Sample records for modifies protein complexes

  1. Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine.

    PubMed Central

    Heese-Peck, A; Cole, R N; Borkhsenious, O N; Hart, G W; Raikhel, N V

    1995-01-01

    Only a few nuclear pore complex (NPC) proteins, mainly in vertebrates and yeast but none in plants, have been well characterized. As an initial step to identify plant NPC proteins, we examined whether NPC proteins from tobacco are modified by N-acetylglucosamine (GlcNAc). Using wheat germ agglutinin, a lectin that binds specifically to GlcNAc in plants, specific labeling was often found associated with or adjacent to NPCs. Nuclear proteins containing GlcNAc can be partially extracted by 0.5 M salt, as shown by a wheat germ agglutinin blot assay, and at least eight extracted proteins were modified by terminal GlcNAc, as determined by in vitro galactosyltransferase assays. Sugar analysis indicated that the plant glycans with terminal GlcNAc differ from the single O-linked GlcNAc of vertebrate NPC proteins in that they consist of oligosaccharides that are larger in size than five GlcNAc residues. Most of these appear to be bound to proteins via a hydroxyl group. This novel oligosaccharide modification may convey properties to the plant NPC that are different from those of vertebrate NPCs. PMID:8589629

  2. Physicochemical characterization of native and modified sodium caseinate- Vitamin A complexes.

    PubMed

    Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva

    2018-04-01

    Native and modified sodium caseinate- Vitamin A complexes {Sodium caseinate- Vit A complex by stirring (NaCas-VA ST), succinylated sodium caseinate- Vit A complex by stirring (SNaCas-VA ST), reassembled sodium caseinate- Vit A complex (RNaCas-VA) and reassembled succinylated sodium caseinate- Vit A complex (RSNaCas-VA)} were prepared and characterized for their physicochemical characteristics e.g. particle size, zeta potential, turbidity analysis and tryptophan intensities which confirmed structural modification of both native (NaCas-VA ST) and modified (SNaCas-VA ST, RNaCas-VA and RSNaCas- VA) proteins upon complex formation with vitamin A. Binding of vitamin A to milk protein reduced the turbidity caused by vitamin A, however, the particle size and zeta potential of milk protein increased after complexation. Microstructure details of NaCas (spray dried) showed uniform spherical structure, however, other milk proteins and milk protein- Vit A complexes (freeze dried) showed broken glass and flaky structures. Tiny particles were observed on the surface of reassembled protein and reassembled protein- Vit A complexes. Binding of vitamin A to milk protein did not have an influence on the electrophoretic mobility and elution profile (RP-HPLC). Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Generation and purification of highly-specific antibodies for detecting post-translationally modified proteins in vivo

    PubMed Central

    Arur, Swathi; Schedl, Tim

    2014-01-01

    Post-translational modifications alter protein structure, affecting activity, stability, localization and/or binding partners. Antibodies that specifically recognize post-translationally modified proteins have a number of uses including immuno-cytochemistry and immuno-precipitation of the modified protein to purify protein-protein and protein-nucleic acid complexes. However, antibodies directed at modified sites on individual proteins are often non-specific. Here we describe a protocol to purify polyclonal antibodies that specifically detect the modified protein of interest. The approach uses iterative rounds of subtraction and affinity purification, using stringent washes to remove antibodies that recognize the unmodified protein and low sequence complexity epitopes containing the modified amino acid. Dot and western blots assays are employed to assess antibody preparation specificity. The approach is designed to overcome the common occurrence that a single round of subtraction and affinity purification is not sufficient to obtain a modified protein specific antibody preparation. One full round of antibody purification and specificity testing takes 6 days of discontinuous time. PMID:24457330

  4. Chemical and Biological Tools for the Preparation of Modified Histone Proteins

    PubMed Central

    Howard, Cecil J.; Yu, Ruixuan R.; Gardner, Miranda L.; Shimko, John C.; Ottesen, Jennifer J.

    2016-01-01

    Eukaryotic chromatin is a complex and dynamic system in which the DNA double helix is organized and protected by interactions with histone proteins. This system is regulated through, a large network of dynamic post-translational modifications (PTMs) exists to ensure proper gene transcription, DNA repair, and other processes involving DNA. Homogenous protein samples with precisely characterized modification sites are necessary to better understand the functions of modified histone proteins. Here, we discuss sets of chemical and biological tools that have been developed for the preparation of modified histones, with a focus on the appropriate choice of tool for a given target. We start with genetic approaches for the creation of modified histones, including the incorporation of genetic mimics of histone modifications, chemical installation of modification analogs, and the use of the expanded genetic code to incorporate modified amino acids. Additionally, we will cover the chemical ligation techniques that have been invaluable in the generation of complex modified histones that are indistinguishable from the natural counterparts. Finally, we will end with a prospectus on future directions of synthetic chromatin in living systems. PMID:25863817

  5. A modified Lowry protein test for dilute protein solutions

    Treesearch

    Garold F. Gregory; Keith F. Jensen

    1971-01-01

    A modified Lowry protein test for dilute protein solutions modified Lowry protein test was compared with the standard Lowry protein test. The modified test was found to give estimates of protein concentration that were as good as the standard test and has the advange that proteins can be measured in very dilute solutions.

  6. Complex thiolated mannose/quinone film modified on EQCM/Au electrode for recognizing specific carbohydrate-proteins.

    PubMed

    Zeng, Hongjuan; Yu, Junsheng; Jiang, Yadong; Zeng, Xiangqun

    2014-05-15

    A complex thiolated mannose (TM)/quinone functionalised polythiophene (QFPT) thin film was modified on EQCM/Au electrode for recognition of specific carbohydrate-proteins. Different lectins such as those from Sambucus nigra (elder berry), Arachis hypogaea (peanut), Ulex europaeus (gorse, furze), Triticum vulgaris and Concanavalin A (ConA) was used for probes to evaluate bio-sensing performance of the TM/QFPT film. A specific response was observed for ConA from lectins when using the TM/QFPT film as sensing material and employing either elelctrochemical or the QCM method. No response was detected between thiolated mannose and other lectins. The linear relationship between current and ConA concentration is in the range of 0.5-17.5 nM by the elelctrochemical method and the linear relationship between frequency change and ConA concentration is in the range of 0.5-4.5 nM by the QCM method. This shows that the TM/QFPT-modified EQCM biosensor presents a paralleled determination by using electrochemical and the QCM method. The elelctrochemical method of the biosensor can be applicable in a large concentration range and its frequency change can be more precise. © 2013 Published by Elsevier B.V.

  7. Characterization of Native Protein Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative Proteomics*

    PubMed Central

    Kirkwood, Kathryn J.; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I.

    2013-01-01

    Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community. PMID:24043423

  8. Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics.

    PubMed

    Kirkwood, Kathryn J; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I

    2013-12-01

    Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community.

  9. Using modified soy protein to enhance foaming of egg white protein.

    PubMed

    Wang, Guang; Troendle, Molly; Reitmeier, Cheryll A; Wang, Tong

    2012-08-15

    It is well known that the foaming properties of egg white protein are significantly reduced when a small amount of yolk is mixed in the white. To improve foaming properties of yolk-contaminated egg white protein, soy protein isolate (SPI) and egg proteins were modified to make basic proteins, and effects of these modified proteins on egg white foaming were evaluated in a model and an angel cake system. SPI and egg yolk proteins were modified to have an isoelectric point of 10, and sonication was used to increase protein dispersibility after the ethyl esterification reaction. However, only the addition of sonicated and modified SPI (SMSPI) showed improvement of foaming in the 5% egg protein model system with 0.4% yolk addition. SMSPI was then used in making angel food cake to examine whether the cake performance reduction due to yolk contamination of the white would be restored by such alkaline protein. Cake performance was improved when cream of tartar was used together with SMSPI. Basic soy protein can be made and used to improve egg white foaming properties and cake performance. Copyright © 2012 Society of Chemical Industry.

  10. Characterizing the molecular architectures of chromatin-modifying complexes.

    PubMed

    Setiaputra, Dheva T; Yip, Calvin K

    2017-11-01

    Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tuning of protein-surfactant interaction to modify the resultant structure.

    PubMed

    Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  12. Tuning of protein-surfactant interaction to modify the resultant structure

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-09-01

    Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (p H 7 ) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.

  13. Recovering Protein-Protein and Domain-Domain Interactions from Aggregation of IP-MS Proteomics of Coregulator Complexes

    PubMed Central

    Mazloom, Amin R.; Dannenfelser, Ruth; Clark, Neil R.; Grigoryan, Arsen V.; Linder, Kathryn M.; Cardozo, Timothy J.; Bond, Julia C.; Boran, Aislyn D. W.; Iyengar, Ravi; Malovannaya, Anna; Lanz, Rainer B.; Ma'ayan, Avi

    2011-01-01

    Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/. PMID:22219718

  14. Characterizing Protein Complexes with UV absorption, Light Scattering, and Refractive Index Detection.

    NASA Astrophysics Data System (ADS)

    Trainoff, Steven

    2009-03-01

    Many modern pharmaceuticals and naturally occurring biomolecules consist of complexes of proteins and polyethylene glycol or carbohydrates. In the case of vaccine development, these complexes are often used to induce or amplify immune responses. For protein therapeutics they are used to modify solubility and function, or to control the rate of degradation and elimination of a drug from the body. Characterizing the stoichiometry of these complexes is an important industrial problem that presents a formidable challenge to analytical instrument designers. Traditional analytical methods, such as using florescent tagging, chemical assays, and mass spectrometry perturb the system so dramatically that the complexes are often destroyed or uncontrollably modified by the measurement. A solution to this problem consists of fractionating the samples and then measuring the fractions using sequential non-invasive detectors that are sensitive to different components of the complex. We present results using UV absorption, which is primarily sensitive to the protein fraction, Light Scattering, which measures the total weight average molar mass, and Refractive Index detection, which measures the net concentration. We also present a solution of the problem inter-detector band-broadening problem that has heretofore made this approach impractical. Presented will be instrumentation and an analysis method that overcome these obstacles and make this technique a reliable and robust way of non-invasively characterizing these industrially important compounds.

  15. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    PubMed

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  16. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients.

    PubMed

    Zhao, Zhenjun; Liu, Jingfang; Shi, Bingyin; He, Shuixiang; Yao, Xiaoli; Willcox, Mark D P

    2010-08-11

    High glucose level in diabetic patients may lead to advanced glycation end product (AGE) modified proteins. This study investigated AGE modified proteins in tears and compared their levels in diabetic patients (DM) with non-diabetic controls (CTL). Basal tears were collected from DM with (DR) or without (DNR) retinopathy and CTL. Total AGE modified proteins were detected quantitatively by a dot immunobinding assay. The AGE modified proteins were separated in 1D- and 2D-SDS gels and detected by western-blotting. The individual AGE modified proteins were also compared between groups using densitometry. Compared with the CTL group, tear concentrations of AGE modified proteins were significantly elevated in DR and DNR groups. The concentration of AGE modified proteins in diabetic tears were positively correlated with AGE modified hemoglobin (HbA1c) and postprandial blood glucose level (PBG). Western blotting of AGE modified proteins from 1D-SDS gels showed several bands, the major one at around 60 kDa. The intensities of AGE modified protein bands were higher in DM tears than in CTL tears. Western blotting from 2D-SDS gels showed a strongly stained horizontal strip, which corresponded to the major band in 1D-SDS gels. Most of the other AGE modified protein species were within molecular weight of 30-60 kDa, PI 5.2-7.0. Densitometry analysis demonstrated several AGE modified proteins were elevated in DR or DNR tears. Total and some individual AGE modified proteins were elevated in DM tears. AGE modified proteins in tears may be used as biomarkers to diagnose diabetes and/or diabetic retinopathy.

  17. N-terminal lysines are essential for protein translocation via a modified ERAD system in complex plastids.

    PubMed

    Lau, Julia B; Stork, Simone; Moog, Daniel; Sommer, Maik S; Maier, Uwe G

    2015-05-01

    Nuclear-encoded pre-proteins being imported into complex plastids of red algal origin have to cross up to five membranes. Thereby, transport across the second outermost or periplastidal membrane (PPM) is facilitated by SELMA (symbiont-specific ERAD-like machinery), an endoplasmic reticulum-associated degradation (ERAD)-derived machinery. Core components of SELMA are enzymes involved in ubiquitination (E1-E3), a Cdc48 ATPase complex and Derlin proteins. These components are present in all investigated organisms with four membrane-bound complex plastids of red algal origin, suggesting a ubiquitin-dependent translocation process of substrates mechanistically similar to the process of retro-translocation in ERAD. Even if, according to the current model, translocation via SELMA does not end up in the classical poly-ubiquitination, transient mono-/oligo-ubiquitination of pre-proteins might be required for the mechanism of translocation. We investigated the import mechanism of SELMA and were able to show that protein transport across the PPM depends on lysines in the N-terminal but not in the C-terminal part of pre-proteins. These lysines are predicted to be targets of ubiquitination during the translocation process. As proteins lacking the N-terminal lysines get stuck in the PPM, a 'frozen intermediate' of the translocation process could be envisioned and initially characterized. © 2015 John Wiley & Sons Ltd.

  18. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines

    PubMed Central

    Gibson, Gary E.; Xu, Hui; Chen, Huan-Lian; Chen, Wei; Denton, Travis; Zhang, Sheng

    2015-01-01

    Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins are unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced suc-cinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid (TCA) cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl CoA suggests that the catalysis due to the E2k suc-cinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. PMID:25772995

  19. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  20. Detection of protein complex from protein-protein interaction network using Markov clustering

    NASA Astrophysics Data System (ADS)

    Ochieng, P. J.; Kusuma, W. A.; Haryanto, T.

    2017-05-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks.

  1. MAGGIE Component 1: Identification and Purification of Native and Recombinant Multiprotein Complexes and Modified Proteins from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Michael W.; W. W. Adams, Michael

    2014-01-07

    Virtualy all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes (PCs), the composition of which is largely unknown. Structural genomics efforts have demonstrated that less than 25% of the genes in a given prokaryotic genome will yield stable, soluble proteins when expressed using a one-ORF-at-a-time approach. We proposed that much of the remaining 75% of the genes encode proteins that are part of multiprotein complexes or are modified post-translationally, for example, with metals. The problem is that PCs and metalloproteins (MPs) cannot be accurately predicted on a genome-wide scale. The only solution to this dilemma ismore » to experimentally determine PCs and MPs in biomass of a model organism and to develop analytical tools that can then be applied to the biomass of any other organism. In other words, organisms themselves must be analyzed to identify their PCs and MPs: “native proteomes” must be determined. This information can then be utilized to design multiple ORF expression systems to produce recombinant forms of PCs and MPs. Moreover, the information and utility of this approach can be enhanced by using a hyperthermophile, one that grows optimally at 100°C, as a model organism. By analyzing the native proteome at close to 100 °C below the optimum growth temperature, we will trap reversible and dynamic complexes, thereby enabling their identification, purification, and subsequent characterization. The model organism for the current study is Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100°C. It is grown up to 600-liter scale and kg quantities of biomass are available. In this project we identified native PCs and MPs using P. furiosus biomass (with MS/MS analyses to identify proteins by component 4). In addition, we provided samples of abundant native PCs and MPs for structural characterization (using SAXS by component 5). We also designed and evaluated generic bioinformatics and

  2. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with

  3. Predicting Physical Interactions between Protein Complexes*

    PubMed Central

    Clancy, Trevor; Rødland, Einar Andreas; Nygard, Ståle; Hovig, Eivind

    2013-01-01

    Protein complexes enact most biochemical functions in the cell. Dynamic interactions between protein complexes are frequent in many cellular processes. As they are often of a transient nature, they may be difficult to detect using current genome-wide screens. Here, we describe a method to computationally predict physical interactions between protein complexes, applied to both humans and yeast. We integrated manually curated protein complexes and physical protein interaction networks, and we designed a statistical method to identify pairs of protein complexes where the number of protein interactions between a complex pair is due to an actual physical interaction between the complexes. An evaluation against manually curated physical complex-complex interactions in yeast revealed that 50% of these interactions could be predicted in this manner. A community network analysis of the highest scoring pairs revealed a biologically sensible organization of physical complex-complex interactions in the cell. Such analyses of proteomes may serve as a guide to the discovery of novel functional cellular relationships. PMID:23438732

  4. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  5. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  6. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  7. Modified Protein Improves Vitiligo Symptoms in Mice

    MedlinePlus

    ... Vitiligo Symptoms in Mice Spotlight on Research Modified Protein Improves Vitiligo Symptoms in Mice By Colleen Labbe, ... D., Ph.D., Rush University. Altering a key protein involved in the development of vitiligo may protect ...

  8. 3D Complex: A Structural Classification of Protein Complexes

    PubMed Central

    Levy, Emmanuel D; Pereira-Leal, Jose B; Chothia, Cyrus; Teichmann, Sarah A

    2006-01-01

    Most of the proteins in a cell assemble into complexes to carry out their function. It is therefore crucial to understand the physicochemical properties as well as the evolution of interactions between proteins. The Protein Data Bank represents an important source of information for such studies, because more than half of the structures are homo- or heteromeric protein complexes. Here we propose the first hierarchical classification of whole protein complexes of known 3-D structure, based on representing their fundamental structural features as a graph. This classification provides the first overview of all the complexes in the Protein Data Bank and allows nonredundant sets to be derived at different levels of detail. This reveals that between one-half and two-thirds of known structures are multimeric, depending on the level of redundancy accepted. We also analyse the structures in terms of the topological arrangement of their subunits and find that they form a small number of arrangements compared with all theoretically possible ones. This is because most complexes contain four subunits or less, and the large majority are homomeric. In addition, there is a strong tendency for symmetry in complexes, even for heteromeric complexes. Finally, through comparison of Biological Units in the Protein Data Bank with the Protein Quaternary Structure database, we identified many possible errors in quaternary structure assignments. Our classification, available as a database and Web server at http://www.3Dcomplex.org, will be a starting point for future work aimed at understanding the structure and evolution of protein complexes. PMID:17112313

  9. Identification of liver protein targets modified by tienilic acid metabolites using a two-dimensional Western blot-mass spectrometry approach

    NASA Astrophysics Data System (ADS)

    Methogo, Ruth Menque; Dansette, Patrick M.; Klarskov, Klaus

    2007-12-01

    A combined approach based on two-dimensional electrophoresis-immuno-blotting and nanoliquid chromatography coupled on-line with electrospray ionization mass spectrometry (nLC-MS/MS) was used to identify proteins modified by a reactive intermediate of tienilic acid (TA). Liver homogenates from rats exposed to TA were fractionated using ultra centrifugation; four fractions were obtained and subjected to 2D electrophoresis. Following transfer to PVDF membranes, modified proteins were visualized after India ink staining, using an anti-serum raised against TA and ECL detection. Immuno-reactive spots were localized on the PVDF membrane by superposition of the ECL image, protein spots of interest were excised, digested on the membrane with trypsin followed by nLC-MS/MS analysis and protein identification. A total of 15 proteins were identified as likely targets modified by a TA reactive metabolite. These include selenium binding protein 2, senescence marker protein SMP-30, adenosine kinase, Acy1 protein, adenosylhomocysteinase, capping protein (actin filament), protein disulfide isomerase, fumarylacetoacetase, arginase chain A, ketohexokinase, proteasome endopeptidase complex, triosephosphate isomerase, superoxide dismutase, dna-type molecular chaperone hsc73 and malate dehydrogenase.

  10. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booe, Jason M.; Walker, Christopher S.; Barwell, James

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less

  11. Structural basis for receptor activity-modifying protein-dependent selective peptide recognition by a G protein-coupled receptor

    DOE PAGES

    Booe, Jason M.; Walker, Christopher S.; Barwell, James; ...

    2015-05-14

    Association of receptor activity-modifying proteins (RAMP1-3) with the G protein-coupled receptor (GPCR) calcitonin receptor-like receptor (CLR) enables selective recognition of the peptides calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) that have diverse functions in the cardiovascular and lymphatic systems. How peptides selectively bind GPCR:RAMP complexes is unknown. We report crystal structures of CGRP analog-bound CLR:RAMP1 and AM-bound CLR:RAMP2 extracellular domain heterodimers at 2.5 and 1.8 Å resolutions, respectively. The peptides similarly occupy a shared binding site on CLR with conformations characterized by a β-turn structure near their C termini rather than the α-helical structure common to peptides that bind relatedmore » GPCRs. The RAMPs augment the binding site with distinct contacts to the variable C-terminal peptide residues and elicit subtly different CLR conformations. Lastly, the structures and accompanying pharmacology data reveal how a class of accessory membrane proteins modulate ligand binding of a GPCR and may inform drug development targeting CLR:RAMP complexes.« less

  12. PROCOS: computational analysis of protein-protein complexes.

    PubMed

    Fink, Florian; Hochrein, Jochen; Wolowski, Vincent; Merkl, Rainer; Gronwald, Wolfram

    2011-09-01

    One of the main challenges in protein-protein docking is a meaningful evaluation of the many putative solutions. Here we present a program (PROCOS) that calculates a probability-like measure to be native for a given complex. In contrast to scores often used for analyzing complex structures, the calculated probabilities offer the advantage of providing a fixed range of expected values. This will allow, in principle, the comparison of models corresponding to different targets that were solved with the same algorithm. Judgments are based on distributions of properties derived from a large database of native and false complexes. For complex analysis PROCOS uses these property distributions of native and false complexes together with a support vector machine (SVM). PROCOS was compared to the established scoring schemes of ZRANK and DFIRE. Employing a set of experimentally solved native complexes, high probability values above 50% were obtained for 90% of these structures. Next, the performance of PROCOS was tested on the 40 binary targets of the Dockground decoy set, on 14 targets of the RosettaDock decoy set and on 9 targets that participated in the CAPRI scoring evaluation. Again the advantage of using a probability-based scoring system becomes apparent and a reasonable number of near native complexes was found within the top ranked complexes. In conclusion, a novel fully automated method is presented that allows the reliable evaluation of protein-protein complexes. Copyright © 2011 Wiley Periodicals, Inc.

  13. Changes in the energy distribution between chlorophyll-protein complexes of thylakoid membranes from pea mutants with modified pigment content. I. Changes due to the modified pigment content.

    PubMed

    Andreeva, Atanaska; Stoitchkova, Katerina; Busheva, Mira; Apostolova, Emilia

    2003-07-01

    The low-temperature (77 K) emission and excitation chlorophyll fluorescence spectra in thylakoid membranes isolated from pea mutants were investigated. The mutants have modified pigment content, structural organization, different surface electric properties and functions [Dobrikova et al., Photosynth. Res. 65 (2000) 165]. The emission spectra of thylakoid membranes were decomposed into bands belonging to the main pigment protein complexes. By an integration of the areas under them, the changes in the energy distribution between the two photosystems as well as within each one of them were estimated. It was shown that the excitation energy flow to the light harvesting, core antenna and RC complexes of photosystem II increases with the total amount of pigments in the mutants, relative to the that to photosystem I complexes. A reduction of the fluorescence ratio between aggregated trimers of LHC II and its trimeric and monomeric forms with the increase of the pigment content (chlorophyll a, chlorophyll b, and lutein) was observed. This implies that the closer packing in the complexes with a higher extent of aggregation regulates the energy distribution to the PS II core antenna and reaction centers complexes. Based on the reduced energy flow to PS II, i.e., the relative increased energy flow to PS I, we hypothesize that aggregation of LHC II switches the energy flow toward LHC I. These results suggest an additive regulatory mechanism, which redistributes the excitation energy between the two photosystems and operates at non-excess light intensities but at reduced pigment content.

  14. Preparation and evaluation of tara-modified proteins

    USDA-ARS?s Scientific Manuscript database

    Quebracho, a vegetable tannin, can be used to modify gelatin to produce a product that has been applied effectively as a filler in leather processing, as described in our previous report. In this ongoing study, another vegetable tannin tara is examined for its possible application in protein modifi...

  15. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable withmore » that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).« less

  16. Shape Complementarity of Protein-Protein Complexes at Multiple Resolutions

    PubMed Central

    Zhang, Qing; Sanner, Michel; Olson, Arthur J.

    2010-01-01

    Biological complexes typically exhibit intermolecular interfaces of high shape complementarity. Many computational docking approaches use this surface complementarity as a guide in the search for predicting the structures of protein-protein complexes. Proteins often undergo conformational changes in order to create a highly complementary interface when associating. These conformational changes are a major cause of failure for automated docking procedures when predicting binding modes between proteins using their unbound conformations. Low resolution surfaces in which high frequency geometric details are omitted have been used to address this problem. These smoothed, or blurred, surfaces are expected to minimize the differences between free and bound structures, especially those that are due to side chain conformations or small backbone deviations. In spite of the fact that this approach has been used in many docking protocols, there has yet to be a systematic study of the effects of such surface smoothing on the shape complementarity of the resulting interfaces. Here we investigate this question by computing shape complementarity of a set of 66 protein-protein complexes represented by multi-resolution blurred surfaces. Complexed and unbound structures are available for these protein-protein complexes. They are a subset of complexes from a non-redundant docking benchmark selected for rigidity (i.e. the proteins undergo limited conformational changes between their bound and unbound states). In this work we construct the surfaces by isocontouring a density map obtained by accumulating the densities of Gaussian functions placed at all atom centers of the molecule. The smoothness or resolution is specified by a Gaussian fall-off coefficient, termed “blobbyness”. Shape complementarity is quantified using a histogram of the shortest distances between two proteins' surface mesh vertices for both the crystallographic complexes and the complexes built using the protein

  17. A Sulfhydryl-Reactive Ruthenium (II) Complex and Its Conjugation to Protein G as a Universal Reagent for Fluorescent Immunoassays

    PubMed Central

    Goud, Thirumani Venkatshwar; Huang, Bor-Rong; Lin, Tzu-Chau; Biellmann, Jean-François; Chen, Chien-Sheng

    2012-01-01

    To develop a fluorescent ruthenium complex for biosensing, we synthesized a novel sulfhydryl-reactive compound, 4-bromophenanthroline bis-2,2′-dipyridine Ruthenium bis (hexafluorophosphate). The synthesized Ru(II) complex was crosslinked with thiol-modified protein G to form a universal reagent for fluorescent immunoassays. The resulting Ru(II)-protein G conjugates were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The emission peak wavelength of the Ru(II)-protein G conjugate was 602 nm at the excitation of 452 nm which is similar to the spectra of the Ru(II) complex, indicating that Ru(II)-protein G conjugates still remain the same fluorescence after conjugation. To test the usefulness of the conjugate for biosensing, immunoglobulin G (IgG) binding assay was conducted. The result showed that Ru(II)-protein G conjugates were capable of binding IgG and the more cross-linkers to modify protein G, the higher conjugation efficiency. To demonstrate the feasibility of Ru(II)-protein G conjugates for fluorescent immunoassays, the detection of recombinant histidine-tagged protein using the conjugates and anti-histidine antibody was developed. The results showed that the histidine-tagged protein was successfully detected with dose-response, indicating that Ru(II)-protein G conjugate is a useful universal fluorescent reagent for quantitative immunoassays. PMID:22563441

  18. Investigation of a protein complex network

    NASA Astrophysics Data System (ADS)

    Mashaghi, A. R.; Ramezanpour, A.; Karimipour, V.

    2004-09-01

    The budding yeast Saccharomyces cerevisiae is the first eukaryote whose genome has been completely sequenced. It is also the first eukaryotic cell whose proteome (the set of all proteins) and interactome (the network of all mutual interactions between proteins) has been analyzed. In this paper we study the structure of the yeast protein complex network in which weighted edges between complexes represent the number of shared proteins. It is found that the network of protein complexes is a small world network with scale free behavior for many of its distributions. However we find that there are no strong correlations between the weights and degrees of neighboring complexes. To reveal non-random features of the network we also compare it with a null model in which the complexes randomly select their proteins. Finally we propose a simple evolutionary model based on duplication and divergence of proteins.

  19. The roles of USH1 proteins and PDZ domain-containing USH proteins in USH2 complex integrity in cochlear hair cells.

    PubMed

    Zou, Junhuang; Chen, Qian; Almishaal, Ali; Mathur, Pranav Dinesh; Zheng, Tihua; Tian, Cong; Zheng, Qing Y; Yang, Jun

    2017-02-01

    Usher syndrome (USH) is the most common cause of inherited deaf-blindness, manifested as USH1, USH2 and USH3 clinical types. The protein products of USH2 causative and modifier genes, USH2A, ADGRV1, WHRN and PDZD7, interact to assemble a multiprotein complex at the ankle link region of the mechanosensitive stereociliary bundle in hair cells. Defects in this complex cause stereociliary bundle disorganization and hearing loss. The four USH2 proteins also interact in vitro with USH1 proteins including myosin VIIa, USH1G (SANS), CIB2 and harmonin. However, it is unclear whether the interactions between USH1 and USH2 proteins occur in vivo and whether USH1 proteins play a role in USH2 complex assembly in hair cells. In this study, we identified a novel interaction between myosin VIIa and PDZD7 by FLAG pull-down assay. We further investigated the role of the above-mentioned four USH1 proteins in the cochlear USH2 complex assembly using USH1 mutant mice. We showed that only myosin VIIa is indispensable for USH2 complex assembly at ankle links, indicating the potential transport and/or anchoring role of myosin VIIa for USH2 proteins in hair cells. However, myosin VIIa is not required for USH2 complex assembly in photoreceptors. We further showed that, while PDZ protein harmonin is not involved, its paralogous USH2 proteins, PDZD7 and whirlin, function synergistically in USH2 complex assembly in cochlear hair cells. In summary, our studies provide novel insight into the functional relationship between USH1 and USH2 proteins in the cochlea and the retina as well as the disease mechanisms underlying USH1 and USH2. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. CORUM: the comprehensive resource of mammalian protein complexes

    PubMed Central

    Ruepp, Andreas; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Stransky, Michael; Waegele, Brigitte; Schmidt, Thorsten; Doudieu, Octave Noubibou; Stümpflen, Volker; Mewes, H. Werner

    2008-01-01

    Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The CORUM (http://mips.gsf.de/genre/proj/corum/index.html) database is a collection of experimentally verified mammalian protein complexes. Information is manually derived by critical reading of the scientific literature from expert annotators. Information about protein complexes includes protein complex names, subunits, literature references as well as the function of the complexes. For functional annotation, we use the FunCat catalogue that enables to organize the protein complex space into biologically meaningful subsets. The database contains more than 1750 protein complexes that are built from 2400 different genes, thus representing 12% of the protein-coding genes in human. A web-based system is available to query, view and download the data. CORUM provides a comprehensive dataset of protein complexes for discoveries in systems biology, analyses of protein networks and protein complex-associated diseases. Comparable to the MIPS reference dataset of protein complexes from yeast, CORUM intends to serve as a reference for mammalian protein complexes. PMID:17965090

  1. Carbohydrate-protein interactions investigated on plastic chips statically coated with hydrophobically modified hydroxyethylcellulose.

    PubMed

    Dang, Fuquan; Maeda, Eiki; Osafune, Tomo; Nakajima, Kazuki; Kakehi, Kazuaki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2009-12-15

    We developed a novel method for rapid screening of carbohydrate-protein interactions using poly(methyl methacrylate) (PMMA) channels statically coated with hydrophobically modified hydroxyethylcellulose (HM-HEC). We found that a self-assembled monolayer (SAM) of HM-HEC on a PMMA surface intact by water allows rapid and reproducible separations of glycan samples using a 20 mM phosphate without HM-HEC. The underlying mechanism for dynamic and static coatings on the PMMA surface is discussed. Simultaneous analysis of the molecular interaction between a complex mixture of carbohydrates from alpha1-acid glycoprotein and proteins has been successfully achieved in PMMA channels statically coated with a SAM of HM-HEC.

  2. Characterization of p-phenylenediamine-albumin binding sites and T-cell responses to hapten-modified protein.

    PubMed

    Jenkinson, Claire; Jenkins, Rosalind E; Aleksic, Maja; Pirmohamed, Munir; Naisbitt, Dean J; Park, B Kevin

    2010-03-01

    Exposure to p-phenylenediamine (PPD) is associated with the development of T-cell-mediated allergic contact dermatitis. The purpose of this study was to define the nature of the interaction of PPD with the protein and the antigenic determinant that stimulates T cells. Mass spectrometry was employed to show that PPD oxidation products bind irreversibly to cysteine (Cys, position 34) in human serum albumin (HSA). A modified tryptic peptide was characterized with an increase in mass of 106 Da, corresponding to the addition of PPD and not to the secondary products of self conjugation. Lymphocytes from 10 PPD-allergic patients, but not tolerant/naive individuals, were stimulated with PPD and PPD-modified HSA. A total of 70 PPD-specific and 10 PPD-HSA-specific CD4+, CD8+, and CD4+CD8+, Th2-secreting T-cell clones were generated from three allergic patients. In total, 40 clones were stimulated with both PPD and PPD-modified HSA. PPD-modified HSA triggered T-cell responses through a classical hapten mechanism involving processing. Presentation of PPD to several clones was dependent on protein complex formation (42 out of 48) and processing (32 out of 68); however, 12% of clones were triggered with PPD directly. These data identify Cys as the single target for PPD-HSA binding, and show that PPD protein adducts are antigenic determinants in patients with contact dermatitis.

  3. GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking.

    PubMed

    Heo, Lim; Lee, Hasup; Seok, Chaok

    2016-08-18

    Protein-protein docking methods have been widely used to gain an atomic-level understanding of protein interactions. However, docking methods that employ low-resolution energy functions are popular because of computational efficiency. Low-resolution docking tends to generate protein complex structures that are not fully optimized. GalaxyRefineComplex takes such low-resolution docking structures and refines them to improve model accuracy in terms of both interface contact and inter-protein orientation. This refinement method allows flexibility at the protein interface and in the overall docking structure to capture conformational changes that occur upon binding. Symmetric refinement is also provided for symmetric homo-complexes. This method was validated by refining models produced by available docking programs, including ZDOCK and M-ZDOCK, and was successfully applied to CAPRI targets in a blind fashion. An example of using the refinement method with an existing docking method for ligand binding mode prediction of a drug target is also presented. A web server that implements the method is freely available at http://galaxy.seoklab.org/refinecomplex.

  4. Protein Complexation and pH Dependent Release Using Boronic Acid Containing PEG-Polypeptide Copolymers.

    PubMed

    Negri, Graciela E; Deming, Timothy J

    2017-01-01

    New poly(L-lysine)-b-poly(ethylene glycol) copolypeptides have been prepared, where the side-chain amine groups of lysine residues are modified to contain ortho-amine substituted phenylboronic acid, i.e., Wulff-type phenylboronic acid (WBA), groups to improve their pH responsive, carbohydrate binding properties. These block copolymers form nanoscale complexes with glycosylated proteins that are stable at physiological pH, yet dissociate and release the glycoproteins under acidic conditions, similar to those found in endosomal and lysosomal compartments within cells. These results suggest that WBA modified polypeptide copolymers are promising for further development as degradable carriers for intracellular protein delivery. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A modified Poisson-Boltzmann equation applied to protein adsorption.

    PubMed

    Gama, Marlon de Souza; Santos, Mirella Simões; Lima, Eduardo Rocha de Almeida; Tavares, Frederico Wanderley; Barreto, Amaro Gomes Barreto

    2018-01-05

    Ion-exchange chromatography has been widely used as a standard process in purification and analysis of protein, based on the electrostatic interaction between the protein and the stationary phase. Through the years, several approaches are used to improve the thermodynamic description of colloidal particle-surface interaction systems, however there are still a lot of gaps specifically when describing the behavior of protein adsorption. Here, we present an improved methodology for predicting the adsorption equilibrium constant by solving the modified Poisson-Boltzmann (PB) equation in bispherical coordinates. By including dispersion interactions between ions and protein, and between ions and surface, the modified PB equation used can describe the Hofmeister effects. We solve the modified Poisson-Boltzmann equation to calculate the protein-surface potential of mean force, treated as spherical colloid-plate system, as a function of process variables. From the potential of mean force, the Henry constants of adsorption, for different proteins and surfaces, are calculated as a function of pH, salt concentration, salt type, and temperature. The obtained Henry constants are compared with experimental data for several isotherms showing excellent agreement. We have also performed a sensitivity analysis to verify the behavior of different kind of salts and the Hofmeister effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Bioengineering strategies to generate artificial protein complexes.

    PubMed

    Kim, Heejae; Siu, Ka-Hei; Raeeszadeh-Sarmazdeh, Maryam; Sun, Qing; Chen, Qi; Chen, Wilfred

    2015-08-01

    For many applications, increasing synergy between distinct proteins through organization is important for the specificity, regulation, and overall reaction efficiency. Although there are many examples of protein complexes in nature, a generalized method to create these complexes remains elusive. Many conventional techniques such as random chemical conjugation, physical adsorption onto surfaces, and encapsulation within matrices are imprecise approaches and can lead to deactivation of protein native functionalities. More "bio-friendly" approaches such as genetically fused proteins and biological scaffolds often can result in low yields and low complex stability. Alternatively, site-specific protein conjugation or ligation can generate artificial protein complexes that preserve the native functionalities of protein domains and maintain stability through covalent bonds. In this review, we describe three distinct methods to synthesize artificial protein complexes (genetic incorPoration of unnatural amino acids to introduce bio-orthogonal azide and alkyne groups to proteins, split-intein based expressed protein ligation, and sortase mediated ligation) and highlight interesting applications for each technique. © 2015 Wiley Periodicals, Inc.

  7. Resolubilization of Protein from Water-Insoluble Phlorotannin–Protein Complexes upon Acidification

    PubMed Central

    2017-01-01

    Marine phlorotannins (PhT) from Laminaria digitata might protect feed proteins from ruminal digestion by formation of insoluble non-covalent tannin–protein complexes at rumen pH (6–7). Formation and disintegration of PhT–protein complexes was studied with β-casein (random coil) and bovine serum albumin (BSA, globular) at various pH. PhT had similar binding affinity for β-casein and BSA as pentagalloyl glucose, as studied by fluorescence quenching. The affinity of PhT for both proteins was independent of pH (3.0, 6.0, and 8.0). In the presence of PhT, the pH range for precipitation of tannin–protein complexes widened to 0.5–1.5 pH units around the isoelectric point (pI) of the protein. Complete protein resolubilization from insoluble PhT–protein complexes was achieved at pH 7 and 2 for β-casein and BSA, respectively. It was demonstrated that PhT modulate the solubility of proteins at neutral pH and that resolubilization of PhT–protein complexes at pH deviating from pI is mainly governed by the charge state of the protein. PMID:29058916

  8. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.

    PubMed

    Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao

    2018-06-01

    Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.

  9. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes.

    PubMed

    Malhotra, Sony; Sowdhamini, Ramanathan

    2012-07-16

    Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of interest for the presence of DNA

  10. Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions

    PubMed Central

    Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya

    2013-01-01

    Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458

  11. Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP.

    PubMed

    Matheny, Sharon A; Chen, Chiyuan; Kortum, Robert L; Razidlo, Gina L; Lewis, Robert E; White, Michael A

    2004-01-15

    The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.

  12. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed Central

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-01-01

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266

  13. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-12-20

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.

  14. Functional expression of the taste-modifying protein, miraculin, in transgenic lettuce.

    PubMed

    Sun, Hyeon-Jin; Cui, Min-Long; Ma, Biao; Ezura, Hiroshi

    2006-01-23

    Taste-modifying proteins are a natural alternative to artificial sweeteners and flavor enhancers and have been used in some cultures for centuries. The taste-modifying protein, miraculin, has the unusual property of being able to modify a sour taste into a sweet taste. Here, we report the use of a plant expression system for the production of miraculin. A synthetic gene encoding miraculin was placed under the control of constitutive promoters and transferred to lettuce. Expression of this gene in transgenic lettuce resulted in the accumulation of significant amounts of miraculin protein in the leaves. The miraculin expressed in transgenic lettuce possessed sweetness-inducing activity. These results demonstrate that the production of miraculin in edible plants can be a good alternative strategy to enhance the availability of this protein.

  15. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes

    PubMed Central

    2012-01-01

    Background Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. Results On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. Conclusions Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of

  16. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle.

    PubMed

    de Jong, Arjan S; Wessels, Els; Dijkman, Henri B P M; Galama, Jochem M D; Melchers, Willem J G; Willems, Peter H G M; van Kuppeveld, Frank J M

    2003-01-10

    The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.

  17. Urea modified cottonseed protein adhesive for wood composite products

    USDA-ARS?s Scientific Manuscript database

    Cottonseed protein has the potential to be used as renewable and environmentally friendly adhesives in wood products industry. However, the industry application was limited by its low mechanical properties, low water resistance and viscosity. In this work, urea modified cottonseed protein adhesive w...

  18. Controlled assembly of artificial protein-protein complexes via DNA duplex formation.

    PubMed

    Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J

    2015-03-18

    DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.

  19. Protein-protein interaction networks (PPI) and complex diseases

    PubMed Central

    Safari-Alighiarloo, Nahid; Taghizadeh, Mohammad; Rezaei-Tavirani, Mostafa; Goliaei, Bahram

    2014-01-01

    The physical interaction of proteins which lead to compiling them into large densely connected networks is a noticeable subject to investigation. Protein interaction networks are useful because of making basic scientific abstraction and improving biological and biomedical applications. Based on principle roles of proteins in biological function, their interactions determine molecular and cellular mechanisms, which control healthy and diseased states in organisms. Therefore, such networks facilitate the understanding of pathogenic (and physiologic) mechanisms that trigger the onset and progression of diseases. Consequently, this knowledge can be translated into effective diagnostic and therapeutic strategies. Furthermore, the results of several studies have proved that the structure and dynamics of protein networks are disturbed in complex diseases such as cancer and autoimmune disorders. Based on such relationship, a novel paradigm is suggested in order to confirm that the protein interaction networks can be the target of therapy for treatment of complex multi-genic diseases rather than individual molecules with disrespect the network. PMID:25436094

  20. Biochemical characterization of the prolyl 3-hydroxylase 1.cartilage-associated protein.cyclophilin B complex.

    PubMed

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-06-26

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the alpha chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1.CRTAP.CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1.CRTAP.CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1.CRTAP.CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone.

  1. Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors.

    PubMed

    Weston, Cathryn; Winfield, Ian; Harris, Matthew; Hodgson, Rose; Shah, Archna; Dowell, Simon J; Mobarec, Juan Carlos; Woodlock, David A; Reynolds, Christopher A; Poyner, David R; Watkins, Harriet A; Ladds, Graham

    2016-10-14

    The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gα s -mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gα s and Gα q but also identify a Gα i component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gα s , Gα i , and Gα q/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Whirlin and PDZ domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2.

    PubMed

    Chen, Qian; Zou, Junhuang; Shen, Zuolian; Zhang, Weiping; Yang, Jun

    2014-12-26

    Usher syndrome (USH) is the leading genetic cause of combined hearing and vision loss. Among the three USH clinical types, type 2 (USH2) occurs most commonly. USH2A, GPR98, and WHRN are three known causative genes of USH2, whereas PDZD7 is a modifier gene found in USH2 patients. The proteins encoded by these four USH genes have been proposed to form a multiprotein complex, the USH2 complex, due to interactions found among some of these proteins in vitro, their colocalization in vivo, and mutual dependence of some of these proteins for their normal in vivo localizations. However, evidence showing the formation of the USH2 complex is missing, and details on how this complex is formed remain elusive. Here, we systematically investigated interactions among the intracellular regions of the four USH proteins using colocalization, yeast two-hybrid, and pull-down assays. We show that multiple domains of the four USH proteins interact among one another. Importantly, both WHRN and PDZD7 are required for the complex formation with USH2A and GPR98. In this USH2 quaternary complex, WHRN prefers to bind to USH2A, whereas PDZD7 prefers to bind to GPR98. Interaction between WHRN and PDZD7 is the bridge between USH2A and GPR98. Additionally, the USH2 quaternary complex has a variable stoichiometry. These findings suggest that a non-obligate, short term, and dynamic USH2 quaternary protein complex may exist in vivo. Our work provides valuable insight into the physiological role of the USH2 complex in vivo and informs possible reconstruction of the USH2 complex for future therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. RNA-modifying proteins as anticancer drug targets.

    PubMed

    Boriack-Sjodin, P Ann; Ribich, Scott; Copeland, Robert A

    2018-06-01

    All major biological macromolecules (DNA, RNA, proteins and lipids) undergo enzyme-catalysed covalent modifications that impact their structure, function and stability. A variety of covalent modifications of RNA have been identified and demonstrated to affect RNA stability and translation to proteins; these mechanisms of translational control have been termed epitranscriptomics. Emerging data suggest that some epitranscriptomic mechanisms are altered in human cancers as well as other human diseases. In this Review, we examine the current understanding of RNA modifications with a focus on mRNA methylation, highlight their possible roles in specific cancer indications and discuss the emerging potential of RNA-modifying proteins as therapeutic targets.

  4. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    PubMed Central

    Ren, Jun; Zhou, Wei; Wang, Jianxin

    2014-01-01

    Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes. PMID:25143945

  5. Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.

    PubMed

    Ma, Zheng; Fung, Victor; D'Orso, Iván

    2017-01-26

    The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.

  6. Cranberry Proanthocyanidins - Protein complexes for macrophage activation.

    PubMed

    Carballo, Sergio M; Haas, Linda; Krueger, Christian G; Reed, Jess D

    2017-09-20

    In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescence microscopy was used to study the endocytosis of PAC-BSA complexes. The effects of the PAC complexes on macrophage antigen presentation were studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. The mass spectra of the PAC complexes with BSA and HEL differed from the spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter the protein structure without precipitating the protein. Fluorescence microscopy showed that the RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to the controls. The PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL

  7. Modeling complexes of modeled proteins.

    PubMed

    Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A

    2017-03-01

    Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C α RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Recent progress in biopolymer nanoparticle and microparticle formation by heat-treating electrostatic protein-polysaccharide complexes.

    PubMed

    Jones, Owen G; McClements, David Julian

    2011-09-14

    Functional biopolymer nanoparticles or microparticles can be formed by heat treatment of globular protein-ionic polysaccharide electrostatic complexes under appropriate solution conditions. These biopolymer particles can be used as encapsulation and delivery systems, fat mimetics, lightening agents, or texture modifiers. This review highlights recent progress in the design and fabrication of biopolymer particles based on heating globular protein-ionic polysaccharide complexes above the thermal denaturation temperature of the proteins. The influence of biopolymer type, protein-polysaccharide ratio, pH, ionic strength, and thermal history on the characteristics of the biopolymer particles formed is reviewed. Our current understanding of the underlying physicochemical mechanisms of particle formation and properties is given. The information provided in this review should facilitate the rational design of biopolymer particles with specific physicochemical and functional attributes, as well as stimulate further research in identifying the physicochemical origin of particle formation. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Electrostatic rate enhancement and transient complex of protein-protein association.

    PubMed

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2008-04-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to approximately 10(5)-10(6) M(-1) s(-1). Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys J 1997;73:2441-2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by $k_{\\bf D}$ = $k_{D}0\\ {exp} ( - \\langle U_{el} \\rangle;{\\star}/k_{B} T),$ where k(D) and k(D0) are the rates in the presence and absence of electrostatic interactions, respectively, U(el) is the average electrostatic interaction energy in a "transient-complex" ensemble, and k(B)T is the thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with the experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007;15:215-224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. (c) 2007 Wiley-Liss, Inc.

  10. Multi-Dimensional Scaling based grouping of known complexes and intelligent protein complex detection.

    PubMed

    Rehman, Zia Ur; Idris, Adnan; Khan, Asifullah

    2018-06-01

    Protein-Protein Interactions (PPI) play a vital role in cellular processes and are formed because of thousands of interactions among proteins. Advancements in proteomics technologies have resulted in huge PPI datasets that need to be systematically analyzed. Protein complexes are the locally dense regions in PPI networks, which extend important role in metabolic pathways and gene regulation. In this work, a novel two-phase protein complex detection and grouping mechanism is proposed. In the first phase, topological and biological features are extracted for each complex, and prediction performance is investigated using Bagging based Ensemble classifier (PCD-BEns). Performance evaluation through cross validation shows improvement in comparison to CDIP, MCode, CFinder and PLSMC methods Second phase employs Multi-Dimensional Scaling (MDS) for the grouping of known complexes by exploring inter complex relations. It is experimentally observed that the combination of topological and biological features in the proposed approach has greatly enhanced prediction performance for protein complex detection, which may help to understand various biological processes, whereas application of MDS based exploration may assist in grouping potentially similar complexes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery.

    PubMed

    Kim, Bum Jin; Cheong, Hogyun; Hwang, Byeong Hee; Cha, Hyung Joon

    2015-06-15

    A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Discovering protein complexes in protein interaction networks via exploring the weak ties effect

    PubMed Central

    2012-01-01

    Background Studying protein complexes is very important in biological processes since it helps reveal the structure-functionality relationships in biological networks and much attention has been paid to accurately predict protein complexes from the increasing amount of protein-protein interaction (PPI) data. Most of the available algorithms are based on the assumption that dense subgraphs correspond to complexes, failing to take into account the inherence organization within protein complex and the roles of edges. Thus, there is a critical need to investigate the possibility of discovering protein complexes using the topological information hidden in edges. Results To provide an investigation of the roles of edges in PPI networks, we show that the edges connecting less similar vertices in topology are more significant in maintaining the global connectivity, indicating the weak ties phenomenon in PPI networks. We further demonstrate that there is a negative relation between the weak tie strength and the topological similarity. By using the bridges, a reliable virtual network is constructed, in which each maximal clique corresponds to the core of a complex. By this notion, the detection of the protein complexes is transformed into a classic all-clique problem. A novel core-attachment based method is developed, which detects the cores and attachments, respectively. A comprehensive comparison among the existing algorithms and our algorithm has been made by comparing the predicted complexes against benchmark complexes. Conclusions We proved that the weak tie effect exists in the PPI network and demonstrated that the density is insufficient to characterize the topological structure of protein complexes. Furthermore, the experimental results on the yeast PPI network show that the proposed method outperforms the state-of-the-art algorithms. The analysis of detected modules by the present algorithm suggests that most of these modules have well biological significance in

  13. Membrane lipid-protein interactions modify the regulatory role of adenosine-deaminase complexing protein: a phase fluorometry study of a malignancy marker

    NASA Astrophysics Data System (ADS)

    Parola, Abraham H.; Porat, Nurith; Caiolfa, Valeria R.; Gill, David; Kiesow, Lutz A.; Weisman, Mathew; Nemschitz, S.; Yaron, Dahlia; Singer, Karen; Solomon, Ethel

    1990-05-01

    The role of membrane lipid-protein interactions in malignant cell transformation was examined with adenosine deaminase (ADA) as a representative membrane protein. ADA's activity changes dramatically in transformed cells and accordingly it is a malignancy marker. Yet, the mechanisms controlling its variable activity are unknown. We undertook the spectroscopic deciphering of its interactions with its lipidic environment in normal and malignant cells. ADA exists in two interconvertible forms, small (45 KD) and large (21OKD). The large form consists of two small catalytic subunits (55-ADA) and a dimeric complexing protein ADCP. The physiological role of ADCP was not known either. Our studies were carried out at three levels.: 1. Solution enzyme kinetics, 2. The interaction of 55-ADA with ADCP reconstituted in liposomes: Effect of cholesterol and 3. Multifrequency phase modulation spectrofluorometry of pyrene-labeled 55-ADA bound to ADCP on the membranes of normal and RSV or RSV Ts68 transformed chick embryo fibroblasts. We found: 1. ADCP has an allosteric regulatory role on 55-ADA, which may be of physiological relevance: It inhibits 55-ADA activity at low physiological adenosine concentrations but accelerates deamination at high substrate concentration. 2. When reconstituted in DMPC liposomes, it retains 55-ADA activity (in its absence the activity is lost) and upon rigidification with cholesterol, a three fold increase in 55-ADA activity is attained, contrary to ADCP's regulatory activity when free of lipids. 3. The reduced ADA activity in transformed chick embryo fibroblasts is associated with increased membrane lipid fluidity (reduced order parameter), reduced accessibility of ADCP and increase rotational dynamics of the complex. We thus obtained spectroscopic deciphering of the vertical motion of ADCP, controlled by lipid-protein interaction, resulting in variable activity of this malignancy marker.

  14. Identifying protein complexes based on brainstorming strategy.

    PubMed

    Shen, Xianjun; Zhou, Jin; Yi, Li; Hu, Xiaohua; He, Tingting; Yang, Jincai

    2016-11-01

    Protein complexes comprising of interacting proteins in protein-protein interaction network (PPI network) play a central role in driving biological processes within cells. Recently, more and more swarm intelligence based algorithms to detect protein complexes have been emerging, which have become the research hotspot in proteomics field. In this paper, we propose a novel algorithm for identifying protein complexes based on brainstorming strategy (IPC-BSS), which is integrated into the main idea of swarm intelligence optimization and the improved K-means algorithm. Distance between the nodes in PPI network is defined by combining the network topology and gene ontology (GO) information. Inspired by human brainstorming process, IPC-BSS algorithm firstly selects the clustering center nodes, and then they are separately consolidated with the other nodes with short distance to form initial clusters. Finally, we put forward two ways of updating the initial clusters to search optimal results. Experimental results show that our IPC-BSS algorithm outperforms the other classic algorithms on yeast and human PPI networks, and it obtains many predicted protein complexes with biological significance. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. A-Kinase Anchoring Proteins: From protein complexes to physiology and disease

    PubMed Central

    Carnegie, Graeme K.; Means, Christopher K.; Scott, John D.

    2009-01-01

    Protein scaffold complexes are a key mechanism by which a common signaling pathway can serve many different functions. Sequestering a signaling enzyme to a specific subcellular environment not only ensures that the enzyme is near its relevant targets, but also segregates this activity to prevent indiscriminate phosphorylation of other substrates. One family of diverse, well-studied scaffolding proteins are the A-kinase anchoring proteins (AKAPs). These anchoring proteins form multi-protein complexes that integrate cAMP signaling with other pathways and signaling events. In this review we focus on recent advances in the elucidation of AKAP function. PMID:19319965

  16. A-kinase anchoring proteins: from protein complexes to physiology and disease.

    PubMed

    Carnegie, Graeme K; Means, Christopher K; Scott, John D

    2009-04-01

    Protein scaffold complexes are a key mechanism by which a common signaling pathway can serve many different functions. Sequestering a signaling enzyme to a specific subcellular environment not only ensures that the enzyme is near its relevant targets, but also segregates this activity to prevent indiscriminate phosphorylation of other substrates. One family of diverse, well-studied scaffolding proteins are the A-kinase anchoring proteins (AKAPs). These anchoring proteins form multi-protein complexes that integrate cAMP signaling with other pathways and signaling events. In this review, we focus on recent advances in the elucidation of AKAP function.

  17. Electrostatic Rate Enhancement and Transient Complex of Protein-Protein Association

    PubMed Central

    Alsallaq, Ramzi; Zhou, Huan-Xiang

    2012-01-01

    The association of two proteins is bounded by the rate at which they, via diffusion, find each other while in appropriate relative orientations. Orientational constraints restrict this rate to ~105 – 106 M−1s−1. Proteins with higher association rates generally have complementary electrostatic surfaces; proteins with lower association rates generally are slowed down by conformational changes upon complex formation. Previous studies (Zhou, Biophys. J. 1997;73:2441–2445) have shown that electrostatic enhancement of the diffusion-limited association rate can be accurately modeled by kD = kD0 exp(−*/ kBT), where kD and kD0 are the rates in the presence and absence of electrostatic interactions, respectively, * is the average electrostatic interaction energy in a “transient-complex” ensemble, and kBT is thermal energy. The transient-complex ensemble separates the bound state from the unbound state. Predictions of the transient-complex theory on four protein complexes were found to agree well with experiment when the electrostatic interaction energy was calculated with the linearized Poisson-Boltzmann (PB) equation (Alsallaq and Zhou, Structure 2007, 15:215–224). Here we show that the agreement is further improved when the nonlinear PB equation is used. These predictions are obtained with the dielectric boundary defined as the protein van der Waals surface. When the dielectric boundary is instead specified as the molecular surface, electrostatic interactions in the transient complex become repulsive and are thus predicted to retard association. Together these results demonstrate that the transient-complex theory is predictive of electrostatic rate enhancement and can help parameterize PB calculations. PMID:17932929

  18. Sample preparation for SFM imaging of DNA, proteins, and DNA-protein complexes.

    PubMed

    Ristic, Dejan; Sanchez, Humberto; Wyman, Claire

    2011-01-01

    Direct imaging is invaluable for understanding the mechanism of complex genome transactions where proteins work together to organize, transcribe, replicate, and repair DNA. Scanning (or atomic) force microscopy is an ideal tool for this, providing 3D information on molecular structure at nanometer resolution from defined components. This is a convenient and practical addition to in vitro studies as readily obtainable amounts of purified proteins and DNA are required. The images reveal structural details on the size and location of DNA-bound proteins as well as protein-induced arrangement of the DNA, which are directly correlated in the same complexes. In addition, even from static images, the different forms observed and their relative distributions can be used to deduce the variety and stability of different complexes that are necessarily involved in dynamic processes. Recently available instruments that combine fluorescence with topographic imaging allow the identification of specific molecular components in complex assemblies, which broadens the applications and increases the information obtained from direct imaging of molecular complexes. We describe here basic methods for preparing samples of proteins, DNA, and complexes of the two for topographic imaging and quantitative analysis. We also describe special considerations for combined fluorescence and topographic imaging of molecular complexes.

  19. Predicting protein complex geometries with a neural network.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Lorenzen, Stephan; Knapp, Ernst-Walter

    2010-03-01

    A major challenge of the protein docking problem is to define scoring functions that can distinguish near-native protein complex geometries from a large number of non-native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom-pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near-native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge-based energy functions for scoring. We show that a distance-dependent atom pair potential performs much better than a simple atom-pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge-based scoring functions such as ZDOCK 3.0, ZRANK, ITScore-PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network-based scoring function achieves a reasonable performance in rigid-body unbound docking of proteins. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  20. Colloid, adhesive and release properties of nanoparticular ternary complexes between cationic and anionic polysaccharides and basic proteins like bone morphogenetic protein BMP-2.

    PubMed

    Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M

    2017-03-01

    Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides*

    PubMed Central

    Bogdanow, Boris; Zauber, Henrik; Selbach, Matthias

    2016-01-01

    The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20–50% of false positive identifications in deep proteomic data sets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a “cleaned search” strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation. PMID:27215553

  2. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    PubMed

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Construction of ontology augmented networks for protein complex prediction.

    PubMed

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  4. Nanospray FAIMS Fractionation Provides Significant Increases in Proteome Coverage of Unfractionated Complex Protein Digests*

    PubMed Central

    Swearingen, Kristian E.; Hoopmann, Michael R.; Johnson, Richard S.; Saleem, Ramsey A.; Aitchison, John D.; Moritz, Robert L.

    2012-01-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that can be used to reduce sample complexity and increase dynamic range in tandem mass spectrometry experiments. FAIMS fractionates ions in the gas-phase according to characteristic differences in mobilities in electric fields of different strengths. Undesired ion species such as solvated clusters and singly charged chemical background ions can be prevented from reaching the mass analyzer, thus decreasing chemical noise. To date, there has been limited success using the commercially available Thermo Fisher FAIMS device with both standard ESI and nanoLC-MS. We have modified a Thermo Fisher electrospray source to accommodate a fused silica pulled tip capillary column for nanospray ionization, which will enable standard laboratories access to FAIMS technology. Our modified source allows easily obtainable stable spray at flow rates of 300 nL/min when coupled with FAIMS. The modified electrospray source allows the use of sheath gas, which provides a fivefold increase in signal obtained when nanoLC is coupled to FAIMS. In this work, nanoLC-FAIMS-MS and nanoLC-MS were compared by analyzing a tryptic digest of a 1:1 mixture of SILAC-labeled haploid and diploid yeast to demonstrate the performance of nanoLC-FAIMS-MS, at different compensation voltages, for post-column fractionation of complex protein digests. The effective dynamic range more than doubled when FAIMS was used. In total, 10,377 unique stripped peptides and 1649 unique proteins with SILAC ratios were identified from the combined nanoLC-FAIMS-MS experiments, compared with 6908 unique stripped peptides and 1003 unique proteins with SILAC ratios identified from the combined nanoLC-MS experiments. This work demonstrates how a commercially available FAIMS device can be combined with nanoLC to improve proteome coverage in shotgun and targeted type proteomics experiments. PMID:22186714

  5. Assessment of the capillary zone electrophoretic behavior of proteins in the presence of electroosmotic modifiers: protein-polyamine interaction studied using a polyacrylamide-coated capillary.

    PubMed

    Kubo, K; Hattori, A

    2001-10-01

    The use of polyamines as electroosmotic modifiers has been shown to be effective in enhancing resolution of protein glycoforms in capillary zone electrophoresis (CZE) using a bare capillary tube. In this study, effectiveness was evaluated by using a polyacrylamide-coated capillary tube instead of a bare capillary tube. Electropherograms obtained in the presence of polyamines were inferior to those obtained in their absence with respect to resolution. Electrophoretic mobility of the proteins decreased and their peaks were broadened by polyamines bound to them. This unfavorable effect was dependent on both the species of polyamines and the pH values of the electrolyte buffer. The reduction of resolution caused by polyamines was in the following order: spermidine (SPD) approximately spermidine-tri-hydrochloride (SPD-HCI) > putrescine (PUT) > hexamethonium chloride (HMC). The observed effect can be ascribed to the formation of complexes between the proteins and the polyamines. In addition, for the bare capillary tube the complexes showed interaction with the inner surface, resulting in local suppression of electroosmosis and poor resolution. The high resolution obtained in the coated capillary tube was reduced in the presence of the polyamines. Thus, the use of the polyamines has a negative effect on the analysis of protein microheterogeneity as a result of protein-polyamine interaction.

  6. [Interaction of chaotropically modified immunoglobulins with protein and glicolipid antigens].

    PubMed

    Gordienko, A I; Khimich, N V

    2006-01-01

    The features of interaction of native and chaotropically modified immunoglobulins with proteins (ovalbumin) and glicolipids (lipopolysaccharides, LPS) enterobacteria Escherichia coli K235, Salmonella minnesota and Salmonella enteritidis have been investigated. It has been established, that after processing of native antibodies with 3.5 M KSCN their ability to contact to the specified antigenes repeatedly grows. Besides the intensity of interaction of modified immunoglobulins with the mentioned above antigenes was various, that is determined by the presence of structural distinctions between antigen determinants of proteins and glycolipid antigens, and also between O-polysaccharide chains of LPS in different species of enterobacteria.

  7. Dilution of protein-surfactant complexes: a fluorescence study.

    PubMed

    Azadi, Glareh; Chauhan, Anuj; Tripathi, Anubhav

    2013-09-01

    Dilution of protein-surfactant complexes is an integrated step in microfluidic protein sizing, where the contribution of free micelles to the overall fluorescence is reduced by dilution. This process can be further improved by establishing an optimum surfactant concentration and quantifying the amount of protein based on the fluorescence intensity. To this end, we study the interaction of proteins with anionic sodium dodecyl sulfate (SDS) and cationic hexadecyl trimethyl ammonium bromide (CTAB) using a hydrophobic fluorescent dye (sypro orange). We analyze these interactions fluourometrically with bovine serum albumin, carbonic anhydrase, and beta-galactosidase as model proteins. The fluorescent signature of protein-surfactant complexes at various dilution points shows three distinct regions, surfactant dominant, breakdown, and protein dominant region. Based on the dilution behavior of protein-surfactant complexes, we propose a fluorescence model to explain the contribution of free and bound micelles to the overall fluorescence. Our results show that protein peak is observed at 3 mM SDS as the optimum dilution concentration. Furthermore, we study the effect of protein concentration on fluorescence intensity. In a single protein model with a constant dye quantum yield, the peak height increases with protein concentration. Finally, addition of CTAB to the protein-SDS complex at mole fractions above 0.1 shifts the protein peak from 3 mM to 4 mM SDS. The knowledge of protein-surfactant interactions obtained from these studies provides significant insights for novel detection and quantification techniques in microfluidics. © 2013 The Protein Society.

  8. Filtering Gene Ontology semantic similarity for identifying protein complexes in large protein interaction networks.

    PubMed

    Wang, Jian; Xie, Dong; Lin, Hongfei; Yang, Zhihao; Zhang, Yijia

    2012-06-21

    Many biological processes recognize in particular the importance of protein complexes, and various computational approaches have been developed to identify complexes from protein-protein interaction (PPI) networks. However, high false-positive rate of PPIs leads to challenging identification. A protein semantic similarity measure is proposed in this study, based on the ontology structure of Gene Ontology (GO) terms and GO annotations to estimate the reliability of interactions in PPI networks. Interaction pairs with low GO semantic similarity are removed from the network as unreliable interactions. Then, a cluster-expanding algorithm is used to detect complexes with core-attachment structure on filtered network. Our method is applied to three different yeast PPI networks. The effectiveness of our method is examined on two benchmark complex datasets. Experimental results show that our method performed better than other state-of-the-art approaches in most evaluation metrics. The method detects protein complexes from large scale PPI networks by filtering GO semantic similarity. Removing interactions with low GO similarity significantly improves the performance of complex identification. The expanding strategy is also effective to identify attachment proteins of complexes.

  9. Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces

    DOE PAGES

    Bordner, Andrew J.; Gorin, Andrey A.

    2008-05-12

    Here, protein-protein interactions are ubiquitous and essential for cellular processes. High-resolution X-ray crystallographic structures of protein complexes can elucidate the details of their function and provide a basis for many computational and experimental approaches. Here we demonstrate that existing annotations of protein complexes, including those provided by the Protein Data Bank (PDB) itself, contain a significant fraction of incorrect annotations. Results: We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster ismore » relevant based on a diverse set of properties; and (4) finally combining these scores for each entry in order to predict the complex structure. Unlike previous annotation methods, consistent prediction of complexes with identical or almost identical protein content is insured. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions.« less

  10. Biochemical Characterization of the Prolyl 3-Hydroxylase 1·Cartilage-associated Protein·Cyclophilin B Complex*

    PubMed Central

    Ishikawa, Yoshihiro; Wirz, Jackie; Vranka, Janice A.; Nagata, Kazuhiro; Bächinger, Hans Peter

    2009-01-01

    The rough endoplasmic reticulum-resident protein complex consisting of prolyl 3-hydroxylase 1 (P3H1), cartilage-associated protein (CRTAP), and cyclophilin B (CypB) can be isolated from chick embryos on a gelatin-Sepharose column, indicating some involvement in the biosynthesis of procollagens. Prolyl 3-hydroxylase 1 modifies a single proline residue in the α chains of type I, II, and III collagens to (3S)-hydroxyproline. The peptidyl-prolyl cis-trans isomerase activity of cyclophilin B was shown previously to catalyze the rate of triple helix formation. Here we show that cyclophilin B in the complex shows peptidyl-prolyl cis-trans isomerase activity and that the P3H1·CRTAP·CypB complex has another important function: it acts as a chaperone molecule when tested with two classical chaperone assays. The P3H1·CRTAP·CypB complex inhibited the thermal aggregation of citrate synthase and was active in the denatured rhodanese refolding and aggregation assay. The chaperone activity of the complex was higher than that of protein-disulfide isomerase, a well characterized chaperone. The P3H1·CRTAP·CypB complex also delayed the in vitro fibril formation of type I collagen, indicating that this complex is also able to interact with triple helical collagen and acts as a collagen chaperone. PMID:19419969

  11. Is Each Light-Harvesting Complex Protein Important for Plant Fitness?1[w

    PubMed Central

    Ganeteg, Ulrika; Külheim, Carsten; Andersson, Jenny; Jansson, Stefan

    2004-01-01

    Many of the photosynthetic genes are conserved among all higher plants, indicating that there is strong selective pressure to maintain the genes of each protein. However, mutants of these genes often lack visible growth phenotypes, suggesting that they are important only under certain conditions or have overlapping functions. To assess the importance of specific genes encoding the light-harvesting complex (LHC) proteins for the survival of the plant in the natural environment, we have combined two different scientific traditions by using an ecological fitness assay on a set of genetically modified Arabidopsis plants with differing LHC protein contents. The fitness of all of the LHC-deficient plants was reduced in some of the growth environments, supporting the hypothesis that each of the genes has been conserved because they provide ecological flexibility, which is of great adaptive value given the highly variable conditions encountered in nature. PMID:14730076

  12. Crystal structure of mitochondrial respiratory membrane protein complex II.

    PubMed

    Sun, Fei; Huo, Xia; Zhai, Yujia; Wang, Aojin; Xu, Jianxing; Su, Dan; Bartlam, Mark; Rao, Zihe

    2005-07-01

    The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.

  13. Characteristics and safety assessment of intractable proteins in genetically modified crops.

    PubMed

    Bushey, Dean F; Bannon, Gary A; Delaney, Bryan F; Graser, Gerson; Hefford, Mary; Jiang, Xiaoxu; Lee, Thomas C; Madduri, Krishna M; Pariza, Michael; Privalle, Laura S; Ranjan, Rakesh; Saab-Rincon, Gloria; Schafer, Barry W; Thelen, Jay J; Zhang, John X Q; Harper, Marc S

    2014-07-01

    Genetically modified (GM) crops may contain newly expressed proteins that are described as "intractable". Safety assessment of these proteins may require some adaptations to the current assessment procedures. Intractable proteins are defined here as those proteins with properties that make it extremely difficult or impossible with current methods to express in heterologous systems; isolate, purify, or concentrate; quantify (due to low levels); demonstrate biological activity; or prove equivalency with plant proteins. Five classes of intractable proteins are discussed here: (1) membrane proteins, (2) signaling proteins, (3) transcription factors, (4) N-glycosylated proteins, and (5) resistance proteins (R-proteins, plant pathogen recognition proteins that activate innate immune responses). While the basic tiered weight-of-evidence approach for assessing the safety of GM crops proposed by the International Life Sciences Institute (ILSI) in 2008 is applicable to intractable proteins, new or modified methods may be required. For example, the first two steps in Tier I (hazard identification) analysis, gathering of applicable history of safe use (HOSU) information and bioinformatics analysis, do not require protein isolation. The extremely low level of expression of most intractable proteins should be taken into account while assessing safety of the intractable protein in GM crops. If Tier II (hazard characterization) analyses requiring animal feeding are judged to be necessary, alternatives to feeding high doses of pure protein may be needed. These alternatives are discussed here. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A high-throughput immobilized bead screen for stable proteins and multi-protein complexes

    PubMed Central

    Lockard, Meghan A.; Listwan, Pawel; Pedelacq, Jean-Denis; Cabantous, Stéphanie; Nguyen, Hau B.; Terwilliger, Thomas C.; Waldo, Geoffrey S.

    2011-01-01

    We describe an in vitro colony screen to identify Escherichia coli expressing soluble proteins and stable, assembled multiprotein complexes. Proteins with an N-terminal 6His tag and C-terminal green fluorescent protein (GFP) S11 tag are fluorescently labeled in cells by complementation with a coexpressed GFP 1–10 fragment. After partial colony lysis, the fluorescent soluble proteins or complexes diffuse through a supporting filtration membrane and are captured on Talon® resin metal affinity beads immobilized in agarose. Images of the fluorescent colonies convey total expression and the level of fluorescence bound to the beads indicates how much protein is soluble. Both pieces of information can be used together when selecting clones. After the assay, colonies can be picked and propagated, eliminating the need to make replica plates. We used the method to screen a DNA fragment library of the human protein p85 and preferentially obtained clones expressing the full-length ‘breakpoint cluster region-homology' and NSH2 domains. The assay also distinguished clones expressing stable multi-protein complexes from those that are unstable due to missing subunits. Clones expressing stable, intact heterotrimeric E.coli YheNML complexes were readily identified in libraries dominated by complexes of YheML missing the N subunit. PMID:21642284

  15. Protein-Protein Interactions of Azurin Complex by Coarse-Grained Simulations with a Gō-Like Model

    NASA Astrophysics Data System (ADS)

    Rusmerryani, Micke; Takasu, Masako; Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi

    Proteins usually perform their biological functions by forming a complex with other proteins. It is very important to study the protein-protein interactions since these interactions are crucial in many processes of a living organism. In this study, we develop a coarse grained model to simulate protein complex in liquid system. We carry out molecular dynamics simulations with topology-based potential interactions to simulate dynamical properties of Pseudomonas Aeruginosa azurin complex systems. Azurin is known to play an essential role as an anticancer agent and bind many important intracellular molecules. Some physical properties are monitored during simulation time to get a better understanding of the influence of protein-protein interactions to the azurin complex dynamics. These studies will provide valuable insights for further investigation on protein-protein interactions in more realistic system.

  16. Community of protein complexes impacts disease association

    PubMed Central

    Wang, Qianghu; Liu, Weisha; Ning, Shangwei; Ye, Jingrun; Huang, Teng; Li, Yan; Wang, Peng; Shi, Hongbo; Li, Xia

    2012-01-01

    One important challenge in the post-genomic era is uncovering the relationships among distinct pathophenotypes by using molecular signatures. Given the complex functional interdependencies between cellular components, a disease is seldom the consequence of a defect in a single gene product, instead reflecting the perturbations of a group of closely related gene products that carry out specific functions together. Therefore, it is meaningful to explore how the community of protein complexes impacts disease associations. Here, by integrating a large amount of information from protein complexes and the cellular basis of diseases, we built a human disease network in which two diseases are linked if they share common disease-related protein complex. A systemic analysis revealed that linked disease pairs exhibit higher comorbidity than those that have no links, and that the stronger association two diseases have based on protein complexes, the higher comorbidity they are prone to display. Moreover, more connected diseases tend to be malignant, which have high prevalence. We provide novel disease associations that cannot be identified through previous analysis. These findings will potentially provide biologists and clinicians new insights into the etiology, classification and treatment of diseases. PMID:22549411

  17. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods.

    PubMed

    Dimitrakopoulos, Christos; Theofilatos, Konstantinos; Pegkas, Andreas; Likothanassis, Spiros; Mavroudi, Seferina

    2016-07-01

    Proteins are vital biological molecules driving many fundamental cellular processes. They rarely act alone, but form interacting groups called protein complexes. The study of protein complexes is a key goal in systems biology. Recently, large protein-protein interaction (PPI) datasets have been published and a plethora of computational methods that provide new ideas for the prediction of protein complexes have been implemented. However, most of the methods suffer from two major limitations: First, they do not account for proteins participating in multiple functions and second, they are unable to handle weighted PPI graphs. Moreover, the problem remains open as existing algorithms and tools are insufficient in terms of predictive metrics. In the present paper, we propose gradually expanding neighborhoods with adjustment (GENA), a new algorithm that gradually expands neighborhoods in a graph starting from highly informative "seed" nodes. GENA considers proteins as multifunctional molecules allowing them to participate in more than one protein complex. In addition, GENA accepts weighted PPI graphs by using a weighted evaluation function for each cluster. In experiments with datasets from Saccharomyces cerevisiae and human, GENA outperformed Markov clustering, restricted neighborhood search and clustering with overlapping neighborhood expansion, three state-of-the-art methods for computationally predicting protein complexes. Seven PPI networks and seven evaluation datasets were used in total. GENA outperformed existing methods in 16 out of 18 experiments achieving an average improvement of 5.5% when the maximum matching ratio metric was used. Our method was able to discover functionally homogeneous protein clusters and uncover important network modules in a Parkinson expression dataset. When used on the human networks, around 47% of the detected clusters were enriched in gene ontology (GO) terms with depth higher than five in the GO hierarchy. In the present manuscript

  18. Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified β-lactoglobulin fibrils-chitosan complex.

    PubMed

    Chang, Hon Weng; Tan, Tai Boon; Tan, Phui Yee; Abas, Faridah; Lai, Oi Ming; Wang, Yong; Wang, Yonghua; Nehdi, Imededdine Arbi; Tan, Chin Ping

    2018-03-01

    Fish oil-in-water emulsions containing fish oil, thiol-modified β-lactoglobulin (β-LG) fibrils, chitosan and maltodextrin were fabricated using a high-energy method. The results showed that chitosan coating induced charge reversal; denoting successful biopolymers complexation. A significantly (p<0.05) larger droplet size and lower polydispersity index value, attributed to the thicker chitosan coating at the oil-water interface, were observed. At high chitosan concentrations, the cationic nature of chitosan strengthened the electrostatic repulsion between the droplets, thus conferring high oxidative stability and low turbidity loss rate to the emulsions. The apparent viscosity of emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex was higher than those stabilized using β-LG fibrils alone, resulting in the former's higher creaming stability. Under thermal treatments (63°C and 100°C), emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex possessed higher heat stability as indicated by the consistent droplet sizes observed. Chitosan provided a thicker protective layer that protected the oil droplets against high temperature. Bridging flocculation occurred at low chitosan concentration (0.1%, w/w), as revealed through microscopic observations which indicated the presence of large flocs. All in all, this work provided us with a better understanding of the application of protein fibrils-polysaccharide complex to produce stable emulsion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Complex coacervation of supercharged proteins with polyelectrolytes.

    PubMed

    Obermeyer, Allie C; Mills, Carolyn E; Dong, Xue-Hui; Flores, Romeo J; Olsen, Bradley D

    2016-04-21

    Complexation of proteins with polyelectrolytes or block copolymers can lead to phase separation to generate a coacervate phase or self-assembly of coacervate core micelles. However, many proteins do not coacervate at conditions near neutral pH and physiological ionic strength. Here, protein supercharging is used to systematically explore the effect of protein charge on the complex coacervation with polycations. Four model proteins were anionically supercharged to varying degrees as quantified by mass spectrometry. Proteins phase separated with strong polycations when the ratio of negatively charged residues to positively charged residues on the protein (α) was greater than 1.1-1.2. Efficient partitioning of the protein into the coacervate phase required larger α (1.5-2.0). The preferred charge ratio for coacervation was shifted away from charge symmetry for three of the four model proteins and indicated an excess of positive charge in the coacervate phase. The composition of protein and polymer in the coacervate phase was determined using fluorescently labeled components, revealing that several of the coacervates likely have both induced charging and a macromolecular charge imbalance. The model proteins were also encapsulated in complex coacervate core micelles and micelles formed when the protein charge ratio α was greater than 1.3-1.4. Small angle neutron scattering and transmission electron microscopy showed that the micelles were spherical. The stability of the coacervate phase in both the bulk and micelles improved to increased ionic strength as the net charge on the protein increased. The micelles were also stable to dehydration and elevated temperatures.

  20. Electrostatic contribution to the binding stability of protein-protein complexes.

    PubMed

    Dong, Feng; Zhou, Huan-Xiang

    2006-10-01

    To investigate roles of electrostatic interactions in protein binding stability, electrostatic calculations were carried out on a set of 64 mutations over six protein-protein complexes. These mutations alter polar interactions across the interface and were selected for putative dominance of electrostatic contributions to the binding stability. Three protocols of implementing the Poisson-Boltzmann model were tested. In vdW4 the dielectric boundary between the protein low dielectric and the solvent high dielectric is defined as the protein van der Waals surface and the protein dielectric constant is set to 4. In SE4 and SE20, the dielectric boundary is defined as the surface of the protein interior inaccessible to a 1.4-A solvent probe, and the protein dielectric constant is set to 4 and 20, respectively. In line with earlier studies on the barnase-barstar complex, the vdW4 results on the large set of mutations showed the closest agreement with experimental data. The agreement between vdW4 and experiment supports the contention of dominant electrostatic contributions for the mutations, but their differences also suggest van der Waals and hydrophobic contributions. The results presented here will serve as a guide for future refinement in electrostatic calculation and inclusion of nonelectrostatic effects. Proteins 2006. (c) 2006 Wiley-Liss, Inc.

  1. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation

  2. Comprehensive inventory of protein complexes in the Protein Data Bank from consistent classification of interfaces.

    PubMed

    Bordner, Andrew J; Gorin, Andrey A

    2008-05-12

    Protein-protein interactions are ubiquitous and essential for all cellular processes. High-resolution X-ray crystallographic structures of protein complexes can reveal the details of their function and provide a basis for many computational and experimental approaches. Differentiation between biological and non-biological contacts and reconstruction of the intact complex is a challenging computational problem. A successful solution can provide additional insights into the fundamental principles of biological recognition and reduce errors in many algorithms and databases utilizing interaction information extracted from the Protein Data Bank (PDB). We have developed a method for identifying protein complexes in the PDB X-ray structures by a four step procedure: (1) comprehensively collecting all protein-protein interfaces; (2) clustering similar protein-protein interfaces together; (3) estimating the probability that each cluster is relevant based on a diverse set of properties; and (4) combining these scores for each PDB entry in order to predict the complex structure. The resulting clusters of biologically relevant interfaces provide a reliable catalog of evolutionary conserved protein-protein interactions. These interfaces, as well as the predicted protein complexes, are available from the Protein Interface Server (PInS) website (see Availability and requirements section). Our method demonstrates an almost two-fold reduction of the annotation error rate as evaluated on a large benchmark set of complexes validated from the literature. We also estimate relative contributions of each interface property to the accurate discrimination of biologically relevant interfaces and discuss possible directions for further improving the prediction method.

  3. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives.

    PubMed

    Zhang, Hua; Lu, Haiyan; Chingin, Konstantin; Chen, Huanwen

    2015-07-21

    Ionization of proteins and noncovalent protein complexes with minimal disturbance to their native structure presents a great challenge for biological mass spectrometry (MS). In living organisms, the native structure of intracellular proteins is commonly stabilized by solute amino acids (AAs) accumulated in cells at very high concentrations. Inspired by nature, we hypothesized that AAs could also pose a stabilizing effect on the native structure of proteins and noncovalent protein complexes during ionization. To test this hypothesis, here we explored MS response for various protein complexes upon the addition of free AAs at mM concentrations into the electrospray ionization (ESI) solution. Thermal activation of ESI droplets in the MS inlet capillary was employed as a model destabilizing factor during ionization. Our results indicate that certain AAs, in particular proline (Pro), pose considerable positive effect on the stability of noncovalent protein complexes in ESI-MS without affecting the signal intensity of protein ions and original protein-ligand equilibrium, even when added at the 20 mM concentration. The data suggest that the degree of protein stabilization is primarily determined by the osmolytic and ampholytic characteristics of AA solutes. The highest stability and visibility of noncovalent protein complexes in ESI-MS are achieved using AA additives with neutral isoelectric point, moderate proton affinity, and unfavorable interaction with the native protein state. Overall, our results indicate that the simple addition of free amino acids into the working solution can notably improve the stability and accuracy of protein analysis by native ESI-MS.

  5. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    PubMed

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  6. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    PubMed

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-11-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes.

  7. Identification of an intracellular protein that specifically interacts with photoaffinity-labeled oncogenic p21 protein.

    PubMed Central

    Lee, G; Ronai, Z A; Pincus, M R; Brandt-Rauf, P W; Murphy, R B; Delohery, T M; Nishimura, S; Yamaizumi, Z; Weinstein, I B

    1989-01-01

    An oncogenic 21-kDa (p21) protein (Harvey RAS protein with Val-12) has been covalently modified with a functional reagent that contains a photoactivatable aromatic azide group. This modified p21 protein has been introduced quantitatively into NIH 3T3 cells using an erythrocyte-mediated fusion technique. The introduced p21 protein was capable of inducing enhanced pinocytosis and DNA synthesis in the recipient cells. To identify the putative intracellular protein(s) that specifically interact with the modified p21 protein, the cells were pulsed with [35S]methionine at selected times after fusion and then UV-irradiated to activate the azide group. The resulting nitrene covalently binds to amino acid residues in adjacent proteins, thus linking the p21 protein to these proteins. The cells were then lysed, and the lysate was immunoprecipitated with the anti-p21 monoclonal antibody Y13-259. The immunoprecipitate was analyzed by SDS/PAGE to identify p21-protein complexes. By using this technique, we found that three protein complexes of 51, 64, and 82 kDa were labeled specifically and reproducibly. The most prominent band is the 64-kDa protein complex that shows a time-dependent rise and fall, peaking within a 5-hr period after introduction of the p21 protein into the cells. These studies provide evidence that in vitro the p21 protein becomes associated with a protein whose mass is about 43 kDa. We suggest that the formation of this complex may play a role in mediating early events involved with cell transformation induced by RAS oncogenes. Images PMID:2682656

  8. Characterization of known protein complexes using k-connectivity and other topological measures

    PubMed Central

    Gallagher, Suzanne R; Goldberg, Debra S

    2015-01-01

    Many protein complexes are densely packed, so proteins within complexes often interact with several other proteins in the complex. Steric constraints prevent most proteins from simultaneously binding more than a handful of other proteins, regardless of the number of proteins in the complex. Because of this, as complex size increases, several measures of the complex decrease within protein-protein interaction networks. However, k-connectivity, the number of vertices or edges that need to be removed in order to disconnect a graph, may be consistently high for protein complexes. The property of k-connectivity has been little used previously in the investigation of protein-protein interactions. To understand the discriminative power of k-connectivity and other topological measures for identifying unknown protein complexes, we characterized these properties in known Saccharomyces cerevisiae protein complexes in networks generated both from highly accurate X-ray crystallography experiments which give an accurate model of each complex, and also as the complexes appear in high-throughput yeast 2-hybrid studies in which new complexes may be discovered. We also computed these properties for appropriate random subgraphs.We found that clustering coefficient, mutual clustering coefficient, and k-connectivity are better indicators of known protein complexes than edge density, degree, or betweenness. This suggests new directions for future protein complex-finding algorithms. PMID:26913183

  9. Complex lasso: new entangled motifs in proteins

    NASA Astrophysics Data System (ADS)

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-11-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.

  10. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    PubMed

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  11. Improving protein complex classification accuracy using amino acid composition profile.

    PubMed

    Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok

    2013-09-01

    Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure

    PubMed Central

    Létoquart, Juliette; van Tran, Nhan; Caroline, Vonny; Aleksandrov, Alexey; Lazar, Noureddine; van Tilbeurgh, Herman; Liger, Dominique; Graille, Marc

    2015-01-01

    Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm5U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity. PMID:26438534

  13. Expanding the chemical toolbox for the synthesis of large and uniquely modified proteins

    NASA Astrophysics Data System (ADS)

    Bondalapati, Somasekhar; Jbara, Muhammad; Brik, Ashraf

    2016-05-01

    Methods to prepare proteins that include a specific modification at a desired position are essential for understanding their cellular functions and physical properties in living systems. Chemical protein synthesis, which relies on the chemoselective ligation of unprotected peptides, enables the preparation of modified proteins that are not easily fabricated by other methods. In contrast to recombinant approaches, chemical synthesis can be used to prepare protein analogues such as D-proteins, which are useful in protein structure determination and the discovery of novel therapeutics. Post-translationally modifying proteins is another example where chemical protein synthesis proved itself as a powerful approach for preparing samples with high homogeneity and in workable quantities. In this Review, we discuss the basic principles of the field, focusing on novel chemoselective peptide ligation approaches such as native chemical ligation and the recent advances based on this method with a proven record of success in the synthesis of highly important protein targets.

  14. A Modified MuDPIT Separation Identified 4,488 Proteins in a System Wide Analysis of Quiescence in Yeast

    PubMed Central

    Webb, Kristofor J.; Xu, Tao; Park, Sung Kyu; Yates, John R.

    2013-01-01

    A modified multidimensional protein identification technology (MudPIT) separation was coupled to an LTQ Orbitrap Velos mass spectrometer and used to rapidly identify the near complete yeast proteome from a whole cell tryptic digest. This modified on-line two dimensional liquid chromatography separation consists of 39 strong cation exchange steps followed by a short 18.5 min reversed-phase (RP) gradient. A total of 4,269 protein identifications were made from 4,189 distinguishable protein families from yeast during log phase growth. The “Micro” MudPIT separation performed as well as a standard MudPIT separation in 40% less gradient time. The majority of the yeast proteome can now be routinely covered in less than a days’ time with high reproducibility and sensitivity. The newly devised separation method was used to detect changes in protein expression during cellular quiescence in yeast. An enrichment in the GO annotations ‘oxidation reduction’, ‘catabolic processing’ and ‘cellular response to oxidative stress’ was seen in the quiescent cellular fraction, consistent with their long lived stress resistant phenotypes. Heterogeneity was observed in the stationary phase fraction with a less dense cell population showing reductions in KEGG pathway categories of ‘Ribosome’ and ‘Proteasome’, further defining the complex nature of yeast populations present during stationary phase growth. In total 4,488 distinguishable protein families were identified in all cellular conditions tested. PMID:23540446

  15. Glucose, fructose and sucrose increase the solubility of protein-tannin complexes and at high concentration, glucose and sucrose interfere with bisulphite bleaching of wine pigments.

    PubMed

    Harbertson, James F; Yuan, Chunlong; Mireles, Maria S; Hanlin, Rachel L; Downey, Mark O

    2013-05-01

    Wines were modified with increasing sugar concentrations and decreasing tannin concentrations and analysed by a combination of protein precipitation and bisulphite bleaching. Increasing sugar concentration decreased the precipitation of tannin and protein-precipitable polymeric pigments (PPP). The use of a hydrogen bond disruptor (urea) to reduce protein-tannin and protein-pigment complex formation showed that the effect of sugar concentration occurred by increasing the solubility of the tannin-protein complex, not by interfering with protein-tannin complex formation. By increasing the solubility of pigment-protein complexes, non-protein-precipitable polymeric pigments (nPPP) appeared to increase. There was also an increase in total polymeric pigments at each tannin concentration with increasing glucose and sucrose concentration, indicating that sugar concentration might also affect bisulphite bleaching of wine pigments. While a significant effect of sugar concentration on tannin-protein complex solubility was observed, these effects were greatest at sugar concentrations far in excess of normal wine making conditions. Under normal wine making conditions, sugar concentration will have a negligible effect on protein-precipitable tannin, PPP and nPPP concentrations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Protein import into complex plastids: Cellular organization of higher complexity.

    PubMed

    Maier, Uwe G; Zauner, Stefan; Hempel, Franziska

    2015-01-01

    Many protists with high ecological and medical relevance harbor plastids surrounded by four membranes. Thus, nucleus-encoded proteins of these complex plastids have to traverse these barriers. Here we report on the identification of the protein translocators located in two of the plastid surrounding membranes and present recent findings on the mechanisms of protein import into the plastids of diatoms. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Comparison of homologous and heterologous prime-boost vaccine approaches using Modified Vaccinia Ankara and soluble protein to induce neutralizing antibodies by the human cytomegalovirus pentamer complex in mice.

    PubMed

    Chiuppesi, Flavia; Wussow, Felix; Scharf, Louise; Contreras, Heidi; Gao, Han; Meng, Zhuo; Nguyen, Jenny; Barry, Peter A; Bjorkman, Pamela J; Diamond, Don J

    2017-01-01

    Since neutralizing antibodies (NAb) targeting the human cytomegalovirus (HCMV) pentamer complex (PC) potently block HCMV host cell entry, anti-PC NAb induction is thought to be important for a vaccine formulation to prevent HCMV infection. By developing a vaccine strategy based on soluble PC protein and using a previously generated Modified Vaccinia Ankara vector co-expressing all five PC subunits (MVA-PC), we compared HCMV NAb induction by homologous immunization using prime-boost vaccine regimen employing only PC protein or MVA-PC and heterologous immunization using prime-boost combinations of PC protein and MVA-PC. Utilizing a recently isolated anti-PC NAb, we produced highly pure soluble PC protein that displayed conformational and linear neutralizing epitopes, interfered with HCMV entry, and was recognized by antibodies induced by HCMV during natural infection. Mice vaccinated by different immunization routes with the purified PC protein in combination with a clinically approved adjuvant formulation elicited high-titer and durable HCMV NAb. While MVA-PC and soluble PC protein either alone or in combination elicited robust HCMV NAb, significantly different potencies of these vaccine approaches were observed in dependence on immunization schedule. Using only two immunizations, vaccination with MVA-PC alone or prime-boost combinations of MVA-PC and PC protein was significantly more effective in stimulating HCMV NAb than immunization with PC protein alone. In contrast, with three immunizations, NAb induced by soluble PC protein either alone or combined with two boosts of MVA-PC increased to levels that exceeded NAb titer stimulated by MVA-PC alone. These results provide insights into the potency of soluble protein and MVA to elicit NAb by the HCMV PC via homologous and heterologous prime-boost immunization, which may contribute to develop clinically deployable vaccine strategies to prevent HCMV infection.

  18. Cell separation by immunoaffinity partitioning with polyethylene glycol-modified Protein A in aqueous polymer two-phase systems

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Van Alstine, James M.; Snyder, Robert S.; Shafer, Steven G.; Harris, J. Milton

    1988-01-01

    Previous work has shown that polyethylene glycol (PEG)-bound antibodies can be used as affinity ligands in PEG-dextran two-phase systems to provide selective partitioning of cells to the PEG-rich phase. In the present work it is shown that immunoaffinity partitioning can be simplified by use of PEG-modified Protein A which complexes with unmodified antibody and cells and shifts their partitioning into the PEG-rich phase, thus eliminating the need to prepare a PEG-modified antibody for each cell type. In addition, the paper provides a more rigorous test of the original technique with PEG-bound antibodies by showing that it is effective at shifting the partitioning of either cell type of a mixture of two cell populations.

  19. Solid-state nanopore detection of protein complexes: applications in healthcare and protein kinetics.

    PubMed

    Freedman, Kevin J; Bastian, Arangassery R; Chaiken, Irwin; Kim, Min Jun

    2013-03-11

    Protein conjugation provides a unique look into many biological phenomena and has been used for decades for molecular recognition purposes. In this study, the use of solid-state nanopores for the detection of gp120-associated complexes are investigated. They exhibit monovalent and multivalent binding to anti-gp120 antibody monomer and dimers. In order to investigate the feasibility of many practical applications related to nanopores, detection of specific protein complexes is attempted within a heterogeneous protein sample, and the role of voltage on complexed proteins is researched. It is found that the electric field within the pore can result in unbinding of a freely translocating protein complex within the transient event durations measured experimentally. The strong dependence of the unbinding time with voltage can be used to improve the detection capability of the nanopore system by adding an additional level of specificity that can be probed. These data provide a strong framework for future protein-specific detection schemes, which are shown to be feasible in the realm of a 'real-world' sample and an automated multidimensional method of detecting events. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Weighing the evidence for a ternary protein complex mediating A-type K+ currents in neurons.

    PubMed

    Maffie, Jonathon; Rudy, Bernardo

    2008-12-01

    The subthreshold-operating A-type K(+) current in neurons (I(SA)) has important roles in the regulation of neuronal excitability, the timing of action potential firing and synaptic integration and plasticity. The channels mediating this current (Kv4 channels) have been implicated in epilepsy, the control of dopamine release, and the regulation of pain plasticity. It has been proposed that Kv4 channels in neurons are ternary complexes of three types of protein: pore forming subunits of the Kv4 subfamily and two types of auxiliary subunits, the Ca(2+) binding proteins KChIPs and the dipeptidyl peptidase-like proteins (DPPLs) DPP6 (also known as DPPX) and DPP10 (4 molecules of each per channel for a total of 12 proteins in the complex). Here we consider the evidence supporting this hypothesis. Kv4 channels in many neurons are likely to be ternary complexes of these three types of protein. KChIPs and DPPLs are required to efficiently traffic Kv4 channels to the plasma membrane and regulate the functional properties of the channels. These proteins may also be important in determining the localization of the channels to specific neuronal compartments, their dynamics, and their response to neuromodulators. A surprisingly large number of additional proteins have been shown to modify Kv4 channels in heterologous expression systems, but their association with native Kv4 channels in neurons has not been properly validated. A critical consideration of the evidence suggests that it is unlikely that association of Kv4 channels with these additional proteins is widespread in the CNS. However, we cannot exclude that some of these proteins may associate with the channels transiently or in specific neurons or neuronal compartments, or that they may associate with the channels in other tissues.

  1. Modeling protein complexes with BiGGER.

    PubMed

    Krippahl, Ludwig; Moura, José J; Palma, P Nuno

    2003-07-01

    This article describes the method and results of our participation in the Critical Assessment of PRediction of Interactions (CAPRI) experiment, using the protein docking program BiGGER (Bimolecular complex Generation with Global Evaluation and Ranking) (Palma et al., Proteins 2000;39:372-384). Of five target complexes (CAPRI targets 2, 4, 5, 6, and 7), only one was successfully predicted (target 6), but BiGGER generated reasonable models for targets 4, 5, and 7, which could have been identified if additional biochemical information had been available. Copyright 2003 Wiley-Liss, Inc.

  2. Nanoparticle-protein complexes mimicking corona formation in ocular environment.

    PubMed

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun

    2016-12-01

    Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    PubMed

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  4. An overview of the structures of protein-DNA complexes

    PubMed Central

    Luscombe, Nicholas M; Austin, Susan E; Berman , Helen M; Thornton, Janet M

    2000-01-01

    On the basis of a structural analysis of 240 protein-DNA complexes contained in the Protein Data Bank (PDB), we have classified the DNA-binding proteins involved into eight different structural/functional groups, which are further classified into 54 structural families. Here we present this classification and review the functions, structures and binding interactions of these protein-DNA complexes. PMID:11104519

  5. Feature selection and classification of protein-protein complexes based on their binding affinities using machine learning approaches.

    PubMed

    Yugandhar, K; Gromiha, M Michael

    2014-09-01

    Protein-protein interactions are intrinsic to virtually every cellular process. Predicting the binding affinity of protein-protein complexes is one of the challenging problems in computational and molecular biology. In this work, we related sequence features of protein-protein complexes with their binding affinities using machine learning approaches. We set up a database of 185 protein-protein complexes for which the interacting pairs are heterodimers and their experimental binding affinities are available. On the other hand, we have developed a set of 610 features from the sequences of protein complexes and utilized Ranker search method, which is the combination of Attribute evaluator and Ranker method for selecting specific features. We have analyzed several machine learning algorithms to discriminate protein-protein complexes into high and low affinity groups based on their Kd values. Our results showed a 10-fold cross-validation accuracy of 76.1% with the combination of nine features using support vector machines. Further, we observed accuracy of 83.3% on an independent test set of 30 complexes. We suggest that our method would serve as an effective tool for identifying the interacting partners in protein-protein interaction networks and human-pathogen interactions based on the strength of interactions. © 2014 Wiley Periodicals, Inc.

  6. Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks

    PubMed Central

    Li, Min; Chen, Weijie; Wang, Jianxin; Pan, Yi

    2014-01-01

    Identification of protein complexes from protein-protein interaction networks has become a key problem for understanding cellular life in postgenomic era. Many computational methods have been proposed for identifying protein complexes. Up to now, the existing computational methods are mostly applied on static PPI networks. However, proteins and their interactions are dynamic in reality. Identifying dynamic protein complexes is more meaningful and challenging. In this paper, a novel algorithm, named DPC, is proposed to identify dynamic protein complexes by integrating PPI data and gene expression profiles. According to Core-Attachment assumption, these proteins which are always active in the molecular cycle are regarded as core proteins. The protein-complex cores are identified from these always active proteins by detecting dense subgraphs. Final protein complexes are extended from the protein-complex cores by adding attachments based on a topological character of “closeness” and dynamic meaning. The protein complexes produced by our algorithm DPC contain two parts: static core expressed in all the molecular cycle and dynamic attachments short-lived. The proposed algorithm DPC was applied on the data of Saccharomyces cerevisiae and the experimental results show that DPC outperforms CMC, MCL, SPICi, HC-PIN, COACH, and Core-Attachment based on the validation of matching with known complexes and hF-measures. PMID:24963481

  7. Insights into molecular plasticity in protein complexes from Trm9-Trm112 tRNA modifying enzyme crystal structure.

    PubMed

    Létoquart, Juliette; van Tran, Nhan; Caroline, Vonny; Aleksandrov, Alexey; Lazar, Noureddine; van Tilbeurgh, Herman; Liger, Dominique; Graille, Marc

    2015-12-15

    Most of the factors involved in translation (tRNA, rRNA and proteins) are subject to post-transcriptional and post-translational modifications, which participate in the fine-tuning and tight control of ribosome and protein synthesis processes. In eukaryotes, Trm112 acts as an obligate activating platform for at least four methyltransferases (MTase) involved in the modification of 18S rRNA (Bud23), tRNA (Trm9 and Trm11) and translation termination factor eRF1 (Mtq2). Trm112 is then at a nexus between ribosome synthesis and function. Here, we present a structure-function analysis of the Trm9-Trm112 complex, which is involved in the 5-methoxycarbonylmethyluridine (mcm(5)U) modification of the tRNA anticodon wobble position and hence promotes translational fidelity. We also compare the known crystal structures of various Trm112-MTase complexes, highlighting the structural plasticity allowing Trm112 to interact through a very similar mode with its MTase partners, although those share less than 20% sequence identity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Pseudotargeted MS Method for the Sensitive Analysis of Protein Phosphorylation in Protein Complexes.

    PubMed

    Lyu, Jiawen; Wang, Yan; Mao, Jiawei; Yao, Yating; Wang, Shujuan; Zheng, Yong; Ye, Mingliang

    2018-05-15

    In this study, we presented an enrichment-free approach for the sensitive analysis of protein phosphorylation in minute amounts of samples, such as purified protein complexes. This method takes advantage of the high sensitivity of parallel reaction monitoring (PRM). Specifically, low confident phosphopeptides identified from the data-dependent acquisition (DDA) data set were used to build a pseudotargeted list for PRM analysis to allow the identification of additional phosphopeptides with high confidence. The development of this targeted approach is very easy as the same sample and the same LC-system were used for the discovery and the targeted analysis phases. No sample fractionation or enrichment was required for the discovery phase which allowed this method to analyze minute amount of sample. We applied this pseudotargeted MS method to quantitatively examine phosphopeptides in affinity purified endogenous Shc1 protein complexes at four temporal stages of EGF signaling and identified 82 phospho-sites. To our knowledge, this is the highest number of phospho-sites identified from the protein complexes. This pseudotargeted MS method is highly sensitive in the identification of low abundance phosphopeptides and could be a powerful tool to study phosphorylation-regulated assembly of protein complex.

  9. Study of the adhesion of neurodegenerative proteins on plasma-modified and coated polypropylene surfaces.

    PubMed

    Poncin-Epaillard, F; Mille, C; Debarnot, D; Zorzi, W; El Moualij, B; Coudreuse, A; Legeay, G; Quadrio, I; Perret-Liaudet, A

    2012-01-01

    The inner polymeric surface of an ELISA titration well is plasma-modified and coated with different surfactant molecules. The titration of neurodegenerative proteins markers (prion, Tau and β-synuclein), previously demonstrated as more efficient with such modified tubes, is related to the adhesion behaviour of these proteins and their corresponding capture antibodies. The adhesion process is studied in terms of anchoring and specific mechanisms. The proteins and antibodies binding onto such modified surfaces is related to the substrate hydrophilic character calculated from the angle contact measure, to the polymer surface charge measured through the streaming potential determination at different pH and the inner surface roughness determined from AFM images. Furthermore, the influence of the blocking agent used during the ELISA titration is also studied.

  10. Shotgun protein sequencing: assembly of peptide tandem mass spectra from mixtures of modified proteins.

    PubMed

    Bandeira, Nuno; Clauser, Karl R; Pevzner, Pavel A

    2007-07-01

    Despite significant advances in the identification of known proteins, the analysis of unknown proteins by MS/MS still remains a challenging open problem. Although Klaus Biemann recognized the potential of MS/MS for sequencing of unknown proteins in the 1980s, low throughput Edman degradation followed by cloning still remains the main method to sequence unknown proteins. The automated interpretation of MS/MS spectra has been limited by a focus on individual spectra and has not capitalized on the information contained in spectra of overlapping peptides. Indeed the powerful shotgun DNA sequencing strategies have not been extended to automated protein sequencing. We demonstrate, for the first time, the feasibility of automated shotgun protein sequencing of protein mixtures by utilizing MS/MS spectra of overlapping and possibly modified peptides generated via multiple proteases of different specificities. We validate this approach by generating highly accurate de novo reconstructions of multiple regions of various proteins in western diamondback rattlesnake venom. We further argue that shotgun protein sequencing has the potential to overcome the limitations of current protein sequencing approaches and thus catalyze the otherwise impractical applications of proteomics methodologies in studies of unknown proteins.

  11. Impact of Detergents on Membrane Protein Complex Isolation.

    PubMed

    Lee, Yu-Chen; Bååth, Jenny Arnling; Bastle, Ryan M; Bhattacharjee, Sonali; Cantoria, Mary Jo; Dornan, Mark; Gamero-Estevez, Enrique; Ford, Lenzie; Halova, Lenka; Kernan, Jennifer; Kürten, Charlotte; Li, Siran; Martinez, Jerahme; Sachan, Nalani; Sarr, Medoune; Shan, Xiwei; Subramanian, Nandhitha; Rivera, Keith; Pappin, Darryl; Lin, Sue-Hwa

    2018-01-05

    Detergents play an essential role during the isolation of membrane protein complexes. Inappropriate use of detergents may affect the native fold of the membrane proteins, their binding to antibodies, or their interaction with partner proteins. Here we used cadherin-11 (Cad11) as an example to examine the impact of detergents on membrane protein complex isolation. We found that mAb 1A5 could immunoprecipitate Cad11 when membranes were solubilized by dodecyl maltoside (DDM) but not by octylglucoside, suggesting that octylglucoside interferes with Cad11-mAb 1A5 interaction. Furthermore, we compared the effects of Brij-35, Triton X-100, cholate, CHAPSO, Zwittergent 3-12, Deoxy BIG CHAP, and digitonin on Cad11 solubilization and immunoprecipitation. We found that all detergents except Brij-35 could solubilize Cad11 from the membrane. Upon immunoprecipitation, we found that β-catenin, a known cadherin-interacting protein, was present in Cad11 immune complex among the detergents tested except Brij-35. However, the association of p120 catenin with Cad11 varied depending on the detergents used. Using isobaric tag for relative and absolute quantitation (iTRAQ) to determine the relative levels of proteins in Cad11 immune complexes, we found that DDM and Triton X-100 were more efficient than cholate in solubilization and immunoprecipitation of Cad11 and resulted in the identification of both canonical and new candidate Cad11-interacting proteins.

  12. Iron-sulfur Proteins Are the Major Source of Protein-bound Dinitrosyl Iron Complexes Formed in Escherichia coli Cells under Nitric Oxide Stress

    PubMed Central

    Landry, Aaron P.; Duan, Xuewu; Huang, Hao; Ding, Huangen

    2011-01-01

    Protein-bound dinitrosyl iron complexes (DNICs) have been observed in prokaryotic and eukaryotic cells under nitric oxide (NO) stress. The identity of proteins that bind DNICs, however, still remains elusive. Here we demonstrate that iron-sulfur proteins are the major source of protein-bound DNICs formed in Escherichia coli cells under NO stress. Expression of recombinant iron-sulfur proteins, but not the proteins without iron-sulfur clusters, almost doubles the amount of protein-bound DNICs formed in E. coli cells after NO exposure. Purification of recombinant proteins from the NO-exposed E. coli cells further confirms that iron-sulfur proteins, but not the proteins without iron-sulfur clusters, are modified forming protein-bound DINCs. Deletion of the iron-sulfur cluster assembly proteins IscA and SufA to block the [4Fe-4S] cluster biogenesis in E. coli cells largely eliminates the NO-mediated formation of protein-bound DNICs, suggesting that iron-sulfur clusters are mainly responsible for the NO-mediated formation of protein-bound DNICs in cells. Furthermore, depletion of “chelatable iron pool” in the wild-type E. coli cells effectively removes iron-sulfur clusters from proteins and concomitantly diminishes the NO-mediated formation of protein-bound DNICs, indicating that iron-sulfur clusters in proteins constitute at least part of “chelatable iron pool” in cells. PMID:21420489

  13. Reinforcement effect of soy protein nanoparticles in amine-modified natural rubber latex

    USDA-ARS?s Scientific Manuscript database

    Mechanical properties of natural rubber reinforced with soy protein nanoparticles are useful for various rubber applications. However, the properties is further improved by improving interactions between soy protein and rubber. A novel method is used to modify particle surface of natural rubber late...

  14. Protein-protein interactions indicate composition of a 480 kDa SELMA complex in the second outermost membrane of diatom complex plastids.

    PubMed

    Lau, Julia B; Stork, Simone; Moog, Daniel; Schulz, Julian; Maier, Uwe G

    2016-04-01

    Most secondary plastids of red algal origin are surrounded by four membranes and nucleus-encoded plastid proteins have to traverse these barriers. Translocation across the second outermost plastid membrane, the periplastidal membrane (PPM), is facilitated by a ERAD-(ER-associated degradation) derived machinery termed SELMA (symbiont-specific ERAD-like machinery). In the last years, important subunits of this translocator have been identified, which clearly imply compositional similarities between SELMA and ERAD. Here we investigated, via protein-protein interaction studies, if the composition of SELMA is comparable to the known ERAD complex. As a result, our data suggest that the membrane proteins of SELMA, the derlin proteins, are linked to the soluble sCdc48 complex via the UBX protein sUBX. This is similar to the ERAD machinery whereas the additional SELMA components, sPUB und a second Cdc48 copy might indicate the influence of functional constraints in developing a translocation machinery from ERAD-related factors. In addition, we show for the first time that a rhomboid protease is a central interaction partner of the membrane proteins of the SELMA system in complex plastids. © 2015 John Wiley & Sons Ltd.

  15. Hsp70 Protein Complexes as Drug Targets

    PubMed Central

    Assimon, Victoria A.; Gillies, Anne T.; Rauch, Jennifer N.; Gestwicki, Jason E.

    2013-01-01

    Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70’s interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, such as pro-folding, pro-degradation and pro-trafficking. Thus, a promising strategy may be to block protein-protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to those goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology. PMID:22920901

  16. Recording information on protein complexes in an information management system.

    PubMed

    Savitsky, Marc; Diprose, Jonathan M; Morris, Chris; Griffiths, Susanne L; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S; Blake, Richard; Stuart, David I; Esnouf, Robert M

    2011-08-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein-protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology.

    PubMed

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-03-22

    A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.

  18. Protein-Protein Interactions in the Complex between the Enhancer Binding Protein NIFA and the Sensor NIFL from Azotobacter vinelandii

    PubMed Central

    Money, Tracy; Barrett, Jason; Dixon, Ray; Austin, Sara

    2001-01-01

    The enhancer binding protein NIFA and the sensor protein NIFL from Azotobacter vinelandii comprise an atypical two-component regulatory system in which signal transduction occurs via complex formation between the two proteins rather than by the phosphotransfer mechanism, which is characteristic of orthodox systems. The inhibitory activity of NIFL towards NIFA is stimulated by ADP binding to the C-terminal domain of NIFL, which bears significant homology to the histidine protein kinase transmitter domains. Adenosine nucleotides, particularly MgADP, also stimulate complex formation between NIFL and NIFA in vitro, allowing isolation of the complex by cochromatography. Using limited proteolysis of the purified proteins, we show here that changes in protease sensitivity of the Q linker regions of both NIFA and NIFL occurred when the complex was formed in the presence of MgADP. The N-terminal domain of NIFA adjacent to the Q linker was also protected by NIFL. Experiments with truncated versions of NIFA demonstrate that the central domain of NIFA is sufficient to cause protection of the Q linker of NIFL, although in this case, stable protein complexes are not detectable by cochromatography. PMID:11157949

  19. Effect of microfluidized and stearic acid modified soy protein in natural rubber

    USDA-ARS?s Scientific Manuscript database

    Microfluidized and stearic acid modified soy protein aggregates were used to reinforced natural rubber. The size of soy protein particles was reduced with a microfluidizing and ball milling process. Filler size reduction with longer ball milling time tends to increase tensile strength of the rubber ...

  20. HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression.

    PubMed

    Diani, Erica; Avesani, Francesca; Bergamo, Elisa; Cremonese, Giorgia; Bertazzoni, Umberto; Romanelli, Maria Grazia

    2015-02-01

    The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein⁻Protein Interaction Network.

    PubMed

    Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui

    2018-06-15

    High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).

  2. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp; Kitamura, Kazuo; Nagata, Sayaka

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2more » complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.« less

  3. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  4. Sequence Complexity of Amyloidogenic Regions in Intrinsically Disordered Human Proteins

    PubMed Central

    Das, Swagata; Pal, Uttam; Das, Supriya; Bagga, Khyati; Roy, Anupam; Mrigwani, Arpita; Maiti, Nakul C.

    2014-01-01

    An amyloidogenic region (AR) in a protein sequence plays a significant role in protein aggregation and amyloid formation. We have investigated the sequence complexity of AR that is present in intrinsically disordered human proteins. More than 80% human proteins in the disordered protein databases (DisProt+IDEAL) contained one or more ARs. With decrease of protein disorder, AR content in the protein sequence was decreased. A probability density distribution analysis and discrete analysis of AR sequences showed that ∼8% residue in a protein sequence was in AR and the region was in average 8 residues long. The residues in the AR were high in sequence complexity and it seldom overlapped with low complexity regions (LCR), which was largely abundant in disorder proteins. The sequences in the AR showed mixed conformational adaptability towards α-helix, β-sheet/strand and coil conformations. PMID:24594841

  5. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-12-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  6. Dynamic interactions of proteins in complex networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appella, E.; Anderson, C.

    2009-10-01

    Recent advances in techniques such as NMR and EPR spectroscopy have enabled the elucidation of how proteins undergo structural changes to act in concert in complex networks. The three minireviews in this series highlight current findings and the capabilities of new methodologies for unraveling the dynamic changes controlling diverse cellular functions. They represent a sampling of the cutting-edge research presented at the 17th Meeting of Methods in Protein Structure Analysis, MPSA2008, in Sapporo, Japan, 26-29 August, 2008 (http://www.iapsap.bnl.gov). The first minireview, by Christensen and Klevit, reports on a structure-based yeast two-hybrid method for identifying E2 ubiquitin-conjugating enzymes that interact withmore » the E3 BRCA1/BARD1 heterodimer ligase to generate either mono- or polyubiquitinated products. This method demonstrated for the first time that the BRCA1/BARD1 E3 can interact with 10 different E2 enzymes. Interestingly, the interaction with multiple E2 enzymes displayed unique ubiquitin-transfer properties, a feature expected to be common among other RING and U-box E3s. Further characterization of new E3 ligases and the E2 enzymes that interact with them will greatly enhance our understanding of ubiquitin transfer and facilitate studies of roles of ubiquitin and ubiquitin-like proteins in protein processing and trafficking. Stein et al., in the second minireview, describe recent progress in defining the binding specificity of different peptide-binding domains. The authors clearly point out that transient peptide interactions mediated by both post-translational modifications and disordered regions ensure a high level of specificity. They postulate that a regulatory code may dictate the number of combinations of domains and post-translational modifications needed to achieve the required level of interaction specificity. Moreover, recognition alone is not enough to obtain a stable complex, especially in a complex cellular environment. Increasing

  7. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology

    PubMed Central

    Sudhir, Putty-Reddy; Chen, Chung-Hsuan

    2016-01-01

    A protein complex consists of two or more proteins that are linked together through protein–protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples. PMID:27011181

  8. Competitive Protein Adsorption on Polysaccharide and Hyaluronate Modified Surfaces

    PubMed Central

    Ombelli, Michela; Costello, Lauren; Postle, Corinne; Anantharaman, Vinod; Meng, Qing Cheng; Composto, Russell J.; Eckmann, David M.

    2011-01-01

    We measured adsorption of bovine serum albumin (BSA) and fibrinogen (Fg) onto six distinct bare and dextran- and hyaluronate-modified silicon surfaces created using two dextran grafting densities and three hyaluronic acid (HA) sodium salts derived from human umbilical cord, rooster comb and streptococcus zooepidemicus. Film thickness and surface morphology depended on HA molecular weight and concentration. BSA coverage was enhanced on surfaces upon competitive adsorption of BSA:Fg mixtures. Dextranization differentially reduced protein adsorption onto surfaces based on oxidation state. Hyaluronization was demonstrated to provide the greatest resistance to protein coverage, equivalent to that of the most resistant dextranized surface. Resistance to protein adsorption was independent of the type of hyaluronic acid utilized. With changing bulk protein concentration from 20 to 40 µg ml−1 for each species, Fg coverage on silicon increased by 4×, whereas both BSA and Fg adsorption on dextran and HA were far less dependent of protein bulk concentration. PMID:21623481

  9. Photo-induced conjugation of tetrazoles to modified and native proteins.

    PubMed

    Siti, Winna; Khan, Amit Kumar; de Hoog, Hans-Peter M; Liedberg, Bo; Nallani, Madhavan

    2015-03-21

    Bio-orthogonal chemistry has been widely used for conjugation of polymer molecules to proteins. Here, we demonstrate the conjugation of polyethylene glycol (PEG) to bovine beta-lactoglobulin (BLG) by photo-induced cyclo-addition of tetrazole-appended PEG and allyl-modified BLG. During the course of the investigation, a significant side-reaction was found to occur for the conjugation of PEG-tetrazole to native BLG. Further exploration of the underlying chemistry reveals that the presence of a tryptophan residue is sufficient for conjugation of tetrazole-modified molecules.

  10. Self-Assembled Modified Soy Protein/Dextran Nanogel Induced by Ultrasonication as a Delivery Vehicle for Riboflavin.

    PubMed

    Jin, Bei; Zhou, Xiaosong; Li, Xiangzhong; Lin, Weiqin; Chen, Guangbin; Qiu, Riji

    2016-03-15

    A simple and green approach was developed to produce a novel nanogel via self-assembly of modified soy protein and dextran, to efficiently deliver riboflavin. First, modified soy protein was prepared by heating denaturation at 60 °C for 30 min or Alcalase hydrolysis for 40 min. Second, modified soy protein was mixed with dextran and ultrasonicated for 70 min so as to assemble nanogels. The modified soy protein-dextran nanogels were characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) and ζ-potential studies to confirm the formation of NGs. Transmission electron microscopy (TEM) revealed the NGs to be spherical with core-shell structures, in the range of 32-40 nm size. The nanogels were stable against various environmental conditions. Furthermore, the particle size of the nanogels hardly changed with the incorporation of riboflavin. The encapsulation efficiency of nanogels was found to be up to 65.9% at a riboflavin concentration of 250 μg/mL. The nanogels exhibited a faster release in simulated intestine fluid (SIF) compared with simulated gastric fluid (SGF). From the results obtained it can be concluded that modified soy protein-dextran nanogels can be considered a promising carrier for drugs and other bioactive molecule delivery purposes.

  11. Encounter complexes and dimensionality reduction in protein-protein association.

    PubMed

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-04-08

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein-protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001.

  12. Recording information on protein complexes in an information management system

    PubMed Central

    Savitsky, Marc; Diprose, Jonathan M.; Morris, Chris; Griffiths, Susanne L.; Daniel, Edward; Lin, Bill; Daenke, Susan; Bishop, Benjamin; Siebold, Christian; Wilson, Keith S.; Blake, Richard; Stuart, David I.; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is a laboratory information management system (LIMS) designed for use with the production of proteins in a research environment. The software is distributed under the CCP4 licence, and so is available free of charge to academic laboratories. Like most LIMS, the underlying PiMS data model originally had no support for protein–protein complexes. To support the SPINE2-Complexes project the developers have extended PiMS to meet these requirements. The modifications to PiMS, described here, include data model changes, additional protocols, some user interface changes and functionality to detect when an experiment may have formed a complex. Example data are shown for the production of a crystal of a protein complex. Integration with SPINE2-Complexes Target Tracker application is also described. PMID:21605682

  13. High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of Desulfovibrio vulgaris

    PubMed Central

    2012-01-01

    Cell membranes represent the “front line” of cellular defense and the interface between a cell and its environment. To determine the range of proteins and protein complexes that are present in the cell membranes of a target organism, we have utilized a “tagless” process for the system-wide isolation and identification of native membrane protein complexes. As an initial subject for study, we have chosen the Gram-negative sulfate-reducing bacterium Desulfovibrio vulgaris. With this tagless methodology, we have identified about two-thirds of the outer membrane- associated proteins anticipated. Approximately three-fourths of these appear to form homomeric complexes. Statistical and machine-learning methods used to analyze data compiled over multiple experiments revealed networks of additional protein–protein interactions providing insight into heteromeric contacts made between proteins across this region of the cell. Taken together, these results establish a D. vulgaris outer membrane protein data set that will be essential for the detection and characterization of environment-driven changes in the outer membrane proteome and in the modeling of stress response pathways. The workflow utilized here should be effective for the global characterization of membrane protein complexes in a wide range of organisms. PMID:23098413

  14. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    PubMed

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  15. The gap junction channel protein connexin 43 is covalently modified and regulated by SUMOylation.

    PubMed

    Kjenseth, Ane; Fykerud, Tone A; Sirnes, Solveig; Bruun, Jarle; Yohannes, Zeremariam; Kolberg, Matthias; Omori, Yasufumi; Rivedal, Edgar; Leithe, Edward

    2012-05-04

    SUMOylation is a posttranslational modification in which a member of the small ubiquitin-like modifier (SUMO) family of proteins is conjugated to lysine residues in specific target proteins. Most known SUMOylation target proteins are located in the nucleus, but there is increasing evidence that SUMO may also be a key determinant of many extranuclear processes. Gap junctions consist of arrays of intercellular channels that provide direct transfer of ions and small molecules between adjacent cells. Gap junction channels are formed by integral membrane proteins called connexins, of which the best-studied isoform is connexin 43 (Cx43). Here we show that Cx43 is posttranslationally modified by SUMOylation. The data suggest that the SUMO system regulates the Cx43 protein level and the level of functional Cx43 gap junctions at the plasma membrane. Cx43 was found to be modified by SUMO-1, -2, and -3. Evidence is provided that the membrane-proximal lysines at positions 144 and 237, located in the Cx43 intracellular loop and C-terminal tail, respectively, act as SUMO conjugation sites. Mutations of lysine 144 or lysine 237 resulted in reduced Cx43 SUMOylation and reduced Cx43 protein and gap junction levels. Altogether, these data identify Cx43 as a SUMOylation target protein and represent the first evidence that gap junctions are regulated by the SUMO system.

  16. A Novel Algorithm for Detecting Protein Complexes with the Breadth First Search

    PubMed Central

    Tang, Xiwei; Wang, Jianxin; Li, Min; He, Yiming; Pan, Yi

    2014-01-01

    Most biological processes are carried out by protein complexes. A substantial number of false positives of the protein-protein interaction (PPI) data can compromise the utility of the datasets for complexes reconstruction. In order to reduce the impact of such discrepancies, a number of data integration and affinity scoring schemes have been devised. The methods encode the reliabilities (confidence) of physical interactions between pairs of proteins. The challenge now is to identify novel and meaningful protein complexes from the weighted PPI network. To address this problem, a novel protein complex mining algorithm ClusterBFS (Cluster with Breadth-First Search) is proposed. Based on the weighted density, ClusterBFS detects protein complexes of the weighted network by the breadth first search algorithm, which originates from a given seed protein used as starting-point. The experimental results show that ClusterBFS performs significantly better than the other computational approaches in terms of the identification of protein complexes. PMID:24818139

  17. Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis.

    PubMed

    Piñol-Roma, S

    1999-01-01

    rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin-a major nucleolar RNA-binding protein-contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.

  18. The Network Organization of Cancer-associated Protein Complexes in Human Tissues

    PubMed Central

    Zhao, Jing; Lee, Sang Hoon; Huss, Mikael; Holme, Petter

    2013-01-01

    Differential gene expression profiles for detecting disease genes have been studied intensively in systems biology. However, it is known that various biological functions achieved by proteins follow from the ability of the protein to form complexes by physically binding to each other. In other words, the functional units are often protein complexes rather than individual proteins. Thus, we seek to replace the perspective of disease-related genes by disease-related complexes, exemplifying with data on 39 human solid tissue cancers and their original normal tissues. To obtain the differential abundance levels of protein complexes, we apply an optimization algorithm to genome-wide differential expression data. From the differential abundance of complexes, we extract tissue- and cancer-selective complexes, and investigate their relevance to cancer. The method is supported by a clustering tendency of bipartite cancer-complex relationships, as well as a more concrete and realistic approach to disease-related proteomics. PMID:23567845

  19. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID

  20. Immersion freezing of ice nucleation active protein complexes

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Augustin, S.; Clauss, T.; Wex, H.; Šantl-Temkiv, T.; Voigtländer, J.; Niedermeier, D.; Stratmann, F.

    2013-06-01

    Utilising the Leipzig Aerosol Cloud Interaction Simulator (LACIS), the immersion freezing behaviour of droplet ensembles containing monodisperse particles, generated from a Snomax™ solution/suspension, was investigated. Thereto ice fractions were measured in the temperature range between -5 °C to -38 °C. Snomax™ is an industrial product applied for artificial snow production and contains Pseudomonas syringae} bacteria which have long been used as model organism for atmospheric relevant ice nucleation active (INA) bacteria. The ice nucleation activity of such bacteria is controlled by INA protein complexes in their outer membrane. In our experiments, ice fractions increased steeply in the temperature range from about -6 °C to about -10 °C and then levelled off at ice fractions smaller than one. The plateau implies that not all examined droplets contained an INA protein complex. Assuming the INA protein complexes to be Poisson distributed over the investigated droplet populations, we developed the CHESS model (stoCHastic modEl of similar and poiSSon distributed ice nuclei) which allows for the calculation of ice fractions as function of temperature and time for a given nucleation rate. Matching calculated and measured ice fractions, we determined and parameterised the nucleation rate of INA protein complexes exhibiting class III ice nucleation behaviour. Utilising the CHESS model, together with the determined nucleation rate, we compared predictions from the model to experimental data from the literature and found good agreement. We found that (a) the heterogeneous ice nucleation rate expression quantifying the ice nucleation behaviour of the INA protein complex is capable of describing the ice nucleation behaviour observed in various experiments for both, Snomax™ and P. syringae bacteria, (b) the ice nucleation rate, and its temperature dependence, seem to be very similar regardless of whether the INA protein complexes inducing ice nucleation are attached

  1. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication.

    PubMed

    Sun, Jingchuan; Yuan, Zuanning; Bai, Lin; Li, Huilin

    2017-01-01

    DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems. © 2016 The Protein Society.

  2. Protein complex purification from Thermoplasma acidophilum using a phage display library.

    PubMed

    Hubert, Agnes; Mitani, Yasuo; Tamura, Tomohiro; Boicu, Marius; Nagy, István

    2014-03-01

    We developed a novel protein complex isolation method using a single-chain variable fragment (scFv) based phage display library in a two-step purification procedure. We adapted the antibody-based phage display technology which has been developed for single target proteins to a protein mixture containing about 300 proteins, mostly subunits of Thermoplasma acidophilum complexes. T. acidophilum protein specific phages were selected and corresponding scFvs were expressed in Escherichia coli. E. coli cell lysate containing the expressed His-tagged scFv specific against one antigen protein and T. acidophilum crude cell lysate containing intact target protein complexes were mixed, incubated and subjected to protein purification using affinity and size exclusion chromatography steps. This method was confirmed to isolate intact particles of thermosome and proteasome suitable for electron microscopy analysis and provides a novel protein complex isolation strategy applicable to organisms where no genetic tools are available. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The multiBac protein complex production platform at the EMBL.

    PubMed

    Berger, Imre; Garzoni, Frederic; Chaillet, Maxime; Haffke, Matthias; Gupta, Kapil; Aubert, Alice

    2013-07-11

    Proteomics research revealed the impressive complexity of eukaryotic proteomes in unprecedented detail. It is now a commonly accepted notion that proteins in cells mostly exist not as isolated entities but exert their biological activity in association with many other proteins, in humans ten or more, forming assembly lines in the cell for most if not all vital functions.(1,2) Knowledge of the function and architecture of these multiprotein assemblies requires their provision in superior quality and sufficient quantity for detailed analysis. The paucity of many protein complexes in cells, in particular in eukaryotes, prohibits their extraction from native sources, and necessitates recombinant production. The baculovirus expression vector system (BEVS) has proven to be particularly useful for producing eukaryotic proteins, the activity of which often relies on post-translational processing that other commonly used expression systems often cannot support.(3) BEVS use a recombinant baculovirus into which the gene of interest was inserted to infect insect cell cultures which in turn produce the protein of choice. MultiBac is a BEVS that has been particularly tailored for the production of eukaryotic protein complexes that contain many subunits.(4) A vital prerequisite for efficient production of proteins and their complexes are robust protocols for all steps involved in an expression experiment that ideally can be implemented as standard operating procedures (SOPs) and followed also by non-specialist users with comparative ease. The MultiBac platform at the European Molecular Biology Laboratory (EMBL) uses SOPs for all steps involved in a multiprotein complex expression experiment, starting from insertion of the genes into an engineered baculoviral genome optimized for heterologous protein production properties to small-scale analysis of the protein specimens produced.(5-8) The platform is installed in an open-access mode at EMBL Grenoble and has supported many

  4. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    PubMed

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  5. Exocyst Complex Protein Expression in the Human Placenta

    PubMed Central

    Gonzalez, I.M.; Ackerman, W.E.; Vandre, D.D.; Robinson, J.M.

    2014-01-01

    Introduction Protein production and secretion are essential to syncytiotrophoblast function and are associated with cytotrophoblast cell fusion and differentiation. Syncytiotrophoblast hormone secretion is a crucial determinant of maternal-fetal health, and can be misregulated in pathological pregnancies. Although, polarized secretion is a key component of placental function, the mechanisms underlying this process are poorly understood. Objective While the octameric exocyst complex is classically regarded as a master regulator of secretion in various mammalian systems, its expression in the placenta remained unexplored. We hypothesized that the syncytiotrophoblast would express all exocyst complex components and effector proteins requisite for vesicle-mediated secretion more abundantly than cytotrophoblasts in tissue specimens. Methods A two-tiered immunobiological approach was utilized to characterize exocyst and ancillary proteins in normal, term human placentas. Exocyst protein expression and localization was documented in tissue homogenates via immunoblotting and immunofluorescence labeling of placental sections. Results The eight exocyst proteins, EXOC1, 2, 3, 4, 5, 6, 7, and 8, were found in the human placenta. In addition, RAB11, an important exocyst complex modulator, was also expressed. Exocyst and Rab protein expression appeared to be regulated during trophoblast differentiation, as the syncytiotrophoblast expressed these proteins with little, if any, expression in cytotrophoblast cells. Additionally, exocyst proteins were localized at or near the syncytiotrophoblast apical membrane, the major site of placental secretion Discussion/Conclusion Our findings highlight exocyst protein expression as novel indicators of trophoblast differentiation. The exocyst’s regulated localization within the syncytiotrophoblast in conjunction with its well known functions suggests a possible role in placental polarized secretion PMID:24856041

  6. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  7. Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability

    PubMed Central

    Jicsinszky, László; Sohajda, Tamás; Puskás, István; Fenyvesi, Éva

    2014-01-01

    Summary We compared the complex forming ability of α-, β- and γ-cyclodextrins (α-CD, β-CD and γ-CD) with their open ring analogs. In addition to the native cyclodextrins also modified cyclodextrins and the corresponding maltooligomers, functionalized with neutral 2-hydroxypropyl moieties, were synthesized. A new synthetic route was worked out via bromination, benzylation, deacetylation and debenzylation to obtain the 2-hydroxypropyl maltooligomer counterparts. The complexation properties of non-modified and modified cyclic and acyclic dextrins were studied and compared by photon correlation spectroscopy (PCS) and capillary electrophoresis (CE) using model guest compounds. In some cases cyclodextrins and their open-ring analogs (acyclodextrins) show similar complexation abilities, while with other guests considerably different behavior was observed depending on the molecular dimensions and chemical characteristics of the guests. This was explained by the enhanced flexibility of the non-closed rings. Even the signs of enantiorecognition were observed for the chloropheniramine/hydroxypropyl maltohexaose system. Further studies are planned to help the deeper understanding of the interactions. PMID:25550750

  8. Prediction of heterotrimeric protein complexes by two-phase learning using neighboring kernels

    PubMed Central

    2014-01-01

    Background Protein complexes play important roles in biological systems such as gene regulatory networks and metabolic pathways. Most methods for predicting protein complexes try to find protein complexes with size more than three. It, however, is known that protein complexes with smaller sizes occupy a large part of whole complexes for several species. In our previous work, we developed a method with several feature space mappings and the domain composition kernel for prediction of heterodimeric protein complexes, which outperforms existing methods. Results We propose methods for prediction of heterotrimeric protein complexes by extending techniques in the previous work on the basis of the idea that most heterotrimeric protein complexes are not likely to share the same protein with each other. We make use of the discriminant function in support vector machines (SVMs), and design novel feature space mappings for the second phase. As the second classifier, we examine SVMs and relevance vector machines (RVMs). We perform 10-fold cross-validation computational experiments. The results suggest that our proposed two-phase methods and SVM with the extended features outperform the existing method NWE, which was reported to outperform other existing methods such as MCL, MCODE, DPClus, CMC, COACH, RRW, and PPSampler for prediction of heterotrimeric protein complexes. Conclusions We propose two-phase prediction methods with the extended features, the domain composition kernel, SVMs and RVMs. The two-phase method with the extended features and the domain composition kernel using SVM as the second classifier is particularly useful for prediction of heterotrimeric protein complexes. PMID:24564744

  9. Protein Complex Production from the Drug Discovery Standpoint.

    PubMed

    Moarefi, Ismail

    2016-01-01

    Small molecule drug discovery critically depends on the availability of meaningful in vitro assays to guide medicinal chemistry programs that are aimed at optimizing drug potency and selectivity. As it becomes increasingly evident, most disease relevant drug targets do not act as a single protein. In the body, they are instead generally found in complex with protein cofactors that are highly relevant for their correct function and regulation. This review highlights selected examples of the increasing trend to use biologically relevant protein complexes for rational drug discovery to reduce costly late phase attritions due to lack of efficacy or toxicity.

  10. [Genetically modified food and allergies - an update].

    PubMed

    Niemann, Birgit; Pöting, Annette; Braeuning, Albert; Lampen, Alfonso

    2016-07-01

    Approval by the European Commission is mandatory for placing genetically modified plants as food or feed on the market in member states of the European Union (EU). The approval is preceded by a safety assessment based on the guidance of the European Food Safety Authority EFSA. The assessment of allergenicity of genetically modified plants and their newly expressed proteins is an integral part of this assessment process. Guidance documents for the assessment of allergenicity are currently under revision. For this purpose, an expert workshop was conducted in Brussels on June 17, 2015. There, methodological improvements for the assessment of coeliac disease-causing properties of proteins, as well as the use of complex models for in vitro digestion of proteins were discussed. Using such techniques a refinement of the current, proven system of allergenicity assessment of genetically modified plants can be achieved.

  11. Calculations of the binding affinities of protein-protein complexes with the fast multipole method

    NASA Astrophysics Data System (ADS)

    Kim, Bongkeun; Song, Jiming; Song, Xueyu

    2010-09-01

    In this paper, we used a coarse-grained model at the residue level to calculate the binding free energies of three protein-protein complexes. General formulations to calculate the electrostatic binding free energy and the van der Waals free energy are presented by solving linearized Poisson-Boltzmann equations using the boundary element method in combination with the fast multipole method. The residue level model with the fast multipole method allows us to efficiently investigate how the mutations on the active site of the protein-protein interface affect the changes in binding affinities of protein complexes. Good correlations between the calculated results and the experimental ones indicate that our model can capture the dominant contributions to the protein-protein interactions. At the same time, additional effects on protein binding due to atomic details are also discussed in the context of the limitations of such a coarse-grained model.

  12. From pull-down data to protein interaction networks and complexes with biological relevance.

    PubMed

    Zhang, Bing; Park, Byung-Hoon; Karpinets, Tatiana; Samatova, Nagiza F

    2008-04-01

    Recent improvements in high-throughput Mass Spectrometry (MS) technology have expedited genome-wide discovery of protein-protein interactions by providing a capability of detecting protein complexes in a physiological setting. Computational inference of protein interaction networks and protein complexes from MS data are challenging. Advances are required in developing robust and seamlessly integrated procedures for assessment of protein-protein interaction affinities, mathematical representation of protein interaction networks, discovery of protein complexes and evaluation of their biological relevance. A multi-step but easy-to-follow framework for identifying protein complexes from MS pull-down data is introduced. It assesses interaction affinity between two proteins based on similarity of their co-purification patterns derived from MS data. It constructs a protein interaction network by adopting a knowledge-guided threshold selection method. Based on the network, it identifies protein complexes and infers their core components using a graph-theoretical approach. It deploys a statistical evaluation procedure to assess biological relevance of each found complex. On Saccharomyces cerevisiae pull-down data, the framework outperformed other more complicated schemes by at least 10% in F(1)-measure and identified 610 protein complexes with high-functional homogeneity based on the enrichment in Gene Ontology (GO) annotation. Manual examination of the complexes brought forward the hypotheses on cause of false identifications. Namely, co-purification of different protein complexes as mediated by a common non-protein molecule, such as DNA, might be a source of false positives. Protein identification bias in pull-down technology, such as the hydrophilic bias could result in false negatives.

  13. Effect of Phthalic Anhydride Modified Soy Protein on Viscoelastic Properties of Polymer Composites

    USDA-ARS?s Scientific Manuscript database

    Phthalic anhydride (PA) modified soy protein isolates (SPI), both hydrolyzed and un-hydrolyzed, are investigated as reinforcement fillers in styrene-butadiene (SB) composites. The modification of SPI by PA increases the number of carboxylic acid functional groups on the protein surface and therefor...

  14. Biclustering Protein Complex Interactions with a Biclique FindingAlgorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Chris; Zhang, Anne Ya; Holbrook, Stephen

    2006-12-01

    Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L{sub 1} constraint to L{sub p} constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithm to solve the generalized Motzkin-Straus optimizationmore » problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E| is the number of edges. It relies on a matrix vector multiplication and runs efficiently on most current computer architectures. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.« less

  15. Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens

    USDA-ARS?s Scientific Manuscript database

    Chitinase modifying proteins (CMPs) are secreted fungal proteases that truncate specific plant class IV chitinases by cleaving peptide bonds in their amino termini. We recently identified a CMP from the Zea mays (maize) pathogen Fusarium verticillioides and found that it is a member of the fungalysi...

  16. Defining the RNA-Protein Interactions in the Trypanosome Preribosomal Complex

    PubMed Central

    Wang, Lei; Ciganda, Martin

    2013-01-01

    In eukaryotes, 5S rRNA is transcribed in the nucleoplasm and requires the ribosomal protein L5 to deliver it to the nucleolus for ribosomal assembly. The trypanosome-specific proteins P34 and P37 form a novel preribosomal complex with the eukaryotic conserved L5-5S rRNA complex in the nucleoplasm. Previous results suggested that P34 acts together with L5 to bridge the interaction with 5S rRNA and thus to stabilize 5S rRNA, an important role in the early steps of ribosomal biogenesis. Here, we have delineated the domains of the two protein components, L5 and P34, and regions of the RNA partner, 5S rRNA, that are critical for protein-RNA interactions within the complex. We found that the L18 domain of L5 and the N terminus and RNA recognition motif of P34 bind 5S rRNA. We showed that Trypanosoma brucei L5 binds the β arm of 5S rRNA, while P34 binds loop A/stem V of 5S rRNA. We demonstrated that 5S rRNA is able to enhance the association between the protein components of the complex, L5 and P34. Both loop A/stem V and the β arm of 5S rRNA can separately enhance the protein-protein association, but their effects are neither additive nor synergistic. Domains in the two proteins for protein-protein and protein-RNA interactions overlap or are close to each other. This suggests that 5S rRNA binding might cause conformational changes in L5 and P34 and might also bridge the interactions, thus enhancing binding between the protein partners of this novel complex. PMID:23397568

  17. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.

    PubMed

    Srinivasulu, Yerukala Sathipati; Wang, Jyun-Rong; Hsu, Kai-Ti; Tsai, Ming-Ju; Charoenkwan, Phasit; Huang, Wen-Lin; Huang, Hui-Ling; Ho, Shinn-Ying

    2015-01-01

    Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein complexes. The characterization

  18. Modification of recombinant maize ChitA chitinase by fungal chitinase-modifying proteins

    USDA-ARS?s Scientific Manuscript database

    In commercial maize, there are at least two different alleles of the chiA gene that encode alloforms of ChitA chitinase, a protein that is abundant in developing seed. Both known alloforms are modified by Bz-cmp, a protein secreted by the fungal pathogen Bipolaris zeicola. One alloform (ChitA-B73) i...

  19. DNA-modified electrodes fabricated using copper-free click chemistry for enhanced protein detection.

    PubMed

    Furst, Ariel L; Hill, Michael G; Barton, Jacqueline K

    2013-12-31

    A method of DNA monolayer formation has been developed using copper-free click chemistry that yields enhanced surface homogeneity and enables variation in the amount of DNA assembled; extremely low-density DNA monolayers, with as little as 5% of the monolayer being DNA, have been formed. These DNA-modified electrodes (DMEs) were characterized visually, with AFM, and electrochemically, and were found to facilitate DNA-mediated reduction of a distally bound redox probe. These low-density monolayers were found to be more homogeneous than traditional thiol-modified DNA monolayers, with greater helix accessibility through an increased surface area-to-volume ratio. Protein binding efficiency of the transcriptional activator TATA-binding protein (TBP) was also investigated on these surfaces and compared to that on DNA monolayers formed with standard thiol-modified DNA. Our low-density monolayers were found to be extremely sensitive to TBP binding, with a signal decrease in excess of 75% for 150 nM protein. This protein was detectable at 4 nM, on the order of its dissociation constant, with our low-density monolayers. The improved DNA helix accessibility and sensitivity of our low-density DNA monolayers to TBP binding reflects the general utility of this method of DNA monolayer formation for DNA-based electrochemical sensor development.

  20. Heterologous Protein Secretion in Lactobacilli with Modified pSIP Vectors

    PubMed Central

    Karlskås, Ingrid Lea; Maudal, Kristina; Axelsson, Lars; Rud, Ida; Eijsink, Vincent G. H.; Mathiesen, Geir

    2014-01-01

    We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species. PMID:24614815

  1. Identifying protein complexes in PPI network using non-cooperative sequential game.

    PubMed

    Maulik, Ujjwal; Basu, Srinka; Ray, Sumanta

    2017-08-21

    Identifying protein complexes from protein-protein interaction (PPI) network is an important and challenging task in computational biology as it helps in better understanding of cellular mechanisms in various organisms. In this paper we propose a noncooperative sequential game based model for protein complex detection from PPI network. The key hypothesis is that protein complex formation is driven by mechanism that eventually optimizes the number of interactions within the complex leading to dense subgraph. The hypothesis is drawn from the observed network property named small world. The proposed multi-player game model translates the hypothesis into the game strategies. The Nash equilibrium of the game corresponds to a network partition where each protein either belong to a complex or form a singleton cluster. We further propose an algorithm to find the Nash equilibrium of the sequential game. The exhaustive experiment on synthetic benchmark and real life yeast networks evaluates the structural as well as biological significance of the network partitions.

  2. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.

    PubMed

    Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E

    2018-03-20

    Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Protein-protein interactions in the RPS4/RRS1 immune receptor complex

    PubMed Central

    Sarris, Panagiotis F.

    2017-01-01

    Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation. PMID:28475615

  4. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOEpatents

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  5. Synthesis and structural characterization of carboxyethylpyrrole-modified proteins: mediators of age-related macular degeneration.

    PubMed

    Lu, Liang; Gu, Xiaorong; Hong, Li; Laird, James; Jaffe, Keeve; Choi, Jaewoo; Crabb, John; Salomon, Robert G

    2009-11-01

    Protein modifications in which the epsilon-amino group of lysyl residues is incorporated into a 2-(omega-carboxyethyl)pyrrole (CEP) are mediators of age-related macular degeneration (AMD). They promote both angiogenesis into the retina ('wet AMD') and geographic retinal atrophy ('dry AMD'). Blood levels of CEPs are biomarkers for clinical prognosis of the disease. To enable mechanistic studies of their role in promoting AMD, for example, through the activation of B- and T-cells, interaction with receptors, or binding with complement proteins, we developed an efficient synthesis of CEP derivatives, that is especially effective for proteins. The structures of tryptic peptides derived from CEP-modified proteins were also determined. A key finding is that 4,7-dioxoheptanoic acid 9-fluorenylmethyl ester reacts with primary amines to provide 9-fluorenylmethyl esters of CEP-modified proteins that can be deprotected in situ with 1,8-diazabicyclo[5.4.0]undec-7-ene without causing protein denaturation. The introduction of multiple CEP-modifications with a wide variety of CEP:protein ratios is readily achieved using this strategy.

  6. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes.

    PubMed

    Srihari, Sriganesh; Yong, Chern Han; Patil, Ashwini; Wong, Limsoon

    2015-09-14

    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organisation of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight their limitations and challenges, in particular at detecting sparse and small or sub-complexes and discerning overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes.

    PubMed

    Uchikoga, Nobuyuki; Hirokawa, Takatsugu

    2010-05-11

    Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG), CaM kinase kinase (CaMKK) and the plasma membrane Ca2+ ATPase pump (PMCA), and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  8. Polycomb group protein complexes exchange rapidly in living Drosophila.

    PubMed

    Ficz, Gabriella; Heintzmann, Rainer; Arndt-Jovin, Donna J

    2005-09-01

    Fluorescence recovery after photobleaching (FRAP) microscopy was used to determine the kinetic properties of Polycomb group (PcG) proteins in whole living Drosophila organisms (embryos) and tissues (wing imaginal discs and salivary glands). PcG genes are essential genes in higher eukaryotes responsible for the maintenance of the spatially distinct repression of developmentally important regulators such as the homeotic genes. Their absence, as well as overexpression, causes transformations in the axial organization of the body. Although protein complexes have been isolated in vitro, little is known about their stability or exact mechanism of repression in vivo. We determined the translational diffusion constants of PcG proteins, dissociation constants and residence times for complexes in vivo at different developmental stages. In polytene nuclei, the rate constants suggest heterogeneity of the complexes. Computer simulations with new models for spatially distributed protein complexes were performed in systems showing both diffusion and binding equilibria, and the results compared with our experimental data. We were able to determine forward and reverse rate constants for complex formation. Complexes exchanged within a period of 1-10 minutes, more than an order of magnitude faster than the cell cycle time, ruling out models of repression in which access of transcription activators to the chromatin is limited and demonstrating that long-term repression primarily reflects mass-action chemical equilibria.

  9. Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

    PubMed

    Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe

    2018-02-19

    Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.

  10. Nanoscale Dewetting Transition in Protein Complex Folding

    PubMed Central

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  11. Dual Function of the pUL7-pUL51 Tegument Protein Complex in Herpes Simplex Virus 1 Infection.

    PubMed

    Albecka, Anna; Owen, Danielle J; Ivanova, Lyudmila; Brun, Juliane; Liman, Rukayya; Davies, Laura; Ahmed, M Firoz; Colaco, Susanna; Hollinshead, Michael; Graham, Stephen C; Crump, Colin M

    2017-01-15

    The tegument of herpesviruses is a highly complex structural layer between the nucleocapsid and the envelope of virions. Tegument proteins play both structural and regulatory functions during replication and spread, but the interactions and functions of many of these proteins are poorly understood. Here we focus on two tegument proteins from herpes simplex virus 1 (HSV-1), pUL7 and pUL51, which have homologues in all other herpesviruses. We have now identified that HSV-1 pUL7 and pUL51 form a stable and direct protein-protein interaction, their expression levels rely on the presence of each other, and they function as a complex in infected cells. We demonstrate that expression of the pUL7-pUL51 complex is important for efficient HSV-1 assembly and plaque formation. Furthermore, we also discovered that the pUL7-pUL51 complex localizes to focal adhesions at the plasma membrane in both infected cells and in the absence of other viral proteins. The expression of pUL7-pUL51 is important to stabilize focal adhesions and maintain cell morphology in infected cells and cells infected with viruses lacking pUL7 and/or pUL51 round up more rapidly than cells infected with wild-type HSV-1. Our data suggest that, in addition to the previously reported functions in virus assembly and spread for pUL51, the pUL7-pUL51 complex is important for maintaining the attachment of infected cells to their surroundings through modulating the activity of focal adhesion complexes. Herpesviridae is a large family of highly successful human and animal pathogens. Virions of these viruses are composed of many different proteins, most of which are contained within the tegument, a complex structural layer between the nucleocapsid and the envelope within virus particles. Tegument proteins have important roles in assembling virus particles as well as modifying host cells to promote virus replication and spread. However, little is known about the function of many tegument proteins during virus

  12. Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.

    PubMed

    Sardiu, Mihaela E; Gilmore, Joshua M; Carrozza, Michael J; Li, Bing; Workman, Jerry L; Florens, Laurence; Washburn, Michael P

    2009-10-06

    Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.

  13. Preparation of Modified Films with Protein from Grouper Fish

    PubMed Central

    Tecante, A.; Granados-Navarrete, S.; Martínez-García, C.

    2016-01-01

    A protein concentrate (PC) was obtained from Grouper fish skin and it was used to prepare films with different amounts of sorbitol and glycerol as plasticizers. The best performing films regarding resistance were then modified with various concentrations of CaCl2, CaSO4 (calcium salts), and glucono-δ-lactone (GDL) with the purpose of improving their mechanical and barrier properties. These films were characterized by determining their mechanical properties and permeability to water vapor and oxygen. Formulations with 5% (w/v) protein and 75% sorbitol and 4% (w/v) protein with a mixture of 15% glycerol and 15% sorbitol produced adequate films. Calcium salts and GDL increased the tensile fracture stress but reduced the fracture strain and decreased water vapor permeability compared with control films. The films prepared represent an attractive alternative for being used as food packaging materials. PMID:27597950

  14. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes

    PubMed Central

    2015-01-01

    Background Protein-protein interactions (PPIs) are involved in various biological processes, and underlying mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning approaches have been developed for predicting the binding affinity of protein-protein complexes based on structure and functional information. This work aims to predict the binding affinity of heterodimeric protein complexes from sequences only. Results This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of 580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better than existing machine learning algorithms. The 14 features and support vector regression were further used to estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative physicochemical properties according to their contribution to prediction performance. Results reveal that the following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent partition energy based on buried molar fractions, relations between chemical structure and biological activity in principal component analysis IV, and normalized frequency of beta turn. Conclusions The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein

  15. On the interconnection of stable protein complexes: inter-complex hubs and their conservation in Saccharomyces cerevisiae and Homo sapiens networks.

    PubMed

    Guerra, Concettina

    2015-01-01

    Protein complexes are key molecular entities that perform a variety of essential cellular functions. The connectivity of proteins within a complex has been widely investigated with both experimental and computational techniques. We developed a computational approach to identify and characterise proteins that play a role in interconnecting complexes. We computed a measure of inter-complex centrality, the crossroad index, based on disjoint paths connecting proteins in distinct complexes and identified inter-complex hubs as proteins with a high value of the crossroad index. We applied the approach to a set of stable complexes in Saccharomyces cerevisiae and in Homo sapiens. Just as done for hubs, we evaluated the topological and biological properties of inter-complex hubs addressing the following questions. Do inter-complex hubs tend to be evolutionary conserved? What is the relation between crossroad index and essentiality? We found a good correlation between inter-complex hubs and both evolutionary conservation and essentiality.

  16. StructAlign, a Program for Alignment of Structures of DNA-Protein Complexes.

    PubMed

    Popov, Ya V; Galitsyna, A A; Alexeevski, A V; Karyagina, A S; Spirin, S A

    2015-11-01

    Comparative analysis of structures of complexes of homologous proteins with DNA is important in the analysis of DNA-protein recognition. Alignment is a necessary stage of the analysis. An alignment is a matching of amino acid residues and nucleotides of one complex to residues and nucleotides of the other. Currently, there are no programs available for aligning structures of DNA-protein complexes. We present the program StructAlign, which should fill this gap. The program inputs a pair of complexes of DNA double helix with proteins and outputs an alignment of DNA chains corresponding to the best spatial fit of the protein chains.

  17. The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation.

    PubMed

    Ninio, Shira; Zuckman-Cholon, Deborah M; Cambronne, Eric D; Roy, Craig R

    2005-02-01

    The intracellular pathogen Legionella pneumophila can infect and replicate within macrophages of a human host. To establish infection, Legionella require the Dot/Icm secretion system to inject protein substrates directly into the host cell cytoplasm. The mechanism by which substrate proteins are engaged and translocated by the Dot/Icm system is not well understood. Here we show that two cytosolic components of the Dot/Icm secretion machinery, the proteins IcmS and IcmW, play an important role in substrate translocation. Biochemical analysis indicates that IcmS and IcmW form a stable protein complex. In Legionella, the IcmW protein is rapidly degraded in the absence of the IcmS protein. Substrate proteins translocated into mammalian host cells by the Dot/Icm system were identified using the IcmW protein as bait in a yeast two-hybrid screen. It was determined that the IcmS-IcmW complex interacts with these substrates and plays an important role in translocation of these proteins into mammalian cells. These data are consistent with the IcmS-IcmW complex being involved in the recognition and Dot/Icm-dependent translocation of substrate proteins during Legionella infection of host cells.

  18. Centralities in simplicial complexes. Applications to protein interaction networks.

    PubMed

    Estrada, Ernesto; Ross, Grant J

    2018-02-07

    Complex networks can be used to represent complex systems which originate in the real world. Here we study a transformation of these complex networks into simplicial complexes, where cliques represent the simplices of the complex. We extend the concept of node centrality to that of simplicial centrality and study several mathematical properties of degree, closeness, betweenness, eigenvector, Katz, and subgraph centrality for simplicial complexes. We study the degree distributions of these centralities at the different levels. We also compare and describe the differences between the centralities at the different levels. Using these centralities we study a method for detecting essential proteins in PPI networks of cells and explain the varying abilities of the centrality measures at the different levels in identifying these essential proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Sequence co-evolution gives 3D contacts and structures of protein complexes

    PubMed Central

    Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S

    2014-01-01

    Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213

  20. Surfactant-free purification of membrane protein complexes from bacteria: application to the staphylococcal penicillin-binding protein complex PBP2/PBP2a

    NASA Astrophysics Data System (ADS)

    Paulin, Sarah; Jamshad, Mohammed; Dafforn, Timothy R.; Garcia-Lara, Jorge; Foster, Simon J.; Galley, Nicola F.; Roper, David I.; Rosado, Helena; Taylor, Peter W.

    2014-07-01

    Surfactant-mediated removal of proteins from biomembranes invariably results in partial or complete loss of function and disassembly of multi-protein complexes. We determined the capacity of styrene-co-maleic acid (SMA) co-polymer to remove components of the cell division machinery from the membrane of drug-resistant staphylococcal cells. SMA-lipid nanoparticles solubilized FtsZ-PBP2-PBP2a complexes from intact cells, demonstrating the close physical proximity of these proteins within the lipid bilayer. Exposure of bacteria to (-)-epicatechin gallate, a polyphenolic agent that abolishes β-lactam resistance in staphylococci, disrupted the association between PBP2 and PBP2a. Thus, SMA purification provides a means to remove native integral membrane protein assemblages with minimal physical disruption and shows promise as a tool for the interrogation of molecular aspects of bacterial membrane protein structure and function.

  1. Modifying effects of carboxyl group on the interaction of recombinant S100A8/A9 complex with tyrosinase.

    PubMed

    NematiNiko, Fatemeh; Chegini, Koorosh Goodarzvand; Asghari, Hamideh; Amini, Abbas; Gheibi, Nematollah

    2017-03-01

    Tyrosinase is a determinant enzyme for modulating melanin production as its abnormal activity can result in an increased amount of melanin. Reduction of tyrosinase activity has been targeted for preventing and healing hyperpigmentation of skin, such as melanoma and age related spots. The aim of this systematic study is to investigate whether recombinant S100A8/A9 and its modified form reduce the activity of mushroom tyrosinase (MT) through changing its structure. Recombinant His-Tagged S100A8 and S100A9 are expressed in Escherichia coli BL21 (DE3) and modified using Woodward's reagent K which is a carboxyl group modifier. The structures of S100A8/A9 and its modified form are studied using fluorescence and circular dichroism spectroscopy, and the activity of MT is measured using UV-visible spectrophotometry in the presence of its substrate, L-3,4-dihydroxyphenylalanine (L-DOPA). The results show a lower stability of the modified protein when compared with its unmodified form. The interaction of S100A8/A9 with MT changes the structure and successfully reduces the activity of mushroom tyrosinase. Recombinant S100A8/A9 complex decreases MT activity which can control malignant melanoma, the most dangerous type of skin cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Amino acid signature enables proteins to recognize modified tRNA.

    PubMed

    Spears, Jessica L; Xiao, Xingqing; Hall, Carol K; Agris, Paul F

    2014-02-25

    Human tRNA(Lys3)UUU is the primer for HIV replication. The HIV-1 nucleocapsid protein, NCp7, facilitates htRNA(Lys3)UUU recruitment from the host cell by binding to and remodeling the tRNA structure. Human tRNA(Lys3)UUU is post-transcriptionally modified, but until recently, the importance of those modifications in tRNA recognition by NCp7 was unknown. Modifications such as the 5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34 and 2-methylthio-N(6)-threonylcarbamoyladenosine, adjacent to the anticodon at position-37, are important to the recognition of htRNA(Lys3)UUU by NCp7. Several short peptides selected from phage display libraries were found to also preferentially recognize these modifications. Evolutionary algorithms (Monte Carlo and self-consistent mean field) and assisted model building with energy refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify the in silico results and elucidate a 15-amino acid signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic) that recognized the tRNA's fully modified anticodon stem and loop domain, hASL(Lys3)UUU. Peptides of this sequence specifically recognized and bound modified htRNA(Lys3)UUU with an affinity 10-fold higher than that of the starting sequence. Thus, this approach provides an effective means of predicting sequences of RNA binding peptides that have better binding properties. Such peptides can be used in cell and molecular biology as well as biochemistry to explore RNA binding proteins and to inhibit those protein functions.

  3. Crucial HSP70 co–chaperone complex unlocks metazoan protein disaggregation

    PubMed Central

    Nillegoda, Nadinath B.; Kirstein, Janine; Szlachcic, Anna; Berynskyy, Mykhaylo; Stank, Antonia; Stengel, Florian; Arnsburg, Kristin; Gao, Xuechao; Scior, Annika; Aebersold, Ruedi; Guilbride, D. Lys; Wade, Rebecca C.; Morimoto, Richard I.; Mayer, Matthias P.; Bukau, Bernd

    2016-01-01

    Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states1,2. Healthy metazoan cells effectively eliminate intracellular protein aggregates3,4, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems5,6, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro4,7. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control. PMID:26245380

  4. Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin.

    PubMed

    Yamashita, H; Theerasilp, S; Aiuchi, T; Nakaya, K; Nakamura, Y; Kurihara, Y

    1990-09-15

    A new taste-modifying protein named curculin was extracted with 0.5 M NaCl from the fruits of Curculigo latifolia and purified by ammonium sulfate fractionation, CM-Sepharose ion-exchange chromatography, and gel filtration. Purified curculin thus obtained gave a single band having a Mr of 12,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 8 M urea. The molecular weight determined by low-angle laser light scattering was 27,800. These results suggest that native curculin is a dimer of a 12,000-Da polypeptide. The complete amino acid sequence of curculin was determined by automatic Edman degradation. Curculin consists of 114 residues. Curculin itself elicits a sweet taste. After curculin, water elicits a sweet taste, and sour substances induce a stronger sense of sweetness. No protein with both sweet-tasting and taste-modifying activities has ever been found. There are five sets of tripeptides common to miraculin (a taste-modifying protein), six sets of tripeptides common to thaumatin (a sweet protein), and two sets of tripeptides common to monellin (a sweet protein). Anti-miraculin serum was not immunologically reactive with curculin. The mechanism of the taste-modifying action of curculin is discussed.

  5. Protein classification using modified n-grams and skip-grams.

    PubMed

    Islam, S M Ashiqul; Heil, Benjamin J; Kearney, Christopher Michel; Baker, Erich J

    2018-05-01

    Classification by supervised machine learning greatly facilitates the annotation of protein characteristics from their primary sequence. However, the feature generation step in this process requires detailed knowledge of attributes used to classify the proteins. Lack of this knowledge risks the selection of irrelevant features, resulting in a faulty model. In this study, we introduce a supervised protein classification method with a novel means of automating the work-intensive feature generation step via a Natural Language Processing (NLP)-dependent model, using a modified combination of n-grams and skip-grams (m-NGSG). A meta-comparison of cross-validation accuracy with twelve training datasets from nine different published studies demonstrates a consistent increase in accuracy of m-NGSG when compared to contemporary classification and feature generation models. We expect this model to accelerate the classification of proteins from primary sequence data and increase the accessibility of protein characteristic prediction to a broader range of scientists. m-NGSG is freely available at Bitbucket: https://bitbucket.org/sm_islam/mngsg/src. A web server is available at watson.ecs.baylor.edu/ngsg. erich_baker@baylor.edu. Supplementary data are available at Bioinformatics online.

  6. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.

    PubMed

    Tan, Chris Soon Heng; Go, Ka Diam; Bisteau, Xavier; Dai, Lingyun; Yong, Chern Han; Prabhu, Nayana; Ozturk, Mert Burak; Lim, Yan Ting; Sreekumar, Lekshmy; Lengqvist, Johan; Tergaonkar, Vinay; Kaldis, Philipp; Sobota, Radoslaw M; Nordlund, Pär

    2018-03-09

    Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes.

    PubMed

    Swamy, Mahima; Kulathu, Yogesh; Ernst, Sandra; Reth, Michael; Schamel, Wolfgang W A

    2006-04-15

    SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.

  8. Peroxisome protein import: a complex journey.

    PubMed

    Baker, Alison; Lanyon-Hogg, Thomas; Warriner, Stuart L

    2016-06-15

    The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. © 2016 The Author(s).

  9. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes.

    PubMed

    Calvanese, Luisa; D'Auria, Gabriella; Vangone, Anna; Falcigno, Lucia; Oliva, Romina

    2016-06-01

    NMR structures consist in ensembles of conformers, all satisfying the experimental restraints, which exhibit a certain degree of structural variability. We analyzed here the interface in NMR ensembles of protein-protein heterodimeric complexes and found it to span a wide range of different conservations. The different exhibited conservations do not simply correlate with the size of the systems/interfaces, and are most probably the result of an interplay between different factors, including the quality of experimental data and the intrinsic complex flexibility. In any case, this information is not to be missed when NMR structures of protein-protein complexes are analyzed; especially considering that, as we also show here, the first NMR conformer is usually not the one which best reflects the overall interface. To quantify the interface conservation and to analyze it, we used an approach originally conceived for the analysis and ranking of ensembles of docking models, which has now been extended to directly deal with NMR ensembles. We propose this approach, based on the conservation of the inter-residue contacts at the interface, both for the analysis of the interface in whole ensembles of NMR complexes and for the possible selection of a single conformer as the best representative of the overall interface. In order to make the analyses automatic and fast, we made the protocol available as a web tool at: https://www.molnac.unisa.it/BioTools/consrank/consrank-nmr.html. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A Three-protein Charge Zipper Stabilizes a Complex Modulating Bacterial Gene Silencing*

    PubMed Central

    Cordeiro, Tiago N.; García, Jesús; Bernadó, Pau; Millet, Oscar; Pons, Miquel

    2015-01-01

    The Hha/YmoA nucleoid-associated proteins help selectively silence horizontally acquired genetic material, including pathogenicity and antibiotic resistance genes and their maintenance in the absence of selective pressure. Members of the Hha family contribute to gene silencing by binding to the N-terminal dimerization domain of H-NS and modifying its selectivity. Hha-like proteins and the H-NS N-terminal domain are unusually rich in charged residues, and their interaction is mostly electrostatic-driven but, nonetheless, highly selective. The NMR-based structural model of the complex between Hha/YmoA and the H-NS N-terminal dimerization domain reveals that the origin of the selectivity is the formation of a three-protein charge zipper with interdigitated complementary charged residues from Hha and the two units of the H-NS dimer. The free form of YmoA shows collective microsecond-millisecond dynamics that can by measured by NMR relaxation dispersion experiments and shows a linear dependence with the salt concentration. The number of residues sensing the collective dynamics and the population of the minor form increased in the presence of H-NS. Additionally, a single residue mutation in YmoA (D43N) abolished H-NS binding and the dynamics of the apo-form, suggesting the dynamics and binding are functionally related. PMID:26085102

  11. Affinity proteomics to study endogenous protein complexes: Pointers, pitfalls, preferences and perspectives

    PubMed Central

    LaCava, John; Molloy, Kelly R.; Taylor, Martin S.; Domanski, Michal; Chait, Brian T.; Rout, Michael P.

    2015-01-01

    Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls. PMID:25757543

  12. Direct analysis of in-gel proteins by carbon nanotubes-modified paper spray ambient mass spectrometry.

    PubMed

    Han, Feifei; Yang, Yuhan; Ouyang, Jin; Na, Na

    2015-02-07

    The in situ and direct extraction, desorption and ionization of in-gel intact proteins after electrophoresis has been achieved by carbon nanotubes (CNTs)-modified paper spray mass spectrometry at ambient conditions. Characteristics of CNTs (including larger surface area, smaller pore diameter and enhanced conductivity) were endowed to the porous filter paper substrate by uniformly dispersing the CNTs on the filter paper. Upon applying electric potential to the CNTs-modified paper, the in-gel proteins were extracted from the gel and subsequently migrated to the tip of the filter paper by electrophoresis-like behavior for paper spray ionization, which was monitored by extracted ion chronograms. The characterizations of modified filter papers and CNTs nanoparticles further confirmed the role of CNTs in in-gel protein extraction, protein migration as well as spray ionization at the paper tip. Under optimized conditions, a mixture of cytochrome c, lysozyme and myoglobin was successfully separated by native electrophoresis and subsequently analysed by the present method, showing a limit of detection of 10 ng per gel band. The present strategy offers a new pathway for the direct detection of in-gel intact proteins at ambient conditions without any pre-treatment (e.g. digestion, chemical extraction and desalting), which exhibits potential applications in top-down proteomics.

  13. Predicting protein complexes using a supervised learning method combined with local structural information.

    PubMed

    Dong, Yadong; Sun, Yongqi; Qin, Chao

    2018-01-01

    The existing protein complex detection methods can be broadly divided into two categories: unsupervised and supervised learning methods. Most of the unsupervised learning methods assume that protein complexes are in dense regions of protein-protein interaction (PPI) networks even though many true complexes are not dense subgraphs. Supervised learning methods utilize the informative properties of known complexes; they often extract features from existing complexes and then use the features to train a classification model. The trained model is used to guide the search process for new complexes. However, insufficient extracted features, noise in the PPI data and the incompleteness of complex data make the classification model imprecise. Consequently, the classification model is not sufficient for guiding the detection of complexes. Therefore, we propose a new robust score function that combines the classification model with local structural information. Based on the score function, we provide a search method that works both forwards and backwards. The results from experiments on six benchmark PPI datasets and three protein complex datasets show that our approach can achieve better performance compared with the state-of-the-art supervised, semi-supervised and unsupervised methods for protein complex detection, occasionally significantly outperforming such methods.

  14. Refined views of multi-protein complexes in the erythrocyte membrane

    PubMed Central

    Mankelow, TJ; Satchwell, TJ; Burton, NM

    2015-01-01

    The erythrocyte membrane has been extensively studied, both as a model membrane system and to investigate its role in gas exchange and transport. Much is now known about the protein components of the membrane, how they are organised into large multi-protein complexes and how they interact with each other within these complexes. Many links between the membrane and the cytoskeleton have also been delineated and have been demonstrated to be crucial for maintaining the deformability and integrity of the erythrocyte. In this study we have refined previous, highly speculative molecular models of these complexes by including the available data pertaining to known protein-protein interactions. While the refined models remain highly speculative, they provide an evolving framework for visualisation of these important cellular structures at the atomic level. PMID:22465511

  15. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    PubMed

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  16. DNAproDB: an interactive tool for structural analysis of DNA–protein complexes

    PubMed Central

    Sagendorf, Jared M.

    2017-01-01

    Abstract Many biological processes are mediated by complex interactions between DNA and proteins. Transcription factors, various polymerases, nucleases and histones recognize and bind DNA with different levels of binding specificity. To understand the physical mechanisms that allow proteins to recognize DNA and achieve their biological functions, it is important to analyze structures of DNA–protein complexes in detail. DNAproDB is a web-based interactive tool designed to help researchers study these complexes. DNAproDB provides an automated structure-processing pipeline that extracts structural features from DNA–protein complexes. The extracted features are organized in structured data files, which are easily parsed with any programming language or viewed in a browser. We processed a large number of DNA–protein complexes retrieved from the Protein Data Bank and created the DNAproDB database to store this data. Users can search the database by combining features of the DNA, protein or DNA–protein interactions at the interface. Additionally, users can upload their own structures for processing privately and securely. DNAproDB provides several interactive and customizable tools for creating visualizations of the DNA–protein interface at different levels of abstraction that can be exported as high quality figures. All functionality is documented and freely accessible at http://dnaprodb.usc.edu. PMID:28431131

  17. Identification of trapped and boundary lipid binding sites in M13 coat protein/lipid complexes by deuterium NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Gorkom, L.C.; Horvath, L.I.; Hemminga, M.A.

    The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order inmore » protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.« less

  18. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape

  19. Rheological and structural characterization of agar/whey proteins insoluble complexes.

    PubMed

    Rocha, Cristina M R; Souza, Hiléia K S; Magalhães, Natália F; Andrade, Cristina T; Gonçalves, Maria Pilar

    2014-09-22

    Complex coacervation between whey proteins and carboxylated or highly sulphated polysaccharides has been widely studied. The aim of this work was to characterise a slightly sulphated polysaccharide (agar) and whey protein insoluble complexes in terms of yield, composition and physicochemical properties as well as to study their rheological behaviour for better understanding their structure. Unlike other sulphated polysaccharides, complexation of agar and whey protein at pH 3 in the absence of a buffering agent resulted in a coacervate that was a gel at 20°C with rheological properties and structure similar to those of simple agar gels, reinforced by proteins electrostatically aggregated to the agar network. The behaviour towards heat treatment was similar to that of agar alone, with a high thermal hysteresis and almost full reversibility. In the presence of citrate buffer, the result was a "flocculated solid", with low water content (75-81%), whose properties were governed by protein behaviour. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex.

    PubMed

    Cukras, Anthony R; Southworth, Daniel R; Brunelle, Julie L; Culver, Gloria M; Green, Rachel

    2003-08-01

    Translocation of the mRNA:tRNA complex through the ribosome is promoted by elongation factor G (EF-G) during the translation cycle. Previous studies established that modification of ribosomal proteins with thiol-specific reagents promotes this event in the absence of EF-G. Here we identify two small subunit interface proteins S12 and S13 that are essential for maintenance of a pretranslocation state. Omission of these proteins using in vitro reconstitution procedures yields ribosomal particles that translate in the absence of enzymatic factors. Conversely, replacement of cysteine residues in these two proteins yields ribosomal particles that are refractive to stimulation with thiol-modifying reagents. These data support a model where S12 and S13 function as control elements for the more ancient rRNA- and tRNA-driven movements of translocation.

  1. LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro.

    PubMed

    Cheng, Rongzhu; Feng, Qi; Ortwerth, Beryl J

    2006-05-01

    We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a newly developed two-dimensional LC-MS mapping technique supported by tandem mass analysis of the major species. The pooled water-insoluble proteins from aged normal human lenses, early stage brunescent cataract lenses and calf lens proteins reacted with or without 20 mM ascorbic acid in air for 4 weeks were digested with a battery of proteolytic enzymes under argon to release the modified amino acids. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column and four major A330nm-absorbing peaks were collected. Peaks 1, 2 and 3, which contained most of the modified amino acids were concentrated and subjected to RP-HPLC/ESI-MS, and the mass elution maps were determined. The samples were again analyzed and those peaks with a 10(4) - 10(6) response factor were subjected to MS/MS analysis to identify the daughter ions of each modification. Mass spectrometric maps of peaks 1, 2 and 3 from cataract lenses showed 58, 40 and 55 mass values, respectively, ranging from 150 to 600 Da. Similar analyses of the peaks from digests of the ascorbylated calf lens proteins gave 81, 70 and 67 mass values, respectively, of which 100 were identical to the peaks in the cataract lens proteins. A total of 40 of the major species from each digest were analyzed by LC-MS/MS and 36 were shown to be identical. Calf lens proteins incubated without ascorbic acid showed several similar mass values, but the response factors were 100 to 1000-fold less for every modification. Based upon these data, we conclude

  2. Web application for studying the free energy of binding and protonation states of protein-ligand complexes based on HINT

    PubMed Central

    Bayden, Alexander S.; Fornabaio, Micaela; Scarsdale, J. Neel

    2009-01-01

    A public web server performing computational titration at the active site in a protein-ligand complex has been implemented. This calculation is based on the Hydropathic INTeraction (HINT) noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein-ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol−1 in the protein-ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein-ligand interaction score by 0.16 kcal mol−1. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein-ligand interaction score by 0.71 kcal mol−1. PMID:19554265

  3. On the Importance of Polar Interactions for Complexes Containing Intrinsically Disordered Proteins

    PubMed Central

    Wong, Eric T. C.; Na, Dokyun; Gsponer, Jörg

    2013-01-01

    There is a growing recognition for the importance of proteins with large intrinsically disordered (ID) segments in cell signaling and regulation. ID segments in these proteins often harbor regions that mediate molecular recognition. Coupled folding and binding of the recognition regions has been proposed to confer high specificity to interactions involving ID segments. However, researchers recently questioned the origin of the interaction specificity of ID proteins because of the overrepresentation of hydrophobic residues in their interaction interfaces. Here, we focused on the role of polar and charged residues in interactions mediated by ID segments. Making use of the extended nature of most ID segments when in complex with globular proteins, we first identified large numbers of complexes between globular proteins and ID segments by using radius-of-gyration-based selection criteria. Consistent with previous studies, we found the interfaces of these complexes to be enriched in hydrophobic residues, and that these residues contribute significantly to the stability of the interaction interface. However, our analyses also show that polar interactions play a larger role in these complexes than in structured protein complexes. Computational alanine scanning and salt-bridge analysis indicate that interfaces in ID complexes are highly complementary with respect to electrostatics, more so than interfaces of globular proteins. Follow-up calculations of the electrostatic contributions to the free energy of binding uncovered significantly stronger Coulombic interactions in complexes harbouring ID segments than in structured protein complexes. However, they are counter-balanced by even higher polar-desolvation penalties. We propose that polar interactions are a key contributing factor to the observed high specificity of ID segment-mediated interactions. PMID:23990768

  4. Glycolipid-anchored proteins in neuroblastoma cells form detergent- resistant complexes without caveolin

    PubMed Central

    1995-01-01

    It has been known for a number of years that glycosyl- phosphatidylinositol (GPI)-anchored proteins, in contrast to many transmembrane proteins, are insoluble at 4 degrees C in nonionic detergents such as Triton X-100. Recently, it has been proposed that this behavior reflects the incorporation of GPI-linked proteins into large aggregates that are rich in sphingolipids and cholesterol, as well as in cytoplasmic signaling molecules such as heterotrimeric G proteins and src-family tyrosine kinases. It has been suggested that these lipid-protein complexes are derived from caveolae, non-clathrin- coated invaginations of the plasmalemma that are abundant in endothelial cells, smooth muscle, and lung. Caveolin, a proposed coat protein of caveolae, has been hypothesized to be essential for formation of the complexes. To further investigate the relationship between the detergent-resistant complexes and caveolae, we have characterized the behavior of GPI-anchored proteins in lysates of N2a neuroblastoma cells, which lack morphologically identifiable caveolae, and which do not express caveolin (Shyng, S.-L., J. E. Heuser, and D. A. Harris. 1994. J. Cell Biol. 125:1239-1250). We report here that the complexes prepared from N2a cells display the large size and low buoyant density characteristic of complexes isolated from sources that are rich in caveolae, and contain the same major constituents, including multiple GPI-anchored proteins, alpha and beta subunits of heterotrimeric G proteins, and the tyrosine kinases fyn and yes. Our results argue strongly that detergent-resistant complexes are not equivalent to caveolae in all cell types, and that in neuronal cells caveolin is not essential for the integrity of these complexes. PMID:7537273

  5. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    PubMed

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  6. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    PubMed

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  7. Distinct conformations of the protein complex p97-Ufd1-Npl4 revealed by electron cryomicroscopy

    PubMed Central

    Bebeacua, Cecilia; Förster, Andreas; McKeown, Ciarán; Meyer, Hemmo H.; Zhang, Xiaodong; Freemont, Paul S.

    2012-01-01

    p97 is a key regulator of numerous cellular pathways and associates with ubiquitin-binding adaptors to remodel ubiquitin-modified substrate proteins. How adaptor binding to p97 is coordinated and how adaptors contribute to substrate remodeling is unclear. Here we present the 3D electron cryomicroscopy reconstructions of the major Ufd1-Npl4 adaptor in complex with p97. Our reconstructions show that p97-Ufd1-Npl4 is highly dynamic and that Ufd1-Npl4 assumes distinct positions relative to the p97 ring upon addition of nucleotide. Our results suggest a model for substrate remodeling by p97 and also explains how p97-Ufd1-Npl4 could form other complexes in a hierarchical model of p97-cofactor assembly. PMID:22232657

  8. Atomic layer deposition modified track-etched conical nanochannels for protein sensing.

    PubMed

    Wang, Ceming; Fu, Qibin; Wang, Xinwei; Kong, Delin; Sheng, Qian; Wang, Yugang; Chen, Qiang; Xue, Jianming

    2015-08-18

    Nanopore-based devices have recently become popular tools to detect biomolecules at the single-molecule level. Unlike the long-chain nucleic acids, protein molecules are still quite challenging to detect, since the protein molecules are much smaller in size and usually travel too fast through the nanopore with poor signal-to-noise ratio of the induced transport signals. In this work, we demonstrate a new type of nanopore device based on atomic layer deposition (ALD) Al2O3 modified track-etched conical nanochannels for protein sensing. These devices show very promising properties of high protein (bovine serum albumin) capture rate with well time-resolved transport signals and excellent signal-to-noise ratio for the transport events. Also, a special mechanism involving transient process of ion redistribution inside the nanochannel is proposed to explain the unusual biphasic waveshapes of the current change induced by the protein transport.

  9. SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes.

    PubMed

    Wang, Jingjing; Hou, Chuanming; Huang, Jianqin; Wang, Zhengjia; Xu, Yingwu

    2015-03-01

    To properly regulate plant flowering time and construct floral pattern, MADS-domain containing transcription factors must form multimers including homo- and hetero-dimers. They are also active in forming hetero-higher-order complexes with three to five different molecules. However, it is not well known if a MADS-box protein can also form homo-higher-order complex. In this study a biochemical approach is utilized to provide insight into the complex formation for an SVP-like MADS-box protein cloned from hickory. The results indicated that the protein is a heterogeneous higher-order complex with the peak population containing over 20 monomers. Y2H verified the protein to form homo-complex in yeast cells. Western blot of the hickory floral bud sample revealed that the protein exists in higher-order polymers in native. Deletion assays indicated that the flexible C-terminal residues are mainly responsible for the higher-order polymer formation and the heterogeneity. Current results provide direct biochemical evidences for an active MADS-box protein to be a high order complex, much higher than a quartermeric polymer. Analysis suggests that a MADS-box subset may be able to self-assemble into large complexes, and thereby differentiate one subfamily from the other in a higher-order structural manner. Present result is a valuable supplement to the action of mechanism for MADS-box proteins in plant development. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.

    PubMed

    Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2017-03-15

    The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles.

    PubMed

    Zhang, Yulong; Dong, Rui; Park, Yujin; Bohner, Marc; Zhang, Xinli; Ting, Kang; Soo, Chia; Wu, Benjamin M

    2016-09-10

    NEL-like molecule-1 (NELL-1) is a novel osteogenic protein that showing high specificity to osteochondral cells. It was widely used in bone regeneration research by loading onto carriers such as tricalcium phosphate (TCP) particles. However, there has been little research on protein controlled release from this material and its potential application. In this study, TCP was first modified with a hydroxyapatite coating followed by a chitosan coating to prepare chitosan/hydroxyapatite-coated TCP particles (Chi/HA-TCP). The preparation was characterized by SEM, EDX, FTIR, XRD, FM and Zeta potential measurements. The NELL-1 loaded Chi/HA-TCP particles and the release kinetics were investigated in vitro. It was observed that the Chi/HA-TCP particles prepared with the 0.3% (wt/wt) chitosan solution were able to successfully control the release of NELL-1 and maintain a slow, steady release for up to 28 days. Furthermore, more than 78% of the loaded protein's bioactivity was preserved in Chi/HA-TCP particles over the period of the investigation, which was significantly higher than that of the protein released from hydroxyapatite coated TCP (HA-TCP) particles. Collectively, this study suggests that the osteogenic protein NELL-1 showed a sustained release pattern after being encapsulated into the modified Chi/HA-TCP particles, and the NELL-1 integrated composite of Chi/HA-TCP showed a potential to function as a protein delivery carrier and as an improved bone matrix for use in bone regeneration research. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Identify Secretory Protein of Malaria Parasite with Modified Quadratic Discriminant Algorithm and Amino Acid Composition.

    PubMed

    Feng, Yong-E

    2016-06-01

    Malaria parasite secretes various proteins in infected red blood cell for its growth and survival. Thus identification of these secretory proteins is important for developing vaccine or drug against malaria. In this study, the modified method of quadratic discriminant analysis is presented for predicting the secretory proteins. Firstly, 20 amino acids are divided into five types according to the physical and chemical characteristics of amino acids. Then, we used five types of amino acids compositions as inputs of the modified quadratic discriminant algorithm. Finally, the best prediction performance is obtained by using 20 amino acid compositions, the sensitivity of 96 %, the specificity of 92 % with 0.88 of Mathew's correlation coefficient in fivefold cross-validation test. The results are also compared with those of existing prediction methods. The compared results shown our method are prominent in the prediction of secretory proteins.

  13. Folding Behaviors of Protein (Lysozyme) Confined in Polyelectrolyte Complex Micelle.

    PubMed

    Wu, Fu-Gen; Jiang, Yao-Wen; Chen, Zhan; Yu, Zhi-Wu

    2016-04-19

    The folding/unfolding behavior of proteins (enzymes) in confined space is important for their properties and functions, but such a behavior remains largely unexplored. In this article, we reported our finding that lysozyme and a double hydrophilic block copolymer, methoxypoly(ethylene glycol)5K-block-poly(l-aspartic acid sodium salt)10 (mPEG(5K)-b-PLD10), can form a polyelectrolyte complex micelle with a particle size of ∼30 nm, as verified by dynamic light scattering and transmission electron microscopy. The unfolding and refolding behaviors of lysozyme molecules in the presence of the copolymer were studied by microcalorimetry and circular dichroism spectroscopy. Upon complex formation with mPEG(5K)-b-PLD10, lysozyme changed from its initial native state to a new partially unfolded state. Compared with its native state, this copolymer-complexed new folding state of lysozyme has different secondary and tertiary structures, a decreased thermostability, and significantly altered unfolding/refolding behaviors. It was found that the native lysozyme exhibited reversible unfolding and refolding upon heating and subsequent cooling, while lysozyme in the new folding state (complexed with the oppositely charged PLD segments of the polymer) could unfold upon heating but could not refold upon subsequent cooling. By employing the heating-cooling-reheating procedure, the prevention of complex formation between lysozyme and polymer due to the salt screening effect was observed, and the resulting uncomplexed lysozyme regained its proper unfolding and refolding abilities upon heating and subsequent cooling. Besides, we also pointed out the important role the length of the PLD segment played during the formation of micelles and the monodispersity of the formed micelles. Furthermore, the lysozyme-mPEG(5K)-b-PLD10 mixtures prepared in this work were all transparent, without the formation of large aggregates or precipitates in solution as frequently observed in other protein

  14. Folding behavior of ribosomal protein S6 studied by modified Go¯ -like model

    NASA Astrophysics Data System (ADS)

    Wu, L.; Zhang, J.; Wang, J.; Li, W. F.; Wang, W.

    2007-03-01

    Recent experimental and theoretical studies suggest that, although topology is the determinant factor in protein folding, especially for small single-domain proteins, energetic factors also play an important role in the folding process. The ribosomal protein S6 has been subjected to intensive studies. A radical change of the transition state in its circular permutants has been observed, which is believed to be caused by a biased distribution of contact energies. Since the simplistic topology-only Gō -like model is not able to reproduce such an observation, we modify the model by introducing variable contact energies between residues based on their physicochemical properties. The modified Gō -like model can successfully reproduce the Φ -value distributions, folding nucleus, and folding pathways of both the wild-type and circular permutants of S6. Furthermore, by comparing the results of the modified and the simplistic models, we find that the hydrophobic effect constructs the major force that balances the loop entropies. This may indicate that nature maintains the folding cooperativity of this protein by carefully arranging the location of hydrophobic residues in the sequence. Our study reveals a strategy or mechanism used by nature to get out of the dilemma when the native structure, possibly required by biological function, conflicts with folding cooperativity. Finally, the possible relationship between such a design of nature and amyloidosis is also discussed.

  15. Development of an innovative immunoassay for CP4EPSPS and Cry1AB genetically modified protein detection and quantification.

    PubMed

    Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G

    2006-09-01

    An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.

  16. ComplexContact: a web server for inter-protein contact prediction using deep learning.

    PubMed

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-05-22

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  17. RNA Replicon Delivery via Lipid-Complexed PRINT Protein Particles

    PubMed Central

    Xu, Jing; Luft, J. Christopher; Yi, Xianwen; Tian, Shaomin; Owens, Gary; Wang, Jin; Johnson, Ashley; Berglund, Peter; Smith, Jonathan; Napier, Mary E.; DeSimone, Joseph M.

    2013-01-01

    Herein we report the development of a non-viral lipid-complexed PRINT® (particle replication in non-wetting templates) protein particle system (LPP particle) for RNA replicon delivery with a view towards RNA replicon-based vaccination. Cylindrical bovine serum albumin (BSA) particles (diameter (d) 1 µm, height (h) 1 µm) loaded with RNA replicon and stabilized with a fully reversible disulfide cross-linker were fabricated using PRINT technology. Highly efficient delivery of the particles to Vero cells was achieved by complexing particles with a mixture of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipids. Our data suggest that: 1) this lipid-complexed protein particle is a promising system for delivery of RNA replicon-based vaccines, and 2) it is necessary to use a degradable cross-linker for successful delivery of RNA replicon via protein-based particles. PMID:23924216

  18. Photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex.

    PubMed

    Zhang, Zhigang; Dai, Ruihui; Ma, Jiajia; Wang, Shuying; Wei, Xuehong; Wang, Hongfei

    2015-02-01

    Many planar photosensitizers tend to self-aggregate via van der Waals interactions between π-conjugated systems. The self-aggregation of the photosensitizer may reduce the efficiency of the photosensitizer to generate singlet oxygen, thereby diminishing its photodynamic activity. Efforts have been made to improve the photodynamic activity of bis-(o-diiminobenzosemiquinonato)platinum(II) which has planar geometry by the introduction of the sterically hindered triphenylamine moiety into the ligand. Herein we report the photoinduced DNA damage and cytotoxicity by a triphenylamine-modified platinum-diimine complex in red light studied by fluorescence spectra, agarose gel assay and cell viability assay. The results suggest that the triphenylamine-modified platinum-diimine complex has better capability to generate singlet oxygen than bis-(o-diiminobenzosemiquinonato)platinum(II), and it can induce DNA damage in red light, causing high photocytotoxicity in HepG-2 cells in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Binding of small molecules at interface of protein-protein complex - A newer approach to rational drug design.

    PubMed

    Gurung, A B; Bhattacharjee, A; Ajmal Ali, M; Al-Hemaid, F; Lee, Joongku

    2017-02-01

    Protein-protein interaction is a vital process which drives many important physiological processes in the cell and has also been implicated in several diseases. Though the protein-protein interaction network is quite complex but understanding its interacting partners using both in silico as well as molecular biology techniques can provide better insights for targeting such interactions. Targeting protein-protein interaction with small molecules is a challenging task because of druggability issues. Nevertheless, several studies on the kinetics as well as thermodynamic properties of protein-protein interactions have immensely contributed toward better understanding of the affinity of these complexes. But, more recent studies on hot spots and interface residues have opened up new avenues in the drug discovery process. This approach has been used in the design of hot spot based modulators targeting protein-protein interaction with the objective of normalizing such interactions.

  20. Identifying protein complex by integrating characteristic of core-attachment into dynamic PPI network.

    PubMed

    Shen, Xianjun; Yi, Li; Jiang, Xingpeng; He, Tingting; Yang, Jincai; Xie, Wei; Hu, Po; Hu, Xiaohua

    2017-01-01

    How to identify protein complex is an important and challenging task in proteomics. It would make great contribution to our knowledge of molecular mechanism in cell life activities. However, the inherent organization and dynamic characteristic of cell system have rarely been incorporated into the existing algorithms for detecting protein complexes because of the limitation of protein-protein interaction (PPI) data produced by high throughput techniques. The availability of time course gene expression profile enables us to uncover the dynamics of molecular networks and improve the detection of protein complexes. In order to achieve this goal, this paper proposes a novel algorithm DCA (Dynamic Core-Attachment). It detects protein-complex core comprising of continually expressed and highly connected proteins in dynamic PPI network, and then the protein complex is formed by including the attachments with high adhesion into the core. The integration of core-attachment feature into the dynamic PPI network is responsible for the superiority of our algorithm. DCA has been applied on two different yeast dynamic PPI networks and the experimental results show that it performs significantly better than the state-of-the-art techniques in terms of prediction accuracy, hF-measure and statistical significance in biology. In addition, the identified complexes with strong biological significance provide potential candidate complexes for biologists to validate.

  1. Capture of unstable protein complex on the streptavidin-coated single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Zunfeng; Voskamp, Patrick; Zhang, Yue; Chu, Fuqiang; Abrahams, Jan Pieter

    2013-04-01

    Purification of unstable protein complexes is a bottleneck for investigation of their 3D structure and in protein-protein interaction studies. In this paper, we demonstrate that streptavidin-coated single-walled carbon nanotubes (Strep•SWNT) can be used to capture the biotinylated DNA- EcoRI complexes on a 2D surface and in solution using atomic force microscopy and electrophoresis analysis, respectively. The restriction enzyme EcoRI forms unstable complexes with DNA in the absence of Mg2+. Capturing the EcoRI-DNA complexes on the Strep•SWNT succeeded in the absence of Mg2+, demonstrating that the Strep•SWNT can be used for purifying unstable protein complexes.

  2. 2'-OMe-phosphorodithioate-modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity.

    PubMed

    Wu, Sherry Y; Yang, Xianbin; Gharpure, Kshipra M; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H; Nagaraja, Archana S; Miyake, Takahito M; Rupaimoole, Rajesha; Pecot, Chad V; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J; Previs, Rebecca A; Armaiz-Pena, Guillermo N; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J; Kovvali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A J; Overwijk, Willem W; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A; Lopez-Berestein, Gabriel; Ram, Prahlad T; Nawrot, Barbara; Sood, Anil K

    2014-03-12

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2'-O-Methyl (2'-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2'-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM domain containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumours following MePS2-modified siRNA treatment, leading to a synergistic anti-tumour effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types.

  3. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    PubMed

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  4. Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara.

    PubMed

    de Figueiredo, Vitória Ribeiro Garcia; Yamashita, Fábio; Vanzela, André Luis Laforga; Ida, Elza Iouko; Kurozawa, Louise Emy

    2018-04-01

    The objective of this study was to optimize the extraction of protein by applying a multi-enzymatic pretreatment to okara, a byproduct from soymilk processing. The multi-enzyme complex Viscozyme, containing a variety of carbohydrases, was used to hydrolyze the okara cell walls and facilitate extraction of proteins. Enzyme-assisted extraction was carried out under different temperatures (37-53 °C), enzyme concentrations (1.5-4%) and pH values (5.5-6.5) according to a central composite rotatable design. After extraction, the protein was concentrated by isoelectric precipitation. The optimal conditions for maximum protein content and recovery in protein concentrate were 53 °C, pH 6.2 and 4% of enzyme concentration. Under these conditions, protein content of 56% (dry weight basis) and a recovery of 28% were obtained, representing an increase of 17 and 86%, respectively, compared to the sample with no enzymatic pretreatment. The multi-enzyme complex Viscozyme hydrolyzed the structural cell wall polysaccharides, improving extraction and obtaining protein concentrate from the okara. An electrophoretic profile of the protein concentrate showed two distinct bands, corresponding to the acidic and basic subunits of the protein glycinin. There were no limiting amino acids in the protein concentrate, which had a greater content of arginine.

  5. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.

    PubMed

    Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall

    2018-05-23

    Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Folic acid-modified soy protein nanoparticles for enhanced targeting and inhibitory.

    PubMed

    Cheng, Xu; Wang, Xin; Cao, Zhipeng; Yao, Weijing; Wang, Jun; Tang, Rupei

    2017-02-01

    Soy protein isolate (SPI) was hydrolyzed by compound enzymes to give water soluble low molecular soy protein (SP). SP and folic acid (FA) modified SP was polymerized with N-3- acrylamidophenylboronic acid (APBA) monomer in aqueous solution to give SP nanoparticles (SP NPs) and FA modified nanoparticles (FA-SP NPs), respectively. These NPs display excellent stability in different conditions, and have a uniform spherical shape with a diameter around of 200nm. Doxorubicin (DOX) was then successfully loaded into SP and FA-SP NPs with a desirable loading content of 13.33% and 16.01%, respectively. The cellular uptake and cytotoxicity of DOX-loaded SP NPs and FA-SP NPs were investigated using the two-dimensional (2D) monolayer cell model and three-dimensional (3D) multicellular spheroids (MCs). In vivo, tumor accumulation and growth inhibitory were then examined using H22 tumor-bearing mice. All these results demonstrated that conjugation of FA can efficiently enhance SP-based NPs' tumor accumulation and antitumor effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Channelopathies from Mutations in the Cardiac Sodium Channel Protein Complex

    PubMed Central

    Adsit, Graham S.; Vaidyanathan, Ravi; Galler, Carla M.; Kyle, John W.; Makielski, Jonathan C.

    2013-01-01

    The cardiac sodium current underlies excitability in heart, and inherited abnormalities of the proteins regulating and conducting this current cause inherited arrhythmia syndromes. This review focuses on inherited mutations in non-pore forming proteins of sodium channel complexes that cause cardiac arrhythmia, and the deduced mechanisms by which they affect function and dysfunction of the cardiac sodium current. Defining the structure and function of these complexes and how they are regulated will contribute to understanding the possible roles for this complex in normal and abnormal physiology and homeostasis. PMID:23557754

  8. Stability and immunogenicity of hypoallergenic peanut protein-polyphenol complexes during in vitro pepsin digestion.

    PubMed

    Plundrich, Nathalie J; White, Brittany L; Dean, Lisa L; Davis, Jack P; Foegeding, E Allen; Lila, Mary Ann

    2015-07-01

    Allergenic peanut proteins are relatively resistant to digestion, and if digested, metabolized peptides tend to remain large and immunoreactive, triggering allergic reactions in sensitive individuals. In this study, the stability of hypoallergenic peanut protein-polyphenol complexes was evaluated during simulated in vitro gastric digestion. When digested with pepsin, the basic subunit of the peanut allergen Ara h 3 was more rapidly hydrolyzed in peanut protein-cranberry or green tea polyphenol complexes compared to uncomplexed peanut flour. Ara h 2 was also hydrolyzed more quickly in the peanut protein-cranberry polyphenol complex than in uncomplexed peanut flour. Peptides from peanut protein-cranberry polyphenol complexes and peanut protein-green tea polyphenol complexes were substantially less immunoreactive (based on their capacity to bind to peanut-specific IgE from patient plasma) compared to peptides from uncomplexed peanut flour. These results suggest that peanut protein-polyphenol complexes may be less immunoreactive passing through the digestive tract in vivo, contributing to their attenuated allergenicity.

  9. Hydrophobic Interaction Chromatography for Bottom-Up Proteomics Analysis of Single Proteins and Protein Complexes.

    PubMed

    Rackiewicz, Michal; Große-Hovest, Ludger; Alpert, Andrew J; Zarei, Mostafa; Dengjel, Jörn

    2017-06-02

    Hydrophobic interaction chromatography (HIC) is a robust standard analytical method to purify proteins while preserving their biological activity. It is widely used to study post-translational modifications of proteins and drug-protein interactions. In the current manuscript we employed HIC to separate proteins, followed by bottom-up LC-MS/MS experiments. We used this approach to fractionate antibody species followed by comprehensive peptide mapping as well as to study protein complexes in human cells. HIC-reversed-phase chromatography (RPC)-mass spectrometry (MS) is a powerful alternative to fractionate proteins for bottom-up proteomics experiments making use of their distinct hydrophobic properties.

  10. Detection of susceptibility genes as modifiers due to subgroup differences in complex disease.

    PubMed

    Bergen, Sarah E; Maher, Brion S; Fanous, Ayman H; Kendler, Kenneth S

    2010-08-01

    Complex diseases invariably involve multiple genes and often exhibit variable symptom profiles. The extent to which disease symptoms, course, and severity differ between affected individuals may result from underlying genetic heterogeneity. Genes with modifier effects may or may not also influence disease susceptibility. In this study, we have simulated data in which a subset of cases differ by some effect size (ES) on a quantitative trait and are also enriched for a risk allele. Power to detect this 'pseudo-modifier' gene in case-only and case-control designs was explored blind to case substructure. Simulations involved 1000 iterations and calculations for 80% power at P<0.01 while varying the risk allele frequency (RAF), sample size (SS), ES, odds ratio (OR), and proportions of the case subgroups. With realistic values for the RAF (0.20), SS (3000) and ES (1), an OR of 1.7 is necessary to detect a pseudo-modifier gene. Unequal numbers of subjects in the case groups result in little decrement in power until the group enriched for the risk allele is <30% or >70% of the total case population. In practice, greater numbers of subjects and selection of a quantitative trait with a large range will provide researchers with greater power to detect a pseudo-modifier gene. However, even under ideal conditions, studies involving alleles with low frequencies or low ORs are usually underpowered for detection of a modifier or susceptibility gene. This may explain some of the inconsistent association results for many candidate gene studies of complex diseases.

  11. MALDI mass spectrometry of dye-peptide and dye-protein complexes.

    PubMed

    Salih, B; Zenobi, R

    1998-04-15

    Immobilized sulfonate dyes are widely used for protein separation and purification, but the mode of interaction between the dye molecules and the proteins is largely unknown. Here we show that specific noncovalent dye-protein and dye-peptide complexes can be observed using MALDI mass spectrometry. We prove that the interaction is prodominantly electrostatic and that it involves protonated sites of the peptides and proteins, including the NH2 terminus, and deprotonated SO3 groups of the dyes. Furthermore, we show that MALDI-MS of such complexes with a nonacidic matrix, p-nitro-aniline, can be used to determine the number of accessible basic sites of a protein or peptide in its folded structure. Our results are in good agreement with measurements of the same property done with electrospray ionization.

  12. CE separation of proteins and yeasts dynamically modified by PEG pyrenebutanoate with fluorescence detection.

    PubMed

    Horká, Marie; Růzicka, Filip; Holá, Veronika; Slais, Karel

    2007-07-01

    The optimized protocols of the bioanalytes separation, proteins and yeasts, dynamically modified by the nonionogenic tenside PEG pyrenebutanoate, were applied in CZE and CIEF with the acidic gradient in pH range 2-5.5, both with fluorescence detection. PEG pyrenebutanoate was used as a buffer additive for a dynamic modification of proteins and/or yeast samples. The narrow peaks of modified analytes were detected. The values of the pI's of the labeled proteins were calculated using new fluorescent pI markers in CIEF and they were found to be comparable with pI's of the native compounds. As an example of the possible use of the suggested CIEF technique, the mixed cultures of yeasts, Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida lusitaniae, Candida parapsilosis, Candida tropicalis, Candida zeylanoides, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon asahii and Yarrowia lipolytica, were reproducibly focused and separated with high sensitivity. Using UV excitation for the on-column fluorometric detection, the minimum detectable amounts of analytes, femtograms of proteins and down to ten cells injected on the separation capillary, were estimated.

  13. Protein import and the origin of red complex plastids.

    PubMed

    Gould, Sven B; Maier, Uwe-G; Martin, William F

    2015-06-15

    The number and nature of endosymbioses involving red algal endosymbionts are debated. Gene phylogenies have become the most popular tool to untangle this issue, but they deliver conflicting results. As gene and lineage sampling has increased, so have both the number of conflicting trees and the number of suggestions in the literature for multiple tertiary, and even quaternary, symbioses that might reconcile the tree conflicts. Independent lines of evidence that can address the issue are needed. Here we summarize the mechanism and machinery of protein import into complex red plastids. The process involves protein translocation machinery, known as SELMA, that arose once in evolution, that facilitates protein import across the second outermost of the four plastid membranes, and that is always targeted specifically to that membrane, regardless of where it is encoded today. It is widely accepted that the unity of protein import across the two membranes of primary plastids is strong evidence for their single cyanobacterial origin. Similarly, the unity of SELMA-dependent protein import across the second outermost plastid membrane constitutes strong evidence for the existence of a single red secondary endosymbiotic event at the common origin of all red complex plastids. We furthermore propose that the two outer membranes of red complex plastids are derived from host endoplasmic reticulum in the initial red secondary endosymbiotic event. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Co-operative intra-protein structural response due to protein-protein complexation revealed through thermodynamic quantification: study of MDM2-p53 binding

    NASA Astrophysics Data System (ADS)

    Samanta, Sudipta; Mukherjee, Sanchita

    2017-10-01

    The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored. This study attempts to understand the conformational free energy and entropy costs due to this complex formation from the histograms of dihedral angles generated from molecular dynamics simulations. Residue-specific quantification illustrates that, hydrophobic residues of the protein contribute maximum to the conformational thermodynamic changes. Thermodynamic quantification of structural changes of the protein unfold the fact that, p53 binding provides a source of inter-element cooperativity among the protein secondary structural elements, where the highest affected structural elements (α2 and α4) found at the binding site of the protein affects faraway structural elements (β1 and Loop1) of the protein. The communication perhaps involves water mediated hydrogen bonded network formation. Further, we infer that in inhibitory F19A mutation of P53, though Phe19 is important in the recognition process, it has less prominent contribution in the stability of the complex. Collectively, this study provides vivid microscopic understanding of the interaction within the protein complex along with exploring mutation sites, which will contribute further to engineer the protein function and binding affinity.

  15. Measurement of protein HC (alpha 1 microglobulin) and protein HC-IgA complex in different body fluids.

    PubMed Central

    Fernández-Luna, J L; Leyva-Cobián, F; Méndez, E

    1988-01-01

    Protein HC and protein HC-IgA complex were measured in 18 different types of fluid sample from healthy subjects and patients with different illnesses to determine if the concentrations of protein HC and protein HC-IgA complexes could be used to monitor certain diseases, when measured separately. The normal values for HC ranged from between 0.30 mg/l in saliva and 11.7 mg/l in blood plasma. HC-IgA complex has a greater range, from undetectable concentrations (urine, colostrum, and cervical mucus) up to 59.2 mg/l in blood plasma. Undetectable concentrations of HC-IgA complex were also shown in serum from patients with IgA immune deficiency and in cerebrospinal fluid from patients with multiple sclerosis. Increased concentrations of HC were noted in bronchoalveolar fluid from a patient with pulmonary alveolar proteinosis, serum from patients with Behcet's syndrome, and in synovial fluid from patients with gout, chondrocalcinosis, and rheumatoid arthritis. On the other hand, the concentrations of HC-IgA complex were raised only in those patients with pulmonary alveolar proteinosis or rheumatoid arthritis. PMID:2463270

  16. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  17. From miracle fruit to transgenic tomato: mass production of the taste-modifying protein miraculin in transgenic plants.

    PubMed

    Hiwasa-Tanase, Kyoko; Hirai, Tadayoshi; Kato, Kazuhisa; Duhita, Narendra; Ezura, Hiroshi

    2012-03-01

    The utility of plants as biofactories has progressed in recent years. Some recombinant plant-derived pharmaceutical products have already reached the marketplace. However, with the exception of drugs and vaccines, a strong effort has not yet been made to bring recombinant products to market, as cost-effectiveness is critically important for commercialization. Sweet-tasting proteins and taste-modifying proteins have a great deal of potential in industry as substitutes for sugars and as artificial sweeteners. The taste-modifying protein, miraculin, functions to change the perception of a sour taste to a sweet one. This taste-modifying function can potentially be used not only as a low-calorie sweetener but also as a new seasoning that could be the basis of a new dietary lifestyle. However, miraculin is far from inexpensive, and its potential as a marketable product has not yet been fully developed. For the last several years, biotechnological production of this taste-modifying protein has progressed extensively. In this review, the characteristics of miraculin and recent advances in its production using transgenic plants are summarized, focusing on such topics as the suitability of plant species as expression hosts, the cultivation method for transgenic plants, the method of purifying miraculin and future advances required to achieve industrial use.

  18. Crystallization of bi-functional ligand protein complexes.

    PubMed

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation

    PubMed Central

    Covian, Raul

    2012-01-01

    It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on 32P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the

  20. Detection of in situ protein-protein complexes at the Drosophila larval neuromuscular junction using proximity ligation assay.

    PubMed

    Wang, Simon; Yoo, SooHyun; Kim, Hae-Yoon; Wang, Mannan; Zheng, Clare; Parkhouse, Wade; Krieger, Charles; Harden, Nicholas

    2015-01-20

    Discs large (Dlg) is a conserved member of the membrane-associated guanylate kinase family, and serves as a major scaffolding protein at the larval neuromuscular junction (NMJ) in Drosophila. Previous studies have shown that the postsynaptic distribution of Dlg at the larval NMJ overlaps with that of Hu-li tai shao (Hts), a homologue to the mammalian adducins. In addition, Dlg and Hts are observed to form a complex with each other based on co-immunoprecipitation experiments involving whole adult fly lysates. Due to the nature of these experiments, however, it was unknown whether this complex exists specifically at the NMJ during larval development. Proximity Ligation Assay (PLA) is a recently developed technique used mostly in cell and tissue culture that can detect protein-protein interactions in situ. In this assay, samples are incubated with primary antibodies against the two proteins of interest using standard immunohistochemical procedures. The primary antibodies are then detected with a specially designed pair of oligonucleotide-conjugated secondary antibodies, termed PLA probes, which can be used to generate a signal only when the two probes have bound in close proximity to each other. Thus, proteins that are in a complex can be visualized. Here, it is demonstrated how PLA can be used to detect in situ protein-protein interactions at the Drosophila larval NMJ. The technique is performed on larval body wall muscle preparations to show that a complex between Dlg and Hts does indeed exist at the postsynaptic region of NMJs.

  1. ComplexQuant: high-throughput computational pipeline for the global quantitative analysis of endogenous soluble protein complexes using high resolution protein HPLC and precision label-free LC/MS/MS.

    PubMed

    Wan, Cuihong; Liu, Jian; Fong, Vincent; Lugowski, Andrew; Stoilova, Snejana; Bethune-Waddell, Dylan; Borgeson, Blake; Havugimana, Pierre C; Marcotte, Edward M; Emili, Andrew

    2013-04-09

    The experimental isolation and characterization of stable multi-protein complexes are essential to understanding the molecular systems biology of a cell. To this end, we have developed a high-throughput proteomic platform for the systematic identification of native protein complexes based on extensive fractionation of soluble protein extracts by multi-bed ion exchange high performance liquid chromatography (IEX-HPLC) combined with exhaustive label-free LC/MS/MS shotgun profiling. To support these studies, we have built a companion data analysis software pipeline, termed ComplexQuant. Proteins present in the hundreds of fractions typically collected per experiment are first identified by exhaustively interrogating MS/MS spectra using multiple database search engines within an integrative probabilistic framework, while accounting for possible post-translation modifications. Protein abundance is then measured across the fractions based on normalized total spectral counts and precursor ion intensities using a dedicated tool, PepQuant. This analysis allows co-complex membership to be inferred based on the similarity of extracted protein co-elution profiles. Each computational step has been optimized for processing large-scale biochemical fractionation datasets, and the reliability of the integrated pipeline has been benchmarked extensively. This article is part of a Special Issue entitled: From protein structures to clinical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.

    PubMed

    Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M

    2017-09-01

    We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.

    PubMed

    Zhang, Liqun; Borthakur, Susmita; Buck, Matthias

    2016-02-23

    The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in

  4. Computational modeling of carbohydrate recognition in protein complex

    NASA Astrophysics Data System (ADS)

    Ishida, Toyokazu

    2017-11-01

    To understand the mechanistic principle of carbohydrate recognition in proteins, we propose a systematic computational modeling strategy to identify complex carbohydrate chain onto the reduced 2D free energy surface (2D-FES), determined by MD sampling combined with QM/MM energy corrections. In this article, we first report a detailed atomistic simulation study of the norovirus capsid proteins with carbohydrate antigens based on ab initio QM/MM combined with MD-FEP simulations. The present result clearly shows that the binding geometries of complex carbohydrate antigen are determined not by one single, rigid carbohydrate structure, but rather by the sum of averaged conformations mapped onto the minimum free energy region of QM/MM 2D-FES.

  5. Modified Low Density Lipoprotein and Lipoprotein-Containing Circulating Immune Complexes as Diagnostic and Prognostic Biomarkers of Atherosclerosis and Type 1 Diabetes Macrovascular Disease

    PubMed Central

    Orekhov, Alexander N.; Bobryshev, Yuri V.; Sobenin, Igor A.; Melnichenko, Alexandra A.; Chistiakov, Dimitry A.

    2014-01-01

    In atherosclerosis; blood low-density lipoproteins (LDL) are subjected to multiple enzymatic and non-enzymatic modifications that increase their atherogenicity and induce immunogenicity. Modified LDL are capable of inducing vascular inflammation through activation of innate immunity; thus, contributing to the progression of atherogenesis. The immunogenicity of modified LDL results in induction of self-antibodies specific to a certain type of modified LDL. The antibodies react with modified LDL forming circulating immune complexes. Circulating immune complexes exhibit prominent immunomodulatory properties that influence atherosclerotic inflammation. Compared to freely circulating modified LDL; modified LDL associated with the immune complexes have a more robust atherogenic and proinflammatory potential. Various lipid components of the immune complexes may serve not only as diagnostic but also as essential predictive markers of cardiovascular events in atherosclerosis. Accumulating evidence indicates that LDL-containing immune complexes can also serve as biomarker for macrovascular disease in type 1 diabetes. PMID:25050779

  6. Description and control of dissociation channels in gas-phase protein complexes

    NASA Astrophysics Data System (ADS)

    Thachuk, Mark; Fegan, Sarah K.; Raheem, Nigare

    2016-08-01

    Using molecular dynamics simulations of a coarse-grained model of the charged apo-hemoglobin protein complex, this work expands upon our initial report [S. K. Fegan and M. Thachuk, J. Am. Soc. Mass Spectrom. 25, 722-728 (2014)] about control of dissociation channels in the gas phase using specially designed charge tags. Employing a charge hopping algorithm and a range of temperatures, a variety of dissociation channels are found for activated gas-phase protein complexes. At low temperatures, a single monomer unfolds and becomes charge enriched. At higher temperatures, two additional channels open: (i) two monomers unfold and charge enrich and (ii) two monomers compete for unfolding with one eventually dominating and the other reattaching to the complex. At even higher temperatures, other more complex dissociation channels open with three or more monomers competing for unfolding. A model charge tag with five sites is specially designed to either attract or exclude charges. By attaching this tag to the N-terminus of specific monomers, the unfolding of those monomers can be decidedly enhanced or suppressed. In other words, using charge tags to direct the motion of charges in a protein complex provides a mechanism for controlling dissociation. This technique could be used in mass spectrometry experiments to direct forces at specific attachment points in a protein complex, and hence increase the diversity of product channels available for quantitative analysis. In turn, this could provide insight into the function of the protein complex in its native biological environment. From a dynamics perspective, this system provides an interesting example of cooperative behaviour involving motions with differing time scales.

  7. Protein and energy evaluation of soybean meals processed from genetically modified high-protein soybeans.

    PubMed

    Edwards, H M; Douglas, M W; Parsons, C M; Baker, D H

    2000-04-01

    A conventional and two genetically modified soybean samples were processed to dehulled soybean meal (SBM) at a pilot plant and were compared with SBM from a commercial processing plant. Crude protein levels (%) of the experimental SBM samples were M700, 52.5; M702, 53.4; and M703, 62.7. The commercial SBM sample (UI) contained 47.5% protein. Amino acid, gross energy, lipid, and fiber analyses were carried out, and true metabolizable energy and true amino acid digestibility were determined with adult cecectomized cockerels. Digestible Lys, Met, Cys, Thr, and Val, and also TMEn, were higher (P < 0.05) and NDF, fat, and phospholipids were lower in M703 than in the other SBM samples. The results of this study indicate that M703 has considerable advantages over conventional SBM as a feed ingredient for broiler chickens.

  8. Computational allergenicity prediction of transgenic proteins expressed in genetically modified crops.

    PubMed

    Verma, Alok Kumar; Misra, Amita; Subash, Swarna; Das, Mukul; Dwivedi, Premendra D

    2011-09-01

    Development of genetically modified (GM) crops is on increase to improve food quality, increase harvest yields, and reduce the dependency on chemical pesticides. Before their release in marketplace, they should be scrutinized for their safety. Several guidelines of different regulatory agencies like ILSI, WHO Codex, OECD, and so on for allergenicity evaluation of transgenics are available and sequence homology analysis is the first test to determine the allergenic potential of inserted proteins. Therefore, to test and validate, 312 allergenic, 100 non-allergenic, and 48 inserted proteins were assessed for sequence similarity using 8-mer, 80-mer, and full FASTA search. On performing sequence homology studies, ~94% the allergenic proteins gave exact matches for 8-mer and 80-mer homology. However, 20 allergenic proteins showed non-allergenic behavior. Out of 100 non-allergenic proteins, seven qualified as allergens. None of the inserted proteins demonstrated allergenic behavior. In order to improve the predictability, proteins showing anomalous behavior were tested by Algpred and ADFS separately. Use of Algpred and ADFS softwares reduced the tendency of false prediction to a great extent (74-78%). In conclusion, routine sequence homology needs to be coupled with some other bioinformatic method like ADFS/Algpred to reduce false allergenicity prediction of novel proteins.

  9. Design principles for cancer therapy guided by changes in complexity of protein-protein interaction networks.

    PubMed

    Benzekry, Sebastian; Tuszynski, Jack A; Rietman, Edward A; Lakka Klement, Giannoula

    2015-05-28

    The ever-increasing expanse of online bioinformatics data is enabling new ways to, not only explore the visualization of these data, but also to apply novel mathematical methods to extract meaningful information for clinically relevant analysis of pathways and treatment decisions. One of the methods used for computing topological characteristics of a space at different spatial resolutions is persistent homology. This concept can also be applied to network theory, and more specifically to protein-protein interaction networks, where the number of rings in an individual cancer network represents a measure of complexity. We observed a linear correlation of R = -0.55 between persistent homology and 5-year survival of patients with a variety of cancers. This relationship was used to predict the proteins within a protein-protein interaction network with the most impact on cancer progression. By re-computing the persistent homology after computationally removing an individual node (protein) from the protein-protein interaction network, we were able to evaluate whether such an inhibition would lead to improvement in patient survival. The power of this approach lied in its ability to identify the effects of inhibition of multiple proteins and in the ability to expose whether the effect of a single inhibition may be amplified by inhibition of other proteins. More importantly, we illustrate specific examples of persistent homology calculations, which correctly predict the survival benefit observed effects in clinical trials using inhibitors of the identified molecular target. We propose that computational approaches such as persistent homology may be used in the future for selection of molecular therapies in clinic. The technique uses a mathematical algorithm to evaluate the node (protein) whose inhibition has the highest potential to reduce network complexity. The greater the drop in persistent homology, the greater reduction in network complexity, and thus a larger

  10. Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy*

    PubMed Central

    Turk, Rolf; Hsiao, Jordy J.; Smits, Melinda M.; Ng, Brandon H.; Pospisil, Tyler C.; Jones, Kayla S.; Campbell, Kevin P.; Wright, Michael E.

    2016-01-01

    Mutations in genes encoding components of the sarcolemmal dystrophin-glycoprotein complex (DGC) are responsible for a large number of muscular dystrophies. As such, molecular dissection of the DGC is expected to both reveal pathological mechanisms, and provides a biological framework for validating new DGC components. Establishment of the molecular composition of plasma-membrane protein complexes has been hampered by a lack of suitable biochemical approaches. Here we present an analytical workflow based upon the principles of protein correlation profiling that has enabled us to model the molecular composition of the DGC in mouse skeletal muscle. We also report our analysis of protein complexes in mice harboring mutations in DGC components. Bioinformatic analyses suggested that cell-adhesion pathways were under the transcriptional control of NFκB in DGC mutant mice, which is a finding that is supported by previous studies that showed NFκB-regulated pathways underlie the pathophysiology of DGC-related muscular dystrophies. Moreover, the bioinformatic analyses suggested that inflammatory and compensatory mechanisms were activated in skeletal muscle of DGC mutant mice. Additionally, this proteomic study provides a molecular framework to refine our understanding of the DGC, identification of protein biomarkers of neuromuscular disease, and pharmacological interrogation of the DGC in adult skeletal muscle https://www.mda.org/disease/congenital-muscular-dystrophy/research. PMID:27099343

  11. Maize Seed Chitinase is Modified by a Protein Secreted by Bipolaris zeicola

    USDA-ARS?s Scientific Manuscript database

    Plants contain defense mechanisms that prevent infection by most fungi. Some specialized fungi have the ability to overcome plant defenses. The Zea mays (maize) seed chitinase ChitA has been previously reported as an antifungal protein. Here we report that ChitA is converted to a modified form by...

  12. Mapping protein-DNA and protein-protein interactions of ATP-dependent chromatin remodelers.

    PubMed

    Hota, Swetansu K; Dechassa, Mekonnen Lemma; Prasad, Punit; Bartholomew, Blaine

    2012-01-01

    Chromatin plays a key regulatory role in several DNA-dependent processes as it regulates DNA access to different protein factors. Several multisubunit protein complexes interact, modify, or mobilize nucleosomes: the basic unit of chromatin, from its original location in an ATP-dependent manner to facilitate processes, such as transcription, replication, repair, and recombination. Knowledge of the interactions of chromatin remodelers with nucleosomes is a crucial requirement to understand the mechanism of chromatin remodeling. Here, we describe several methods to analyze the interactions of multisubunit chromatin-remodeling enzymes with nucleosomes.

  13. Integrating Mass Spectrometry of Intact Protein Complexes into Structural Proteomics

    PubMed Central

    Hyung, Suk-Joon; Ruotolo, Brandon T.

    2013-01-01

    Summary Mass spectrometry analysis of intact protein complexes has emerged as an established technology for assessing the composition and connectivity within dynamic, heterogeneous multiprotein complexes at low concentrations and in the context of mixtures. As this technology continues to move forward, one of the main challenges is to integrate the information content of such intact protein complex measurements with other mass spectrometry approaches in structural biology. Methods such as H/D exchange, oxidative foot-printing, chemical cross-linking, affinity purification, and ion mobility separation add complementary information that allows access to every level of protein structure and organization. Here, we survey the structural information that can be retrieved by such experiments, demonstrate the applicability of integrative mass spectrometry approaches in structural proteomics, and look to the future to explore upcoming innovations in this rapidly-advancing area. PMID:22611037

  14. A Three-Hybrid System to Probe In Vivo Protein-Protein Interactions: Application to the Essential Proteins of the RD1 Complex of M. tuberculosis

    PubMed Central

    Bhalla, Kuhulika; Ghosh, Anamika; Kumar, Krishan; Kumar, Sushil; Ranganathan, Anand

    2011-01-01

    Background Protein-protein interactions play a crucial role in enabling a pathogen to survive within a host. In many cases the interactions involve a complex of proteins rather than just two given proteins. This is especially true for pathogens like M. tuberculosis that are able to successfully survive the inhospitable environment of the macrophage. Studying such interactions in detail may help in developing small molecules that either disrupt or augment the interactions. Here, we describe the development of an E. coli based bacterial three-hybrid system that can be used effectively to study ternary protein complexes. Methodology/Principal Findings The protein-protein interactions involved in M. tuberculosis pathogenesis have been used as a model for the validation of the three-hybrid system. Using the M. tuberculosis RD1 encoded proteins CFP10, ESAT6 and Rv3871 for our proof-of-concept studies, we show that the interaction between the proteins CFP10 and Rv3871 is strengthened and stabilized in the presence of ESAT6, the known heterodimeric partner of CFP10. Isolating peptide candidates that can disrupt crucial protein-protein interactions is another application that the system offers. We demonstrate this by using CFP10 protein as a disruptor of a previously established interaction between ESAT6 and a small peptide HCL1; at the same time we also show that CFP10 is not able to disrupt the strong interaction between ESAT6 and another peptide SL3. Conclusions/Significance The validation of the three-hybrid system paves the way for finding new peptides that are stronger binders of ESAT6 compared even to its natural partner CFP10. Additionally, we believe that the system offers an opportunity to study tri-protein complexes and also perform a screening of protein/peptide binders to known interacting proteins so as to elucidate novel tri-protein complexes. PMID:22087330

  15. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex detection.

    PubMed

    Mehranfar, Adele; Ghadiri, Nasser; Kouhsar, Morteza; Golshani, Ashkan

    2017-09-01

    Detecting the protein complexes is an important task in analyzing the protein interaction networks. Although many algorithms predict protein complexes in different ways, surveys on the interaction networks indicate that about 50% of detected interactions are false positives. Consequently, the accuracy of existing methods needs to be improved. In this paper we propose a novel algorithm to detect the protein complexes in 'noisy' protein interaction data. First, we integrate several biological data sources to determine the reliability of each interaction and determine more accurate weights for the interactions. A data fusion component is used for this step, based on the interval type-2 fuzzy voter that provides an efficient combination of the information sources. This fusion component detects the errors and diminishes their effect on the detection protein complexes. So in the first step, the reliability scores have been assigned for every interaction in the network. In the second step, we have proposed a general protein complex detection algorithm by exploiting and adopting the strong points of other algorithms and existing hypotheses regarding real complexes. Finally, the proposed method has been applied for the yeast interaction datasets for predicting the interactions. The results show that our framework has a better performance regarding precision and F-measure than the existing approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Molybdenum Cofactor Biosynthesis Network: In vivo Protein-Protein Interactions of an Actin Associated Multi-Protein Complex.

    PubMed

    Kaufholdt, David; Baillie, Christin-Kirsty; Meinen, Rieke; Mendel, Ralf R; Hänsch, Robert

    2017-01-01

    Survival of plants and nearly all organisms depends on the pterin based molybdenum cofactor (Moco) as well as its effective biosynthesis and insertion into apo-enzymes. To this end, both the central Moco biosynthesis enzymes are characterized and the conserved four-step reaction pathway for Moco biosynthesis is well-understood. However, protection mechanisms to prevent degradation during biosynthesis as well as transfer of the highly oxygen sensitive Moco and its intermediates are not fully enlightened. The formation of protein complexes involving transient protein-protein interactions is an efficient strategy for protected metabolic channelling of sensitive molecules. In this review, Moco biosynthesis and allocation network is presented and discussed. This network was intensively studied based on two in vivo interaction methods: bimolecular fluorescence complementation (BiFC) and split-luciferase. Whereas BiFC allows localisation of interacting partners, split-luciferase assay determines interaction strengths in vivo . Results demonstrate (i) interaction of Cnx2 and Cnx3 within the mitochondria and (ii) assembly of a biosynthesis complex including the cytosolic enzymes Cnx5, Cnx6, Cnx7, and Cnx1, which enables a protected transfer of intermediates. The whole complex is associated with actin filaments via Cnx1 as anchor protein. After biosynthesis, Moco needs to be handed over to the specific apo-enzymes. A potential pathway was discovered. Molybdenum-containing enzymes of the sulphite oxidase family interact directly with Cnx1. In contrast, the xanthine oxidoreductase family acquires Moco indirectly via a Moco binding protein (MoBP2) and Moco sulphurase ABA3. In summary, the uncovered interaction matrix enables an efficient transfer for intermediate and product protection via micro-compartmentation.

  17. Budding Yeast Silencing Complexes and Regulation of Sir2 Activity by Protein-Protein Interactions

    PubMed Central

    Tanny, Jason C.; Kirkpatrick, Donald S.; Gerber, Scott A.; Gygi, Steven P.; Moazed, Danesh

    2004-01-01

    Gene silencing in the budding yeast Saccharomyces cerevisiae requires the enzymatic activity of the Sir2 protein, a highly conserved NAD-dependent deacetylase. In order to study the activity of native Sir2, we purified and characterized two budding yeast Sir2 complexes: the Sir2/Sir4 complex, which mediates silencing at mating-type loci and at telomeres, and the RENT complex, which mediates silencing at the ribosomal DNA repeats. Analyses of the protein compositions of these complexes confirmed previously described interactions. We show that the assembly of Sir2 into native silencing complexes does not alter its selectivity for acetylated substrates, nor does it allow the deacetylation of nucleosomal histones. The inability of Sir2 complexes to deacetylate nucleosomes suggests that additional factors influence Sir2 activity in vivo. In contrast, Sir2 complexes show significant enhancement in their affinities for acetylated substrates and their sensitivities to the physiological inhibitor nicotinamide relative to recombinant Sir2. Reconstitution experiments showed that, for the Sir2/Sir4 complex, these differences stem from the physical interaction of Sir2 with Sir4. Finally, we provide evidence that the different nicotinamide sensitivities of Sir2/Sir4 and RENT in vitro could contribute to locus-specific differences in how Sir2 activity is regulated in vivo. PMID:15282295

  18. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex.

    PubMed

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L; Jakob, Clarissa G; Zhu, Haizhong; Comess, Kenneth M; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M; Cheng, Dong; Klinge, Kelly L; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C; Petros, Andrew M; Sweis, Ramzi F; Torrent, Maricel; Bigelow, Lance J; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J; Lindley, David J; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G; Arrowsmith, Cheryl H; Chiang, Gary G; Sun, Chaohong; Pappano, William N

    2017-04-01

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  19. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  20. HIstome--a relational knowledgebase of human histone proteins and histone modifying enzymes.

    PubMed

    Khare, Satyajeet P; Habib, Farhat; Sharma, Rahul; Gadewal, Nikhil; Gupta, Sanjay; Galande, Sanjeev

    2012-01-01

    Histones are abundant nuclear proteins that are essential for the packaging of eukaryotic DNA into chromosomes. Different histone variants, in combination with their modification 'code', control regulation of gene expression in diverse cellular processes. Several enzymes that catalyze the addition and removal of multiple histone modifications have been discovered in the past decade, enabling investigations of their role(s) in normal cellular processes and diverse pathological conditions. This sudden influx of data, however, has resulted in need of an updated knowledgebase that compiles, organizes and presents curated scientific information to the user in an easily accessible format. Here, we present HIstome, a browsable, manually curated, relational database that provides information about human histone proteins, their sites of modifications, variants and modifying enzymes. HIstome is a knowledgebase of 55 human histone proteins, 106 distinct sites of their post-translational modifications (PTMs) and 152 histone-modifying enzymes. Entries have been grouped into 5 types of histones, 8 types of post-translational modifications and 14 types of enzymes that catalyze addition and removal of these modifications. The resource will be useful for epigeneticists, pharmacologists and clinicians. HIstome: The Histone Infobase is available online at http://www.iiserpune.ac.in/∼coee/histome/ and http://www.actrec.gov.in/histome/.

  1. Comparison of energy and protein intakes of older people consuming a texture modified diet with a normal hospital diet.

    PubMed

    Wright, L; Cotter, D; Hickson, M; Frost, G

    2005-06-01

    There are very few studies looking at the energy and protein requirements of patients requiring texture modified diets. Dysphagia is the main indication for people to be recommended texture-modified diets. Older people post-stroke are the key group in the hospital setting who consume this type of diet. The diets can be of several consistencies ranging from pureed to soft textures. To compare the 24-hour dietary intake of older people consuming a texture modified diet in a clinical setting to older people consuming a normal hospital diet. Weighed food intakes and food record charts were used to quantify the patients' intakes, which were compared to their individual requirements. The oral intake of 55 patients was measured. Twenty-five of the patients surveyed were eating a normal diet and acted as controls for 30 patients who were prescribed a texture-modified diet. The results showed that the texture-modified group had significantly lower intakes of energy (3877 versus 6115 kJ, P < 0.0001) and protein (40 versus 60 g, P < 0.003) compared to consumption of the normal diet. The energy and protein deficit from estimated requirements was significantly greater in the texture-modified group (2549 versus 357 kJ, P < 0.0001; 6 versus 22 g, P = 0.013; respectively). These statistically significant results indicate that older people on texture-modified diets have a lower intake of energy and protein than those consuming a normal hospital diet and it is likely that other nutrients will be inadequate. All patients on texture-modified diets should be assessed by the dietitian for nutritional support. Evidence based strategies for improving overall nutrient intake should be identified.

  2. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point

    NASA Astrophysics Data System (ADS)

    de Vries, R.

    2004-02-01

    Electrostatic complexation of flexible polyanions with the whey proteins α-lactalbumin and β-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Hückel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that α-lactalbumin complexes much more strongly than β-lactoglobulin. For α-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for β-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches.

  3. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  4. Chromatographic and traditional albumin isotherms on cellulose: a model for wound protein adsorption on modified cotton

    USDA-ARS?s Scientific Manuscript database

    Albumin is the most abundant protein found in healing wounds. Traditional and chromatogrpahic protein isotherms of albumin binding on modified cotton fibers are useful in understanding albumin binding to cellulose wound dressings. An important consideration in the design of cellulosic wound dressin...

  5. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    PubMed

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  7. Generation of thromboxane A2 and aorta-contracting activity from platelets stimulated with modified C-reactive protein.

    PubMed Central

    Simpson, R M; Prancan, A; Izzi, J M; Fiedel, B A

    1982-01-01

    The classical acute phase reactant, C-reactive protein (CRP), appears in markedly elevated concentration in the sera of individuals undergoing reactions of acute inflammation and tissue degradation. We previously demonstrated that like IgG, appropriately purified CRP could be thermally modified (H-CRP) such that it enhanced platelet activation in plasma and initiated platelet responses in isolated systems. We now report that this direct platelet activation by modified CRP results in the secretion of both platelet dense body and alpha-granule constituents, and is sensitive to non-steroidal anti-inflammatory drugs as well as the adenosine diphosphate (ADP)-removing enzyme system creatine phosphate/creatine phosphokinase. Thin-layer chromatographic (TLC) analysis of prostanoate endproducts following platelet activation with H-CRP revealed the formation of thromboxane B2 (the hydrated endproduct of thromboxane A2), an important endogenous platelet activator and contractor of vascular tissue; bioassay on rabbit aorta strips of supernatants obtained from platelets undergoing challenge with H-CRP supported the TLC analysis. Complexes formed between CRP and one major ligand, the polycation, were found to share certain platelet activating properties with H-CRP, as does latex-aggregated CRP. These data imply a potential agonist role for this acute phase reactant in platelet physiology and suggest that the interaction of modified forms of CRP with the platelet at sites of vascular damage could have pathological significance. PMID:7118160

  8. Oral immunization of Carassius auratus with modified recombinant A-layer proteins entrapped in alginate beads.

    PubMed

    Maurice, Sarah; Nussinovitch, Amos; Jaffe, Nicole; Shoseyov, Oded; Gertler, Arieh

    2004-12-09

    This study was focused on the utilization of a recombinant expression system to produce a unique modified subunit vaccine possessing a self-contained delivery system which could potentially improve the uptake and delivery of vaccine products as well their immunogenic potential. For this purpose the A-layer protein (At-R) associated with the fish pathogen atypical Aeromonas salmonicida was cloned and modified by the genetic fusion of the protein transduction domain (MTS) derived from Kaposi fibroblast growth factor (At-MTS). The potential for these proteins to be employed as antigens for oral immunization of goldfish was examined by encapsulation of At-R, At-MTS and the control, BSA, into biodegradable alginate gel macrospheres which were fed to goldfish in place of standard pellet fish feed. The bead physical properties were modified only in the presence of At-R and the temporal release of proteins was significantly less when At-MTS was employed. Western blot analysis of serum samples collected from fish following intubation with the recombinant proteins determined that the rate of protein uptake from the digestive tract into the blood system improved considerably when MTS was fused to At-R. Experimental fish were fed one of three protein-alginate formulae on a schedule of 3 days/week or 5 days/month for a period of 2 months. After 1 month, animals fed on the 5-day protocol demonstrated increased serum antibody titers while following an additional month of feeding this level decreased and titers were found to be higher in fish maintained on the 3-day regime. Fish fed At-MTS maintained the highest titer at the end of 2-month period. To determine whether the diminished antibody titers were a result of oral tolerance fish were injected intraperitoneally with the At-R antigen. Only experimental groups which had been fed At-R or At-MTS demonstrated increased antibody titers which paralleled a typical secondary humoral response. In spite of the presence of an increased

  9. Computational and biophysical approaches to protein-protein interaction inhibition of Plasmodium falciparum AMA1/RON2 complex

    NASA Astrophysics Data System (ADS)

    Pihan, Emilie; Delgadillo, Roberto F.; Tonkin, Michelle L.; Pugnière, Martine; Lebrun, Maryse; Boulanger, Martin J.; Douguet, Dominique

    2015-06-01

    Invasion of the red blood cell by Plasmodium falciparum parasites requires formation of an electron dense circumferential ring called the Moving Junction (MJ). The MJ is anchored by a high affinity complex of two parasite proteins: Apical Membrane Antigen 1 ( PfAMA1) displayed on the surface of the parasite and Rhoptry Neck Protein 2 that is discharged from the parasite and imbedded in the membrane of the host cell. Structural studies of PfAMA1 revealed a conserved hydrophobic groove localized to the apical surface that coordinates RON2 and invasion inhibitory peptides. In the present work, we employed computational and biophysical methods to identify competitive P. falciparum AMA1-RON2 inhibitors with the goal of exploring the `druggability' of this attractive antimalarial target. A virtual screen followed by molecular docking with the PfAMA1 crystal structure was performed using an eight million compound collection that included commercial molecules, the ChEMBL malaria library and approved drugs. The consensus approach resulted in the selection of inhibitor candidates. We also developed a fluorescence anisotropy assay using a modified inhibitory peptide to experimentally validate the ability of the selected compounds to inhibit the AMA1-RON2 interaction. Among those, we identified one compound that displayed significant inhibition. This study offers interesting clues to improve the throughput and reliability of screening for new drug leads.

  10. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    PubMed

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Quantitative study of protein-protein interactions by quartz nanopipettes

    NASA Astrophysics Data System (ADS)

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-08-01

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with

  12. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4.

    PubMed

    Pesavento, James J; Mizzen, Craig A; Kelleher, Neil L

    2006-07-01

    Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of protein ions created by electrospray greatly easing many of the systematic biases that more strongly affect small peptides (e.g., differences in ionization efficiency and ion m/z values). The ion fragmentation methods validated here are directly extensible to intact human proteins to derive quantitative information on the highly related and often isomeric protein forms created by combinatorial arrays of posttranslational modifications.

  13. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point.

    PubMed

    de Vries, R

    2004-02-15

    Electrostatic complexation of flexible polyanions with the whey proteins alpha-lactalbumin and beta-lactoglobulin is studied using Monte Carlo simulations. The proteins are considered at their respective isoelectric points. Discrete charges on the model polyelectrolytes and proteins interact through Debye-Huckel potentials. Protein excluded volume is taken into account through a coarse-grained model of the protein shape. Consistent with experimental results, it is found that alpha-lactalbumin complexes much more strongly than beta-lactoglobulin. For alpha-lactalbumin, strong complexation is due to localized binding to a single large positive "charge patch," whereas for beta-lactoglobulin, weak complexation is due to diffuse binding to multiple smaller charge patches. Copyright 2004 American Institute of Physics

  14. Mapping Protein Surface Accessibility via an Electron Transfer Dissociation Selectively Cleavable Hydrazone Probe*

    PubMed Central

    Vasicek, Lisa; O'Brien, John P.; Browning, Karen S.; Tao, Zhihua; Liu, Hung-Wen; Brodbelt, Jennifer S.

    2012-01-01

    A protein's surface influences its role in protein-protein interactions and protein-ligand binding. Mass spectrometry can be used to give low resolution structural information about protein surfaces and conformations when used in combination with derivatization methods that target surface accessible amino acid residues. However, pinpointing the resulting modified peptides upon enzymatic digestion of the surface-modified protein is challenging because of the complexity of the peptide mixture and low abundance of modified peptides. Here a novel hydrazone reagent (NN) is presented that allows facile identification of all modified surface residues through a preferential cleavage upon activation by electron transfer dissociation coupled with a collision activation scan to pinpoint the modified residue in the peptide sequence. Using this approach, the correlation between percent reactivity and surface accessibility is demonstrated for two biologically active proteins, wheat eIF4E and PARP-1 Domain C. PMID:22393264

  15. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

    PubMed

    LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A

    2017-01-01

    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.

  16. Electrocatalytic oxidation of 2-mercaptoethanol using modified glassy carbon electrode by MWCNT in combination with unsymmetrical manganese (II) Schiff base complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohebbi, Sajjad, E-mail: smohebbi@uok.ac.ir; Eslami, Saadat

    2015-06-15

    Highlights: • High electocatalytic efficiency and stability of modified hybrid electrode GC/MWCNTs/MnSaloph. • Direct reflection of catalytic activity of manganese complexes on electrocatalytic oxidation of 2-ME. • Decreasing overpotential and increasing catalytic peak current toward oxidation of 2-ME. • Deposition of range of novel substituted N{sub 2}O{sub 2} Saloph complexes of manganese(II) on GCE/MWCNT. • Enhancement of electrocatalytic oxidation activity upon electron donating substitutions on the Saloph. - Abstract: The performance of modified hybrid glassy carbon electrode with composite of carbon nanotubes and manganese complexes for the electrocatalytic oxidation of 2-mercaptoethanol is developed. GC electrode was modified using MWCNT andmore » new N{sub 2}O{sub 2} unsymmetrical tetradentate Schiff base complexes of manganese namely Manganese Saloph complexes 1-5, with general formula Mn[(5-x-4-y-Sal)(5-x′-4-y′-Sal) Ph], where x, x′ = H, Br, NO{sub 2} and y, y′ = H, MeO. Direct immobilization of CNT on the surface of GCE is performed by abrasive immobilization, and then modified by manganese(II) complexes via direct deposition method. These novel modified electrodes clearly demonstrate the necessity of modifying bare carbon electrodes to endow them with the desired behavior and were identified by HRTEM. Also complexes were characterized by elemental analyses, MS, UV–vis and IR spectroscopy. Modified hybrid GC/MWCNT/MnSaloph electrode exhibits strong and stable electrocatalytic activity towards the electrooxidation of 2-mercaptoethanol molecules in comparison with bare glassy carbon electrode with advantages of very low over potential and high catalytic current. Such ability promotes the thiol’s electron transfer reaction. Also, electron withdrawing substituent on the Saloph was enhanced electrocatalytic oxidation activity.« less

  17. Unraveling the CHIP:Hsp70 complex as an information processor for protein quality control.

    PubMed

    VanPelt, Jamie; Page, Richard C

    2017-02-01

    The CHIP:Hsp70 complex stands at the crossroads of the cellular protein quality control system. Hsp70 facilitates active refolding of misfolded client proteins, while CHIP directs ubiquitination of misfolded client proteins bound to Hsp70. The direct competition between CHIP and Hsp70 for the fate of misfolded proteins leads to the question: how does the CHIP:Hsp70 complex execute triage decisions that direct misfolded proteins for either refolding or degradation? The current body of literature points toward action of the CHIP:Hsp70 complex as an information processor that takes inputs in the form of client folding state, dynamics, and posttranslational modifications, then outputs either refolded or ubiquitinated client proteins. Herein we examine the CHIP:Hsp70 complex beginning with the structure and function of CHIP and Hsp70, followed by an examination of recent studies of the interactions and dynamics of the CHIP:Hsp70 complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    PubMed Central

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  19. A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol).

    PubMed

    Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi

    2015-02-17

    Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.

  20. Identification of a chitinase modifying protein from Fusarium verticillioides: truncation of a host resistance protein by a fungalysin metalloprotease

    USDA-ARS?s Scientific Manuscript database

    Chitinase modifying proteins (cmps) are proteases, secreted by fungal pathogens, which truncate the plant class IV chitinases ChitA and ChitB during maize ear rot. Cmp activity has been characterized for Bipolaris zeicola and Stenocarpella maydis, but the identities of the proteases are not known. H...

  1. Radiation damage to DNA in DNA-protein complexes.

    PubMed

    Spotheim-Maurizot, M; Davídková, M

    2011-06-03

    The most aggressive product of water radiolysis, the hydroxyl (OH) radical, is responsible for the indirect effect of ionizing radiations on DNA in solution and aerobic conditions. According to radiolytic footprinting experiments, the resulting strand breaks and base modifications are inhomogeneously distributed along the DNA molecule irradiated free or bound to ligands (polyamines, thiols, proteins). A Monte-Carlo based model of simulation of the reaction of OH radicals with the macromolecules, called RADACK, allows calculating the relative probability of damage of each nucleotide of DNA irradiated alone or in complexes with proteins. RADACK calculations require the knowledge of the three dimensional structure of DNA and its complexes (determined by X-ray crystallography, NMR spectroscopy or molecular modeling). The confrontation of the calculated values with the results of the radiolytic footprinting experiments together with molecular modeling calculations show that: (1) the extent and location of the lesions are strongly dependent on the structure of DNA, which in turns is modulated by the base sequence and by the binding of proteins and (2) the regions in contact with the protein can be protected against the attack by the hydroxyl radicals via masking of the binding site and by scavenging of the radicals. 2011 Elsevier B.V. All rights reserved.

  2. The transport of Staufen2-containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway.

    PubMed

    Jeong, Ji-Hye; Nam, Yeon-Ju; Kim, Seok-Yong; Kim, Eung-Gook; Jeong, Jooyoung; Kim, Hyong Kyu

    2007-09-01

    There is increasing evidence showing that mRNA is transported to the neuronal dendrites in ribonucleoprotein (RNP) complexes or RNA granules, which are aggregates of mRNA, rRNA, ribosomal proteins, and RNA-binding proteins. In these RNP complexes, Staufen, a double-stranded RNA-binding protein, is believed to be a core component that plays a key role in the dendritic mRNA transport. This study investigated the molecular mechanisms of the dendritic mRNA transport using green fluorescent protein-tagged Staufen2 produced employing a Sindbis viral expression system. The kinesin heavy chain was found to be associated with Staufen2. The inhibition of kinesin resulted in a significant decrease in the level of dendritic transport of the Staufen2-containing RNP complexes in neurons under non-stimulating or stimulating conditions. This suggests that the dendritic transport of the Staufen2-containing RNP complexes use kinesin as a motor protein. A mitogen-activated protein kinase inhibitor, PD98059, inhibited the activity-induced increase in the amount of both the Staufen2-containing RNP complexes and Ca(2+)/calmodulin-dependent protein kinase II alpha-subunit mRNA in the distal dendrites of cultured hippocampal neurons. Overall, these results suggest that dendritic mRNA transport is mediated via the Staufen2 and kinesin motor proteins and might be modulated by the neuronal activity and mitogen-activated protein kinase pathway.

  3. Modeling Structure and Dynamics of Protein Complexes with SAXS Profiles

    PubMed Central

    Schneidman-Duhovny, Dina; Hammel, Michal

    2018-01-01

    Small-angle X-ray scattering (SAXS) is an increasingly common and useful technique for structural characterization of molecules in solution. A SAXS experiment determines the scattering intensity of a molecule as a function of spatial frequency, termed SAXS profile. SAXS profiles can be utilized in a variety of molecular modeling applications, such as comparing solution and crystal structures, structural characterization of flexible proteins, assembly of multi-protein complexes, and modeling of missing regions in the high-resolution structure. Here, we describe protocols for modeling atomic structures based on SAXS profiles. The first protocol is for comparing solution and crystal structures including modeling of missing regions and determination of the oligomeric state. The second protocol performs multi-state modeling by finding a set of conformations and their weights that fit the SAXS profile starting from a single-input structure. The third protocol is for protein-protein docking based on the SAXS profile of the complex. We describe the underlying software, followed by demonstrating their application on interleukin 33 (IL33) with its primary receptor ST2 and DNA ligase IV-XRCC4 complex. PMID:29605933

  4. Postprocessing of docked protein-ligand complexes using implicit solvation models.

    PubMed

    Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna

    2011-02-28

    Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.

  5. Viral delivery of genome-modifying proteins for cellular reprogramming.

    PubMed

    Mikkelsen, Jacob Giehm

    2018-06-18

    Following the successful development of virus-based gene vehicles for genetic therapies, exploitation of viruses as carriers of genetic tools for cellular reprogramming and genome editing should be right up the street. However, whereas persistent, potentially life-long gene expression is the main goal of conventional genetic therapies, tools and bits for genome engineering should ideally be short-lived and active only for a limited time. Although viral vector systems have already been adapted for potent genome editing both in vitro and in vivo, regulatable gene expression systems or self-limiting expression circuits need to be implemented limiting exposure of chromatin to genome-modifying enzymes. As an alternative approach, emerging virus-based protein delivery technologies support direct protein delivery, providing a short, robust boost of enzymatic activity in transduced cells. Is this potentially the perfect way of shipping loads of cargo to many recipients and still maintain short-term activity? Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. MFIB: a repository of protein complexes with mutual folding induced by binding.

    PubMed

    Fichó, Erzsébet; Reményi, István; Simon, István; Mészáros, Bálint

    2017-11-15

    It is commonplace that intrinsically disordered proteins (IDPs) are involved in crucial interactions in the living cell. However, the study of protein complexes formed exclusively by IDPs is hindered by the lack of data and such analyses remain sporadic. Systematic studies benefited other types of protein-protein interactions paving a way from basic science to therapeutics; yet these efforts require reliable datasets that are currently lacking for synergistically folding complexes of IDPs. Here we present the Mutual Folding Induced by Binding (MFIB) database, the first systematic collection of complexes formed exclusively by IDPs. MFIB contains an order of magnitude more data than any dataset used in corresponding studies and offers a wide coverage of known IDP complexes in terms of flexibility, oligomeric composition and protein function from all domains of life. The included complexes are grouped using a hierarchical classification and are complemented with structural and functional annotations. MFIB is backed by a firm development team and infrastructure, and together with possible future community collaboration it will provide the cornerstone for structural and functional studies of IDP complexes. MFIB is freely accessible at http://mfib.enzim.ttk.mta.hu/. The MFIB application is hosted by Apache web server and was implemented in PHP. To enrich querying features and to enhance backend performance a MySQL database was also created. simon.istvan@ttk.mta.hu, meszaros.balint@ttk.mta.hu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  7. Modified nucleotides reveal the indirect role of the central base pairs in stabilizing the lac repressor-operator complex.

    PubMed Central

    Zhang, X; Gottlieb, P A

    1995-01-01

    Guanine residues in the lac operator were replaced by 2-aminopurine or purine analogues, pairing the modified nucleotides with C. The observed equilibrium dissociation constants for lac repressor binding to substituted operators were measured in 10 mM Tris, 150 mM KCl, 0.1 mM EDTA, 0.1 mM DTE, pH 7.6 at 25 degrees C. These measurements revealed five positions that destabilized the complex when substituted with either analogue. Two positions, which are related by a 2-fold symmetry, are in the major groove of the operator thought to directly interact with the protein. Three sites were in the central region of the operator. A purine analogue at a sixth site perturbed the local DNA structure and destabilized the complex. Alkylation interference experiments of the 2-aminopurine substituted operators demonstrated that, of the five affected, two substitutions displayed altered phosphate interference patterns at the phosphate adjacent to the substituted base. For these operators, complex formation was measured in different concentrations of KCl to assess the contribution of counterion release to the bimolecular process. The results indicated that both complexes were similar to wild-type, although minor changes were observed. The Kobs of the complex was then measured when 2-aminopurine or purine analogues were paired with uracil nucleotide, a base pair that serves to stabilize the DNA. The introduction of the new base pairs revealed two effects on the bimolecular interaction. For those operator sites that are thought to perturb the interaction directly, the affinity of the complex was weakened to levels observed for the singly-substituted operators. In contrast, the nucleotides of 2-aminopurine paired with uracil positioned in the central region of the operator served to enhance the stability of the complex. The purine-uracil base pair substitution on the other hand had a significant destabilizing effect on the interaction. We propose that the central base pairs modulate

  8. Functional role of the MrpA- and MrpD-homologous protein subunits in enzyme complexes evolutionary related to respiratory chain complex I.

    PubMed

    Moparthi, Vamsi K; Kumar, Brijesh; Al-Eryani, Yusra; Sperling, Eva; Górecki, Kamil; Drakenberg, Torbjörn; Hägerhäll, Cecilia

    2014-01-01

    NADH:quinone oxidoreductase or complex I is a large membrane bound enzyme complex that has evolved from the combination of smaller functional building blocks. Intermediate size enzyme complexes exist in nature that comprise some, but not all of the protein subunits in full size 14-subunit complex I. The membrane spanning complex I subunits NuoL, NuoM and NuoN are homologous to each other and to two proteins from one particular class of Na(+)/H(+) antiporters, denoted MrpA and MrpD. In complex I, these ion transporter protein subunits are prime candidates for harboring important parts of the proton pumping machinery. Using a model system, consisting of Bacillus subtilis MrpA and MrpD deletion strains and a low copy expression plasmid, it was recently demonstrated that NuoN can rescue the strain deleted for MrpD but not that deleted for MrpA, whereas the opposite tendency was seen for NuoL. This demonstrated that the MrpA-type and MrpD-type proteins have unique functional specializations. In this work, the corresponding antiporter-like protein subunits from the smaller enzymes evolutionarily related to complex I were tested in the same model system. The subunits from 11-subunit complex I from Bacillus cereus behaved essentially as those from full size complex I, corroborating that this enzyme should be regarded as a bona fide complex I. The hydrogenase-3 and hydrogenase-4 antiporter-like proteins on the other hand, could substitute equally well for MrpA or MrpD at pH7.4, suggesting that these enzymes have intermediate forms of the antiporter-like proteins, which seemingly lack the functional specificity. © 2013. Published by Elsevier B.V. All rights reserved.

  9. Protein complex prediction for large protein protein interaction networks with the Core&Peel method.

    PubMed

    Pellegrini, Marco; Baglioni, Miriam; Geraci, Filippo

    2016-11-08

    Biological networks play an increasingly important role in the exploration of functional modularity and cellular organization at a systemic level. Quite often the first tools used to analyze these networks are clustering algorithms. We concentrate here on the specific task of predicting protein complexes (PC) in large protein-protein interaction networks (PPIN). Currently, many state-of-the-art algorithms work well for networks of small or moderate size. However, their performance on much larger networks, which are becoming increasingly common in modern proteome-wise studies, needs to be re-assessed. We present a new fast algorithm for clustering large sparse networks: Core&Peel, which runs essentially in time and storage O(a(G)m+n) for a network G of n nodes and m arcs, where a(G) is the arboricity of G (which is roughly proportional to the maximum average degree of any induced subgraph in G). We evaluated Core&Peel on five PPI networks of large size and one of medium size from both yeast and homo sapiens, comparing its performance against those of ten state-of-the-art methods. We demonstrate that Core&Peel consistently outperforms the ten competitors in its ability to identify known protein complexes and in the functional coherence of its predictions. Our method is remarkably robust, being quite insensible to the injection of random interactions. Core&Peel is also empirically efficient attaining the second best running time over large networks among the tested algorithms. Our algorithm Core&Peel pushes forward the state-of the-art in PPIN clustering providing an algorithmic solution with polynomial running time that attains experimentally demonstrable good output quality and speed on challenging large real networks.

  10. Modeling of protein binary complexes using structural mass spectrometry data

    PubMed Central

    Kamal, J.K. Amisha; Chance, Mark R.

    2008-01-01

    In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints—positive and/or negative—in the docking step and are also used to decide the type of energy filter—electrostatics or desolvation—in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure. PMID:18042684

  11. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    PubMed

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  12. Over-expression and purification strategies for recombinant multi-protein oligomers: a case study of Mycobacterium tuberculosis σ/anti-σ factor protein complexes.

    PubMed

    Thakur, Krishan Gopal; Jaiswal, Ravi Kumar; Shukla, Jinal K; Praveena, T; Gopal, B

    2010-12-01

    The function of a protein in a cell often involves coordinated interactions with one or several regulatory partners. It is thus imperative to characterize a protein both in isolation as well as in the context of its complex with an interacting partner. High resolution structural information determined by X-ray crystallography and Nuclear Magnetic Resonance offer the best route to characterize protein complexes. These techniques, however, require highly purified and homogenous protein samples at high concentration. This requirement often presents a major hurdle for structural studies. Here we present a strategy based on co-expression and co-purification to obtain recombinant multi-protein complexes in the quantity and concentration range that can enable hitherto intractable structural projects. The feasibility of this strategy was examined using the σ factor/anti-σ factor protein complexes from Mycobacterium tuberculosis. The approach was successful across a wide range of σ factors and their cognate interacting partners. It thus appears likely that the analysis of these complexes based on variations in expression constructs and procedures for the purification and characterization of these recombinant protein samples would be widely applicable for other multi-protein systems. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Free energy landscapes of encounter complexes in protein-protein association.

    PubMed

    Camacho, C J; Weng, Z; Vajda, S; DeLisi, C

    1999-03-01

    We report the computer generation of a high-density map of the thermodynamic properties of the diffusion-accessible encounter conformations of four receptor-ligand protein pairs, and use it to study the electrostatic and desolvation components of the free energy of association. Encounter complex conformations are generated by sampling the translational/rotational space of the ligand around the receptor, both at 5-A and zero surface-to-surface separations. We find that partial desolvation is always an important effect, and it becomes dominant for complexes in which one of the reactants is neutral or weakly charged. The interaction provides a slowly varying attractive force over a small but significant region of the molecular surface. In complexes with no strong charge complementarity this region surrounds the binding site, and the orientation of the ligand in the encounter conformation with the lowest desolvation free energy is similar to the one observed in the fully formed complex. Complexes with strong opposite charges exhibit two types of behavior. In the first group, represented by barnase/barstar, electrostatics exerts strong orientational steering toward the binding site, and desolvation provides some added adhesion within the local region of low electrostatic energy. In the second group, represented by the complex of kallikrein and pancreatic trypsin inhibitor, the overall stability results from the rather nonspecific electrostatic attraction, whereas the affinity toward the binding region is determined by desolvation interactions.

  14. Human Cytomegalovirus Protein US2 Interferes with the Expression of Human HFE, a Nonclassical Class I Major Histocompatibility Complex Molecule That Regulates Iron Homeostasis

    PubMed Central

    Ben-Arieh, Sayeh Vahdati; Zimerman, Baruch; Smorodinsky, Nechama I.; Yaacubovicz, Margalit; Schechter, Chana; Bacik, Igor; Gibbs, Jim; Bennink, Jack R.; Yewdell, Jon W.; Coligan, John E.; Firat, Hüseyin; Lemonnier, François; Ehrlich, Rachel

    2001-01-01

    HFE is a nonclassical class I major histocompatibility complex (MHC) molecule that is mutated in the autosomal recessive iron overload disease hereditary hemochromatosis. There is evidence linking HFE with reduced iron uptake by the transferrin receptor (TfR). Using a panel of HFE and TfR monoclonal antibodies to examine human HFE (hHFE)-expressing cell lines, we demonstrate the expression of stable and fully glycosylated TfR-free and TfR-associated hHFE/β2m complexes. We show that both the stability and assembly of hHFE complexes can be modified by the human cytomegalovirus (HCMV) viral protein US2, known to interfere with the expression of classical class I MHC molecules. HCMV US2, but not US11, targets HFE molecules for degradation by the proteasome. Whether this interference with the regulation of iron metabolism by a viral protein is a means of potentiating viral replication remains to be determined. The reduced expression of classical class I MHC and HFE complexes provides the virus with an efficient tool for altering cellular metabolism and escaping certain immune responses. PMID:11581431

  15. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinh, Thanh-Chung; Renger, Thomas, E-mail: thomas.renger@jku.at

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. Somore » far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low

  16. Lineshape theory of pigment-protein complexes: How the finite relaxation time of nuclei influences the exciton relaxation-induced lifetime broadening.

    PubMed

    Dinh, Thanh-Chung; Renger, Thomas

    2016-07-21

    In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures

  17. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    PubMed

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230-180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110-85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the reaction of quinones

  18. Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg-de Vries equation

    NASA Astrophysics Data System (ADS)

    Ma, Li-Yuan; Shen, Shou-Feng; Zhu, Zuo-Nong

    2017-10-01

    In this paper, we prove that an integrable nonlocal complex modified Korteweg-de Vries (mKdV) equation introduced by Ablowitz and Musslimani [Nonlinearity 29, 915-946 (2016)] is gauge equivalent to a spin-like model. From the gauge equivalence, one can see that there exists significant difference between the nonlocal complex mKdV equation and the classical complex mKdV equation. Through constructing the Darboux transformation for nonlocal complex mKdV equation, a variety of exact solutions including dark soliton, W-type soliton, M-type soliton, and periodic solutions are derived.

  19. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    NASA Astrophysics Data System (ADS)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  20. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    PubMed

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  1. Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo.

    PubMed

    Stefan, E; Aquin, S; Berger, N; Landry, C R; Nyfeler, B; Bouvier, M; Michnick, S W

    2007-10-23

    The G protein-coupled receptor (GPCR) superfamily represents the most important class of pharmaceutical targets. Therefore, the characterization of receptor cascades and their ligands is a prerequisite to discovering novel drugs. Quantification of agonist-induced second messengers and downstream-coupled kinase activities is central to characterization of GPCRs or other pathways that converge on GPCR-mediated signaling. Furthermore, there is a need for simple, cell-based assays that would report on direct or indirect actions on GPCR-mediated effectors of signaling. More generally, there is a demand for sensitive assays to quantify alterations of protein complexes in vivo. We describe the development of a Renilla luciferase (Rluc)-based protein fragment complementation assay (PCA) that was designed specifically to investigate dynamic protein complexes. We demonstrate these features for GPCR-induced disassembly of protein kinase A (PKA) regulatory and catalytic subunits, a key effector of GPCR signaling. Taken together, our observations show that the PCA allows for direct and accurate measurements of live changes of absolute values of protein complex assembly and disassembly as well as cellular imaging and dynamic localization of protein complexes. Moreover, the Rluc-PCA has a sufficiently high signal-to-background ratio to identify endogenously expressed Galpha(s) protein-coupled receptors. We provide pharmacological evidence that the phosphodiesterase-4 family selectively down-regulates constitutive beta-2 adrenergic- but not vasopressin-2 receptor-mediated PKA activities. Our results show that the sensitivity of the Rluc-PCA simplifies the recording of pharmacological profiles of GPCR-based candidate drugs and could be extended to high-throughput screens to identify novel direct modulators of PKA or upstream components of GPCR signaling cascades.

  2. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement of...

  3. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement of...

  4. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement of...

  5. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement of...

  6. 40 CFR 174.505 - Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protein (mCry3A) in corn; exemption from the requirement of a tolerance. 174.505 Section 174.505... thuringiensis modified Cry3A protein (mCry3A) in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis modified Cry3A protein (mCry3A) in corn are exempt from the requirement of...

  7. 2’f-OMe-phosphorodithioate modified siRNAs show increased loading into the RISC complex and enhanced anti-tumour activity

    PubMed Central

    Wu, Sherry Y.; Yang, Xianbin; Gharpure, Kshipra M.; Hatakeyama, Hiroto; Egli, Martin; McGuire, Michael H.; Nagaraja, Archana S.; Miyake, Takahito M.; Rupaimoole, Rajesha; Pecot, Chad V.; Taylor, Morgan; Pradeep, Sunila; Sierant, Malgorzata; Rodriguez-Aguayo, Cristian; Choi, Hyun J.; Previs, Rebecca A.; Armaiz-Pena, Guillermo N.; Huang, Li; Martinez, Carlos; Hassell, Tom; Ivan, Cristina; Sehgal, Vasudha; Singhania, Richa; Han, Hee-Dong; Su, Chang; Kim, Ji Hoon; Dalton, Heather J.; Kowali, Chandra; Keyomarsi, Khandan; McMillan, Nigel A.J.; Overwijk, Willem W.; Liu, Jinsong; Lee, Ju-Seog; Baggerly, Keith A.; Lopez-Berestein, Gabriel; Ram, Prahlad T.; Nawrot, Barbara; Sood, Anil K.

    2014-01-01

    Improving small interfering RNA (siRNA) efficacy in target cell populations remains a challenge to its clinical implementation. Here, we report a chemical modification, consisting of phosphorodithioate (PS2) and 2’-O-Methyl (2’-OMe) MePS2 on one nucleotide that significantly enhances potency and resistance to degradation for various siRNAs. We find enhanced potency stems from an unforeseen increase in siRNA loading to the RNA-induced silencing complex, likely due to the unique interaction mediated by 2’-OMe and PS2. We demonstrate the therapeutic utility of MePS2 siRNAs in chemoresistant ovarian cancer mouse models via targeting GRAM Domain Containing 1B (GRAMD1B), a protein involved in chemoresistance. GRAMD1B silencing is achieved in tumors following MePS2-modified siRNA treatment, leading to a synergistic anti-tumor effect in combination with paclitaxel. Given the previously limited success in enhancing siRNA potency with chemically modified siRNAs, our findings represent an important advance in siRNA design with the potential for application in numerous cancer types. PMID:24619206

  8. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    PubMed Central

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186

  9. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    PubMed

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Protein sorting in complex plastids.

    PubMed

    Sheiner, Lilach; Striepen, Boris

    2013-02-01

    Taming a cyanobacterium in a pivitol event of endosymbiosis brought photosynthesis to eukaryotes, and gave rise to the plastids found in glaucophytes, red and green algae, and the descendants of the latter, the plants. Ultrastructural as well as molecular research over the last two decades has demonstrated that plastids have enjoyed surprising lateral mobility across the tree of life. Numerous independent secondary and tertiary endosymbiosis have led to a spread of plastids into a variety of, up to that point, non-photosynthetic lineages. Happily eating and subsequently domesticating one another protists conquered a wide variety of ecological niches. The elaborate evolution of secondary, or complex, plastids is reflected in the numerous membranes that bound them (three or four compared to the two membranes of the primary plastids). Gene transfer to the host nucleus is a hallmark of endosymbiosis and provides centralized cellular control. Here we review how these proteins find their way back into the stroma of the organelle and describe the advances in the understanding of the molecular mechanisms that allow protein translocation across four membranes. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Published by Elsevier B.V.

  11. An automated method for finding molecular complexes in large protein interaction networks

    PubMed Central

    Bader, Gary D; Hogue, Christopher WV

    2003-01-01

    Background Recent advances in proteomics technologies such as two-hybrid, phage display and mass spectrometry have enabled us to create a detailed map of biomolecular interaction networks. Initial mapping efforts have already produced a wealth of data. As the size of the interaction set increases, databases and computational methods will be required to store, visualize and analyze the information in order to effectively aid in knowledge discovery. Results This paper describes a novel graph theoretic clustering algorithm, "Molecular Complex Detection" (MCODE), that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes. The method is based on vertex weighting by local neighborhood density and outward traversal from a locally dense seed protein to isolate the dense regions according to given parameters. The algorithm has the advantage over other graph clustering methods of having a directed mode that allows fine-tuning of clusters of interest without considering the rest of the network and allows examination of cluster interconnectivity, which is relevant for protein networks. Protein interaction and complex information from the yeast Saccharomyces cerevisiae was used for evaluation. Conclusion Dense regions of protein interaction networks can be found, based solely on connectivity data, many of which correspond to known protein complexes. The algorithm is not affected by a known high rate of false positives in data from high-throughput interaction techniques. The program is available from . PMID:12525261

  12. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    PubMed

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Serum lipids modify periodontal infection - C-reactive protein association.

    PubMed

    Haro, Anniina; Saxlin, Tuomas; Suominen, Anna-Liisa; Ylöstalo, Pekka; Leiviskä, Jaana; Tervonen, Tellervo; Knuuttila, Matti

    2012-09-01

    To investigate whether low-grade inflammation-related factors such as serum low-density (LDL-C) and high-density lipoprotein cholesterol (HDL-C) modify the association between periodontal infection and C-reactive protein. This study was based on a subpopulation of the Health 2000 Survey, which consisted of dentate, non-diabetic, non-rheumatic subjects who were 30-49 years old (n = 2710). The extent of periodontal infection was measured by means of the number of teeth with periodontal pocket ≥4 mm and teeth with periodontal pocket ≥6 mm and systemic inflammation using high sensitive C-reactive protein. The extent of periodontal infection was associated with elevated levels of C-reactive protein among those subjects whose HDL-C value was below the median value of 1.3 mmol/l or LDL-C above the median value of 3.4 mmol/l. Among those with HDL-C ≥ 1.3 mmol/l or LDL-C ≤ 3.4 mmol/l, the association between periodontal infection and serum concentrations of C-reactive protein was practically non-existent. This study suggests that the relation of periodontal infection to the systemic inflammatory condition is more complicated than previously presumed. The findings of this study suggest that the possible systemic effect of periodontal infection is dependent on serum lipid composition. © 2012 John Wiley & Sons A/S.

  14. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  15. Complex dynamics and enhanced photosensitivity in a modified Belousov-Zhabotinsky reaction

    NASA Astrophysics Data System (ADS)

    Li, Nan; Zhao, Jinpei; Wang, Jichang

    2008-06-01

    This study presents an experimental investigation of nonlinear dynamics in a modified Belousov-Zhabotinsky (BZ) reaction, in which the addition of 1,4-benzoquinone induced various complex behaviors such as mixed-mode oscillations and consecutive period-adding bifurcations. In addition, the presence of 1,4-benzoquinone significantly enhanced the photosensitivity of the ferroin-catalyzed BZ system, in which light-induced transitions between simple and complex oscillations have been achieved. Mechanistic study suggests that the influence of benzoquinone may arise from its interactions with the metal catalyst ferroin/ferriin, where cyclic voltammograms illustrate that the presence of benzoquinone causes an increase in the redox potential of ferroin/ferriin couple, which may consequently alternate the oxidation and reduction paths of the catalyst.

  16. A Localized Complex of Two Protein Oligomers Controls the Orientation of Cell Polarity

    PubMed Central

    Lasker, Keren; Ahrens, Daniel G.; Eckart, Michael R.

    2017-01-01

    ABSTRACT Signaling hubs at bacterial cell poles establish cell polarity in the absence of membrane-bound compartments. In the asymmetrically dividing bacterium Caulobacter crescentus, cell polarity stems from the cell cycle-regulated localization and turnover of signaling protein complexes in these hubs, and yet the mechanisms that establish the identity of the two cell poles have not been established. Here, we recapitulate the tripartite assembly of a cell fate signaling complex that forms during the G1-S transition. Using in vivo and in vitro analyses of dynamic polar protein complex formation, we show that a polymeric cell polarity protein, SpmX, serves as a direct bridge between the PopZ polymeric network and the cell fate-directing DivJ histidine kinase. We demonstrate the direct binding between these three proteins and show that a polar microdomain spontaneously assembles when the three proteins are coexpressed heterologously in an Escherichia coli test system. The relative copy numbers of these proteins are essential for complex formation, as overexpression of SpmX in Caulobacter reorganizes the polarity of the cell, generating ectopic cell poles containing PopZ and DivJ. Hierarchical formation of higher-order SpmX oligomers nucleates new PopZ microdomain assemblies at the incipient lateral cell poles, driving localized outgrowth. By comparison to self-assembling protein networks and polar cell growth mechanisms in other bacterial species, we suggest that the cooligomeric PopZ-SpmX protein complex in Caulobacter illustrates a paradigm for coupling cell cycle progression to the controlled geometry of cell pole establishment. PMID:28246363

  17. CryoEM and image sorting for flexible protein/DNA complexes.

    PubMed

    Villarreal, Seth A; Stewart, Phoebe L

    2014-07-01

    Intrinsically disordered regions of proteins and conformational flexibility within complexes can be critical for biological function. However, disorder, flexibility, and heterogeneity often hinder structural analyses. CryoEM and single particle image processing techniques offer the possibility of imaging samples with significant flexibility. Division of particle images into more homogenous subsets after data acquisition can help compensate for heterogeneity within the sample. We present the utility of an eigenimage sorting analysis for examining two protein/DNA complexes with significant conformational flexibility and heterogeneity. These complexes are integral to the non-homologous end joining pathway, and are involved in the repair of double strand breaks of DNA. Both complexes include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and biotinylated DNA with bound streptavidin, with one complex containing the Ku heterodimer. Initial 3D reconstructions of the two DNA-PKcs complexes resembled a cryoEM structure of uncomplexed DNA-PKcs without additional density clearly attributable to the remaining components. Application of eigenimage sorting allowed division of the DNA-PKcs complex datasets into more homogeneous subsets. This led to visualization of density near the base of the DNA-PKcs that can be attributed to DNA, streptavidin, and Ku. However, comparison of projections of the subset structures with 2D class averages indicated that a significant level of heterogeneity remained within each subset. In summary, image sorting methods allowed visualization of extra density near the base of DNA-PKcs, suggesting that DNA binds in the vicinity of the base of the molecule and potentially to a flexible region of DNA-PKcs. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. New procyanidin B3-human salivary protein complexes by mass spectrometry. Effect of salivary protein profile, tannin concentration, and time stability.

    PubMed

    Perez-Gregorio, Maria Rosa; Mateus, Nuno; De Freitas, Victor

    2014-10-15

    Several factors could influence the tannin-protein interaction such as the human salivary protein profile, the tannin tested, and the tannin/protein ratio. The goal of this study aims to study the effect of different salivas (A, B, and C) and different tannin concentrations (0.5 and 1 mg/mL) on the interaction process as well as the complex's stability over time. This study is focused on the identification of new procyanidin B3-human salivary protein complexes. Thus, 48 major B3-human salivary protein aggregates were identified regardless of the saliva and tannin concentration tested. A higher number of aggregates was found at lower tannin concentration. Moreover, the number of protein moieties involved in the aggregation process was higher when the tannin concentration was also higher. The selectivity of the different groups of proteins to bind tannin was also confirmed. It was also verified that the B3-human salivary protein complexes formed evolved over time.

  19. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mena, Natalia P.; Millennium Institute of Cell Dynamics and Biotechnology, Santiago; Bulteau, Anne Laure

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters aremore » involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given

  20. An updated version of NPIDB includes new classifications of DNA–protein complexes and their families

    PubMed Central

    Zanegina, Olga; Kirsanov, Dmitriy; Baulin, Eugene; Karyagina, Anna; Alexeevski, Andrei; Spirin, Sergey

    2016-01-01

    The recent upgrade of nucleic acid–protein interaction database (NPIDB, http://npidb.belozersky.msu.ru/) includes a newly elaborated classification of complexes of protein domains with double-stranded DNA and a classification of families of related complexes. Our classifications are based on contacting structural elements of both DNA: the major groove, the minor groove and the backbone; and protein: helices, beta-strands and unstructured segments. We took into account both hydrogen bonds and hydrophobic interaction. The analyzed material contains 1942 structures of protein domains from 748 PDB entries. We have identified 97 interaction modes of individual protein domain–DNA complexes and 17 DNA–protein interaction classes of protein domain families. We analyzed the sources of diversity of DNA–protein interaction modes in different complexes of one protein domain family. The observed interaction mode is sometimes influenced by artifacts of crystallization or diversity in secondary structure assignment. The interaction classes of domain families are more stable and thus possess more biological sense than a classification of single complexes. Integration of the classification into NPIDB allows the user to browse the database according to the interacting structural elements of DNA and protein molecules. For each family, we present average DNA shape parameters in contact zones with domains of the family. PMID:26656949

  1. Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners

    PubMed Central

    Yu, Seok-Ho; Boyce, Michael; Wands, Amberlyn M.; Bond, Michelle R.; Bertozzi, Carolyn R.; Kohler, Jennifer J.

    2012-01-01

    O-linked β-N-acetylglucosamine (O-GlcNAc) is a reversible posttranslational modification found on hundreds of nuclear and cytoplasmic proteins in higher eukaryotes. Despite its ubiquity and essentiality in mammals, functional roles for the O-GlcNAc modification remain poorly defined. Here we develop a combined genetic and chemical approach that enables introduction of the diazirine photocrosslinker onto the O-GlcNAc modification in cells. We engineered mammalian cells to produce diazirine-modified O-GlcNAc by expressing a mutant form of UDP-GlcNAc pyrophosphorylase and subsequently culturing these cells with a cell-permeable, diazirine-modified form of GlcNAc-1-phosphate. Irradiation of cells with UV light activated the crosslinker, resulting in formation of covalent bonds between O-GlcNAc-modified proteins and neighboring molecules, which could be identified by mass spectrometry. We used this method to identify interaction partners for the O-GlcNAc-modified FG-repeat nucleoporins. We observed crosslinking between FG-repeat nucleoporins and nuclear transport factors, suggesting that O-GlcNAc residues are intimately associated with essential recognition events in nuclear transport. Further, we propose that the method reported here could find widespread use in investigating the functional consequences of O-GlcNAcylation. PMID:22411826

  2. Lateral release of proteins from the TOM complex into the outer membrane of mitochondria.

    PubMed

    Harner, Max; Neupert, Walter; Deponte, Marcel

    2011-07-15

    The TOM complex of the outer membrane of mitochondria is the entry gate for the vast majority of precursor proteins that are imported into the mitochondria. It is made up by receptors and a protein conducting channel. Although precursor proteins of all subcompartments of mitochondria use the TOM complex, it is not known whether its channel can only mediate passage across the outer membrane or also lateral release into the outer membrane. To study this, we have generated fusion proteins of GFP and Tim23 which are inserted into the inner membrane and, at the same time, are spanning either the TOM complex or are integrated into the outer membrane. Our results demonstrate that the TOM complex, depending on sequence determinants in the precursors, can act both as a protein conducting pore and as an insertase mediating lateral release into the outer membrane.

  3. A MODIFIED PROTEIN ASSAY FROM MICROGRAM TO LOW NANOGRAM LEVELS IN DILUTE SAMPLES

    PubMed Central

    Heda, Ghanshyam D.; Kunwar, Upasana; Heda, Rajiv P.

    2013-01-01

    In this paper we present a modified and improved protein assay that was previously described as ‘amidoschwarz assay’ by Schaffner and Weissmann (Anal. Biochem. 56, 1973, 502–514). Our improved protein assay is user-friendly and 30 to 40 times more sensitive than the earlier method. The assay was developed into 3 formats (maco, micro, and nanoassay) with TCA as protein precipitating agent; measuring up to 96 samples. The macro and micro formats of this assay require a single reagent staining with amido black of protein dots, bound to nitrocellulose membrane with lowest protein measurements to 1 μg and 0.1 μg respectively. The nanoassay on the other hand with combination staining of amido black followed by colloidal gold can extend the detection limit to 2.5 ng of protein. Protein concentrations were determined by densitometry and/or spectrophotometry. This assay is compatible with many ionic and non-ionic detergents. This improved protein assay provides an additional choice to researchers in measuring total protein concentration accurately in dilute biological samples as low as 0.125 μg/ml, prior to their biochemical analysis such as in comparative proteomics. PMID:24135655

  4. A novel Pfs38 protein complex on the surface of Plasmodium falciparum blood-stage merozoites.

    PubMed

    Paul, Gourab; Deshmukh, Arunaditya; Kaur, Inderjeet; Rathore, Sumit; Dabral, Surbhi; Panda, Ashutosh; Singh, Susheel Kumar; Mohmmed, Asif; Theisen, Michael; Malhotra, Pawan

    2017-02-16

    The Plasmodium genome encodes for a number of 6-Cys proteins that contain a module of six cysteine residues forming three intramolecular disulphide bonds. These proteins have been well characterized at transmission as well as hepatic stages of the parasite life cycle. In the present study, a large complex of 6-Cys proteins: Pfs41, Pfs38 and Pfs12 and three other merozoite surface proteins: Glutamate-rich protein (GLURP), SERA5 and MSP-1 were identified on the Plasmodium falciparum merozoite surface. Recombinant 6-cys proteins i.e. Pfs38, Pfs12, Pfs41 as well as PfMSP-1 65 were expressed and purified using Escherichia coli expression system and antibodies were raised against each of these proteins. These antibodies were used to immunoprecipitate the native proteins and their associated partners from parasite lysate. ELISA, Far western, surface plasmon resonance and glycerol density gradient fractionation were carried out to confirm the respective interactions. Furthermore, erythrocyte binding assay with 6-cys proteins were undertaken to find out their possible role in host-parasite infection and seropositivity was assessed using Indian and Liberian sera. Immunoprecipitation of parasite-derived polypeptides, followed by LC-MS/MS analysis, identified a large Pfs38 complex comprising of 6-cys proteins: Pfs41, Pfs38, Pfs12 and other merozoite surface proteins: GLURP, SERA5 and MSP-1. The existence of such a complex was further corroborated by several protein-protein interaction tools, co-localization and co-sedimentation analysis. Pfs38 protein of Pfs38 complex binds to host red blood cells (RBCs) directly via glycophorin A as a receptor. Seroprevalence analysis showed that of the six antigens, prevalence varied from 40 to 99%, being generally highest for MSP-1 65 and GLURP proteins. Together the data show the presence of a large Pfs38 protein-associated complex on the parasite surface which is involved in RBC binding. These results highlight the complex molecular

  5. Functional mapping of protein-protein interactions in an enzyme complex by directed evolution.

    PubMed

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84-90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84-86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.

  6. Functional Mapping of Protein-Protein Interactions in an Enzyme Complex by Directed Evolution

    PubMed Central

    Roderer, Kathrin; Neuenschwander, Martin; Codoni, Giosiana; Sasso, Severin; Gamper, Marianne; Kast, Peter

    2014-01-01

    The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84–90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84–86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes. PMID:25551646

  7. Bioluminescence methodology for the detection of protein-protein interactions within the voltage-gated sodium channel macromolecular complex.

    PubMed

    Shavkunov, Alexander; Panova, Neli; Prasai, Anesh; Veselenak, Ron; Bourne, Nigel; Stoilova-McPhie, Svetla; Laezza, Fernanda

    2012-04-01

    Protein-protein interactions are critical molecular determinants of ion channel function and emerging targets for pharmacological interventions. Yet, current methodologies for the rapid detection of ion channel macromolecular complexes are still lacking. In this study we have adapted a split-luciferase complementation assay (LCA) for detecting the assembly of the voltage-gated Na+ (Nav) channel C-tail and the intracellular fibroblast growth factor 14 (FGF14), a functionally relevant component of the Nav channelosome that controls gating and targeting of Nav channels through direct interaction with the channel C-tail. In the LCA, two complementary N-terminus and C-terminus fragments of the firefly luciferase were fused, respectively, to a chimera of the CD4 transmembrane segment and the C-tail of Nav1.6 channel (CD4-Nav1.6-NLuc) or FGF14 (CLuc-FGF14). Co-expression of CLuc-FGF14 and CD4-Nav1.6-NLuc in live cells led to a robust assembly of the FGF14:Nav1.6 C-tail complex, which was attenuated by introducing single-point mutations at the predicted FGF14:Nav channel interface. To evaluate the dynamic regulation of the FGF14:Nav1.6 C-tail complex by signaling pathways, we investigated the effect of kinase inhibitors on the complex formation. Through a platform of counter screenings, we show that the p38/MAPK inhibitor, PD169316, and the IκB kinase inhibitor, BAY 11-7082, reduce the FGF14:Nav1.6 C-tail complementation, highlighting a potential role of the p38MAPK and the IκB/NFκB pathways in controlling neuronal excitability through protein-protein interactions. We envision the methodology presented here as a new valuable tool to allow functional evaluations of protein-channel complexes toward probe development and drug discovery targeting ion channels implicated in human disorders.

  8. A New Look on Protein-Polyphenol Complexation during Honey Storage: Is This a Random or Organized Event with the Help of Dirigent-Like Proteins?

    PubMed Central

    Brudzynski, Katrina; Sjaarda, Calvin; Maldonado-Alvarez, Liset

    2013-01-01

    Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002) with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS –PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT) on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a) high molecular weight complexes (230–180 kDa) enriched in proteins but possessing a limited reducing activity toward the NBT and (b) lower molecular size complexes (110–85 kDa) enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, “protein-type” complexes were formed by protein cross-linking, while in the smaller, “polyphenol-type” complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS) analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the

  9. Preparation of milk protein-vitamin A complexes and their evaluation for vitamin A binding ability.

    PubMed

    Gupta, Chitra; Arora, Sumit; Syama, M A; Sharma, Apurva

    2017-12-15

    The recent trends for consumption of low fat and fat free foods have led to an increase in deficiencies of vitamin A. Vitamin A is susceptible to light and heat and thus require stabilization in aqueous medium. Stability can be improved by binding of vitamin A to milk protein. In the present research work, succinylated milk proteins were also prepared. 3.2 mol of succinic anhydride/mole of lysine content gave maximum degree of succinylation for both sodium caseinate and milk protein concentrate. Native, reassembled and succinylated milk proteins were used for the preparation of milk protein-Vitamin A (Vit A) complexes. These complexes were further evaluated for unbound vitamin A, ability of milk protein to bind vitamin A and solubility of protein and vitamin A as affected by complexation. Estimation of unbound vitamin A in milk protein-Vit A complexes was carried out using ammonium sulphate for precipitation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    PubMed

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  11. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    PubMed

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  12. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.

    PubMed

    Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J

    2007-07-13

    In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.

  13. Structural Assembly of Multidomain Proteins and Protein Complexes Guided by the Overall Rotational Diffusion Tensor

    PubMed Central

    Ryabov, Yaroslav; Fushman, David

    2008-01-01

    We present a simple and robust approach that uses the overall rotational diffusion tensor as a structural constraint for domain positioning in multidomain proteins and protein-protein complexes. This method offers the possibility to use NMR relaxation data for detailed structure characterization of such systems provided the structures of individual domains are available. The proposed approach extends the concept of using long-range information contained in the overall rotational diffusion tensor. In contrast to the existing approaches, we use both the principal axes and principal values of protein’s rotational diffusion tensor to determine not only the orientation but also the relative positioning of the individual domains in a protein. This is achieved by finding the domain arrangement in a molecule that provides the best possible agreement with all components of the overall rotational diffusion tensor derived from experimental data. The accuracy of the proposed approach is demonstrated for two protein systems with known domain arrangement and parameters of the overall tumbling: the HIV-1 protease homodimer and Maltose Binding Protein. The accuracy of the method and its sensitivity to domain positioning is also tested using computer-generated data for three protein complexes, for which the experimental diffusion tensors are not available. In addition, the proposed method is applied here to determine, for the first time, the structure of both open and closed conformations of Lys48-linked di-ubiquitin chain, where domain motions render impossible accurate structure determination by other methods. The proposed method opens new avenues for improving structure characterization of proteins in solution. PMID:17550252

  14. Protein interactions and complexes in human microRNA biogenesis and function

    PubMed Central

    Perron, Marjorie P.; Provost, Patrick

    2010-01-01

    Encoded in the genome of most eukaryotes, microRNAs (miRNAs) have been proposed to regulate specifically up to 90% of human genes through a process known as miRNA-guided RNA silencing. The aim of this review is to present this process as the integration of a succession of specialized molecular machines exerting well defined functions. The nuclear microprocessor complex initially recognizes and processes its primary miRNA substrate into a miRNA precursor (pre-miRNA). This structure is then exported to the cytoplasm by the Exportin-5 complex where it is presented to the pre-miRNA processing complex. Following pre-miRNA conversion into a miRNA:miRNA* duplex, this complex is assembled into a miRNA-containing ribonucleoprotein (miRNP) complex, after which the miRNA strand is selected. The degree of complementarity of the miRNA for its messenger RNA (mRNA) target guides the recruitment of the miRNP complex. Initially repressing its translation, the miRNP-silenced mRNA is directed to the P-bodies, where the mRNA is either released from its inhibition upon a cellular signal and/or actively degraded. The potency and specificity of miRNA biogenesis and function rely on the distinct protein·protein, protein·RNA and RNA:RNA interactions found in different complexes, each of which fulfill a specific function in a well orchestrated process. PMID:17981733

  15. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR)

    NASA Astrophysics Data System (ADS)

    Laszlo, Kenneth J.; Bush, Matthew F.

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.

  16. Protein corona - from molecular adsorption to physiological complexity.

    PubMed

    Treuel, Lennart; Docter, Dominic; Maskos, Michael; Stauber, Roland H

    2015-01-01

    In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP-protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs.

  17. Enhanced anti-cancer efficacy to cancer cells by doxorubicin loaded water-soluble amino acid-modified β-cyclodextrin platinum complexes.

    PubMed

    Zhao, Mei-Xia; Zhao, Meng; Zeng, Er-Zao; Li, Yang; Li, Jin-Ming; Cao, Qian; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2014-08-01

    The effective targeted delivery of insoluble anticancer drugs to increase the intracellular drug concentration has become a focus in cancer therapy. In this system, two water-soluble amino acid-modified β-cyclodextrin (β-CD) platinum complexes were reported. They showed preferable binding ability to DNA and effective inhibition to cancer cells, and they could bind and unwind pBR322 DNA in a manner which was similar to cisplatin. Besides, our platinum complexes could effectively deliver the anticancer drug doxorubicin (Dox) into cells and had higher cell inhibition ratio, but less toxicity on the normal cells, compared with cancer cells. In this combination system, Dox was encapsulated into the hydrophobic cavities of β-CD at the optimum molar ratio of 1:1, which were validated by UV-visible (UV-vis) absorption spectroscopy, fluorescence spectroscopy and MTT experiments. Moreover, the combination system had higher cell inhibition ratio than free Dox and amino acid-modified β-CD platinum complexes, and the results of high content screening (HCS) showed that Dox-loaded amino acid-modified β-CD platinum complexes could permeate the cell membrane and enter cells, suggesting the efficient transport of Dox across the membranes with the aid of the β-CD. We expect that the amino acid-modified β-CD platinum complexes will deliver the antitumor drug Dox to enhance intracellular drug accumulation and such combination system showed great potential as an antitumor drug. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pröpper, Kevin; Instituto de Biologia Molecular de Barcelona; Meindl, Kathrin

    2014-06-01

    The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described. Protein–DNA interactions play a major role in all aspects of genetic activity within an organism, such as transcription, packaging, rearrangement, replication and repair. The molecular detail of protein–DNA interactions can be best visualized through crystallography, and structures emphasizing insight into the principles of binding and base-sequence recognition are essential to understanding the subtleties of the underlying mechanisms. An increasing number of high-quality DNA-binding protein structure determinations have been witnessed despite themore » fact that the crystallographic particularities of nucleic acids tend to pose specific challenges to methods primarily developed for proteins. Crystallographic structure solution of protein–DNA complexes therefore remains a challenging area that is in need of optimized experimental and computational methods. The potential of the structure-solution program ARCIMBOLDO for the solution of protein–DNA complexes has therefore been assessed. The method is based on the combination of locating small, very accurate fragments using the program Phaser and density modification with the program SHELXE. Whereas for typical proteins main-chain α-helices provide the ideal, almost ubiquitous, small fragments to start searches, in the case of DNA complexes the binding motifs and DNA double helix constitute suitable search fragments. The aim of this work is to provide an effective library of search fragments as well as to determine the optimal ARCIMBOLDO strategy for the solution of this class of structures.« less

  19. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes.

    PubMed

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-10-18

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains-In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  20. Identification of O-linked β-d-N-acetylglucosamine-Modified Proteins from Arabidopsis

    PubMed Central

    Xu, Shou-Ling; Chalkley, Robert J.; Wang, Zhi-Yong; Burlingame, Alma L.

    2013-01-01

    The posttranslational modification of proteins with O-linked β-d-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues occurs in all animals and plants. This modification is dynamic and ubiquitous, and regulates many cellular processes, including transcription, signaling and cytokinesis and is associated with several diseases. Cycling of O-GlcNAc is tightly regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Plants have two OGTs, SPINDLY (SPY) and SECRET AGENT (SEC); disruption of both causes embryo lethality. Despite O-GlcNAc modification of proteins being discovered more than 20-years ago, identification and mapping of protein GlcNAcylation is still a challenging task. Here we describe the use of lectin affinity chromatography combined with electron transfer dissociation mass spectrometry to enrich and to detect O-GlcNAc modified peptides from Arabidopsis. PMID:22576084

  1. Structural and Functional Properties of Soy Protein Isolates Modified by Soy Soluble Polysaccharides.

    PubMed

    Xu, Yan-Teng; Liu, Ling-Ling

    2016-09-28

    Aiming to achieve the modification to soy protein isolate (SPI) by soy soluble polysaccharides (SSPS), electrically driven complex systems were first established in the environment of pH 3.0, and then reconstituted SPI particles with different SPI-SSPS ratios were obtained under freeze-drying process. Through this treatment, the structures of SPI particles were partly unfolded and adsorbed SSPS mainly via hydrophobic interactions and hydrogen bonding with larger particle sizes. The adherence of SSPS decreased the surface hydrophobicity of reconstituted SPI particles, but exerted not much influence on the emulsifying and foaming activities and increased the corresponding stabilities due to enhancing the unfolded extent of structure and improving the conformation flexibility. Reconstituted SPI-SSPS particles might rearrange and link each other due to the presence of SSPS on the air-water interface to better stabilize these systems. At SPI-SSPS ratio of 10:1, lower temperature was required to form gels with lower gel intensity and porous structure. The findings provide a further comprehension to the relationship between structures and functional properties of SPI modified by SSPS and the feasibility of applying these reconstituted particles to needed areas.

  2. Crystallization of Mitochondrial Respiratory Complex II from Chicken Heart: a Membrane Protein Complex Diffracting to 2.0 Å.

    PubMed Central

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward

    2006-01-01

    Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592

  3. Disassembly of synthetic Agrobacterium T-DNA–protein complexes via the host SCFVBF ubiquitin–ligase complex pathway

    PubMed Central

    Zaltsman, Adi; Lacroix, Benoît; Gafni, Yedidya; Citovsky, Vitaly

    2013-01-01

    One the most intriguing, yet least studied, aspects of the bacterium–host plant interaction is the role of the host ubiquitin/proteasome system (UPS) in the infection process. Increasing evidence indicates that pathogenic bacteria subvert the host UPS to facilitate infection. Although both mammalian and plant bacterial pathogens are known to use the host UPS, the first prokaryotic F-box protein, an essential component of UPS, was identified in Agrobacterium. During its infection, which culminates in genetic modification of the host cell, Agrobacterium transfers its T-DNA—as a complex (T-complex) with the bacterial VirE2 and host VIP1 proteins—into the host cell nucleus. There the T-DNA is uncoated from its protein components before undergoing integration into the host genome. It has been suggested that the host UPS mediates this uncoating process, but there is no evidence indicating that this activity can unmask the T-DNA molecule. Here we provide support for the idea that the plant UPS uncoats synthetic T-complexes via the Skp1/Cullin/F-box protein VBF pathway and exposes the T-DNA molecule to external enzymatic activity. PMID:23248273

  4. Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning.

    PubMed

    Wesolowski, Jordan; Weber, Mary M; Nawrotek, Agata; Dooley, Cheryl A; Calderon, Mike; St Croix, Claudette M; Hackstadt, Ted; Cherfils, Jacqueline; Paumet, Fabienne

    2017-05-02

    The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. IMPORTANCE Chlamydia trachomatis is an important cause of morbidity and a significant economic burden in the world. However, how Chlamydia develops its intracellular compartment, the so-called inclusion, is poorly understood. Using genetically engineered Chlamydia mutants, we discovered that the effector protein CT813 recruits and activates host ADP-ribosylation factor 1 (ARF1) and ARF4 to regulate microtubules. In this context, CT813 acts as a molecular platform that induces the posttranslational modification of microtubules around the inclusion. These cages are then used to reposition the Golgi complex during infection and promote the development of the inclusion. This study provides the first evidence that ARF1 and ARF4 play critical roles in controlling posttranslationally modified

  5. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    PubMed Central

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  6. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    PubMed

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Water-mediated protein-fluorophore interactions modulate the affinity of an ABC-ATPase/TNP-ADP complex.

    PubMed

    Oswald, Christine; Jenewein, Stefan; Smits, Sander H J; Holland, I Barry; Schmitt, Lutz

    2008-04-01

    TNP-modified nucleotides have been used extensively to study protein-nucleotide interactions. In the case of ABC-ATPases, application of these powerful tools has been greatly restricted due to the significantly higher affinity of the TNP-nucleotide for the corresponding ABC-ATPase in comparison to the non-modified nucleotides. To understand the molecular changes occurring upon binding of the TNP-nucleotide to an ABC-ATPase, we have determined the crystal structure of the TNP-ADP/HlyB-NBD complex at 1.6A resolution. Despite the higher affinity of TNP-ADP, no direct fluorophore-protein interactions were observed. Unexpectedly, only water-mediated interactions were detected between the TNP moiety and Tyr(477), that is engaged in pi-pi stacking with the adenine ring, as well as with two serine residues (Ser(504) and Ser(509)) of the Walker A motif. Interestingly, the side chains of these two serine residues adopt novel conformations that are not observed in the corresponding ADP structure. However, in the crystal structure of the S504A mutant, which binds TNP-ADP with similar affinity to the wild type enzyme, a novel TNP-water interaction compensates for the missing serine side chain. Since this water molecule is not present in the wild type enzyme, these results suggest that only water-mediated interactions provide a structural explanation for the increased affinity of TNP-nucleotides towards ABC-ATPases. However, our results also imply that in silico approaches such as docking or modeling cannot directly be applied to generate 'affinity-adopted' ADP- or ATP-analogs for ABC-ATPases.

  8. Biochemical characterization of native Usher protein complexes from a vesicular subfraction of tracheal epithelial cells.

    PubMed

    Zallocchi, Marisa; Sisson, Joseph H; Cosgrove, Dominic

    2010-02-16

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in nondetergent buffer and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15, and VLGR-1 and a different one at the top of the gradient that included all of the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100-200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins cosediment into the gradient at a sedimentation coefficient of approximately 50 S, correlating with a predicted molecular mass of 2 x 10(6) Da. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher protein complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors.

  9. BIOCHEMICAL CHARACTERIZATION OF NATIVE USHER PROTEIN COMPLEXES FROM A VESICULAR SUBFRACTION OF TRACHEAL EPITHELIAL CELLS†

    PubMed Central

    Zallocchi, Marisa; Sisson, Joseph H.; Cosgrove, Dominic

    2010-01-01

    Usher syndrome is the major cause of deaf/blindness in the world. It is a genetic heterogeneous disorder, with nine genes already identified as causative for the disease. We noted expression of all known Usher proteins in bovine tracheal epithelial cells, and exploited this system for large-scale biochemical analysis of Usher protein complexes. The dissected epithelia were homogenized in non-detergent buffer, and sedimented on sucrose gradients. At least two complexes were evident after the first gradient: one formed by specific isoforms of CDH23, PCDH15 and VLGR-1, and a different one at the top of the gradient that included all the Usher proteins and rab5, a transport vesicle marker. TEM analysis of these top fractions found them enriched in 100–200 nm vesicles, confirming a vesicular association of the Usher complex(es). Immunoisolation of these vesicles confirmed some of the associations already predicted and identified novel interactions. When the vesicles are lysed in the presence of phenylbutyrate, most of the Usher proteins co-sediment into the gradient at a sedimentation coefficient of approximately 50S, correlating with a predicted molecular mass of 2 × 106 Daltons. Although it is still unclear whether there is only one complex or several independent complexes that are trafficked within distinct vesicular pools, this work shows for the first time that native Usher proteins complexes occur in vivo. This complex(es) is present primarily in transport vesicles at the apical pole of tracheal epithelial cells, predicting that Usher proteins may be directionally transported as complexes in hair cells and photoreceptors. PMID:20058854

  10. Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins.

    PubMed

    Serricchio, Mauro; Vissa, Adriano; Kim, Peter K; Yip, Christopher M; McQuibban, G Angus

    2018-04-01

    The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Screening for Glycosylphosphatidylinositol-Modified Cell Wall Proteins in Pichia pastoris and Their Recombinant Expression on the Cell Surface

    PubMed Central

    Zhang, Li; Liang, Shuli; Zhou, Xinying; Jin, Zi; Jiang, Fengchun; Han, Shuangyan; Zheng, Suiping

    2013-01-01

    Glycosylphosphatidylinositol (GPI)-anchored glycoproteins have various intrinsic functions in yeasts and different uses in vitro. In the present study, the genome of Pichia pastoris GS115 was screened for potential GPI-modified cell wall proteins. Fifty putative GPI-anchored proteins were selected on the basis of (i) the presence of a C-terminal GPI attachment signal sequence, (ii) the presence of an N-terminal signal sequence for secretion, and (iii) the absence of transmembrane domains in mature protein. The predicted GPI-anchored proteins were fused to an alpha-factor secretion signal as a substitute for their own N-terminal signal peptides and tagged with the chimeric reporters FLAG tag and mature Candida antarctica lipase B (CALB). The expression of fusion proteins on the cell surface of P. pastoris GS115 was determined by whole-cell flow cytometry and immunoblotting analysis of the cell wall extracts obtained by β-1,3-glucanase digestion. CALB displayed on the cell surface of P. pastoris GS115 with the predicted GPI-anchored proteins was examined on the basis of potential hydrolysis of p-nitrophenyl butyrate. Finally, 13 proteins were confirmed to be GPI-modified cell wall proteins in P. pastoris GS115, which can be used to display heterologous proteins on the yeast cell surface. PMID:23835174

  12. Molecular Dynamics Simulations of Protein-Ligand Complexes in Near Physiological Conditions

    NASA Astrophysics Data System (ADS)

    Wambo, Thierry Oscar

    Proteins are important molecules for their key functions. However, under certain circumstances, the function of these proteins needs to be regulated to keep us healthy. Ligands are small molecules often used to modulate the function of proteins. The binding affinity is a quantitative measure of how strong the ligand will modulate the function of the protein: a strong binding affinity will highly impact the performance of the protein. It becomes clear that it is critical to have appropriate techniques to accurately compute the binding affinity. The most difficult task in computer simulations is how to efficiently sample the space spanned by the ligand during the binding process. In this work, we have developed some schemes to compute the binding affinity of a ligand to a protein, and of a metal ion to a protein. Application of these techniques to some complexes yield results in agreement with experimental values. These methods are a brute force approach and make no assumption other than that the complexes are governed by the force field used. Specifically, we computed the free energy of binding between (1) human carbonic anhydrase II and the drug acetazolamide (hcaII-AZM), (2) human carbonic anhydrase II and the zinc ion (hcaII-Zinc), and (3) beta-lactoglobulin and five fatty acids complexes (BLG-FAs). We found the following free energies of binding in unit of kcal/mol: -12.96 +/-2.44 (-15.74) for hcaII-Zinc complex, -5.76+/-0.76 (-5.57) for BLG-OCA , -4.44+/-1.08 (-5.22) for BLG-DKA,-6.89+/-1.25 (-7.24) for BLG-DAO, -8.57+/-0.82 (-8.14) for BLG-MYR, -8.99+/-0.87 (-8.72) for BLG-PLM, and -11.87+/-1.8 (-10.8) for hcaII-AZM. The values inside the parentheses are experimental results. The simulations and quantitative analysis of each system provide interesting insights into the interactions between each entity and helps us to better understand the dynamics of these systems.

  13. Quantitative study of protein-protein interactions by quartz nanopipettes.

    PubMed

    Tiwari, Purushottam Babu; Astudillo, Luisana; Miksovska, Jaroslava; Wang, Xuewen; Li, Wenzhi; Darici, Yesim; He, Jin

    2014-09-07

    In this report, protein-modified quartz nanopipettes were used to quantitatively study protein-protein interactions in attoliter sensing volumes. As shown by numerical simulations, the ionic current through the conical-shaped nanopipette is very sensitive to the surface charge variation near the pore mouth. With the appropriate modification of negatively charged human neuroglobin (hNgb) onto the inner surface of a nanopipette, we were able to detect concentration-dependent current change when the hNgb-modified nanopipette tip was exposed to positively charged cytochrome c (Cyt c) with a series of concentrations in the bath solution. Such current change is due to the adsorption of Cyt c to the inner surface of the nanopipette through specific interactions with hNgb. In contrast, a smaller current change with weak concentration dependence was observed when Cyt c was replaced with lysozyme, which does not specifically bind to hNgb. The equilibrium dissociation constant (KD) for the Cyt c-hNgb complex formation was derived and the value matched very well with the result from surface plasmon resonance measurement. This is the first quantitative study of protein-protein interactions by a conical-shaped nanopore based on charge sensing. Our results demonstrate that nanopipettes can potentially be used as a label-free analytical tool to quantitatively characterize protein-protein interactions.

  14. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins.

    PubMed

    Tripathi, Arati; Mandon, Elisabet C; Gilmore, Reid; Rapoport, Tom A

    2017-05-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, wemore » report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.« less

  16. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore

    NASA Astrophysics Data System (ADS)

    Wells, Craig C.; Melnikov, Dmitriy V.; Gracheva, Maria E.

    2017-08-01

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  17. Brownian dynamics of a protein-polymer chain complex in a solid-state nanopore.

    PubMed

    Wells, Craig C; Melnikov, Dmitriy V; Gracheva, Maria E

    2017-08-07

    We study the movement of a polymer attached to a large protein inside a nanopore in a thin silicon dioxide membrane submerged in an electrolyte solution. We use Brownian dynamics to describe the motion of a negatively charged polymer chain of varying lengths attached to a neutral protein modeled as a spherical bead with a radius larger than that of the nanopore, allowing the chain to thread the nanopore but preventing it from translocating. The motion of the protein-polymer complex within the pore is also compared to that of a freely translocating polymer. Our results show that the free polymer's standard deviations in the direction normal to the pore axis is greater than that of the protein-polymer complex. We find that restrictions imposed by the protein, bias, and neighboring chain segments aid in controlling the position of the chain in the pore. Understanding the behavior of the protein-polymer chain complex may lead to methods that improve molecule identification by increasing the resolution of ionic current measurements.

  18. Site-directed DNA crosslinking of large multisubunit protein-DNA complexes.

    PubMed

    Persinger, Jim; Bartholomew, Blaine

    2009-01-01

    Several methods have been developed to site-specifically incorporate photoreactive nucleotide analogs into DNA for the purpose of identifying the proteins and their domains that are in contact with particular regions of DNA. The synthesis of several deoxynucleotide analogs that have a photoreactive group tethered to the nucleotide base and the incorporation of these analogs into DNA are described. In a second approach, oligonucleotide with a photoreactive group attached to the phosphate backbone is chemically synthesized. The photoreactive oligonucleotide is then enzymatically incorporated into DNA by annealing it to a complementary DNA template and extending with DNA polymerase. Both approaches have been effectively used to map protein-DNA interactions in large multisubunit complexes such as the eukaryotic transcription or ATP-dependent chromatin remodeling complexes. Not only do these techniques map the binding sites of the various subunits in these complexes, but when coupled with peptide mapping also determine the protein domain that is in close proximity to the different DNA sites. The strength of these techniques is the ability to scan a large number of potential sites by making combinations of different DNA probes and is facilitated by using an immobilized DNA template for synthesis.

  19. iview: an interactive WebGL visualizer for protein-ligand complex.

    PubMed

    Li, Hongjian; Leung, Kwong-Sak; Nakane, Takanori; Wong, Man-Hon

    2014-02-25

    Visualization of protein-ligand complex plays an important role in elaborating protein-ligand interactions and aiding novel drug design. Most existing web visualizers either rely on slow software rendering, or lack virtual reality support. The vital feature of macromolecular surface construction is also unavailable. We have developed iview, an easy-to-use interactive WebGL visualizer of protein-ligand complex. It exploits hardware acceleration rather than software rendering. It features three special effects in virtual reality settings, namely anaglyph, parallax barrier and oculus rift, resulting in visually appealing identification of intermolecular interactions. It supports four surface representations including Van der Waals surface, solvent excluded surface, solvent accessible surface and molecular surface. Moreover, based on the feature-rich version of iview, we have also developed a neat and tailor-made version specifically for our istar web platform for protein-ligand docking purpose. This demonstrates the excellent portability of iview. Using innovative 3D techniques, we provide a user friendly visualizer that is not intended to compete with professional visualizers, but to enable easy accessibility and platform independence.

  20. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases

    PubMed Central

    Xu, Qifang; Malecka, Kimberly L.; Fink, Lauren; Jordan, E. Joseph; Duffy, Erin; Kolander, Samuel; Peterson, Jeffrey; Dunbrack, Roland L.

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an “autophosphorylation complex.” We developed and applied a structural bioinformatics method to identify all such autophosphorylation kinase complexes in X-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which 5 complexes had not previously been described in the publications describing the crystal structures. These 5 consist of tyrosine residues in the N-terminal juxtamembrane regions of colony stimulating factor 1 receptor (CSF1R, Tyr561) and EPH receptor A2 (EPHA2, Tyr594), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr394) and insulin-like growth factor 1 receptor (IGF1R, Tyr1166), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser142). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro447 to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets. PMID:26628682

  1. Interactions of the Human MCM-BP Protein with MCM Complex Components and Dbf4

    PubMed Central

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK. PMID:22540012

  2. Interactions of the human MCM-BP protein with MCM complex components and Dbf4.

    PubMed

    Nguyen, Tin; Jagannathan, Madhav; Shire, Kathy; Frappier, Lori

    2012-01-01

    MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.

  3. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics.

    PubMed

    Hoehenwarter, Wolfgang; Chen, Yanmei; Recuenco-Munoz, Luis; Wienkoop, Stefanie; Weckwerth, Wolfram

    2011-07-01

    Covalent post-translational modification of proteins is the primary modulator of protein function in the cell. It greatly expands the functional potential of the proteome compared to the genome. In the past few years shotgun proteomics-based research, where the proteome is digested into peptides prior to mass spectrometric analysis has been prolific in this area. It has determined the kinetics of tens of thousands of sites of covalent modification on an equally large number of proteins under various biological conditions and uncovered a transiently active regulatory network that extends into diverse branches of cellular physiology. In this review, we discuss this work in light of the concept of protein speciation, which emphasizes the entire post-translationally modified molecule and its interactions and not just the modification site as the functional entity. Sometimes, particularly when considering complex multisite modification, all of the modified molecular species involved in the investigated condition, the protein species must be completely resolved for full understanding. We present a mathematical technique that delivers a good approximation for shotgun proteomics data.

  4. The Dictyostelium Carmil Protein Links Capping Protein and the Arp2/3 Complex to Type I Myosins through Their Sh3 Domains

    PubMed Central

    Jung, Goeh; Remmert, Kirsten; Wu, Xufeng; Volosky, Joanne M.; III, John A. Hammer

    2001-01-01

    Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the α and β subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH2-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end–directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans

  5. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer.

    PubMed

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D; Wolff, Jeremy J; Somogyi, Árpád; Pedder, Randall E; Quintyn, Royston S; Morrison, Lindsay J; Easterling, Michael L; Paša-Tolić, Ljiljana; Wysocki, Vicki H

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  6. Heterodimerization of the Entamoeba histolytica EhCPADH virulence complex through molecular dynamics and protein-protein docking.

    PubMed

    Montaño, Sarita; Orozco, Esther; Correa-Basurto, José; Bello, Martiniano; Chávez-Munguía, Bibiana; Betanzos, Abigail

    2017-02-01

    EhCPADH is a protein complex involved in the virulence of Entamoeba histolytica, the protozoan responsible for human amebiasis. It is formed by the EhCP112 cysteine protease and the EhADH adhesin. To explore the molecular basis of the complex formation, three-dimensional models were built for both proteins and molecular dynamics simulations (MDS) and docking calculations were performed. Results predicted that the pEhCP112 proenzyme and the mEhCP112 mature enzyme were globular and peripheral membrane proteins. Interestingly, in pEhCP112, the propeptide appeared hiding the catalytic site (C167, H329, N348); while in mEhCP112, this site was exposed and its residues were found structurally closer than in pEhCP112. EhADH emerged as an extended peripheral membrane protein with high fluctuation in Bro1 and V shape domains. 500 ns-long MDS and protein-protein docking predictions evidenced different heterodimeric complexes with the lowest free energy. pEhCP112 interacted with EhADH by the propeptide and C-terminal regions and mEhCP112 by the C-terminal through hydrogen bonds. In contrast, EhADH bound to mEhCP112 by 442-479 residues, adjacent to the target cell-adherence region (480-600 residues), and by the Bro1 domain (9-349 residues). Calculations of the effective binding free energy and per residue free energy decomposition showed that EhADH binds to mEhCP112 with a higher binding energy than to pEhCP112, mainly through van der Waals interactions and the nonpolar part of solvation energy. The EhADH and EhCP112 structural relationship was validated in trophozoites by immunofluorescence, TEM, and immunoprecipitation assays. Experimental findings fair agreed with in silico results.

  7. Inferring drug-disease associations based on known protein complexes.

    PubMed

    Yu, Liang; Huang, Jianbin; Ma, Zhixin; Zhang, Jing; Zou, Yapeng; Gao, Lin

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html.

  8. Tutorial on Protein Ontology Resources

    PubMed Central

    Arighi, Cecilia; Drabkin, Harold; Christie, Karen R.; Ross, Karen; Natale, Darren

    2017-01-01

    The Protein Ontology (PRO) is the reference ontology for proteins in the Open Biomedical Ontologies (OBO) foundry and consists of three sub-ontologies representing protein classes of homologous genes, proteoforms (e.g., splice isoforms, sequence variants, and post-translationally modified forms), and protein complexes. PRO defines classes of proteins and protein complexes, both species-specific and species non-specific, and indicates their relationships in a hierarchical framework, supporting accurate protein annotation at the appropriate level of granularity, analyses of protein conservation across species, and semantic reasoning. In this first section of this chapter, we describe the PRO framework including categories of PRO terms and the relationship of PRO to other ontologies and protein resources. Next, we provide a tutorial about the PRO website (proconsortium.org) where users can browse and search the PRO hierarchy, view reports on individual PRO terms, and visualize relationships among PRO terms in a hierarchical table view, a multiple sequence alignment view, and a Cytoscape network view. Finally, we describe several examples illustrating the unique and rich information available in PRO. PMID:28150233

  9. 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes.

    PubMed

    Didenko, Tatiana; Boelens, Rolf; Rüdiger, Stefan G D

    2011-01-01

    The translational diffusion coefficient is a sensitive parameter to probe conformational changes in proteins and protein-protein interactions. Pulsed-field gradient NMR spectroscopy allows one to measure the translational diffusion with high accuracy. Two-dimensional (2D) heteronuclear NMR spectroscopy combined with diffusion-ordered spectroscopy (DOSY) provides improved resolution and therefore selectivity when compared with a conventional 1D readout. Here, we show that a combination of selective isotope labelling, 2D ¹H-¹³C methyl-TROSY (transverse relaxation-optimised spectroscopy) and DOSY allows one to study diffusion properties of large protein complexes. We propose that a 3D DOSY-heteronuclear multiple quantum coherence (HMQC) pulse sequence, that uses the TROSY effect of the HMQC sequence for ¹³C methyl-labelled proteins, is highly suitable for measuring the diffusion coefficient of large proteins. We used the 20 kDa co-chaperone p23 as model system to test this 3D DOSY-TROSY technique under various conditions. We determined the diffusion coefficient of p23 in viscous solutions, mimicking large complexes of up to 200 kDa. We found the experimental data to be in excellent agreement with theoretical predictions. To demonstrate the use for complex formation, we applied this technique to record the formation of a complex of p23 with the molecular chaperone Hsp90, which is around 200 kDa. We anticipate that 3D DOSY-TROSY will be a useful tool to study conformational changes in large protein complexes.

  10. Chlamydia Hijacks ARF GTPases To Coordinate Microtubule Posttranslational Modifications and Golgi Complex Positioning

    PubMed Central

    Wesolowski, Jordan; Weber, Mary M.; Nawrotek, Agata; Dooley, Cheryl A.; Calderon, Mike; St. Croix, Claudette M.; Hackstadt, Ted; Cherfils, Jacqueline

    2017-01-01

    ABSTRACT The intracellular bacterium Chlamydia trachomatis develops in a parasitic compartment called the inclusion. Posttranslationally modified microtubules encase the inclusion, controlling the positioning of Golgi complex fragments around the inclusion. The molecular mechanisms by which Chlamydia coopts the host cytoskeleton and the Golgi complex to sustain its infectious compartment are unknown. Here, using a genetically modified Chlamydia strain, we discovered that both posttranslationally modified microtubules and Golgi complex positioning around the inclusion are controlled by the chlamydial inclusion protein CT813/CTL0184/InaC and host ARF GTPases. CT813 recruits ARF1 and ARF4 to the inclusion membrane, where they induce posttranslationally modified microtubules. Similarly, both ARF isoforms are required for the repositioning of Golgi complex fragments around the inclusion. We demonstrate that CT813 directly recruits ARF GTPases on the inclusion membrane and plays a pivotal role in their activation. Together, these results reveal that Chlamydia uses CT813 to hijack ARF GTPases to couple posttranslationally modified microtubules and Golgi complex repositioning at the inclusion. PMID:28465429

  11. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex.

    PubMed

    Tunc-Ozdemir, Meral; Urano, Daisuke; Jaiswal, Dinesh Kumar; Clouse, Steven D; Jones, Alan M

    2016-07-01

    Plants and some protists have heterotrimeric G protein complexes that activate spontaneously without canonical G protein-coupled receptors (GPCRs). In Arabidopsis, the sole 7-transmembrane regulator of G protein signaling 1 (AtRGS1) modulates the G protein complex by keeping it in the resting state (GDP-bound). However, it remains unknown how a myriad of biological responses is achieved with a single G protein modulator. We propose that in complete contrast to G protein activation in animals, plant leucine-rich repeat receptor-like kinases (LRR RLKs), not GPCRs, provide this discrimination through phosphorylation of AtRGS1 in a ligand-dependent manner. G protein signaling is directly activated by the pathogen-associated molecular pattern flagellin peptide 22 through its LRR RLK, FLS2, and co-receptor BAK1. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Distinct Roles of Chromatin Insulator Proteins in Control of the Drosophila Bithorax Complex

    PubMed Central

    Savitsky, Mikhail; Kim, Maria; Kravchuk, Oksana; Schwartz, Yuri B.

    2016-01-01

    Chromatin insulators are remarkable regulatory elements that can bring distant genomic sites together and block unscheduled enhancer–promoter communications. Insulators act via associated insulator proteins of two classes: sequence-specific DNA binding factors and “bridging” proteins. The latter are required to mediate interactions between distant insulator elements. Chromatin insulators are critical for correct expression of complex loci; however, their mode of action is poorly understood. Here, we use the Drosophila bithorax complex as a model to investigate the roles of the bridging proteins Cp190 and Mod(mdg4). The bithorax complex consists of three evolutionarily conserved homeotic genes Ubx, abd-A, and Abd-B, which specify anterior–posterior identity of the last thoracic and all abdominal segments of the fly. Looking at effects of CTCF, mod(mdg4), and Cp190 mutations on expression of the bithorax complex genes, we provide the first functional evidence that Mod(mdg4) acts in concert with the DNA binding insulator protein CTCF. We find that Mod(mdg4) and Cp190 are not redundant and may have distinct functional properties. We, for the first time, demonstrate that Cp190 is critical for correct regulation of the bithorax complex and show that Cp190 is required at an exceptionally strong Fub insulator to partition the bithorax complex into two topological domains. PMID:26715665

  13. GBA manager: an online tool for querying low-complexity regions in proteins.

    PubMed

    Bandyopadhyay, Nirmalya; Kahveci, Tamer

    2010-01-01

    Abstract We developed GBA Manager, an online software that facilitates the Graph-Based Algorithm (GBA) we proposed in our earlier work. GBA identifies the low-complexity regions (LCR) of protein sequences. GBA exploits a similarity matrix, such as BLOSUM62, to compute the complexity of the subsequences of the input protein sequence. It uses a graph-based algorithm to accurately compute the regions that have low complexities. GBA Manager is a user friendly web-service that enables online querying of protein sequences using GBA. In addition to querying capabilities of the existing GBA algorithm, GBA Manager computes the p-values of the LCR identified. The p-value gives an estimate of the possibility that the region appears by chance. GBA Manager presents the output in three different understandable formats. GBA Manager is freely accessible at http://bioinformatics.cise.ufl.edu/GBA/GBA.htm .

  14. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.

    PubMed

    Chiva, M; Saperas, N; Ribes, E

    2011-12-01

    In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and

  15. Development of road soil cement compositions modified with complex additive based on polycarboxylic ether

    NASA Astrophysics Data System (ADS)

    Bulanov, P. E.; Vdovin, E. A.; Mavliev, L. F.; Kuznetsov, D. A.

    2018-03-01

    The paper is focused on the research results of the main physical and technical properties of the cement-stabilized polymineral clay modified with a complex hydrophobic plasticizer based on polycarboxylate and octyltriethoxysilane ethers. A graphical result interpretation of the mathematic model which shows the influence of the complex hydrophobic plasticizer components on the cement-stabilized polymineral clay, containing more than 85% of relict minerals, has been designed. The research significance for the building sector lies in the fact that applying a complex hydrophobic plasticizer provides increasing the compressive strength of the cement-stabilized polymineral clay up to 102%, the tensile bending strength – up to 88%, the freeze-thaw resistance – up to 114%.

  16. Chemiluminescence enzyme immunoassay using ProteinA-bacterial magnetite complex

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadashi; Sato, Rika; Kamiya, Shinji; Tanaka, Tsuyosi; Takeyama, Haruko

    1999-04-01

    Bacterial magnetic particles (BMPs) which have ProteinA expressed on their surface were constructed using magA which is a key gene in BMP biosynthesis in the magnetic bacterium Magnetospirillum sp. AMB-1. Homogenous chemiluminescence enzyme immunoassay using antibody bound ProteinA-BMP complexes was developed for detection of human IgG. A good correlation between the luminescence yield and the concentration of human IgG was obtained in the range of 1-10 3 ng/ml.

  17. Extreme disorder in an ultrahigh-affinity protein complex

    NASA Astrophysics Data System (ADS)

    Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin

    2018-03-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.

  18. Identification of increased amounts of eppin protein complex components in sperm cells of diabetic and obese individuals by difference gel electrophoresis.

    PubMed

    Paasch, Uwe; Heidenreich, Falk; Pursche, Theresia; Kuhlisch, Eberhard; Kettner, Karina; Grunewald, Sonja; Kratzsch, Jürgen; Dittmar, Gunnar; Glander, Hans-Jürgen; Hoflack, Bernard; Kriegel, Thomas M

    2011-08-01

    three groups of pathological sperm proteomes reflect a disease-associated enhanced formation of predominantly proteolytically modified forms of three eppin protein complex components, possibly as a response to enduring hyperglycemia and enhanced oxidative stress.

  19. A novel method for preparation of HAMLET-like protein complexes.

    PubMed

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Leonteva, Marina V; Fadeev, Roman S; Chekanov, Aleksei V; Zhadan, Andrei P; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2011-09-01

    Some natural proteins induce tumor-selective apoptosis. α-Lactalbumin (α-LA), a milk calcium-binding protein, is converted into an antitumor form, called HAMLET/BAMLET, via partial unfolding and association with oleic acid (OA). Besides triggering multiple cell death mechanisms in tumor cells, HAMLET exhibits bactericidal activity against Streptococcus pneumoniae. The existing methods for preparation of active complexes of α-LA with OA employ neutral pH solutions, which greatly limit water solubility of OA. Therefore these methods suffer from low scalability and/or heterogeneity of the resulting α-LA - OA samples. In this study we present a novel method for preparation of α-LA - OA complexes using alkaline conditions that favor aqueous solubility of OA. The unbound OA is removed by precipitation under acidic conditions. The resulting sample, bLA-OA-45, bears 11 OA molecules and exhibits physico-chemical properties similar to those of BAMLET. Cytotoxic activities of bLA-OA-45 against human epidermoid larynx carcinoma and S. pneumoniae D39 cells are close to those of HAMLET. Treatment of S. pneumoniae with bLA-OA-45 or HAMLET induces depolarization and rupture of the membrane. The cells are markedly rescued from death upon pretreatment with an inhibitor of Ca(2+) transport. Hence, the activation mechanisms of S. pneumoniae death are analogous for these two complexes. The developed express method for preparation of active α-LA - OA complex is high-throughput and suited for development of other protein complexes with low-molecular-weight amphiphilic substances possessing valuable cytotoxic properties. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  20. Understanding the nanoparticle-protein corona complexes using computational and experimental methods.

    PubMed

    Kharazian, B; Hadipour, N L; Ejtehadi, M R

    2016-06-01

    Nanoparticles (NP) have capability to adsorb proteins from biological fluids and form protein layer, which is called protein corona. As the cell sees corona coated NPs, the protein corona can dictate biological response to NPs. The composition of protein corona is varied by physicochemical properties of NPs including size, shape, surface chemistry. Processing of protein adsorption is dynamic phenomena; to that end, a protein may desorb or leave a surface vacancy that is rapidly filled by another protein and cause changes in the corona composition mainly by the Vroman effect. In this review, we discuss the interaction between NP and proteins and the available techniques for identification of NP-bound proteins. Also we review current developed computational methods for understanding the NP-protein complex interactions. Copyright © 2016. Published by Elsevier Ltd.

  1. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography.

    PubMed

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S; Kent, Stephen B H

    2012-09-11

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF(165) to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form of VEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å(2) in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  2. Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.

    PubMed

    Waegemann, Karin; Popov-Čeleketić, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2015-03-13

    Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  4. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybridmore » FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  5. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    DOE PAGES

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; ...

    2016-12-02

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on noncovalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. Here in this study, an SID device was designed and successfully installed in amore » hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. Lastly, SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.« less

  6. Modifications in structure and interaction of nanoparticle-protein-surfactant complexes in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Mehan, Sumit; Kumar, S.; Aswal, V. K.; Schweins, R.

    2016-05-01

    SANS experiments of three-component system of anionic silica nanoparticles, anionic BSA protein and anionic SDS surfactants have been carried out without and with electrolyte in aqueous solution. In both the cases, the interaction of surfactant with protein results in formation of bead-necklace structure of protein-surfactant complexes in solution. These protein-surfactant complexes interact very differently with nanoparticles in absence and presence of electrolyte. In absence of electrolyte, nanoparticles remain in dispersed phase in solution, whereas with the addition of electrolyte the nanoparticles fractal aggregates are formed. SANS describes the phase behavior to be governed by competition of electrostatic and depletion interactions among the components solution.

  7. Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin.

    PubMed

    Huang, Xiaosong; Netravali, Anil N

    2006-10-01

    Phytagel and nano-clay particles were used to improve the mechanical and thermal properties and moisture resistance of soy protein concentrate (SPC) resin successfully. SPC and Phytagel were mixed together to form a cross-linked structure. The Phytagel-modified SPC resin (PH-SPC) showed improved tensile strength, modulus, moisture resistance, and thermal stability as compared to the unmodified SPC resin. The incorporation of 40% Phytagel and 20% glycerol led to an overall 340% increase in the tensile strength (over 50 MPa) and approximately 360% increase in the Young's modulus (over 710 MPa) of the SPC resin. Nano-clay was uniformly dispersed into PH-SPC resin to further improve the properties. The PH-SPC (40% Phytagel) resin modified with 7% clay nanoparticles (CPH-SPC) had a modulus of 2.1 GPa and a strength of 72.5 MPa. The dynamic mechanical properties such as storage modulus together with the glass transition temperature of the modified resins were also increased by the addition of clay nanoparticles. The moisture resistance of the CPH-SPC resin was higher as compared to both SPC and PH-SPC resins. The thermal stability of the CPH-SPC resin was seen to be higher as compared to the unmodified SPC.

  8. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex.

    PubMed

    Souabni, Hajer; Ezzine, Aymen; Bizouarn, Tania; Baciou, Laura

    2017-01-01

    Activation of phagocyte cells from an innate immune system is associated with a massive consumption of molecular oxygen to generate highly reactive oxygen species (ROS) as microbial weapons. This is achieved by a multiprotein complex, the so-called NADPH oxidase. The activity of phagocyte NADPH oxidase relies on an assembly of more than five proteins, among them the membrane heterodimer named flavocytochrome b 558 (Cytb 558 ), constituted by the tight association of the gp91 phox (also named Nox2) and p22 phox proteins. The Cytb 558 is the membrane catalytic core of the NADPH oxidase complex, through which the reducing equivalent provided by NADPH is transferred via the associated prosthetic groups (one flavin and two hemes) to reduce dioxygen into superoxide anion. The other major proteins (p47 phox , p67 phox , p40 phox , Rac) requisite for the complex activity are cytosolic proteins. Thus, the NADPH oxidase functioning relies on a synergic multi-partner assembly that in vivo can be hardly studied at the molecular level due to the cell complexity. Thus, a cell-free assay method has been developed to study the NADPH oxidase activity that allows measuring and eventually quantifying the ROS generation based on optical techniques following reduction of cytochrome c. This setup is a valuable tool for the identification of protein interactions, of crucial components and additives for a functional enzyme. Recently, this method was improved by the engineering and the production of a complete recombinant NADPH oxidase complex using the combination of purified proteins expressed in bacterial and yeast host cells. The reconstitution into artificial membrane leads to a fully controllable system that permits fine functional studies.

  9. Protein complex formation and intranuclear dynamics of NAC1 in cancer cells.

    PubMed

    Nakayama, Naomi; Kato, Hiroaki; Sakashita, Gyosuke; Nariai, Yuko; Nakayama, Kentaro; Kyo, Satoru; Urano, Takeshi

    2016-09-15

    Nucleus accumbens-associated protein 1 (NAC1) is a cancer-related transcription regulator protein that is also involved in the pluripotency and differentiation of embryonic stem cells. NAC1 is overexpressed in various carcinomas including ovarian, cervical, breast, and pancreatic carcinomas. NAC1 knock-down was previously shown to result in the apoptosis of ovarian cancer cell lines and to rescue their sensitivity to chemotherapy, suggesting that NAC1 may be a potential therapeutic target, but protein complex formation and the dynamics of intranuclear NAC1 in cancer cells remain poorly understood. In this study, analysis of HeLa cell lysates by fast protein liquid chromatography (FPLC) on a sizing column showed that the NAC1 peak corresponded to an apparent molecular mass of 300-500 kDa, which is larger than the estimated molecular mass (58 kDa) of the protein. Furthermore, live cell photobleaching analyses with green fluorescent protein (GFP)-fused NAC1 proteins revealed the intranuclear dynamics of NAC1. Collectively our results demonstrate that NAC1 forms a protein complex to function as a transcriptional regulator in cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  11. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    PubMed Central

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit. PMID:12515387

  12. Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation.

    PubMed

    Edwards, Thomas E; Robinson, Bruce H; Sigurdsson, Snorri Th

    2005-03-01

    The Tat protein and the transactivation responsive (TAR) RNA form an essential complex in the HIV lifecycle, and mutations in the basic region of the Tat protein alter this RNA-protein molecular recognition. Here, EPR spectroscopy was used to identify amino acids, flanking an essential arginine of the Tat protein, which contribute to specific and rigid TAR-Tat complex formation by monitoring changes in the mobility of nitroxide spin-labeled TAR RNA nucleotides upon binding. Arginine to lysine N-terminal mutations did not affect TAR RNA interfacial dynamics. In contrast, C-terminal point mutations, R56 in particular, affected the mobility of nucleotides U23 and U38, which are involved in a base-triple interaction in the complex. This report highlights the role of dynamics in specific molecular complex formation and demonstrates the ability of EPR spectroscopy to study interfacial dynamics of macromolecular complexes.

  13. Screening protein – Single stranded RNA complexes by NMR spectroscopy for structure determination☆

    PubMed Central

    Foot, Jaelle N.; Feracci, Mikael; Dominguez, Cyril

    2014-01-01

    In the past few years, RNA molecules have been revealed to be at the center of numerous biological processes. Long considered as passive molecules transferring genetic information from DNA to proteins, it is now well established that RNA molecules play important regulatory roles. Associated with that, the number of identified RNA binding proteins (RBPs) has increased considerably and mutations in RNA molecules or RBP have been shown to cause various diseases, such as cancers. It is therefore crucial to understand at the molecular level how these proteins specifically recognise their RNA targets in order to design new generation drug therapies targeting protein–RNA complexes. Nuclear magnetic resonance (NMR) is a particularly well-suited technique to study such protein–RNA complexes at the atomic level and can provide valuable information for new drug discovery programs. In this article, we describe the NMR strategy that we and other laboratories use for screening optimal conditions necessary for structural studies of protein-single stranded RNA complexes, using two proteins, Sam68 and T-STAR, as examples. PMID:24096002

  14. Protein-protein interaction studies reveal the Plasmodium falciparum merozoite surface protein-1 region involved in a complex formation that binds to human erythrocytes.

    PubMed

    Paul, Gourab; Deshmukh, Arunaditya; Kumar Chourasia, Bishwanath; Kalamuddin, Md; Panda, Ashutosh; Kumar Singh, Susheel; Gupta, Puneet K; Mohmmed, Asif; Chauhan, Virender S; Theisen, Michael; Malhotra, Pawan

    2018-03-29

    Plasmodium falciparum merozoite surface protein (PfMSP) 1 has been studied extensively as a vaccine candidate antigen. PfMSP-1 undergoes proteolytic processing into four major products, such as p83, p30, p38, and p42, that are associated in the form of non-covalent complex(s) with other MSPs. To delineate MSP1 regions involved in the interaction with other MSPs, here we expressed recombinant proteins (PfMSP-1 65 ) encompassing part of p38 and p42 regions and PfMSP-1 19 PfMSP-1 65 interacted strongly with PfMSP-3, PfMSP-6, PfMSP-7, and PfMSP-9, whereas PfMSP-1 19 did not interact with any of these proteins. Since MSP-1 complex binds human erythrocytes, we examined the ability of these proteins to bind human erythrocyte. Among the proteins of MSP-1 complex, PfMSP-6 and PfMSP-9 bound to human erythrocytes. Serological studies showed that PfMSP-1 65 was frequently recognized by sera from malaria endemic regions, whereas this was not the case for PfMSP-1 19 In contrast, antibodies against PfMSP-1 19 showed much higher inhibition of merozoite invasion compared with antibodies against the larger PfMSP-1 65 fragment. Importantly, anti-PfMSP-1 19 antibodies recognized both recombinant proteins, PfMSP-1 19 and PfMSP-1 65 ; however, anti-PfMSP-1 65 antibody failed to recognize the PfMSP-1 19 protein. Taken together, these results demonstrate that PfMSP-1 sequences upstream of the 19 kDa C-terminal region are involved in molecular interactions with other MSPs, and these sequences may probably serve as a smoke screen to evade antibody response to the membrane-bound C-terminal 19 kDa region. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  15. Water Dynamics at Protein-Protein Interfaces: Molecular Dynamics Study of Virus-Host Receptor Complexes.

    PubMed

    Dutta, Priyanka; Botlani, Mohsen; Varma, Sameer

    2014-12-26

    The dynamical properties of water at protein-water interfaces are unlike those in the bulk. Here we utilize molecular dynamics simulations to study water dynamics in interstitial regions between two proteins. We consider two natural protein-protein complexes, one in which the Nipah virus G protein binds to cellular ephrin B2 and the other in which the same G protein binds to ephrin B3. While the two complexes are structurally similar, the two ephrins share only a modest sequence identity of ∼50%. X-ray crystallography also suggests that these interfaces are fairly extensive and contain exceptionally large amounts of waters. We find that while the interstitial waters tend to occupy crystallographic sites, almost all waters exhibit residence times of less than hundred picoseconds in the interstitial region. We also find that while the differences in the sequence of the two ephrins result in quantitative differences in the dynamics of interstitial waters, the trends in the shifts with respect to bulk values are similar. Despite the high wetness of the protein-protein interfaces, the dynamics of interstitial waters are considerably slower compared to the bulk-the interstitial waters diffuse an order of magnitude slower and have 2-3 fold longer hydrogen bond lifetimes and 2-1000 fold slower dipole relaxation rates. To understand the role of interstitial waters, we examine how implicit solvent models compare against explicit solvent models in producing ephrin-induced shifts in the G conformational density. Ephrin-induced shifts in the G conformational density are critical to the allosteric activation of another viral protein that mediates fusion. We find that in comparison with the explicit solvent model, the implicit solvent model predicts a more compact G-B2 interface, presumably because of the absence of discrete waters at the G-B2 interface. Simultaneously, we find that the two models yield strikingly different induced changes in the G conformational density, even

  16. Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles.

    PubMed

    Ninomiya, Kazuaki; Ogino, Chiaki; Oshima, Shuhei; Sonoke, Shiro; Kuroda, Shun-ichi; Shimizu, Nobuaki

    2012-05-01

    Our previous study suggested new sonodynamic therapy for cancer cells based on the delivery of titanium dioxide (TiO(2)) nanoparticles (NPs) modified with a protein specifically recognizing target cells and subsequent generation of hydroxyl radicals from TiO(2) NPs activated by external ultrasound irradiation (called TiO(2)/US treatment). The present study first examined the uptake behavior of TiO(2) NPs modified with pre-S1/S2 (model protein-recognizing hepatocytes) by HepG2 cells for 24h. It took 6h for sufficient uptake of the TiO(2) NPs by the cells. Next, the effect of the TiO(2)/US treatment on HepG2 cell growth was examined for 96 h after the 1 MHz ultrasound was irradiated (0.1 W/cm(2), 30s) to the cells which incorporated the TiO(2) NPs. Apoptosis was observed at 6h after the TiO(2)/US treatment. Although no apparent cell-injury was observed until 24h after the treatment, the viable cell concentration had deteriorated to 46% of the control at 96 h. Finally, the TiO(2)/US treatment was applied to a mouse xenograft model. The pre-S1/S2-immobilized TiO(2) (0.1mg) was directly injected into tumors, followed by 1 MHz ultrasound irradiation at 1.0 W/cm(2) for 60s. As a result of the treatment repeated five times within 13 days, tumor growth could be hampered up to 28 days compared with the control conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Modifying a standard method allows simultaneous extraction of RNA and protein, enabling detection of enzymes in the rat retina with low expressions and protein levels.

    PubMed

    Agardh, Elisabet; Gustavsson, Carin; Hagert, Per; Nilsson, Marie; Agardh, Carl-David

    2006-02-01

    The aim of the study was to evaluate messenger RNA and protein expression in limited amounts of tissue with low protein content. The Chomczynski method was used for simultaneous extraction of RNA, and protein was modified in the protein isolation step. Template mass and cycling time for the complementary DNA synthesis step of real-time reverse transcription-polymerase chain reaction (RT-PCR) for analysis of catalase, copper/zinc superoxide dismutase, manganese superoxide dismutase, the catalytic subunit of glutamylcysteine ligase, glutathione peroxidase 1, and the endogenous control cyclophilin B (CypB) were optimized before PCR. Polymerase chain reaction accuracy and efficacy were demonstrated by calculating the regression (R2) values of the separate amplification curves. Appropriate antibodies, blocking buffers, and running conditions were established for Western blot, and protein detection and multiplex assays with CypB were performed for each target. During the extraction procedure, the protein phase was dissolved in a modified washing buffer containing 0.1% sodium dodecyl sulfate, followed by ultrafiltration. Enzyme expression on real-time RT-PCR was accomplished with high reliability and reproducibility (R2, 0.990-0.999), and all enzymes except for glutathione peroxidase 1 were detectable in individual retinas on Western blot. Western blot multiplexing with CypB was possible for all targets. In conclusion, connecting gene expression directly to protein levels in the individual rat retina was possible by simultaneous extraction of RNA and protein. Real-time RT-PCR and Western blot allowed accurate detection of retinal protein expressions and levels.

  18. Survey of large protein complexes D. vulgaris reveals great structural diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, B.-G.; Dong, M.; Liu, H.

    2009-08-15

    An unbiased survey has been made of the stable, most abundant multi-protein complexes in Desulfovibrio vulgaris Hildenborough (DvH) that are larger than Mr {approx} 400 k. The quaternary structures for 8 of the 16 complexes purified during this work were determined by single-particle reconstruction of negatively stained specimens, a success rate {approx}10 times greater than that of previous 'proteomic' screens. In addition, the subunit compositions and stoichiometries of the remaining complexes were determined by biochemical methods. Our data show that the structures of only two of these large complexes, out of the 13 in this set that have recognizable functions,more » can be modeled with confidence based on the structures of known homologs. These results indicate that there is significantly greater variability in the way that homologous prokaryotic macromolecular complexes are assembled than has generally been appreciated. As a consequence, we suggest that relying solely on previously determined quaternary structures for homologous proteins may not be sufficient to properly understand their role in another cell of interest.« less

  19. Hidden complexity of free energy surfaces for peptide (protein) folding.

    PubMed

    Krivov, Sergei V; Karplus, Martin

    2004-10-12

    An understanding of the thermodynamics and kinetics of protein folding requires a knowledge of the free energy surface governing the motion of the polypeptide chain. Because of the many degrees of freedom involved, surfaces projected on only one or two progress variables are generally used in descriptions of the folding reaction. Such projections result in relatively smooth surfaces, but they could mask the complexity of the unprojected surface. Here we introduce an approach to determine the actual (unprojected) free energy surface and apply it to the second beta-hairpin of protein G, which has been used as a model system for protein folding. The surface is represented by a disconnectivity graph calculated from a long equilibrium folding-unfolding trajectory. The denatured state is found to have multiple low free energy basins. Nevertheless, the peptide shows exponential kinetics in folding to the native basin. Projected surfaces obtained from the present analysis have a simple form in agreement with other studies of the beta-hairpin. The hidden complexity found for the beta-hairpin surface suggests that the standard funnel picture of protein folding should be revisited.

  20. A novel protein-protein interaction in the RES (REtention and Splicing) complex.

    PubMed

    Tripsianes, Konstantinos; Friberg, Anders; Barrandon, Charlotte; Brooks, Mark; van Tilbeurgh, Herman; Seraphin, Bertrand; Sattler, Michael

    2014-10-10

    The retention and splicing (RES) complex is a conserved spliceosome-associated module that was shown to enhance splicing of a subset of transcripts and promote the nuclear retention of unspliced pre-mRNAs in yeast. The heterotrimeric RES complex is organized around the Snu17p protein that binds to both the Bud13p and Pml1p subunits. Snu17p exhibits an RRM domain that resembles a U2AF homology motif (UHM) and Bud13p harbors a Trp residue reminiscent of an UHM-ligand motif (ULM). It has therefore been proposed that the interaction between Snu17p and Bud13p resembles canonical UHM-ULM complexes. Here, we have used biochemical and NMR structural analysis to characterize the structure of the yeast Snu17p-Bud13p complex. Unlike known UHMs that sequester the Trp residue of the ULM ligand in a hydrophobic pocket, Snu17p and Bud13p utilize a large interaction surface formed around the two helices of the Snu17p domain. In total 18 residues of the Bud13p ligand wrap around the Snu17p helical surface in an U-turn-like arrangement. The invariant Trp(232) in Bud13p is located in the center of the turn, and contacts surface residues of Snu17p. The structural data are supported by mutational analysis and indicate that Snu17p provides an extended binding surface with Bud13p that is notably distinct from canonical UHM-ULM interactions. Our data highlight structural diversity in RRM-protein interactions, analogous to the one seen for nucleic acid interactions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Dissociation free-energy profiles of specific and nonspecific DNA-protein complexes.

    PubMed

    Yonetani, Yoshiteru; Kono, Hidetoshi

    2013-06-27

    DNA-binding proteins recognize DNA sequences with at least two different binding modes: specific and nonspecific. Experimental structures of such complexes provide us a static view of the bindings. However, it is difficult to reveal further mechanisms of their target-site search and recognition only from static information because the transition process between the bound and unbound states is not clarified by static information. What is the difference between specific and nonspecific bindings? Here we performed adaptive biasing force molecular dynamics simulations with the specific and nonspecific structures of DNA-Lac repressor complexes to investigate the dissociation process. The resultant free-energy profiles showed that the specific complex has a sharp, deep well consistent with tight binding, whereas the nonspecific complex has a broad, shallow well consistent with loose binding. The difference in the well depth, ~5 kcal/mol, was in fair agreement with the experimentally obtained value and was found to mainly come from the protein conformational difference, particularly in the C-terminal tail. Also, the free-energy profiles were found to be correlated with changes in the number of protein-DNA contacts and that of surface water molecules. The derived protein spatial distributions around the DNA indicate that any large dissociation occurs rarely, regardless of the specific and nonspecific sites. Comparison of the free-energy barrier for sliding [~8.7 kcal/mol; Furini J. Phys. Chem. B 2010, 114, 2238] and that for dissociation (at least ~16 kcal/mol) calculated in this study suggests that sliding is much preferred to dissociation.

  2. The Effects of Different Types of Text and Individual Differences on View Complexity about Genetically Modified Organisms

    ERIC Educational Resources Information Center

    Dinsmore, Daniel L.; Zoellner, Brian P.; Parkinson, Meghan M.; Rossi, Anthony M.; Monk, Mary J.; Vinnachi, Jenelle

    2017-01-01

    View change about socio-scientific issues has been well studied in the literature, but the change in the complexity of those views has not. In the current study, the change in the complexity of views about a specific scientific topic (i.e. genetically modified organisms; GMOs) and use of evidence in explaining those views was examined in relation…

  3. Isotope-labeled cross-linkers and Fourier transform ion cyclotron resonance mass spectrometry for structural analysis of a protein/peptide complex.

    PubMed

    Ihling, Christian; Schmidt, Andreas; Kalkhof, Stefan; Schulz, Daniela M; Stingl, Christoph; Mechtler, Karl; Haack, Michael; Beck-Sickinger, Annette G; Cooper, Dermot M F; Sinz, Andrea

    2006-08-01

    For structural studies of proteins and their complexes, chemical cross-linking combined with mass spectrometry presents a promising strategy to obtain structural data of protein interfaces from low quantities of proteins within a short time. We explore the use of isotope-labeled cross-linkers in combination with Fourier transform ion cyclotron resonance (FTICR) mass spectrometry for a more efficient identification of cross-linker containing species. For our studies, we chose the calcium-independent complex between calmodulin and a 25-amino acid peptide from the C-terminal region of adenylyl cyclase 8 containing an "IQ-like motif." Cross-linking reactions between calmodulin and the peptide were performed in the absence of calcium using the amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS3 (bis[sulfosuccinimidyl]suberate) and BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-gel digestion of excised gel bands from covalently cross-linked complexes resulted in complicated peptide mixtures, which were analyzed by nano-HPLC/nano-ESI-FTICR mass spectrometry. In cases where more than one reactive functional group, e.g., amine groups of lysine residues, is present in a sequence stretch, MS/MS analysis is a prerequisite for unambiguously identifying the modified residues. MS/MS experiments revealed two lysine residues in the central alpha-helix of calmodulin as well as three lysine residues both in the C-terminal and N-terminal lobes of calmodulin to be cross-linked with one single lysine residue of the adenylyl cyclase 8 peptide. Further cross-linking studies will have to be conducted to propose a structural model for the calmodulin/peptide complex, which is formed in the absence of calcium. The combination of using isotope-labeled cross-linkers, determining the accurate mass of intact cross-linked products, and verifying the amino acid sequences of cross-linked species by MS/MS presents a convenient approach that offers the perspective to obtain structural

  4. Myocilin, a Component of a Membrane-Associated Protein Complex Driven by a Homologous Q-SNARE Domain

    PubMed Central

    Dismuke, W. Michael; McKay, Brian S.; Stamer, W. Daniel

    2012-01-01

    Myocilin is a widely expressed protein with no known function, however, mutations in myocilin appear to manifest uniquely as ocular hypertension and the blinding disease glaucoma. Using the protein homology/analogy recognition engine (PHYRE) we find that the olfactomedin domain of myocilin is similar in sequence motif and structure to a six-bladed, kelch repeat motif based on the known crystal structures of such proteins. Additionally, using sequence analysis we identify a coiled-coil segment of myocilin with homology to human Q-SNARE proteins. Using COS-7 cells expressing full length human myocilin and a version lacking the C-terminal olfactomedin domain, we identified a membrane-associated protein complex containing myocilin by hydrodynamic analysis. The myocilin construct that included the coiled-coil but lacked the olfactomedin domain formed complexes similar to the full-length protein, indicating that the coiled-coil domain of myocilin is sufficient for myocilin to bind to the large detergent resistant complex. In human retina and retinal pigment epithelium, which express myocilin, we detected the protein in a large, SDS-resistant, membrane-associated complex. We characterized the hydrodynamic properties of myocilin in human tissues as either a 15s complex with an Mr=405,000–440,000 yielding a slightly elongated globular shape similar to known SNARE complexes or a dimer of 6.4s and Mr=108,000. By identifying the Q-SNARE homology within the second coil of myocilin and documenting its participation in a SNARE-like complex, we provide evidence of a SNARE domain containing protein associated with a human disease. PMID:22463803

  5. Comprehensive Characterization of Minichromosome Maintenance Complex (MCM) Protein Interactions Using Affinity and Proximity Purifications Coupled to Mass Spectrometry.

    PubMed

    Dubois, Marie-Line; Bastin, Charlotte; Lévesque, Dominique; Boisvert, François-Michel

    2016-09-02

    The extensive identification of protein-protein interactions under different conditions is an important challenge to understand the cellular functions of proteins. Here we use and compare different approaches including affinity purification and purification by proximity coupled to mass spectrometry to identify protein complexes. We explore the complete interactome of the minichromosome maintenance (MCM) complex by using both approaches for all of the different MCM proteins. Overall, our analysis identified unique and shared interaction partners and proteins enriched for distinct biological processes including DNA replication, DNA repair, and cell cycle regulation. Furthermore, we mapped the changes in protein interactions of the MCM complex in response to DNA damage, identifying a new role for this complex in DNA repair. In summary, we demonstrate the complementarity of these approaches for the characterization of protein interactions within the MCM complex.

  6. Small Cofactors May Assist Protein Emergence from RNA World: Clues from RNA-Protein Complexes

    PubMed Central

    Shen, Liang; Ji, Hong-Fang

    2011-01-01

    It is now widely accepted that at an early stage in the evolution of life an RNA world arose, in which RNAs both served as the genetic material and catalyzed diverse biochemical reactions. Then, proteins have gradually replaced RNAs because of their superior catalytic properties in catalysis over time. Therefore, it is important to investigate how primitive functional proteins emerged from RNA world, which can shed light on the evolutionary pathway of life from RNA world to the modern world. In this work, we proposed that the emergence of most primitive functional proteins are assisted by the early primitive nucleotide cofactors, while only a minority are induced directly by RNAs based on the analysis of RNA-protein complexes. Furthermore, the present findings have significant implication for exploring the composition of primitive RNA, i.e., adenine base as principal building blocks. PMID:21789260

  7. Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization.

    PubMed

    Simpson, Rachel M; Bruno, Andrew E; Chen, Runpu; Lott, Kaylen; Tylec, Brianna L; Bard, Jonathan E; Sun, Yijun; Buck, Michael J; Read, Laurie K

    2017-07-27

    Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC). We determined that the factors examined function in the progression of editing through a gRNA; however, they have distinct roles and REMC is likely heterogeneous in composition. We provide the first evidence that editing can proceed through numerous paths within a single gRNA and that non-linear modifications are essential, generating commonly observed junction regions. Our data support a model in which RNA editing is executed via multiple paths that necessitate successive re-modification of junction regions facilitated, in part, by the REMC variant containing TbRGG2 and MRB8180. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment-Protein Complexes.

    PubMed

    Allodi, Marco A; Otto, John P; Sohail, Sara H; Saer, Rafael G; Wood, Ryan E; Rolczynski, Brian S; Massey, Sara C; Ting, Po-Chieh; Blankenship, Robert E; Engel, Gregory S

    2018-01-04

    Pigment-protein complexes in photosynthetic antennae can suffer oxidative damage from reactive oxygen species generated during solar light harvesting. How the redox environment of a pigment-protein complex affects energy transport on the ultrafast light-harvesting time scale remains poorly understood. Using two-dimensional electronic spectroscopy, we observe differences in femtosecond energy-transfer processes in the Fenna-Matthews-Olson (FMO) antenna complex under different redox conditions. We attribute these differences in the ultrafast dynamics to changes to the system-bath coupling around specific chromophores, and we identify a highly conserved tyrosine/tryptophan chain near the chromophores showing the largest changes. We discuss how the mechanism of tyrosine/tryptophan chain oxidation may contribute to these differences in ultrafast dynamics that can moderate energy transfer to downstream complexes where reactive oxygen species are formed. These results highlight the importance of redox conditions on the ultrafast transport of energy in photosynthesis. Tailoring the redox environment may enable energy transport engineering in synthetic light-harvesting systems.

  9. HIV-1 Tat protein promotes formation of more-processive elongation complexes.

    PubMed Central

    Marciniak, R A; Sharp, P A

    1991-01-01

    The Tat protein of HIV-1 trans-activates transcription in vitro in a cell-free extract of HeLa nuclei. Quantitative analysis of the efficiency of elongation revealed that a majority of the elongation complexes generated by the HIV-1 promoter were not highly processive and terminated within the first 500 nucleotides. Tat trans-activation of transcription from the HIV-1 promoter resulted from an increase in processive character of the elongation complexes. More specifically, the analysis suggests that there exist two classes of elongation complexes initiating from the HIV promoter: a less-processive form and a more-processive form. Addition of purified Tat protein was found to increase the abundance of the more-processive class of elongation complex. The purine nucleoside analog, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibits transcription in this reaction by decreasing the efficiency of elongation. Surprisingly, stimulation of transcription elongation by Tat was preferentially inhibited by the addition of DRB. Images PMID:1756726

  10. Detection of the HA-33 protein in botulinum neurotoxin type G complex by mass spectrometry.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Barr, John R

    2015-10-23

    The disease botulism is caused by intoxication with botulinum neurotoxins (BoNTs), extremely toxic proteins which cause paralysis. This neurotoxin is produced by some members of the Clostridium botulinum and closely related species, and is produced as a protein complex consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). There are seven known serotypes of BoNT, A-G, and the composition of the NAPs can differ between these serotypes. It was previously published that the BoNT/G complex consisted of BoNT/G, nontoxic-nonhemagglutinin (NTNH), Hemagglutinin 70 (HA-70), and HA-17, but that HA-33, a component of the protein complex of other serotypes of BoNT, was not found. Components of the BoNT/G complex were first separated by SDS-PAGE, and bands corresponding to components of the complex were digested and analyzed by LC-MS/MS. Gel bands were identified with sequence coverages of 91% for BoNT/G, 91% for NTNH, 89% for HA-70, and 88% for HA-17. Notably, one gel band was also clearly identified as HA-33 with 93% sequence coverage. The BoNT/G complex consists of BoNT/G, NTNH, HA-70, HA-17, and HA-33. These proteins form the progenitor form of BoNT/G, similar to all other HA positive progenitor toxin complexes.

  11. A Light Harvesting Complex-Like Protein in Maintenance of Photosynthetic Components in Chlamydomonas1[OPEN

    PubMed Central

    Zhao, Lei; Cheng, Dongmei; Huang, Xiahe; Chen, Mei; Xing, Jiale; Gao, Liyan; Li, Lingyu; Wang, Yale; Peng, Lianwei; Wang, Yingchun

    2017-01-01

    Using a genetic approach, we have identified and characterized a novel protein, named Msf1 (Maintenance factor for photosystem I), that is required for the maintenance of specific components of the photosynthetic apparatus in the green alga Chlamydomonas reinhardtii. Msf1 belongs to the superfamily of light-harvesting complex proteins with three transmembrane domains and consensus chlorophyll-binding sites. Loss of Msf1 leads to reduced accumulation of photosystem I and chlorophyll-binding proteins/complexes. Msf1is a component of a thylakoid complex containing key enzymes of the tetrapyrrole biosynthetic pathway, thus revealing a possible link between Msf1 and chlorophyll biosynthesis. Protein interaction assays and greening experiments demonstrate that Msf1 interacts with Copper target homolog1 (CHL27B) and accumulates concomitantly with chlorophyll in Chlamydomonas, implying that chlorophyll stabilizes Msf1. Contrary to other light-harvesting complex-like genes, the expression of Msf1 is not stimulated by high-light stress, but its protein level increases significantly under heat shock, iron and copper limitation, as well as in stationary cells. Based on these results, we propose that Msf1 is required for the maintenance of photosystem I and specific protein-chlorophyll complexes especially under certain stress conditions. PMID:28637830

  12. DNA-Directed Assembly of Capture Tools for Constitutional Studies of Large Protein Complexes.

    PubMed

    Meyer, Rebecca; Faesen, Alex; Vogel, Katrin; Jeganathan, Sadasivam; Musacchio, Andrea; Niemeyer, Christof M

    2015-06-10

    Large supramolecular protein complexes, such as the molecular machinery involved in gene regulation, cell signaling, or cell division, are key in all fundamental processes of life. Detailed elucidation of structure and dynamics of such complexes can be achieved by reverse-engineering parts of the complexes in order to probe their interactions with distinctive binding partners in vitro. The exploitation of DNA nanostructures to mimic partially assembled supramolecular protein complexes in which the presence and state of two or more proteins are decisive for binding of additional building blocks is reported here. To this end, four-way DNA Holliday junction motifs bearing a fluorescein and a biotin tag, for tracking and affinity capture, respectively, are site-specifically functionalized with centromeric protein (CENP) C and CENP-T. The latter serves as baits for binding of the so-called KMN component, thereby mimicking early stages of the assembly of kinetochores, structures that mediate and control the attachment of microtubules to chromosomes in the spindle apparatus. Results from pull-down experiments are consistent with the hypothesis that CENP-C and CENP-T may bind cooperatively to the KMN network. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-01-01

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139

  14. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  15. Inferring drug-disease associations based on known protein complexes

    PubMed Central

    2015-01-01

    Inferring drug-disease associations is critical in unveiling disease mechanisms, as well as discovering novel functions of available drugs, or drug repositioning. Previous work is primarily based on drug-gene-disease relationship, which throws away many important information since genes execute their functions through interacting others. To overcome this issue, we propose a novel methodology that discover the drug-disease association based on protein complexes. Firstly, the integrated heterogeneous network consisting of drugs, protein complexes, and disease are constructed, where we assign weights to the drug-disease association by using probability. Then, from the tripartite network, we get the indirect weighted relationships between drugs and diseases. The larger the weight, the higher the reliability of the correlation. We apply our method to mental disorders and hypertension, and validate the result by using comparative toxicogenomics database. Our ranked results can be directly reinforced by existing biomedical literature, suggesting that our proposed method obtains higher specificity and sensitivity. The proposed method offers new insight into drug-disease discovery. Our method is publicly available at http://1.complexdrug.sinaapp.com/Drug_Complex_Disease/Data_Download.html. PMID:26044949

  16. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    PubMed Central

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H.

    2012-01-01

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF165 to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {D-protein antagonist + L-protein form ofVEGF-A}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 Å. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 Å2 in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2. PMID:22927390

  17. Immunoprecipitation and Characterization of Membrane Protein Complexes from Yeast

    ERIC Educational Resources Information Center

    Parra-Belky, Karlett; McCulloch, Kathryn; Wick, Nicole; Shircliff, Rebecca; Croft, Nicolas; Margalef, Katrina; Brown, Jamie; Crabill, Todd; Jankord, Ryan; Waldo, Eric

    2005-01-01

    In this undergraduate biochemistry laboratory experiment, the vacuolar ATPase protein complex is purified from yeast cell extracts by doing immunoprecipitations under nondenaturing conditions. Immunoprecipitations are performed using monoclonal antibodies to facilitate data interpretation, and subunits are separated on the basis of their molecular…

  18. Sepsis-induced alterations in protein-protein interactions within mTOR complex 1 and the modulating effect of leucine on muscle protein synthesis.

    PubMed

    Kazi, Abid A; Pruznak, Anne M; Frost, Robert A; Lang, Charles H

    2011-02-01

    Sepsis-induced muscle atrophy is produced in part by decreased protein synthesis mediated by inhibition of mTOR (mammalian target of rapamycin). The present study tests the hypothesis that alteration of specific protein-protein interactions within the mTORC1 (mTOR complex 1) contributes to the decreased mTOR activity observed after cecal ligation and puncture in rats. Sepsis decreased in vivo translational efficiency in gastrocnemius and reduced the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein (BP) 1, S6 kinase (S6K) 1, and mTOR, compared with time-matched pair-fed controls. Sepsis decreased T246-phosphorylated PRAS40 (proline-rich Akt substrate 40) and reciprocally increased S792-phosphorylated raptor (regulatory associated protein of mTOR). Despite these phosphorylation changes, sepsis did not alter PRAS40 binding to raptor. The amount of the mTOR-raptor complex did not differ between groups. In contrast, the binding and retention of both 4E-BP1 and S6K1 to raptor were increased, and, conversely, the binding of raptor with eIF3 was decreased in sepsis. These changes in mTORC1 in the basal state were associated with enhanced 5'-AMP activated kinase activity. Acute in vivo leucine stimulation increased muscle protein synthesis in control, but not septic rats. This muscle leucine resistance was associated with coordinated changes in raptor-eIF3 binding and 4E-BP1 phosphorylation. Overall, our data suggest the sepsis-induced decrease in muscle protein synthesis may be mediated by the inability of 4E-BP1 and S6K1 to be phosphorylated and released from mTORC1 as well as the decreased recruitment of eIF3 necessary for a functional 48S complex. These data provide additional mechanistic insight into the molecular mechanisms by which sepsis impairs both basal protein synthesis and the anabolic response to the nutrient signal leucine in skeletal muscle.

  19. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity.

    PubMed

    Mena, Natalia P; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C; Núñez, Marco T

    2011-06-03

    Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex I and iron accumulation are hallmarks of idiopathic Parkinson's disease, the findings reported here may have relevance for understanding the pathophysiology of this disease. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Protein corona – from molecular adsorption to physiological complexity

    PubMed Central

    Docter, Dominic; Maskos, Michael

    2015-01-01

    Summary In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its formation with regards to nanoparticle (NP) and protein properties, and elucidating its biological implications were central aims of bio-related nano-research throughout the past years. Here, we discuss the mechanistic parameters that are involved in the protein corona formation and the consequences of this corona formation for both, the particle, and the protein. We review consequences of corona formation for colloidal stability and discuss the role of functional groups and NP surface functionalities in shaping NP–protein interactions. We also elaborate the recent advances demonstrating the strong involvement of Coulomb-type interactions between NPs and charged patches on the protein surface. Moreover, we discuss novel aspects related to the complexity of the protein corona forming under physiological conditions in full serum. Specifically, we address the relation between particle size and corona composition and the latest findings that help to shed light on temporal evolution of the full serum corona for the first time. Finally, we discuss the most recent advances regarding the molecular-scale mechanistic role of the protein corona in cellular uptake of NPs. PMID:25977856

  1. Complex network theory for the identification and assessment of candidate protein targets.

    PubMed

    McGarry, Ken; McDonald, Sharon

    2018-06-01

    In this work we use complex network theory to provide a statistical model of the connectivity patterns of human proteins and their interaction partners. Our intention is to identify important proteins that may be predisposed to be potential candidates as drug targets for therapeutic interventions. Target proteins usually have more interaction partners than non-target proteins, but there are no hard-and-fast rules for defining the actual number of interactions. We devise a statistical measure for identifying hub proteins, we score our target proteins with gene ontology annotations. The important druggable protein targets are likely to have similar biological functions that can be assessed for their potential therapeutic value. Our system provides a statistical analysis of the local and distant neighborhood protein interactions of the potential targets using complex network measures. This approach builds a more accurate model of drug-to-target activity and therefore the likely impact on treating diseases. We integrate high quality protein interaction data from the HINT database and disease associated proteins from the DrugTarget database. Other sources include biological knowledge from Gene Ontology and drug information from DrugBank. The problem is a very challenging one since the data is highly imbalanced between target proteins and the more numerous nontargets. We use undersampling on the training data and build Random Forest classifier models which are used to identify previously unclassified target proteins. We validate and corroborate these findings from the available literature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Three-dimensional structure and dynamics of wine tannin-saliva protein complexes. A multitechnique approach.

    PubMed

    Simon, Cécile; Barathieu, Karine; Laguerre, Michel; Schmitter, Jean-Marie; Fouquet, Eric; Pianet, Isabelle; Dufourc, Erick J

    2003-09-09

    The interactions between the B3 (catechin-4alpha,8-catechin) red wine tannin and the human salivary protein fragment IB7(14) (SPPGKPQGPPPQGG) were monitored by (1)H magic angle spinning NMR, circular dichroism, electrospray ionization mass spectrometry, and molecular modeling. It is found that the secondary structure of IB7(14) is made of a type II helix (collagen helix) and random coil. The central glycine 8 appears to act as a flexible rotula separating two helix II regions. Three tannin molecules tightly complex the peptide, without modifying its secondary structure, but seem to reduce its conformational dynamics. The binding dissociation constant is in the millimolar range. B3 tannins with a "tweezers" conformation bind to the hydrophilic side of the saliva peptide, suggesting that the principal driving forces toward association are governed by hydrogen bonding between the carbonyl functions of proline residues and both the phenol and catechol OH groups. These findings are further discussed in the frame of an astringency phenomenon.

  3. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellberg, Kristina; Grimsrud, Paul A.; Kruse, Andrew C.

    2012-07-11

    Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 {angstrom} and 2.3 {angstrom} resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, themore » covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.« less

  4. Strategies for the structural analysis of multi-protein complexes: lessons from the 3D-Repertoire project.

    PubMed

    Collinet, B; Friberg, A; Brooks, M A; van den Elzen, T; Henriot, V; Dziembowski, A; Graille, M; Durand, D; Leulliot, N; Saint André, C; Lazar, N; Sattler, M; Séraphin, B; van Tilbeurgh, H

    2011-08-01

    Structural studies of multi-protein complexes, whether by X-ray diffraction, scattering, NMR spectroscopy or electron microscopy, require stringent quality control of the component samples. The inability to produce 'keystone' subunits in a soluble and correctly folded form is a serious impediment to the reconstitution of the complexes. Co-expression of the components offers a valuable alternative to the expression of single proteins as a route to obtain sufficient amounts of the sample of interest. Even in cases where milligram-scale quantities of purified complex of interest become available, there is still no guarantee that good quality crystals can be obtained. At this step, protein engineering of one or more components of the complex is frequently required to improve solubility, yield or the ability to crystallize the sample. Subsequent characterization of these constructs may be performed by solution techniques such as Small Angle X-ray Scattering and Nuclear Magnetic Resonance to identify 'well behaved' complexes. Herein, we recount our experiences gained at protein production and complex assembly during the European 3D Repertoire project (3DR). The goal of this consortium was to obtain structural information on multi-protein complexes from yeast by combining crystallography, electron microscopy, NMR and in silico modeling methods. We present here representative set case studies of complexes that were produced and analyzed within the 3DR project. Our experience provides useful insight into strategies that are more generally applicable for structural analysis of protein complexes. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. WAVE2 Protein Complex Coupled to Membrane and Microtubules.

    PubMed

    Takahashi, Kazuhide

    2012-01-01

    E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion.

  6. WAVE2 Protein Complex Coupled to Membrane and Microtubules

    PubMed Central

    Takahashi, Kazuhide

    2012-01-01

    E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components. Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules, disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for directional cell migration through lamellipodia formation. These findings might have important implications for the development of effective therapeutic agents against cancer cell migration and invasion. PMID:22315597

  7. Expression of domains for protein-protein interaction of nucleotide excision repair proteins modifies cancer cell sensitivity to platinum derivatives and genomic stability.

    PubMed

    Jordheim, Lars Petter; Cros-Perrial, Emeline; Matera, Eva-Laure; Bouledrak, Karima; Dumontet, Charles

    2014-10-01

    Nucleotide excision repair (NER) is involved in the repair of DNA damage caused by platinum derivatives and has been shown to decrease the cytotoxic activity of these drugs. Because protein-protein interactions are essential for NER activity, we transfected human cancer cell lines (A549 and HCT116) with plasmids coding the amino acid sequences corresponding to the interacting domains between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum, complementation group A (XPA), as well as ERCC1 and xeroderma pigmentosum, complementation group F (XPF), all NER proteins. Using the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and annexin V staining, we showed that transfected A549 cells were sensitized 1.2-2.2-fold to carboplatin and that transfected HCT116 cells were sensitized 1.4-5.4-fold to oxaliplatin in vitro. In addition, transfected cells exhibited modified in vivo sensitivity to the same drugs. Finally, in particular cell models of the interaction between ERCC1 and XPF, DNA repair was decreased, as evidenced by increased phosphorylation of the histone 2AX after exposure to mitomycin C, and genomic instability was increased, as determined by comparative genomic hybridization studies. The results indicate that the interacting peptides act as dominant negatives and decrease NER activity through inhibition of protein-protein interactions. © 2014 Wiley Publishing Asia Pty Ltd.

  8. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    PubMed

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Domain mapping of the Rad51 paralog protein complexes

    PubMed Central

    Miller, Kristi A.; Sawicka, Dorota; Barsky, Daniel; Albala, Joanna S.

    2004-01-01

    The five human Rad51 paralogs are suggested to play an important role in the maintenance of genome stability through their function in DNA double-strand break repair. These proteins have been found to form two distinct complexes in vivo, Rad51B–Rad51C–Rad51D–Xrcc2 (BCDX2) and Rad51C–Xrcc3 (CX3). Based on the recent Pyrococcus furiosus Rad51 structure, we have used homology modeling to design deletion mutants of the Rad51 paralogs. The models of the human Rad51B, Rad51C, Xrcc3 and murine Rad51D (mRad51D) proteins reveal distinct N-terminal and C-terminal domains connected by a linker region. Using yeast two-hybrid and co-immunoprecipitation techniques, we have demonstrated that a fragment of Rad51B containing amino acid residues 1–75 interacts with the C-terminus and linker of Rad51C, residues 79–376, and this region of Rad51C also interacts with mRad51D and Xrcc3. We have also determined that the N-terminal domain of mRad51D, residues 4–77, binds to Xrcc2 while the C-terminal domain of mRad51D, residues 77–328, binds Rad51C. By this, we have identified the binding domains of the BCDX2 and CX3 complexes to further characterize the interaction of these proteins and propose a scheme for the three-dimensional architecture of the BCDX2 and CX3 paralog complexes. PMID:14704354

  10. Supercharging Protein Complexes from Aqueous Solution Disrupts their Native Conformations

    NASA Astrophysics Data System (ADS)

    Sterling, Harry J.; Kintzer, Alexander F.; Feld, Geoffrey K.; Cassou, Catherine A.; Krantz, Bryan A.; Williams, Evan R.

    2012-02-01

    The effects of aqueous solution supercharging on the solution- and gas-phase structures of two protein complexes were investigated using traveling-wave ion mobility-mass spectrometry (TWIMS-MS). Low initial concentrations of m-nitrobenzyl alcohol ( m-NBA) in the electrospray ionization (ESI) solution can effectively increase the charge of concanavalin A dimers and tetramers, but at higher m-NBA concentrations, the increases in charge are accompanied by solution-phase dissociation of the dimers and up to a ~22% increase in the collision cross section (CCS) of the tetramers. With just 0.8% m-NBA added to the ESI solution of a ~630 kDa anthrax toxin octamer complex, the average charge is increased by only ~4% compared with the "native" complex, but it is sufficiently destabilized so that extensive gas-phase fragmentation occurs in the relatively high pressure regions of the TWIMS device. Anthrax toxin complexes exist in either a prechannel or a transmembrane channel state. With m-NBA, the prechannel state of the complex has the same CCS/charge ratio in the gas phase as the transmembrane channel state of the same complex formed without m-NBA, yet undergoes extensive dissociation, indicating that destabilization from supercharging occurs in the ESI droplet prior to ion formation and is not a result of Coulombic destabilization in the gas phase as a result of higher charging. These results demonstrate that the supercharging of large protein complexes is the result of conformational changes induced by the reagents in the ESI droplets, where enrichment of the supercharging reagent during droplet evaporation occurs.

  11. Conformational dynamics of activation for the pentameric complex of dimeric G protein – coupled receptor and heterotrimeric G protein

    PubMed Central

    Orban, Tivadar; Jastrzebska, Beata; Gupta, Sayan; Wang, Benlian; Miyagi, Masaru; Chance, Mark R.; Palczewski, Krzysztof

    2012-01-01

    Summary Photoactivation of rhodopsin (Rho), a G protein-coupled receptor (GPCR), causes conformational changes that provide a specific binding site for the rod G protein, Gt. In this work we employed structural mass spectrometry (MS) techniques to elucidate the structural changes accompanying transition of ground state Rho to photoactivated Rho (Rho*) and in the pentameric complex between dimeric Rho* and heterotrimeric Gt. Observed differences in hydroxyl radical labeling and deuterium uptake between Rho* and the (Rho*)2-Gt complex suggest that photoactivation causes structural relaxation of Rho following its initial tightening upon Gt coupling. In contrast, nucleotide-free Gt in the complex is significantly more accessible to deuterium uptake allowing it to accept GTP and mediating complex dissociation. Thus, we provide direct evidence that in the critical step of signal amplification, Rho* and Gt exhibit dissimilar conformational changes when they are coupled in the (Rho*)2-Gt complex. PMID:22579250

  12. Favorable Influence of Hydrophobic Surfaces on Protein Structure in Porous Organically-modified Silica Glasses

    PubMed Central

    Menaa, Bouzid; Herrero, Mar; Rives, Vicente; Lavrenko, Mayya; Eggers, Daryl K.

    2008-01-01

    Organically-modified siloxanes were used as host materials to examine the influence of surface chemistry on protein conformation in a crowded environment. The sol-gel materials were prepared from tetramethoxysilane and a series of monosubstituted alkoxysilanes, RSi(OR′)3, featuring alkyl groups of increasing chain length in the R-position. Using circular dichroism spectroscopy in the far-UV region, apomyoglobin was found to transit from an unfolded state to a native-like helical state as the content of the hydrophobic precursor increased from 0–15%. At a fixed molar content of 5% RSi(OR’)3, the helical structure of apomyoglobin increased with the chain length of the R-group, i.e. methyl < ethyl < n-propyl < n-butyl < n-hexyl. This trend also was observed for the tertiary structure of ribonuclease A, suggesting that protein folding and biological activity are sensitive to the hydrophilic/hydrophobic balance of neighboring surfaces. The observed changes in protein structure did not correlate with total surface area or the average pore size of the modified glasses, but scanning electron microscopy images revealed an interesting relationship between surface morphology and alkyl chain length. The unexpected benefit of incorporating a low content of hydrophobic groups into a hydrophilic surface may lead to materials with improved biocompatibility for use in biosensors and implanted devices. PMID:18359512

  13. Structural symmetry and protein function.

    PubMed

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of

  14. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    NASA Astrophysics Data System (ADS)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.; Tebo, Bradley M.; Wysocki, Vicki H.; Paša-Tolić, Ljiljana

    2018-01-01

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase, Mnx, from Bacillus sp. PL-12 has been successfully overexpressed in active form as a protein complex with a molecular mass of 211 kDa. We have recently used surface induced dissociation (SID) and ion mobility-mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data from the native mass spectrometry experiments led to a plausible structural model of this multicopper oxidase, which has been difficult to study by conventional structural biology methods. It was also revealed that each Mnx subunit binds a variable number of copper ions. Becasue of the heterogeneity of the protein and limited mass resolution, ambiguities in assigning some of the observed peaks remained as a barrier to fully understanding the role of metals and potential unknown ligands in Mnx. In this study, we performed SID in a modified Fourier transform-ion cyclotron resonance (FTICR) mass spectrometer. The high mass accuracy and resolution offered by FTICR unveiled unexpected artificial modifications on the protein that had been previously thought to be iron bound species based on lower resolution spectra. Additionally, isotopically resolved spectra of the released subcomplexes revealed the metal binding stoichiometry at different structural levels. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes. [Figure not available: see fulltext.

  15. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mowei; Yan, Jing; Romano, Christine A.

    Manganese oxidation is an important biogeochemical process that is largely regulated by bacteria through enzymatic reactions. However, the detailed mechanism is poorly understood due to challenges in isolating and characterizing these unknown enzymes. A manganese oxidase Mnx from Bacillus sp. PL-12 has been successfully overexpressed in active form, unexpectedly, as a protein complex with a molecular weight of 211 kDa with no homology to known proteins in the database. We have recently used surface induced dissociation (SID) and ion mobility – mass spectrometry (IM-MS) to release and detect folded subcomplexes for determining subunit connectivity and quaternary structure. The data frommore » the native mass spectrometry experiment led to a plausible model of this unknown multicopper oxidase which has been difficult to study by conventional structural biology methods. However, because each subunit of Mnx binds copper ions as cofactor at varying ratios, there were remaining ambiguities in assigning some of the observed peaks to metal-binding species because of the sample heterogeneity and limited mass resolution. In this study, we performed SID in a modified Fourier transform – ion cyclotron resonance (FT-ICR) mass spectrometer for obtaining the ultimate resolution on the released subcomplexes of Mnx. The high mass accuracy and resolution unveiled unexpected artificial modifications in the protein that have been previously thought to be iron bound species based on lower resolution data. Additionally, most released subcomplexes were isotopically resolved for defining metal binding stoichiometry at each structural level. This method holds great potential for in-depth characterization of metalloproteins and protein-ligand complexes.« less

  16. Modeling of a complex, polar system with a modified Soave-Redlich-Kwong equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturnfield, E.A.; Matherne, J.L.

    1988-01-01

    It is computationally feasible to use a simple equation of state (like a Redlich-Kwong) to calculate liquid fugacity but the simpler equations work well only for moderately non-ideal systems. More complex equations (like Ghemling-Lui-Prausnitz) predict system behavior more accurately but are much more complicated to use and can require fitting many parameters to data. This paper illustrates success in using a modified Redlich-Kwong to model a complex system including water, hydrogen, sub and supercritical ammonia, and amines. The binary interaction parameter ({Kappa}/sub ij/) of the Soave-Redlich-Kwong equation has been modified to be both asymmetric and temperature dependent. Further, the aimore » constant was determined by fitting vapor pressure data. Predicted model results are compared to literature (example 1) or plant data (examples 2-4) for four systems: 1. The ammonia-water binary over a wide range of pressure and temperature including ammonia above its critical. 2. A multicomponent Vapor-Liquid equilibrium flash tank and condenser containg hydrogen, amonia, water, and other heavier compounds. 3. A multicomponent vapor-liquid equilibrium flash tank containing water, heavier mines, and the amine salts. 4. A Liquid-Liquid-Vapor equilibrium decanter system containing water, ammonia, and an organic chloride.« less

  17. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    PubMed Central

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  18. Analysis of Structural Features Contributing to Weak Affinities of Ubiquitin/Protein Interactions.

    PubMed

    Cohen, Ariel; Rosenthal, Eran; Shifman, Julia M

    2017-11-10

    Ubiquitin is a small protein that enables one of the most common post-translational modifications, where the whole ubiquitin molecule is attached to various target proteins, forming mono- or polyubiquitin conjugations. As a prototypical multispecific protein, ubiquitin interacts non-covalently with a variety of proteins in the cell, including ubiquitin-modifying enzymes and ubiquitin receptors that recognize signals from ubiquitin-conjugated substrates. To enable recognition of multiple targets and to support fast dissociation from the ubiquitin modifying enzymes, ubiquitin/protein interactions are characterized with low affinities, frequently in the higher μM and lower mM range. To determine how structure encodes low binding affinity of ubiquitin/protein complexes, we analyzed structures of more than a hundred such complexes compiled in the Ubiquitin Structural Relational Database. We calculated various structure-based features of ubiquitin/protein binding interfaces and compared them to the same features of general protein-protein interactions (PPIs) with various functions and generally higher affinities. Our analysis shows that ubiquitin/protein binding interfaces on average do not differ in size and shape complementarity from interfaces of higher-affinity PPIs. However, they contain fewer favorable hydrogen bonds and more unfavorable hydrophobic/charge interactions. We further analyzed how binding interfaces change upon affinity maturation of ubiquitin toward its target proteins. We demonstrate that while different features are improved in different experiments, the majority of the evolved complexes exhibit better shape complementarity and hydrogen bond pattern compared to wild-type complexes. Our analysis helps to understand how low-affinity PPIs have evolved and how they could be converted into high-affinity PPIs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Molecular architecture of polycomb repressive complexes

    PubMed Central

    Chittock, Emily C.; Latwiel, Sebastian; Miller, Thomas C.R.

    2017-01-01

    The polycomb group (PcG) proteins are a large and diverse family that epigenetically repress the transcription of key developmental genes. They form three broad groups of polycomb repressive complexes (PRCs) known as PRC1, PRC2 and Polycomb Repressive DeUBiquitinase, each of which modifies and/or remodels chromatin by distinct mechanisms that are tuned by having variable compositions of core and accessory subunits. Until recently, relatively little was known about how the various PcG proteins assemble to form the PRCs; however, studies by several groups have now allowed us to start piecing together the PcG puzzle. Here, we discuss some highlights of recent PcG structures and the insights they have given us into how these complexes regulate transcription through chromatin. PMID:28202673

  20. Structure of the Get3 targeting factor in complex with its membrane protein cargo

    DOE PAGES

    Mateja, Agnieszka; Paduch, Marcin; Chang, Hsin-Yang; ...

    2015-03-06

    Tail-anchored (TA) proteins are a physiologically important class of membrane proteins targeted to the endoplasmic reticulum by the conserved guided-entry of TA proteins (GET) pathway. During transit, their hydrophobic transmembrane domains (TMDs) are chaperoned by the cytosolic targeting factor Get3, but the molecular nature of the functional Get3-TA protein targeting complex remains unknown. In this paper, we reconstituted the physiologic assembly pathway for a functional targeting complex and showed that it comprises a TA protein bound to a Get3 homodimer. Crystal structures of Get3 bound to different TA proteins showed an α-helical TMD occupying a hydrophobic groove that spans themore » Get3 homodimer. Finally, our data elucidate the mechanism of TA protein recognition and shielding by Get3 and suggest general principles of hydrophobic domain chaperoning by cellular targeting factors.« less

  1. G protein βγ complex translocation from plasma membrane to Golgi complex is influenced by receptor γ subunit interaction

    PubMed Central

    Akgoz, Muslum; Kalyanaraman, Vani; Gautam, N.

    2008-01-01

    On activation of a receptor the G protein βγ complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of γ subunit associated with the G protein. Complementary approaches — imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro — were used to identify mechanisms at the basis of the translocation process. Translocation of Gβγ containing mutant γ subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated γ5 and farnesylated γ11 on the translocation process. The translocation properties of Gβγ were altered dramatically by mutating the C terminal tail region of the γ subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gβγ retains contact with a receptor through the γ subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gβγ translocation from the plasma membrane. PMID:16517125

  2. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement.

    PubMed

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie; Schiffmann, Christian L; Andrades, Adarelys; von Bergen, Martin; Sawers, R Gary; Adrian, Lorenz

    2016-09-01

    Dehalococcoides mccartyi strain CBDB1 is an obligate organohalide-respiring bacterium using only hydrogen as electron donor and halogenated organics as electron acceptor. Here, we studied proteins involved in the respiratory chain under non-denaturing conditions. Using blue native gel electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250-270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster containing subunit (CbdbA131) of the hydrogen uptake hydrogenase (Hup). No colocalisation between the catalytically active subunits of hydrogenase and reductive dehalogenase was found. By two-dimensional BN/SDS-PAGE the stability of the complex towards detergents was assessed, demonstrating stepwise disintegration with increasing detergent concentrations. Chemical cross-linking confirmed the presence of a higher molecular mass reductive dehalogenase protein complex composed of RdhA, CISM I and Hup hydrogenase and proved to be a potential tool for stabilising protein-protein interactions of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    PubMed

    Burkova, Evgeniya E; Dmitrenok, Pavel S; Sedykh, Sergey E; Buneva, Valentina N; Soboleva, Svetlana E; Nevinsky, Georgy A

    2014-01-01

    Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa) from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs) 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa) as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  4. Trajectory-Based Complexity (TBX): A Modified Aircraft Count to Predict Sector Complexity During Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Lee, Paul U.

    2011-01-01

    In this paper we introduce a new complexity metric to predict -in real-time- sector complexity for trajectory-based operations (TBO). TBO will be implemented in the Next Generation Air Transportation System (NextGen). Trajectory-Based Complexity (TBX) is a modified aircraft count that can easily be computed and communicated in a TBO environment based upon predictions of aircraft and weather trajectories. TBX is scaled to aircraft count and represents an alternate and additional means to manage air traffic demand and capacity with more consideration of dynamic factors such as weather, aircraft equipage or predicted separation violations, as well as static factors such as sector size. We have developed and evaluated TBX in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center during human-in-the-loop studies of trajectory-based concepts since 2009. In this paper we will describe the TBX computation in detail and present the underlying algorithm. Next, we will describe the specific TBX used in an experiment at NASA's AOL. We will evaluate the performance of this metric using data collected during a controller-inthe- loop study on trajectory-based operations at different equipage levels. In this study controllers were prompted at regular intervals to rate their current workload on a numeric scale. When comparing this real-time workload rating to the TBX values predicted for these time periods we demonstrate that TBX is a better predictor of workload than aircraft count. Furthermore we demonstrate that TBX is well suited to be used for complexity management in TBO and can easily be adjusted to future operational concepts.

  5. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification

    PubMed Central

    Almeida, Karen H.; Sobol, Robert W.

    2007-01-01

    Base excision repair (BER) proteins act upon a significantly broad spectrum of DNA lesions that result from endogenous and exogenous sources. Multiple sub-pathways of BER (short-path or long-patch) and newly designated DNA repair pathways (e.g., SSBR and NIR) that utilize BER proteins complicate any comprehensive understanding of BER and its role in genome maintenance, chemotherapeutic response, neurodegeneration, cancer or aging. Herein, we propose a unified model of BER, comprised of three functional processes: Lesion Recognition/Strand Scission, Gap Tailoring and DNA Synthesis/Ligation, each represented by one or more multiprotein complexes and coordinated via the XRCC1/DNA Ligase III and PARP1 scaffold proteins. BER therefore may be represented by a series of repair complexes that assemble at the site of the DNA lesion and mediates repair in a coordinated fashion involving protein-protein interactions that dictate subsequent steps or sub-pathway choice. Complex formation is influenced by post-translational protein modifications that arise from the cellular state or the DNA damage response, providing an increase in specificity and efficiency to the BER pathway. In this review, we have summarized the reported BER protein-protein interactions and protein post-translational modifications and discuss the impact on DNA repair capacity and complex formation. PMID:17337257

  6. Characterization, stoichiometry, and stability of salivary protein-tannin complexes by ESI-MS and ESI-MS/MS.

    PubMed

    Canon, Francis; Paté, Franck; Meudec, Emmanuelle; Marlin, Thérèse; Cheynier, Véronique; Giuliani, Alexandre; Sarni-Manchado, Pascale

    2009-12-01

    Numerous protein-polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP-tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP-tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5.EgCG complexes are maintained intact in the gas phase.

  7. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  8. Combining Amine-Reactive Cross-Linkers and Photo-Reactive Amino Acids for 3D-Structure Analysis of Proteins and Protein Complexes.

    PubMed

    Lössl, Philip; Sinz, Andrea

    2016-01-01

    During the last 15 years, the combination of chemical cross-linking and high-resolution mass spectrometry (MS) has matured into an alternative approach for analyzing 3D-structures of proteins and protein complexes. Using the distance constraints imposed by the cross-links, models of the protein or protein complex under investigation can be created. The majority of cross-linking studies are currently conducted with homobifunctional amine-reactive cross-linkers. We extend this "traditional" cross-linking/MS strategy by adding complementary photo-cross-linking data. For this, the diazirine-containing unnatural amino acids photo-leucine and photo-methionine are incorporated into the proteins and cross-link formation is induced by UV-A irradiation. The advantage of the photo-cross-linking strategy is that it is not restricted to lysine residues and that hydrophobic regions in proteins can be targeted, which is advantageous for investigating membrane proteins. We consider the strategy of combining cross-linkers with orthogonal reactivities and distances to be ideally suited for maximizing the amount of structural information that can be gained from a cross-linking experiment.

  9. Absolute quantitation of isoforms of post-translationally modified proteins in transgenic organism.

    PubMed

    Li, Yaojun; Shu, Yiwei; Peng, Changchao; Zhu, Lin; Guo, Guangyu; Li, Ning

    2012-08-01

    Post-translational modification isoforms of a protein are known to play versatile biological functions in diverse cellular processes. To measure the molar amount of each post-translational modification isoform (P(isf)) of a target protein present in the total protein extract using mass spectrometry, a quantitative proteomic protocol, absolute quantitation of isoforms of post-translationally modified proteins (AQUIP), was developed. A recombinant ERF110 gene overexpression transgenic Arabidopsis plant was used as the model organism for demonstration of the proof of concept. Both Ser-62-independent (14)N-coded synthetic peptide standards and (15)N-coded ERF110 protein standard isolated from the heavy nitrogen-labeled transgenic plants were employed simultaneously to determine the concentration of all isoforms (T(isf)) of ERF110 in the whole plant cell lysate, whereas a pair of Ser-62-dependent synthetic peptide standards were used to quantitate the Ser-62 phosphosite occupancy (R(aqu)). The P(isf) was finally determined by integrating the two empirically measured variables using the following equation: P(isf) = T(isf) · R(aqu). The absolute amount of Ser-62-phosphorylated isoform of ERF110 determined using AQUIP was substantiated with a stable isotope labeling in Arabidopsis-based relative and accurate quantitative proteomic approach. The biological role of the Ser-62-phosphorylated isoform was demonstrated in transgenic plants.

  10. The Homeodomain of PDX-1 Mediates Multiple Protein-Protein Interactions in the Formation of a Transcriptional Activation Complex on the Insulin Promoter

    PubMed Central

    Ohneda, Kinuko; Mirmira, Raghavendra G.; Wang, Juehu; Johnson, Jeffrey D.; German, Michael S.

    2000-01-01

    Activation of insulin gene transcription specifically in the pancreatic β cells depends on multiple nuclear proteins that interact with each other and with sequences on the insulin gene promoter to build a transcriptional activation complex. The homeodomain protein PDX-1 exemplifies such interactions by binding to the A3/4 region of the rat insulin I promoter and activating insulin gene transcription by cooperating with the basic-helix-loop-helix (bHLH) protein E47/Pan1, which binds to the adjacent E2 site. The present study provides evidence that the homeodomain of PDX-1 acts as a protein-protein interaction domain to recruit multiple proteins, including E47/Pan1, BETA2/NeuroD1, and high-mobility group protein I(Y), to an activation complex on the E2A3/4 minienhancer. The transcriptional activity of this complex results from the clustering of multiple activation domains capable of interacting with coactivators and the basal transcriptional machinery. These interactions are not common to all homeodomain proteins: the LIM homeodomain protein Lmx1.1 can also activate the E2A3/4 minienhancer in cooperation with E47/Pan1 but does so through different interactions. Cooperation between Lmx1.1 and E47/Pan1 results not only in the aggregation of multiple activation domains but also in the unmasking of a potent activation domain on E47/Pan1 that is normally silent in non-β cells. While more than one activation complex may be capable of activating insulin gene transcription through the E2A3/4 minienhancer, each is dependent on multiple specific interactions among a unique set of nuclear proteins. PMID:10629047

  11. A targeted genetic modifier screen links the SWI2/SNF2 protein domino to growth and autophagy genes in Drosophila melanogaster.

    PubMed

    Kwon, Matt Hyoung; Callaway, Heather; Zhong, Jim; Yedvobnick, Barry

    2013-05-20

    Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity.

  12. [The effect of hydrophobic surface properties of protein on its resistance to denaturation by organic solvents (using modified alpha-chymotrypsin as an example].

    PubMed

    Kudriashova, E V; Belova, A B; Vinogradov, A A; Mozhaev, V V

    1994-03-01

    Catalytic activity of covalently modified alpha-chymotrypsin in water/cosolvent solutions was investigated. The stability of chymotrypsin increases upon modification with hydrophilic reagents, such as glyceraldehyde, pyrometallic and succinic anhydrides, and glucosamine. Correlation was observed between the protein's stability in organic solvents and the degree of hydrophilization of the protein's surface. The protein is the more stable, the higher are the modification degree and the hydrophilicity of the modifying residue. At a certain critical hydrophilization degree of chymotrypsin a limit of stability is achieved. The stabilization effect can be accounted for by the fact that the interaction between water molecules on the surface and protein's functional groups become stronger in the hydrophilized protein.

  13. The Saccharomyces cerevisiae anaphase-promoting complex interacts with multiple histone-modifying enzymes to regulate cell cycle progression.

    PubMed

    Turner, Emma L; Malo, Mackenzie E; Pisclevich, Marnie G; Dash, Megan D; Davies, Gerald F; Arnason, Terra G; Harkness, Troy A A

    2010-10-01

    The anaphase-promoting complex (APC), a large evolutionarily conserved ubiquitin ligase complex, regulates cell cycle progression through mitosis and G(1). Here, we present data suggesting that APC-dependent cell cycle progression relies on a specific set of posttranslational histone-modifying enzymes. Multiple APC subunit mutants were impaired in total and modified histone H3 protein content. Acetylated H3K56 (H3K56(Ac)) levels were as reduced as those of total H3, indicating that loading histones with H3K56(Ac) is unaffected in APC mutants. However, under restrictive conditions, H3K9(Ac) and dimethylated H3K79 (H3K79(me2)) levels were more greatly reduced than those of total H3. In a screen for histone acetyltransferase (HAT) and histone deacetylase (HDAC) mutants that genetically interact with the apc5(CA) (chromatin assembly) mutant, we found that deletion of GCN5 or ELP3 severely hampered apc5(CA) temperature-sensitive (ts) growth. Further analyses showed that (i) the elp3Δ gcn5Δ double mutant ts defect was epistatic to that observed in apc5(CA) cells; (ii) gcn5Δ and elp3Δ mutants accumulate in mitosis; and (iii) turnover of the APC substrate Clb2 is not impaired in elp3Δ gcn5Δ cells. Increased expression of ELP3 and GCN5, as well as genes encoding the HAT Rtt109 and the chromatin assembly factors Msi1 and Asf1, suppressed apc5(CA) defects, while increased APC5 expression partially suppressed elp3Δ gcn5Δ growth defects. Finally, we demonstrate that Gcn5 is unstable during G(1) and following G(1) arrest and is stabilized in APC mutants. We present our working model in which Elp3/Gcn5 and the APC work together to facilitate passage through mitosis and G(1). To progress into S, we propose that at least Gcn5 must then be targeted for degradation in an APC-dependent fashion.

  14. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions†

    PubMed Central

    Naegle, Kristen M.; White, Forest M.; Lauffenburger, Douglas A.; Yaffe, Michael B.

    2012-01-01

    Cell signaling networks propagate information from extracellular cues via dynamic modulation of protein–protein interactions in a context-dependent manner. Networks based on receptor tyrosine kinases (RTKs), for example, phosphorylate intracellular proteins in response to extracellular ligands, resulting in dynamic protein–protein interactions that drive phenotypic changes. Most commonly used methods for discovering these protein–protein interactions, however, are optimized for detecting stable, longer-lived complexes, rather than the type of transient interactions that are essential components of dynamic signaling networks such as those mediated by RTKs. Substrate phosphorylation downstream of RTK activation modifies substrate activity and induces phospho-specific binding interactions, resulting in the formation of large transient macromolecular signaling complexes. Since protein complex formation should follow the trajectory of events that drive it, we reasoned that mining phosphoproteomic datasets for highly similar dynamic behavior of measured phosphorylation sites on different proteins could be used to predict novel, transient protein–protein interactions that had not been previously identified. We applied this method to explore signaling events downstream of EGFR stimulation. Our computational analysis of robustly co-regulated phosphorylation sites, based on multiple clustering analysis of quantitative time-resolved mass-spectrometry phosphoproteomic data, not only identified known sitewise-specific recruitment of proteins to EGFR, but also predicted novel, a priori interactions. A particularly intriguing prediction of EGFR interaction with the cytoskeleton-associated protein PDLIM1 was verified within cells using co-immunoprecipitation and in situ proximity ligation assays. Our approach thus offers a new way to discover protein–protein interactions in a dynamic context- and phosphorylation site-specific manner. PMID:22851037

  15. Like-charged protein-polyelectrolyte complexation driven by charge patches

    NASA Astrophysics Data System (ADS)

    Yigit, Cemil; Heyda, Jan; Ballauff, Matthias; Dzubiella, Joachim

    2015-08-01

    We study the pair complexation of a single, highly charged polyelectrolyte (PE) chain (of 25 or 50 monomers) with like-charged patchy protein models (CPPMs) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size with mono- and multipole moments comparable to those of globular proteins with similar size. We observe large binding affinities between the CPPM and the like-charged PE in the tens of the thermal energy, kBT, that are favored by decreasing salt concentration and increasing charge of the patch(es). Our systematic analysis shows a clear correlation between the distance-resolved potentials of mean force, the number of ions released from the PE, and CPPM orientation effects. In particular, we find a novel two-site binding behavior for PEs in the case of two-patched CPPMs, where intermediate metastable complex structures are formed. In order to describe the salt-dependence of the binding affinity for mainly dipolar (one-patched) CPPMs, we introduce a combined counterion-release/Debye-Hückel model that quantitatively captures the essential physics of electrostatic complexation in our systems.

  16. Poly-Small Ubiquitin-like Modifier (PolySUMO)-binding Proteins Identified through a String Search*

    PubMed Central

    Sun, Huaiyu; Hunter, Tony

    2012-01-01

    Polysumoylation is a crucial cellular response to stresses against genomic integrity or proteostasis. Like the small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligase RNF4, proteins with clustered SUMO-interacting motifs (SIMs) can be important signal transducers downstream of polysumoylation. To identify novel polySUMO-binding proteins, we conducted a computational string search with a custom Python script. We found clustered SIMs in another RING domain protein Arkadia/RNF111. Detailed biochemical analysis of the Arkadia SIMs revealed that dominant SIMs in a SIM cluster often contain a pentameric VIDLT ((V/I/L/F/Y)(V/I)DLT) core sequence that is also found in the SIMs in PIAS family E3s and is likely the best-fitted structure for SUMO recognition. This idea led to the identification of additional novel SIM clusters in FLASH/CASP8AP2, C5orf25, and SOBP/JXC1. We suggest that the clustered SIMs in these proteins form distinct SUMO binding domains to recognize diverse forms of protein sumoylation. PMID:23086935

  17. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution.

    PubMed

    Buckle, A M; Schreiber, G; Fersht, A R

    1994-08-02

    We have solved, refined, and analyzed the 2.0-å resolution crystal structure of a 1:1 complex between the bacterial ribonuclease, barnase, and a Cys-->Ala(40,82) double mutant of its intracellular polypeptide inhibitor, barstar. Barstar inhibits barnase by sterically blocking the active site with a helix and adjacent loop segment. Almost half of the 14 hydrogen bonds between barnase and barstar involve two charged residues, and a third involve one charged partner. The electrostatic contribution to the overall binding energy is considerably greater than for other protein-protein interactions. Consequently, the very high rate constant for the barnase-barstar association (10(8) s-1 M-1) is most likely due to electrostatic steering effects. The barnase active-site residue His102 is located in a pocket on the surface of barstar, and its hydrogen bonds with Asp39 and Gly31 residues of barstar are directly responsible for the pH dependence of barnase-barstar binding. There is a high degree of complementarity both of the shape and of the charge of the interacting surfaces, but neither is perfect. The surface complementarity is slightly poorer than in protease-inhibitor complexes but a little better than in antibody-antigen interactions. However, since the burial of solvent in the barnase-barstar interface improves the fit significantly by filling in the majority of gaps, as well as stabilizing unfavorable electrostatic interactions, its role seems to be more important than in other protein-protein complexes. The electrostatic interactions between barnase and barstar are very similar to those between barnase and the tetranucleotide d(CGAC). In the barnase-barstar complex, the two phosphate-binding sites in the barnase active site are occupied by Asp39 and Gly43 of barstar. However, barstar has no equivalent for a guanine base of an RNA substrate, resulting in the occupation of the guanine recognition site in the barnase-barstar complex by nine ordered water molecules. Upon

  18. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein–protein interactions

    PubMed Central

    Liu, Fushan; Ahmed, Zaheer; Lee, Elizabeth A.; Donner, Elizabeth; Liu, Qiang; Ahmed, Regina; Morell, Matthew K.; Emes, Michael J.; Tetlow, Ian J.

    2012-01-01

    amylose extender (ae−) starches characteristically have modified starch granule morphology resulting from amylopectin with reduced branch frequency and longer glucan chains in clusters, caused by the loss of activity of the major starch branching enzyme (SBE), which in maize endosperm is SBEIIb. A recent study with ae− maize lacking the SBEIIb protein (termed ae1.1 herein) showed that novel protein–protein interactions between enzymes of starch biosynthesis in the amyloplast could explain the starch phenotype of the ae1.1 mutant. The present study examined an allelic variant of the ae− mutation, ae1.2, which expresses a catalytically inactive form of SBEIIb. The catalytically inactive SBEIIb in ae1.2 lacks a 28 amino acid peptide (Val272–Pro299) and is unable to bind to amylopectin. Analysis of starch from ae1.2 revealed altered granule morphology and physicochemical characteristics distinct from those of the ae1.1 mutant as well as the wild-type, including altered apparent amylose content and gelatinization properties. Starch from ae1.2 had fewer intermediate length glucan chains (degree of polymerization 16–20) than ae1.1. Biochemical analysis of ae1.2 showed that there were differences in the organization and assembly of protein complexes of starch biosynthetic enzymes in comparison with ae1.1 (and wild-type) amyloplasts, which were also reflected in the composition of starch granule-bound proteins. The formation of stromal protein complexes in the wild-type and ae1.2 was strongly enhanced by ATP, and broken by phosphatase treatment, indicating a role for protein phosphorylation in their assembly. Labelling experiments with [γ-32P]ATP showed that the inactive form of SBEIIb in ae1.2 was phosphorylated, both in the monomeric form and in association with starch synthase isoforms. Although the inactive SBEIIb was unable to bind starch directly, it was strongly associated with the starch granule, reinforcing the conclusion that its presence in the

  19. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    PubMed Central

    2014-01-01

    Background Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes. PMID:25077693

  20. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories.

    PubMed

    Abdel-Azeim, Safwat; Chermak, Edrisse; Vangone, Anna; Oliva, Romina; Cavallo, Luigi

    2014-01-01

    Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  1. From Genomes to Protein Models and Back

    NASA Astrophysics Data System (ADS)

    Tramontano, Anna; Giorgetti, Alejandro; Orsini, Massimiliano; Raimondo, Domenico

    2007-12-01

    The alternative splicing mechanism allows genes to generate more than one product. When the splicing events occur within protein coding regions they can modify the biological function of the protein. Alternative splicing has been suggested as one way for explaining the discrepancy between the number of human genes and functional complexity. We analysed the putative structure of the alternatively spliced gene products annotated in the ENCODE pilot project and discovered that many of the potential alternative gene products will be unlikely to produce stable functional proteins.

  2. Encounter complexes and dimensionality reduction in protein–protein association

    PubMed Central

    Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor

    2014-01-01

    An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001 PMID:24714491

  3. Proteoform-specific protein binding of small molecules in complex matrices

    USDA-ARS?s Scientific Manuscript database

    Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original ...

  4. Rooster comb hyaluronate-protein, a non-covalently linked complex.

    PubMed Central

    Tsiganos, C P; Vynios, D H; Kalpaxis, D L

    1986-01-01

    Hyaluronate from rooster comb was isolated by ion-exchange chromatography on DEAE-cellulose from tissue extracts and papain digests. The preparations were labelled with [14C]acetic anhydride and subjected to CsCl-density-gradient centrifugation in 4 M-guanidinium chloride in the presence and absence of 4% ZwittergentTM 3-12. A radioactive protein fraction was separated from the hyaluronate when the zwitterionic detergent was also present. The protein could also be separated from the glycosaminoglycan by chromatography on Sepharose CL-6B eluted with the same solvent mixture. The protein fraction contained three protein bands of Mr 15,000-17,000 as assessed by polyacrylamide-gel electrophoresis in 0.1% SDS, and seemed to lack lysozyme activity. No evidence of other protein or amino acid(s) covalently linked with the hyaluronate was obtained. The hyaluronate-protein complex may be re-formed upon mixing the components, the extent of its formation depending on the conditions used. The results show that, as in chondrosarcoma [Mason, d'Arville, Kimura & Hascall (1982) Biochem. J. 207, 445-457] and teratocarcinoma cells [Prehm (1983) Biochem. J. 211, 191-198] the rooster comb hyaluronate also is not linked covalently to a core protein. PMID:3741374

  5. Identification of a basic protein of Mr 75,000 as an accessory desmosomal plaque protein in stratified and complex epithelia.

    PubMed

    Kapprell, H P; Owaribe, K; Franke, W W

    1988-05-01

    Desmosomes are intercellular adhering junctions characterized by a special structure and certain obligatory constituent proteins such as the cytoplasmic protein, desmoglein. Desmosomal fractions from bovine muzzle epidermis contain, in addition, a major polypeptide of Mr approximately 75,000 ("band 6 protein") which differs from all other desmosomal proteins so far identified by its positive charge (isoelectric at pH approximately 8.5 in the denatured state) and its avidity to bind certain type I cytokeratins under stringent conditions. We purified this protein from bovine muzzle epidermis and raised antibodies to it. Using affinity-purified antibodies, we identified a protein of identical SDS-PAGE mobility and isoelectric pH in all epithelia of higher complexity, including representatives of stratified, complex (pseudostratified) and transitional epithelia as well as benign and malignant human tumors derived from such epithelia. Immunolocalization studies revealed the location of this protein along cell boundaries in stratified and complex epithelia, often resolved into punctate arrays. In some epithelia it seemed to be restricted to certain cell types and layers; in rat cornea, for example, it was only detected in upper strata. Electron microscopic immunolocalization showed that this protein is a component of the desmosomal plaque. However, it was not found in the desmosomes of all simple epithelia examined, in the tumors and cultured cells derived thereof, in myocardiac and Purkinje fiber cells, in arachnoideal cells and meningiomas, and in dendritic reticulum cells of lymphoid tissue, i.e., all cells containing typical desmosomes. The protein was also absent in all nondesmosomal adhering junctions. From these results we conclude that this basic protein is not an obligatory desmosomal plaque constituent but an accessory component specific to the desmosomes of certain kinds of epithelial cells with stratified tissue architecture. This suggests that the Mr 75

  6. Interactions of proteins in human plasma with modified polystyrene resins.

    PubMed

    Boisson-Vidal, C; Jozefonvicz, J; Brash, J L

    1991-01-01

    Investigations are reported on the composition of protein layers adsorbed from plasma to various modified polystyrene resins. As well as polystyrene itself, polystyrene bearing sulfonate groups in the benzene rings, and polystyrene sulfonate in which the sulfonate groups were converted to amino acid sulfamide, were investigated. Some of these resins were shown in previous work to have anticoagulant properties. To study the adsorption of proteins from plasma, the resins were exposed to citrate anticoagulated human plasma for 3 h. Adsorbed proteins were then eluted sequentially by 1M Tris buffer and 4% SDS solution, and examined by SDS-PAGE. The gel patterns were similar on all resins except polystyrene. From the MWs of the gel bands, the major protein component appeared to be fibrinogen. Smaller amounts of plasminogen, transferrin, albumin, and IgG were also present. In addition, Ouchterlony immunoassay of the eluates from one resin gave positive identification of complement C3, fibronectin, IgG, and IgM. Many other minor gel bands remain unidentified. A consistent finding for all resins was the presence of plasmin-type fibrinogen degradation products though the amounts varied with resin type. It is concluded from this (and from experiments showing FDP formation when fibrinogen was absorbed to the resins, from buffer containing a trace of plasminogen) that the functional groups in these materials promote the adsorption of plasminogen and its activation to a plasmin-like molecule. It appears from the substantial quantities of fibrinogen adsorbed to these materials after 3 h exposure to plasma that the Vroman effect (giving transient adsorption of fibrinogen) is not operative on these materials. It is hypothesized that specific interactions occur between fibrinogen and sulfonate groups.

  7. A Versatile Platform for Nanotechnology Based on Circular Permutation of a Chaperonin Protein

    NASA Technical Reports Server (NTRS)

    Paavola, Chad; McMillan, Andrew; Trent, Jonathan; Chan, Suzanne; Mazzarella, Kellen; Li, Yi-Fen

    2004-01-01

    A number of protein complexes have been developed as nanoscale templates. These templates can be functionalized using the peptide sequences that bind inorganic materials. However, it is difficult to integrate peptides into a specific position within a protein template. Integrating intact proteins with desirable binding or catalytic activities is an even greater challenge. We present a general method for modifying protein templates using circular permutation so that additional peptide sequence can be added in a wide variety of specific locations. Circular permutation is a reordering of the polypeptide chain such that the original termini are joined and new termini are created elsewhere in the protein. New sequence can be joined to the protein termini without perturbing the protein structure and with minimal limitation on the size and conformation of the added sequence. We have used this approach to modify a chaperonin protein template, placing termini at five different locations distributed across the surface of the protein complex. These permutants are competent to form the double-ring structures typical of chaperonin proteins. The permuted double-rings also form the same assemblies as the unmodified protein. We fused a fluorescent protein to two representative permutants and demonstrated that it assumes its active structure and does not interfere with assembly of chaperonin double-rings.

  8. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc(1) Complex of Yeast Mitochondria.

    PubMed

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc(1) complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc(1) complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc(1) complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain.

  9. The Rieske Iron-Sulfur Protein: Import and Assembly into the Cytochrome bc 1 Complex of Yeast Mitochondria

    PubMed Central

    Conte, Laura; Zara, Vincenzo

    2011-01-01

    The Rieske iron-sulfur protein, one of the catalytic subunits of the cytochrome bc 1 complex, is involved in electron transfer at the level of the inner membrane of yeast mitochondria. The Rieske iron-sulfur protein is encoded by nuclear DNA and, after being synthesized in the cytosol, is imported into mitochondria with the help of a cleavable N-terminal presequence. The imported protein, besides incorporating the 2Fe-2S cluster, also interacts with other catalytic and non-catalytic subunits of the cytochrome bc 1 complex, thereby assembling into the mature and functional respiratory complex. In this paper, we summarize the most recent findings on the import and assembly of the Rieske iron-sulfur protein into Saccharomyces cerevisiae mitochondria, also discussing a possible role of this protein both in the dimerization of the cytochrome bc 1 complex and in the interaction of this homodimer with other complexes of the mitochondrial respiratory chain. PMID:21716720

  10. Evolution of DNA Replication Protein Complexes in Eukaryotes and Archaea

    PubMed Central

    Chia, Nicholas; Cann, Isaac; Olsen, Gary J.

    2010-01-01

    Background The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA), replication factor C (RFC), and the minichromosome maintenance (MCM) complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. Methodology/Principal Findings While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex—all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. Conclusion/Significance This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota. PMID:20532250

  11. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  12. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach.

    PubMed

    Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  13. Emergence of Complexity in Protein Functions and Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  14. Uncoupling of transcription and translation of Fanconi anemia (FANC) complex proteins during spermatogenesis

    PubMed Central

    Jamsai, Duangporn; O’Connor, Anne E; O’Donnell, Liza; Lo, Jennifer Chi Yi; O’Bryan, Moira K

    2015-01-01

    Male germ cell genome integrity is critical for spermatogenesis, fertility and normal development of the offspring. Several DNA repair pathways exist in male germ cells. One such important pathway is the Fanconi anemia (FANC) pathway. Unlike in somatic cells, expression profiles and the role of the FANC pathway in germ cells remain largely unknown. In this study, we undertook an extensive expression analyses at both mRNA and protein levels of key components of the FANC pathway during spermatogenesis in the mouse. Herein we show that Fanc mRNAs and proteins displayed developmental enrichment within particular male germ cell types. Spermatogonia and pre-leptotene spermatocytes contained the majority of the FANC components examined i.e. complex I members FANCB, FANCG and FANCM, complex II members FANCD2 and FANCI, and complex III member FANCJ. Leptotene, zygotene and early pachytene spermatocytes contained FANCB, FANCG, FANCM and FANCD2. With the exception of FANCL, all FANC proteins examined were not detected in round spermatids. Elongating and elongated spermatids contained FANCB, FANCG, FANCL and FANCJ. qPCR analysis on isolated spermatocytes and round spermatids showed that Fancg, Fancl, Fancm, Fancd2, Fanci and Fancj mRNAs were expressed in both of these germ cell types, indicating that some degree of translational repression of these FANC proteins occurs during the transition from meiosis to spermiogenesis. Taken together, our findings raise the possibility that the assembly of FANC protein complexes in each of the male germ cell type is unique and may be distinct from the proposed model in mitotic cells. PMID:26413409

  15. Genome-wide predicting disease-related protein complexes by walking on the heterogeneous network based on data integration and laplacian normalization.

    PubMed

    Liu, Zhiming; Luo, Jiawei

    2017-08-01

    Associating protein complexes to human inherited diseases is critical for better understanding of biological processes and functional mechanisms of the disease. Many protein complexes have been identified and functionally annotated by computational and purification methods so far, however, the particular roles they were playing in causing disease have not yet been well determined. In this study, we present a novel method to identify associations between protein complexes and diseases. First, we construct a disease-protein heterogeneous network based on data integration and laplacian normalization. Second, we apply a random walk with restart on heterogeneous network (RWRH) algorithm on this network to quantify the strength of the association between proteins and the query disease. Third, we sum over the scores of member proteins to obtain a summary score for each candidate protein complex, and then rank all candidate protein complexes according to their scores. With a series of leave-one-out cross-validation experiments, we found that our method not only possesses high performance but also demonstrates robustness regarding the parameters and the network structure. We test our approach with breast cancer and select top 20 highly ranked protein complexes, 17 of the selected protein complexes are evidenced to be connected with breast cancer. Our proposed method is effective in identifying disease-related protein complexes based on data integration and laplacian normalization. Copyright © 2017. Published by Elsevier Ltd.

  16. Nuclear traffic of influenza virus proteins and ribonucleoprotein complexes.

    PubMed

    Boulo, Sébastien; Akarsu, Hatice; Ruigrok, Rob W H; Baudin, Florence

    2007-03-01

    Influenza virus is a negative strand RNA virus and is one of the rare RNA viruses to replicate in the nucleus. The viral RNA is associated with 4 viral proteins to form ribonucleoprotein particles (RNPs). After cell entry the RNPs are dissociated from the viral matrix protein in the low pH of the endosome and are actively imported into the cell nucleus. After translation of viral mRNAs, the proteins necessary for the assembly of new RNPs (the nucleoprotein and the three subunits of the polymerase complex) are also imported into the nucleus. Apart from these four proteins, part of the newly made matrix protein is also imported and the nuclear export protein (NEP) enters the nucleus probably through diffusion. Finally, NS1 also enters the nucleus in order to regulate a number of nuclear processes. The nuclear localization signals on all these viral proteins and their interaction with the cellular transport system are discussed. In the nucleus, the matrix protein binds to the newly assembled RNPs and NEP then binds to the matrix protein. NEP contains the nuclear export signal necessary for transport of the RNPs to the cytoplasm, necessary for the budding of new virus particles. There appears to be a intricate ballet in exposing and hiding nuclear transport signals which leads to a unidirectional transport of the RNPs to the nucleus at the start of the infection process and an opposite unidirectional export of RNPs at the end of the infection.

  17. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.

    PubMed

    Gao, Yang; Westfield, Gerwin; Erickson, Jon W; Cerione, Richard A; Skiniotis, Georgios; Ramachandran, Sekar

    2017-08-25

    The visual photo-transduction cascade is a prototypical G protein-coupled receptor (GPCR) signaling system, in which light-activated rhodopsin (Rho*) is the GPCR catalyzing the exchange of GDP for GTP on the heterotrimeric G protein transducin (G T ). This results in the dissociation of G T into its component α T -GTP and β 1 γ 1 subunit complex. Structural information for the Rho*-G T complex will be essential for understanding the molecular mechanism of visual photo-transduction. Moreover, it will shed light on how GPCRs selectively couple to and activate their G protein signaling partners. Here, we report on the preparation of a stable detergent-solubilized complex between Rho* and a heterotrimer (G T *) comprising a Gα T /Gα i1 chimera (α T *) and β 1 γ 1 The complex was formed on native rod outer segment membranes upon light activation, solubilized in lauryl maltose neopentyl glycol, and purified with a combination of affinity and size-exclusion chromatography. We found that the complex is fully functional and that the stoichiometry of Rho* to Gα T * is 1:1. The molecular weight of the complex was calculated from small-angle X-ray scattering data and was in good agreement with a model consisting of one Rho* and one G T *. The complex was visualized by negative-stain electron microscopy, which revealed an architecture similar to that of the β 2 -adrenergic receptor-G S complex, including a flexible α T * helical domain. The stability and high yield of the purified complex should allow for further efforts toward obtaining a high-resolution structure of this important signaling complex. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor.

    PubMed

    Satijn, D P; Gunster, M J; van der Vlag, J; Hamer, K M; Schul, W; Alkema, M J; Saurin, A J; Freemont, P S; van Driel, R; Otte, A P

    1997-07-01

    The Polycomb (Pc) protein is a component of a multimeric, chromatin-associated Polycomb group (PcG) protein complex, which is involved in stable repression of gene activity. The identities of components of the PcG protein complex are largely unknown. In a two-hybrid screen with a vertebrate Pc homolog as a target, we identify the human RING1 protein as interacting with Pc. RING1 is a protein that contains the RING finger motif, a specific zinc-binding domain, which is found in many regulatory proteins. So far, the function of the RING1 protein has remained enigmatic. Here, we show that RING1 coimmunoprecipitates with a human Pc homolog, the vertebrate PcG protein BMI1, and HPH1, a human homolog of the PcG protein Polyhomeotic (Ph). Also, RING1 colocalizes with these vertebrate PcG proteins in nuclear domains of SW480 human colorectal adenocarcinoma and Saos-2 human osteosarcoma cells. Finally, we show that RING1, like Pc, is able to repress gene activity when targeted to a reporter gene. Our findings indicate that RING1 is associated with the human PcG protein complex and that RING1, like PcG proteins, can act as a transcriptional repressor.

  19. Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex.

    PubMed

    Chng, Shu-Sin; Gronenberg, Luisa S; Kahne, Daniel

    2010-06-08

    The viability of Gram-negative organisms is dependent on the proper placement of lipopolysaccharide (LPS) in the outer leaflet of its outer membrane. LPS is synthesized inside the cell and transported to the surface by seven essential lipopolysaccharide transport (Lpt) proteins. How these proteins cooperate to transport LPS is unknown. We show that these Lpt proteins can be found in a membrane fraction that contains inner and outer membranes and that they copurify. This constitutes the first evidence that the Lpt proteins form a transenvelope complex. We suggest that this protein bridge provides a route for LPS transport across the cell envelope.

  20. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.

    PubMed

    Pöller, Sascha; Beyl, Yvonne; Vivekananthan, Jeevanthi; Guschin, Dmitrii A; Schuhmann, Wolfgang

    2012-10-01

    A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis. Copyright © 2011 Elsevier B.V. All rights reserved.