial changes, c-Fos, and protein oxidation levels significantly reduced after galantamine and galantamine plus atropine treatment indicate their potential antidotal value in nerve agent treatment.

  12. Novel analogues of chlormethiazole are neuroprotective in four cellular models of neurodegeneration by a mechanism with variable dependence on GABAA receptor potentiation

    PubMed Central

    VandeVrede, Lawren; Tavassoli, Ehsan; Luo, Jia; Qin, Zhihui; Yue, Lan; Pepperberg, David R; Thatcher, Gregory R

    2014-01-01

    Background and Purpose: Chlormethiazole (CMZ), a clinical sedative/anxiolytic agent, did not reach clinical efficacy in stroke trials despite neuroprotection demonstrated in numerous animal models. Using CMZ as a lead compound, neuroprotective methiazole (MZ) analogues were developed, and neuroprotection and GABAA receptor dependence were studied. Experimental Approach: Eight MZs were selected from a novel library, of which two were studied in detail. Neuroprotection, glutamate release, intracellular calcium and response to GABA blockade by picrotoxin were measured in rat primary cortical cultures using four cellular models of neurodegeneration. GABA potentiation was assayed in oocytes expressing the α1β2γ2 GABAA receptor. Key Results: Neuroprotection against a range of insults was retained even with substantial chemical modification. Dependence on GABAA receptor activity was variable: at the extremes, neuroprotection by GN-28 was universally sensitive to picrotoxin, while GN-38 was largely insensitive. In parallel, effects on extracellular glutamate and intracellular calcium were associated with GABAA dependence. Consistent with these findings, GN-28 potentiated α1β2γ2 GABAA function, whereas GN-38 had a weak inhibitory effect. Neuroprotection against moderate dose oligomeric Aβ1–42 was also tolerant to structural changes. Conclusions and Implications: The results support the concept that CMZ does not contain a single pharmacophore, rather that broad-spectrum neuroprotection results from a GABAA-dependent mechanism represented by GN-28, combined with a mechanism represented in GN-38 that shows the least dependence on GABAA receptors. These findings allow further refinement of the neuroprotective pharmacophore and investigation into secondary mechanisms that will assist in identifying MZ-based compounds of use in treating neurodegeneration. PMID:24116891

  13. Resveratrol, a neuroprotective supplement for Alzheimer's disease.

    PubMed

    Li, Fei; Gong, Qihai; Dong, Hongxin; Shi, Jingshan

    2012-01-01

    The polyphenolic compound resveratrol (3,4',5-trihydroxystilbene) is a naturally occurring phytochemical which has been found in more than 70 plant species, including herbs and human food products such as grapes, berries, and peanuts. Resveratrol was first isolated in 1940; however, little attention was paid to it until its benefits in coronary heart disease were studied in 1992. Since then, increasing evidence has indicated that resveratrol may be useful in treating cardiovascular diseases, cancers, pain, inflammation, tissue injury, and in reducing the risk of neurodegenerative disorders, especially Alzheimer's disease (AD). AD is characterized by a progressive dementia, and is one of the most common neurodegenerative disorders in the elderly. It has been reported that resveratrol exhibits neuroprotective benefits in animal models of AD. Resveratrol promotes the non-amyloidogenic cleavage of the amyloid precursor protein, enhances clearance of amyloid beta-peptides, and reduces neuronal damage. Despite the effort spent trying to understand the mechanisms by which resveratrol functions, the research work in this field is still incomplete. Many concerns such as bioavailability, biotransformation, synergism with other dietary factors, and risks inherent to its possible pro-oxidant activities still need to be addressed. This review summarizes and discusses the neuroprotective effects of resveratrol on AD, and their potential mechanisms.

  14. Neuroprotective effects of nicergoline in immortalized neurons.

    PubMed

    Sortino, M A; Battaglia, A; Pamparana, F; Carfagna, N; Post, C; Canonico, P L

    1999-03-05

    We studied the potential neuroprotective action of nicergoline in immortalized hypothalamic GT1-7 cells exposed to agents which deplete levels of reduced glutathione, thus causing oxidative stress and cell death. Treatment with diethylmaleate (1 mM), buthionine sulfoximine (500 microM) or menadione (10-50 microM) caused diffuse GT1-7 cell degeneration, as assessed by using either the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay or the fluorescent dyes fluorescein diacetate and propidium iodide. Pre- and/or co-exposure of the cells to nicergoline significantly prevented diethylmaleate- or buthionine sulfoximine-induced neuronal death, whereas nicergoline was ineffective against menadione-induced toxicity. This effect was concentration-dependent and was mimicked by the classical antioxidants idebenone and vitamin E, and did not depend on interference with protein kinase C. Interestingly, the antineurodegenerative activity of nicergoline and vitamin E or idebenone was not additive, suggesting that these compounds share some intracellular mechanism(s) responsible for their protective effects. In conclusion, the present data indicate that nicergoline has neuroprotective activity, possibly mediated by the antioxidant activity of the molecule, and give support to the potential use of nicergoline in the prevention and therapy of neurodegenerative diseases.

  15. Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents

    PubMed Central

    Lee, Boyeon; Clarke, Douglas; Al Ahmad, Abraham; Kahle, Michael; Parham, Christi; Auckland, Lisa; Shaw, Courtney; Fidanboylu, Mehmet; Orr, Anthony Wayne; Ogunshola, Omolara; Fertala, Andrzej; Thomas, Sarah A.; Bix, Gregory J.

    2011-01-01

    Stroke is the leading cause of long-term disability and the third leading cause of death in the United States. While most research thus far has focused on acute stroke treatment and neuroprotection, the exploitation of endogenous brain self-repair mechanisms may also yield therapeutic strategies. Here, we describe a distinct type of stroke treatment, the naturally occurring extracellular matrix fragment of perlecan, domain V, which we found had neuroprotective properties and enhanced post-stroke angiogenesis, a key component of brain repair, in rodent models of stroke. In both rat and mouse models, Western blot analysis revealed elevated levels of perlecan domain V. When systemically administered 24 hours after stroke, domain V was well tolerated, reached infarct and peri-infarct brain vasculature, and restored stroke-affected motor function to baseline pre-stroke levels in these multiple stroke models in both mice and rats. Post-stroke domain V administration increased VEGF levels via a mechanism involving brain endothelial cell α5β1 integrin, and the subsequent neuroprotective and angiogenic actions of domain V were in turn mediated via VEGFR. These results suggest that perlecan domain V represents a promising approach for stroke treatment. PMID:21747167

  16. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity.

    PubMed

    Bollimpelli, V Satish; Kumar, Prashant; Kumari, Sonali; Kondapi, Anand K

    2016-05-01

    Curcumin is known to have neuroprotective role and possess antioxidant, anti-inflammatory activities. Rotenone, a flavonoid induced neurotoxicity in dopaminergic cells is being widely studied in Parkinson's Disease (PD) research. In the present study, curcumin loaded lactoferrin nano particles prepared by sol-oil chemistry were used to protect dopaminergic cell line SK-N-SH against rotenone induced neurotoxicity. These curcumin loaded nano particles were of 43-60 nm diameter size and around 100 nm hydrodynamic size as assessed by transmission electron microscopy, atomic force microscopy and dynamic light scattering analysis respectively. The encapsulation efficiency was 61.3% ± 2.4%. Cellular uptake of curcumin through these nano particles was confirmed by confocal imaging and spectrofluorimetric analysis. The curcumin loaded lactoferrin nanoparticles showed greater intracellular drug uptake, sustained retention and greater neuroprotection than soluble counterpart. Neuroprotective activity was characterized through viability assays and by estimating ROS levels. Furthermore rotenone induced PD like features were characterized by decrease in tyrosine hydroxylase expression and increase in α-synuclein expression. Taken together curcumin loaded lactoferrin nanoparticles could be a promising drug delivery strategy against neurotoxicity in dopaminergic neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Phosphorylation of HSP27 by Protein Kinase D is Essential for Mediating Neuroprotection Against Ischemic Neuronal Injury

    PubMed Central

    Stetler, R. Anne; Gao, Yanqin; Zhang, Lili; Weng, Zhongfang; Zhang, Feng; Hu, Xiaoming; Wang, Suping; Vosler, Peter; Cao, Guodong; Sun, Dandan; Graham, Steven H.; Chen, Jun

    2012-01-01

    Heat shock protein 27 (HSP27, or HSPB1) exerts cytoprotection against many cellular insults, including cerebral ischemia. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical downstream target of HSP27 conferring the neuroprotective effects of HSP27 against neuronal ischemia. However, the function of HSP27 is highly influenced by post-translational modification, with differential cellular effects based on phosphorylation at specific serine residues. The role of phosphorylation in neuronal ischemic neuroprotection is currently unknown. We have created transgenic mice and viral vectors containing HSP27 mutated at three critical serine residues (Ser15, Ser78 and Ser82) to either alanine (HSP27-A, non-phosphorylatable) or aspartate (HSP27-D, phospho-mimetic) residues. Under both in vitro and in vivo neuronal ischemic settings, overexpression of wild-type HSP27 (HSP27) and HSP27-D, but not HSP27-A, was neuroprotective and inhibited downstream ASK1 signaling pathways. Consistently, overexpressed HSP27 was phosphorylated by endogenous mechanisms when neurons were under ischemic stress, and single point mutations identified Ser15 and Ser82 as critical for neuroprotection. Using a panel of inhibitors and gene knockdown approaches, we identified the upstream kinase protein kinase D (PKD) as the primary kinase targeting HSP27 directly for phosphorylation. PKD and HSP27 co-immunoprecipitated, and inhibition or knockdown of PKD abrogated the neuroprotective effects of HSP27 as well as the interaction with and inhibition of ASK1 signaling. Taken together, these data demonstrate that HSP27 requires PKD-mediated phosphorylation for its suppression of ASK1 cell death signaling and neuroprotection against ischemic injury. PMID:22357851

  18. Preclinical neuroprotective actions of xenon and possible implications for human therapeutics: a narrative review.

    PubMed

    Maze, Mervyn

    2016-02-01

    The purpose of this report is to facilitate an understanding of the possible application of xenon for neuroprotection in critical care settings. This narrative review appraises the literature assessing the efficacy and safety of xenon in preclinical models of acute ongoing neurologic injury. Databases of the published literature (MEDLINE® and EMBASE™) were appraised for peer-reviewed manuscripts addressing the use of xenon in both preclinical models and disease states of acute ongoing neurologic injury. For randomized clinical trials not yet reported, the investigators' declarations in the National Institutes of Health clinical trials website were considered. While not a primary focus of this review, to date, xenon cannot be distinguished as superior for surgical anesthesia over existing alternatives in adults. Nevertheless, studies in a variety of preclinical disease models from multiple laboratories have consistently shown xenon's neuroprotective properties. These properties are enhanced in settings where xenon is combined with hypothermia. Small randomized clinical trials are underway to explore xenon's efficacy and safety in clinical settings of acute neurologic injury where hypothermia is the current standard of care. According to the evidence to date, the neuroprotective efficacy of xenon in preclinical models and its safety in clinical anesthesia set the stage for the launch of randomized clinical trials to determine whether these encouraging neuroprotective findings can be translated into clinical utility.

  19. Taurine and its neuroprotective role.

    PubMed

    Kumari, Neeta; Prentice, Howard; Wu, Jang-Yen

    2013-01-01

    Taurine plays multiple roles in the CNS including acting as a -neuro-modulator, an osmoregulator, a regulator of cytoplasmic calcium levels, a trophic factor in development, and a neuroprotectant. In neurons taurine has been shown to prevent mitochondrial dysfunction and to protect against endoplasmic reticulum (ER) stress associated with neurological disorders. In cortical neurons in culture taurine protects against excitotoxicity through reversing an increase in levels of key ER signaling components including eIF-2-alpha and cleaved ATF6. The role of communication between the ER and mitochondrion is also important and examples are presented of protection by taurine against ER stress together with prevention of subsequent mitochondrial initiated apoptosis.

  20. Comparison of MicroRNAs Mediated in Reactivation of the γ-Globin in β-Thalassemia Patients, Responders and Non-Responders to Hydroxyurea.

    PubMed

    Hojjati, Mohammad T; Azarkeivan, Azita; Pourfathollah, Ali A; Amirizadeh, Naser

    2017-03-01

    Drug induction of Hb F seems to be an ideal therapy for patients with hemoglobin (Hb) disorders, and many efforts have been made to reveal the mechanism behind it. Thus, we examined in vivo expression of some microRNAs (miRNAs) that are thought to be involved in this process. Among β-thalassemia (β-thal) patients who were undergoing hydroxyurea (HU) therapy in the past 3 months and five healthy individuals, five responders and five non-responders, were also included in the study. Erythroid progenitors were isolated by magnetic activated cell sorting (MACS) and miRNA expression analyzed using reverse transcription-polymerase chain reaction (RT-PCR). We showed that γ-globin, miR-210 and miR-486-3p had higher levels in the responders than the non-responders group. Moreover, miR-150 and miR-320 had higher levels in the healthy group than both non-responders and responders groups, but the expression of miR-96 did not show any significant difference between the study groups. To the best of our knowledge, this is the first study proposing that 'induction of cellular hypoxic condition by Hb F inducing agents' could be the milestone of possible mechanisms that explain why responders are able to reactivate γ-globin genes and subsequently, more production of Hb F, in response to these agents in comparison to non-responders. However, further investigations need to be performed to verify this hypothesis.

  1. Neuroprotective Effects of Nonfeminizing Estrogens in Retinal Photoreceptor Neurons

    PubMed Central

    Nixon, Everett; Simpkins, James W.

    2012-01-01

    Purpose. Retinal diseases such as macular degeneration and glaucoma are disorders that target specific retinal neurons that can ultimately lead to vision loss. Under these conditions and pathologies, retinal neurons can die via apoptosis that may be due to increased oxidative stress. The neuroprotective effects of 17β-estradiol (E2) and three synthetic nonfeminizing estrogen analogs (ZYC-26, ZYC-23, and ZYC-3) were investigated to examine their abilities to protect retinal neurons against glutamate toxicity. Methods. Using an in vitro model of glutamate-induced cell death in 661W cells, a mouse cone photoreceptor cell line, shown to express both estrogen receptors (ERs) via immunoblotting, was pretreated with E2 and its analogs and cell viability were assessed. Results. It was observed that E2 and estrogen analogs, ZYC-26 and ZYC-3, were protective against a 5 mM glutamate insult in 661W cells. The neuroprotective abilities of ZYC-26 and ZYC-3 were autonomous of estrogen receptor-α (ERα) and ERβ demonstrated by their ability to protect in the presence of ICI 182780, a pan-ER antagonist with a high affinity for the estrogen receptor. Treatment with PPT and DPN, ERα- and ERβ-specific agonists, respectively, did not protect the 661W cells from the glutamate insult. Studying the membrane ER (mER) or GPR30 did show that activation of the receptor by G1 protected the retinal neuron from insult, whereas G15, an antagonist of the mER was not able to antagonize the protection previously seen. Conclusions. These data demonstrate that nonfeminizing estrogens may emerge as useful compounds for neuroprotection of retinal cells. PMID:22700711

  2. Tadalafil enhances the neuroprotective effects of ischemic postconditioning in mice, probably in a nitric oxide associated manner.

    PubMed

    Gulati, Puja; Singh, Nirmal

    2014-05-01

    This study investigates the modulatory effect of tadalafil, a selective phosphodiesterase (PDE-5) inhibitor, on the neuroprotective effects of ischemic postconditioning (iPoCo) in mice. Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was employed to produce ischemia and reperfusion induced cerebral injury. Cerebral infarct size was measured using TTC staining. Memory was assessed using the Morris water maze test. Degree of motor incoordination was evaluated using inclined beam-walking, rota-rod, and lateral push tests. Brain nitrite/nitrate, acetylcholinesterase activity, TBARS, and glutathione levels were also estimated. BCAO followed by reperfusion produced a significant increase in cerebral infarct size, brain nitrite/nitrate and TBARS levels, and acetylcholinesterase activity along with a reduction in glutathione. Marked impairment of memory and motor coordination was also noted. iPoCo consisting of 3 episodes of 10 s carotid artery occlusion and reperfusion instituted immediately after BCAO significantly decreased infarct size, memory impairment, motor incoordination, and altered biochemistry. Pretreatment with tadalafil mimicked the neuroprotective effects of iPoCo. The tadalafil-induced neuroprotective effects were significantly attenuated by l-NAME, a nonselective NOS inhibitor. We concluded that tadalafil mimics the neuroprotective effects of iPoCo, probably through a nitric oxide dependent pathway, and PDE-5 could be a target of interest with respect to the neuroprotective mechanism of iPoCo.

  3. Stimulation of the Rat Subthalamic Nucleus is Neuroprotective Following Significant Nigral Dopamine Neuron Loss

    PubMed Central

    Spieles-Engemann, A. L.; Behbehani, M. M.; Collier, T. J.; Wohlgenant, S. L.; Steece-Collier, K.; Paumier, K.; Daley, B. F.; Gombash, S.; Madhavan, L.; Mandybur, G. T.; Lipton, J.W.; Terpstra, B.T.; Sortwell, C.E.

    2010-01-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinson’s disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between two and four weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief. PMID:20307668

  4. Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds.

    PubMed

    de Los Rios, Cristobal; Cano-Abad, Maria F; Villarroya, Mercedes; López, Manuela G

    2018-01-01

    In this review, we show how chromaffin cells have contributed to evaluate neuroprotective compounds with diverse mechanisms of action. Chromaffin cells are considered paraneurons, as they share many common features with neurons: (i) they synthesize, store, and release neurotransmitters upon stimulation and (ii) they express voltage-dependent calcium, sodium, and potassium channels, in addition to a wide variety of receptors. All these characteristics, together with the fact that primary cultures from bovine adrenal glands or chromaffin cells from the tumor pheochromocytoma cell line PC12 are easy to culture, make them an ideal model to study neurotoxic mechanisms and neuroprotective drugs. In the first part of this review, we will analyze the different cytotoxicity models related to calcium dyshomeostasis and neurodegenerative disorders like Alzheimer's or Parkinson's. Along the second part of the review, we describe how different classes of drugs have been evaluated in chromaffin cells to determine their neuroprotective profile in different neurodegenerative-related models.

  5. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    PubMed

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the

  6. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism

    PubMed Central

    Kosaraju, Jayasankar; Chinni, Santhivardhan; Roy, Partha Deb; Kannan, Elango; Antony, A. Shanish; Kumar, M. N. Satish

    2014-01-01

    Objective: The present study investigates the neuroprotective activity of ethanol extract of Tinospora cordifolia aerial parts against 6-hydroxy dopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). Materials and Methods: T. cordifolia ethanol extract (TCEE) was standardized with high performance thin layer chromatography using berberine. Experimental PD was induced by intracerebral injection of 6-OHDA (8 μg). Animals were divided into five groups: sham operated, negative control, positive control (levodopa 6 mg/kg) and two experimental groups (n = 6/group). Experimental groups received 200 and 400 mg/kg of TCEE once daily for 30 days by oral gavage. Biochemical parameters including dopamine level, oxidative stress, complex I activity and brain iron asymmetry ratio and locomotor activity including skeletal muscle co-ordination and degree of catatonia were assessed. Results: TCEE exhibited significant neuroprotection by increasing the dopamine levels (1.96 ± 0.20 and 2.45 ± 0.40 ng/mg of protein) and complex I activity (77.14 ± 0.89 and 78.50 ± 0.96 nmol/min/mg of protein) at 200 and 400 mg/kg respectively when compared with negative control group. Iron asymmetry ratio was also significantly attenuated by TCEE at 200 (1.57 ± 0.18) and 400 mg/kg (1.11 ± 0.15) when compared with negative control group. Neuroprotection by TCEE was further supported by reduced oxidative stress and restored locomotor activity in treatment groups. Conclusion: Results show that TCEE possess significant neuroprotection in 6-OHDA induced PD by protecting dopaminergic neurons and reducing the iron accumulation. PMID:24741189

  7. Analysis of a Mouse α-Globin Gene Mutation Induced by Ethylnitrosourea

    PubMed Central

    Popp, R. A.; Bailiff, E. G.; Skow, L. C.; Johnson, F. M.; Lewis, Susan E.

    1983-01-01

    A DBA/2 mouse treated with ethylnitrosourea sired an offspring whose hemoglobin showed an extra band following starch gel electrophoresis. The variant hemoglobin migrated to a more cathodal position in starch gel. Isoelectric focusing indicated that chain 5 of the mutant hemoglobin migrated to a more cathodal position than the normal chain 5 from DBA/2 mice and that the other α-globin, chain 1, was not affected. On focusing gels the phenotype of the mutant allele, Hbay9, was expressed without dominance to normal chain 5, and Hbay9/Hbay9 homozygotes were fully viable in the laboratory. The molecular basis for the germinal mutation was investigated by analyzing the amino acid sequence of chain 5y9, the mutant form of α-chain 5. A single amino acid substitution (His → Leu) at position 89 was found in chain 5y9. We propose that ethylnitrosourea induced an A → T transversion in the histidine codon at position 89 (CAC → CTC). This mutation has apparently not been observed previously in humans, mice or other mammals, and its novel occurrence may be indicative of other unusual mutational events that do not ordinarily occur in the absence of specific mutagen exposure. PMID:6618166

  8. Homozygosity for the AATAAA > AATA- - Polyadenylation Site Mutation on the α2-Globin Gene Causing Transfusion-Dependent Hb H Disease in an Iranian Patient: A Case Report.

    PubMed

    Farashi, Samaneh; Garous, Negin F; Ashki, Mehri; Vakili, Shadi; Zeinali, Fatemeh; Imanian, Hashem; Azarkeivan, Azita; Giordano, Piero C; Najmabadi, Hossein

    2015-01-01

    We describe a case of Hb H disease associated with homozygosity for a two nucleotide deletion in the polyadenylation signal of the α2-globin gene (HBA2: c.*93_*94delAA). The patient, a 27-year-old son of a consanguineous couple, needs regular blood transfusions every 6 months.

  9. A restricted population of CB1 cannabinoid receptors with neuroprotective activity.

    PubMed

    Chiarlone, Anna; Bellocchio, Luigi; Blázquez, Cristina; Resel, Eva; Soria-Gómez, Edgar; Cannich, Astrid; Ferrero, José J; Sagredo, Onintza; Benito, Cristina; Romero, Julián; Sánchez-Prieto, José; Lutz, Beat; Fernández-Ruiz, Javier; Galve-Roperh, Ismael; Guzmán, Manuel

    2014-06-03

    The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies.

  10. On the role of endogenous neurotoxins and neuroprotection in Parkinson's disease.

    PubMed

    Segura-Aguilar, Juan

    2017-06-01

    For 50 years ago was introduced L-3,4-dihydroxyphenylalanine (L-dopa) in Parkinson's disease treatment and during this significant advances has been done but what trigger the degeneration of the nigrostriatal system remain unknown. There is a general agreement in the scientific community that mitochondrial dysfunction, protein degradation dysfunction, alpha-synuclein aggregation to neurotoxic oligomers, neuroinflammation, oxidative and endoplasmic reticulum stress are involved in the loss of dopaminergic neurons containing neuromelanin in Parkinson's disease. The question is what triggers these mechanisms. The age of normal onset in idiopathic Parkinson's disease suggests that environmental factors such as metals, pollutants or genetic mutations cannot be involved because these factors are related to early onset of Parkinsonism. Therefore, we have to search for endogenous neurotoxins and neuroprotection in order to understand what trigger the loss of dopaminergic neurons. One important feature of Parkinson's disease is the rate of the degenerative process before the motor symptoms are evident and during the disease progression. The extremely slow rate of Parkinson's disease suggests that the neurotoxins and the neuroprotection have to be related to dopamine metabolism. Possible candidates for endogenous neurotoxins are alpha-synuclein neurotoxic oligomers, 4-dihydroxyphenylacetaldehyde and ortho-quinones formed during dopamine oxidation to neuromelanin. Vesicular monoamine transporter-2, DT-diaphorase and glutathione transferase M2-2 seems to be the most important neuroprotective mechanism to prevent neurotoxic mechanism during dopamine oxidation.

  11. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region.

    PubMed Central

    Stamatoyannopoulos, J A; Goodwin, A; Joyce, T; Lowrey, C H

    1995-01-01

    The beta-like globin genes require the upstream locus control region (LCR) for proper expression. The active elements of the LCR coincide with strong erythroid-specific DNase I-hypersensitive sites (HSs). We have used 5' HS4 as a model to study the formation of these HSs. Previously, we identified a 101 bp element that is required for the formation of this HS. This element binds six proteins in vitro. We now report a mutational analysis of the HS4 HS-forming element (HSFE). This analysis indicates that binding sites for the hematopoietic transcription factors NF-E2 and GATA-1 are required for the formation of the characteristic chromatin structure of the HS following stable transfection into murine erythroleukemia cells. Similarly arranged NF-E2 and GATA binding sites are present in the other HSs of the human LCR, as well as in the homologous mouse and goat sequences and the chicken beta-globin enhancer. A combination of DNase I and micrococcal nuclease sensitivity assays indicates that the characteristic erythroid-specific hypersensitivity of HS4 to DNase I is the result of tissue-specific alterations in both nucleosome positioning and tertiary DNA structure. Images PMID:7828582

  12. Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon.

    PubMed

    Alam, Azeem; Suen, Ka Chun; Hana, Zac; Sanders, Robert D; Maze, Mervyn; Ma, Daqing

    Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The therapeutic potential of the cannabinoids in neuroprotection.

    PubMed

    Grundy, Robert I

    2002-10-01

    After thousands of years of interest the last few decades have seen a huge increase in our knowledge of the cannabinoids and their mode of action. Their potential as medical therapeutics has long been known. However, very real concerns over their safety and efficacy have lead to caution and suspicion when applying the legislature of modern medicine to these compounds. The ability of this diverse family of compounds to modulate neurotransmission and act as anti-inflammatory and antioxidative agents has prompted researchers to investigate their potential as neuroprotective agents. Indeed, various cannabinoids rescue dying neurones in experimental forms of acute neuronal injury, such as cerebral ischaemia and traumatic brain injury. Cannabinoids also provide symptomatic relief in experimental models of chronic neurodegenerative diseases, such as multiple sclerosis and Huntington's disease. This preclinical evidence has provided the impetus for the launch of a number of clinical trials in various conditions of neurodegeneration and neuronal injury using compounds derived from the cannabis plant. Our understanding of cannabinoid neurobiology, however, must improve if we are to effectively exploit this system and take advantage of the numerous characteristics that make this group of compounds potential neuroprotective agents.

  14. Neuroprotective Effect of Hydroxytyrosol in Experimental Diabetes Mellitus.

    PubMed

    Reyes, José Julio; Villanueva, Beatriz; López-Villodres, Juan Antonio; De La Cruz, José Pedro; Romero, Lidia; Rodríguez-Pérez, María Dolores; Rodriguez-Gutierrez, Guillermo; Fernández-Bolaños, Juan; González-Correa, José Antonio

    2017-06-07

    The aim of the study was to analyze the possible neuroprotective effect of hydroxytyrosol (HT) in diabetic animals in a model of hypoxia-reoxygenation. Rats (10 animals/group) were distributed in five groups: nondiabetic rats, control diabetic rats (DR), and DR rats treated for 2 months with 1, 5, or 10 mg/kg/day po HT. At the end of follow-up, an experimental model of hypoxia-reoxygenation in brain slices was tested. The DR group showed increased cell death, oxidative and nitrosative stress, and an increase in brain inflammatory mediators. These alterations were significantly greater in DR than in normoglycemic animals. HT significantly reduced oxidative (38.5-52.4% lipid peroxidation) and nitrosative stress (48.0-51.0% nitric oxide and 43.9-75.2% peroxynitrite concentration) and brain inflammatory mediators (18.6-40.6% prostaglandin E 2 and 17.0-65.0% interleukin 1β concentration). Cell death was reduced by 25.9, 37.5, and 41.0% after the administration of 1, 5, or 10 mg/kg/day. The administration of HT in rats with experimental diabetes thus had a neuroprotective effect.

  15. Conditioned Medium Derived from Neural Progenitor Cells Induces Long-term Post-ischemic Neuroprotection, Sustained Neurological Recovery, Neurogenesis, and Angiogenesis.

    PubMed

    Doeppner, Thorsten R; Traut, Viktorija; Heidenreich, Alexander; Kaltwasser, Britta; Bosche, Bert; Bähr, Mathias; Hermann, Dirk M

    2017-03-01

    Adult neural progenitor cells (NPCs) induce post-ischemic long-term neuroprotection and brain remodeling by releasing of survival- and plasticity-promoting mediators. To evaluate whether secreted factors may mimic neuroprotective and restorative effects of NPCs, we exposed male C57BL6 mice to focal cerebral ischemia and intravenously applied conditioned medium (CM) derived from subventricular zone NPCs. CM dose-dependently reduced infarct volume and brain leukocyte infiltration after 48 h when delivered up to 12 h after focal cerebral ischemia. Neuroprotection persisted in the post-acute stroke phase yielding enhanced neurological recovery that lasted throughout the 28-day observation period. Increased Bcl-2, phosphorylated Akt and phosphorylated STAT-3 abundance, and reduced caspase-3 activity and Bax abundance were noted in ischemic brains of CM-treated mice at 48 h post-stroke, indicative of enhanced cell survival signaling. Long-term neuroprotection was associated with increased brain glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) concentrations at 28 days resulting in increased neurogenesis and angiogenesis. The observation that NPC-derived CM induces sustained neuroprotection and neurological recovery suggests that cell transplantation may be dispensable when secreted factors are instead administered.

  16. Benzothiazepine CGP37157 and its isosteric 2'-methyl analogue provide neuroprotection and block cell calcium entry.

    PubMed

    González-Lafuente, Laura; Egea, Javier; León, Rafael; Martínez-Sanz, Francisco J; Monjas, Leticia; Perez, Concepción; Merino, Cristina; García-De Diego, Antonio M; Rodríguez-Franco, María I; García, Antonio G; Villarroya, Mercedes; López, Manuela G; de Los Ríos, Cristóbal

    2012-07-18

    Benzothiazepine CGP37157 is widely used as tool to explore the role of mitochondria in cell Ca(2+) handling, by its blocking effect of the mitochondria Na(+)/Ca(2+) exchanger. Recently, CGP37157 has shown to exhibit neuroprotective properties. In the trend to improve its neuroprotection profile, we have synthesized ITH12505, an isosteric analogue having a methyl instead of chlorine at C2' of the phenyl ring. ITH12505 has exerted neuroprotective properties similar to CGP37157 in chromaffin cells and hippocampal slices stressed with veratridine. Also, both compounds afforded neuroprotection in hippocampal slices stressed with glutamate. However, while ITH12505 elicited protection in SH-SY5Y cells stressed with oligomycin A/rotenone, CGP37157 was ineffective. In hippocampal slices subjected to oxygen/glucose deprivation plus reoxygenation, ITH12505 offered protection at 3-30 μM, while CGP37157 only protected at 30 μM. Both compounds caused blockade of Ca(2+) channels in high K(+)-depolarized SH-SY5Y cells. An in vitro experiment for assaying central nervous system penetration (PAMPA-BBB; parallel artificial membrane permeability assay for blood-brain barrier) revealed that both compounds could cross the blood-brain barrier, thus reaching their biological targets in the central nervous system. In conclusion, by causing a mild isosteric replacement in the benzothiazepine CGP37157, we have obtained ITH12505, with improved neuroprotective properties. These findings may inspire the design and synthesis of new benzothiazepines targeting mitochondrial Na(+)/Ca(2+) exchanger and L-type voltage-dependent Ca(2+) channels, having antioxidant properties.

  17. Selective Androgen Receptor Modulator RAD140 Is Neuroprotective in Cultured Neurons and Kainate-Lesioned Male Rats

    PubMed Central

    Jayaraman, Anusha; Christensen, Amy; Moser, V. Alexandra; Vest, Rebekah S.; Miller, Chris P.; Hattersley, Gary

    2014-01-01

    The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed “selective androgen receptor modulators” (SARMs) have been developed that lack significant androgen action in prostate but exert agonist effects in select androgen-responsive tissues. The efficacy of SARMs in brain is largely unknown. In this study, we investigate the SARM RAD140 in cultured rat neurons and male rat brain for its ability to provide neuroprotection, an important neural action of endogenous androgens that is relevant to neural health and resilience to neurodegenerative diseases. In cultured hippocampal neurons, RAD140 was as effective as testosterone in reducing cell death induced by apoptotic insults. Mechanistically, RAD140 neuroprotection was dependent upon MAPK signaling, as evidenced by elevation of ERK phosphorylation and inhibition of protection by the MAPK kinase inhibitor U0126. Importantly, RAD140 was also neuroprotective in vivo using the rat kainate lesion model. In experiments with gonadectomized, adult male rats, RAD140 was shown to exhibit peripheral tissue-specific androgen action that largely spared prostate, neural efficacy as demonstrated by activation of androgenic gene regulation effects, and neuroprotection of hippocampal neurons against cell death caused by systemic administration of the excitotoxin kainate. These novel findings demonstrate initial preclinical efficacy of a SARM in neuroprotective actions relevant to Alzheimer's disease and related neurodegenerative diseases. PMID:24428527

  18. Neuroprotection against 6-OHDA toxicity in PC12 cells and mice through the Nrf2 pathway by a sesquiterpenoid from Tussilago farfara.

    PubMed

    Lee, Joohee; Song, Kwangho; Huh, Eugene; Oh, Myung Sook; Kim, Yeong Shik

    2018-06-01

    Oxidative stress plays a key role in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Therefore, the nuclear factor-E2-related factor 2 (Nrf2), a key regulator of the antioxidative response, is considered to be important as a therapeutic target for neurodegenerative diseases. We investigated the underlying mechanism of Nrf2-mediated neuroprotective effects against oxidative stress in the PC12 cell line by 7β-(3-ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), one of the sesquiterpenoids in Farfarae Flos. Pretreatment of PC12 cells with ECN had a protective effect against hydrogen peroxide (H 2 O 2 )- or 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. ECN upregulated the ARE-luciferase activity and induced the mRNA expression of Nrf2 and antioxidant enzyme heme oxygenase-1 (HO-1). Knockdown of Nrf2 by small, interfering RNA (siRNA) abrogated the upregulation of HO-1, indicating that ECN had induced HO-1 via the Nrf2 pathway. Pretreatment with the thiol reducing agents, N-acetylcysteine (NAC) or dithiothreitol (DTT), attenuated Nrf2 activation and HO-1 expression. However, the non-thiol reducing antioxidant, Trolox, failed to inhibit HO-1 induction by ECN. These results suggest that ECN may directly interact with Kelch-like ECH-associated protein 1 (Keap1) and modify critical cysteine thiols present in the proteins responsible for Nrf2-mediated upregulation of HO-1. In a 6-OHDA-induced mouse model of PD, administration of ECN ameliorated motor impairments and dopaminergic neuronal damage. Taken together, ECN exerts neuroprotective effects by activating the Nrf2/HO-1 signaling pathway in both PC12 cells and mice. Thus, ECN, as an Nrf2 activator, could be an attractive therapeutic candidate for the neuroprotection or treatment of neurodegenerative diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Neuroprotective Compound from an Endophytic Fungus, Colletotrichum sp. JS-0367.

    PubMed

    Song, Ji Hoon; Lee, Changyeol; Lee, Dahae; Kim, Soonok; Bang, Sunghee; Shin, Myoung-Sook; Lee, Jun; Kang, Ki Sung; Shim, Sang Hee

    2018-05-23

    Colletotrichum sp. JS-0367 was isolated from Morus alba (mulberry), identified, and cultured on a large scale for chemical investigation. One new anthraquinone (1) and three known anthraquinones (2-4) were isolated and identified using spectroscopic methods including 1D/2D-NMR and HRESIMS. Although the neuroprotective effects of some anthraquinones have been reported, the biological activities of the four anthraquinones isolated in this study have not been reported. Therefore, the neuroprotective effects of these compounds were determined against murine hippocampal HT22 cell death induced by glutamate. Compound 4, evariquinone, showed strong protective effects against HT22 cell death induced by glutamate by the inhibition of intracellular ROS accumulation and Ca 2+ influx triggered by glutamate. Immunoblot analysis revealed that compound 4 reduced the phosphorylation of MAPKs (JNK, ERK1/2, and p38) induced by glutamate. Furthermore, compound 4 strongly attenuated glutamate-mediated apoptotic cell death.

  20. Assessment of virally vectored autoimmunity as a biocontrol strategy for cane toads.

    PubMed

    Pallister, Jackie A; Halliday, Damien C T; Robinson, Anthony J; Venables, Daryl; Voysey, Rhonda D; Boyle, Donna G; Shanmuganathan, Thayalini; Hardy, Christopher M; Siddon, Nicole A; Hyatt, Alex D

    2011-01-25

    The cane toad, Bufo (Chaunus) marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring B. marinus-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner. The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In B. marinus we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting B. marinus tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs), developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin) and genetic (adult globin mRNA levels) measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs. While we were able to show for the first time that the switch from tadpole to adult globin does occur in B. marinus, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of B. marinus tadpoles may preclude this approach.

  1. Assessment of Virally Vectored Autoimmunity as a Biocontrol Strategy for Cane Toads

    PubMed Central

    Robinson, Anthony J.; Venables, Daryl; Voysey, Rhonda D.; Boyle, Donna G.; Shanmuganathan, Thayalini; Hardy, Christopher M.; Siddon, Nicole A.; Hyatt, Alex D.

    2011-01-01

    Background The cane toad, Bufo (Chaunus) marinus, is one of the most notorious vertebrate pests introduced into Australia over the last 200 years and, so far, efforts to identify a naturally occurring B. marinus-specific pathogen for use as a biological control agent have been unsuccessful. We explored an alternative approach that entailed genetically modifying a pathogen with broad host specificity so that it no longer caused disease, but carried a gene to disrupt the cane toad life cycle in a species specific manner. Methodology/Principal Findings The adult beta globin gene was selected as the model gene for proof of concept of autoimmunity as a biocontrol method for cane toads. A previous report showed injection of bullfrog tadpoles with adult beta globin resulted in an alteration in the form of beta globin expressed in metamorphs as well as reduced survival. In B. marinus we established for the first time that the switch from tadpole to adult globin exists. The effect of injecting B. marinus tadpoles with purified recombinant adult globin protein was then assessed using behavioural (swim speed in tadpoles and jump length in metamorphs), developmental (time to metamorphosis, weight and length at various developmental stages, protein profile of adult globin) and genetic (adult globin mRNA levels) measures. However, we were unable to detect any differences between treated and control animals. Further, globin delivery using Bohle iridovirus, an Australian ranavirus isolate belonging to the Iridovirus family, did not reduce the survival of metamorphs or alter the form of beta globin expressed in metamorphs. Conclusions/Significance While we were able to show for the first time that the switch from tadpole to adult globin does occur in B. marinus, we were not able to induce autoimmunity and disrupt metamorphosis. The short development time of B. marinus tadpoles may preclude this approach. PMID:21283623

  2. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke

    PubMed Central

    Martynov, Mikhail Yu; Gusev, Eugeny I

    2015-01-01

    Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome. PMID:27186142

  3. Klotho upregulation contributes to the neuroprotection of ligustilide against cerebral ischemic injury in mice.

    PubMed

    Long, Fang-Yi; Shi, Meng-Qi; Zhou, Hong-Jing; Liu, Dong-Ling; Sang, Na; Du, Jun-Rong

    2018-02-05

    Klotho, an aging-suppressor gene, encodes a protein that potentially acts as a neuroprotective factor. Our previous studies showed that ligustilide minimizes the cognitive dysfunction and brain damage induced by cerebral ischemia; however, the underlying mechanisms remain unclear. This study aims to investigate whether klotho is involved in the protective effects of ligustilide against cerebral ischemic injury in mice. Cerebral ischemia was induced by bilateral common carotid arterial occlusion. Neurobehavioral tests as well as Nissl and Fluoro-Jade B staining were used to evaluate the protective effects of ligustilide in cerebral ischemia, and Western blotting and ELISA approaches were used to investigate the underlying mechanisms. Administration of ligustilide prevented the development of neurological deficits and reduced neuronal loss in the hippocampal CA1 region and the caudate putamen after cerebral ischemia. The protective effects were associated with inhibition of the RIG-I/NF-κB p65 and Akt/FoxO1 pathways and with prevention of inflammation and oxidative stress in the brain. Further, downregulation of klotho could attenuate the neuroprotection of ligustilide against cerebral ischemic injury. Ligustilide exerted neuroprotective effects in mice after cerebral ischemia by regulating anti-inflammatory and anti-oxidant signaling pathways. Furthermore, klotho upregulation contributes to the neuroprotection of LIG against cerebral ischemic injury. These results indicated that ligustilide may be a promising therapeutic agent for the treatment of cerebral ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection.

    PubMed

    Wen, Yi; Li, Wenjun; Poteet, Ethan C; Xie, Luokun; Tan, Cong; Yan, Liang-Jun; Ju, Xiaohua; Liu, Ran; Qian, Hai; Marvin, Marian A; Goldberg, Matthew S; She, Hua; Mao, Zixu; Simpkins, James W; Yang, Shao-Hua

    2011-05-06

    Neuroprotective strategies, including free radical scavengers, ion channel modulators, and anti-inflammatory agents, have been extensively explored in the last 2 decades for the treatment of neurological diseases. Unfortunately, none of the neuroprotectants has been proved effective in clinical trails. In the current study, we demonstrated that methylene blue (MB) functions as an alternative electron carrier, which accepts electrons from NADH and transfers them to cytochrome c and bypasses complex I/III blockage. A de novo synthesized MB derivative, with the redox center disabled by N-acetylation, had no effect on mitochondrial complex activities. MB increases cellular oxygen consumption rates and reduces anaerobic glycolysis in cultured neuronal cells. MB is protective against various insults in vitro at low nanomolar concentrations. Our data indicate that MB has a unique mechanism and is fundamentally different from traditional antioxidants. We examined the effects of MB in two animal models of neurological diseases. MB dramatically attenuates behavioral, neurochemical, and neuropathological impairment in a Parkinson disease model. Rotenone caused severe dopamine depletion in the striatum, which was almost completely rescued by MB. MB rescued the effects of rotenone on mitochondrial complex I-III inhibition and free radical overproduction. Rotenone induced a severe loss of nigral dopaminergic neurons, which was dramatically attenuated by MB. In addition, MB significantly reduced cerebral ischemia reperfusion damage in a transient focal cerebral ischemia model. The present study indicates that rerouting mitochondrial electron transfer by MB or similar molecules provides a novel strategy for neuroprotection against both chronic and acute neurological diseases involving mitochondrial dysfunction.

  5. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue

    PubMed Central

    Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.

    2011-01-01

    This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440

  6. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-02

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  7. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  8. Neuroprotection trek--the next generation: the measurement is the message.

    PubMed

    Andrews, Russell J

    2005-08-01

    Animal trials of many pharmacological neuroprotective agents have been quite successful, whereas trials in humans have been uniformly disappointing. A major difference between laboratory research in animals and clinical research in humans is the amount and/or quality of data obtained. The goal of this presentation is to argue that when clinical studies consist of more valid, objective data--that is, as our measurement capabilities in clinical research become as robust as they are in laboratory research--we are likely to gain new insights into both (1) injury to the nervous system and (2) neuroprotective treatment strategies. Technological advances (in data acquisition and analysis)--often novel even in the laboratory--will be the "scale" that will enable progress in measurement. As examples of such technological advances, two projects initiated at NASA Ames Research Center are cited. The NASA Smart Probe Project, with the goal of combining multiple microsensors and neural networks for real-time tissue identification (e.g., for tumor detection), has recently moved into the clinical realm, with a prototype being used to diagnose breast cancer in women "on the spot". The NASA Nanoelectrode Array Project has fabricated nanoscale devices that can simultaneously monitor electrical activity and neurotransmitter concentrations, while providing electrical stimulation focally and precisely (and potentially in a closed-loop fashion based on the input from the nanosensors). The large amounts of data that such techniques can acquire and analyze--separated spatially and temporally throughout the nervous system, if necessary--will provide insights not only into neuroprotective strategies, but also into the workings of the nervous system itself.

  9. Cell culture protection and in vivo neuroprotective capacity of flavonoids.

    PubMed

    Dajas, Federico; Rivera, Felicia; Blasina, Fernanda; Arredondo, Florencia; Echeverry, Carolina; Lafon, Laura; Morquio, Andrea; Heinzen, Horacio; Heizen, Horacio

    2003-01-01

    Flavonoids are an important group of recognized antioxidants ubiquitous in fruits, vegetables and herbs. There are epidemiological evidences for the stroke-protecting capacity of flavonoids and while the neuroprotective power of complex extracts rich in flavonoids like those of Ginkgo biloba, green tea or lyophilized red wine have been demonstrated in several studies, neuroprotection by individual flavonoids has been poorly studied in vivo. The neuroprotective capacity of individual flavonoids was studied in PC12 cells in culture and in a model of permanent focal ischemia (permanent Middle Cerebral Artery Occlusion - pMCAO). In the in vivo experiments, flavonoids were administered in lecithin preparations to facilitate the crossing of the blood brain barrier. The simultaneous incubation of PC12 cells with 200 micro M hydrogen peroxide (H2O2) and different flavonoids for 30 min resulted in a conspicuous profile: quercetin, fisetin, luteolin and myricetin significantly increased cell survival while catechin, kaempherol and taxifolin did not. Quercetin was detected in brain tissue 30 min and 1 h after intraperitoneal administration. When one of the protective flavonoids (quercetin) and one of those that failed to increase PC12 cell survival (catechin) were assessed for their protective capacity in the pMCAO model, administered i.p. 30 min after vessel occlusion, quercetin significantly decreased the brain ischemic lesion while catechin did not. It is concluded that when administered in liposomal preparations, flavonoids structurally related to quercetin could become leads for the development of a new generation of molecules to be clinically effective in human brain ischemia.

  10. Can Medical Herbs Stimulate Regeneration or Neuroprotection and Treat Neuropathic Pain in Chemotherapy-Induced Peripheral Neuropathy?

    PubMed Central

    Schröder, Sven; Beckmann, Kathrin; Franconi, Giovanna; Greten, Henry Johannes; Rostock, Matthias; Efferth, Thomas

    2013-01-01

    Chemotherapy-induced neuropathy (CIPN) has a relevant impact on the quality of life of cancer patients. There are no curative conventional treatments, so further options have to be investigated. We conducted a systematic review in English and Chinese language databases to illuminate the role of medical herbs. 26 relevant studies on 5 single herbs, one extract, one receptor-agonist, and 8 combinations of herbs were identified focusing on the single herbs Acorus calamus rhizoma, Cannabis sativa fructus, Chamomilla matricaria, Ginkgo biloba, Salvia officinalis, Sweet bee venom, Fritillaria cirrhosae bulbus, and the herbal combinations Bu Yang Huan Wu, modified Bu Yang Huan Wu plus Liuwei Di Huang, modified Chai Hu Long Gu Mu Li Wan, Geranii herba plus Aconiti lateralis praeparata radix , Niu Che Sen Qi Wan (Goshajinkigan), Gui Zhi Jia Shu Fu Tang (Keishikajutsubuto), Huang Qi Wu Wu Tang (Ogikeishigomotsuto), and Shao Yao Gan Cao Tang (Shakuyakukanzoto). The knowledge of mechanism of action is still limited, the quality of clinical trials needs further improvement, and studies have not yielded enough evidence to establish a standard practice, but a lot of promising substances have been identified. While CIPN has multiple mechanisms of neuronal degeneration, a combination of herbs or substances might deal with multiple targets for the aim of neuroprotection or neuroregeneration in CIPN. PMID:23983777

  11. Neuroprotection as initial therapy in acute stroke. Third Report of an Ad Hoc Consensus Group Meeting. The European Ad Hoc Consensus Group.

    PubMed

    1998-01-01

    Although a considerable body of scientific data is now available on neuroprotection in acute ischaemic stroke, this field is not yet established in clinical practice. At its third meeting, the European Ad Hoc Consensus Group considered the potential for neuroprotection in acute stroke and the practical problems attendant on the existence of a very limited therapeutic window before irreversible brain damage occurs, and came to the following conclusions. NEUROPROTECTANTS IN CLINICAL DEVELOPMENT: Convincing clinical evidence for an efficacious neuroprotective treatment in acute stroke is still required. Caution should be exercised in interpreting and extrapolating experimental results to stroke patients, who are a very heterogeneous group. The limitations of the time windows and the outcome measures chosen in trials of acute stroke therapy have an important influence on the results. The overall distribution of functional outcomes provides more statistical information than the proportion above a threshold outcome value. Neurological outcome should also be assessed. Neuroprotectants should not be tested clinically in phase II or phase III trials in a time window that exceeds those determined in experimental studies. The harmful effects of a drug in humans may override its neuroprotective potential determined in animals. Agents that act at several different levels in the ischaemic cascade may be more effective than those with a single mechanism of action. CURRENT IN-HOSPITAL MANAGEMENT OF ACUTE STROKE: The four major physiological variables that must be monitored and managed are blood pressure, arterial blood gas levels, body temperature, and glycaemia. The effects of controlling these physiological variables have not been studied in prospective trials, though they may all contribute to the outcome of acute ischaemic stroke and affect the duration of the therapeutic window. Optimal physiological parameters are inherently neuroprotective. Trials of new agents for the

  12. GRP78 at the Centre of the Stage in Cancer and Neuroprotection.

    PubMed

    Casas, Caty

    2017-01-01

    The 78-kDa glucose-regulated protein GRP78, also known as BiP and HSP5a, is a multifunctional protein with activities far beyond its well-known role in the unfolded protein response (UPR) which is activated after endoplasmic reticulum (ER) stress in the cells. Most of these newly discovered activities depend on its position within the cell. GRP78 is located mainly in the ER, but it has also been observed in the cytoplasm, the mitochondria, the nucleus, the plasma membrane, and secreted, although it is dedicated mostly to engage endogenous cytoprotective processes. Hence, GRP78 may control either UPR and macroautophagy or may activated phosphatidylinositol 3-kinase (PI3K)/AKT pro-survival pathways. GRP78 influences how tumor cells survive, proliferate, and develop chemoresistance. In neurodegeneration, endogenous mechanisms of neuroprotection are frequently insufficient or dysregulated. Lessons from tumor biology may give us clues about how boosting endogenous neuroprotective mechanisms in age-related neurodegeneration. Herein, the functions of GRP78 are revealed at the center of the stage of apparently opposite sites of the same coin regarding cytoprotection: neurodegeneration and cancer. The goal is to give a comprehensive and critical review that may serve to guide future experiments to identify interventions that will enhance neuroprotection.

  13. GRP78 at the Centre of the Stage in Cancer and Neuroprotection

    PubMed Central

    Casas, Caty

    2017-01-01

    The 78-kDa glucose-regulated protein GRP78, also known as BiP and HSP5a, is a multifunctional protein with activities far beyond its well-known role in the unfolded protein response (UPR) which is activated after endoplasmic reticulum (ER) stress in the cells. Most of these newly discovered activities depend on its position within the cell. GRP78 is located mainly in the ER, but it has also been observed in the cytoplasm, the mitochondria, the nucleus, the plasma membrane, and secreted, although it is dedicated mostly to engage endogenous cytoprotective processes. Hence, GRP78 may control either UPR and macroautophagy or may activated phosphatidylinositol 3-kinase (PI3K)/AKT pro-survival pathways. GRP78 influences how tumor cells survive, proliferate, and develop chemoresistance. In neurodegeneration, endogenous mechanisms of neuroprotection are frequently insufficient or dysregulated. Lessons from tumor biology may give us clues about how boosting endogenous neuroprotective mechanisms in age-related neurodegeneration. Herein, the functions of GRP78 are revealed at the center of the stage of apparently opposite sites of the same coin regarding cytoprotection: neurodegeneration and cancer. The goal is to give a comprehensive and critical review that may serve to guide future experiments to identify interventions that will enhance neuroprotection. PMID:28424579

  14. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats

    NASA Astrophysics Data System (ADS)

    Pardue, Machelle T.; Phillips, Michael J.; Yin, Hang; Fernandes, Alcides; Cheng, Yian; Chow, Alan Y.; Ball, Sherry L.

    2005-03-01

    Current retinal prosthetics are designed to stimulate existing neural circuits in diseased retinas to create a visual signal. However, implantation of retinal prosthetics may create a neurotrophic environment that also leads to improvements in visual function. Possible sources of increased neuroprotective effects on the retina may arise from electrical activity generated by the prosthetic, mechanical injury due to surgical implantation, and/or presence of a chronic foreign body. This study evaluates these three neuroprotective sources by implanting Royal College of Surgeons (RCS) rats, a model of retinitis pigmentosa, with a subretinal implant at an early stage of photoreceptor degeneration. Treatment groups included rats implanted with active and inactive devices, as well as sham-operated. These groups were compared to unoperated controls. Evaluation of retinal function throughout an 18 week post-implantation period demonstrated transient functional improvements in eyes implanted with an inactive device at 6, 12 and 14 weeks post-implantation. However, the number of photoreceptors located directly over or around the implant or sham incision was significantly increased in eyes implanted with an active or inactive device or sham-operated. These results indicate that in the RCS rat localized neuroprotection of photoreceptors from mechanical injury or a chronic foreign body may provide similar results to subretinal electrical stimulation at the current output evaluated here.

  15. Blood-brain barrier transport and neuroprotective potential of blackberry-digested polyphenols: an in vitro study.

    PubMed

    Figueira, Inês; Tavares, Lucélia; Jardim, Carolina; Costa, Inês; Terrasso, Ana P; Almeida, Andreia F; Govers, Coen; Mes, Jurriaan J; Gardner, Rui; Becker, Jörg D; McDougall, Gordon J; Stewart, Derek; Filipe, Augusto; Kim, Kwang S; Brites, Dora; Brito, Catarina; Brito, M Alexandra; Santos, Cláudia N

    2017-11-18

    Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood-brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC-MS n . BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.

  16. Cannabidiol, neuroprotection and neuropsychiatric disorders.

    PubMed

    Campos, Alline C; Fogaça, Manoela V; Sonego, Andreza B; Guimarães, Francisco S

    2016-10-01

    Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa. It has possible therapeutic effects over a broad range of neuropsychiatric disorders. CBD attenuates brain damage associated with neurodegenerative and/or ischemic conditions. It also has positive effects on attenuating psychotic-, anxiety- and depressive-like behaviors. Moreover, CBD affects synaptic plasticity and facilitates neurogenesis. The mechanisms of these effects are still not entirely clear but seem to involve multiple pharmacological targets. In the present review, we summarized the main biochemical and molecular mechanisms that have been associated with the therapeutic effects of CBD, focusing on their relevance to brain function, neuroprotection and neuropsychiatric disorders. Copyright © 2016. Published by Elsevier Ltd.

  17. [RDBH-method and big DyeTM terminator technology in accurate diagnosis of β-thalassemia and the allelic polymorphism of β-globin cluster].

    PubMed

    Akperova, G A

    2014-11-01

    IThe purpose of this study was to evaluate of the efficiency of RDBH-method and Big DyeTM Terminator technology in an accurate diagnosis of β-thalassemia and the allelic polymorphism of β-globin cluster. It was done a complete hematology analysis (HB, MCH, MCV, MCHC, RBC, Hct, HbA2, HbF, Serum iron, Serum ferritin at four children (males, 6-10 years old) and their parents. Molecular analysis included Reverse Dot-Blot Hybridization StripAssay (RDBH) and DNA sequencing on ABI PRISM Big DyeTM Terminator. Hematologic and molecular parameters were contradictory. The homozygosity for β0-thalassemia (β0IVS2.1[G>A] and β0codon 8[-AA]) at three boys with the mild clinical manifestation and heterozygosity of their parents for mutations, and the absence of β-globin mutations at parents and a boy who holds monthly transfusion was established by RDBH-analysis. DNA sequencing by technology Big DyeTM Terminator showed polymorphism at positions -551 and -521 of Cap5'-region (-650-250) - (AT)7(T)7 and (AT)8(T)5. Application of the integrated clinical-molecular approach is an ideal method for an accurate diagnosis, identification of asymptomatic carriers and a reduce of the risk of complications from β-thalassemia, moreover screening of γG-gene and the level of fetal hemoglobin in early childhood will help manage of β-thalassemia clinic and prevent heavy consequences of the disease.

  18. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site.

    PubMed

    Harris, Katie; Armstrong, Scott P; Campos-Pires, Rita; Kiru, Louise; Franks, Nicholas P; Dickinson, Robert

    2013-11-01

    Xenon, the inert anesthetic gas, is neuroprotective in models of brain injury. The authors investigate the neuroprotective mechanisms of the inert gases such as xenon, argon, krypton, neon, and helium in an in vitro model of traumatic brain injury. The authors use an in vitro model using mouse organotypic hippocampal brain slices, subjected to a focal mechanical trauma, with injury quantified by propidium iodide fluorescence. Patch clamp electrophysiology is used to investigate the effect of the inert gases on N-methyl-D-aspartate receptors and TREK-1 channels, two molecular targets likely to play a role in neuroprotection. Xenon (50%) and, to a lesser extent, argon (50%) are neuroprotective against traumatic injury when applied after injury (xenon 43±1% protection at 72 h after injury [N=104]; argon 30±6% protection [N=44]; mean±SEM). Helium, neon, and krypton are devoid of neuroprotective effect. Xenon (50%) prevents development of secondary injury up to 48 h after trauma. Argon (50%) attenuates secondary injury, but is less effective than xenon (xenon 50±5% reduction in secondary injury at 72 h after injury [N=104]; argon 34±8% reduction [N=44]; mean±SEM). Glycine reverses the neuroprotective effect of xenon, but not argon, consistent with competitive inhibition at the N-methyl-D-aspartate receptor glycine site mediating xenon neuroprotection against traumatic brain injury. Xenon inhibits N-methyl-D-aspartate receptors and activates TREK-1 channels, whereas argon, krypton, neon, and helium have no effect on these ion channels. Xenon neuroprotection against traumatic brain injury can be reversed by increasing the glycine concentration, consistent with inhibition at the N-methyl-D-aspartate receptor glycine site playing a significant role in xenon neuroprotection. Argon and xenon do not act via the same mechanism.

  19. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling.

    PubMed

    Dong, Wenwen; Yang, Bei; Wang, Linlin; Li, Bingxuan; Guo, Xiangshen; Zhang, Miao; Jiang, Zhenfei; Fu, Jingqi; Pi, Jingbo; Guan, Dawei; Zhao, Rui

    2018-05-01

    Traumatic brain injury (TBI), which leads to high mortality and morbidity, is a prominent public health problem worldwide with no effective treatment. Curcumin has been shown to be beneficial for neuroprotection in vivo and in vitro, but the underlying mechanism remains unclear. This study determined whether the neuroprotective role of curcumin in mouse TBI is dependent on the NF-E2-related factor (Nrf2) pathway. The Feeney weight-drop contusion model was used to mimic TBI. Curcumin was administered intraperitoneally 15 min after TBI induction, and brains were collected at 24 h after TBI. The levels of Nrf2 and its downstream genes (Hmox-1, Nqo1, Gclm, and Gclc) were detected by Western blot and qRT-PCR at 24 h after TBI. In addition, edema, oxidative damage, cell apoptosis and inflammatory reactions were evaluated in wild type (WT) and Nrf2-knockout (Nrf2-KO) mice to explore the role of Nrf2 signaling after curcumin treatment. In wild type mice, curcumin treatment resulted in reduced ipsilateral cortex injury, neutrophil infiltration, and microglia activation, improving neuron survival against TBI-induced apoptosis and degeneration. These effects were accompanied by increased expression and nuclear translocation of Nrf2, and enhanced expression of antioxidant enzymes. However, Nrf2 deletion attenuated the neuroprotective effects of curcumin in Nrf2-KO mice after TBI. These findings demonstrated that curcumin effects on TBI are associated with the activation the Nrf2 pathway, providing novel insights into the neuroprotective role of Nrf2 and the potential therapeutic use of curcumin for TBI. Copyright © 2018. Published by Elsevier Inc.

  20. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate

    PubMed Central

    Harrison, Ian F.; Anis, Hiba K.; Dexter, David T.

    2016-01-01

    Parkinson’s disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. PMID:26742637

  1. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiang Jun; Department of Anesthesiology, 101 Woodruff Circle, Suite 617, Emory University School of Medicine, Atlanta, GA 30322; Yu, Shan Ping

    2010-07-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release andmore » activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.« less

  2. Future targeted disease modifying drugs for Alzheimer's disease.

    PubMed

    Dash, Sandip K

    2011-01-01

    Alzheimer's disease is the most common form of dementia. Alzheimer's disease will be responsible for an enormous burden on the individual and the society, as with the aging of the population, the incidence and the prevalence will grow. Presently, the drugs used in Alzheimer's disease are only effective symptomatically and improve functioning. They do not halt the progression of the disease. With the recent advances in our understanding of the pathogenesis of this disease, there have been tremendous advances in the clinical trials of compounds that can modify the disease process. Numerous therapeutic interventions and neuroprotective approaches are also in trial phase. It seems that in near future some of these compounds may be found effective and safe for use in this disease there by reducing the incidence of this disease in years to come, thereby lessen the burden due to it. In this article various compounds that can modify the course of the disease are discussed. Some recent patents and inventions for the treatment of Alzheimer's disease have also been discussed.

  3. Pathophysiology and Clinical Manifestations of the β-Thalassemias

    PubMed Central

    Nienhuis, Arthur W.; Nathan, David G.

    2012-01-01

    The β-thalassemia syndromes reflect deficient or absent β-globin synthesis usually owing to a mutation in the β-globin locus. The relative excess of α-globin results in the formation of insoluble aggregates leading to ineffective erythropoiesis and shortened red cell survival. A relatively high capacity for fetal hemoglobin synthesis is a major genetic modifier of disease severity, with polymorphisms in other genes also having a significant role. Iron overload secondary to enhanced absorption and red cell transfusions causes an increase in liver iron and in various other tissues, leading to endocrine and cardiac dysfunction. Modern chelation regimens are effective in removing iron and preserving or restoring organ function. PMID:23209183

  4. Syringaldehyde exerts neuroprotective effect on cerebral ischemia injury in rats through anti-oxidative and anti-apoptotic properties

    PubMed Central

    Bozkurt, Aras Adem; Mustafa, Guven; Tarık, Akman; Adile, Ozkan; Murat, Sen Halil; Mesut, Kılıcoglu; Yıldıray, Kalkan; Coskun, Silan; Murat, Cosar

    2014-01-01

    There are few studies on the neuroprotective effects of syringaldehyde in a rat model of cerebral ischemia. The study aimed to elucidate the mechanisms underlying the neuroprotective effects of syringaldehyde on ischemic brain cells. Rat models of cerebral ischemia were intraperitoneally administered syringaldehyde. At 6 and 24 hours after syringaldehyde administration, cell damage in the brain of cerebral ischemia rats was obviously reduced, superoxide dismutase activity and nuclear respiratory factor 1 expression in the brain tissue were markedly increased, malondiadehyde level was obviously decreased, apoptosis-related cysteine peptidase caspase-3 and -9 immunoreactivity was obviously decreased, and neurological function was markedly improved. These findings suggest that syringaldehyde exerts neuroprotective effects on cerebral ischemia injury through anti-oxidation and anti-apoptosis. PMID:25558237

  5. Syringaldehyde exerts neuroprotective effect on cerebral ischemia injury in rats through anti-oxidative and anti-apoptotic properties.

    PubMed

    Bozkurt, Aras Adem; Mustafa, Guven; Tarık, Akman; Adile, Ozkan; Murat, Sen Halil; Mesut, Kılıcoglu; Yıldıray, Kalkan; Coskun, Silan; Murat, Cosar

    2014-11-01

    There are few studies on the neuroprotective effects of syringaldehyde in a rat model of cerebral ischemia. The study aimed to elucidate the mechanisms underlying the neuroprotective effects of syringaldehyde on ischemic brain cells. Rat models of cerebral ischemia were intraperitoneally administered syringaldehyde. At 6 and 24 hours after syringaldehyde administration, cell damage in the brain of cerebral ischemia rats was obviously reduced, superoxide dismutase activity and nuclear respiratory factor 1 expression in the brain tissue were markedly increased, malondiadehyde level was obviously decreased, apoptosis-related cysteine peptidase caspase-3 and -9 immunoreactivity was obviously decreased, and neurological function was markedly improved. These findings suggest that syringaldehyde exerts neuroprotective effects on cerebral ischemia injury through anti-oxidation and anti-apoptosis.

  6. [Pay attention to the secondary optic neuropathy and the safe appropriate applications of optic neuroprotection].

    PubMed

    Zhong, Y

    2016-12-11

    Secondary optic neuropathy of optic nerve abnormalities is the leading cause of persistent visual impairment. Previous ocular neuroprotection studies have proved that the nerve growth factor and other agents are of significant in the preservation of optic nerve axon and retinal ganglion cells. However, finding novel safe and effective approach as well as the appropriate applications of optic neuroprotection should be highly emphasized and would be very helpful in the treatment of optic neuropathy. (Chin J Ophthalmol, 2016, 52: 881 - 884) .

  7. Aging reduces the neuroprotective capacity, VEGF secretion, and metabolic activity of rat choroid plexus epithelial cells.

    PubMed

    Emerich, Dwaine F; Schneider, Patricia; Bintz, Briannan; Hudak, Jebecka; Thanos, Christopher G

    2007-01-01

    Delivery of neurotrophic molecules to the brain has potential for preventing neuronal loss in neurodegenerative disorders. Choroid plexus (CP) epithelial cells secrete numerous neurotrophic factors, and encapsulated CP transplants are neuroprotective in models of stroke and Huntington's disease (HD). To date, all studies examining the neuroprotective potential of CP transplants have used cells isolated from young donor animals. Because the aging process significantly impacts the cytoarchitecture and function of the CP the following studies determined whether age-related impairments occur in its neuroprotective capacity. CP was isolated from either young (3-4 months) or aged (24 months) rats. In vitro, young CP epithelial cells secreted more VEGF and were metabolically more active than aged CP epithelial cells. Additionally, conditioned medium from cultured aged CP was less potent than young CP at enhancing the survival of serum-deprived neurons. Finally, encapsulated CP was tested in an animal model of HD. Cell-loaded or empty alginate capsules (control group) were transplanted unilaterally into the rat striatum. Seven days later, the animals received an injection of quinolinic acid (QA; 225 nmol) adjacent to the implant site. Animals were tested for motor function 28 days later. In the control group, QA lesions severely impaired function of the contralateral forelimb. Implants of young CP were potently neuroprotective as rats receiving CP transplants were not significantly impaired when tested for motor function. In contrast, implants of CP from aged rats were only modestly effective and were much less potent than young CP transplants. These data are the first to directly link aging with diminished neuroprotective capacity of CP epithelial cells.

  8. Neuroprotective 2-(2-phenylethyl)chromones of Imperata cylindrica.

    PubMed

    Yoon, Jeong Seon; Lee, Mi Kyeong; Sung, Sang Hyun; Kim, Young Choong

    2006-02-01

    Bioactivity-guided fractionation of the methanolic extract of the rhizomes of Imperata cylindrica afforded a new compound, 5-hydroxy-2-(2-phenylethyl)chromone (1), together with three known compounds, 5-hydroxy-2-[2-(2-hydroxyphenyl)ethyl]chromone (2), flidersiachromone (3), and 5-hydroxy-2-styrylchromone (4). Among these four compounds, 1 and 2 showed significant neuroprotective activity against glutamate-induced neurotoxicity in primary cultures of rat cortical cells.

  9. Targeting AMPK Signaling as a Neuroprotective Strategy in Parkinson's Disease.

    PubMed

    Curry, Daniel W; Stutz, Bernardo; Andrews, Zane B; Elsworth, John D

    2018-03-26

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterized by the accumulation of intracellular α-synuclein aggregates and the degeneration of nigrostriatal dopaminergic neurons. While no treatment strategy has been proven to slow or halt the progression of the disease, there is mounting evidence from preclinical PD models that activation of 5'-AMP-activated protein kinase (AMPK) may have broad neuroprotective effects. Numerous dietary supplements and pharmaceuticals (e.g., metformin) that increase AMPK activity are available for use in humans, but clinical studies of their effects in PD patients are limited. AMPK is an evolutionarily conserved serine/threonine kinase that is activated by falling energy levels and functions to restore cellular energy balance. However, in response to certain cellular stressors, AMPK activation may exacerbate neuronal atrophy and cell death. This review describes the regulation and functions of AMPK, evaluates the controversies in the field, and assesses the potential of targeting AMPK signaling as a neuroprotective treatment for PD.

  10. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Chow, Andre; Arshad, Mubarik; Battson, Renee M; Sanders, Robert D; Mehmet, Huseyin; Edwards, A David; Franks, Nicholas P; Maze, Mervyn

    2005-08-01

    Perinatal asphyxia can result in neuronal injury with long-term neurological and behavioral consequences. Although hypothermia may provide some modest benefit, the intervention itself can produce adverse consequences. We have investigated whether xenon, an antagonist of the N-methyl-D-aspartate subtype of the glutamate receptor, can enhance the neuroprotection provided by mild hypothermia. Cultured neurons injured by oxygen-glucose deprivation were protected by combinations of interventions of xenon and hypothermia that, when administered alone, were not efficacious. A combination of xenon and hypothermia administered 4 hours after hypoxic-ischemic injury in neonatal rats provided synergistic neuroprotection assessed by morphological criteria, by hemispheric weight, and by functional neurological studies up to 30 days after the injury. The protective mechanism of the combination, in both in vitro and in vivo models, involved an antiapoptotic action. If applied to humans, these data suggest that low (subanesthetic) concentrations of xenon in combination with mild hypothermia may provide a safe and effective therapy for perinatal asphyxia.

  11. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  12. Differential effects of synthetic progestagens on neuron survival and estrogen neuroprotection in cultured neurons.

    PubMed

    Jayaraman, Anusha; Pike, Christian J

    2014-03-25

    Progesterone and other progestagens are used in combination with estrogens for clinical purposes, including contraception and postmenopausal hormone therapy. Progesterone and estrogens have interactive effects in brain, however interactions between synthetic progestagens and 17β-estradiol (E2) in neurons are not well understood. In this study, we investigated the effects of seven clinically relevant progestagens on estrogen receptor (ER) mRNA expression, E2-induced neuroprotection, and E2-induced BDNF mRNA expression. We found that medroxyprogesterone acetate decreased both ERα and ERβ expression and blocked E2-mediated neuroprotection and BDNF expression. Conversely, levonorgestrel and nesterone increased ERα and or ERβ expression, were neuroprotective, and failed to attenuate E2-mediated increases in neuron survival and BDNF expression. Other progestagens tested, including norethindrone, norethindrone acetate, norethynodrel, and norgestimate, had variable effects on the measured endpoints. Our results demonstrate a range of qualitatively different actions of progestagens in cultured neurons, suggesting significant variability in the neural effects of clinically utilized progestagens. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Improved neuroprotective effects by combining Bacopa monnieri and Rosmarinus officinalis supercritical CO2 extracts.

    PubMed

    Ramachandran, Cheppail; Quirin, Karl-Werner; Escalon, Enrique; Melnick, Steven J

    2014-04-01

    Ethnobotanical evidence suggests that herbs such as brahmi (Bacopa monnieri) and rosemary (Rosmarinus officinalis) may possess antioxidant and neuroprotective properties. We compared the antioxidant and neuroprotective effects of supercritical extract of Bacopa monnieri and rosemary antioxidant extract obtained from Rosmarinus officinalis as well as their combination to examine the effects on human glial (U-87 MG) and embryonic mouse hypothalamus cells. Bacopa monnieri extract, rosemary antioxidant extract, and their combination (1:1) are not cytotoxic in both glial and embryonic mouse hypothalamus cell lines up to 200 μg/mL concentration. The combination of extracts of Bacopa monnieri + rosemary antioxidant has better antioxidant potential and antilipid peroxidation activity than either agent alone. Although the extract of Bacopa monnieri + rosemary antioxidant showed almost similar inhibition of phospho tau expression as Bacopa monnieri or rosemary antioxidant extract alone, the combination has better inhibitory effect on amyloid precursor protein synthesis and higher brain-derived neurotrophic factor production in hypothalamus cells than single agents. These results suggest that the extract of Bacopa monnieri + rosemary antioxidant is more neuroprotective than Bacopa monnieri or rosemary antioxidant extract.

  14. Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model.

    PubMed

    Huguet, Gemma; Joglekar, Anoushka; Messi, Leopold Matamba; Buckalew, Richard; Wong, Sarah; Terman, David

    2016-07-26

    A detailed biophysical model for a neuron/astrocyte network is developed to explore mechanisms responsible for the initiation and propagation of cortical spreading depolarizations and the role of astrocytes in maintaining ion homeostasis, thereby preventing these pathological waves. Simulations of the model illustrate how properties of spreading depolarizations, such as wave speed and duration of depolarization, depend on several factors, including the neuron and astrocyte Na(+)-K(+) ATPase pump strengths. In particular, we consider the neuroprotective role of astrocyte gap junction coupling. The model demonstrates that a syncytium of electrically coupled astrocytes can maintain a physiological membrane potential in the presence of an elevated extracellular K(+) concentration and efficiently distribute the excess K(+) across the syncytium. This provides an effective neuroprotective mechanism for delaying or preventing the initiation of spreading depolarizations. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds.

    PubMed

    Lipton, S A; Choi, Y B; Pan, Z H; Lei, S Z; Chen, H S; Sucher, N J; Loscalzo, J; Singel, D J; Stamler, J S

    1993-08-12

    Congeners of nitrogen monoxide (NO) are neuroprotective and neurodestructive. To address this apparent paradox, we considered the effects on neurons of compounds characterized by alternative redox states of NO: nitric oxide (NO.) and nitrosonium ion (NO+). Nitric oxide, generated from NO. donors or synthesized endogenously after NMDA (N-methyl-D-aspartate) receptor activation, can lead to neurotoxicity. Here, we report that NO.- mediated neurotoxicity is engendered, at least in part, by reaction with superoxide anion (O2.-), apparently leading to formation of peroxynitrite (ONOO-), and not by NO. alone. In contrast, the neuroprotective effects of NO result from downregulation of NMDA-receptor activity by reaction with thiol group(s) of the receptor's redox modulatory site. This reaction is not mediated by NO. itself, but occurs under conditions supporting S-nitrosylation of NMDA receptor thiol (reaction or transfer of NO+). Moreover, the redox versatility of NO allows for its interconversion from neuroprotective to neurotoxic species by a change in the ambient redox milieu. The details of this complex redox chemistry of NO may provide a mechanism for harnessing neuroprotective effects and avoiding neurotoxicity in the central nervous system.

  16. Neuroprotective Potential of Mesenchymal Stem Cell-Based Therapy in Acute Stages of TNBS-Induced Colitis in Guinea-Pigs

    PubMed Central

    Robinson, Ainsley M.; Miller, Sarah; Payne, Natalie; Boyd, Richard; Sakkal, Samy; Nurgali, Kulmira

    2015-01-01

    Background & Aims The therapeutic benefits of mesenchymal stem cells (MSCs), such as homing ability, multipotent differentiation capacity and secretion of soluble bioactive factors which exert neuroprotective, anti-inflammatory and immunomodulatory properties, have been attributed to attenuation of autoimmune, inflammatory and neurodegenerative disorders. In this study, we aimed to determine the earliest time point at which locally administered MSC-based therapies avert enteric neuronal loss and damage associated with intestinal inflammation in the guinea-pig model of colitis. Methods At 3 hours after induction of colitis by 2,4,6-trinitrobenzene-sulfonate (TNBS), guinea-pigs received either human bone marrow-derived MSCs, conditioned medium (CM), or unconditioned medium by enema into the colon. Colon tissues were collected 6, 24 and 72 hours after administration of TNBS. Effects on body weight, gross morphological damage, immune cell infiltration and myenteric neurons were evaluated. RT-PCR, flow cytometry and antibody array kit were used to identify neurotrophic and neuroprotective factors released by MSCs. Results MSC and CM treatments prevented body weight loss, reduced infiltration of leukocytes into the colon wall and the myenteric plexus, facilitated repair of damaged tissue and nerve fibers, averted myenteric neuronal loss, as well as changes in neuronal subpopulations. The neuroprotective effects of MSC and CM treatments were observed as early as 24 hours after induction of inflammation even though the inflammatory reaction at the level of the myenteric ganglia had not completely subsided. Substantial number of neurotrophic and neuroprotective factors released by MSCs was identified in their secretome. Conclusion MSC-based therapies applied at the acute stages of TNBS-induced colitis start exerting their neuroprotective effects towards enteric neurons by 24 hours post treatment. The neuroprotective efficacy of MSC-based therapies can be exerted

  17. Benzothiazepine CGP37157 and Its Isosteric 2′-Methyl Analogue Provide Neuroprotection and Block Cell Calcium Entry

    PubMed Central

    2012-01-01

    Benzothiazepine CGP37157 is widely used as tool to explore the role of mitochondria in cell Ca2+ handling, by its blocking effect of the mitochondria Na+/Ca2+ exchanger. Recently, CGP37157 has shown to exhibit neuroprotective properties. In the trend to improve its neuroprotection profile, we have synthesized ITH12505, an isosteric analogue having a methyl instead of chlorine at C2′ of the phenyl ring. ITH12505 has exerted neuroprotective properties similar to CGP37157 in chromaffin cells and hippocampal slices stressed with veratridine. Also, both compounds afforded neuroprotection in hippocampal slices stressed with glutamate. However, while ITH12505 elicited protection in SH-SY5Y cells stressed with oligomycin A/rotenone, CGP37157 was ineffective. In hippocampal slices subjected to oxygen/glucose deprivation plus reoxygenation, ITH12505 offered protection at 3–30 μM, while CGP37157 only protected at 30 μM. Both compounds caused blockade of Ca2+ channels in high K+-depolarized SH-SY5Y cells. An in vitro experiment for assaying central nervous system penetration (PAMPA-BBB; parallel artificial membrane permeability assay for blood-brain barrier) revealed that both compounds could cross the blood–brain barrier, thus reaching their biological targets in the central nervous system. In conclusion, by causing a mild isosteric replacement in the benzothiazepine CGP37157, we have obtained ITH12505, with improved neuroprotective properties. These findings may inspire the design and synthesis of new benzothiazepines targeting mitochondrial Na+/Ca2+ exchanger and L-type voltage-dependent Ca2+ channels, having antioxidant properties. PMID:22860221

  18. Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate.

    PubMed

    Harrison, Ian F; Anis, Hiba K; Dexter, David T

    2016-02-12

    Parkinson's disease (PD) manifests clinically as bradykinesia, rigidity, and development of a resting tremor, primarily due to degeneration of dopaminergic nigrostriatal pathways in the brain. Intranigral administration of the irreversible ubiquitin proteasome system inhibitor, lactacystin, has been used extensively to model nigrostriatal degeneration in rats, and study the effects of candidate neuroprotective agents on the integrity of the dopaminergic nigrostriatal system. Recently however, adjacent extra-nigral brain regions such as the ventral tegmental area (VTA) have been noted to also become affected in this model, yet their integrity in studies of candidate neuroprotective agents in the model have largely been overlooked. Here we quantify the extent and distribution of dopaminergic degeneration in the VTA of rats intranigrally lesioned with lactacystin, and quantify the extent of VTA dopaminergic neuroprotection after systemic treatment with an epigenetic therapeutic agent, valproate, shown previously to protect dopaminergic SNpc neurons in this model. We found that unilateral intranigral administration of lactacystin resulted in a 53.81% and 31.72% interhemispheric loss of dopaminergic SNpc and VTA neurons, respectively. Daily systemic treatment of lactacystin lesioned rats with valproate however resulted in dose-dependant neuroprotection of VTA neurons. Our findings demonstrate that not only is the VTA also affected in the intranigral lactacystin rat model of PD, but that this extra-nigral brain region is substrate for neuroprotection by valproate, an agent shown previously to induce neuroprotection and neurorestoration of SNpc dopaminergic neurons in this model. Our results therefore suggest that valproate is a candidate for extra-nigral as well as intra-nigral neuroprotection. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Essential role for zinc-triggered p75NTR activation in preconditioning neuroprotection.

    PubMed

    Lee, Jin-Yeon; Kim, Yu-Jin; Kim, Tae-Youn; Koh, Jae-Young; Kim, Yang-Hee

    2008-10-22

    Ischemic preconditioning (PC) of the brain is a phenomenon by which mild ischemic insults render neurons resistant to subsequent strong insults. Key steps in ischemic PC of the brain include caspase-3 activation and poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, but upstream events have not been clearly elucidated. We have tested whether endogenous zinc is required for ischemic PC of the brain in rats. Mild, transient zinc accumulation was observed in certain neurons after ischemic PC. Moreover, intraventricular administration of CaEDTA during ischemic PC abrogated both zinc accumulation and the protective effect against subsequent full ischemia. To elucidate the mechanism of the zinc-triggered PC (Zn PC) effect, cortical cultures were exposed to sublethal levels of zinc, and 18 h later to lethal levels of zinc or NMDA. Zn PC exhibited the characteristic features of ischemic PC, including caspase-3 activation, PARP-1 cleavage, and HSP70 induction, all of which are crucial for subsequent neuroprotection against NMDA or zinc toxicity. HSP70 induction was necessary for protection, as it halted caspase-3 activation before apoptosis. Interestingly, in both Zn PC in vitro and ischemic PC in vivo, p75(NTR) was necessary for neuroprotection. These results suggest that caspase-3 activation during ischemic PC, a necessary event for subsequent neuroprotection, may result from mild zinc accumulation and the consequent p75(NTR) activation in neurons.

  20. Therapeutic Hypothermia for Neuroprotection

    PubMed Central

    Karnatovskaia, Lioudmila V.; Wartenberg, Katja E.

    2014-01-01

    The earliest recorded application of therapeutic hypothermia in medicine spans about 5000 years; however, its use has become widespread since 2002, following the demonstration of both safety and efficacy of regimens requiring only a mild (32°C-35°C) degree of cooling after cardiac arrest. We review the mechanisms by which hypothermia confers neuroprotection as well as its physiological effects by body system and its associated risks. With regard to clinical applications, we present evidence on the role of hypothermia in traumatic brain injury, intracranial pressure elevation, stroke, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy. Based on the current knowledge and areas undergoing or in need of further exploration, we feel that therapeutic hypothermia holds promise in the treatment of patients with various forms of neurologic injury; however, additional quality studies are needed before its true role is fully known. PMID:24982721

  1. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects.

    PubMed

    Ye, Yong; Xing, Haiting; Li, Yue

    2014-01-01

    Sasanquasaponin, a bioactive compound isolated from seeds of Camellia oleifera, shows central effects in our previous research. In order to investigate its neuroprotective effects, a new kind of nanocapsule with photo responsiveness was designed to deliver sasanquasaponin into the brain and adjusted by red light. The nanocapsule was prepared using sasanquasaponin emulsified with soybean lecithin and cholesterol solution. The natural phaeophorbide from silkworm excrement as a photosensitizer was added in the lipid phase to make the nanocapsules photo responsive. The physicochemical properties of encapsulation efficiency, size distribution, morphology and stability were measured using high-performance liquid chromatography, particle size analyzer, transmission electron microscope, differential scanning calorimetry and thermogravimetry. Photo responsiveness was determined by the sasanquasaponin release in pH 7.5 phosphate buffer under the laser at 670 nm. The neuroprotective effects were evaluated by the expression of tyrosine hydroxylase (TH), decrease of inflammatory cytokines TNF-α and IL-1β in the brain, and amelioration of kainic acid-induced behavioral disorder in mice. The nanocapsules had higher encapsulation efficiency and stability when the phaeophorbide content was 2% of lecithin weight. The average size was 172.2 nm, distributed in the range of 142-220 nm. The phaeophorbide was scattered sufficiently in the outer lecithin layer of the nanocapsules and increased the drug release after irradiation. TH expression in brain tissues and locomotive activities in mice were reduced by kainic acid, but could be improved by the sasanquasaponin nanocapsules after tail vein injection with 15 minutes of irradiation at the nasal cavity. The sasanquasaponin took effect through inflammatory alleviation in central tissues. The sasanquasaponin nanocapsules with phaeophorbide have photo responsiveness and neuroprotective effects under the irradiation of red light. This

  2. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation.

    PubMed

    Gomes, Andreia; Fortalezas, Sofia; Pimpão, Rui; Figueira, Inês; Maroco, João; Aguiar, Carlos; Ferreira, Ricardo B; Miguel, Célia; Santos, Cláudia N

    2013-10-28

    Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum's potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits.

  3. Valuing the Endangered Species Antirrhinum lopesianum: Neuroprotective Activities and Strategies for in vitro Plant Propagation

    PubMed Central

    Gomes, Andreia; Fortalezas, Sofia; Pimpão, Rui; Figueira, Inês; Maroco, João; Aguiar, Carlos; Ferreira, Ricardo B.; Miguel, Célia; Santos, Cláudia N.

    2013-01-01

    Plant phytochemicals are described as possessing considerable neuroprotective properties, due to radical scavenging capacity and acetylcholinesterase inhibitory activity, important bioactivities in neurodegeneration. Antirrhinum lopesianum is a rare endemism from the Iberian Peninsula, occurring at the northeastern border between Portugal and Spain. It is classified as Endangered, due to its highly fragmented geographical occupation, facing a high risk of extinction in the Portuguese territory, within 20 years. Here, we describe for the first time the chemical characterization of extracts of the species concerning total phenol content, flavonoid content and antioxidant properties. The profile of high performance liquid chromatography with diode array detector (HPLC-DAD) of the polyphenol-enriched fraction of plant extracts was also performed, showing the great potential of the species as a source of bioactive phytochemical compounds. A. lopesianum’s potential for neuroprotection was revealed by a significant acetylcholinesterase inhibitory activity and also by a neuroprotective effect on a human cell model of neurodegeneration. Moreover, this is the first report describing a successful procedure for the in vitro propagation of this endangered species. The comparison of phenolic content and the HPLC-DAD profile of wild and in vitro propagated plants revealed that in vitro plants maintain the ability to produce secondary metabolites, but the profiles are differentially affected by the growth regulators. The results presented here greatly contribute to the value for this species regarding its potential as a source of phytochemicals with prospective neuroprotective health benefits. PMID:26784465

  4. Differential structural status of the RNA counterpart of an undecamer quasi-palindromic DNA sequence present in LCR of human β-globin gene cluster.

    PubMed

    Kaushik, Mahima; Kukreti, Shrikant

    2015-01-01

    Our previous work on structural polymorphism shown at a single nucleotide polymorphism (SNP) (A → G) site located on HS4 region of locus control region (LCR) of β-globin gene has established a hairpin → duplex equilibrium corresponding to A → B like DNA transition (Kaushik M, Kukreti, R., Grover, D., Brahmachari, S.K. and Kukreti S. Nucleic Acids Res. 2003; Kaushik M, Kukreti S. Nucleic Acids Res. 2006). The G-allele of A → G SNP has been shown to be significantly associated with the occurrence of β-thalassemia. Considering the significance of this 11-nt long quasi-palindromic sequence [5'-TGGGG(G/A)CCCCA; HP(G/A)11] of β-globin gene LCR, we further explored the differential behavior of the same DNA sequence with its RNA counterpart, using various biophysical and biochemical techniques. In contrast to its DNA counterpart exhibiting a A → B structural transition and an equilibrium between duplex and hairpin forms, the studied RNA oligonucleotide sequence [5'-UGGGG(G/A)CCCCA; RHP(G/A)11] existed only in duplex form (A-conformation) and did not form hairpin. The single residue difference from A to G led to the unusual thermal stability of the RNA structure formed by the studied sequence. Since, naturally occurring mutations and various SNP sites may stabilize or destabilize the local DNA/RNA secondary structures, these structural transitions may affect the gene expression by a change in the protein-DNA recognition patterns.

  5. Maternal side effects & fetal neuroprotection according to body mass index after magnesium sulfate in a multicenter randomized controlled trial.

    PubMed

    Vilchez, Gustavo; Dai, Jing; Lagos, Moraima; Sokol, Robert J

    2018-01-01

    Evidence supports the need of dose-adjustment of several drugs according to body mass index (BMI) to prevent toxicity in the underweight, and ensure efficacy in obese women. However, for MgSO 4 neuroprotection, the effect of BMI on maternal toxicity and fetal neuroprotection is understudied. We analyze the effect of BMI on maternal/infant outcomes after MgSO 4 . Secondary analysis of a clinical trial that studied MgSO 4 neuroprotection. Maternal side effects, magnesium cord levels, and offspring cerebral palsy/death were analyzed along BMI strata using ANOVA and chi-square test. Logistic regression was used to calculate adjusted odds ratios according to the treatment and BMI, using nonobese that received placebo as reference. Interaction analyses were performed to validate differential efficacy of BMI. From 2241 women, more side effects and higher magnesium cord levels were seen in underweight women (p = 0.05). MgSO 4 neuroprotection was effective in the non-obese (p = 0.02), but not in obese women (p = 1.00). In multivariate analyses, MgSO 4 significantly reduced cerebral palsy only in nonobese women. Interaction analyses showed the moderator effect of BMI (p = 0.169). Increasing MgSO 4 dose in obese mothers may ensure neuroprotective efficacy without representing increased maternal risks. Considering costs of studying this association, current analysis may form the basis for reasonable practice.

  6. Balancing paediatric anaesthesia: preclinical insights into analgesia, hypnosis, neuroprotection, and neurotoxicity.

    PubMed

    Sanders, R D; Ma, D; Brooks, P; Maze, M

    2008-11-01

    Logistical and ethical reasons make conducting clinical research in paediatric practice difficult, and therefore safe and efficacious advances are dependent on good preclinical research. For example, notable advances have been made in preclinical studies of pain processing that correlate well with patient data. Other areas of paediatric anaesthetic research remain in their infancy including mechanisms of anaesthesia and anaesthetic neuroprotection and neurotoxicity. Animal data have identified the potential 'double-edged' sword of administering anaesthetic agents in the young; although these agents can be neuroprotective in certain circumstances, they can be neurotoxic in others. The potential for this toxicity must be balanced against the importance of providing adequate anaesthesia for which there can be no compromise. We review the current state of preclinical research in paediatric anaesthesia and identify areas which require further exploration in order to provide the foundations for well-conducted clinical trials.

  7. Neuroprotection from Brain Injury by Novel Estrogens

    DTIC Science & Technology

    2001-08-01

    cells were more sensitive than tive toxin-free group as 100% viability. Shown is mean ± SEM for 3-4 HT - 22 cells to the toxic effects ...compounds involved were centration of 10 yM than at 1pM. The parent compound done on mouse clonal hippocampal HT - 22 cells , and the (1) was effective ...neuroprotection in vitro against oxidative stress in HT - 3.37 (tr, J- 8.4 Hz, IH, 17oL-CH), 2.87-2.82 (in, 2H, 6-CH2 ), 22 cells . Moreover, this effect

  8. Neuroprotective effect of oxaloacetate in a focal brain ischemic model in the rat.

    PubMed

    Knapp, L; Gellért, L; Kocsis, K; Kis, Z; Farkas, T; Vécsei, L; Toldi, J

    2015-01-01

    During an ischemic event, the well-regulated glutamate (Glu) homeostasis is disturbed, which gives rise to extremely high levels of this excitatory neurotransmitter in the brain tissues. It was earlier reported that the administration of oxaloacetate (OxAc) as a Glu scavenger reduces the Glu level in the brain by enhancing the brain-to-blood Glu efflux. Here, we studied the neuroprotective effect of OxAc administration in a new focal ischemic model in rats. Occlusion of the middle cerebral artery resulted in immediate reduction of the somatosensory-evoked responses (SERs), and the amplitudes remained at the reduced level throughout the whole ischemic period. On reperfusion, the SERs started to increase, but never reached the control level. OxAc proved to be protective, since the amplitudes started to recover even during the ischemia, and finally fully regained the control level. The findings of the histological measurements were in accordance with the electrophysiological data. After Fluoro Jade C staining, significantly fewer labeled cells were detected in the OxAc-treated group relative to the control. These results provide new evidence of the neuroprotective effect of OxAc against ischemic injury, which strengthens the likelihood of its future applicability as a novel neuroprotective agent for the treatment of ischemic stroke patients.

  9. Intermittent fasting is neuroprotective in focal cerebral ischemia by minimizing autophagic flux disturbance and inhibiting apoptosis.

    PubMed

    Jeong, Ji Heun; Yu, Kwang Sik; Bak, Dong Ho; Lee, Je Hun; Lee, Nam Seob; Jeong, Young Gil; Kim, Dong Kwan; Kim, Jwa-Jin; Han, Seung-Yun

    2016-11-01

    Previous studies have demonstrated that autophagy induced by caloric restriction (CR) is neuroprotective against cerebral ischemia. However, it has not been determined whether intermittent fasting (IF), a variation of CR, can exert autophagy-related neuroprotection against cerebral ischemia. Therefore, the neuroprotective effect of IF was evaluated over the course of two weeks in a rat model of focal cerebral ischemia, which was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). Specifically, the role of autophagy modulation as a potential underlying mechanism for this phenomenon was investigated. It was demonstrated that IF reduced infarct volume and brain edema, improved neurobehavioral deficits, and rescued neuronal loss after MCAO/R. Furthermore, neuronal apoptosis was decreased by IF in the rat cortex. An increase in the number of autophagosomes (APs) was demonstrated in the cortices of IF-treated rats, using immunofluorescence staining and transmission electron microscopy. Using immunoblots, an IF-induced increase was detected in microtubule-associated protein 1 light chain 3 (LC3)-II, Rab7, and cathepsin D protein levels, which corroborated previous morphological studies. Notably, IF reduced the accumulation of APs and p62, demonstrating that IF attenuated the MCAO/R-induced disturbance of autophagic flux in neurons. The findings of the present study suggest that IF-induced neuroprotection in focal cerebral ischemia is due, at least in part, to the minimization of autophagic flux disturbance and inhibition of apoptosis.

  10. Pharmacologic investigations on the role of Sirt-1 in neuroprotective mechanism of postconditioning in mice.

    PubMed

    Kaur, Harpreet; Kumar, Amit; Jaggi, Amteshwar S; Singh, Nirmal

    2015-07-01

    Cerebral ischemia-reperfusion (I-R) injury is one of the primary causes of ischemic stroke. Ischemic postconditioning (iPoCo) is evolving as an important adaptive technique to contain I-R injury. Some recent studies have shown neuroprotective effects of iPoCo. However, the neuroprotective mechanism of iPoCo is not clear. So, the present study has been undertaken to investigate the possible role of Sirtinol, a selective class III histone deacetylase (HDAC) inhibitor in the neuroprotective mechanism of iPoCo in mice. Bilateral carotid artery occlusion (BCAO) for 12 min followed by reperfusion for 24 h was used to produce I-R-induced cerebral injury in Swiss albino mice. iPoCo involving three episodes of 10-s carotid artery occlusion and reperfusion instituted immediately after BCAO just before prolonged reperfusion of 24 h. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was evaluated using a Morris water maze test. Rotarod test, inclined beam-walking test, and neurologic severity score (NSS) were used to assess motor incoordination. Acetylcholine esterase levels, brain thiobarbituric acid reactive species (TBARS), and glutathione level were also estimated. BCAO for 12 min followed by reperfusion for 24 h produced a significant rise in cerebral infarct size and NSS along with impairment of memory and motor coordination and biochemical alteration (↑acetylcholine esterase, ↓glutathione, and ↑TBARS). iPoCo, involving three episodes of 10-s carotid artery occlusion with intermittent reperfusion of 10 s applied just after ischemic insult of 12 min produced a significant decrease in cerebral infarct size and NSS along with the reversal of I-R-induced impairment of memory and motor coordination. iPoCo-induced neuroprotective effects were significantly abolished by pretreatment with selective SIRT 1 (class III HDAC) blocker Sirtinol (10 mg/kg intraperitoneal). It may be concluded that the neuroprotective effect of iPoCo probably

  11. Design, synthesis and biological evaluation of LX2343 derivatives as neuroprotective agents for the treatment of Alzheimer's disease.

    PubMed

    Sun, Guanglong; Wang, Junwei; Guo, Xiaodan; Lei, Min; Zhang, Yinan; Wang, Xiachang; Shen, Xu; Hu, Lihong

    2018-02-10

    A series of LX2343 derivatives were designed, synthesized and evaluated as neuroprotective agents for Alzheimer's disease (AD) in vitro. Most of the compounds displayed potent neuroprotective activities. Especially for compound A6, exhibited a remarkable EC 50 value of 0.22 μM. Further investigation demonstrated that compound A6 can significantly reduce Aβ production and increase Aβ clearance, and alleviate Tau hyperphosphorylation. Most importantly, compound A6 could ameliorate learning and memory impairments in APP/PS1 transgenic mice. The present study evidently showed that compound A6 is a potent neuroprotective agent and might serve as a promising lead candidate for the treatment of Alzheimer's disease. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Triplication of a four-gene set during evolution of the goat beta-globin locus produced three genes now expressed differentially during development.

    PubMed Central

    Townes, T M; Fitzgerald, M C; Lingrel, J B

    1984-01-01

    Distinct hemoglobins are synthesized in goats at different stages of development, similar to humans. Embryonic hemoglobins (zeta 2 epsilon 2 and alpha 2 epsilon 2) are synthesized initially and are followed sequentially by fetal (alpha 2 beta F2), preadult (alpha 2 beta C2), and adult (alpha 2 beta A2) hemoglobins. To help understand the basis of these switches, the genes of the beta-globin locus have been cloned and their linkage arrangement has been determined by the isolation of lambda phage carrying overlapping inserts of genomic goat DNA. The locus extends over 120 kilobase pairs and consists of 12 genes arranged in the following order: epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A-epsilon V-epsilon VI-psi beta Y-beta F. Comparison of the nucleotide sequence of the 12 genes shows that the locus is organized into three homologous four-gene sets that presumably evolved by the triplication of an ancestral set of four genes (epsilon-epsilon-psi beta-beta). Interestingly, the three genes (beta C, beta A, and beta F) located at the ends of the four-gene sets are expressed at different stages of development. Therefore, the goat beta F-, beta C-, and beta A-globin genes appear to have evolved by a mechanism that includes the triplication of 40-50 kilobase pairs of DNA and the recruitment of newly formed genes for expression in fetal, preadult, and adult life. PMID:6593719

  13. Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important?

    PubMed

    Culman, Juraj; Jacob, Toni; Schuster, Sven O; Brolund-Spaether, Kjell; Brolund, Leonie; Cascorbi, Ingolf; Zhao, Yi; Gohlke, Peter

    2017-09-01

    The present study conducted in rats defines the requirements for neuroprotective effects of systemically administered AT1 receptor blockers (ARBs) in acute ischaemic stroke. The inhibition of central effects to angiotensin II (ANG II) after intravenous (i.v.) treatment with candesartan (0.3 and 3 mg/kg) or irbesartan and losartan (3 and 30 mg/kg) was employed to study the penetration of these ARBs across the blood-brain barrier. Verapamil and probenecid were used to assess the role of the transporters, P-glycoprotein and the multidrug resistance-related protein 2, in the entry of losartan and irbesartan into the brain. Neuroprotective effects of i.v. treatment with the ARBs were investigated after transient middle cerebral artery occlusion (MCAO) for 90 min. The treatment with the ARBs was initiated 3 h after the onset of MCAO and continued for two consecutive days. Blood pressure was continuously recorded before and during MCAO until 5.5 h after the onset of reperfusion. The higher dose of candesartan completely abolished, and the lower dose of candesartan and higher doses of irbesartan and losartan partially inhibited the drinking response to intracerebroventricular ANG II. Only 0.3 mg/kg candesartan improved the recovery from ischaemic stroke, and 3 mg/kg candesartan did not exert neuroprotective effects due to marked blood pressure reduction during reperfusion. Both doses of irbesartan and losartan had not any effect on the stroke outcome. An effective, long-lasting blockade of brain AT1 receptors after systemic treatment with ARBs without extensive blood pressure reductions is the prerequisite for neuroprotective effects in ischaemic stroke.

  14. Potential for brain accessibility and analysis of stability of selected flavonoids in relation to neuroprotection in vitro.

    PubMed

    Pogačnik, Lea; Pirc, Katja; Palmela, Inês; Skrt, Mihaela; Kim, Kwang S; Brites, Dora; Brito, Maria Alexandra; Ulrih, Nataša Poklar; Silva, Rui F M

    2016-11-15

    Natural food sources constitute a promising source of new compounds with neuroprotective properties, once they have the ability to reach the brain. Our aim was to evaluate the brain accessibility of quercetin, epigallocatechin gallate (EGCG) and cyanidin-3-glucoside (C3G) in relation to their neuroprotective capability. Primary cortical neuron cultures were exposed to oxidative insult in the absence and presence of the selected compounds, and neuroprotection was assessed through evaluation of apoptotic-like and necrotic-like cell death. The brain accessibility of selected compounds was assessed using an optimised human blood-brain barrier model. The blood-brain barrier model was crossed rapidly by EGCG and more slowly by C3G, but not by quercetin. EGCG protected against oxidation-induced neuronal necrotic-like cell death by ~40%, and apoptosis by ~30%. Both quercetin and C3G were less effective, since only the lowest quercetin concentration was protective, and C3G only prevented necrosis by ~37%. Quercetin, EGCG and C3G effectively inhibited α-synuclein fibrillation over the relevant timescale applied here. Overall, EGCG seems to be the most promising neuroprotective compound. Thus, inclusion of this polyphenol in the diet might provide an affordable means to reduce the impact of neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor.

    PubMed Central

    MacGregor, D. G.; Miller, W. J.; Stone, T. W.

    1993-01-01

    1. Systemic injections of kainic acid, 10 mg kg-1, into adult rats resulted in lesions in the hippocampus, as assessed by peripheral benzodiazepine ligand binding. Co-administration of clonazepam at 1 mg kg-1 or 0.2 mg kg-1 prevented major seizures associated with kainate injections, but did not alter significantly the production of hippocampal damage. 2. The co-administration of the adenosine A1 agonist R-phenylisopropyladenosine (R-PIA, 25 micrograms kg-1, i.p.) abolished the lesions induced by kainic acid. 3. The presence of the selective A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (250 or 50 micrograms kg-1, i.p.) abolished the R-PIA neuroprotective action. 4. The A1/A2 antagonist, 8-(p-sulphophenyl)theophylline (20 mg kg-1, i.p.) which cannot cross the blood brain barrier, did not alter significantly the neuroprotective action of R-PIA, indicating that the neuroprotective action of the purine may be predominantly central. 5. The time course of the neuroprotection was also examined. R-PIA was effective when administered 2 h before or after kainate administration. 6. The results emphasise the potential utility of systemically active adenosine A1 receptor ligands in reducing CNS gliosis induced by the activation of excitatory amino acid receptors. PMID:8220909

  16. [Evolution of the neuroprotection concept].

    PubMed

    Ostrovskaia, R U

    2003-01-01

    Although the modern concept of neuroprotection has been formulated quite recently, the basis of this approach was laid about four decades ago when Zakusov initiated the study of mechanisms involved in the neuroprotector action of GABA shunt metabolites (in particular, alpha-hydroxybutyric acid and succinic semialdehyde) during hypoxia. It was suggested to consider these agents as a system of endogenous neuroprotectors. The interest of Zakusov in endogenous regulators (including oligopeptides) had stimulated research in this direction and gave impact to the investigations of A. P. Skoldinov and T. A. Gudasheva initiated in the early 1980s. Proceeding from the original concept of the possibility of imitation of the action of neurotropic agents by their structural-conformational oligopeptide analogs, a number of biologically active stable dipeptides were obtained, based on pyroglutamate and proline, and high specific bioaccessibility of these dipeptides for the brain was established. Our investigations showed that these compounds not only possess nootropic activity (in a dose 1000 times lower than that of piracetam), but produce a pronounced neuroprotector action as well. Most thoroughly studied in this respect were substituted acyl-prolyl dipeptides, in particular, the drug noopept exhibiting a combined neuroprotector effect both in vitro and in vivo. Noopept decreases the extent of necrotic damage caused by photoinduced thrombosis of cortical blood vessels. It was established that the neuroprotector effect of noopept is related to its action upon the well-known "triad", whereby the drug reduces neurotoxic effects of excess extracellular calcium, glutamate, and free radicals. Two additional components of the neuroprotector action of noopept are related to the antiinflammatory and antithrombotic activity. The prospects of using direct and indirect action upon neurotrophin system for neuroprotection purposes are considered. Taking into account common secondary

  17. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats.

    PubMed

    Ma, Xiao-Hui; Gao, Qiang; Jia, Zhen; Zhang, Ze-Wei

    2015-02-01

    Hundreds of previous studies demonstrated the cytoprotective effect of trichostatin-A (TSA), a kind of histone deacetylases inhibitors (HDACIs), against cerebral ischemia/reperfusion insult. Meanwhile, phosphatidylinositol-3 kinase/Akt (PI3K/Akt) is a well-known, important signaling pathway that mediates neuroprotection. However, it should be remains unclear whether the neuroprotective capabilities of TSA against cerebral ischemia/reperfusion is mediated by activation of the PI3K/Akt signaling pathway. Five groups rats (n = 12 each), with middle cerebral artery occlusion (MCAO) except sham group, were used to investigate the neuroprotective effect of certain concentration (0.05 mg/kg) of TSA, and whether the neuroprotective effect of TSA is associated with activation of the PI3K/Akt signaling pathway through using of wortmannin (0.25 mg/kg). TSA significantly increased the expression of p-Akt protein, reduced infarct volume, and attenuated neurological deficit in rats with transient MCAO, wortmannin weakened such effect of TSA dramatically. TSA could significantly decrease the neurological deficit scores and reduce the cerebral infarct volume during cerebral ischemia/reperfusion injury, which was achieved partly by activation of the PI3K/Akt signaling pathway via upgrading of p-Akt protein.

  18. Food, nutrigenomics, and neurodegeneration--neuroprotection by what you eat!

    PubMed

    Virmani, Ashraf; Pinto, Luigi; Binienda, Zbigniew; Ali, Syed

    2013-10-01

    Diet in human health is no longer simple nutrition, but in light of recent research, especially nutrigenomics, it is linked via evolution and genetics to cell health status capable of modulating apoptosis, detoxification, and appropriate gene response. Nutritional deficiency and disease especially lack of vitamins and minerals is well known, but more recently, epidemiological studies suggest a role of fruits and vegetables, as well as essential fatty acids and even red wine (French paradox), in protection against disease. In the early 1990s, various research groups started considering the use of antioxidants (e.g., melatonin, resveratrol, green tea, lipoic acid) and metabolic compounds (e.g., nicotinamide, acetyl-L-carnitine, creatine, coenzyme Q10) as possible candidates in neuroprotection. They were of course considered on par with snake oil salesman (women) at the time. The positive actions of nutritional supplements, minerals, and plant extracts in disease prevention are now mainstream and commercial health claims being made are subject to regulation in most countries. Apart from efficacy and finding, the right dosages, the safety, and especially the level of purification and lack of contamination are all issues that are important as their use becomes widespread. From the mechanistic point of view, most of the time these substances replenish the body's deficiency and restore normal function. However, they also exert actions that are not sensu stricto nutritive and could be considered pharmacological especially that, at times, higher intake than recommended (RDA) is needed to see these effects. Free radicals and neuroinflammation processes underlie many neurodegenerative conditions, even Parkinson's disease and Alzheimer's disease. Curcumin, carotenoids, acetyl-L-carnitine, coenzyme Q10, vitamin D, and polyphenols and other nutraceuticals have the potential to target multiple pathways in these conditions. In summary, augmenting neuroprotective pathways using

  19. Molecular analysis of beta-globin gene mutations among Thai beta-thalassemia children: results from a single center study

    PubMed Central

    Boonyawat, Boonchai; Monsereenusorn, Chalinee; Traivaree, Chanchai

    2014-01-01

    Background Beta-thalassemia is one of the most common genetic disorders in Thailand. Clinical phenotype ranges from silent carrier to clinically manifested conditions including severe beta-thalassemia major and mild beta-thalassemia intermedia. Objective This study aimed to characterize the spectrum of beta-globin gene mutations in pediatric patients who were followed-up in Phramongkutklao Hospital. Patients and methods Eighty unrelated beta-thalassemia patients were enrolled in this study including 57 with beta-thalassemia/hemoglobin E, eight with homozygous beta-thalassemia, and 15 with heterozygous beta-thalassemia. Mutation analysis was performed by multiplex amplification refractory mutation system (M-ARMS), direct DNA sequencing of beta-globin gene, and gap polymerase chain reaction for 3.4 kb deletion detection, respectively. Results A total of 13 different beta-thalassemia mutations were identified among 88 alleles. The most common mutation was codon 41/42 (-TCTT) (37.5%), followed by codon 17 (A>T) (26.1%), IVS-I-5 (G>C) (8%), IVS-II-654 (C>T) (6.8%), IVS-I-1 (G>T) (4.5%), and codon 71/72 (+A) (2.3%), and all these six common mutations (85.2%) were detected by M-ARMS. Six uncommon mutations (10.2%) were identified by DNA sequencing including 4.5% for codon 35 (C>A) and 1.1% initiation codon mutation (ATG>AGG), codon 15 (G>A), codon 19 (A>G), codon 27/28 (+C), and codon 123/124/125 (-ACCCCACC), respectively. The 3.4 kb deletion was detected at 4.5%. The most common genotype of beta-thalassemia major patients was codon 41/42 (-TCTT)/codon 26 (G>A) or betaE accounting for 40%. Conclusion All of the beta-thalassemia alleles have been characterized by a combination of techniques including M-ARMS, DNA sequencing, and gap polymerase chain reaction for 3.4 kb deletion detection. Thirteen mutations account for 100% of the beta-thalassemia genes among the pediatric patients in our study. PMID:25525381

  20. Sequence variations of the alpha-globin genes: scanning of high CG content genes with DHPLC and DG-DGGE.

    PubMed

    Lacerra, Giuseppina; Fiorito, Mirella; Musollino, Gennaro; Di Noce, Francesca; Esposito, Maria; Nigro, Vincenzo; Gaudiano, Carlo; Carestia, Clementina

    2004-10-01

    The alpha-globin chains are encoded by two duplicated genes (HBA2 and HBA1, 5'-3') showing overall sequence homology >96% and average CG content >60%. alpha-Thalassemia, the most prevalent worldwide autosomal recessive disorder, is a hereditary anemia caused by sequence variations of these genes in about 25% of carriers. We evaluated the overall sensitivity and suitability of DHPLC and DG-DGGE in scanning both the alpha-globin genes by carrying out a retrospective analysis of 19 variant alleles in 29 genotypes. The HBA2 alleles c.1A>G, c.79G>A, and c.281T>G, and the HBA1 allele c.475C>A were new. Three pathogenic sequence variations were associated in cis with nonpathogenic variations in all families studied; they were the HBA2 variation c.2T>C associated with c.-24C>G, and the HBA2 variations c.391G>C and c.427T>C, both associated with c.565G>A. We set up original experimental conditions for DHPLC and DG-DGGE and analyzed 10 normal subjects, 46 heterozygotes, seven homozygotes, seven compound heterozygotes, and six compound heterozygotes for a hybrid gene. Both the methodologies gave reproducible results and no false-positive was detected. DHPLC showed 100% sensitivity and DG-DGGE nearly 90%. About 100% of the sequence from the cap site to the polyA addition site could be scanned by DHPLC, about 87% by DG-DGGE. It is noteworthy that the three most common pathogenic sequence variations (HBA2 alleles c.2T>C, c.95+2_95+6del, and c.523A>G) were unambiguously detected by both the methodologies. Genotype diagnosis must be confirmed with PCR sequencing of single amplicons or with an allele-specific method. This study can be helpful for scanning genes with high CG content and offers a model suitable for duplicated genes with high homology. Copyright 2004 Wiley-Liss, Inc.

  1. Synthesis and evaluation of new pyridyl/pyrazinyl thiourea derivatives: Neuroprotection against amyloid-β-induced toxicity.

    PubMed

    Park, Jung-Eun; Elkamhawy, Ahmed; Hassan, Ahmed H E; Pae, Ae Nim; Lee, Jiyoun; Paik, Sora; Park, Beoung-Geon; Roh, Eun Joo

    2017-12-01

    Herein, we report synthesis and evaluation of new twenty six small molecules against β amyloid (Aβ)-induced opening of mitochondrial permeability transition pore (mPTP) using JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The neuroprotective effect of seventeen compounds against Aβ-induced mPTP opening was superior to that of the standard Cyclosporin A (CsA). Fifteen derivatives eliciting increased green to red fluorescence percentage less than 40.0% were evaluated for their impact on ATP production, cell viability and neuroprotection against Aβ-induced neuronal cell death. Among evaluated compounds, derivatives 9w, 9r and 9k had safe profile regarding ATP production and cell viability. In addition, they exhibited significant neuroprotection (69.3, 51.8 and 48.2% respectively). Molecular modeling study using CDocker algorithm predicted plausible binding modes explaining the elicited mPTP blocking activity. Hence, this study suggests compounds 9w, 9r and 9k as leads for further development of novel therapy to Alzheimer's disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Pharmacological preconditioning by milrinone: memory preserving and neuroprotective effect in ischemia-reperfusion injury in mice.

    PubMed

    Saklani, Reetu; Jaggi, Amteshwar; Singh, Nirmal

    2010-07-01

    We tested the neuroprotective effect of milrinone, a phosphodiesterase III inhibitor, in pharmacological preconditioning. Bilateral carotid artery occlusion for 12 min followed by reperfusion for 24 h produced ischemia-reperfusion (I/R) cerebral injury in male Swiss albino mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using the Morris water maze test, and motor coordination was evaluated using the inclined beam walking test, rota-rod test, and lateral push test. Milrinone (50 microg/kg & 100 microg/kg i.v.) was administered 24 h before surgery in a separate group of animals to induce pharmacological preconditioning. I/R increased cerebral infarct size and impaired memory and motor coordination. Milrinone treatment significantly decreased cerebral infarct size and reversed I/R-induced impairments in memory and motor coordination. This neuroprotective effect was blocked by ruthenium red (3 mg/kg, s.c.), an intracellular ryanodine receptor blocker. These findings indicate that milrinone preconditioning exerts a marked neuroprotective effect on the ischemic brain, putatively due to increased intracellular calcium levels activating calcium-sensitive signal transduction cascades.

  3. A positive allosteric modulator of α7 nAChRs augments neuroprotective effects of endogenous nicotinic agonists in cerebral ischaemia

    PubMed Central

    Kalappa, Bopanna I; Sun, Fen; Johnson, Stephen R; Jin, Kunlin; Uteshev, Victor V

    2013-01-01

    Background and Purpose Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. Experimental Approach An electrophysiological ex vivo cell injury assay (to quantify the susceptibility of hippocampal neurons to acute injury by complete oxygen and glucose deprivation; COGD) and an in vivo middle cerebral artery occlusion model of ischaemia were used in rats. Key Results Choline (20–200 μM) in the presence, but not absence of 1 μM PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons, but not CA1 stratum radiatum interneurons, subjected to COGD in acute hippocampal slices and these effects were blocked by 20 nM methyllycaconitine, a selective α7 antagonist, thus, activation of α7 nAChRs was required. PNU-120596 alone was ineffective ex vivo. In in vivo experiments, both pre- and post-ischaemia treatments with PNU-120596 (30 mg·kg−1, s.c. and 1 mg·kg−1, i.v., respectively) significantly reduced the cortical/subcortical infarct volume caused by transient focal cerebral ischaemia. PNU-120596 (1 mg·kg−1, i.v., 30 min post-ischaemia) remained neuroprotective in rats subjected to a choline-deficient diet for 14 days prior to experiments. Conclusions and Implications PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting

  4. Neuroprotective Effect of a New Synthetic Aspirin-decursinol Adduct in Experimental Animal Models of Ischemic Stroke

    PubMed Central

    Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho

    2013-01-01

    Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants. PMID:24073226

  5. Neuroprotective effect of a new synthetic aspirin-decursinol adduct in experimental animal models of ischemic stroke.

    PubMed

    Yan, Bing Chun; Park, Joon Ha; Shin, Bich Na; Ahn, Ji Hyeon; Kim, In Hye; Lee, Jae-Chul; Yoo, Ki-Yeon; Hwang, In Koo; Choi, Jung Hoon; Park, Jeong Ho; Lee, Yun Lyul; Suh, Hong-Won; Jun, Jong-Gab; Kwon, Young-Guen; Kim, Young-Myeong; Kwon, Seung-Hae; Her, Song; Kim, Jin Su; Hyun, Byung-Hwa; Kim, Chul-Kyu; Cho, Jun Hwi; Lee, Choong Hyun; Won, Moo-Ho

    2013-01-01

    Stroke is the second leading cause of death. Experimental animal models of cerebral ischemia are widely used for researching mechanisms of ischemic damage and developing new drugs for the prevention and treatment of stroke. The present study aimed to comparatively investigate neuroprotective effects of aspirin (ASA), decursinol (DA) and new synthetic aspirin-decursinol adduct (ASA-DA) against transient focal and global cerebral ischemic damage. We found that treatment with 20 mg/kg, not 10 mg/kg, ASA-DA protected against ischemia-induced neuronal death after transient focal and global ischemic damage, and its neuroprotective effect was much better than that of ASA or DA alone. In addition, 20 mg/kg ASA-DA treatment reduced the ischemia-induced gliosis and maintained antioxidants levels in the corresponding injury regions. In brief, ASA-DA, a new synthetic drug, dramatically protected neurons from ischemic damage, and neuroprotective effects of ASA-DA may be closely related to the attenuation of ischemia-induced gliosis and maintenance of antioxidants.

  6. The neuroprotective effect of modified "Shengyu" decoction is mediated through an anti-inflammatory mechanism in the rat after traumatic brain injury.

    PubMed

    Zhao, Guang-Wei; Wang, Yong; Li, Yong-Cai; Jiang, Zheng-Lin; Sun, Li; Xi, Xin; He, Peng; Wang, Guo-Hua; Xu, Shi-Hui; Ma, Dong-Ming; Ke, Kai-Fu

    2014-01-01

    "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood" induced frequently by profound loss of blood or by long sores with heavy pus, in which a potential anti-inflammatory effect is implied. The modified "Shengyu" decoction (MSD) used in the present study was designed on the basis of the "Shengyu" decoction, additional four herbs were added in. Many ingredients in these herbs have been demonstrated to be anti-inflammatory and thus MSD may be used for the treatment of traumatic brain injury (TBI). To evaluate the neuroprotective effect and the underlying mechanisms of MSD on the rat brain after TBI. TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. The rats were administered a gavage of MSD (0.5, 1.0 or 2.0 ml/200 g) 6h after TBI. The neurological functions, brain water content, contusion volume, and neuron loss were determined. The levels of TNF-α, IL-1β, IL-6, and IL-10 and the number of GFAP- and Iba1-positive cells in the brain ipsilateral to TBI were also measured. Moreover, the influence of MSD on these variables was observed at the same time. The neurological deficits, brain water content, and neuron loss were significantly reduced after 1.0 or 2.0 ml/200 g of MSD treatment but not after 0.5 ml/200 g. In addition, treatment with MSD (1.0 ml/200 g) significantly increased the level of IL-10 and reduced the level of TNF-α and IL-1β and the number of GFAP- and Iba1-positive cells after TBI. However, the contusion volume of brain tissue and the expression of IL-6 were not significantly changed. MSD may be a potential therapeutic for the treatment of TBI because MSD alleviated secondary brain injury induced by TBI. In addition, MSD inhibited the inflammatory response through reducing the expression of inflammatory cytokines and the activation of microglial cells and astrocytes in the brain tissue of rats after TBI. Therefore, a potential anti

  7. Could Sirtuin Activities Modify ALS Onset and Progression?

    PubMed

    Tang, Bor Luen

    2017-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.

  8. Neurodegeneration and Neuroprotection in Glaucoma

    PubMed Central

    Gauthier, Angela C.; Liu, Ji

    2016-01-01

    Glaucoma is the principal cause of irreversible blindness in the world. The disease leads to progressive optic nerve degeneration with a gradual loss of retinal ganglion cells. Neurodegeneration in glaucoma extends beyond the eye into the lateral geniculate nucleus and visual cortex, and the disease even shares some characteristics with other central nervous system degenerative disorders. Glaucoma destroys neurons through oxidative stress, impairment in axonal transport, neuroinflammation, and excitotoxicity. Autophagy may promote or inhibit disease progression. Currently, lowering intraocular pressure is the only way proven to delay glaucoma advancement. However, many new therapies are being developed, including antioxidants, adenosine receptor antagonists, Rho-pathway inhibitors, stem cell therapy, and neurotrophic factors. These therapies focus on neuroprotection, and they may eventually halt glaucoma progression or reverse the process of the disease itself. PMID:27505018

  9. Classical sickle beta-globin haplotypes exhibit a high degree of long-range haplotype similarity in African and Afro-Caribbean populations.

    PubMed

    Hanchard, Neil; Elzein, Abier; Trafford, Clare; Rockett, Kirk; Pinder, Margaret; Jallow, Muminatou; Harding, Rosalind; Kwiatkowski, Dominic; McKenzie, Colin

    2007-08-10

    The sickle (betas) mutation in the beta-globin gene (HBB) occurs on five "classical" betas haplotype backgrounds in ethnic groups of African ancestry. Strong selection in favour of the betas allele - a consequence of protection from severe malarial infection afforded by heterozygotes - has been associated with a high degree of extended haplotype similarity. The relationship between classical betas haplotypes and long-range haplotype similarity may have both anthropological and clinical implications, but to date has not been explored. Here we evaluate the haplotype similarity of classical betas haplotypes over 400 kb in population samples from Jamaica, The Gambia, and among the Yoruba of Nigeria (Hapmap YRI). The most common betas sub-haplotype among Jamaicans and the Yoruba was the Benin haplotype, while in The Gambia the Senegal haplotype was observed most commonly. Both subtypes exhibited a high degree of long-range haplotype similarity extending across approximately 400 kb in all three populations. This long-range similarity was significantly greater than that seen for other haplotypes sampled in these populations (P < 0.001), and was independent of marker choice and marker density. Among the Yoruba, Benin haplotypes were highly conserved, with very strong linkage disequilibrium (LD) extending a megabase across the betas mutation. Two different classical betas haplotypes, sampled from different populations, exhibit comparable and extensive long-range haplotype similarity and strong LD. This LD extends across the adjacent recombination hotspot, and is discernable at distances in excess of 400 kb. Although the multi-centric geographic distribution of betas haplotypes indicates strong subdivision among early Holocene sub-Saharan populations, we find no evidence that selective pressures imposed by falciparum malaria varied in intensity or timing between these subpopulations. Our observations also suggest that cis-acting loci, which may influence outcomes in sickle

  10. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial.

    PubMed

    Raftopoulos, Rhian; Hickman, Simon J; Toosy, Ahmed; Sharrack, Basil; Mallik, Shahrukh; Paling, David; Altmann, Daniel R; Yiannakas, Marios C; Malladi, Prasad; Sheridan, Rose; Sarrigiannis, Ptolemaios G; Hoggard, Nigel; Koltzenburg, Martin; Gandini Wheeler-Kingshott, Claudia A M; Schmierer, Klaus; Giovannoni, Gavin; Miller, David H; Kapoor, Raju

    2016-03-01

    Acute demyelinating optic neuritis, a common feature of multiple sclerosis, can damage vision through neurodegeneration in the optic nerve and in its fibres in the retina. Inhibition of voltage-gated sodium channels is neuroprotective in preclinical models. In this study we aimed to establish whether sodium-channel inhibition with phenytoin is neuroprotective in patient with acute optic neuritis. We did a randomised, placebo-controlled, double-blind phase 2 trial at two UK academic hospitals in London and Sheffield. Patients with acute optic neuritis aged 18-60 years, presenting within 2 weeks of onset, with visual acuity of 6/9 or worse, were randomly assigned (1:1) by minimisation via a web-based service to oral phenytoin (maintenance dose 4 mg/kg per day if randomised before or on July 16, 2013, and 6 mg/kg per day if randomised on or after July 17, 2013) or placebo for 3 months, stratified by time from onset, centre, previous multiple sclerosis diagnosis, use of disease-modifying treatment, and use of corticosteroids for acute optic neuritis. Participants and treating and assessing physicians were masked to group assignment. The primary outcome was retinal nerve fibre layer (RNFL) thickness in the affected eye at 6 months, adjusted for fellow-eye RNFL thickness at baseline, analysed in a modified intention-to-treat population of all randomised participants who were followed up at 6 months. Safety was analysed in the entire population, including those who were lost to follow-up. The trial is registered with ClinicalTrials.gov, number NCT 01451593. We recruited 86 participants between Feb 3, 2012, and May 22, 2014 (42 assigned to phenytoin and 44 to placebo). 29 were assigned to phenytoin 4 mg/kg and 13 to phenytoin 6 mg/kg. Five participants were lost to follow-up, so the primary analysis included 81 participants (39 assigned to phenytoin and 42 to placebo). Mean 6-month RNFL thickness in the affected eye at 6 months was 81.46 μm (SD 16.27) in the phenytoin

  11. Generation of Mice Deficient in both KLF3/BKLF and KLF8 Reveals a Genetic Interaction and a Role for These Factors in Embryonic Globin Gene Silencing

    PubMed Central

    Funnell, Alister P. W.; Mak, Ka Sin; Twine, Natalie A.; Pelka, Gregory J.; Norton, Laura J.; Radziewic, Tania; Power, Melinda; Wilkins, Marc R.; Bell-Anderson, Kim S.; Fraser, Stuart T.; Perkins, Andrew C.; Tam, Patrick P.; Pearson, Richard C. M.

    2013-01-01

    Krüppel-like factors 3 and 8 (KLF3 and KLF8) are highly related transcriptional regulators that bind to similar sequences of DNA. We have previously shown that in erythroid cells there is a regulatory hierarchy within the KLF family, whereby KLF1 drives the expression of both the Klf3 and Klf8 genes and KLF3 in turn represses Klf8 expression. While the erythroid roles of KLF1 and KLF3 have been explored, the contribution of KLF8 to this regulatory network has been unknown. To investigate this, we have generated a mouse model with disrupted KLF8 expression. While these mice are viable, albeit with a reduced life span, mice lacking both KLF3 and KLF8 die at around embryonic day 14.5 (E14.5), indicative of a genetic interaction between these two factors. In the fetal liver, Klf3 Klf8 double mutant embryos exhibit greater dysregulation of gene expression than either of the two single mutants. In particular, we observe derepression of embryonic, but not adult, globin expression. Taken together, these results suggest that KLF3 and KLF8 have overlapping roles in vivo and participate in the silencing of embryonic globin expression during development. PMID:23716600

  12. Emulsion-core and polyelectrolyte-shell nanocapsules: biocompatibility and neuroprotection against SH-SY5Y cells

    NASA Astrophysics Data System (ADS)

    Piotrowski, Marek; Szczepanowicz, Krzysztof; Jantas, Danuta; Leśkiewicz, Monika; Lasoń, Władysław; Warszyński, Piotr

    2013-11-01

    The emulsion-core and polyelectrolyte-coated nanocapsules, designed as water-insoluble neuroprotective drug delivery system, were synthesized using layer-by-layer saturation method. The isopropyl myristate was used as oil phase and docusate sodium salt as emulsifier. For the polyelectrolyte shell preparation, synthetic polyelectrolytes, cationic (PDADMAC, PAH, and PLL) and anionic (PGA) were used. The particle size and zeta potential of nanocapsules were characterized by the dynamic light scattering. The average size of synthesized nanocapsules ranged from 80 to 100 nm. Zeta potential values ranged from less than approximately -30 mV for the polyanion layers to greater than approximately +30 mV for the polycation layers. Biocompatibilities of the synthesized nanocarriers were evaluated against SH-SY5Y human neuroblastoma cells using various biochemical assays. The results obtained show that synthesized nanocapsules coated with PLL and PGA were nontoxic to SH-SY5Y cells, and they were used as nanocarriers for model neuroprotective drug (a calpain inhibitor MDL 28170). The neuroprotective action of the encapsulated MDL 28170 against hydrogen peroxide-induced oxidative stress cytotoxicity was evaluated in the same cell line. The results showed that nanoencapsulated form of MDL 28170 were biocompatible and protected SH-SY5Y cells against the H2O2 (0.5 mM/24 h)-induced damage in 20-40 times lower concentrations than those of the same drug added directly to the culture medium. These data suggest that the nanoscale carriers of neuroprotective drugs might serve as novel promising therapeutic agents for oxidative stress-related neurodegenerative processes.

  13. [Resveratrol: a neuroprotective polyphenol in the Mediterranean diet].

    PubMed

    López-Miranda, Visitación; Soto-Montenegro, M Luisa; Vera, Gema; Herradón, Esperanza; Desco, Manuel; Abalo, Raquel

    2012-03-16

    Resveratrol is a polyphenol present in grapes, some nuts and dried fruits, and red wine. A number of beneficial properties have been attributed to this compound. Its potential neuroprotective effects are the subject of much research today. To review the effects of resveratrol, and more particularly those related to its capacity to offer protection against the neurodegeneration associated with several pathologies and traumatic injuries in the central nervous system. It has been suggested that the daily consumption of red wine, and therefore of resveratrol, could account for the so-called 'French paradox', according to which the population in the south of France, despite eating a diet that is relatively high in saturated fats, presents a low risk of heart disease. From this first evidence of the cardioprotective properties of resveratrol, its study has been extended and equally attractive biopharmacological effects have now been found in many different fields. Thus, neuroprotective effects have been found in models of neurodegeneration (Alzheimer's, Parkinson's or Huntington's disease, or diverse neuropathies), of ischaemia and of brain and spinal cord injury, but further clinical data are still needed in this regard. Although few studies have been conducted in humans, recent findings in experimental models of neurological pathology are encouraging and open up the doors to future clinical studies that will allow the therapeutic value of resveratrol to be determined.

  14. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  15. Neuroprotective Effects of the Securinine-Analogues: Identification of Allomargaritarine as a Lead Compound.

    PubMed

    Neganova, Margarita E; Klochkov, Sergei G; Afanasieva, Svetlana V; Serkova, Tatiana P; Chudinova, Ekaterina S; Bachurin, Sergei O; Reddy, V Prakash; Aliev, Gjumrakch; Shevtsova, Elena F

    2016-01-01

    Oxidative stress and mitochondrial disturbances are the common and important causative factors of aging, and play an important role in the late onset of sporadic neurodegenerative diseases, including Alzheimer disease (AD). Furthermore, emerging evidence from in vitro and in vivo disease models suggests that oxidative stress and increased vulnerability to induction of mitochondrial permeability transition leads to the pathogenesis of the neurological disorders. Towards the goals of developing effective neuroprotectors, this article describes the synthesis and neuroprotective studies of various derivatives of the naturally occurring alkaloid securinine, based on which a lead compound, allomargaritarine (a diastereomer of margaritarine), was identified as an effective therapeutic for neuroprotection. Allomargaritarine exhibits high antioxidant activity, and has significant mitoprotective effect on cellular models of neurodegeneration.

  16. Neuroprotective effect of ethanol in acute carbon monoxide intoxication: A retrospective study.

    PubMed

    Kim, Hyuk-Hoon; Choi, Sang Chun; Chae, Minjung Kathy; Min, Young-Gi

    2018-01-01

    In acute carbon monoxide (CO) intoxication, treatment of neurologic injury and prevention of neurological sequelae are primary concerns. Ethanol is the one of the frequent substances which is co-ingested in intentional CO poisoning. Neuroprotective effect of ethanol was highlighted and demonstrated in isolated brain injury recently. We assessed the neuroprotective effect of ethanol in acute CO intoxication using magnetic resonance imaging (MRI).We retrospectively reviewed medical records for patients who visited an emergency medical center of a university-affiliated hospital during a period of 73 months, from March 2009 to April 2015. Enrolled patients were divided into 2 groups, patients with or without abnormal brain lesion in brain MRI. Multivariate logistic regression analysis was performed to assess the factors associated with brain injury in MRI.A total of 109 patients with acute CO intoxication were evaluated of which 66 (60.55%) tested positive in brain MRI. MRI lesion-positive patients were more likely to have electrocardiogram change, elevation of serum troponin I and s100 protein level and lower serum ethanol level. Serum ethanol positivity was an independent factor for prevalence of brain injury in MRI in acute CO poisoning.This study revealed that ethanol which is co-ingested in acute CO intoxication may work the neuroprotective effect and could consequence more favorable neurological outcome in acute CO intoxication. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  17. Naturally occurring marine steroid 24-methylenecholestane-3β,5α,6β,19-tetraol functions as a novel neuroprotectant.

    PubMed

    Leng, Tiandong; Liu, Ailing; Wang, Youqiong; Chen, Xinying; Zhou, Shujia; Li, Qun; Zhu, Wenbo; Zhou, Yuehan; Su, Xingwen; Huang, Yijun; Yin, Wei; Qiu, Pengxin; Hu, Haiyan; Xiong, Zhi-gang; Zhang, Jingxia; Yan, Guangmei

    2016-01-01

    Steroids have been shown to have multiple effects on the nervous system including neuroprotective activities, and they have the potential to be used for the treatment of neurodegenerative diseases. In this current study, we tested the hypothesis that the marine steroid 24-methylenecholestane-3β,5α,6β,19-tetraol (Tetrol) has a neuroprotective effect. (1) We synthesized Tetrol through a multiple step reaction starting from hyodeoxycholic acid (HDCA). (2) We then evaluated the neuroprotective effect of Tetrol with a glutamate-induced neuronal injury model in vitro. Tetrol concentration dependently increased the survival rate of cerebellar granule neurons challenged with toxic concentration of glutamate. Consistently, Tetrol significantly decreased glutamate-induced lactate dehydrogenase (LDH) release with a threshold concentration of 2.5 μM. (3) We further evaluated the neuroprotective effect of Tetrol in a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia model in rat. Tetrol, at a dose of 12 mg/kg, significantly decreased MCAO-induced infarction volume by ∼50%. (4) Finally, we probed the mechanism and found that Tetrol concentration dependently attenuated N-methyl-d-aspartate (NMDA)-induced intracellular calcium ([Ca(2+)]i) increase with an IC50 of 7.8±0.62 μM, and inhibited NMDA currents in cortical neurons with an IC50 of 10.28±0.71 μM. Taken together, we have synthesized and characterized Tetrol as a novel neuroprotectant through negative modulation of NMDA receptors. Copyright © 2015. Published by Elsevier Inc.

  18. Hypothermia Is Neuroprotective after Severe Hypoxic-Ischaemic Brain Injury in Neonatal Rats Pre-Exposed to PAM3CSK4.

    PubMed

    Falck, Mari; Osredkar, Damjan; Maes, Elke; Flatebø, Torun; Wood, Thomas Ragnar; Walløe, Lars; Sabir, Hemmen; Thoresen, Marianne

    2018-06-01

    Preclinical research on the neuroprotective effect of hypothermia (HT) after perinatal asphyxia has shown variable results, depending on comorbidities and insult severity. Exposure to inflammation increases vulnerability of the neonatal brain to hypoxic-ischaemic (HI) injury, and could be one explanation for those neonates whose injury is unexpectedly severe. Gram-negative type inflammatory exposure by lipopolysaccharide administration prior to a mild HI insult results in moderate brain injury, and hypothermic neuroprotection is negated. However, the neuroprotective effect of HT is fully maintained after gram-positive type inflammatory exposure by PAM3CSK4 (PAM) pre-administration in the same HI model. Whether HT is neuroprotective in severe brain injury with gram-positive inflammatory pre-exposure has not been investigated. 59 seven-day-old rat pups were subjected to a unilateral HI insult, with left carotid artery ligation followed by 90-min hypoxia (8% O2 at Trectal 36°C). An additional 196 pups received intraperitoneal 0.9% saline (control) or PAM1 mg/kg, 8 h before undergoing the same HI insult. After randomisation to 5 h normothermia (NT37°C) or HT32°C, pups survived 1 week before they were sacrificed by perfusion fixation. Brains were harvested for hemispheric and hippocampal area loss analyses at postnatal day 14, as well as immunostaining for neuron count in the HIP CA1 region. Normothermic PAM animals (PAM-NT) had a comparable median area loss (hemispheric: 60% [95% CI 33-66]; hippocampal: 61% [95% CI 29-67]) to vehicle animals (Veh-NT) (hemispheric: 58% [95% CI 11-64]; hippocampal: 60% [95% CI 19-68]), which is defined as severe brain injury. Furthermore, mortality was low and similar in the two groups (Veh-NT 4.5% vs. PAM-NT 6.6%). HT reduced hemispheric and hippocampal injury in the Veh group by 13 and 28%, respectively (hemispheric: p = 0.048; hippocampal: p = 0.042). HT also provided neuroprotection in the PAM group, reducing hemispheric injury by

  19. Determination of neuroprotective oxysterols in Calculus bovis, human gallstones, and traditional Chinese medicine preparations by liquid chromatography with mass spectrometry.

    PubMed

    Wang, Yalong; Jiang, Han; Huang, Huizhi; Xie, Yanqi; Zhao, Yunshi; You, Xiuhua; Tang, Lipeng; Wang, Youqiong; Yin, Wei; Qiu, Pengxin; Yan, Guangmei; Hu, Haiyan

    2015-03-01

    So far, the components responsible for the neuroprotective effects of Calculus bovis are unclear. Cholesterol, one of the major components in Calculus bovis, is easily oxidized into oxysterols, which possess direct or indirect neuroprotective effects proved by our and others' previous studies. Therefore, a liquid chromatography with mass spectrometry method coupled with ultrasonic extraction and solid-phase extraction was developed for the determination of neuroprotective oxysterols in Calculus bovis, human gallstones, and traditional Chinese medicine preparations. Chromatographic separation was achieved on a C18 column with isocratic elution at a flow rate of 1 mL/min. The established method showed good linearity (R(2) > 0.998), sensitivity with low limits of detection (0.06-0.39 μg/g), acceptable precisions (relative standard deviations ≤ 7.4%), stability (relative standard deviations ≤ 5.9%), and satisfactory accuracy (92.4-102.9%) for all analytes identified by different retention times, which could be applied for the determination of oxysterols. Five kinds of oxysterols proved to function as neuroprotectants were detected at different concentrations. Among them, 7β-hydroxycholesterol and cholestane-3β,5α,6β-triol were rather abundant in the samples. It could be concluded that the potential neuroprotective components in Calculus bovis may be these oxysterols. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Docosahexaenoic Acid (DHA) Provides Neuroprotection in Traumatic Brain Injury Models via Activating Nrf2-ARE Signaling.

    PubMed

    Zhu, Wei; Ding, Yuexia; Kong, Wei; Li, Tuo; Chen, Hongguang

    2018-04-16

    In this study, we explored the neuroprotective effects of docosahexaenoic acid (DHA) in traumatic brain injury (TBI) models. In this study, we first confirmed that DHA was neuroprotective against TBI via the NSS test and Morris water maze experiment. Western blot was conducted to identify the expression of Bax, caspase-3, and Bcl-2. And the cell apoptosis of the TBI models was validated by TUNEL staining. Relationships between nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway-related genes and DHA were explored by RT-PCR and Western blot. Rats of the DHA group performed remarkably better than those of the TBI group in both NSS test and water maze experiment. DHA conspicuously promoted the expression of Bcl-2 and diminished that of cleaved caspase-3 and Bax, indicating the anti-apoptotic role of DHA. Superoxide dismutase (SOD) activity and cortical malondialdehyde content, glutathione peroxidase (GPx) activity were renovated in rats receiving DHA treatment, implying that the neuroprotective influence of DHA was derived from lightening the oxidative stress caused by TBI. Moreover, immunofluorescence and Western blot experiments revealed that DHA facilitated the translocation of Nrf2 to the nucleus. DHA administration also notably increased the expression of the downstream factors NAD(P)H:quinone oxidoreductase (NQO-1) and heme oxygenase 1(HO-1). DHA exerted neuroprotective influence on the TBI models, potentially through activating the Nrf2- ARE pathway.

  1. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    PubMed

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  2. Phylogenetic relations of humans and African apes from DNA sequences in the Psi eta-globin region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, M.M.; Slightom, J.L.; Goodman, M.

    Sequences from the upstream and downstream flanking DNA regions of the Psi eta-globin locus in Pan troglodytes (common chimpanzee), Gorilla gorilla (gorilla), and Pongo pygmaeus (orangutan, the closest living relative to Homo, Pan, and Gorilla) provided further data for evaluating the phylogenetic relations of humans and African apes. These newly sequenced orthologs (an additional 4.9 kilobase pairs (kbp) for each species) were combined with published Psi eta-gene sequences and then compared to the same orthologous stretch (a continuous 7.1-kbp region) available for humans. Phylogenetic analysis of these nucleotide sequences by the parsimony method indicated (i) that human and chimpanzee aremore » more closely related to each other than either is to gorilla and (ii) that the slowdown in the rate of sequence evolution evident in higher primates is especially pronounced in humans. These results indicate that features unique to African apes (but not to humans) are primitive and that even local molecular clocks should be applied with caution.« less

  3. Nitric Oxide Donors as Neuroprotective Agents after an Ischemic Stroke-Related Inflammatory Reaction

    PubMed Central

    Rojas-Mayorquín, Argelia E.; Ortuño-Sahagún, Daniel

    2013-01-01

    Cerebral ischemia initiates a cascade of detrimental events including glutamate-associated excitotoxicity, intracellular calcium accumulation, formation of Reactive oxygen species (ROS), membrane lipid degradation, and DNA damage, which lead to the disruption of cellular homeostasis and structural damage of ischemic brain tissue. Cerebral ischemia also triggers acute inflammation, which exacerbates primary brain damage. Therefore, reducing oxidative stress (OS) and downregulating the inflammatory response are options that merit consideration as potential therapeutic targets for ischemic stroke. Consequently, agents capable of modulating both elements will constitute promising therapeutic solutions because clinically effective neuroprotectants have not yet been discovered and no specific therapy for stroke is available to date. Because of their ability to modulate both oxidative stress and the inflammatory response, much attention has been focused on the role of nitric oxide donors (NOD) as neuroprotective agents in the pathophysiology of cerebral ischemia-reperfusion injury. Given their short therapeutic window, NOD appears to be appropriate for use during neurosurgical procedures involving transient arterial occlusions, or in very early treatment of acute ischemic stroke, and also possibly as complementary treatment for neurodegenerative diseases such as Parkinson or Alzheimer, where oxidative stress is an important promoter of damage. In the present paper, we focus on the role of NOD as possible neuroprotective therapeutic agents for ischemia/reperfusion treatment. PMID:23691263

  4. Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia.

    PubMed

    Dong, Beibei; Cai, Min; Fang, Zongping; Wei, Haidong; Zhu, Fangyun; Li, Guochao; Dong, Hailong; Xiong, Lize

    2013-06-10

    The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia. In the present study, we systematically investigated expression of HPX in normal rat brain by immunofluorescent staining. The results showed that HPX was mainly expressed in vascular system and neurons, as well as in a small portion of astrocytes adjacent to the vessels in normal rat brain. Further, we determined the role of HPX in the process of focal cerebral ischemic injury and explored the effects of HPX treatment in a rat model of transient focal cerebral ischemia. After 2 h' middle cerebral artery occlusion (MCAO) followed by 24 h' reperfusion, the expression of HPX was increased in the neurons and astrocytes in the penumbra area, as demonstrated by immunohistochemistry and Western blot techniques. Intracerebroventricular injection of HPX at the onset of reperfusion dose-dependently reduced the infarct volumes and improved measurements of neurological function of the rat subjected to transient focal cerebral ischemia. The neuroprotective effects of HPX sustained for up to 7 days after experiments. Our study provides a new insight into the potential neuroprotective role of HPX as a contributing factor of endogenous protective mechanisms against focal cerebral ischemia injury, and HPX might be developed as a potential agent for treatment of ischemic stroke.

  5. Anti-Aβ single-chain variable fragment antibodies exert synergistic neuroprotective activities in Drosophila models of Alzheimer's disease

    PubMed Central

    Fernandez-Funez, Pedro; Zhang, Yan; Sanchez-Garcia, Jonatan; de Mena, Lorena; Khare, Swati; Golde, Todd E.; Levites, Yona; Rincon-Limas, Diego E.

    2015-01-01

    Both active and passive immunotherapy protocols decrease insoluble amyloid-ß42 (Aß42) peptide in animal models, suggesting potential therapeutic applications against the main pathological trigger in Alzheimer's disease (AD). However, recent clinical trials have reported no significant benefits from humanized anti-Aß42 antibodies. Engineered single-chain variable fragment antibodies (scFv) are much smaller and can easily penetrate the brain, but identifying the most effective scFvs in murine AD models is slow and costly. We show here that scFvs against the N- and C-terminus of Aß42 (scFv9 and scFV42.2, respectively) that decrease insoluble Aß42 in CRND mice are neuroprotective in Drosophila models of Aß42 and amyloid precursor protein neurotoxicity. Both scFv9 and scFv42.2 suppress eye toxicity, reduce cell death in brain neurons, protect the structural integrity of dendritic terminals in brain neurons and delay locomotor dysfunction. Additionally, we show for the first time that co-expression of both anti-Aß scFvs display synergistic neuroprotective activities, suggesting that combined therapies targeting distinct Aß42 epitopes can be more effective than targeting a single epitope. Overall, we demonstrate the feasibility of using Drosophila as a first step for characterizing neuroprotective anti-Aß scFvs in vivo and identifying scFv combinations with synergistic neuroprotective activities. PMID:26253732

  6. Fever of unclear origin and cytopenia because of acute splenic sequestration in a young immunocompetent carrier of beta-globin mutation for Hb Valletta.

    PubMed

    Parrinello, Gaspare; Torres, Daniele; Paterna, Salvatore; Di Pasquale, Pietro; Licata, Giuseppe

    2008-12-01

    Fever of unclear origin is a clinical challenge in medical practice. Infectious diseases, neoplasms, and collagen vascular illnesses are its main causes in adults and children. Acute splenic sequestration crises, a known potentially fatal complication of sickle cell disease and sickle beta-thalassemia, are uncommon in beta-heterozygosis. We describe a case of prolonged recurrent episodes of fever with spontaneous resolution, commencing at age 10 in a 15-year-old boy with a history of hypochromic microcytic anemia attributed to a thalassemic trait. He was admitted twice to our university hospital for continuous-remittent fever with a pruritic, macular evanescent Still's skin rash, severe splenomegaly, leucopenia, thrombocytopenia, and sudden aggravation of anemia. Infectious, rheumatologic, autoimmune, and hematologic illnesses were excluded. A genetic-based study revealed heterozygosis of the beta-globin gene for a A>C (Thr>Pro) substitution at position 87 called Hemoglobin Valletta (alpha 2 beta 2 87 PRO) with a C>G transition in homozygosis in beta-globin intronic polymorphism intervening sequence 2 at nucleotide 745. After a follow-up period of 1 year without treatment, the young patient remains apyretic and in good general clinical health with persistent microcythemia and hepatosplenomegaly. Acute splenic sequestration crisis and related cytopenia may be an unusual complication of fever of unclear origin in a beta-thalassemic carrier of a Hemoglobin Valletta mutation and polymorphism in homozygosis of intervening sequence 2 at nucleotide 745. This hemoglobinopathy may predispose to a clinical phenotype of minor or intermediate thalassemia and, during a febrile illness, to hemoglobin instability and splenic sequestration.

  7. Human beta-globin mRNAs that harbor a nonsense codon are degraded in murine erythroid tissues to intermediates lacking regions of exon I or exons I and II that have a cap-like structure at the 5' termini.

    PubMed Central

    Lim, S K; Maquat, L E

    1992-01-01

    Previous studies have demonstrated that nonsense codons within beta zero-thalassemic or in vitro-mutagenized human beta-globin transgenes result in the production of mRNAs that are degraded abnormally rapidly in the cytoplasm of murine erythroid cells. As a consequence, three RNA degradative intermediates are formed that lack sequences from either exon I or exons I and II. We show here that the intermediates, like the full-length mRNA from which they derive and the endogenous murine beta maj-globin mRNA, bind to the anticap monoclonal antibody H-20 in a way that is competed by the cap analogue m7G and eliminated by prior exposure to tobacco acid pyrophosphatase. Furthermore, the intermediates, like the two full-length mRNAs, are resistant to a 5'----3' exonuclease activity isolated from HeLa cell nuclei that degrades uncapped but not capped ribopolymers. Based on these observations, the intermediates appear to possess a structure that is indistinguishable from the cap at the 5' end of mRNA, i.e. a methylated nucleoside that is linked to the RNA by a 5'-5' phosphodiester bond. Detection of the intermediates during murine development was concomitant with detection of full-length thalassemic mRNA. Intermediate production appears to be influenced by RNA structure as indicated by the products that derive from a beta zero-thalassemic beta-globin transgene harboring a structural alteration (a 4 bp deletion) that was larger than any of those previously studied. Images PMID:1324170

  8. Neuroprotective effect of propofol against excitotoxic injury to locomotor networks of the rat spinal cord in vitro.

    PubMed

    Kaur, Jaspreet; Flores Gutiérrez, Javier; Nistri, Andrea

    2016-10-01

    Although neuroprotection to contain the initial damage of spinal cord injury (SCI) is difficult, multicentre studies show that early neurosurgery under general anaesthesia confers positive benefits. An interesting hypothesis is that the general anaesthetic itself might largely contribute to neuroprotection, although in vivo clinical settings hamper studying this possibility directly. To further test neuroprotective effects of a widely used general anaesthetic, we studied if propofol could change the outcome of a rat isolated spinal cord SCI model involving excitotoxicity evoked by 1 h application of kainate with delayed consequences on neurons and locomotor network activity. Propofol (5 μm; 4-8 h) enhanced responses to GABA and depressed those to NMDA together with decrease in polysynaptic reflexes that partly recovered after 1 day washout. Fictive locomotion induced by dorsal root stimuli or NMDA and serotonin was weaker the day after propofol application. Kainate elicited a significant loss of spinal neurons, especially motoneurons, whose number was halved. When propofol was applied for 4-8 h after kainate washout, strong neuroprotection was observed in all spinal areas, including attenuation of motoneuron loss. Although propofol had minimal impact on recovery of electrophysiological characteristics 24 h later, it did not further depress network activity. A significant improvement in disinhibited burst periodicity suggested potential to ameliorate neuronal excitability in analogy to histological data. Functional recovery of locomotor networks perhaps required longer time due to the combined action of excitotoxicity and anaesthetic depression at 24 h. These results suggest propofol could confer good neuroprotection to spinal circuits during experimental SCI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Neuroprotective Benefits of Aerobic Exercise and Organoselenium Dietary Supplementation in Hippocampus of Old Rats.

    PubMed

    Cechella, José L; Leite, Marlon R; Pinton, Simone; Zeni, Gilson; Nogueira, Cristina W

    2018-05-01

    The progressive decline of neurological functions, such as learning and memory, is an unavoidable consequence of aging. Our previous work suggested that the combination of physical exercise and a diet supplemented with diphenyl diselenide improves age-related memory decline in rats. The present study investigated the effects of physical exercise and a diet supplemented with diphenyl diselenide on the levels of proteins involved in the hippocampal neuroprotection to figure out the mechanisms related to the beneficial effects of this intervention in aged rats. Male Wistar rats (27 months old) were fed daily with standard chow supplemented with 1 ppm of diphenyl diselenide and subjected to swimming training with a workload (1% of body weight, 20 min/day) for 4 weeks. The hippocampus was dissected from the brain and used for the western blot and immunohistochemistry analyses. The results of this study demonstrate that the association of diphenyl diselenide-supplemented diet and swimming exercise increased the levels of proteins involved in neuroprotection and decreased the activation of those related to apoptosis and neuroinflammation in the hippocampus of old rats. This study suggests that physical exercise and a diet supplemented with (PhSe) 2 promoted neuroprotection in the hippocampus of aged rats.

  10. Biomarker-driven phenotyping in Parkinson disease: a translational missing link in disease-modifying clinical trials

    PubMed Central

    Espay, Alberto J.; Schwarzschild, Michael A.; Tanner, Caroline M.; Fernandez, Hubert H; Simon, David K.; Leverenz, James B.; Merola, Aristide; Chen-Plotkin, Alice; Brundin, Patrik; Kauffman, Marcelo A.; Erro, Roberto; Kieburtz, Karl; Woo, Daniel; Macklin, Eric A.; Standaert, David G.; Lang, Anthony E.

    2016-01-01

    Past clinical trials of putative neuroprotective therapies have targeted Parkinson disease (PD) as a single pathogenic disease entity. From an Oslerian clinico-pathologic perspective, the wide complexity of PD converges into Lewy bodies and justifies a reductionist approach to PD: a single-mechanism therapy can affect most of those sharing the classic pathologic hallmark. From a systems-biology perspective, PD is a group of disorders that, while related by sharing the feature of nigral dopamine-neuron degeneration, exhibit unique genetic, biological and molecular abnormalities, which probably respond differentially to a given therapeutic approach, particularly for strategies aimed at neuroprotection. Under this model, only biomarker-defined, homogenous subtypes of PD are likely to respond optimally to therapies proven to affect the biological processes within each subtype. Therefore, we suggest that precision medicine applied to PD requires a reevaluation of the biomarker-discovery effort. This effort is currently centered on correlating biological measures to clinical features of PD and on identifying factors that predict whether various prodromal states will convert into the classical movement disorder. We suggest, instead, that subtyping of PD requires the reverse view, where abnormal biological signals (i.e., biomarkers) rather than clinical definitions are used to define disease phenotypes. Successful development of disease-modifying strategies will depend on how relevant the specific biological processes addressed by an intervention are to the pathogenetic mechanisms in the subgroup of targeted patients. This precision-medicine approach will likely yield smaller but well-defined subsets of PD amenable to successful neuroprotection. PMID:28233927

  11. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae.

    PubMed

    Liu, Lifang; Martínez, José L; Liu, Zihe; Petranovic, Dina; Nielsen, Jens

    2014-01-01

    Due to limitations associated with whole blood for transfusions (antigen compatibility, transmission of infections, supply and storage), the use of cell-free hemoglobin as an oxygen carrier substitute has been in the center of research interest for decades. Human hemoglobin has previously been synthesized in yeast, however the challenge is to balance the expression of the two different globin subunits, as well as the supply of the prosthetic heme required for obtaining the active hemoglobin (α2β2). In this work we evaluated the expression of different combinations of α and β peptides and combined this with metabolic engineering of the heme biosynthetic pathway. Through evaluation of several different strategies we showed that engineering the biosynthesis pathway can substantially increase the heme level in yeast cells, and this resulted in a significant enhancement of human hemoglobin production. Besides demonstration of improved hemoglobin production our work demonstrates a novel strategy for improving the production of complex proteins, especially multimers with a prosthetic group. © 2013 Published by International Metabolic Engineering Society on behalf of International Metabolic Engineering Society.

  12. Neuroprotection of locomotor networks after experimental injury to the neonatal rat spinal cord in vitro.

    PubMed

    Margaryan, G; Mattioli, C; Mladinic, M; Nistri, A

    2010-02-03

    Treatment to block the pathophysiological processes triggered by acute spinal injury remains unsatisfactory as the underlying mechanisms are incompletely understood. Using as a model the in vitro spinal cord of the neonatal rat, we investigated the feasibility of neuroprotection of lumbar locomotor networks by the glutamate antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and aminophosphonovalerate (APV) against acute lesions induced by either a toxic solution (pathological medium (PM) to mimic the spinal injury hypoxic-dysmetabolic perturbation) or excitotoxicity with kainate. The study outcome was presence of fictive locomotion 24 h after the insult and its correlation with network histology. Inhibition of fictive locomotion by PM was contrasted by simultaneous and even delayed (1 h later) co-application of CNQX and APV with increased survival of ventral horn premotoneurons and lateral column white matter. Neither CNQX nor APV alone provided neuroprotection. Kainate-mediated excitotoxicity always led to loss of fictive locomotion and extensive neuronal damage. CNQX and APV co-applied with kainate protected one-third of preparations with improved motoneuron and dorsal horn neuronal counts, although they failed with delayed application. Our data suggest that locomotor network neuroprotection was possible when introduced very early during the pathological process of spinal injury, but also showed how the borderline between presence or loss of locomotor activity was a very narrow one that depended on the survival of a certain number of neurons or white matter elements. The present report provides a model not only for preclinical testing of novel neuroprotective agents, but also for estimating the minimal network membership compatible with functional locomotor output. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Furoxans (1,2,5-Oxadiazole-N-Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiefer, Isaac T.; VandeVrede, Lawren; Fa

    2012-08-31

    Furoxans (1,2,5-oxadiazole-N-oxides) are thiol-bioactivated NO-mimetics that have not hitherto been studied in the CNS. Incorporation of varied substituents adjacent to the furoxan ring system led to modulation of reactivity toward bioactivation, studied by HPLC-MS/MS analysis of reaction products. Attenuated reactivity unmasked the cytoprotective actions of NO in contrast to the cytotoxic actions of higher NO fluxes reported previously for furoxans. Neuroprotection was observed in primary neuronal cell cultures following oxygen glucose deprivation (OGD). Neuroprotective activity was observed to correlate with thiol-dependent bioactivation to produce NO{sub 2}{sup -}, but not with depletion of free thiol itself. Neuroprotection was abrogated upon cotreatmentmore » with a sGC inhibitor, ODQ, thus supporting activation of the NO/sGC/CREB signaling cascade by furoxans. Long-term potentiation (LTP), essential for learning and memory, has been shown to be potentiated by NO signaling, therefore, a peptidomimetic furoxan was tested in hippocampal slices treated with oligomeric amyloid-{beta} peptide (A{beta}) and was shown to restore synaptic function. The novel observation of furoxan activity of potential therapeutic use in the CNS warrants further studies.« less

  15. Neuroprotective effects of dietary supplement Kang-fu-ling against high-power microwave through antioxidant action.

    PubMed

    Hu, Shaohua; Peng, Ruiyun; Wang, Changzhen; Wang, Shuiming; Gao, Yabing; Dong, Ji; Zhou, Hongmei; Su, Zhentao; Qiao, Shanyi; Zhang, Shouguo; Wang, Lin; Wen, Xiaoxue

    2014-09-01

    Kang-fu-ling (KFL) is a polybotanical dietary supplement with antioxidant properties. This study aimed to evaluate the potential protective effects of KFL on cognitive deficit induced by high-power microwave (HPM) and the underlying mechanism for this neuroprotection. The electron spin resonance technique was employed to evaluate the free radical scavenging activity of KFL in vitro and KFL exhibited scavenging hydroxyl radical activity. KFL at doses of 0.75, 1.5 and 3 g kg(-1) and vehicle were administered orally once daily for 14 days to male Wistar rats after being exposed to 30 mW cm(-2) HPM for 15 minutes. KFL reversed HPM-induced memory loss and the histopathological changes in hippocampus of rats. In addition, KFL displayed a protective effect against HPM-induced oxidative stress and activated the nuclear factor-E2-related factor 2 (Nrf2) and its target genes in the hippocampus of rats. The Nrf2-antioxidant response element (ARE) signaling pathway may be involved in the neuroprotective effects of KFL against HPM-induced oxidative stress. In summary, the dietary supplement KFL is a promising natural complex, which ameliorates oxidative stress, with neuroprotective effects against HPM.

  16. Neuroprotection and Anti-Epileptogenesis with a Mitochondria-Targeted Antioxidant

    DTIC Science & Technology

    2013-12-01

    antiepiletogenic properties of a mitochondrial-targeted antioxidant, SS-31 using the pilocarpine (Pilo) model of status epilepticus (SE), the kindling seizure...project. Aim #1 – Test the neuroprotective and anticonvulsant properties of SS-31 in the pilocarpine model of status epilepticus (SE) in the rat. In this...quantity of drug. KEY RESEARCH ACCOMPLISHMENTS:  Treatment with SS-31 did not delay the onset of status epilepticus in the pilocarpine model  SS

  17. LC-MS identification and preparative HPLC isolation of Frankenia pulverulenta phenolics with antioxidant and neuroprotective capacities in PC12 cell line.

    PubMed

    Ben Mansour, Rim; Wided, Megdiche Ksouri; Cluzet, Stéphanie; Krisa, Stéphanie; Richard, Tristan; Ksouri, Riadh

    2017-12-01

    Frankenia pulverulenta L. (Frankeniaceae) is a medicinal species with carminative, analgesic and antiviral properties. However, phytochemical investigations, antioxidant and neuroprotective capacities of this plant remain unclear. This work assesses the phenolic composition of F. pulverulenta shoot and root and evaluates their antioxidant and neuroprotective capacities. Successive fractionation of F. pulverulenta shoot and root using 6 solvents were used. Antioxidant capacity of these fractions was assessed through four in vitro tests (DPPH, ABTS, Fe-chelating activity and ORAC). Phenolic identification, purification as well as neuroprotective activity of ethyl acetate (EtOAc) fraction and purified molecules were assessed. Among the tested fractions, EtOAc shoot and root fractions possessed considerable phenolic contents (383 and 374 mg GAE/g E, respectively) because of their important ORAC (821 and 1054 mg of TE/g E), DPPH (586 and 750 mg of TE/g) and ABTS (1453 and 1319 mg of TE/g) results. Moreover, gallic acid, quercetin, quercetin galloyl glucoside, trigalloyl hexoside, procyanidin dimers and sulfated flavonoids were identified by LC-DAD-ESI-MS for the first time in this species. The relevant cytoprotective capacity (at 300 μg/mL) against β-amyloid peptide induced toxicity in PC12 cells of EtOAc fractions were corroborated with the chemical composition. In addition, purified molecules were tested for their ORAC and neuroprotective activity. Quercetin showed the best ORAC value (33.55 mmol TE/g polyphenols); nevertheless, procyanidin dimer exhibited an exceptionally efficient neuroprotective activity (100% of viability at 50 μg/mL). These findings suggest that this halophyte is a promising source of antioxidant and neuroprotective molecules for pharmaceutical purposes.

  18. Neuroprotective activity of galloylated cyanogenic glucosides and hydrolysable tannins isolated from leaves of Phyllagathis rotundifolia.

    PubMed

    Tan, Hooi Poay; Wong, Daniel Zin Hua; Ling, Sui Kiong; Chuah, Cheng Hock; Kadir, Habsah Abdul

    2012-01-01

    The galloylated cyanogenic glucosides based on prunasin (1-7), gallotannins (8-14), ellagitannins (15-17), ellagic acid derivatives (18, 19) and gallic acid (20) isolated from the leaves of Phyllagathis rotundifolia (Melastomataceae) were investigated for their neuroprotective activity against hydrogen peroxide (H(2)O(2))-induced oxidative damage in NG108-15 hybridoma cell line. Among these compounds, the gallotannins and ellagitannins exhibited remarkable neuroprotective activities against oxidative damage in vitro as compared to galloylated cyanogenic glucosides and ellagic acid derivatives in a dose-dependent manner. They could be explored further as potential natural neuroprotectors in various remedies of neurodegenerative diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. α-Iso-cubebene exerts neuroprotective effects in amyloid beta stimulated microglia activation.

    PubMed

    Park, Sun Young; Park, Se Jin; Park, Nan Jeong; Joo, Woo Hong; Lee, Sang-Joon; Choi, Young-Whan

    2013-10-25

    Schisandra chinensis is commonly used for food and as a traditional remedy for the treatment of neuronal disorders. However, it is unclear which component of S. chinensis is responsible for its neuropharmacological effects. To answer this question, we isolated α-iso-cubebene, a dibenzocyclooctadiene lignin, from S. chinensis and determined if it has any anti-neuroinflammatory and neuroprotective properties against amyloid β-induced neuroinflammation in microglia. Microglia that are stimulated by amyloid β increased their production of pro-inflammatory cytokines and chemokines, prostaglandin E2 (PGE2), nitric oxide (NO) and reactive oxygen species (ROS) and the enzymatic activity of matrix metalloproteinase 9 (MMP-9). We found this was all inhibited by α-iso-cubebene. Consistent with these results, α-iso-cubebene inhibited the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and MMP-9 in amyloid β-stimulated microglia. Subsequent mechanistic studies revealed that α-iso-cubebene inhibited the phosphorylation and degradation of IκB-α, the phosphorylation and transactivity of NF-κB, and the phosphorylation of MAPK in amyloid β-stimulated microglia. These results suggest that α-iso-cubebene impairs the amyloid β-induced neuroinflammatory response of microglia by inhibiting the NF-κB and MAPK signaling pathways. Importantly, α-iso-cubebene can provide critical neuroprotection for primary cortical neurons against amyloid β-stimulated microglia-mediated neurotoxicity. To the best of our knowledge, this is the first report showing that α-iso-cubebene can provide neuroprotection against, and influence neuroinflammation triggered by, amyloid β activation of microglia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Genetic association studies in β-hemoglobinopathies.

    PubMed

    Thein, Swee Lay

    2013-01-01

    Characterization of the molecular basis of the β-thalassemias and sickle cell disease (SCD) clearly showed that individuals with the same β-globin genotypes can have extremely diverse clinical severity. Two key modifiers, an innate ability to produce fetal hemoglobin and coinheritance of α-thalassemia, both derived from family and population studies, affect the pathophysiology of both disorders at the primary level. In the past 2 decades, scientific research had applied genetic approaches to identify additional genetic modifiers. The review summarizes recent genetic studies and key genetic modifiers identified and traces the story of fetal hemoglobin genetics, which has led to an emerging network of globin gene regulation. The discoveries have provided insights on new targets for therapeutic intervention and raise possibilities of developing fetal hemoglobin predictive diagnostics for predicting disease severity in the newborn and for integration into prenatal diagnosis to better inform genetic counseling.