Science.gov

Sample records for modulated transgenomic interactions

  1. Evolutionary transgenomics: prospects and challenges

    PubMed Central

    Correa, Raul; Baum, David A.

    2015-01-01

    Many advances in our understanding of the genetic basis of species differences have arisen from transformation experiments, which allow us to study the effect of genes from one species (the donor) when placed in the genetic background of another species (the recipient). Such interspecies transformation experiments are usually focused on candidate genes – genes that, based on work in model systems, are suspected to be responsible for certain phenotypic differences between the donor and recipient species. We suggest that the high efficiency of transformation in a few plant species, most notably Arabidopsis thaliana, combined with the small size of typical plant genes and their cis-regulatory regions allow implementation of a screening strategy that does not depend upon a priori candidate gene identification. This approach, transgenomics, entails moving many large genomic inserts of a donor species into the wild type background of a recipient species and then screening for dominant phenotypic effects. As a proof of concept, we recently conducted a transgenomic screen that analyzed more than 1100 random, large genomic inserts of the Alabama gladecress Leavenworthia alabamica for dominant phenotypic effects in the A. thaliana background. This screen identified one insert that shortens fruit and decreases A. thaliana fertility. In this paper we discuss the principles of transgenomic screens and suggest methods to help minimize the frequencies of false positive and false negative results. We argue that, because transgenomics avoids committing in advance to candidate genes it has the potential to help us identify truly novel genes or cryptic functions of known genes. Given the valuable knowledge that is likely to be gained, we believe the time is ripe for the plant evolutionary community to invest in transgenomic screens, at least in the mustard family Brassicaceae where many species are amenable to efficient transformation. PMID:26579137

  2. Water-module interaction studies

    NASA Technical Reports Server (NTRS)

    Mon, G.; Wen, L.; Ross, R., Jr.

    1988-01-01

    Mechanisms by which moisture enters photovoltaic modules and techniques for reducing such interactions are reported. Results from a study of the effectiveness of various module sealants are given. Techniques for measuring the rate and quantity of moisture ingress are discussed. It is shown that scribe lines and porous frit bridging conductors provide preferential paths for moisture ingress and that moisture diffusion by surface/interfacial paths is considerably more rapid than diffusion by bulk paths, which implies that thin-film substrate and supersubstrate modules are much more vulnerable to moist environments than are bulk-encapsulated crystalline-silicon modules. Design approaches that reduce moisture entry are discussed.

  3. Water-module interaction studies

    NASA Astrophysics Data System (ADS)

    Mon, G.; Wen, L.; Ross, R., Jr.

    Mechanisms by which moisture enters photovoltaic modules and techniques for reducing such interactions are reported. Results from a study of the effectiveness of various module sealants are given. Techniques for measuring the rate and quantity of moisture ingress are discussed. It is shown that scribe lines and porous frit bridging conductors provide preferential paths for moisture ingress and that moisture diffusion by surface/interfacial paths is considerably more rapid than diffusion by bulk paths, which implies that thin-film substrate and supersubstrate modules are much more vulnerable to moist environments than are bulk-encapsulated crystalline-silicon modules. Design approaches that reduce moisture entry are discussed.

  4. Applying Economics Using Interactive Learning Modules

    ERIC Educational Resources Information Center

    Goma, Ophelia D.

    2010-01-01

    This article describes the use of web-based, interactive learning modules in the principles of economics course. The learning modules introduce students to important, historical economic events while providing real-world application of the economic theory presented in class. Each module is designed to supplement and complement the economic theory…

  5. Head module control of mediator interactions.

    PubMed

    Takagi, Yuichiro; Calero, Guillermo; Komori, Hirofumi; Brown, Jesse A; Ehrensberger, Andreas H; Hudmon, Andy; Asturias, Francisco; Kornberg, Roger D

    2006-08-01

    Yeast Mediator proteins interacting with Med17(Srb4) have been expressed at a high level with the use of recombinant baculoviruses and recovered in homogeneous form as a seven subunit, 223 kDa complex. Electron microscopy and single-particle analysis identify this complex as the Mediator head module. The recombinant head module complements "headless" Mediator for the initiation of transcription in vitro. The module interacts with an RNA polymerase II-TFIIF complex, but not with the polymerase or TFIIF alone. This interaction is lost in the presence of a DNA template and associated RNA transcript, recapitulating the release of Mediator that occurs upon the initiation of transcription. Disruption of the head module in a temperature-sensitive mutant in vivo leads to the release of middle and tail modules from a transcriptionally active promoter. The head module evidently controls Mediator-RNA polymerase II and Mediator-promoter interactions. PMID:16885025

  6. Gauge interaction as periodicity modulation

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2012-06-01

    The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions (Dolce, 2011) [8]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore gauge interactions are described as invariance of the theory under local deformations of the boundary. The resulting local variations of the field solution are interpreted as internal transformations. The internal symmetries of the gauge theory turn out to be related to corresponding space-time local symmetries. In the approximation of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

  7. Solar cell modules for plasma interaction evaluation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A plasma interaction analysis in support of the solar electric propulsion subsystem examined the effects of a large high voltage solar array interacting with an ion thruster produced plasma. Two solar array test modules consisting of 36 large area wraparound contact solar cells welded to a flexible Kapton integrated circuit substrate were abricated. The modules contained certain features of the effects of insulation, din-holes, and bonding of the cell to the substrate and a ground plane. The possibility of a significant power loss occurring due to the collection of charged particles on the solar array interconnects was the focus of the research.

  8. Functional module identification in protein interaction networks by interaction patterns

    PubMed Central

    Wang, Yijie; Qian, Xiaoning

    2014-01-01

    Motivation: Identifying functional modules in protein–protein interaction (PPI) networks may shed light on cellular functional organization and thereafter underlying cellular mechanisms. Many existing module identification algorithms aim to detect densely connected groups of proteins as potential modules. However, based on this simple topological criterion of ‘higher than expected connectivity’, those algorithms may miss biologically meaningful modules of functional significance, in which proteins have similar interaction patterns to other proteins in networks but may not be densely connected to each other. A few blockmodel module identification algorithms have been proposed to address the problem but the lack of global optimum guarantee and the prohibitive computational complexity have been the bottleneck of their applications in real-world large-scale PPI networks. Results: In this article, we propose a novel optimization formulation LCP2 (low two-hop conductance sets) using the concept of Markov random walk on graphs, which enables simultaneous identification of both dense and sparse modules based on protein interaction patterns in given networks through searching for LCP2 by random walk. A spectral approximate algorithm SLCP2 is derived to identify non-overlapping functional modules. Based on a bottom-up greedy strategy, we further extend LCP2 to a new algorithm (greedy algorithm for LCP2) GLCP2 to identify overlapping functional modules. We compare SLCP2 and GLCP2 with a range of state-of-the-art algorithms on synthetic networks and real-world PPI networks. The performance evaluation based on several criteria with respect to protein complex prediction, high level Gene Ontology term prediction and especially sparse module detection, has demonstrated that our algorithms based on searching for LCP2 outperform all other compared algorithms. Availability and implementation: All data and code are available at http://www.cse.usf.edu/∼xqian/fmi/slcp2hop

  9. Solar Array Module Plasma Interaction Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1992-01-01

    The objective of the Solar Array Module Plasma Interaction Experiment (SAMPIE) is to investigate, by means of a shuttle-based flight experiment and relevant ground-based testing, the arcing and current collection behavior of materials and geometries likely to be exposed to the LEO plasma on high-voltage space power systems, in order to minimize adverse environmental interactions. An overview of the SAMPIE program is presented in outline and graphical form.

  10. Controlling disorder with periodically modulated interactions

    NASA Astrophysics Data System (ADS)

    Kosior, Arkadiusz; Major, Jan; Płodzień, Marcin; Zakrzewski, Jakub

    2015-08-01

    We investigate the celebrated problem of the one-dimensional tight-binding model in the presence of disorder leading to Anderson localization from a novel perspective. A binary disorder is assumed to be created by immobile, heavy particles that affect the motion of the lighter, mobile species in the limit of no interaction between mobile particles. Fast, periodic modulations of interspecies interactions allow us to produce an effective model with small diagonal and large off-diagonal disorder previously unexplored in cold-atom experiments. We present an expression for an approximate Anderson localization length and verify the existence of the well-known, extended resonant mode. We also analyze the influence of nonzero next-nearest-neighbor hopping terms. We point out that periodic modulation of interaction allows disorder to work as a tunable bandpass filter for momenta.

  11. Interactive Software Modules For Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Gorjian, V.; Schimpf, S.; Morris, Mark; Malkan, M.

    1993-12-01

    In an attempt to offer undergraduate students a means of visualizing some of the dynamical, geometric, evolutionary, and spectroscopic concepts encountered in introductory astronomy and astrophysics courses, we have developed a set of ten computer modules intended for the interactive investigation of these concepts in a learning center equipped with a cluster of Unix-based workstations. We present six of these software teaching tools: Galaxy (rotation curves), Redshift (line identifications, redshift determinations, and construction of a Hubble plot), Sky View (an on-screen planetarium), Stellar Evolution (dynamic trajectories in the HR diagram), Parallax (parallactic ellipses and proper motions), and Binaries (eclipsing binary light curves and projected appearances evolving with orbital phase). Developed for the X-windows interface on Unix-based workstations for maximum portability and speed, these programs, along with accompanying instruction sets, guide the student through multi-step exercises designed to demonstrate these basic ideas. The sophistication of the modules is advanced enough to permit their utilization in courses spanning a wide range of skill levels with suitable tailoring of the instruction sets. The use of these modules in lower division astronomy and astrophysics classes at UCLA has been met with positive student reviews. We anticipate increased usage as the package of modules grows. Upon request, it can be exported to other institutions. The development of the package has been supported by NSF.

  12. Super-Bloch oscillations with modulated interaction

    NASA Astrophysics Data System (ADS)

    Díaz, Elena; García Mena, Alberto; Asakura, Kunihiko; Gaul, Christopher

    2013-01-01

    We study super-Bloch oscillations of ultracold atoms in a shaken lattice potential, subjected to a harmonically modulated mean-field interaction. Usually, any interaction leads to the decay of the wave packet and its super-Bloch oscillation. Here, we use the phases of interaction and shaking with respect to the free Bloch oscillation as control parameters. We find two types of long-living cases: (i) suppression of the immediate broadening of the wave packet, and (ii) dynamical stability of all degrees of freedom. The latter relies on the rather robust symmetry argument of cyclic time [Gaul , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.053627 84, 053627 (2011)].

  13. A Usability Study of Interactive Web-Based Modules

    ERIC Educational Resources Information Center

    Girard, Tulay; Pinar, Musa

    2011-01-01

    This research advances the understanding of the usability of marketing case study modules in the area of interactive web-based technologies through the assignment of seven interactive case modules in a Principles of Marketing course. The case modules were provided for marketing students by the publisher, McGraw Hill Irwin, of the "Marketing"…

  14. Infant Smiling during Social Interaction: Arousal Modulation or Activation Indicator?

    ERIC Educational Resources Information Center

    Ewy, Richard

    In a study of infant smiling, 20 mother-infant dyads were videotaped in normal face-to-face interaction when the infants were 9 and 14 weeks of age. Videotapes were used to determine which of two classes of smiling behavior models, either arousal modulation or activation indicator, was most supported by empirical data. Arousal modulation models…

  15. Cosmic ray modulation and merged interaction regions

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Goldstein, M. L.; Mcdonald, F. B.

    1985-01-01

    Beyond several AU, interactions among shocks and streams give rise to merged interaction regions in which the magnetic field is turbulent. The integral intensity of . 75 MeV/Nuc cosmic rays at Voyager is generally observed to decrease when a merged interaction region moves past the spacecraft and to increase during the passage of a rarefaction region. When the separation between interaction regions is relatively large, the cosmic ray intensity tends to increase on a scale of a few months. This was the case at Voyager 1 from July 1, 1983 to May 1, 1984, when the spacecraft moved from 16.7 to 19.6 AU. Changes in cosmic ray intensity were related to the magnetic field strength in a simple way. It is estimated that the diffusion coefficient in merged interaction regions at this distance is similar to 0.6 x 10 to the 22nd power sq cm/s.

  16. Solar Array Module Plasma Interaction Experiment (SAMPIE): Technical requirements document

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Ferguson, Dale C.

    1992-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a NASA shuttle space flight experiment scheduled for launch in early 1994. The SAMPIE experiment will investigate plasma interactions of high voltage space power systems in low earth orbit. Solar cell modules, representing several technologies, will be biased to high voltages to characterize both arcing and plasma current collection. Other solar modules, specially modified in accordance with current theories of arcing and breakdown, will demonstrate the possibility of arc suppression. Finally, several test modules will be included to study the basic nature of these interactions. The science and technology goals for the project are defined in the Technical Requirements Document (TRD) which is presented here.

  17. Module organization and variance in protein-protein interaction networks

    PubMed Central

    Lin, Chun-Yu; Lee, Tsai-Ling; Chiu, Yi-Yuan; Lin, Yi-Wei; Lo, Yu-Shu; Lin, Chih-Ta; Yang, Jinn-Moon

    2015-01-01

    A module is a group of closely related proteins that act in concert to perform specific biological functions through protein–protein interactions (PPIs) that occur in time and space. However, the underlying module organization and variance remain unclear. In this study, we collected module templates to infer respective module families, including 58,041 homologous modules in 1,678 species, and PPI families using searches of complete genomic database. We then derived PPI evolution scores and interface evolution scores to describe the module elements, including core and ring components. Functions of core components were highly correlated with those of essential genes. In comparison with ring components, core proteins/PPIs were conserved across multiple species. Subsequently, protein/module variance of PPI networks confirmed that core components form dynamic network hubs and play key roles in various biological functions. Based on the analyses of gene essentiality, module variance, and gene co-expression, we summarize the observations of module organization and variance as follows: 1) a module consists of core and ring components; 2) core components perform major biological functions and collaborate with ring components to execute certain functions in some cases; 3) core components are more conserved and essential during organizational changes in different biological states or conditions. PMID:25797237

  18. Interactive online optics modules for the college physics course

    NASA Astrophysics Data System (ADS)

    Hoeling, Barbara M.

    2012-04-01

    A new learning tool for geometrical optics is presented which has been developed for an algebra based introductory college physics course for life science majors. The interactive online learning module contains images, videos of problem solutions, short animated videos, and interactive animations, which allow students to actively explore the physics content beyond the pictures in a textbook. These elements are accompanied by narration and a transcript to guide the students while allowing them to navigate freely between the different parts of the module. The results of student learning, a comparison with a control group, and a survey of student attitudes toward this new instruction method are discussed.

  19. SimScience: Interactive educational modules based on large simulations

    NASA Astrophysics Data System (ADS)

    Warner, Simeon; Catterall, Simon; Gregory, Eric; Lipson, Edward

    2000-05-01

    SimScience is a collaboration between Cornell University and Syracuse University. It comprises four interactive educational modules on crack propagation, crackling noise, fluid flow, and membranes. Computer simulations are at the forefront of current research in all of these topics. Our aim is explain some elements of each subject and to show the relevance of computer simulations. The crack propagation module explores the mechanisms of dam failure. The crackling noise module uses everyday sounds to illustrate types of noise, and links this to noise created by jumps in magnetization processes. The fluid flow module describes various properties of flows and explains phenomena such as a curve ball in baseball. The membranes module leverages everyday experience with membranes such as soap bubbles to help explain biological membranes and the relevance of membranes to theories of gravity. We have used Java not only to produce small-scale versions of research simulations but also to provide models illustrating simpler concepts underlying the main subject matter. Web technology allows us to deliver SimScience both over the Internet and on CD-ROM. To accommodate a target audience spanning K-12 and university general science students, we have created three levels for each module. Efforts are underway to assess the SimScience modules with the help of teachers and students.

  20. Interactive Learning in a Higher Education Level 1 Mechanics Module.

    ERIC Educational Resources Information Center

    Booth, Kathryn M.; James, Brian W.

    2001-01-01

    Encourages Level 1 students (those taking a subject for the first time at the higher education level) to develop a deeper learning approach. Uses a cooperative learning approach to pose conceptual questions for interactive discussions and changes both teaching method and form of examination paper for a Mechanics module. (Contains 17 references.)…

  1. From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions.

    PubMed

    Ulitsky, Igor; Shlomi, Tomer; Kupiec, Martin; Shamir, Ron

    2008-01-01

    Recent technological breakthroughs allow the quantification of hundreds of thousands of genetic interactions (GIs) in Saccharomyces cerevisiae. The interpretation of these data is often difficult, but it can be improved by the joint analysis of GIs along with complementary data types. Here, we describe a novel methodology that integrates genetic and physical interaction data. We use our method to identify a collection of functional modules related to chromosomal biology and to investigate the relations among them. We show how the resulting map of modules provides clues for the elucidation of function both at the level of individual genes and at the level of functional modules. PMID:18628749

  2. Alternative modulation of protein–protein interactions by small molecules

    PubMed Central

    Fischer, Gerhard; Rossmann, Maxim; Hyvönen, Marko

    2015-01-01

    Protein–protein interactions (PPI) have become increasingly popular drug targets, with a number of promising compounds currently in clinical trials. Recent research shows, that PPIs can be modulated in more ways than direct inhibition, where novel non-competitive modes of action promise a solution for the difficult nature of PPI drug discovery. Here, we review recently discovered PPI modulators in light of their mode of action and categorise them as disrupting versus stabilising, orthosteric versus allosteric and by their ability to affect the proteins’ dynamics. We also give recent examples of compounds successful in the clinic, analyse their physicochemical properties and discuss how to overcome the hurdles in discovering alternative modes of modulation. PMID:25935873

  3. Cross interaction of melanocortinergic and dopaminergic systems in neural modulation

    PubMed Central

    He, Zhi-Gang; Liu, Bao-Wen; Xiang, Hong-Bing

    2015-01-01

    Melanocortinergic and dopaminergic systems are widely distributed in the CNS and have been established as a crucial regulatory component in diverse physiological functions. The pharmacology of both melanocortinergic and dopaminergic systems including their individual receptors, signaling mechanisms, agonists and antagonists has been extensively studied. Several lines of evidence showed that there existed a cross interaction between the receptors of melanocortinergic and dopaminergic systems. The data available at present had expanded our understanding of melanocortinergic and dopaminergic system interaction in neural modulation, which will be main discussed in this paper. PMID:26823964

  4. Novel cholinesterase modulators and their ability to interact with DNA

    NASA Astrophysics Data System (ADS)

    Janockova, Jana; Gulasova, Zuzana; Musilek, Kamil; Kuca, Kamil; Kozurkova, Maria

    2013-11-01

    In the present work, an interaction of four cholinesterase modulators (1-4) with calf thymus DNA was studied via spectroscopic techniques (UV-Vis, fluorescent spectroscopy and circular dichroism). From UV-Vis spectroscopic analysis, the binding constants for DNA-pyridinium oximes complexes were calculated (K = 3.5 × 104 to 1.4 × 105 M-1). All these measurements indicated that the compounds behave as effective DNA-interacting agents. Electrophoretic techniques proved that ligand 2 inhibited topoisomerase I at a concentration 5 μM.

  5. Metal-graphene heterojunction modulation via H2 interaction

    NASA Astrophysics Data System (ADS)

    Cadore, A. R.; Mania, E.; de Morais, E. A.; Watanabe, K.; Taniguchi, T.; Lacerda, R. G.; Campos, L. C.

    2016-07-01

    Combining experiment and theory, we investigate how a naturally created heterojunction (pn junction) at a graphene and metallic contact interface is modulated via interaction with molecular hydrogen (H2). Due to an electrostatic interaction, metallic electrodes induce pn junctions in graphene, leading to an asymmetrical resistance in electronic transport for electrons and holes. We report that the asymmetry in the resistance can be tuned in a reversible manner by exposing graphene devices to H2. The interaction between the H2 and graphene occurs solely at the graphene-contact pn junction and induces a modification on the electrostatic interaction between graphene and metallic contacts. We explain the experimental data with theory providing information concerning the length of the heterojunction and how it changes as a function of H2 adsorption. Our results are valuable for understanding the nature of the metal-graphene interfaces and have potential application for selective sensors of molecular hydrogen.

  6. Apparatus and method for interaction phenomena with world modules in data-flow-based simulation

    DOEpatents

    Xavier, Patrick G.; Gottlieb, Eric J.; McDonald, Michael J.; Oppel, III, Fred J.

    2006-08-01

    A method and apparatus accommodate interaction phenomenon in a data-flow-based simulation of a system of elements, by establishing meta-modules to simulate system elements and by establishing world modules associated with interaction phenomena. World modules are associated with proxy modules from a group of meta-modules associated with one of the interaction phenomenon. The world modules include a communication world, a sensor world, a mobility world, and a contact world. World modules can be further associated with other world modules if necessary. Interaction phenomenon are simulated in corresponding world modules by accessing member functions in the associated group of proxy modules. Proxy modules can be dynamically allocated at a desired point in the simulation to accommodate the addition of elements in the system of elements such as a system of robots, a system of communication terminals, or a system of vehicles, being simulated.

  7. Class II HLA interactions modulate genetic risk for multiple sclerosis

    PubMed Central

    Dilthey, Alexander T; Xifara, Dionysia K; Ban, Maria; Shah, Tejas S; Patsopoulos, Nikolaos A; Alfredsson, Lars; Anderson, Carl A; Attfield, Katherine E; Baranzini, Sergio E; Barrett, Jeffrey; Binder, Thomas M C; Booth, David; Buck, Dorothea; Celius, Elisabeth G; Cotsapas, Chris; D’Alfonso, Sandra; Dendrou, Calliope A; Donnelly, Peter; Dubois, Bénédicte; Fontaine, Bertrand; Fugger, Lars; Goris, An; Gourraud, Pierre-Antoine; Graetz, Christiane; Hemmer, Bernhard; Hillert, Jan; Kockum, Ingrid; Leslie, Stephen; Lill, Christina M; Martinelli-Boneschi, Filippo; Oksenberg, Jorge R; Olsson, Tomas; Oturai, Annette; Saarela, Janna; Søndergaard, Helle Bach; Spurkland, Anne; Taylor, Bruce; Winkelmann, Juliane; Zipp, Frauke; Haines, Jonathan L; Pericak-Vance, Margaret A; Spencer, Chris C A; Stewart, Graeme; Hafler, David A; Ivinson, Adrian J; Harbo, Hanne F; Hauser, Stephen L; De Jager, Philip L; Compston, Alastair; McCauley, Jacob L; Sawcer, Stephen; McVean, Gil

    2016-01-01

    Association studies have greatly refined the understanding of how variation within the human leukocyte antigen (HLA) genes influences risk of multiple sclerosis. However, the extent to which major effects are modulated by interactions is poorly characterized. We analyzed high-density SNP data on 17,465 cases and 30,385 controls from 11 cohorts of European ancestry, in combination with imputation of classical HLA alleles, to build a high-resolution map of HLA genetic risk and assess the evidence for interactions involving classical HLA alleles. Among new and previously identified class II risk alleles (HLA-DRB1*15:01, HLA-DRB1*13:03, HLA-DRB1*03:01, HLA-DRB1*08:01 and HLA-DQB1*03:02) and class I protective alleles (HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-B*55:01), we find evidence for two interactions involving pairs of class II alleles: HLA-DQA1*01:01–HLA-DRB1*15:01 and HLA-DQB1*03:01–HLA-DQB1*03:02. We find no evidence for interactions between classical HLA alleles and non-HLA risk-associated variants and estimate a minimal effect of polygenic epistasis in modulating major risk alleles. PMID:26343388

  8. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions.

    PubMed

    Boivin, Stéphane; Fonouni-Farde, Camille; Frugier, Florian

    2016-01-01

    A large range of microorganisms can associate with plants, resulting in neutral, friendly or hostile interactions. The ability of plants to recognize compatible and incompatible microorganisms and to limit or promote their colonization is therefore crucial for their survival. Elaborated communication networks determine the degree of association between the host plant and the invading microorganism. Central to these regulations of plant microbe interactions, phytohormones modulate microorganism plant associations and coordinate cellular and metabolic responses associated to the progression of microorganisms across different plant tissues. We review here hormonal regulations, focusing on auxin and cytokinin phytohormones, involved in the interactions between plant roots and soil microorganisms, including bacterial and fungi associations, either beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and differences in cytokinin/auxin functions amongst various compatible versus incompatible associations. PMID:27588025

  9. How Auxin and Cytokinin Phytohormones Modulate Root Microbe Interactions

    PubMed Central

    Boivin, Stéphane; Fonouni-Farde, Camille; Frugier, Florian

    2016-01-01

    A large range of microorganisms can associate with plants, resulting in neutral, friendly or hostile interactions. The ability of plants to recognize compatible and incompatible microorganisms and to limit or promote their colonization is therefore crucial for their survival. Elaborated communication networks determine the degree of association between the host plant and the invading microorganism. Central to these regulations of plant microbe interactions, phytohormones modulate microorganism plant associations and coordinate cellular and metabolic responses associated to the progression of microorganisms across different plant tissues. We review here hormonal regulations, focusing on auxin and cytokinin phytohormones, involved in the interactions between plant roots and soil microorganisms, including bacterial and fungi associations, either beneficial (symbiotic) or detrimental (pathogenic). The aim is to highlight similarities and differences in cytokinin/auxin functions amongst various compatible versus incompatible associations. PMID:27588025

  10. Control/structure interactions of Freedom's solar dynamic modules

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Yunis, I.

    1990-01-01

    The purpose of this paper is to address potential control/structures interaction (CSI) problems of large flexible multibody structures in the presence of pointing and tracking requirements. A control approach is introduced for the simultaneous tracking and vibration control of multibody space structures. The application that is discussed is Space Station Freedom configured with solar dynamic (SD) modules. The SD fine-pointing and tracking requirements may necessitate controller frequencies above the structural natural frequencies of Freedom and the SD modules. It is well known that this can give rise to CSI problems if the controller is designed without due consideration given to the structural dynamics of the system. In this paper, possible CSI problems of Freedom's solar dynamic power systems are demonstrated using a simple lumped mass model. A NASTRAN model of Freedom developed at NASA Lewis is used to demonstrate potential CSI problems and the proposed tracking and vibration control approach.

  11. Modulation of hydrophobic interactions by proximally immobilized ions.

    PubMed

    Ma, C Derek; Wang, Chenxuan; Acevedo-Vélez, Claribel; Gellman, Samuel H; Abbott, Nicholas L

    2015-01-15

    The structure of water near non-polar molecular fragments or surfaces mediates the hydrophobic interactions that underlie a broad range of interfacial, colloidal and biophysical phenomena. Substantial progress over the past decade has improved our understanding of hydrophobic interactions in simple model systems, but most biologically and technologically relevant structures contain non-polar domains in close proximity to polar and charged functional groups. Theories and simulations exploring such nanometre-scale chemical heterogeneity find it can have an important effect, but the influence of this heterogeneity on hydrophobic interactions has not been tested experimentally. Here we report chemical force microscopy measurements on alkyl-functionalized surfaces that reveal a dramatic change in the surfaces' hydrophobic interaction strengths on co-immobilization of amine or guanidine groups. Protonation of amine groups doubles the strength of hydrophobic interactions, and guanidinium groups eliminate measurable hydrophobic interactions in all pH ranges investigated. We see these divergent effects of proximally immobilized cations also in single-molecule measurements on conformationally stable β-peptides with non-polar subunits located one nanometre from either amine- or guanidine-bearing subunits. Our results demonstrate the importance of nanometre-scale chemical heterogeneity, with hydrophobicity not an intrinsic property of any given non-polar domain but strongly modulated by functional groups located as far away as one nanometre. The judicious placing of charged groups near hydrophobic domains thus provides a strategy for tuning hydrophobic driving forces to optimize molecular recognition or self-assembly processes. PMID:25592540

  12. Modulation of hydrophobic interactions by proximally immobilized ions

    NASA Astrophysics Data System (ADS)

    Ma, C. Derek; Wang, Chenxuan; Acevedo-Vélez, Claribel; Gellman, Samuel H.; Abbott, Nicholas L.

    2015-01-01

    The structure of water near non-polar molecular fragments or surfaces mediates the hydrophobic interactions that underlie a broad range of interfacial, colloidal and biophysical phenomena. Substantial progress over the past decade has improved our understanding of hydrophobic interactions in simple model systems, but most biologically and technologically relevant structures contain non-polar domains in close proximity to polar and charged functional groups. Theories and simulations exploring such nanometre-scale chemical heterogeneity find it can have an important effect, but the influence of this heterogeneity on hydrophobic interactions has not been tested experimentally. Here we report chemical force microscopy measurements on alkyl-functionalized surfaces that reveal a dramatic change in the surfaces' hydrophobic interaction strengths on co-immobilization of amine or guanidine groups. Protonation of amine groups doubles the strength of hydrophobic interactions, and guanidinium groups eliminate measurable hydrophobic interactions in all pH ranges investigated. We see these divergent effects of proximally immobilized cations also in single-molecule measurements on conformationally stable β-peptides with non-polar subunits located one nanometre from either amine- or guanidine-bearing subunits. Our results demonstrate the importance of nanometre-scale chemical heterogeneity, with hydrophobicity not an intrinsic property of any given non-polar domain but strongly modulated by functional groups located as far away as one nanometre. The judicious placing of charged groups near hydrophobic domains thus provides a strategy for tuning hydrophobic driving forces to optimize molecular recognition or self-assembly processes.

  13. Modulation of opioid receptor function by protein-protein interactions.

    PubMed

    Alfaras-Melainis, Konstantinos; Gomes, Ivone; Rozenfeld, Raphael; Zachariou, Venetia; Devi, Lakshmi

    2009-01-01

    Opioid receptors, MORP, DORP and KORP, belong to the family A of G protein coupled receptors (GPCR), and have been found to modulate a large number of physiological functions, including mood, stress, appetite, nociception and immune responses. Exogenously applied opioid alkaloids produce analgesia, hedonia and addiction. Addiction is linked to alterations in function and responsiveness of all three opioid receptors in the brain. Over the last few years, a large number of studies identified protein-protein interactions that play an essential role in opioid receptor function and responsiveness. Here, we summarize interactions shown to affect receptor biogenesis and trafficking, as well as those affecting signal transduction events following receptor activation. This article also examines protein interactions modulating the rate of receptor endocytosis and degradation, events that play a major role in opiate analgesia. Like several other GPCRs, opioid receptors may form homo or heterodimers. The last part of this review summarizes recent knowledge on proteins known to affect opioid receptor dimerization. PMID:19273296

  14. Angiotensin-converting enzymes modulate aphid-plant interactions.

    PubMed

    Wang, Wei; Luo, Lan; Lu, Hong; Chen, Shaoliang; Kang, Le; Cui, Feng

    2015-01-01

    Angiotensin-converting enzymes (ACEs) are key components of the renin-angiotensin system in mammals. However, the function of ACE homologs in insect saliva is unclear. Aphids presumably deliver effector proteins via saliva into plant cells to maintain a compatible insect-plant interaction. In this study, we showed that ACE modulates aphid-plant interactions by affecting feeding behavior and survival of aphids on host plants. Three ACE genes were identified from the pea aphid Acyrthosiphon pisum genome. ACE1 and ACE2 were highly expressed in the salivary glands and are predicted to function as secretory proteins. The ACE2 transcript level decreased in aphids fed on artificial diet compared with aphids fed on Vicia faba. The knockdown of the expression of each ACE by RNAi failed to affect aphid survival. When ACE1 and ACE2 were simultaneously knocked down, aphid feeding was enhanced. Aphids required less time to find the phloem sap and showed longer passive ingestion. However, the simultaneous knockdown of ACE1 and ACE2 resulted in a higher mortality rate than the control group when aphids were fed on plants. These results indicated that ACE1 and ACE2 function together to modulate A. pisum feeding and survival on plants. PMID:25744345

  15. Angiotensin-converting enzymes modulate aphid–plant interactions

    PubMed Central

    Wang, Wei; Luo, Lan; Lu, Hong; Chen, Shaoliang; Kang, Le; Cui, Feng

    2015-01-01

    Angiotensin-converting enzymes (ACEs) are key components of the renin–angiotensin system in mammals. However, the function of ACE homologs in insect saliva is unclear. Aphids presumably deliver effector proteins via saliva into plant cells to maintain a compatible insect–plant interaction. In this study, we showed that ACE modulates aphid–plant interactions by affecting feeding behavior and survival of aphids on host plants. Three ACE genes were identified from the pea aphid Acyrthosiphon pisum genome. ACE1 and ACE2 were highly expressed in the salivary glands and are predicted to function as secretory proteins. The ACE2 transcript level decreased in aphids fed on artificial diet compared with aphids fed on Vicia faba. The knockdown of the expression of each ACE by RNAi failed to affect aphid survival. When ACE1 and ACE2 were simultaneously knocked down, aphid feeding was enhanced. Aphids required less time to find the phloem sap and showed longer passive ingestion. However, the simultaneous knockdown of ACE1 and ACE2 resulted in a higher mortality rate than the control group when aphids were fed on plants. These results indicated that ACE1 and ACE2 function together to modulate A. pisum feeding and survival on plants. PMID:25744345

  16. The Interaction between Sytactic and Semantic Modules in Chinese Learners' English Spotaneous Speech

    ERIC Educational Resources Information Center

    Gang, Xu

    2014-01-01

    According to modular theory, there are interactive effects between the central modules and language modules. The central cognition may deploy and redeploy resources from language modules. Moreover, the language modules can activate the cognitive ability. So this paper studies the spontaneous speech of students who learn English as a foreign…

  17. Quantitative and Qualitative Evaluation of Interactive Videodisk Instructional Modules in Preclinical Neuropathology Education.

    ERIC Educational Resources Information Center

    Lovell, Kathryn L.; And Others

    1993-01-01

    A study evaluated the design and implementation of 10 interactive videodisc instructional modules on neuropathology used in medical instruction at Michigan State University. It investigated levels of student acceptance of the modules, ways in which modules accommodated different learning styles, and modules' facilitation of higher order learning…

  18. Modulators in concert for cognition: modulator interactions in the prefrontal cortex

    PubMed Central

    Briand, Lisa A.; Gritton, Howard; Howe, William M.; Young, Damon A.; Sarter, Martin

    2007-01-01

    Research on the regulation and function of ascending noradrenergic, dopaminergic, serotonergic, and cholinergic systems has focused on the organization and function of individual systems. In contrast, evidence describing co-activation and interactions between multiple neuromodulatory systems has remained scarce. However, commonalities in the anatomical organization of these systems and overlapping evidence concerning the post-synaptic effects of neuromodulators strongly suggest that these systems are recruited in concert; they influence each other and simultaneously modulate their target circuits. Therefore, evidence on the regulatory and functional interactions between these systems is considered essential for revealing the role of neuromodulators. This postulate extends to contemporary neurobiological hypotheses of major neuropsychiatric disorders. These hypotheses have focused largely on aberrations in the integrity or regulation of individual ascending modulatory systems, with little regard for the likely possibility that dysregulation in multiple ascending neuromodulatory systems and their interactions contribute essentially to the symptoms of these disorders. This review will paradigmatically focus on neuromodulator interactions in the PFC and be further constrained by an additional focus on their role in cognitive functions. Recent evidence indicates that individual neuromodulators, in addition to their general state-setting or gating functions, encode specific cognitive operations, further substantiating the importance of research concerning the parallel recruitment of neuromodulator systems and interactions between these systems. PMID:17681661

  19. Terminal residue hydrophobicity modulates transmembrane helix-helix interactions.

    PubMed

    Ng, Derek P; Deber, Charles M

    2014-06-17

    Central to the formation of tertiary structure in membrane protein folding is the presence of amino acid sequence motifs (such as "small-XXX-small" segments) in the TM segments that promote interaction-compatible surfaces through which the TM α-helices interact. Here, we sought to elucidate additional factors that may work in tandem to dictate the ultimate interaction fate of TM-embedded segments. In this context, we used proteolipid protein (PLP), the major protein from central nervous system myelin for which mutant-dependent non-native oligomerization has been implicated in neurological disorders, to explore the specific effects of TM boundary residues (the membrane entry and exit points), keying on the secondary structure and self-association of peptides corresponding to the PLP TM2 α-helix (wild-type sequence ⁶⁶AFQYVIYGTASFFFLYGALLLAEGF⁹⁰). Using gel electrophoresis, circular dichroism, and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate (SDS), we found that mutation of F90 to residues such as A, I, L, or V maintains the onset of TM2-TM2 dimerization, whereas mutation to E, G, Q, N, S, or T abrogates dimer formation. We attribute this sensitivity to changes in local hydrophobicity, viz., a decrease in hydrophobicity reduces local lipid-peptide interactions, which in turn disrupts peptide α-helicity and hence the effectiveness of an incipient interaction-compatible surface. Our results show that the secondary structure and oligomeric state of PLP TM2 Lys-tagged peptides are significantly modulated by the specific nature of their C-terminal boundary residue, thus providing insight as to how point mutations, particularly where they produce disease states, can compromise the folding process. PMID:24857611

  20. Modulation of Microtubule Interprotofilament Interactions by Modified Taxanes

    PubMed Central

    Matesanz, Ruth; Rodríguez-Salarichs, Javier; Pera, Benet; Canales, Ángeles; Andreu, José Manuel; Jiménez-Barbero, Jesús; Bras, Wim; Nogales, Aurora; Fang, Wei-Shuo; Díaz, José Fernando

    2011-01-01

    Microtubules assembled with paclitaxel and docetaxel differ in their numbers of protofilaments, reflecting modification of the lateral association between αβ-tubulin molecules in the microtubule wall. These modifications of microtubule structure, through a not-yet-characterized mechanism, are most likely related to the changes in tubulin-tubulin interactions responsible for microtubule stabilization by these antitumor compounds. We have used a set of modified taxanes to study the structural mechanism of microtubule stabilization by these ligands. Using small-angle x-ray scattering, we have determined how modifications in the shape and size of the taxane substituents result in changes in the interprotofilament angles and in their number. The observed effects have been explained using NMR-aided docking and molecular dynamic simulations of taxane binding at the microtubule pore and luminal sites. Modeling results indicate that modification of the size of substituents at positions C7 and C10 of the taxane core influence the conformation of three key elements in microtubule lateral interactions (the M-loop, the S3 β-strand, and the H3 helix) that modulate the contacts between adjacent protofilaments. In addition, modifications of the substituents at position C2 slightly rearrange the ligand in the binding site, modifying the interaction of the C7 substituent with the M-loop. PMID:22208196

  1. Designing high-quality interactive multimedia learning modules.

    PubMed

    Huang, Camillan

    2005-01-01

    Modern research has broadened scientific knowledge and revealed the interdisciplinary nature of the sciences. For today's students, this advance translates to learning a more diverse range of concepts, usually in less time, and without supporting resources. Students can benefit from technology-enhanced learning supplements that unify concepts and are delivered on-demand over the Internet. Such supplements, like imaging informatics databases, serve as innovative references for biomedical information, but could improve their interaction interfaces to support learning. With information from these digital datasets, multimedia learning tools can be designed to transform learning into an active process where students can visualize relationships over time, interact with dynamic content, and immediately test their knowledge. This approach bridges knowledge gaps, fosters conceptual understanding, and builds problem-solving and critical thinking skills-all essential components to informatics training for science and medicine. Additional benefits include cost-free access and ease of dissemination over the Internet or CD-ROM. However, current methods for the design of multimedia learning modules are not standardized and lack strong instructional design. Pressure from administrators at the top and students from the bottom are pushing faculty to use modern technology to address the learning needs and expectations of contemporary students. Yet, faculty lack adequate support and training to adopt this new approach. So how can faculty learn to create educational multimedia materials for their students? This paper provides guidelines on best practices in educational multimedia design, derived from the Virtual Labs Project at Stanford University. The development of a multimedia module consists of five phases: (1) understand the learning problem and the users needs; (2) design the content to harness the enabling technologies; (3) build multimedia materials with web style standards and

  2. BioSIGHT: Interactive Visualization Modules for Science Education

    NASA Technical Reports Server (NTRS)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high-speed network capabilities. The BioSIGHT project at is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches toward the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  3. BioSIGHT: Interactive Visualization Modules for Science Education

    NASA Technical Reports Server (NTRS)

    Wong, Wee Ling

    1998-01-01

    Redefining science education to harness emerging integrated media technologies with innovative pedagogical goals represents a unique challenge. The Integrated Media Systems Center (IMSC) is the only engineering research center in the area of multimedia and creative technologies sponsored by the National Science Foundation. The research program at IMSC is focused on developing advanced technologies that address human-computer interfaces, database management, and high- speed network capabilities. The BioSIGHT project at IMSC is a demonstration technology project in the area of education that seeks to address how such emerging multimedia technologies can make an impact on science education. The scope of this project will help solidify NASA's commitment for the development of innovative educational resources that promotes science literacy for our students and the general population as well. These issues must be addressed as NASA marches towards the goal of enabling human space exploration that requires an understanding of life sciences in space. The IMSC BioSIGHT lab was established with the purpose of developing a novel methodology that will map a high school biology curriculum into a series of interactive visualization modules that can be easily incorporated into a space biology curriculum. Fundamental concepts in general biology must be mastered in order to allow a better understanding and application for space biology. Interactive visualization is a powerful component that can capture the students' imagination, facilitate their assimilation of complex ideas, and help them develop integrated views of biology. These modules will augment the role of the teacher and will establish the value of student-centered interactivity, both in an individual setting as well as in a collaborative learning environment. Students will be able to interact with the content material, explore new challenges, and perform virtual laboratory simulations. The BioSIGHT effort is truly cross

  4. Capacitance-modulated transistor detects odorant binding protein chiral interactions.

    PubMed

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  5. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    NASA Astrophysics Data System (ADS)

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand-protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein-ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters.

  6. Capacitance-modulated transistor detects odorant binding protein chiral interactions

    PubMed Central

    Mulla, Mohammad Yusuf; Tuccori, Elena; Magliulo, Maria; Lattanzi, Gianluca; Palazzo, Gerardo; Persaud, Krishna; Torsi, Luisa

    2015-01-01

    Peripheral events in olfaction involve odorant binding proteins (OBPs) whose role in the recognition of different volatile chemicals is yet unclear. Here we report on the sensitive and quantitative measurement of the weak interactions associated with neutral enantiomers differentially binding to OBPs immobilized through a self-assembled monolayer to the gate of an organic bio-electronic transistor. The transduction is remarkably sensitive as the transistor output current is governed by the small capacitance of the protein layer undergoing minute changes as the ligand–protein complex is formed. Accurate determination of the free-energy balances and of the capacitance changes associated with the binding process allows derivation of the free-energy components as well as of the occurrence of conformational events associated with OBP ligand binding. Capacitance-modulated transistors open a new pathway for the study of ultra-weak molecular interactions in surface-bound protein–ligand complexes through an approach that combines bio-chemical and electronic thermodynamic parameters. PMID:25591754

  7. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  8. Telescience operations with the solar array module plasma interaction experiment

    SciTech Connect

    Wald, L.W.; Bibyk, I.K.

    1995-09-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. Parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology.

  9. An Interactive Videodisc Module for Forage Quality and Testing Instruction.

    ERIC Educational Resources Information Center

    Hannaway, D. B.; And Others

    1988-01-01

    Announces the development of a videodisc module which provides access to the U.S. Department of Agriculture information network. Relates sources of information, module description, recommendations for use, and software specifications. Describes the equipment needed. (RT)

  10. Perilipin polymorphism interacts with dietary carbohydrates to modulate anthropometric traits in Hispanics of Caribbean origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perilipin (PLIN) is the major protein surrounding lipid droplets in adipocytes and regulates adipocyte metabolism by modulating the interaction between lipases and triacylglycerol stores. Associations between PLIN gene polymorphisms and obesity risk have been described, but interactions with die...

  11. Modulation of cortical interhemispheric interactions by motor facilitation or restraint.

    PubMed

    Vidal, Ana Cristina; Banca, Paula; Pascoal, Augusto Gil; Cordeiro, Gustavo; Sargento-Freitas, João; Castelo-Branco, Miguel

    2014-01-01

    Cortical interhemispheric interactions in motor control are still poorly understood and it is important to clarify how these depend on inhibitory/facilitatory limb movements and motor expertise, as reflected by limb dominance. Here we addressed this problem using functional magnetic resonance imaging (fMRI) and a task involving dominant/nondominant limb mobilization in the presence/absence of contralateral limb restraint. In this way we could modulate excitation/deactivation of the contralateral hemisphere. Blocks of arm elevation were alternated with absent/present restraint of the contralateral limb in 17 participants. We found the expected activation of contralateral sensorimotor cortex and ipsilateral cerebellum during arm elevation. In addition, only the dominant arm elevation (hold period) was accompanied by deactivation of ipsilateral sensorimotor cortex, irrespective of presence/absence of contralateral restraint, although the latter increased deactivation. In contrast, the nondominant limb yielded absent deactivation and reduced area of contralateral activation upon restriction. Our results provide evidence for a difference in cortical communication during motor control (action facilitation/inhibition), depending on the "expertise" of the hemisphere that controls action (dominant versus nondominant). These results have relevant implications for the development of facilitation/inhibition strategies in neurorehabilitation, namely, in stroke, given that fMRI deactivations have recently been shown to reflect decreases in neural responses. PMID:24707408

  12. Approaching threat modulates visuotactile interactions in peripersonal space.

    PubMed

    de Haan, Alyanne M; Smit, Miranda; Van der Stigchel, Stefan; Dijkerman, H Chris

    2016-07-01

    The region surrounding our body (i.e. peripersonal space) is coded in a multimodal representation by fronto-parietal bimodal neurons integrating tactile stimuli on the body with nearby visual stimuli. This has often been suggested to serve a defensive purpose, which we propose could be mediated through visuotactile predictions. An approaching threat would then be of particular interest to peripersonal space processing. To investigate this, we asked participants to respond as fast as possible to a tactile stimulus on the hand, while looking at an animation of an approaching or receding spider or butterfly. Tactile stimulation was applied at one of 25 possible time points during the animation. Tactile reaction times were faster when an approaching stimulus was closer to the hand at the time of tactile presentation. Critically, this effect of distance on reaction times was larger when participants saw an approaching spider compared to an approaching butterfly, but only for participants who were afraid of spiders. This finding demonstrates that the perceived threat of an approaching stimulus modulates visuotactile interactions in peripersonal space and is consistent with the idea that visuotactile predictions are important for defensive purposes and maintaining bodily integrity. PMID:26894891

  13. The Impact of Interactive, Computerized Educational Modules on Preclinical Medical Education

    ERIC Educational Resources Information Center

    Bryner, Benjamin S.; Saddawi-Konefka, Daniel; Gest, Thomas R.

    2008-01-01

    Interactive computerized modules have been linked to improved retention of material in clinical medicine. This study examined the effects of a new series of interactive learning modules for preclinical medical education, specifically in the areas of quiz performance, perceived difficulty of concepts, study time, and perceived stress level. We…

  14. Modulation and interactions of charged biomimetic membranes with bivalent ions

    NASA Astrophysics Data System (ADS)

    Kazadi Badiambile, Adolphe

    biomolecules in a dynamic environment and the lack of appropriate physical and biochemical tools. In contrast, biomimetic membrane models that rely on the amphiphilic properties of phospholipids are powerful tools that enable the study of these molecules in vitro. By having control over the different experimental parameters such as temperature and pH, reliable and repeatable experimental conditions can be created. One of the key questions I investigated in this thesis is related to the clustering mechanism of PtdIns(4, 5)P2 into pools or aggregates that enable independent cellular control of this species by geometric separation. The lateral aggregation of PtdIns(4, 5)P2 and its underlying physical causes is still a matter of debate. In the first part of this thesis I introduce the general information on lipid membranes with a special focus on the PtdIns family and their associated signaling events. In addition, I explain the Langmuir-Blodgett film balance (LB) system as tool to study lipid membranes and lipid interactions. In the second chapter, I describe my work on the lateral compressibility of PtdIns(4, 5)P2, PtdIns and DOPG monolayers and its modulation by bivalent ions using Langmuir monolayers. In addition, a theoretical framework of compressibility that depends on a surface potential induced by a planar layer of charged molecules and ions in the bulk was provided. In the third part, I present my work on the excess Gibbs free energy of the lipid systems PtdIns(4, 5)P2 --POPC, PtdIns(4, 5)P2, and POPC as they are modulated by bivalent ions. In the fourth part, I report on my foray in engineering a light-based system that relies on different dye properties to simulate calcium induced calcium release (CICR) that occurs in many cell types. In the final chapter, I provide a general conclusion and present directions for future research that would build on my findings.

  15. Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks

    PubMed Central

    Shen, Ru; Wang, Xiaosheng; Guda, Chittibabu

    2015-01-01

    Background. The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional modules (subgraphs) in these networks is one of the most important applications of biological network analysis. Results. In this study, we developed a new graph theory based method to identify distinct functional modules from nine different cancer protein-protein interaction networks. The method is composed of three major steps: (i) extracting modules from protein-protein interaction networks using network clustering algorithms; (ii) identifying distinct subgraphs from the derived modules; and (iii) identifying distinct subgraph patterns from distinct subgraphs. The subgraph patterns were evaluated using experimentally determined cancer-specific protein-protein interaction data from the Ingenuity knowledgebase, to identify distinct functional modules that are specific to each cancer type. Conclusion. We identified cancer-type specific subgraph patterns that may represent the functional modules involved in the molecular pathogenesis of different cancer types. Our method can serve as an effective tool to discover cancer-type specific functional modules from large protein-protein interaction networks. PMID:26495282

  16. SAMPIE (Solar Array Module Plasma Interactions Experiment). (Videotape)

    SciTech Connect

    Not Available

    1994-02-01

    SAMPIE is an in-space technology experiment that flew on STS-62. Its intent is to investigate the potentially damaging effects of space plasma (gases) on different types, sizes, and shapes of solar cells, solar modules, and spacecraft materials.

  17. Limitations of Gene Duplication Models: Evolution of Modules in Protein Interaction Networks

    PubMed Central

    Emmert-Streib, Frank

    2012-01-01

    It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module level. PMID:22530042

  18. Development and Evaluation of an Interactive Internet-Based Pharmacokinetic Teaching Module.

    ERIC Educational Resources Information Center

    Hedaya, Mohsen A.

    1998-01-01

    Describes an Internet-based, interactive, learner-centered, asynchronous instructional module for pharmacokinetics that requires minimal computer knowledge to operate. Main components are concept presentation, a simulation exercise, and self-assessment questions. The module has been found effective in teaching the steady state concept at the…

  19. A Matlab/Simulink-Based Interactive Module for Servo Systems Learning

    ERIC Educational Resources Information Center

    Aliane, N.

    2010-01-01

    This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…

  20. Rationale, Development, and Validation of a Series of Self-Instructional Modules in Interaction Analysis.

    ERIC Educational Resources Information Center

    Suiter, Phil Edward; Queen, Bernard

    This study was designed to develop a series of instructional modules to teach inservice teachers the Flanders System of Interaction Analysis. Instructional modules were constructed based on research information, and then modified from feedback from experts and random trials. Two field-test groups were used to provide data for validation testing,…

  1. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules.

    PubMed

    Menon, Govind; Krishnan, J

    2016-07-21

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks. PMID:27448907

  2. Bridging the gap between modules in isolation and as part of networks: A systems framework for elucidating interaction and regulation of signalling modules

    NASA Astrophysics Data System (ADS)

    Menon, Govind; Krishnan, J.

    2016-07-01

    While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.

  3. Searching for the Holy Grail; protein–protein interaction analysis and modulation

    PubMed Central

    Morelli, Xavier; Hupp, Ted

    2012-01-01

    The first EMBO workshop on ‘Protein–Protein Interaction Analysis & Modulation' took place in June 2012 in Roscoff, France. It brought together researchers to discuss the growing field of protein network analysis and the modulation of protein–protein interactions, as well as outstanding related issues including the daunting challenge of integrating interactomes in systems biology and in the modelling of signalling networks. PMID:22986552

  4. Topological interactive analysis of power system and its communication module: A complex network approach

    NASA Astrophysics Data System (ADS)

    Hu, Jianqiang; Yu, Jie; Cao, Jinde; Ni, Ming; Yu, Wenjie

    2014-12-01

    Power system and its communication system, which can be called a cyber-physical system, are interconnected and interdependent on each other. This paper considers the interaction problem between power system and its communication module from the perspective of the topological structure. Firstly, some structural properties and centrality measures of complex networks are briefly reviewed. Furthermore, novel interactive measures are proposed to describe the interactive system in terms of topologies. Finally, based on these metrics, the statistical properties and the interactive relationships of the main power system and its communication module (abstracted as two complex heterogeneous networks) of one province in China are investigated.

  5. Chaotic saddles in nonlinear modulational interactions in a plasma

    SciTech Connect

    Miranda, Rodrigo A.; Rempel, Erico L.; Chian, Abraham C.-L.

    2012-11-15

    A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.

  6. Pulse distortion and modulation instability in laser plasma interaction

    SciTech Connect

    Jha, Pallavi; Singh, Ram Gopal; Upadhyay, Ajay K.

    2009-01-15

    The present paper deals with the propagation of a short, intense, Gaussian laser pulse in plasma. Using a one dimensional model, a wave equation including finite pulse length and group velocity dispersion is set up and solved to obtain the intensity distribution across the laser pulse. It is shown that the pulse profile becomes asymmetric as it propagates through plasma. Further, the growth rate of modulation instability and range of unstable frequencies across the laser pulse have been derived and graphically analyzed.

  7. Virtual Reality Simulations and Animations in a Web-Based Interactive Manufacturing Engineering Module

    ERIC Educational Resources Information Center

    Ong, S. K.; Mannan, M. A.

    2004-01-01

    This paper presents a web-based interactive teaching package that provides a comprehensive and conducive yet dynamic and interactive environment for a module on automated machine tools in the Manufacturing Division at the National University of Singapore. The use of Internet technologies in this teaching tool makes it possible to conjure…

  8. Interharmonic modulation products as a means to quantify nonlinear D-region interactions

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.

  9. Cosmic ray modulation and turbulent interaction regions near 11 AU

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Mcdonald, F. B.; Goldstein, M. L.; Lazarus, A. J.

    1985-01-01

    When Voyager 2 was near 11 AU, the counting rate of nuclei approx 75 MeV/nucleon decreased during the interval from July, 1982 to November, 1982, and it increased thereafter until August, 1983. A decrease in cosmic ray flux was generally associated with the passage of an interaction region in which the magnetic field strength B was higher than that predicted by the spiral field model, B sub p. Several large enhancements in B/B sup p were associated with merged interaction regions which probably resulted from the interaction of two or more distinct flows. During the passage of interaction regions the cosmic ray intensity decreased at a rate proportional to (B/B sup p -1), and during the passage of rarefaction regions (where B/B sup p 1) the cosmic ray intensity increased at a constant rate. The general form of the cosmic ray intensity profile during this approx 13 month minicycle can be described by integrating these relations using the observed B(t). Latitudinal variations of the interaction regions and of the short-term cosmic ray variations were identified.

  10. Self Assembly Modulated by Interactions of Two Heterogeneously Charged Surfaces

    NASA Astrophysics Data System (ADS)

    Brewster, R.; Pincus, P. A.; Safran, S. A.

    2008-09-01

    Recent experiments have measured attractive interactions between two surfaces that each bear two molecular species with opposite charge. Such surfaces form charged domains of finite size. We present a theoretical model that predicts the dependence of the domain size, phase behavior and the interlayer forces as a function of spacing and salt concentration for two such interacting surfaces. A strong correlation between two length scales, the screening length and the surface separation, at the spinodal is shown. Remarkably, the first-order phase transition to infinite sized domains depends logarithmically on the ratio of the domain size to the molecular size. Finally, we fit the predicted pressure with experiments.

  11. Interactive Web-based Learning Modules Prior to General Medicine Advanced Pharmacy Practice Experiences

    PubMed Central

    Walton, Alison M.; Nisly, Sarah A.

    2015-01-01

    Objective. To implement and evaluate interactive web-based learning modules prior to advanced pharmacy practice experiences (APPEs) on inpatient general medicine. Design. Three clinical web-based learning modules were developed for use prior to APPEs in 4 health care systems. The aim of the interactive modules was to strengthen baseline clinical knowledge before the APPE to enable the application of learned material through the delivery of patient care. Assessment. For the primary endpoint, postassessment scores increased overall and for each individual module compared to preassessment scores. Postassessment scores were similar among the health care systems. The survey demonstrated positive student perceptions of this learning experience. Conclusion. Prior to inpatient general medicine APPEs, web-based learning enabled the standardization and assessment of baseline student knowledge across 4 health care systems. PMID:25995515

  12. Prioritization of gene regulatory interactions from large-scale modules in yeast

    PubMed Central

    Lee, Ho-Joon; Manke, Thomas; Bringas, Ricardo; Vingron, Martin

    2008-01-01

    Background The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources. Results Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes. Conclusion We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for further experimental studies. PMID

  13. Neural interactions in unilateral colliculus and between bilateral colliculi modulate auditory signal processing

    PubMed Central

    Mei, Hui-Xian; Cheng, Liang; Chen, Qi-Cai

    2013-01-01

    In the auditory pathway, the inferior colliculus (IC) is a major center for temporal and spectral integration of auditory information. There are widespread neural interactions in unilateral (one) IC and between bilateral (two) ICs that could modulate auditory signal processing such as the amplitude and frequency selectivity of IC neurons. These neural interactions are either inhibitory or excitatory, and are mostly mediated by γ-aminobutyric acid (GABA) and glutamate, respectively. However, the majority of interactions are inhibitory while excitatory interactions are in the minority. Such unbalanced properties between excitatory and inhibitory projections have an important role in the formation of unilateral auditory dominance and sound location, and the neural interaction in one IC and between two ICs provide an adjustable and plastic modulation pattern for auditory signal processing. PMID:23626523

  14. Matrix interactions modulate neurotrophin-mediated neurite outgrowth and pathfinding

    PubMed Central

    Madl, Christopher M.; Heilshorn, Sarah C.

    2015-01-01

    Both matrix biochemistry and neurotrophic factors are known to modulate neurite outgrowth and pathfinding; however, the interplay between these two factors is less studied. While previous work has shown that the biochemical identity of the matrix can alter the outgrowth of neurites in response to neurotrophins, the importance of the concentration of cell-adhesive ligands is unknown. Using engineered elastin-like protein matrices, we recently demonstrated a synergistic effect between matrix-bound cell-adhesive ligand density and soluble nerve growth factor treatment on neurite outgrowth from dorsal root ganglia. This synergism was mediated by Schwann cell-neurite contact through L1CAM. Cell-adhesive ligand density was also shown to alter the pathfinding behavior of dorsal root ganglion neurites in response to a gradient of nerve growth factor. While more cell-adhesive matrices promoted neurite outgrowth, less cell-adhesive matrices promoted more faithful neurite pathfinding. These studies emphasize the importance of considering both matrix biochemistry and neurotrophic factors when designing biomaterials for peripheral nerve regeneration. PMID:26170800

  15. T Cell Motility as Modulator of Interactions with Dendritic Cells

    PubMed Central

    Stein, Jens V.

    2015-01-01

    It is well established that the balance of costimulatory and inhibitory signals during interactions with dendritic cells (DCs) determines T cell transition from a naïve to an activated or tolerant/anergic status. Although many of these molecular interactions are well reproduced in reductionist in vitro assays, the highly dynamic motility of naïve T cells in lymphoid tissue acts as an additional lever to fine-tune their activation threshold. T cell detachment from DCs providing suboptimal stimulation allows them to search for DCs with higher levels of stimulatory signals, while storing a transient memory of short encounters. In turn, adhesion of weakly reactive T cells to DCs presenting peptides presented on major histocompatibility complex with low affinity is prevented by lipid mediators. Finally, controlled recruitment of CD8+ T cells to cognate DC–CD4+ T cell clusters shapes memory T cell formation and the quality of the immune response. Dynamic physiological lymphocyte motility therefore constitutes a mechanism to mitigate low avidity T cell activation and to improve the search for “optimal” DCs, while contributing to peripheral tolerance induction in the absence of inflammation. PMID:26579132

  16. Environmental Enrichment Modulates Cortico-Cortical Interactions in the Mouse

    PubMed Central

    Chillemi, Santi; Maffei, Lamberto; Caleo, Matteo

    2011-01-01

    Environmental enrichment (EE) is an experimental protocol based on a complex sensorimotor stimulation that dramatically affects brain development. While it is widely believed that the effects of EE result from the unique combination of different sensory and motor stimuli, it is not known whether and how cortico-cortical interactions are shaped by EE. Since the primary visual cortex (V1) is one of the best characterized targets of EE, we looked for direct cortico-cortical projections impinging on V1, and we identified a direct monosynaptic connection between motor cortex and V1 in the mouse brain. To measure the interactions between these areas under standard and EE rearing conditions, we used simultaneous recordings of local field potentials (LFPs) in awake, freely moving animals. LFP signals were analyzed by using different methods of linear and nonlinear analysis of time series (cross-correlation, mutual information, phase synchronization). We found that EE decreases the level of coupling between the electrical activities of the two cortical regions with respect to the control group. From a functional point of view, our results indicate, for the first time, that an enhanced sensorimotor experience impacts on the brain by affecting the functional crosstalk between different cortical areas. PMID:21966482

  17. Engineering interactions and anyon statistics by multicolor lattice-depth modulations

    NASA Astrophysics Data System (ADS)

    Cardarelli, Lorenzo; Greschner, Sebastian; Santos, Luis

    2016-08-01

    We show that a multicolor modulation of the depth of an optical lattice allows for a flexible independent control of correlated hopping, occupation-dependent gauge fields, effective on-site interactions without Feshbach resonances, and nearest-neighbor interactions. As a result, the lattice-depth modulation opens the possibility of engineering with minimal experimental complexity a broad class of lattice models in current experiments with ultracold atoms, including Hubbard models with correlated hopping, peculiar extended models, and two-component anyon-Hubbard models.

  18. A room temperature LSO/PIN photodiode PET detector module that measures depth of interaction

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.; Melcher, C.L.; Manente, R.A.

    1994-11-01

    We present measurements of a 4 element PET detector module that uses a 2{times}2 array of 3 mm square PIN photodiodes to both measure the depth of interaction (DOI) and identify the crystal of interaction. Each photodiode is coupled to one end of a 3{times}3{times}25 mm LSO crystal, with the opposite ends of all 4 crystals attached to a single PMT that provides a timing signal and initial energy discrimination. Each LSO crystal is coated with a {open_quotes}lossy{close_quotes} reflector, so the ratio of light detected in the photodiode and PMT depends on the position of interaction in the crystal, and is used to determine this position on an event by event basis. This module is operated at +25{degrees}C with a photodiode amplifier peaking time of 2 {mu}s. When excited by a collimated beam of 511 keV photons at the photodiode end of the module (i.e. closest to the patient), the DOI resolution is 4 mm fwhm and the crystal of interaction is identified correctly 95% of the time. When excited at the opposite end of the module, the DOI resolution is 13 mm fwhm and the crystal of interaction is identified correctly 73% of the time. The channel to channel variations in performance are minimal.

  19. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module.

    PubMed

    Zeytuni, Natalie; Zarivach, Raz

    2012-03-01

    Tetra-trico-peptide repeat (TPR) domains are found in numerous proteins, where they serve as interaction modules and multiprotein complex mediators. TPRs can be found in all kingdoms of life and regulate diverse biological processes, such as organelle targeting and protein import, vesicle fusion, and biomineralization. This review considers the structural features of TPR domains that permit the great ligand-binding diversity of this motif, given that TPR-interacting partners display variations in both sequence and secondary structure. In addition, tools for predicting TPR-interacting partners are discussed, as are the abilities of TPR domains to serve as protein-protein interaction scaffolds in biotechnology and therapeutics. PMID:22404999

  20. Interaction of frequency-modulated light beams in multistage parametric amplifiers at the maximum gain bandwidth

    SciTech Connect

    Vlasov, Sergei N; Koposova, E V; Freidman, Gennadii I

    2009-05-31

    Conditions of the applicability of equations in the quasi-static approximation for studying the parametric interaction of frequency-modulated light beams in multistage amplifiers are considered. This approximation is used to simulate numerically processes in a multistage DKDP crystal amplifier with the output power exceeding 10 PW and suppressed luminescence. (lasers and amplifiers)

  1. Apollo program soil mechanics experiment. [interaction of the lunar module with the lunar surface

    NASA Technical Reports Server (NTRS)

    Scott, R. F.

    1975-01-01

    The soil mechanics investigation was conducted to obtain information relating to the landing interaction of the lunar module (LM) with the lunar surface, and lunar soil erosion caused by the spacecraft engine exhaust. Results obtained by study of LM landing performance on each Apollo mission are summarized.

  2. The Goals and Development of an Interactive Web Module for a Teacher Education Course.

    ERIC Educational Resources Information Center

    Schnorr, Donna; Bracken, Nicole; Hazari, Sunil

    The World Wide Web has become a promising medium for delivery of instruction. This paper describes a case study in which the Internet was used to supplement teacher education course instruction via an Interactive Web module. The goals of using such a medium for facilitating teaching and enhancing learning are described as they relate to learning…

  3. Directed momentum current of Bose–Einstein condensate in the presence of spatially modulated nonlinear interaction

    NASA Astrophysics Data System (ADS)

    Zhao, Wen-Lei; Ding, Cai-Ying; Liu, Jie; Fu, Li-Bin

    2016-06-01

    We investigate the quantum transport dynamics of periodically delta-kicked Bose–Einstein condensate under the effect of spatially modulated nonlinear interactions. The spatial modulation frequency can dramatically affect the transport behaviors of the ultra-cold atoms. For odd frequency, the linear growth of the directed current is close to that of the noninteracting case for not very strong nonlinear interaction. Both the acceleration and the quantum state evolution gradually approach that of the noninteracting case with increasing frequency. For other values of frequency, a very weak nonlinear interaction can dramatically reduce the linear growth of the directed current. The quantum state evolution differs rapidly from that of the noninteracting case. The underlying dynamic mechanism is uncovered and some important implications are addressed.

  4. Frequency modulation in shock wave-boundary layer interaction by repetitive-pulse laser energy deposition

    NASA Astrophysics Data System (ADS)

    Tamba, T.; Pham, H. S.; Shoda, T.; Iwakawa, A.; Sasoh, A.

    2015-09-01

    Modulation of shock foot oscillation due to energy deposition by repetitive laser pulses in shock wave-boundary layer interaction over an axisymmetric nose-cylinder-flare model in Mach 1.92 flow was experimentally studied. From a series of 256 schlieren images, density oscillation spectra at each pixel were obtained. When laser pulses of approximately 7 mJ were deposited with a repetition frequency, fe, of 30 kHz or lower, the flare shock oscillation had a peak spectrum equivalent to the value of fe. However, with fe of 40 kHz-60 kHz, it experienced frequency modulation down to lower than 20 kHz.

  5. Interactions between two fission yeast serine/arginine-rich proteins and their modulation by phosphorylation.

    PubMed Central

    Tang, Zhaohua; Käufer, Norbert F; Lin, Ren-Jang

    2002-01-01

    The unexpected low number of genes in the human genome has triggered increasing attention to alternative pre-mRNA splicing, and serine/arginine-rich (SR) proteins have been correlated with the complex alternative splicing that is a characteristic of metazoans. SR proteins interact with RNA and splicing protein factors, and they also undergo reversible phosphorylation, thereby regulating constitutive and alternative splicing in mammals and Drosophila. However, it is not clear whether the features of SR proteins and alternative splicing are present in simple and genetically tractable organisms, such as yeasts. In the present study, we show that the SR-like proteins Srp1 and Srp2, found in the fission yeast Schizosaccharomyces pombe, interact with each other and the interaction is modulated by protein phosphorylation. By using Srp1 as bait in a yeast two-hybrid analysis, we specifically isolated Srp2 from a random screen. This Srp interaction was confirmed by a glutathione-S-transferase pull-down assay. We also found that the Srp1-Srp2 complex was phosphorylated at a reduced efficiency by a fission yeast SR-specific kinase, Dis1-suppression kinase (Dsk1). Conversely, Dsk1-mediated phosphorylation inhibited the formation of the Srp complex. These findings offer the first example in fission yeast for interactions between SR-related proteins and the modulation of the interactions by specific protein phosphorylation, suggesting that a mammalian-like SR protein function may exist in fission yeast. PMID:12186627

  6. Followers are not followed: Observed group interactions modulate subsequent social attention.

    PubMed

    Capozzi, Francesca; Becchio, Cristina; Willemse, Cesco; Bayliss, Andrew P

    2016-05-01

    We asked whether previous observations of group interactions modulate subsequent social attention episodes. Participants first completed a learning phase with 2 conditions. In the "leader" condition 1 of 3 identities turned her gaze first, followed by the 2 other faces. In the "follower" condition, 1 of the identities turned her gaze after the 2 other faces had first shifted their gaze. Thus, participants observed that some individuals were consistently leaders and others followers of others' attention. In the test phase, the faces of leaders and followers were presented in a gaze cueing paradigm. Remarkably, the followers did not elicit gaze cueing. Our data demonstrate that individuals who do not guide group attention in exploring the environment are ineffective social attention directors in later encounters. Thus, the role played in previous group social attention interactions modulates the relative weight assigned to others' gaze: we ignore the gaze of group followers. (PsycINFO Database Record PMID:27031224

  7. A New Approach to Developing Interactive Software Modules Through Graduate Education

    NASA Astrophysics Data System (ADS)

    Sanders, Nathan E.; Faesi, Chris; Goodman, Alyssa A.

    2014-06-01

    Educational technology has attained significant importance as a mechanism for supporting experiential learning of science concepts. However, the growth of this mechanism is limited by the significant time and technical expertise needed to develop such products, particularly in specialized fields of science. We sought to test whether interactive, educational, online software modules can be developed effectively by students as a curriculum component of an advanced science course. We discuss a set of 15 such modules developed by Harvard University graduate students to demonstrate various concepts related to astronomy and physics. Their successful development of these modules demonstrates that online software tools for education and outreach on specialized topics can be produced while simultaneously fulfilling project-based learning objectives. We describe a set of technologies suitable for module development and present in detail four examples of modules developed by the students. We offer recommendations for incorporating educational software development within a graduate curriculum and conclude by discussing the relevance of this novel approach to new online learning environments like edX.

  8. Transitive closure and metric inequality of weighted graphs:detecting protein interaction modules using cliques

    SciTech Connect

    Ding, Chris; He, Xiaofeng; Xiong, Hui; Peng, Hanchuan; Holbrook,Stephen R.

    2006-06-02

    We study transitivity properties of edge weights in complex networks. We show that enforcing transitivity leads to a transitivity inequality which is equivalent to ultra-metric inequality. This can be used to define transitive closure on weighted undirected graphs, which can be computed using a modified Floyd-Warshall algorithm. We outline several applications and present results of detecting protein functional modules in a protein interaction network.

  9. Quantitative measurement of tip-sample interactions in amplitude modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hölscher, H.

    2006-09-01

    The author introduces an algorithm for the reconstruction of the tip-sample interactions in amplitude modulation atomic force microscopy ("tapping mode"). The method is based on the recording of amplitude and phase versus distance curves and allows the reconstruction of tip-sample force and energy dissipation as a function of the actual tip-sample distance. The proposed algorithm is verified by a numerical simulation and applied to a silicon sample in ambient conditions.

  10. Photocontrolled Exposure of Pro-apoptotic Peptide Sequences in LOV Proteins Modulates Bcl-2 Family Interactions.

    PubMed

    Mart, Robert J; Meah, Dilruba; Allemann, Rudolf K

    2016-04-15

    LOV domains act as biomolecular sensors for light, oxygen or the environment's redox potential. Conformational changes upon the formation of a covalent cysteinyl flavin adduct are propagated through hydrogen-bonding networks in the core of designed hybrid phototropin LOV2 domains that incorporate the Bcl homology region 3 (BH3) of the key pro-apoptotic protein BH3-interacting-domain death agonist (BID). The resulting change in conformation of a flanking amphiphilic α-helix creates a light-dependent optogenetic tool for the modulation of interactions with the anti-apoptotic B-cell leukaemia-2 (Bcl-2) family member Bcl-xL . PMID:26493687

  11. Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction.

    PubMed

    Didier, Nicolas; Bourassa, Jérôme; Blais, Alexandre

    2015-11-13

    We show how to realize fast and high-fidelity quantum nondemolition qubit readout using longitudinal qubit-oscillator interaction. This is accomplished by modulating the longitudinal coupling at the cavity frequency. The qubit-oscillator interaction then acts as a qubit-state dependent drive on the cavity, a situation that is fundamentally different from the standard dispersive case. Single-mode squeezing can be exploited to exponentially increase the signal-to-noise ratio of this readout protocol. We present an implementation of this longitudinal parametric readout in circuit quantum electrodynamics and a possible multiqubit architecture. PMID:26613438

  12. Few-boson tunneling in a double well with spatially modulated interaction

    SciTech Connect

    Chatterjee, Budhaditya; Brouzos, Ioannis; Schmelcher, Peter; Zoellner, Sascha

    2010-10-15

    We study few-boson tunneling in a one-dimensional double well with a spatially modulated interaction. The dynamics changes from Rabi oscillations in the noninteracting case to a highly suppressed tunneling for intermediate coupling strengths followed by a reappearance near the fermionization limit. With extreme interaction inhomogeneity in the regime of strong correlations, we observe tunneling between the higher bands. The dynamics is explained on the basis of the few-body spectrum and stationary eigenstates. For a higher number of particles N{>=}3, it is shown that the inhomogeneity of the interaction can be tuned to generate tunneling resonances. Finally, a tilted double well and its interplay with the interaction asymmetry are discussed.

  13. PIPE: a protein–protein interaction passage extraction module for BioCreative challenge

    PubMed Central

    Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian

    2016-01-01

    Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. Database URL: PMID:27524807

  14. PIPE: a protein-protein interaction passage extraction module for BioCreative challenge.

    PubMed

    Chang, Yung-Chun; Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian

    2016-01-01

    Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. DATABASE URL. PMID:27524807

  15. Transcriptional Modulation of Enterotoxigenic Escherichia coli Virulence Genes in Response to Epithelial Cell Interactions

    PubMed Central

    Kansal, Rita; Rasko, David A.; Sahl, Jason W.; Munson, George P.; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J.

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  16. Neuronal and astrocytic interactions modulate brain endothelial properties during metabolic stresses of in vitro cerebral ischemia

    PubMed Central

    2014-01-01

    Neurovascular and gliovascular interactions significantly affect endothelial phenotype. Physiologically, brain endothelium attains several of its properties by its intimate association with neurons and astrocytes. However, during cerebrovascular pathologies such as cerebral ischemia, the uncoupling of neurovascular and gliovascular units can result in several phenotypical changes in brain endothelium. The role of neurovascular and gliovascular uncoupling in modulating brain endothelial properties during cerebral ischemia is not clear. Specifically, the roles of metabolic stresses involved in cerebral ischemia, including aglycemia, hypoxia and combined aglycemia and hypoxia (oxygen glucose deprivation and re-oxygenation, OGDR) in modulating neurovascular and gliovascular interactions are not known. The complex intimate interactions in neurovascular and gliovascular units are highly difficult to recapitulate in vitro. However, in the present study, we used a 3D co-culture model of brain endothelium with neurons and astrocytes in vitro reflecting an intimate neurovascular and gliovascular interactions in vivo. While the cellular signaling interactions in neurovascular and gliovascular units in vivo are much more complex than the 3D co-culture models in vitro, we were still able to observe several important phenotypical changes in brain endothelial properties by metabolically stressed neurons and astrocytes including changes in barrier, lymphocyte adhesive properties, endothelial cell adhesion molecule expression and in vitro angiogenic potential. PMID:24438487

  17. Transcriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions.

    PubMed

    Kansal, Rita; Rasko, David A; Sahl, Jason W; Munson, George P; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J; Fleckenstein, James M

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  18. Ingroup favoritism or the black sheep effect: Perceived intentions modulate subjective responses to aggressive interactions.

    PubMed

    Wang, Lei; Zheng, Jiehui; Meng, Liang; Lu, Qiang; Ma, Qingguo

    2016-07-01

    Social categorization plays an important role in provoking the victim's responses to aggressive interactions. Pioneering studies suggested that uncertainty in the perpetrator's hostile intention influences whether ingroup favoritism or the black sheep effect (ingroup strictness) will be manifested to a greater extent. However, when the hostile intention is ambiguous, subjective perception of the perpetrator's intention may still be quite different due to the inherent information gap between participants, and this discrepancy in perceived intentions may further modulate subjective responses to social aggression. In the present study, subjects played as responders of the Ultimatum Game, and received varied offers proposed by either ingroup or outgroup members. Electrophysiological results showed that, when proposers were perceived to be intentional, unfair offers from ingroups elicited significantly larger Feedback-related Negativity (FRN) than those from outgroups, potentially providing neural evidence for the black sheep effect. The opposite FRN pattern was observed when proposers were perceived to be unintentional, which might suggest ingroup favoritism. Interestingly, despite contrary neural patterns, perceived intentions did not modulate behavioral response to aggressive interactions. Thus, converging results suggested that, when the perpetrator's hostile intention remained ambiguous, perceived intentions modulated the victim's electrophysiological response while not the rational behavioral response to aggressive interactions. PMID:26851770

  19. A novel functional module detection algorithm for protein-protein interaction networks

    PubMed Central

    Hwang, Woochang; Cho, Young-Rae; Zhang, Aidong; Ramanathan, Murali

    2006-01-01

    Background The sparse connectivity of protein-protein interaction data sets makes identification of functional modules challenging. The purpose of this study is to critically evaluate a novel clustering technique for clustering and detecting functional modules in protein-protein interaction networks, termed STM. Results STM selects representative proteins for each cluster and iteratively refines clusters based on a combination of the signal transduced and graph topology. STM is found to be effective at detecting clusters with a diverse range of interaction structures that are significant on measures of biological relevance. The STM approach is compared to six competing approaches including the maximum clique, quasi-clique, minimum cut, betweeness cut and Markov Clustering (MCL) algorithms. The clusters obtained by each technique are compared for enrichment of biological function. STM generates larger clusters and the clusters identified have p-values that are approximately 125-fold better than the other methods on biological function. An important strength of STM is that the percentage of proteins that are discarded to create clusters is much lower than the other approaches. Conclusion STM outperforms competing approaches and is capable of effectively detecting both densely and sparsely connected, biologically relevant functional modules with fewer discards. PMID:17147822

  20. TNF Superfamily Protein–Protein Interactions: Feasibility of Small-Molecule Modulation

    PubMed Central

    Song, Yun; Buchwald, Peter

    2015-01-01

    The tumor necrosis factor (TNF) superfamily (TNFSF) contains about thirty structurally related receptors (TNFSFRs) and about twenty protein ligands that bind to one or more of these receptors. Almost all of these cell surface protein-protein interactions (PPIs) represent high-value therapeutic targets for inflammatory or immune modulation in autoimmune diseases, transplant recipients, or cancers, and there are several biologics including antibodies and fusion proteins targeting them that are in various phases of clinical development. Small-molecule inhibitors or activators could represent possible alternatives if the difficulties related to the targeting of protein-protein interactions by small molecules can be addressed. Compounds proving the feasibility of such approaches have been identified through different drug discovery approaches for a number of these TNFSFR-TNFSF type PPIs including CD40-CD40L, BAFFR-BAFF, TRAIL-DR5, and OX40-OX40L. Corresponding structural, signaling, and medicinal chemistry aspects are briefly reviewed here. While none of these small-molecule modulators identified so far seems promising enough to be pursued for clinical development, they provide proof-of-principle evidence that these interactions are susceptible to small-molecule modulation and can serve as starting points toward the identification of more potent and selective candidates. PMID:25706111

  1. Molecular tweezers modulate 14-3-3 protein-protein interactions.

    PubMed

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins--a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)--in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions. PMID:23422566

  2. Molecular tweezers modulate 14-3-3 protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  3. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System

    PubMed Central

    Ho, Adrian; Angel, Roey; Veraart, Annelies J.; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L. E.

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  4. Controlling Non-Covalent Interactions to Modulate the Dispersion of Fullerenes in Polymer Nanocomposites

    SciTech Connect

    Sumpter, Bobby G

    2011-01-01

    Polymer nanocomposites (PNCs) are materials based on a class of filled plastics that contain relatively small amounts of nanoparticles, which can impart improved structural, mechanical, and thermal properties relative to the neat polymer. However, the homogeneous dispersion of the nanoparticles into a polymer matrix is critical and an impeding factor for the controlled enhancement of PNC properties. In this work, we provide new insight into the importance of polymer chain connectivity and nanoparticle shape and curvature on the formation of noncovalent electron donor-acceptor (EDA) interactions between polymers and nanoparticles. This is accomplished by experimentally monitoring the dispersion of nanoparticles in copolymers containing varying amounts of functional moieties that can form noncovalent interactions with carbon nanoparticles with corroboration through density functional calculations. The results show that the presence of a minority of interacting functional groups within a polymer chain leads to an optimum interaction between the polymer and fullerene. Density functional theory calculations that identify the binding energy and geometry of the interaction between the functional monomers and fullerenes correspond very well with the experimental results. Moreover, comparison of these results to similar studies with single-walled carbon nanotubes (SWNT) indicate a distinct difference in the ability of EDA interactions to improve the dispersion of fullerenes relative to their impact on SWNT. Thus, the polymer chain connectivity, the polymer chain conformation, and size and shape of the nanoparticle modulate the formation of intermolecular interactions and directly impact the dispersion of the resultant nanocomposite.

  5. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System.

    PubMed

    Ho, Adrian; Angel, Roey; Veraart, Annelies J; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L E

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes. PMID:27602021

  6. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  7. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    PubMed Central

    Laing, Mark; Rees, Adrian; Vuong, Quoc C.

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies. PMID:26483710

  8. Oscillatory interaction between amygdala and hippocampus coordinates behavioral modulation based on reward expectation

    PubMed Central

    Terada, Satoshi; Takahashi, Susumu; Sakurai, Yoshio

    2013-01-01

    The aim of this study is to examine how the amygdala and hippocampus interact for behavioral performance modulated by different Reward-expectations (REs). We simultaneously recorded neuronal spikes and local field potential from the basolateral amygdala and hippocampal CA1 while rats were performing a light-side discrimination task with different expectations of a high or low probability of reward delivery. Here, we report the following results. First, the rats actually modulated their behavioral performance on their expectations of a high or low probability of reward. Second, we found more neurons related to RE in the amygdala and more neurons related to task performance in the hippocampus. Third, a prominent increase in the coherence of high-frequency oscillations (HFOs) (90–150 Hz) between the amygdala and the hippocampus was present during high RE. Fourth, coherent HFOs during inter-trial intervals and theta coherence during trials had significant correlations with the behavioral goal-selection time. Finally, cross-frequency couplings of LFPs within and across the amygdala and hippocampus occurred during ITI. These results suggest that the amygdala and hippocampus have different functional roles in the present task with different REs, and the distinctive band of coherence between the amygdala and the hippocampus contributes to behavioral modulation on the basis of REs. We propose that the amygdala influences firing rates and the strength of synchronization of hippocampal neurons through coherent oscillation, which is a part of the mechanism of how reward expectations modulate goal-directed behavior. PMID:24348352

  9. Online Interactive Teaching Modules Enhance Quantitative Proficiency of Introductory Biology Students

    PubMed Central

    Nelson, Kären C.; Marbach-Ad, Gili; Keller, Michael; Fagan, William F.

    2010-01-01

    There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses. PMID:20810959

  10. Online interactive teaching modules enhance quantitative proficiency of introductory biology students.

    PubMed

    Thompson, Katerina V; Nelson, Kären C; Marbach-Ad, Gili; Keller, Michael; Fagan, William F

    2010-01-01

    There is widespread agreement within the scientific and education communities that undergraduate biology curricula fall short in providing students with the quantitative and interdisciplinary problem-solving skills they need to obtain a deep understanding of biological phenomena and be prepared fully to contribute to future scientific inquiry. MathBench Biology Modules were designed to address these needs through a series of interactive, Web-based modules that can be used to supplement existing course content across the biological sciences curriculum. The effect of the modules was assessed in an introductory biology course at the University of Maryland. Over the course of the semester, students showed significant increases in quantitative skills that were independent of previous math course work. Students also showed increased comfort with solving quantitative problems, whether or not they ultimately arrived at the correct answer. A survey of spring 2009 graduates indicated that those who had experienced MathBench in their course work had a greater appreciation for the role of mathematics in modern biology than those who had not used MathBench. MathBench modules allow students from diverse educational backgrounds to hone their quantitative skills, preparing them for more complex mathematical approaches in upper-division courses. PMID:20810959

  11. Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins

    PubMed Central

    Kehat, Izhak; Accornero, Federica; Aronow, Bruce J.

    2011-01-01

    Class IIa histone deacetylases (HDACs) can modulate chromatin architecture and transcriptional activity, thereby participating in the regulation of cellular responses such as cardiomyocyte hypertrophy. However, the target genes of class IIa HDACs that control inducible cardiac growth and the broader mechanisms whereby these deacetylases modulate locus-specific gene expression within chromatin remain a mystery. Here, we used genome-wide promoter occupancy analysis, expression profiling, and primary cell validation to identify direct class IIa HDAC4 targets in cardiomyocytes. Simultaneously, we identified nucleoporin155 (Nup155) as an HDAC4-interacting protein. Mechanistically, we show that HDAC4 modulated the association of identified target genes with nucleoporins through interaction with Nup155. Moreover, a truncated mutant of Nup155 that cannot bind HDAC4 suppressed HDAC4-induced gene expression patterns and chromatin–nucleoporin association, suggesting that Nup155-mediated localization was required for HDAC4’s effect on gene expression. We thus propose a novel mechanism of action for HDAC4, suggesting it can function to dynamically regulate gene expression through changes in chromatin–nucleoporin association. PMID:21464227

  12. MicroRNAs Modulate Interactions between Stress and Risk for Cocaine Addiction.

    PubMed

    Doura, Menahem B; Unterwald, Ellen M

    2016-01-01

    Exposure to stress increases vulnerability to drug abuse, as well as relapse liability in addicted individuals. Chronic drug use alters stress response in a manner that increases drug seeking behaviors and relapse. Drug exposure and withdrawal have been shown to alter stress responses, and corticosteroid mediators of stress have been shown to impact addiction-related brain function and drug-seeking behavior. Despite the documented interplay between stress and substance abuse, the mechanisms by which stress exposure and drug seeking interact remain largely unknown. Recent studies indicate that microRNAs (miRNA) play a significant role in stress modulation as well as addiction-related processes including neurogenesis, synapse development, plasticity, drug acquisition, withdrawal and relapse. MiRNAs are short non-coding RNAs that function as bidirectional epigenetic modulators of gene expression through imperfect sequence targeted degradation and/or translational repression of mRNAs. They serve as dynamic regulators of CNS physiology and pathophysiology, and facilitate rapid and long-lasting changes to complex systems and behaviors. MiRNAs function in glucocorticoid signaling and the mesolimbic dopamine reward system, as well as mood disorders related to drug withdrawal. The literature suggests miRNAs play a pivotal role in the interaction between exposures to stress, addiction-related processes, and negative affective states resulting from extended drug withdrawal. This manuscript reviews recent evidence for the role of miRNAs in the modulation of stress and cocaine responses, and discusses potential mediation of the interaction of these systems by miRNAs. Uncovering the mechanism behind the association of stress and drug taking has the potential to impact the treatment of drug abuse and prevention of relapse. Further comprehension of these complex interactions may provide promising new targets for the treatment of drug addiction. PMID:27303265

  13. MicroRNAs Modulate Interactions between Stress and Risk for Cocaine Addiction

    PubMed Central

    Doura, Menahem B.; Unterwald, Ellen M.

    2016-01-01

    Exposure to stress increases vulnerability to drug abuse, as well as relapse liability in addicted individuals. Chronic drug use alters stress response in a manner that increases drug seeking behaviors and relapse. Drug exposure and withdrawal have been shown to alter stress responses, and corticosteroid mediators of stress have been shown to impact addiction-related brain function and drug-seeking behavior. Despite the documented interplay between stress and substance abuse, the mechanisms by which stress exposure and drug seeking interact remain largely unknown. Recent studies indicate that microRNAs (miRNA) play a significant role in stress modulation as well as addiction-related processes including neurogenesis, synapse development, plasticity, drug acquisition, withdrawal and relapse. MiRNAs are short non-coding RNAs that function as bidirectional epigenetic modulators of gene expression through imperfect sequence targeted degradation and/or translational repression of mRNAs. They serve as dynamic regulators of CNS physiology and pathophysiology, and facilitate rapid and long-lasting changes to complex systems and behaviors. MiRNAs function in glucocorticoid signaling and the mesolimbic dopamine reward system, as well as mood disorders related to drug withdrawal. The literature suggests miRNAs play a pivotal role in the interaction between exposures to stress, addiction-related processes, and negative affective states resulting from extended drug withdrawal. This manuscript reviews recent evidence for the role of miRNAs in the modulation of stress and cocaine responses, and discusses potential mediation of the interaction of these systems by miRNAs. Uncovering the mechanism behind the association of stress and drug taking has the potential to impact the treatment of drug abuse and prevention of relapse. Further comprehension of these complex interactions may provide promising new targets for the treatment of drug addiction. PMID:27303265

  14. Modulation of CD6 function through interaction with Galectin-1 and -3.

    PubMed

    Escoda-Ferran, Cristina; Carrasco, Esther; Caballero-Baños, Miguel; Miró-Julià, Cristina; Martínez-Florensa, Mario; Consuegra-Fernández, Marta; Martínez, Vanesa G; Liu, Fu-Tong; Lozano, Francisco

    2014-08-25

    CD6 is a lymphocyte glycoprotein receptor that physically associates with the antigen-specific receptor complex at the center of the immunological synapse, where it interacts with its ligand CD166/ALCAM. The present work reports the carbohydrate-dependent interaction of CD6 and CD166/ALCAM with Galectin-1 and -3, two well-known soluble mammalian lectins. Both galectins interfered with superantigen-induced T cell proliferation and cell adhesion phenomena mediated by the CD6-CD166/ALCAM pair, while CD6 expression protected cells from galectin-induced apoptosis. The results suggest that interaction of Galectin-1 and -3 with CD6 and CD166/ALCAM might modulate some relevant aspects of T cell physiology. PMID:24945728

  15. Modulated charge patterns and noise effect in a twisted DNA model with solvent interaction

    NASA Astrophysics Data System (ADS)

    Tabi, C. B.; Dang Koko, A.; Oumarou Doko, R.; Ekobena Fouda, H. P.; Kofané, T. C.

    2016-01-01

    We modify the Peyrard-Bishop-Holstein model and bring out the influence of the torsion and solvent interactions on charge transport in DNA. Through the linear stability analysis, we detect regions of instability and we compare the results with those of the standard Peyrard-Bishop-Holstein model. There are two regimes where modulated charge patterns can occur: the undertwisted and the overtwisted conformations. Numerical simulations are used to confirm our analytical predictions. Charge patterns are obtained and propagate more easily in an overwinded helix than in an underwinded one. The effects of dissipation and thermal fluctuations are also studied, which confirm the robustness of the obtained modulated patterns. On the one hand, we argue that in the absence of twisting, temperature can lead to the breaking of the hydrogen bonds between bases and prevent charges from propagating. On the other hand, when the molecule is overtwisted, the solvent and the temperature will rather enhance charge spreading patterns with random features.

  16. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    NASA Astrophysics Data System (ADS)

    Li, Rui

    2016-05-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field.

  17. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    SciTech Connect

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Yasamut, Umpa; Sawasdee, Nunghathai; Netsawang, Janjuree; Morchang, Atthapan; Chaowalit, Prapaipit; Noisakran, Sansanee; Yenchitsomanus, Pa-thai; and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  18. GABAergic modulation of human social interaction in a prisoner's dilemma model by acute administration of alprazolam.

    PubMed

    Lane, Scott D; Gowin, Joshua L

    2009-10-01

    Recent work in neuroeconomics has used game theory paradigms to examine neural systems that subserve human social interaction and decision making. Attempts to modify social interaction through pharmacological manipulation have been less common. Here we show dose-dependent modification of human social behavior in a prisoner's dilemma model after acute administration of the γ-aminobutyric acid (GABA)-A modulating benzodiazepine alprazolam. Nine healthy adults received doses of placebo, 0.5, 1.0, and 2.0 mg alprazolam in a counterbalanced within-subject design, while completing multiple test blocks per day on an iterated prisoner's dilemma game. During test blocks in which peak subjective effects of alprazolam were reported, cooperative choices were significantly decreased as a function of dose. Consistent with previous reports showing that high acute doses of GABA-modulating drugs are associated with violence and other antisocial behavior, our data suggest that at sufficiently high doses, alprazolam can decrease cooperation. These behavioral changes may be facilitated by changes in inhibitory control facilitated by GABA. Game theory paradigms may prove useful in behavioral pharmacology studies seeking to measure social interaction, and may help inform the emerging field of neuroeconomics. PMID:19667972

  19. Community Structure Detection for Overlapping Modules through Mathematical Programming in Protein Interaction Networks

    PubMed Central

    Bennett, Laura; Kittas, Aristotelis; Liu, Songsong; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply ‘hubs’, i.e. proteins with many interaction partners but with a more specific biochemical role. PMID:25412367

  20. Community structure detection for overlapping modules through mathematical programming in protein interaction networks.

    PubMed

    Bennett, Laura; Kittas, Aristotelis; Liu, Songsong; Papageorgiou, Lazaros G; Tsoka, Sophia

    2014-01-01

    Community structure detection has proven to be important in revealing the underlying properties of complex networks. The standard problem, where a partition of disjoint communities is sought, has been continually adapted to offer more realistic models of interactions in these systems. Here, a two-step procedure is outlined for exploring the concept of overlapping communities. First, a hard partition is detected by employing existing methodologies. We then propose a novel mixed integer non linear programming (MINLP) model, known as OverMod, which transforms disjoint communities to overlapping. The procedure is evaluated through its application to protein-protein interaction (PPI) networks of the rat, E. coli, yeast and human organisms. Connector nodes of hard partitions exhibit topological and functional properties indicative of their suitability as candidates for multiple module membership. OverMod identifies two types of connector nodes, inter and intra-connector, each with their own particular characteristics pertaining to their topological and functional role in the organisation of the network. Inter-connector proteins are shown to be highly conserved proteins participating in pathways that control essential cellular processes, such as proliferation, differentiation and apoptosis and their differences with intra-connectors is highlighted. Many of these proteins are shown to possess multiple roles of distinct nature through their participation in different network modules, setting them apart from proteins that are simply 'hubs', i.e. proteins with many interaction partners but with a more specific biochemical role. PMID:25412367

  1. Inferring modules of functionally interacting proteins using the Bond Energy Algorithm

    PubMed Central

    Watanabe, Ryosuke LA; Morett, Enrique; Vallejo, Edgar E

    2008-01-01

    Background Non-homology based methods such as phylogenetic profiles are effective for predicting functional relationships between proteins with no considerable sequence or structure similarity. Those methods rely heavily on traditional similarity metrics defined on pairs of phylogenetic patterns. Proteins do not exclusively interact in pairs as the final biological function of a protein in the cellular context is often hold by a group of proteins. In order to accurately infer modules of functionally interacting proteins, the consideration of not only direct but also indirect relationships is required. In this paper, we used the Bond Energy Algorithm (BEA) to predict functionally related groups of proteins. With BEA we create clusters of phylogenetic profiles based on the associations of the surrounding elements of the analyzed data using a metric that considers linked relationships among elements in the data set. Results Using phylogenetic profiles obtained from the Cluster of Orthologous Groups of Proteins (COG) database, we conducted a series of clustering experiments using BEA to predict (upper level) relationships between profiles. We evaluated our results by comparing with COG's functional categories, And even more, with the experimentally determined functional relationships between proteins provided by the DIP and ECOCYC databases. Our results demonstrate that BEA is capable of predicting meaningful modules of functionally related proteins. BEA outperforms traditionally used clustering methods, such as k-means and hierarchical clustering by predicting functional relationships between proteins with higher accuracy. Conclusion This study shows that the linked relationships of phylogenetic profiles obtained by BEA is useful for detecting functional associations between profiles and extending functional modules not found by traditional methods. BEA is capable of detecting relationship among phylogenetic patterns by linking them through a common element shared in

  2. Transitive closure and metric inequality of weighted graphs: detecting protein interaction modules using cliques.

    PubMed

    Ding, Chris; He, Xiaofeng; Xiong, Hui; Peng, Hanchuan; Holbrook, Stephen R

    2006-01-01

    We study transitivity properties of edge weights in complex networks. We show that enforcing transitivity leads to a transitivity inequality which is equivalent to ultra-metric inequality. This can be used to define transitive closure on weighted undirected graphs, which can be computed using a modified Floyd-Warshall algorithm. These new concepts are extended to dissimilarity graphs and triangle inequalities. From this, we extend the clique concept from unweighted graph to weighted graph. We outline several applications and present results of detecting protein functional modules in a protein interaction network. PMID:18399069

  3. IGF2BP3 modulates the interaction of invasion-associated transcripts with RISC

    PubMed Central

    Ennajdaoui, Hanane; Howard, Jonathan M.; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J.; Uren, Philip J.; Dargyte, Marija; Katzman, Sol; Draper, Jolene M.; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C.; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D.; Toloue, Masoud M.; Blencowe, Benjamin J.; Penalva, Luiz O.F.; Sanford, Jeremy R.

    2016-01-01

    Summary Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy. But its role(s) in pathogenesis remain enigmatic. Here, we interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches we identify 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and miRNA binding sites. IGF2BP3 promotes association of the RNA induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763

  4. IGF2BP3 Modulates the Interaction of Invasion-Associated Transcripts with RISC.

    PubMed

    Ennajdaoui, Hanane; Howard, Jonathan M; Sterne-Weiler, Timothy; Jahanbani, Fereshteh; Coyne, Doyle J; Uren, Philip J; Dargyte, Marija; Katzman, Sol; Draper, Jolene M; Wallace, Andrew; Cazarez, Oscar; Burns, Suzanne C; Qiao, Mei; Hinck, Lindsay; Smith, Andrew D; Toloue, Masoud M; Blencowe, Benjamin J; Penalva, Luiz O F; Sanford, Jeremy R

    2016-05-31

    Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) expression correlates with malignancy, but its role(s) in pathogenesis remains enigmatic. We interrogated the IGF2BP3-RNA interaction network in pancreatic ductal adenocarcinoma (PDAC) cells. Using a combination of genome-wide approaches, we have identified 164 direct mRNA targets of IGF2BP3. These transcripts encode proteins enriched for functions such as cell migration, proliferation, and adhesion. Loss of IGF2BP3 reduced PDAC cell invasiveness and remodeled focal adhesion junctions. Individual nucleotide resolution crosslinking immunoprecipitation (iCLIP) revealed significant overlap of IGF2BP3 and microRNA (miRNA) binding sites. IGF2BP3 promotes association of the RNA-induced silencing complex (RISC) with specific transcripts. Our results show that IGF2BP3 influences a malignancy-associated RNA regulon by modulating miRNA-mRNA interactions. PMID:27210763

  5. Modulation of phosphofructokinase action by macromolecular interactions. Quantitative analysis of the phosphofructokinase-aldolase-calmodulin system.

    PubMed

    Orosz, F; Christova, T Y; Ovádi, J

    1988-11-23

    The simultaneous effect of calmodulin and aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) on the concentration-dependent behaviour of muscle phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) has been analysed by means of a covalently attached fluorescent probe, gel penetration experiments, and using a kinetic approach. We found that calmodulin-induced inactivation of phosphofructokinase is suspended by addition of an equimolar amount of aldolase. This effect was attributed to an apparent competition of calmodulin and aldolase for the dimeric forms of kinase. Moreover, the direct binding of aldolase to calmodulin has also been demonstrated, which resulted in a significant decrease in the kcat value of the enzyme. The quantitative analysis of these interactions in the system phosphofructokinase-calmodulin-aldolase is presented. A possible molecular model for the modulation of phosphofructokinase action by macromolecular interactions is envisaged. PMID:2973356

  6. Interactions between Starch, Lipids, and Proteins in Foods: Microstructure Control for Glycemic Response Modulation.

    PubMed

    Parada, Javier; Santos, Jose L

    2016-10-25

    In real food, starch is usually forming part of a matrix with lipids and proteins. However, research on this ternary system and interactions between such food components has been scarce so far. The control of food microstructure is crucial to determine the product properties, including sensorial and nutritionals ones. This paper reviews the microstructural principles of interactions between starch, lipids, and proteins in foods as well as their effect on postprandial glycemic response, considering human intrinsic differences on postprandial glycemic responses. Several lines of research support the hypothesis that foods without rapidly digestible starch will not mandatorily generate the lowest postprandial glycemic response, highlighting that the full understanding of food microstructure, which modulates starch digestion, plays a key role on food design from a nutritional viewpoint. PMID:25831145

  7. Magnetic properties of cylindrical diameter modulated Ni80Fe20 nanowires: interaction and coercive fields

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed Shaker; Sergelius, Philip; Corona, Rosa M.; Escrig, Juan; Görlitz, Detlef; Nielsch, Kornelius

    2013-04-01

    Magnetic properties of cylindrical Ni80Fe20 nanowires with modulated diameters are investigated theoretically as a function of their geometrical parameters and compared with those produced inside the pores of anodic alumina membranes by pulsed electrodeposition. We observe that the Ni80Fe20 nanowires with modulated diameters reverse their magnetization via the nucleation and propagation of a vortex domain wall. The system begins generating vortex domains in the nanowire ends and in the transition region between the two segments to minimize magnetostatic energy generated by surfaces perpendicular to the initial magnetization of the sample. Besides, we observed an increase of the coercivity for the sample with equal volumes in relation to the sample with equal lengths. Finally, the interaction field is stronger in the case of constant volume segments. These structures could be used to control the motions of magnetic domain walls. In this way, these nanowires with modulated diameters can be an alternative to store information or even perform logic functions.

  8. Modeling the anisotropic electro-optic interaction in hybrid silicon-ferroelectric optical modulator.

    PubMed

    Hu, Xuan; Cueff, Sébastien; Romeo, Pedro Rojo; Orobtchouk, Régis

    2015-01-26

    We present a numerical method to accurately model the electro-optic interaction in anisotropic materials. Specifically, we combine a full-vectorial finite-difference optical mode solver with a radio-frequency solver to analyze the overlap between optical modes and applied electric field. This technique enables a comprehensive understanding on how electro-optic effects modify individual elements in the permittivity tensor of a material. We demonstrate the interest of this approach by designing a modulator that leverages the Pockels effect in a hybrid silicon-BaTiO3 slot waveguide. Optimized optical confinement in the active BaTiO3 layer as well as design of travelling-wave index-matched electrodes is presented. Most importantly, we show that the overall electro-optic modulation is largely governed by off-diagonal elements in the permittivity tensor. As most of active electro-optic materials are anisotropic, this method paves the way to better understand the physics of electro-optic effects and to improve optical modulators. PMID:25835926

  9. Interactive coding of visual spatial frequency and auditory amplitude-modulation rate.

    PubMed

    Guzman-Martinez, Emmanuel; Ortega, Laura; Grabowecky, Marcia; Mossbridge, Julia; Suzuki, Satoru

    2012-03-01

    Spatial frequency is a fundamental visual feature coded in primary visual cortex, relevant for perceiving textures, objects, hierarchical structures, and scenes, as well as for directing attention and eye movements. Temporal amplitude-modulation (AM) rate is a fundamental auditory feature coded in primary auditory cortex, relevant for perceiving auditory objects, scenes, and speech. Spatial frequency and temporal AM rate are thus fundamental building blocks of visual and auditory perception. Recent results suggest that crossmodal interactions are commonplace across the primary sensory cortices and that some of the underlying neural associations develop through consistent multisensory experience such as audio-visually perceiving speech, gender, and objects. We demonstrate that people consistently and absolutely (rather than relatively) match specific auditory AM rates to specific visual spatial frequencies. We further demonstrate that this crossmodal mapping allows amplitude-modulated sounds to guide attention to and modulate awareness of specific visual spatial frequencies. Additional results show that the crossmodal association is approximately linear, based on physical spatial frequency, and generalizes to tactile pulses, suggesting that the association develops through multisensory experience during manual exploration of surfaces. PMID:22326023

  10. Investigating the spatial and temporal modulation of visuotactile interactions in older adults.

    PubMed

    Couth, Samuel; Gowen, Emma; Poliakoff, Ellen

    2016-05-01

    Previous research has shown that spatially and temporally disparate multisensory events are more likely to interact for older adults. For visuotactile interactions, this suggests that the representation of peripersonal space is expanded and temporal perception within this space is less precise. Previously, visuotactile space has been found to expand horizontally into the opposite hemispace, and here we sought to replicate and extend this by exploring both horizontal and vertical space from the hand. Moreover, we investigated whether both spatial and temporal domains are affected for an individual, which have previously been measured using distinct tasks and different participants. We presented a modified cross-modal congruency task (Poole et al. in Multisens Res. doi: 10.1163/22134808-00002475 , 2015a) to thirty older participants (age range 65-85 years), with unisensory tactile performance equated for each individual. For the temporal manipulation, the timings of visual distractors and tactile targets were offset. For the spatial manipulation, visual distractors were presented from multiple positions in ipsilateral and contralateral hemispaces. Whilst the temporal modulation of visuotactile interactions for older adults was equivalent to that observed in young adults, spatial modulation was reduced; significant visuotactile interactions were observed for visual distractors presented in the same and opposite hemispace to the stimulated hand, in the lower visual field. This suggests an expanded representation of visuotactile space surrounding the hand in older adults, which occurs horizontally into the contralateral hemispace only, rather than expanding both vertically and horizontally. This is likely to have consequences for perception of space and goal-directed action in ageing. PMID:26449968

  11. Inositol hexakisphosphate kinase-1 interacts with perilipin1 to modulate lipolysis.

    PubMed

    Ghoshal, Sarbani; Tyagi, Richa; Zhu, Qingzhang; Chakraborty, Anutosh

    2016-09-01

    Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis. PMID:27373682

  12. Investigation of Galactic Cosmic Rays Modulation by the Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Guo, X.; Florinski, V. A.

    2014-12-01

    Corotating interaction regions (CIRs) are produced as a result of the interaction between fast and slowsolar-wind streams, and quite ubiquitous in every region of the heliosphere. Observations shown thatthe stream interfaces of CIRs between fast and slow solar wind streams and the leading edges of CIRsare responsible for the depressions of galactic cosmic rays (GCRs) intensity. Based on the well knownlocal-scale expansion of the ideal MHD conservation law and the developed global MHD model ofCIRs in the heliosphere, we perform the numerical investigation of the transport and turbulence of thesolar wind fluctuation in CIRs. Turbulent energy density and correlation length distribution throughoutthe heliosphere are presented, and further in turn used to compute the mean free path and perpendiculardiffusion coefficient of energetic particles. We attempt to use the plasma background from the globalMHD simulations and the transport coefficients in our existing stochastic cosmic-ray transport code tonumerically solve the Parker transport equation for GCRs. The modulated GCR spectrum from Voyager2 observations near the termination shock was used at the external boundary condition. The computedGCR spectral features and temporal profiles at any given location was directly compared withobservations by spacecraft based cosmic-ray detectors and neutron monitors on the ground, which willgreatly enhance our understanding of the physics of GCR modulation by the CIRs in heliosphere.

  13. Cannabinoid receptor-interacting protein Crip1a modulates CB1 receptor signaling in mouse hippocampus.

    PubMed

    Guggenhuber, Stephan; Alpar, Alan; Chen, Rongqing; Schmitz, Nina; Wickert, Melanie; Mattheus, Tobias; Harasta, Anne E; Purrio, Martin; Kaiser, Nadine; Elphick, Maurice R; Monory, Krisztina; Kilb, Werner; Luhmann, Heiko J; Harkany, Tibor; Lutz, Beat; Klugmann, Matthias

    2016-05-01

    The cannabinoid type 1 receptor (Cnr1, CB1R) mediates a plethora of physiological functions in the central nervous system as a presynaptic modulator of neurotransmitter release. The recently identified cannabinoid receptor-interacting protein 1a (Cnrip1a, CRIP1a) binds to the C-terminal domain of CB1R, a region known to be important for receptor desensitization and internalization. Evidence that CRIP1a and CB1R interact in vivo has been reported, but the neuroanatomical distribution of CRIP1a is unknown. Moreover, while alterations of hippocampal CRIP1a levels following limbic seizures indicate a role in controlling excessive neuronal activity, the physiological function of CRIP1a in vivo has not been investigated. In this study, we analyzed the spatial distribution of CRIP1a in the hippocampus and examined CRIP1a as a potential modulator of CB1R signaling. We found that Cnrip1a mRNA is co-expressed with Cnr1 mRNA in pyramidal neurons and interneurons of the hippocampal formation. CRIP1a protein profiles were largely segregated from CB1R profiles in mossy cell terminals but not in hippocampal CA1 region. CB1R activation induced relocalization to close proximity with CRIP1a. Adeno-associated virus-mediated overexpression of CRIP1a specifically in the hippocampus revealed that CRIP1a modulates CB1R activity by enhancing cannabinoid-induced G protein activation. CRIP1a overexpression extended the depression of excitatory currents by cannabinoids in pyramidal neurons of the hippocampus and diminished the severity of chemically induced acute epileptiform seizures. Collectively, our data indicate that CRIP1a enhances hippocampal CB1R signaling in vivo. PMID:25772509

  14. Behavior modulation of rats to a robotic rat in multi-rat interaction.

    PubMed

    Shi, Qing; Ishii, Hiroyuki; Tanaka, Katsuaki; Sugahara, Yusuke; Takanishi, Atsuo; Okabayashi, Satoshi; Huang, Qiang; Fukuda, Toshio

    2015-10-01

    In this paper, we study the behavioral response of rats to a robotic rat during multi-rat interaction. Experiments are conducted in an open-field where a robotic rat called WR-5 is put together with three laboratory rats. WR-5 is following one rat (target), while avoiding the other two rats (outside observers) during interaction. The behavioral characteristics of each target rat is evaluated by scoring its locomotor activity and frequencies of performing rearing, body grooming and mounting actions. Additionally, the frequency of being mounted by other rats is also measured. Experimental results show that the target becomes more active after interaction. The rat species, with more active behavioral characteristics, is more susceptible to being adjusted by the robot. The increased time spent by the outside observers in the vicinity of the robot indicates that a biomimetic robot has the promise for modulating rat behavior even without direct interaction. Thus, this study provide a novel approach to shaping the sociality of animals living in groups. PMID:26414400

  15. Measuring selective estrogen receptor modulator (SERM)-membrane interactions with second harmonic generation.

    PubMed

    Stokes, Grace Y; Conboy, John C

    2014-01-29

    The interaction of selective estrogen receptor modulators (SERMs) with lipid membranes has been measured at clinically relevant serum concentrations using the label-free technique of second harmonic generation (SHG). The SERMs investigated in this study include raloxifene, tamoxifen, and the tamoxifen metabolites 4-hydroxytamoxifen, N-desmethyltamoxifen, and endoxifen. Equilibrium association constants (Ka) were measured for SERMs using varying lipid compositions to examine how lipid phase, packing density, and cholesterol content impact SERM-membrane interactions. Membrane-binding properties of tamoxifen and its metabolites were compared on the basis of hydroxyl group substitution and amine ionization to elucidate how the degree of drug ionization impacts membrane partitioning. SERM-membrane interactions were probed under multiple pH conditions, and drug adsorption was observed to vary with the concentration of soluble neutral species. The agreement between Ka values derived from SHG measurements of the interactions between SERMs and artificial cell membranes and independent observations of the SERMs efficacy from clinical studies suggests that quantifying membrane adsorption properties may be important for understanding SERM action in vivo. PMID:24410282

  16. Modulation of frontostriatal interaction aligns with reduced primary reward processing under serotonergic drugs.

    PubMed

    Abler, Birgit; Grön, Georg; Hartmann, Antonie; Metzger, Coraline; Walter, Martin

    2012-01-25

    Recently, functional interactions between anteroventral prefrontal cortex and nucleus accumbens (NAcc) have been shown to relate to behavior counteracting reward-desiring (Diekhof and Gruber, 2010). Downregulation of the reward system by serotonin has also been suggested as the mode of action accounting for unsatisfactory effects of serotonin reuptake inhibitors (SSRIs) such as insufficient alleviation or even increase of anhedonia, and loss of interest. However, understanding of the in vivo mechanisms of SSRI-related alteration of the human reward system is still incomplete. Using functional magnetic resonance imaging (fMRI) within a double-blind cross-over within-subjects study design and administering the SSRI paroxetine, the dopamine/norepinephrine reuptake inhibitor bupropione, and placebo for 7 d each, we investigated a group of 18 healthy male subjects. Under paroxetine, subjects showed significantly decreased activation of the bilateral NAcc during processing of primary rewards (erotic videos), but not under bupropion. Similar to the previous study, analysis of psychophysiological interactions revealed that this downregulation relied on negative interactions between left and right NAcc fMRI signals and the bilateral anteroventral prefrontal cortex that now were significantly enhanced under paroxetine and reduced under bupropion. Individual drug-dependent modulations of interacting brain regions were significantly associated with individual expressions of impulsivity as a personality trait. Our results corroborate and extend previous insights on interregional crosstalk from secondary to primary rewards and demonstrate parallels between active inhibitory control of and serotonergic effects on the dopaminergic reward system's activity. PMID:22279217

  17. Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction

    PubMed Central

    Antonelli, Roberta; Pizzarelli, Rocco; Pedroni, Andrea; Fritschy, Jean-Marc; Del Sal, Giannino; Cherubini, Enrico; Zacchi, Paola

    2014-01-01

    The cell adhesion molecule Neuroligin2 (NL2) is localized selectively at GABAergic synapses, where it interacts with the scaffolding protein gephyrin in the post-synaptic density. However, the role of this interaction for formation and plasticity of GABAergic synapses is unclear. Here, we demonstrate that endogenous NL2 undergoes proline-directed phosphorylation at its unique S714-P consensus site, leading to the recruitment of the peptidyl-prolyl cis–trans isomerase Pin1. This signalling cascade negatively regulates NL2’s ability to interact with gephyrin at GABAergic post-synaptic sites. As a consequence, enhanced accumulation of NL2, gephyrin and GABAA receptors was detected at GABAergic synapses in the hippocampus of Pin1-knockout mice (Pin1−/−) associated with an increase in amplitude of spontaneous GABAA-mediated post-synaptic currents. Our results suggest that Pin1-dependent signalling represents a mechanism to modulate GABAergic transmission by regulating NL2/gephyrin interaction. PMID:25297980

  18. The variable C-terminus of cysteine string proteins modulates exocytosis and protein-protein interactions.

    PubMed

    Boal, Frédéric; Zhang, Hui; Tessier, Céline; Scotti, Pier; Lang, Jochen

    2004-12-28

    Cysteine string proteins (Csps) are vesicle proteins involved in neurotransmission and hormone exocytosis. They are composed of distinct domains: a variable N-terminus, a J-domain followed by a linker region, a cysteine-rich string, and a C-terminus which diverges among isoforms. Their precise function and interactions are not fully understood. Using insulin exocytosis as a model, we show that the linker region and the C-terminus, but not the variable N-terminus, regulate overall secretion. Moreover, endogenous Csp1 binds in a calcium-dependent manner to monomeric VAMP2, and this interaction requires the C-terminus of Csp. The interaction is isoform specific as recombinant Csp1 binds VAMP1 and VAMP7, but not VAMP3. Cross-linking in permeabilized clonal beta-cells revealed homodimerization of Csp which is stimulated by Ca(2+) and again modulated by the variant C-terminus. Our data suggest that both interactions of Csp occur during exocytosis and may explain the effect of the variant C-terminus of this chaperon protein on peptide hormone secretion. PMID:15610015

  19. Modulation of the interaction between aldolase and glycerol-phosphate dehydrogenase by fructose phosphates.

    PubMed

    Vértessy, B G; Orosz, F; Ovádi, J

    1991-06-24

    Kinetics of fructose-1,6-disphosphate aldolase (EC 4.1.2.13) catalyzed conversion of fructose phosphates was analyzed by coupling the aldolase reactions to the metabolically sequential enzyme, glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), which interacts with aldolase. At low enzyme concentration poly(ethylene glycol) was added to promote complex formation of aldolase and glycerol-phosphate dehydrogenase resulting in a 3-fold increase in KM of fructose-1,6-bisphosphate and no change in Vmax. Kinetic parameters for fructose-1-phosphate conversion changed inversely upon complex formation: Vmax increased while KM remained unchanged. Gel penetration and ion-exchange chromatographic experiments showed positive modulation of the interaction of aldolase and dehydrogenase by fructose-1,6-bisphosphate. The dissociation constant of the heterologous enzyme complex decreased 10-fold in the presence of this substrate. Fructose-1-phosphate or dihydroxyacetone phosphate had no effect on the dissociation constant of the aldolase-dehydrogenase complex. In addition, titration of fluorescein-labelled glycerol-phosphate dehydrogenase with aldolase indicated that both fructose-1,6-bisphosphate and fructose-2,6-biphosphate enhanced the affinity of aldolase to glycerol-phosphate dehydrogenase. The results of the kinetic and binding experiments suggest that binding of the C-6 phosphate group of fructose-1,6-bisphosphate to aldolase complexed with dehydrogenase is sterically impeded while saturation of the C-6 phosphate group site increases the affinity of aldolase for dehydrogenase. The possible molecular mechanism of the fructose-1,6-bisphosphate modulated interaction is discussed. PMID:2065091

  20. Ghrelin's Orexigenic Effect Is Modulated via a Serotonin 2C Receptor Interaction.

    PubMed

    Schellekens, Harriët; De Francesco, Pablo N; Kandil, Dalia; Theeuwes, Wessel F; McCarthy, Triona; van Oeffelen, Wesley E P A; Perelló, Mario; Giblin, Linda; Dinan, Timothy G; Cryan, John F

    2015-07-15

    Understanding the intricate pathways that modulate appetite and subsequent food intake is of particular importance considering the rise in the incidence of obesity across the globe. The serotonergic system, specifically the 5-HT2C receptor, has been shown to be of critical importance in the regulation of appetite and satiety. The GHS-R1a receptor is another key receptor that is well-known for its role in the homeostatic control of food intake and energy balance. We recently showed compelling evidence for an interaction between the GHS-R1a receptor and the 5-HT2C receptor in an in vitro cell line system heterologously expressing both receptors. Here, we investigated this interaction further. First, we show that the GHS-R1a/5-HT2C dimer-induced attenuation of calcium signaling is not due to coupling to GαS, as no increase in cAMP signaling is observed. Next, flow cytometry fluorescence resonance energy transfer (fcFRET) is used to further demonstrate the direct interaction between the GHS-R1a receptor and 5-HT2C receptor. In addition, we demonstrate colocalized expression of the 5-HT2C and GHS-R1a receptor in cultured primary hypothalamic and hippocampal rat neurons, supporting the biological relevance of a physiological interaction. Furthermore, we demonstrate that when 5-HT2C receptor signaling is blocked ghrelin's orexigenic effect is potentiated in vivo. In contrast, the specific 5-HT2C receptor agonist lorcaserin, recently approved for the treatment of obesity, attenuates ghrelin-induced food intake. This underscores the biological significance of our in vitro findings of 5-HT2C receptor-mediated attenuation of GHS-R1a receptor activity. Together, this study demonstrates, for the first time, that the GHS-R1a/5-HT2C receptor interaction translates into a biologically significant modulation of ghrelin's orexigenic effect. This data highlights the potential development of a combined GHS-R1a and 5-HT2C receptor treatment strategy in weight management. PMID:25727097

  1. Identification of tissue-specific cis-regulatory modules based on interactions between transcription factors

    PubMed Central

    Yu, Xueping; Lin, Jimmy; Zack, Donald J; Qian, Jiang

    2007-01-01

    Background Evolutionary conservation has been used successfully to help identify cis-acting DNA regions that are important in regulating tissue-specific gene expression. Motivated by increasing evidence that some DNA regulatory regions are not evolutionary conserved, we have developed an approach for cis-regulatory region identification that does not rely upon evolutionary sequence conservation. Results The conservation-independent approach is based on an empirical potential energy between interacting transcription factors (TFs). In this analysis, the potential energy is defined as a function of the number of TF interactions in a genomic region and the strength of the interactions. By identifying sets of interacting TFs, the analysis locates regions enriched with the binding sites of these interacting TFs. We applied this approach to 30 human tissues and identified 6232 putative cis-regulatory modules (CRMs) regulating 2130 tissue-specific genes. Interestingly, some genes appear to be regulated by different CRMs in different tissues. Known regulatory regions are highly enriched in our predicted CRMs. In addition, DNase I hypersensitive sites, which tend to be associated with active regulatory regions, significantly overlap with the predicted CRMs, but not with more conserved regions. We also find that conserved and non-conserved CRMs regulate distinct gene groups. Conserved CRMs control more essential genes and genes involved in fundamental cellular activities such as transcription. In contrast, non-conserved CRMs, in general, regulate more non-essential genes, such as genes related to neural activity. Conclusion These results demonstrate that identifying relevant sets of binding motifs can help in the mapping of DNA regulatory regions, and suggest that non-conserved CRMs play an important role in gene regulation. PMID:17996093

  2. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb-drug interactions.

    PubMed

    Wu, Xu; Ma, Jiang; Ye, Yang; Lin, Ge

    2016-07-15

    The increasing use of Chinese herbal medicines (CHMs) as complementary therapy and dietary supplement has been greatly raising the concerns about potential herb-drug interactions (HDIs). HDIs may cause the augmented or antagonized effects of prescription drugs, resulting in unexpected clinical outcomes. Therefore, it is of significance to identify or predict potential HDIs, and to delineate the underlying mechanisms. Drug transporters play key roles in transmembrane passage of a large number of drugs, affecting their absorption, distribution and elimination. Modulation of drug transporters has been recognized as one of the main causes of HDIs. In the last decade, a growing number of Chinese medicinal herbs and their derived phytochemicals have been identified to have modulatory effect toward transporter proteins, leading to pharmacokinetic HDIs when concomitantly used with conventional drugs. Some of these transporter-mediated interactions have already shown clinical significance. This review article focuses on two major transporter superfamilies, the solute carrier (SLC) and the ATP-binding cassette (ABC) transporters, to provide the recent advanced knowledge on CHMs and their inherent phytochemicals that interact with these transporters, and their induced pharmacokinetic HDIs from both preclinical and clinical aspects. In addition, the challenges and strategy for studying HDIs are also discussed. PMID:26675080

  3. A role for direct interactions in the modulation of rhodopsin by -3 polyunsaturated lipids

    NASA Astrophysics Data System (ADS)

    Grossfield, Alan; Feller, Scott E.; Pitman, Michael C.

    2006-03-01

    Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; -3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use molecular dynamics simulations to investigate the possibility that polyunsaturated chains modulate rhodopsin stability and kinetics via specific direct interactions. By analyzing the results of 26 independent 100-ns simulations of dark-adapted rhodopsin, we found that DHA routinely forms tight associations with the protein in a small number of specific locations qualitatively different from the nonspecific interactions made by saturated chains and cholesterol. Furthermore, the presence of tightly packed DHA molecules tends to weaken the interhelical packing. These results are consistent with recent NMR work, which proposes that rhodopsin binds DHA, and they suggest a molecular rationale for DHA's effects on rhodopsin stability and kinetics. cholesterol | molecular dynamics | fatty acid | protein-lipid interactions

  4. Connective-tissue growth factor modulates WNT signalling and interacts with the WNT receptor complex.

    PubMed

    Mercurio, Sara; Latinkic, Branko; Itasaki, Nobue; Krumlauf, Robb; Smith, J C

    2004-05-01

    Connective-tissue growth factor (CTGF) is a member of the CCN family of secreted proteins. CCN family members contain four characteristic domains and exhibit multiple activities: they associate with the extracellular matrix, they can mediate cell adhesion, cell migration and chemotaxis, and they can modulate the activities of peptide growth factors. Many of the effects of CTGF are thought to be mediated by binding to integrins, whereas others may be because of its recently identified ability to interact with BMP4 and TGF beta. We demonstrate, using Xenopus embryos, that CTGF also regulates signalling through the Wnt pathway, in accord with its ability to bind to the Wnt co-receptor LDL receptor-related protein 6 (LRP6). This interaction is likely to occur through the C-terminal (CT) domain of CTGF, which is distinct from the BMP- and TGF beta-interacting domain. Our results define new activities of CTGF and add to the variety of routes through which cells regulate growth factor activity in development, disease and tissue homeostasis. PMID:15105373

  5. Interactive Learning Module Improves Resident Knowledge of Risks of Ionizing Radiation Exposure From Medical Imaging.

    PubMed

    Sheng, Alexander Y; Breaud, Alan H; Schneider, Jeffrey I; Kadom, Nadja; Mitchell, Patricia M; Linden, Judith A

    2016-01-01

    Physician awareness of the risks of ionizing radiation exposure related to medical imaging is poor. Effective educational interventions informing physicians of such risk, especially in emergency medicine (EM), are lacking. The SIEVERT (Suboptimal Ionizing Radiation Exposure Education - A Void in Emergency Medicine Residency Training) learning module was designed to improve provider knowledge of the risks of radiation exposure from medical imaging and comfort in communicating these risks to patients. The 1-hour module consists of introductory lecture, interactive discussion, and role-playing scenarios. In this pilot study, we assessed the educational effect using unmatched, anonymous preintervention and postintervention questionnaires that assessed fund of knowledge, participant self-reported imaging ordering practices in several clinical scenarios, and trainee comfort level in discussing radiation risks with patients. All 25 EM resident participants completed the preintervention questionnaire, and 22 completed the postintervention questionnaire within 4 hours after participation. Correct responses on the 14-question learning assessment increased from 6.32 (standard deviation = 2.36) preintervention to 12.23 (standard deviation = 1.85) post-intervention. Overall, 24% of residents were comfortable with discussing the risks of ionizing radiation exposure with patients preintervention, whereas 41% felt comfortable postintervention. Participants ordered fewer computed tomography scans in 2 of the 4 clinical scenarios after attending the educational intervention. There was improvement in EM residents' knowledge regarding the risks of ionizing radiation exposure from medical imaging, and increased participant self-reported comfort levels in the discussion of these risks with patients after the 1-hour SIEVERT learning module. PMID:26657346

  6. Modulation of Caenorhabditis elegans immune response and modification of Shigella endotoxin upon interaction.

    PubMed

    Kesika, Periyanaina; Prasanth, Mani Iyer; Balamurugan, Krishnaswamy

    2015-04-01

    To analyze the pathogenesis at both physiological and molecular level using the model organism, Caenorhabditis elegans at different developmental stages in response to Shigella spp. and its pathogen associated molecular patterns such as lipopolysaccharide. The solid plate and liquid culture-based infection assays revealed that Shigella spp. infects C. elegans and had an impact on the brood size and pharyngeal pumping rate. LPS of Shigella spp. was toxic to C. elegans. qPCR analysis revealed that host innate immune genes have been modulated upon Shigella spp. infections and its LPS challenges. Non-destructive analysis was performed to kinetically assess the alterations in LPS during interaction of Shigella spp. with C. elegans. The modulation of innate immune genes attributed the surrendering of host immune system to Shigella spp. by favoring the infection. LPS appeared to have a major role in Shigella-mediated pathogenesis and Shigella employs a tactic behavior of modifying its LPS content to escape from the recognition of host immune system. PMID:25384571

  7. Hyperfine interaction mediated electric-dipole spin resonance: The role of the frequency modulation

    NASA Astrophysics Data System (ADS)

    Li, Rui

    The electron spin in semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). There are several mechanisms underlie the EDSR, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron-nucleus hyperfine interaction. Here, we investigate the influence of the frequency modulation (FM) to the driving electric field on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin, the spin-flip probability is only about 20%. While under the FM, the spin-flip probability can be improved approximately to 70%. Especially, we find there is a lower bound on the modulation amplitude, which is related to the width of the hyperfine field fluctuation of the nuclear spins. This work is supported by National Natural Science Foundation of China Grant No. 11404020 and Postdoctoral Science Foundation of China Grant No. 2014M560039.

  8. FOXP3 can modulate TAL1 transcriptional activity through interaction with LMO2.

    PubMed

    Fleskens, V; Mokry, M; van der Leun, A M; Huppelschoten, S; Pals, C E G M; Peeters, J; Coenen, S; Cardoso, B A; Barata, J T; van Loosdregt, J; Coffer, P J

    2016-08-01

    T-cell acute lymphoblastic leukemia (T-ALL) frequently involves aberrant expression of TAL1 (T-cell acute lymphocytic leukemia 1) and LMO2, oncogenic members of the TAL1 transcriptional complex. Transcriptional activity of the TAL1-complex is thought to have a pivotal role in the transformation of thymocytes and is associated with a differentiation block and self-renewal. The transcription factor Forkhead Box P3 (FOXP3) was recently described to be expressed in a variety of malignancies including T-ALL. Here we show that increased FOXP3 levels negatively correlate with expression of genes regulated by the oncogenic TAL1-complex in human T-ALL patient samples as well as a T-ALL cell line ectopically expressing FOXP3. In these cells, FOXP3 expression results in altered regulation of cell cycle progression and reduced cell viability. Finally, we demonstrate that FOXP3 binds LMO2 in vitro, resulting in decreased interaction between LMO2 and TAL1, providing a molecular mechanism for FOXP3-mediated transcriptional modulation in T-ALL. Collectively, our findings provide initial evidence for a novel role of FOXP3 as a tumor suppressor in T-ALL through modulation of TAL1 transcriptional activity. PMID:26686090

  9. Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex.

    PubMed

    Xing, Bo; Li, Yan-Chun; Gao, Wen-Jun

    2016-06-15

    Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26790349

  10. Biopolymer-Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure.

    PubMed

    Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Xia, Wenshui; Xia, Shuqin

    2015-08-19

    This study was conducted to elucidate the conformational dependence of the modulating ability of chitosan, a positively charged biopolymer, on a new type of liposome composed of mixed lipids including egg yolk phosphatidylcholine (EYPC) and nonionic surfactant (Tween 80). Analysis of the dynamic and structure of bilayer membrane upon interaction with chitosan by fluorescence and electron paramagnetic resonance techniques demonstrated that, in addition to providing a physical barrier for the membrane surface, the adsorption of chitosan extended and crimped chains rigidified the lipid membrane. However, the decrease in relative microviscosity and order parameter suggested that the presence of chitosan coils disturbed the membrane organization. It was also noted that the increase of fluidity in the lipid bilayer center was not pronounced, indicating the shallow penetration of coils into the hydrophobic interior of bilayer. Microscopic observations revealed that chitosan adsorption not only affected the morphology of liposomes but also modulated the particle aggregation and fusion. Especially, a number of very heterogeneous particles were visualized, which tended to confirm the role of chitosan coils as a "polymeric surfactant". In addition to particle deformation, the membrane permeability was also tuned. These findings may provide a new perspective to understand the physiological functionality of biopolymer and design biopolymer-liposome composite structures as delivery systems for bioactive components. PMID:26173584

  11. Modulation of nociceptive ion channels and receptors via protein-protein interactions: implications for pain relief

    PubMed Central

    Rouwette, Tom; Avenali, Luca; Sondermann, Julia; Narayanan, Pratibha; Gomez-Varela, David; Schmidt, Manuela

    2015-01-01

    In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles. PMID:26039491

  12. The C terminus of a chloroplast precursor modulates its interaction with the translocation apparatus and PIRAC.

    PubMed

    Dabney-Smith, C; van Den Wijngaard, P W; Treece, Y; Vredenberg, W J; Bruce, B D

    1999-11-01

    The import of proteins into chloroplasts involves a cleavable, N-terminal targeting sequence known as the transit peptide. Although the transit peptide is both necessary and sufficient to direct precursor import into chloroplasts, the mature domain of some precursors has been shown to modulate targeting and translocation efficiency. To test the influence of the mature domain of the small subunit of Rubisco during import in vitro, the precursor (prSSU), the mature domain (mSSU), the transit peptide (SS-tp), and three C-terminal deletion mutants (Delta52, Delta67, and Delta74) of prSSU were expressed and purified from Escherichia coli. Activity was then evaluated by competitive import of (35)S-prSSU. Both IC(50) and K(i) values consistently suggest that removal of C-terminal prSSU sequences inhibits its interaction with the translocation apparatus. Non-competitive import studies demonstrated that prSSU and Delta52 were properly processed and accumulated within the chloroplast, whereas Delta67 and Delta74 were rapidly degraded via a plastid-localized protease. The ability of prSSU-derived proteins to induce inactivation of the protein-import-related anion channel was also evaluated. Although the C-terminal deletion mutants were less effective at inducing channel closure upon import, they did not effect the mean duration of channel closure. Possible mechanisms by which C-terminal residues of prSSU modulate chloroplast targeting are discussed. PMID:10542276

  13. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function.

    PubMed

    Mirambeau, Gilles; Lyonnais, Sébastien; Gorelick, Robert J

    2010-01-01

    Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture. PMID:21045549

  14. Observation of interaction-induced modulations of a quantum Hall liquid's area.

    PubMed

    Sivan, I; Choi, H K; Park, Jinhong; Rosenblatt, A; Gefen, Yuval; Mahalu, D; Umansky, V

    2016-01-01

    Studies of electronic interferometers, based on edge-channel transport in the quantum Hall effect regime, have been stimulated by the search for evidence of abelian and non-abelian anyonic statistics of fractional charges. In particular, the electronic Fabry-Pérot interferometer has been found to be Coulomb dominated, thus masking coherent Aharonov-Bohm interference patterns: the flux trapped within the interferometer remains unchanged as the applied magnetic field is varied, barring unobservable modulations of the interference area. Here we report on conductance measurements indicative of the interferometer's area 'breathing' with the variation of the magnetic field, associated with observable (a fraction of a flux quantum) variations of the trapped flux. This is the result of partial (controlled) screening of Coulomb interactions. Our results introduce a novel experimental tool for probing anyonic statistics. PMID:27396234

  15. Modulated phases and chaotic behavior in a spin-1 Ising model with competing interactions

    NASA Astrophysics Data System (ADS)

    Tomé, Tânia; Salinas, S. R.

    1989-02-01

    We formulate the Blume-Capel spin-1 Ising model, with competing first- and second-neighbor interactions along the branches of a Cayley tree, in the infinite-coordination limit, as a discrete two-dimensional nonlinear mapping problem. The phase diagram displays multicritical points and many modulated phases. Mean-field calculations for the analogous model on a cubic lattice give the same qualitative results. We take advantage of the simplicity of the mapping to show the existence of complete devil's staircases, at low temperatures T, with increasing values of the Hausdorff dimensionality DF with T. We show that there are regions of the phase diagram associated with positive values of the Lyapunov exponents of the mapping, and we give strong numerical evidence to support the existence of a strange attractor with a Lyapunov dimension Dλ>1. We also find a route to chaos, according to the scenario of Feigenbaum, with a reasonable estimate of the exponent δ.

  16. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.

  17. Control-structure interaction study for the Space Station solar dynamic power module

    NASA Technical Reports Server (NTRS)

    Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.

    1991-01-01

    The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.

  18. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    SciTech Connect

    Ferguson, D.C.; Hillard, G.B.

    1994-09-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.S

  19. Modulation of Protein–Protein Interactions for the Development of Novel Therapeutics

    PubMed Central

    Petta, Ioanna; Lievens, Sam; Libert, Claude; Tavernier, Jan; De Bosscher, Karolien

    2016-01-01

    Protein–protein interactions (PPIs) underlie most biological processes. An increasing interest to investigate the unexplored potential of PPIs in drug discovery is driven by the need to find novel therapeutic targets for a whole range of diseases with a high unmet medical need. To date, PPI inhibition with small molecules is the mechanism that has most often been explored, resulting in significant progress towards drug development. However, also PPI stabilization is gradually gaining ground. In this review, we provide a focused overview of a number of PPIs that control critical regulatory pathways and constitute targets for the design of novel therapeutics. We discuss PPI-modulating small molecules that are already pursued in clinical trials. In addition, we review a number of PPIs that are still under preclinical investigation but for which preliminary data support their use as therapeutic targets. PMID:26675501

  20. A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks.

    PubMed

    Zhang, Shihua; Liu, Hong-Wei; Ning, Xue-Mei; Zhang, Xiang-Sun

    2009-01-01

    Modular architecture, which encompasses groups of genes/proteins involved in elementary biological functional units, is a basic form of the organisation of interacting proteins. Here, we propose a method that combines the Line Graph Transformation (LGT) and clique percolation-clustering algorithm to detect network modules, which may overlap each other in large sparse PPI networks. The resulting modules by the present method show a high coverage among yeast, fly, and worm PPI networks, respectively. Our analysis of the yeast PPI network suggests that most of these modules have well-biological significance in context of protein localisation, function annotation, and protein complexes. PMID:19432377

  1. Plume-Free Stream Interaction Heating Effects During Orion Crew Module Reentry

    NASA Technical Reports Server (NTRS)

    Marichalar, J.; Lumpkin, F.; Boyles, K.

    2012-01-01

    During reentry of the Orion Crew Module (CM), vehicle attitude control will be performed by firing reaction control system (RCS) thrusters. Simulation of RCS plumes and their interaction with the oncoming flow has been difficult for the analysis community due to the large scarf angles of the RCS thrusters and the unsteady nature of the Orion capsule backshell environments. The model for the aerothermal database has thus relied on wind tunnel test data to capture the heating effects of thruster plume interactions with the freestream. These data are only valid for the continuum flow regime of the reentry trajectory. A Direct Simulation Monte Carlo (DSMC) analysis was performed to study the vehicle heating effects that result from the RCS thruster plume interaction with the oncoming freestream flow at high altitudes during Orion CM reentry. The study was performed with the DSMC Analysis Code (DAC). The inflow boundary conditions for the jets were obtained from Data Parallel Line Relaxation (DPLR) computational fluid dynamics (CFD) solutions. Simulations were performed for the roll, yaw, pitch-up and pitch-down jets at altitudes of 105 km, 125 km and 160 km as well as vacuum conditions. For comparison purposes (see Figure 1), the freestream conditions were based on previous DAC simulations performed without active RCS to populate the aerodynamic database for the Orion CM. Other inputs to the analysis included a constant Orbital reentry velocity of 7.5 km/s and angle of attack of 160 degrees. The results of the study showed that the interaction effects decrease quickly with increasing altitude. Also, jets with highly scarfed nozzles cause more severe heating compared to the nozzles with lower scarf angles. The difficulty of performing these simulations was based on the maximum number density and the ratio of number densities between the freestream and the plume for each simulation. The lowest altitude solutions required a substantial amount of computational resources

  2. Identification of a Small Molecule That Modulates Platelet Glycoprotein Ib-von Willebrand Factor Interaction*

    PubMed Central

    Broos, Katleen; Trekels, Mieke; Jose, Rani Alphonsa; Demeulemeester, Jonas; Vandenbulcke, Aline; Vandeputte, Nele; Venken, Tom; Egle, Brecht; De Borggraeve, Wim M.; Deckmyn, Hans; De Maeyer, Marc

    2012-01-01

    The von Willebrand factor (VWF) A1-glycoprotein (GP) Ibα interaction is of major importance during thrombosis mainly at sites of high shear stress. Inhibitors of this interaction prevent platelet-dependent thrombus formation in vivo, without major bleeding complications. However, the size and/or protein nature of the inhibitors currently in development limit oral bioavailability and clinical development. We therefore aimed to search for a small molecule protein-protein interaction inhibitor interfering with the VWF-GPIbα binding. After determination of putative small molecule binding pockets on the surface of VWF-A1 and GPIbα using site-finding algorithms and molecular dynamics, high throughput molecular docking was performed on both binding partners. A selection of compounds showing good in silico docking scores into the predicted pockets was retained for testing their in vitro effect on VWF-GPIbα complex formation, by which we identified a compound that surprisingly stimulated the VWF-GPIbα binding in a ristocetin cofactor ELISA and increased platelet adhesion in whole blood to collagen under arterial shear rate but in contrast inhibited ristocetin-induced platelet aggregation. The selected compound adhering to the predicted binding partner GPIbα could be confirmed by saturation transfer difference NMR spectroscopy. We thus clearly identified a small molecule that modulates VWF-GPIbα binding and that will now serve as a starting point for further studies and chemical modifications to fully characterize the interaction and to manipulate specific activity of the compound. PMID:22232560

  3. Time-dependent modulation of galactic cosmic rays by merged interaction regions

    NASA Technical Reports Server (NTRS)

    Perko, J. S.

    1993-01-01

    Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner

  4. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  5. A "do-it-yourself" interactive bone structure module: development and evaluation of an online teaching resource.

    PubMed

    Rich, Peter; Guy, Richard

    2013-01-01

    A stand-alone online teaching module was developed to cover an area of musculoskeletal anatomy (structure of bone) found to be difficult by students. The material presented in the module was not formally presented in any other way, thus providing additional time for other curriculum components, but it was assessed in the final examination. The module was developed using "in-house" software designed for academics with minimal computer experience. The efficacy and effectiveness of the module was gauged via student surveys, testing student knowledge before and after module introduction, and analysis of final examination results. At least 74% of the class used the module and student responses were positive regarding module usability (navigation, interaction) and utility (learning support). Learning effectiveness was demonstrated by large significant improvements in the post-presentation test scores for "users" compared with "non-users" and by the percentage of correct responses to relevant multiple choice questions in the final examination. Performance on relevant short answer questions in the final examination was, on average, comparable to that for other components. Though limited by study structure, it was concluded that the module produced learning outcomes equivalent to those generated by more traditional teaching methods. This "Do-It-Yourself" e-learning approach may be particularly useful for meeting specific course needs not catered for by commercial applications or where there are cost limitations for generation of online learning material. The specific approaches used in the study can assist in development of effective online resources in anatomy. PMID:23027675

  6. Complex interactions between cis-regulatory modules in native conformation are critical for Drosophila snail expression.

    PubMed

    Dunipace, Leslie; Ozdemir, Anil; Stathopoulos, Angelike

    2011-09-01

    It has been shown in several organisms that multiple cis-regulatory modules (CRMs) of a gene locus can be active concurrently to support similar spatiotemporal expression. To understand the functional importance of such seemingly redundant CRMs, we examined two CRMs from the Drosophila snail gene locus, which are both active in the ventral region of pre-gastrulation embryos. By performing a deletion series in a ∼25 kb DNA rescue construct using BAC recombineering and site-directed transgenesis, we demonstrate that the two CRMs are not redundant. The distal CRM is absolutely required for viability, whereas the proximal CRM is required only under extreme conditions such as high temperature. Consistent with their distinct requirements, the CRMs support distinct expression patterns: the proximal CRM exhibits an expanded expression domain relative to endogenous snail, whereas the distal CRM exhibits almost complete overlap with snail except at the anterior-most pole. We further show that the distal CRM normally limits the increased expression domain of the proximal CRM and that the proximal CRM serves as a `damper' for the expression levels driven by the distal CRM. Thus, the two CRMs interact in cis in a non-additive fashion and these interactions may be important for fine-tuning the domains and levels of gene expression. PMID:21813571

  7. Generalized spin-dependent WIMP-nucleus interactions and the DAMA modulation effect

    NASA Astrophysics Data System (ADS)

    Scopel, Stefano; Yoon, Kook-Hyun; Yoon, Jong-Hyun

    2015-07-01

    Guided by non-relativistic Effective Field Theory (EFT) we classify the most general spin-dependent interactions between a fermionic Weakly Interacting Massive Particle (WIMP) and nuclei, and within this class of models we discuss the viability of an interpretation of the DAMA modulation result in terms of a signal from WIMP elastic scatterings using a halo-independent approach. We find that, although several relativistic EFT's can lead to a spin-dependent cross section, in some cases with an explicit, non-negligible dependence on the WIMP incoming velocity, three main scenarios can be singled out in the non-relativistic limit which approximately encompass them all, and that only differ by their dependence on the transferred momentum. For two of them compatibility between DAMA and other constraints is possible for a WIMP mass below 30 GeV, but only for a WIMP velocity distribution in the halo of our Galaxy which departs from a Maxwellian. This is achieved by combining a suppression of the WIMP effective coupling to neutrons (to evade constraints from xenon and germanium detectors) to an explicit quadratic or quartic dependence of the cross section on the transferred momentum (that leads to a relative enhancement of the expected rate off sodium in DAMA compared to that off fluorine in droplet detectors and bubble chambers). For larger WIMP masses the same scenarios are excluded by scatterings off iodine in COUPP.

  8. Modulation of 14-3-3 interaction with phosphorylated histone H3 by combinatorial modification patterns

    PubMed Central

    Winter, Stefan; Fischle, Wolfgang; Seiser, Christian

    2011-01-01

    Post-translational modifications of histones are determining factors in the global and local regulation of genome activity. Phosphorylation of histone H3 is globally associated with mitotic chromatin compaction but occurs in a much more restricted manner during interphase transcriptional regulation of a limited subset of genes. In the course of gene regulation, serine 10 phosphorylation at histone H3 is targeted to a very small fraction of nucleosomes that is highly susceptible to additional acetylation events. Recently, we and others have identified 14-3-3 as a binding protein that recognizes both phosphorylated serine 10 and phosphorylated serine 28 on histone H3. In vitro, the affinity of 14-3-3 for phosphoserine 10 is weak but becomes significantly increased by additional acetylation of either lysine 9 or lysine 14 on the same histone tail. In contrast, the histone H3S28 site matches elements of 14-3-3 high affinity consensus motifs. This region mediates an initial stronger interaction that is less susceptible to modulation by “auxiliary” modifications. Here we discuss the binding of 14-3-3 proteins to histone H3 in detail and putative biological implications of these interactions. PMID:18418070

  9. iPPI-DB: an online database of modulators of protein–protein interactions

    PubMed Central

    Labbé, Céline M.; Kuenemann, Mélaine A.; Zarzycka, Barbara; Vriend, Gert; Nicolaes, Gerry A.F.; Lagorce, David; Miteva, Maria A.; Villoutreix, Bruno O.; Sperandio, Olivier

    2016-01-01

    In order to boost the identification of low-molecular-weight drugs on protein–protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein–protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL. PMID:26432833

  10. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    PubMed

    Grier, Bryce D; Belluscio, Leonardo; Cheetham, Claire E J

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  11. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb

    PubMed Central

    Grier, Bryce D.; Belluscio, Leonardo; Cheetham, Claire E. J.

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  12. Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation

    PubMed Central

    Panigati, Monica; Furini, Antonella

    2011-01-01

    The effects of plant–microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrations were lower in the shoots of plants cultivated in the presence of these metals plus the selected bacterial strains compared with plants grown solely with these metals or, as previously reported, with plants grown with these metals plus the autochthonous rhizosphere-derived microorganisms. The shoot proteome of plants cultivated in the presence of these selected bacterial strains plus metals, showed an increased abundance of photosynthesis- and abiotic stress-related proteins (e.g. subunits of the photosynthetic complexes, Rubisco, superoxide dismutase, and malate dehydrogenase) counteracted by a decreased amount of plant defence-related proteins (e.g. endochitinases, vegetative storage proteins, and β-glucosidase). The transcription of several homeostasis genes was modulated by the microbial communities and by Cd and Zn content in the shoot. Altogether these results highlight the importance of plant-microbe interactions in plant protein expression and metal accumulation and emphasize the possibility of exploiting microbial consortia for increasing or decreasing shoot metal content. PMID:21357773

  13. Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers

    PubMed Central

    Richard, F-J; Aubert, A; Grozinger, CM

    2008-01-01

    Background Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease. Results Here, we demonstrate that activation of the immune system in honey bees (using bacterial lipopolysaccharides as a non-replicative pathogen) alters the social responses of healthy nestmates toward the treated individuals. Furthermore, treated individuals expressed significant differences in overall cuticular hydrocarbon profiles compared with controls. Finally, coating healthy individuals with extracts containing cuticular hydrocarbons of immunostimulated individuals significantly increased the agonistic responses of nestmates. Conclusion Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony. PMID:19014614

  14. A role for direct interactions in the modulation of rhodopsin by ω-3 polyunsaturated lipids

    PubMed Central

    Grossfield, Alan; Feller, Scott E.; Pitman, Michael C.

    2006-01-01

    Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin’s stability and function; ω-3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use molecular dynamics simulations to investigate the possibility that polyunsaturated chains modulate rhodopsin stability and kinetics via specific direct interactions. By analyzing the results of 26 independent 100-ns simulations of dark-adapted rhodopsin, we found that DHA routinely forms tight associations with the protein in a small number of specific locations qualitatively different from the nonspecific interactions made by saturated chains and cholesterol. Furthermore, the presence of tightly packed DHA molecules tends to weaken the interhelical packing. These results are consistent with recent NMR work, which proposes that rhodopsin binds DHA, and they suggest a molecular rationale for DHA’s effects on rhodopsin stability and kinetics. PMID:16547139

  15. Reversibly Switching Bilayer Permeability and Release Modules of Photochromic Polymersomes Stabilized by Cooperative Noncovalent Interactions.

    PubMed

    Wang, Xiaorui; Hu, Jinming; Liu, Guhuan; Tian, Jie; Wang, Huijuan; Gong, Ming; Liu, Shiyong

    2015-12-01

    We report on the fabrication of photochromic polymersomes exhibiting photoswitchable and reversible bilayer permeability from newly designed poly(ethylene oxide)-b-PSPA (PEO-b-PSPA) diblock copolymers, where SPA is spiropyran (SP)-based monomer containing a unique carbamate linkage. Upon self-assembling into polymersomes, SP moieties within vesicle bilayers undergo reversible phototriggered isomerization between hydrophobic spiropyran (SP, λ2 > 450 nm irradiation) and zwitterionic merocyanine (MC, λ1 < 420 nm irradiation) states. For both SP and MC polymersomes, their microstructures are stabilized by multiple cooperative noncovalent interactions including hydrophobic, hydrogen bonding, π-π stacking, and paired electrostatic (zwitterionic) interactions, with the latter two types being exclusive for MC polymersomes. Control experiments using analogous block copolymers of hydrophobic SP monomer with a carbonate linkage (SPO) and conventional spiropyran methacrylate monomer (SPMA) containing a single ester functionality were then conducted, revealing that carbamate-incurred hydrogen bonding interactions in PEO-b-PSPA are crucial for polymersome stabilization in the zwitterionic MC state. Moreover, reversible phototriggered SP-to-MC polymersome transition is accompanied by membrane polarity and permeability switching from being nonimpermeable to selectively permeable toward noncharged, charged, and zwitterionic small molecule species below critical molar masses. Intriguingly, UV-actuated MC polymersomes possess two types of release modules: (1) sustained release upon short UV irradiation duration by taking advantage of the unexpectedly slow spontaneous MC-to-SP transition kinetics (t1/2 > 20 h) under dark conditions; (2) on-demand and switchable release under alternated UV-vis light irradiation. We further demonstrate photoswitchable spatiotemporal release of 4',6-diamidino-2-phenylindole (DAPI, cell nuclei-staining dye) within living HeLa cells. PMID:26583385

  16. Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes.

    PubMed

    Vahdat, Vahid; Grierson, David S; Turner, Kevin T; Carpick, Robert W

    2013-04-23

    Wear is one of the main factors that hinders the performance of probes for atomic force microscopy (AFM), including for the widely used amplitude modulation (AM-AFM) mode. Unfortunately, a comprehensive scientific understanding of nanoscale wear is lacking. We have developed a protocol for conducting consistent and quantitative AM-AFM wear experiments. The protocol involves controlling the tip-sample interaction regime during AM-AFM scanning, determining the tip-sample contact geometry, calculating the peak repulsive force and normal stress over the course of the wear test, and quantifying the wear volume using high-resolution transmission electron microscopy imaging. The peak repulsive tip-sample interaction force is estimated from a closed-form equation accompanied by an effective tip radius measurement procedure, which combines transmission electron microscopy and blind tip reconstruction. The contact stress is estimated by applying Derjaguin-Müller-Toporov contact mechanics model and also numerically solving a general contact mechanics model recently developed for the adhesive contact of arbitrary axisymmetric punch shapes. We discuss the important role that the assumed tip shape geometry plays in calculating both the interaction forces and the contact stresses. Contact stresses are significantly affected by the tip geometry while the peak repulsive force is mainly determined by experimentally controlled parameters, specifically, the free oscillation amplitude and amplitude ratio. The applicability of this protocol is demonstrated experimentally by assessing the performance of diamond-like carbon-coated and silicon-nitride-coated silicon probes scanned over ultrananocrystalline diamond substrates in repulsive mode AM-AFM. There is no sign of fracture or plastic deformation in the case of diamond-like carbon; wear could be characterized as a gradual atom-by-atom process. In contrast, silicon nitride wears through removal of the cluster of atoms and plastic

  17. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages.

    PubMed

    Xuan, Dongying; Han, Qianqian; Tu, Qisheng; Zhang, Lan; Yu, Liming; Murry, Dana; Tu, Tianchi; Tang, Yin; Lian, Jane B; Stein, Gary S; Valverde, Paloma; Zhang, Jincai; Chen, Jake

    2016-05-01

    Emerging evidence suggests an important role for epigenetic mechanisms in modulating signals during macrophage polarization and inflammation. JMJD3, a JmjC family histone demethylase necessary for M2 polarization is also required for effective induction of multiple M1 genes by lipopolysaccharide (LPS). However, the effects of JMJD3 to inflammation in the context of obesity remains unknown. To address this deficiency, we firstly examined the expression of JMJD3 in macrophage isolated from bone marrow and adipose tissue of diet induced obesity (DIO) mice. The results indicated that JMJD3 was down-regulated in obesity. Adiponectin (APN), a factor secreted by adipose tissue which is down-regulated in obesity, functions to switch macrophage polarization from M1 to M2, thereby attenuating chronic inflammation. Intriguingly, our results indicated that APN contributed to JMJD3 up-regulation, reduced macrophage infiltration in obese adipose tissue, and abolished the up-regulation of JMJD3 in peritoneal macrophages isolated from DIO mice when challenged with Porphyromonas gingivalis LPS (pg.lps). To elucidate the interaction of APN and JMJD3 involved in macrophage transformation in the context of inflammation, we designed the loss and gain-function experiments of APN in vivo with APN(-/-) mice with experimental periodontitis and in vitro with macrophage isolated from APN(-/-) mice. For the first time, we found that APN can help to reduce periodontitis-related bone loss, modulate JMJD3 and IRF4 expression, and macrophage infiltration. Therefore, it can be inferred that APN may contribute to anti-inflammation macrophage polarization by regulating JMJD3 expression, which provides a basis for macrophage-centered epigenetic therapeutic strategies. PMID:26399931

  18. Post-transcriptional Modifications Modulate rRNA Structure and Ligand Interactions.

    PubMed

    Jiang, Jun; Seo, Hyosuk; Chow, Christine S

    2016-05-17

    Post-transcriptional modifications play important roles in modulating the functions of RNA species. The presence of modifications in RNA may directly alter its interactions with binding partners or cause structural changes that indirectly affect ligand recognition. Given the rapidly growing list of modifications identified in noncoding and mRNAs associated with human disease, as well as the dynamic control over modifications involved in various physiological processes, it is imperative to understand RNA structural modulation by these modifications. Among the RNA species, rRNAs provide numerous examples of modification types located in differing sequence and structural contexts. In addition, the modified rRNA motifs participate in a wide variety of ligand interactions, including those with RNA, protein, and small molecules. In fact, several classes of antibiotics exert their effects on protein synthesis by binding to functionally important and highly modified regions of the rRNAs. These RNA regions often display conservation in sequence, secondary structure, tertiary interactions, and modifications, trademarks of ideal drug-targeting sites. Furthermore, ligand interactions with such regions often favor certain modification-induced conformational states of the RNA. Our laboratory has employed a combination of biophysical methods such as nuclear magnetic resonance spectroscopy (NMR), circular dichroism, and UV melting to study rRNA modifications in functionally important motifs, including helix 31 (h31) and helix h44 (h44) of the small subunit rRNA and helix 69 (H69) of the large subunit rRNA. The modified RNA oligonucleotides used in these studies were generated by solid-phase synthesis with a variety of phosphoramidite chemistries. The natural modifications were shown to impact thermal stability, dynamic behavior, and tertiary structures of the RNAs, with additive or cooperative effects occurring with multiple, clustered modifications. Taking advantage of the

  19. Integrating Anatomy Training into Radiation Oncology Residency: Considerations for Developing a Multidisciplinary, Interactive Learning Module for Adult Learners

    ERIC Educational Resources Information Center

    Labranche, Leah; Johnson, Marjorie; Palma, David; D'Souza, Leah; Jaswal, Jasbir

    2015-01-01

    Radiation oncologists require an in-depth understanding of anatomical relationships for modern clinical practice, although most do not receive formal anatomy training during residency. To fulfill the need for instruction in relevant anatomy, a series of four multidisciplinary, interactive learning modules were developed for a cohort of radiation…

  20. Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction.

    PubMed

    Lee, Hsu-Tung; Chang, Hao-Teng; Lee, Sophie; Lin, Chen-Huan; Fan, Jia-Rong; Lin, Shinn-Zong; Hsu, Chung Y; Hsieh, Chia-Hung; Shyu, Woei-Cherng

    2016-01-01

    To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)-expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R(+) hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R(+) hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways. PMID:27586516

  1. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming.

    PubMed

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-05-12

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393

  2. Carbon monoxide-releasing molecules modulate leukocyte-endothelial interactions under flow.

    PubMed

    Urquhart, Paula; Rosignoli, Guglielmo; Cooper, Dianne; Motterlini, Roberto; Perretti, Mauro

    2007-05-01

    Carbon monoxide (CO) generated by the enzyme heme oxygenase during the breakdown of heme is known to mediate a number of biological effects. Here, we investigated whether CO liberated from a water-soluble CO-releasing molecule (CO-RM) is capable of modulating leukocyte-endothelial interactions. Tricarbonylchoro(glycinato)ruthenium (II) (CORM-3), a fast CO releaser, proved to be anti-inflammatory in two distinct models of acute inflammation in vivo. In both cases, a significant reduction in neutrophil extravasation was observed. Subsequent in vitro static experiments showed that CORM-3 produced a direct effect on neutrophil (polymorphonuclear neutrophil; PMN) adhesion molecule expression; dose-dependently inhibiting platelet-activating factor stimulated CD11b up-regulation and L-selectin shedding, whereas no effect was observed on up-regulation of human umbilical vein endothelial cell (HUVEC) adhesion molecules intercellular adhesion molecule-1 or E-selectin nor on interleukin-8 chemokine production. In addition, when PMN interaction with HUVECs was studied, an inhibitory effect of CORM-3 on cell capture and rolling was observed. The effect of CORM-3 on PMN CD11b expression was mimicked by the incubation of PMN with the selective large potassium channel opener 1,3-dihydro-1-(2-hydroxy-5-(trifluoromethyl)-phenyl)-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619), which suggests that CORM-3 actions in this instance are mediated, at least in part, via opening of this channel. In conclusion, we have reported that CORM-3 possesses acute anti-inflammatory effects in vivo and that these are probably the result of targeting PMN activation and rolling upon the endothelium. PMID:17289832

  3. Role of IGF1R+ MSCs in modulating neuroplasticity via CXCR4 cross-interaction

    PubMed Central

    Lee, Hsu-Tung; Chang, Hao-Teng; Lee, Sophie; Lin, Chen-Huan; Fan, Jia-Rong; Lin, Shinn-Zong; Hsu, Chung Y.; Hsieh, Chia-Hung; Shyu, Woei-Cherng

    2016-01-01

    To guide the use of human mesenchymal stem cells (MSCs) toward clinical applications, identifying pluripotent-like-markers for selecting MSCs that retain potent self-renewal-ability should be addressed. Here, an insulin-like growth factor 1 receptor (IGF1R)–expressing sub-population in human dental pulp MSCs (hDSCs), displayed multipotent properties. IGF1R expression could be maintained in hDSCs when they were cultured in 2% human cord blood serum (hUCS) in contrast to that in 10% fetal calf serum (FCS). Cytokine array showed that hUCS contained higher amount of several growth factors compared to FCS, including IGF-1 and platelet-derived growth factor (PDGF-BB). These cytokines modulates the signaling events in the hDSCs and potentially enhances engraftment upon transplantation. Specifically, a bidirectional cross-talk between IGF1R/IGF1 and CXCR4/SDF-1α signaling pathways in hDSCs, as revealed by interaction of the two receptors and synergistic activation of both signaling pathways. In rat stroke model, animals receiving IGF1R+ hDSCs transplantation, interaction between IGF1R and CXCR4 was demonstrated to promote neuroplasticity, therefore improving neurological function through increasing glucose metabolic activity, enhancing angiogenesis and anti-inflammatiory effects. Therefore, PDGF in hUCS-culture system contributed to the maintenance of the expression of IGF1R in hDSCs. Furthermore, implantation of IGF1R+ hDSCs exerted enhanced neuroplasticity via integrating inputs from both CXCR4 and IGF1R signaling pathways. PMID:27586516

  4. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming

    PubMed Central

    Tveit, Alexander Tøsdal; Urich, Tim; Frenzel, Peter; Svenning, Mette Marianne

    2015-01-01

    Arctic permafrost soils store large amounts of soil organic carbon (SOC) that could be released into the atmosphere as methane (CH4) in a future warmer climate. How warming affects the complex microbial network decomposing SOC is not understood. We studied CH4 production of Arctic peat soil microbiota in anoxic microcosms over a temperature gradient from 1 to 30 °C, combining metatranscriptomic, metagenomic, and targeted metabolic profiling. The CH4 production rate at 4 °C was 25% of that at 25 °C and increased rapidly with temperature, driven by fast adaptations of microbial community structure, metabolic network of SOC decomposition, and trophic interactions. Below 7 °C, syntrophic propionate oxidation was the rate-limiting step for CH4 production; above this threshold temperature, polysaccharide hydrolysis became rate limiting. This change was associated with a shift within the functional guild for syntrophic propionate oxidation, with Firmicutes being replaced by Bacteroidetes. Correspondingly, there was a shift from the formate- and H2-using Methanobacteriales to Methanomicrobiales and from the acetotrophic Methanosarcinaceae to Methanosaetaceae. Methanogenesis from methylamines, probably stemming from degradation of bacterial cells, became more important with increasing temperature and corresponded with an increased relative abundance of predatory protists of the phylum Cercozoa. We concluded that Arctic peat microbiota responds rapidly to increased temperatures by modulating metabolic and trophic interactions so that CH4 is always highly produced: The microbial community adapts through taxonomic shifts, and cascade effects of substrate availability cause replacement of functional guilds and functional changes within taxa. PMID:25918393

  5. Lipid-mediated Protein-protein Interactions Modulate Respiration-driven ATP Synthesis

    PubMed Central

    Nilsson, Tobias; Lundin, Camilla Rydström; Nordlund, Gustav; Ädelroth, Pia; von Ballmoos, Christoph; Brzezinski, Peter

    2016-01-01

    Energy conversion in biological systems is underpinned by membrane-bound proton transporters that generate and maintain a proton electrochemical gradient across the membrane which used, e.g. for generation of ATP by the ATP synthase. Here, we have co-reconstituted the proton pump cytochrome bo3 (ubiquinol oxidase) together with ATP synthase in liposomes and studied the effect of changing the lipid composition on the ATP synthesis activity driven by proton pumping. We found that for 100 nm liposomes, containing 5 of each proteins, the ATP synthesis rates decreased significantly with increasing fractions of DOPA, DOPE, DOPG or cardiolipin added to liposomes made of DOPC; with e.g. 5% DOPG, we observed an almost 50% decrease in the ATP synthesis rate. However, upon increasing the average distance between the proton pumps and ATP synthases, the ATP synthesis rate dropped and the lipid dependence of this activity vanished. The data indicate that protons are transferred along the membrane, between cytochrome bo3 and the ATP synthase, but only at sufficiently high protein densities. We also argue that the local protein density may be modulated by lipid-dependent changes in interactions between the two proteins complexes, which points to a mechanism by which the cell may regulate the overall activity of the respiratory chain. PMID:27063297

  6. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement.

    PubMed Central

    Gherardi, E; Gray, J; Stoker, M; Perryman, M; Furlong, R

    1989-01-01

    Scatter factor is a fibroblast-derived protein that causes separation of contiguous epithelial cells and increased local mobility of unanchored cells. Highly purified scatter factor has been obtained by a combination of ion-exchange and reverse-phase chromatography from serum-free medium conditioned by a ras-transformed clone (D4) of mouse NIH 3T3 fibroblasts. Under nonreducing conditions scatter factor has a pI of approximately 9.5 and migrates in SDS/polyacrylamide gels as a single band at approximately 62 kDa from which epithelial scatter activity can be recovered. Treatment with reducing agents destroys biological activity and is associated with the appearance of two major bands at approximately 57 and approximately 30 kDa. Whether both the 57-kDa and 30-kDa polypeptides are required for biological activity remains to be established. All the activities observed in crude medium conditioned by cells producing scatter factor are retained by highly purified preparations of scatter factor. These include (i) increased local movement, modulation of morphology, and inhibition of junction formation by single epithelial cells and (ii) disruption of epithelial interactions and cell scattering from preformed epithelial sheets. These changes occur with picomolar concentrations of purified scatter factor and without an effect on cell growth. Images PMID:2527367

  7. Interactive footstep sounds modulate the perceptual-motor aftereffect of treadmill walking.

    PubMed

    Turchet, Luca; Camponogara, Ivan; Cesari, Paola

    2015-01-01

    In this study, we investigated the role of interactive auditory feedback in modulating the inadvertent forward drift experienced while attempting to walk in place with closed eyes following a few minutes of treadmill walking. Simulations of footstep sounds upon surface materials such as concrete and snow were provided by means of a system composed of headphones and shoes augmented with sensors. In a control condition, participants could hear their actual footstep sounds. Results showed an overall enhancement of the forward drift after treadmill walking independent of the sound perceived, while the strength of the aftereffect, measured as the proportional increase (posttest/pretest) in forward drift, was higher under the influence of snow compared to both concrete and actual sound. In addition, a higher knee angle flexion was found during the snow sound condition both before and after treadmill walking. Behavioral results confirmed those of a perceptual questionnaire, which showed that the snow sound was effective in producing strong pseudo-haptic illusions. Our results provide evidence that the walking in place aftereffect results from a recalibration of haptic, visuo-motor but also sound-motor control systems. Self-motion perception is multimodal. PMID:25234404

  8. Fast Quantum Nondemolition Readout by Parametric Modulation of Longitudinal Qubit-Oscillator Interaction

    NASA Astrophysics Data System (ADS)

    Bourassa, Jérôme; Didier, Nicolas; Blais, Alexandre

    For quantum information processing, qubit readout must be fast, of high-fidelity and ideally quantum non-demolition (QND). To rapidly reuse the measured qubit, fast reset of the measurement pointer states is also needed. Combining these characteristics is essential to meet the stringent requirements of fault-tolerant quantum computation. For superconducting qubits, a common strategy is the dispersive readout where the qubit is coupled to an oscillator acting as pointer. In this talk, we present an alternative strategy based on parametric modulation of longitudinal qubit-oscillator interaction. We show that compared to dispersive readout it leads to a faster, high-fidelity and ideally QND qubit readout with a simple reset mechanism. We moreover show how to exponentially improve the signal-to-noise ratio (SNR) of this measurement with the help of single-mode squeezed input state on the oscillator. We present an implementation of this longitudinal parametric readout in circuit quantum electrodynamics along with results using realistic experimental parameters Now at Quantic team, INRIA Paris.

  9. Interactive Scene Analysis Module - A sensor-database fusion system for telerobotic environments

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; Vazquez, Sixto L.; Goode, Plesent W.

    1992-01-01

    Accomplishing a task with telerobotics typically involves a combination of operator control/supervision and a 'script' of preprogrammed commands. These commands usually assume that the location of various objects in the task space conform to some internal representation (database) of that task space. The ability to quickly and accurately verify the task environment against the internal database would improve the robustness of these preprogrammed commands. In addition, the on-line initialization and maintenance of a task space database is difficult for operators using Cartesian coordinates alone. This paper describes the Interactive Scene' Analysis Module (ISAM) developed to provide taskspace database initialization and verification utilizing 3-D graphic overlay modelling, video imaging, and laser radar based range imaging. Through the fusion of taskspace database information and image sensor data, a verifiable taskspace model is generated providing location and orientation data for objects in a task space. This paper also describes applications of the ISAM in the Intelligent Systems Research Laboratory (ISRL) at NASA Langley Research Center, and discusses its performance relative to representation accuracy and operator interface efficiency.

  10. Hippocampal cannabinoid transmission modulates dopamine neuron activity: impact on rewarding memory formation and social interaction.

    PubMed

    Loureiro, Michael; Renard, Justine; Zunder, Jordan; Laviolette, Steven R

    2015-05-01

    Disturbances in cannabinoid type 1 receptor (CB1R) signaling have been linked to emotional and cognitive deficits characterizing neuropsychiatric disorders, including schizophrenia. Thus, there is growing interest in characterizing the relationship between cannabinoid transmission, emotional processing, and dopamine (DA)-dependent behavioral deficits. The CB1R is highly expressed in the mammalian nervous system, particularly in the hippocampus. Activation of the ventral hippocampal subregion (vHipp) is known to increase both the activity of DAergic neurons located in the ventral tegmental area (VTA) and DA levels in reward-related brain regions, particularly the nucleus accumbens (NAc). However, the possible functional relationship between hippocampal CB1R transmission and VTA DA neuronal activity is not currently understood. In this study, using in vivo neuronal recordings in rats, we demonstrate that activation of CB1R in the vHipp strongly increases VTA DA neuronal firing and bursting activity, while simultaneously decreasing the activity of VTA non-DA neurons. Furthermore, using a conditioned place preference procedure and a social interaction test, we report that intra-vHipp CB1R activation potentiates the reward salience of normally sub-threshold conditioning doses of opiates and induces deficits in natural sociability and social recognition behaviors. Finally, these behavioral effects were prevented by directly blocking NAc DAergic transmission. Collectively, these findings identify hippocampal CB1R transmission as a critical modulator of the mesolimbic DA pathway and in the processing of reward and social-related behavioral phenomena. PMID:25510937

  11. Does the Relative Strength of Grouping Principles Modulate the Interactions between them?

    PubMed

    Montoro, Pedro R; Luna, Dolores

    2015-01-01

    This study examines the influence of the relative strength of grouping principles on interactions between the intrinsic principle of proximity and the extrinsic principle of common region in the process of perceptual organization. Cooperation and competition between intrinsic and extrinsic principles were examined by presenting the principle either alone or conjoined with another principle. The relative grouping strength of the principles operating alone was varied in two different groups of participants so that it was similar for one group and very different for the other group. Results showed that, when principles acting alone had different strengths, the grouping effect of the strongest principle was similar to that of the cooperation condition, and the effect of the weakest principle was similar to that of competing conjoined principles. In contrast, when the strength of principles acting alone was similar, the effect of conjoined cooperating principles was greater than that of either principle acting alone. Moreover, the effect of conjoined competing principles was smaller than that of either principle operating alone. Results show that cooperation and competition between intrinsic and extrinsic principles are modulated by the relative grouping strength of principles acting alone. Furthermore, performance in these conditions could be predicted on the basis of performance in single-principle conditions. PMID:26046305

  12. Elevated Ozone Modulates Herbivore-Induced Volatile Emissions of Brassica nigra and Alters a Tritrophic Interaction.

    PubMed

    Khaling, Eliezer; Li, Tao; Holopainen, Jarmo K; Blande, James D

    2016-05-01

    Plants damaged by herbivores emit volatile organic compounds (VOCs) that are used by parasitoids for host location. In nature, however, plants are exposed to multiple abiotic and biotic stresses of varying intensities, which may affect tritrophic interactions. Here, we studied the effects of ozone exposure and feeding by Pieris brassicae larvae on the VOCs emitted by Brassica nigra and the effects on oriented flight of the parasitoid Cotesia glomerata. We also investigated the oriented flight of C. glomerata in a wind-tunnel with elevated ozone levels. Herbivore-feeding induced the emission of several VOCs, while ozone alone had no significant effect. However, exposure to 120 ppb ozone, followed by 24 hr of herbivore-feeding, induced higher emissions of all VOCs as compared to herbivore-feeding alone. In accordance, herbivore-damaged plants elicited more oriented flights than undamaged plants, whereas plants exposed to 120 ppb ozone and 24 hr of herbivore-feeding elicited more oriented flights than plants subjected to herbivore-feeding alone. Ozone enrichment of the wind-tunnel air appeared to negatively affect orientation of parasitoids at 70 ppb, but not at 120 ppb. These results suggest that the combination of ozone and P. brassicae-feeding modulates VOC emissions, which significantly influence foraging efficiency of C. glomerata. PMID:27167383

  13. Program EPICP: Electron photon interaction code, photon test module. Version 94.2

    SciTech Connect

    Cullen, D.E.

    1994-09-01

    The computer code EPICP performs Monte Carlo photon transport calculations in a simple one zone cylindrical detector. Results include deposition within the detector, transmission, reflection and lateral leakage from the detector, as well as events and energy deposition as a function of the depth into the detector. EPICP is part of the EPIC (Electron Photon Interaction Code) system. EPICP is designed to perform both normal transport calculations and diagnostic calculations involving only photons, with the objective of developing optimum algorithms for later use in EPIC. The EPIC system includes other modules that are designed to develop optimum algorithms for later use in EPIC; this includes electron and positron transport (EPICE), neutron transport (EPICN), charged particle transport (EPICC), geometry (EPICG), source sampling (EPICS). This is a modular system that once optimized can be linked together to consider a wide variety of particles, geometries, sources, etc. By design EPICP only considers photon transport. In particular it does not consider electron transport so that later EPICP and EPICE can be used to quantitatively evaluate the importance of electron transport when starting from photon sources. In this report I will merely mention where we expect the results to significantly differ from those obtained considering only photon transport from that obtained using coupled electron-photon transport.

  14. Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery

    PubMed Central

    Merino, Felipe; Bouvier, Benjamin; Cojocaru, Vlad

    2015-01-01

    Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recognition by OCT4 and SOX2, key components of enhanceosomes in pluripotent cells. We found that SOX2 influences the orientation and dynamics of the DNA-bound configuration of OCT4. In addition SOX2 modifies the unbinding free energy profiles of both DNA-binding domains of OCT4, the POU specific and POU homeodomain, despite interacting directly only with the first. Thus, we demonstrate that the OCT4-SOX2 cooperativity is modulated by an interplay between protein-protein interactions and DNA-mediated allostery. Further, we estimated the change in OCT4-DNA binding free energy due to the cooperativity with SOX2, observed a good agreement with experimental measurements, and found that SOX2 affects the relative DNA-binding strength of the two OCT4 domains. Based on these findings, we propose that available interaction partners in different biological contexts modulate the DNA exploration routes of multi-domain transcription factors such as OCT4. We consider the OCT4-SOX2 cooperativity as a paradigm of how specificity of transcriptional regulation is achieved through concerted modulation of protein-DNA recognition by different types of interactions. PMID:26067358

  15. Teaching dental students to interact with survivors of traumatic events: development of a two-day module.

    PubMed

    Raja, Sheela; Rajagopalan, Chelsea F; Kruthoff, Mariela; Kuperschmidt, Alexandra; Chang, Priscilla; Hoersch, Michelle

    2015-01-01

    Dentists are likely to treat patients who have experienced a wide range of traumatic life events, including child abuse and neglect, domestic violence, sexual assault, elder abuse, and exposure to combat. In order to effectively treat survivors of traumatic events, dentists must understand how these patients may present in oral health settings, the basic mandated reporting requirements related to abuse and neglect, and communication strategies to help engage trauma survivors in dental treatment. A traditional lecture-format educational module on trauma-informed care was developed and implemented for second-year dental students (N=92) at one U.S. dental school, after which a needs assessment was performed (all 92 students participated). This assessment then informed development of an enhanced module for the subsequent group of second-year dental students (N=102) at the same school. The revised (final) module was more interactive in nature, expanded to multiple sessions, and included more discussion of mandated reporting and appropriate dentist-patient communication in relation to traumatic events. All 102 students participated in assessments of the revised module. Comparison of pre and post tests and needs assessments between the initial and final modules indicated that the extended, more interactive final module was more effective in meeting the educational objectives. Results showed that the final module increased the students' knowledge in the health-related manifestations of traumatic events and slightly improved their confidence levels in treating survivors of trauma. Dentists who are prepared to deliver trauma-informed care may help individual patients feel more at ease and increase engagement in regular preventive care. Suggestions for future educational efforts in this area are discussed. PMID:25576552

  16. Modulation of natural killer cell functions by interactions between 2B4 and CD48 in cis and in trans

    PubMed Central

    Claus, Maren; Wingert, Sabine

    2016-01-01

    SLAM-related receptors (SRRs) are important modulators of immune cell function. While most SRRs are homophilic, 2B4 (CD244) interacts with CD48, a GPI-anchored protein expressed on many haematopoietic cells. Here we show that natural killer (NK) cell-expressed 2B4 not only binds in trans to CD48 on neighbouring cells but also interacts in cis with CD48 on the same cell. 2B4 uses the same binding site to interact with CD48 in cis and in trans and structural flexibility of 2B4 is necessary for the cis interaction. Furthermore, the cis interaction is sufficient to induce basal phosphorylation of 2B4. However, cis interaction reduces the ability of 2B4 to bind CD48 in trans. As a consequence, stimulation-dependent phosphorylation of 2B4 upon binding to CD48 positive target cells is reduced. Interfering with the cis interaction therefore enhanced the lysis of CD48-expressing tumour cells. These data show that the density of 2B4 and CD48 on both the NK cell and the potential target cell modulates NK cell activity. PMID:27249817

  17. Interactions between endothelial cells and T cells modulate responses to mixed neutron/gamma radiation.

    PubMed

    Cary, Lynnette H; Noutai, Daniel; Salber, Rudolph E; Williams, Margaret S; Ngudiankama, Barbara F; Whitnall, Mark H

    2014-06-01

    Detonation of an improvised nuclear device near a population center would cause significant casualties from the acute radiation syndrome (ARS) due to exposure to mixed neutron/gamma fields (MF). The pathophysiology of ARS involves inflammation, microvascular damage and alterations in immune function. Interactions between endothelial cells (EC) and hematopoietic cells are important not only for regulating immune cell traffic and function, but also for providing the microenvironment that controls survival, differentiation and migration of hematopoietic stem and progenitor cells in blood-forming tissues. Endothelial cells/leukocyte interactions also influence tumor progression and the results of anticancer therapies. In this study, we hypothesized that irradiation of endothelial cells would modulate their effects on hematopoietic cells and vice versa. Human umbilical vein endothelial cells (HUVEC) and immortalized T lymphocytes (Jurkat cells) were cultured individually and in co-culture after exposure to mixed fields. Effects of nonirradiated cells were compared to effects of irradiated cells and alterations in signaling pathways were determined. Mitogen-activated protein kinases (MAPKs) p38 and p44/42 (ERK1/2) in HUVEC exhibited higher levels of phosphorylated protein after exposure to mixed field radiation. IL-6, IL-8, G-CSF, platelet derived growth factor (PDGF) and angiopoietin 2 (ANG2) protein expression were upregulated in HUVEC by exposure to mixed field radiation. PCR arrays using HUVEC mRNA revealed alterations in gene expression after exposure to mixed fields and/or co-culture with Jurkat cells. The presence of HUVEC also influenced the function of Jurkat cells. Nonirradiated Jurkat cells showed an increase in proliferation when co-cultured with nonirradiated HUVEC, and a decrease in proliferation when co-cultured with irradiated HUVEC. Additionally, nonirradiated Jurkat cells incubated in media from irradiated HUVEC exhibited upregulation of activated

  18. Ion-specific modulation of protein interactions: Anion-induced, reversible oligomerization of a fusion protein

    PubMed Central

    Gokarn, Yatin R; Fesinmeyer, R Matthew; Saluja, Atul; Cao, Shawn; Dankberg, Jane; Goetze, Andrew; Remmele, Richard L; Narhi, Linda O; Brems, David N

    2009-01-01

    Ions can significantly modulate the solution interactions of proteins. We aim to demonstrate that the salt-dependent reversible heptamerization of a fusion protein called peptibody A or PbA is governed by anion-specific interactions with key arginyl and lysyl residues on its peptide arms. Peptibody A, an E. coli expressed, basic (pI = 8.8), homodimer (65.2 kDa), consisted of an IgG1-Fc with two, C-terminal peptide arms linked via penta-glycine linkers. Each peptide arm was composed of two, tandem, active sequences (SEYQGLPPQGWK) separated by a spacer (GSGSATGGSGGGASSGSGSATG). PbA was monomeric in 10 mM acetate, pH 5.0 but exhibited reversible self-association upon salt addition. The sedimentation coefficient (sw) and hydrodynamic diameter (DH) versus PbA concentration isotherms in the presence of 140 mM NaCl (A5N) displayed sharp increases in sw and DH, reaching plateau values of 9 s and 16 nm by 10 mg/mL PbA. The DH and sedimentation equilibrium data in the plateau region (>12 mg/mL) indicated the oligomeric ensemble to be monodisperse (PdI = 0.05) with a z-average molecular weight (Mz) of 433 kDa (stoichiometry = 7). There was no evidence of reversible self-association for an IgG1-Fc molecule in A5N by itself or in a mixture containing fluorescently labeled IgG1-Fc and PbA, indicative of PbA self-assembly being mediated through its peptide arms. Self-association increased with pH, NaCl concentration, and anion size (I− > Br− > Cl− > F−) but could be inhibited using soluble Trp-, Phe-, and Leu-amide salts (Trp > Phe > Leu). We propose that in the presence of salt (i) anion binding renders PbA self-association competent by neutralizing the peptidyl arginyl and lysyl amines, (ii) self-association occurs via aromatic and hydrophobic interactions between the..xx..xxx..xx.. motifs, and (iii) at >10 mg/mL, PbA predominantly exists as heptameric clusters. PMID:19177361

  19. Performance of a PET detector module utilizing an array of silicon photodiodes to identify the crystal of interaction

    SciTech Connect

    Moses, W.W.; Derenzo, S.E. ); Nutt, R.; Digby, W.M.; Williams, C.W.; Andreaco, M. )

    1992-11-01

    We present initial performance results for a new multi-layer PET detector module consisting of an array of 3 mm square by 30 mm deep BGO crystals coupled on one end to a single photomultiplier tube and on the opposite end to an array of 3 mm square silicon photodiodes. The photomultiplier tube provides an accurate timing pulse and energy discrimination for the all the crystals in the module, while the silicon photodiodes identify the crystal of interaction. When a single BGO crystal at +25[degree]C is excited with 511 key photons, we measure a photodiode signal centered at 700 electrons (e[sup [minus

  20. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems.

    PubMed

    Edwards, Alexander; Abizaid, Alfonso

    2016-07-01

    Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed. PMID:27136126

  1. Leptospiral LruA is required for virulence and modulates an interaction with mammalian apolipoprotein AI.

    PubMed

    Zhang, Kunkun; Murray, Gerald L; Seemann, Torsten; Srikram, Amporn; Bartpho, Thanatchaporn; Sermswan, Rasana W; Adler, Ben; Hoke, David E

    2013-10-01

    Leptospirosis is a worldwide zoonosis caused by spirochetes of the genus Leptospira. While understanding of pathogenesis remains limited, the development of mutagenesis in Leptospira has provided a powerful tool for identifying novel virulence factors. LruA is a lipoprotein that has been implicated in leptospiral uveitis as a target of the immune response. In this study, two lruA mutants, M754 and M765, generated by transposon mutagenesis from Leptospira interrogans serovar Manilae, were characterized. In M754, the transposon inserted in the middle of lruA, resulting in no detectable expression of LruA. In M765, the transposon inserted toward the 3' end of the gene, resulting in expression of a truncated protein. LruA was demonstrated to be on the cell surface in M765 and the wild type (WT). M754, but not M765, was attenuated in a hamster model of acute infection. A search for differential binding to human serum proteins identified a serum protein of around 30 kDa bound to the wild type and the LruA deletion mutant (M754), but not to the LruA truncation mutant (M765). Two-dimensional separation of proteins from leptospiral cells incubated with guinea pig serum identified the 28-kDa apolipoprotein A-I (ApoA-I) as a major mammalian serum protein that binds Leptospira in vitro. Interestingly, M754 (with no detectable LruA) bound more ApoA-I than did the LruA-expressing strains Manilae wild type and M765. Our data thus identify LruA as a surface-exposed leptospiral virulence factor that contributes to leptospiral pathogenesis, possibly by modulating cellular interactions with serum protein ApoA-I. PMID:23918777

  2. Energy balance modulates colon tumor growth: Interactive roles of insulin and estrogen.

    PubMed

    Rondini, Elizabeth A; Harvey, Alison E; Steibel, Juan P; Hursting, Stephen D; Fenton, Jenifer I

    2011-05-01

    Obesity increases colorectal cancer (CRC) risk and progression. However, the impact of obesity on CRC in women is dependent on ovarian hormone status. The purpose of this study was to determine the interactive roles of obesity and ovarian hormones on serum markers of inflammation, cell signaling, and transplanted colon tumor growth. Female C57BL/6 mice (6 wk) were either ovariectomized (OVX) or ovaries left intact (nonovariectomized, NOVX) and randomized to receive a (1) control, (2) 30% calorie-restricted (CR), or (3) diet-induced obese (DIO) diet regimen for 20 wk to induce differing levels of adiposity. Serum was collected and inflammatory and metabolic markers were measured using an antibody array (62 proteins) and ELISAs. Mice were subcutaneously injected with syngeneic MC38 colon cancer cells after 20 wk and sacrificed 4 wk later. CR mice had the smallest tumors irrespective of hormone status, whereas the largest tumors were observed in DIO-OVX mice. Glucose tolerance was impaired in OVX mice, being most severe in the DIO-OVX group. Cytokine arrays suggested that in CR animals, inhibition of tumor growth paralleled insulin sensitivity and associated changes in leptin, adiponectin, and IGF-BPs. Conversely, in DIO-OVX animals, tumor growth was associated with insulin and leptin resistance as well as higher levels of pro-inflammatory proteins. In vitro, leptin and adiponectin had no effect, whereas insulin induced MC38 cell proliferation and MAPK activation. Co-treatment with estrogen blocked the stimulatory effects of insulin. Thus, our in vitro and in vivo data indicate female reproductive hormones have a modulating effect on obesity-induced insulin resistance and inflammation, which may directly or indirectly influence CRC progression. PMID:21480390

  3. Facile modulation of optical properties of octagold clusters through the control of ligand-mediated interactions.

    PubMed

    Iwasaki, Mitsuhiro; Kobayashi, Naoki; Shichibu, Yukatsu; Konishi, Katsuaki

    2016-07-28

    In the recent development of structurally defined ligand-stabilized gold clusters, it has been revealed that not only the inorganic units but also the surrounding organic ligands substantially affect their electronic/optical properties. In this work, a series of core + exo type Au8 clusters decorated by dppp (Ph2P(CH2)3PPh2) and arylthiolate ligands ([Au8(dppp)4(SR)2](2+), 1-5) were synthesized, and their optical properties were studied in order to gain insights into the perturbation effects of the organic ligands. 1-5 showed visible absorption and photoluminescence emission bands at longer wavelengths compared to their chloro- and acetylide-modified analogues, suggesting the contribution of weak non-bonding interactions of the Au framework with the ligand heteroatoms. Upon acid treatment, 2- and 4-pyridinethiolate clusters (R = Py, 2 and 4) showed larger red shifts of the absorption and emission bands than the 3-pyridyl isomer (3), implying the involvement of the resonance structures of the SPy units. On the other hand, all regioisomers (2-4) showed large photoluminescence enhancements upon pyridine protonation. X-ray crystallographic and NMR analyses of 4 and its protonated form (4') showed that the electron-deficient pyridinium rings of 4' form π-stacks with neighbouring phenyl groups of dppp, suggesting that the orientation of the surface aromatics is a plausible factor governing the emission efficiency. These observations provide examples of successful modulation of optical properties of small gold clusters through the electronic and/or steric perturbation by the proximal organic ligands, highlighting the importance of the ligand design in the fine tuning of cluster properties directed for optical chemosensors and luminescent materials. PMID:27378218

  4. Oxygen Modulates Human Decidual Natural Killer Cell Surface Receptor Expression and Interactions with Trophoblasts1

    PubMed Central

    Wallace, Alison E.; Goulwara, Sonu S.; Whitley, Guy S.; Cartwright, Judith E.

    2014-01-01

    Decidual natural killer (dNK) cells have been shown to both promote and inhibit trophoblast behavior important for decidual remodeling in pregnancy and have a distinct phenotype compared to peripheral blood NK cells. We investigated whether different levels of oxygen tension, mimicking the physiological conditions of the decidua in early pregnancy, altered cell surface receptor expression and activity of dNK cells and their interactions with trophoblast. dNK cells were isolated from terminated first-trimester pregnancies and cultured in oxygen tensions of 3%, 10%, and 21% for 24 h. Cell surface receptor expression was examined by flow cytometry, and the effects of secreted factors in conditioned medium (CM) on the trophoblast cell line SGHPL-4 were assessed in vitro. SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 10% were significantly more invasive (P < 0.05) and formed endothelial-like networks to a greater extent (P < 0.05) than SGHPL-4 cells treated with dNK cell CM incubated in oxygen tensions of 3% or 21%. After 24 h, a lower percentage of dNK cells expressed CD56 at 21% oxygen (P < 0.05), and an increased percentage of dNK cells expressed NKG2D at 10% oxygen (P < 0.05) compared to other oxygen tensions, with large patient variation. This study demonstrates dNK cell phenotype and secreted factors are modulated by oxygen tension, which induces changes in trophoblast invasion and endovascular-like differentiation. Alterations in dNK cell surface receptor expression and secreted factors at different oxygen tensions may represent regulation of function within the decidua during the first trimester of pregnancy. PMID:25232021

  5. Epithelial Cell Adhesion Molecule (Ep-CAM) Modulates Cell–Cell Interactions Mediated by Classic Cadherins

    PubMed Central

    Litvinov, Sergey V.; Balzar, Maarten; Winter, Manon J.; Bakker, Hellen A.M.; Bruijn, Inge H. Briaire-de; Prins, Frans; Fleuren, Gert Jan; Warnaar, Sven O.

    1997-01-01

    The contribution of noncadherin-type, Ca2+-independent cell–cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM–positive transfectants behave like cells with a decreased strength of cell–cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM–cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of α- and β-catenins decreased in cells overexpressing Ep-CAM. While the total β-catenin content remains unchanged, a reduction in total cellular α-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell–cell adhesions diminish, Ep-CAM–mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell–cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell–cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in

  6. Epithelial cell adhesion molecule (Ep-CAM) modulates cell-cell interactions mediated by classic cadherins.

    PubMed

    Litvinov, S V; Balzar, M; Winter, M J; Bakker, H A; Briaire-de Bruijn, I H; Prins, F; Fleuren, G J; Warnaar, S O

    1997-12-01

    The contribution of noncadherin-type, Ca2+-independent cell-cell adhesion molecules to the organization of epithelial tissues is, as yet, unclear. A homophilic, epithelial Ca2+-independent adhesion molecule (Ep-CAM) is expressed in most epithelia, benign or malignant proliferative lesions, or during embryogenesis. Here we demonstrate that ectopic Ep-CAM, when expressed in cells interconnected by classic cadherins (E- or N-cadherin), induces segregation of the transfectants from the parental cell type in coaggregation assays and in cultured mixed aggregates, respectively. In the latter assay, Ep-CAM-positive transfectants behave like cells with a decreased strength of cell-cell adhesion as compared to the parental cells. Using transfectants with an inducible Ep-CAM-cDNA construct, we demonstrate that increasing expression of Ep-CAM in cadherin-positive cells leads to the gradual abrogation of adherens junctions. Overexpression of Ep-CAM has no influence on the total amount of cellular cadherin, but affects the interaction of cadherins with the cytoskeleton since a substantial decrease in the detergent-insoluble fraction of cadherin molecules was observed. Similarly, the detergent-insoluble fractions of alpha- and beta-catenins decreased in cells overexpressing Ep-CAM. While the total beta-catenin content remains unchanged, a reduction in total cellular alpha-catenin is observed as Ep-CAM expression increases. As the cadherin-mediated cell-cell adhesions diminish, Ep-CAM-mediated intercellular connections become predominant. An adhesion-defective mutant of Ep-CAM lacking the cytoplasmic domain has no effect on the cadherin-mediated cell-cell adhesions. The ability of Ep-CAM to modulate the cadherin-mediated cell-cell interactions, as demonstrated in the present study, suggests a role for this molecule in development of the proliferative, and probably malignant, phenotype of epithelial cells, since an increase of Ep-CAM expression was observed in vivo in association

  7. Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse β3-Adrenoceptor*

    PubMed Central

    Sato, Masaaki; Hutchinson, Dana S.; Halls, Michelle L.; Furness, Sebastian G. B.; Bengtsson, Tore; Evans, Bronwyn A.; Summers, Roger J.

    2012-01-01

    Caveolins act as scaffold proteins in multiprotein complexes and have been implicated in signaling by G protein-coupled receptors. Studies using knock-out mice suggest that β3-adrenoceptor (β3-AR) signaling is dependent on caveolin-1; however, it is not known whether caveolin-1 is associated with the β3-AR or solely with downstream signaling proteins. We have addressed this question by examining the impact of membrane rafts and caveolin-1 on the differential signaling of mouse β3a- and β3b-AR isoforms that diverge at the distal C terminus. Only the β3b-AR promotes pertussis toxin (PTX)-sensitive cAMP accumulation. When cells expressing the β3a-AR were treated with filipin III to disrupt membrane rafts or transfected with caveolin-1 siRNA, the cyclic AMP response to the β3-AR agonist CL316243 became PTX-sensitive, suggesting Gαi/o coupling. The β3a-AR C terminus, SP384PLNRF389DGY392EGARPF398PT, resembles a caveolin interaction motif. Mutant β3a-ARs (F389A/Y392A/F398A or P384S/F389A) promoted PTX-sensitive cAMP responses, and in situ proximity assays demonstrated an association between caveolin-1 and the wild type β3a-AR but not the mutant receptors. In membrane preparations, the β3b-AR activated Gαo and mediated PTX-sensitive cAMP responses, whereas the β3a-AR did not activate Gαi/o proteins. The endogenous β3a-AR displayed Gαi/o coupling in brown adipocytes from caveolin-1 knock-out mice or in wild type adipocytes treated with filipin III. Our studies indicate that interaction of the β3a-AR with caveolin inhibits coupling to Gαi/o proteins and suggest that signaling is modulated by a raft-enriched complex containing the β3a-AR, caveolin-1, Gαs, and adenylyl cyclase. PMID:22535965

  8. Theory-Based Interactive Mathematics Instruction: Development and Validation of Computer-Video Modules.

    ERIC Educational Resources Information Center

    Henderson, Ronald W.; And Others

    Theory-based prototype computer-video instructional modules were developed to serve as an instructional supplement for students experiencing difficulty in learning mathematics, with special consideration given to students underrepresented in mathematics (particularly women and minorities). Modules focused on concepts and operations for factors,…

  9. Bio::Homology::InterologWalk - A Perl module to build putative protein-protein interaction networks through interolog mapping

    PubMed Central

    2011-01-01

    Background Protein-protein interaction (PPI) data are widely used to generate network models that aim to describe the relationships between proteins in biological systems. The fidelity and completeness of such networks is primarily limited by the paucity of protein interaction information and by the restriction of most of these data to just a few widely studied experimental organisms. In order to extend the utility of existing PPIs, computational methods can be used that exploit functional conservation between orthologous proteins across taxa to predict putative PPIs or 'interologs'. To date most interolog prediction efforts have been restricted to specific biological domains with fixed underlying data sources and there are no software tools available that provide a generalised framework for 'on-the-fly' interolog prediction. Results We introduce Bio::Homology::InterologWalk, a Perl module to retrieve, prioritise and visualise putative protein-protein interactions through an orthology-walk method. The module uses orthology and experimental interaction data to generate putative PPIs and optionally collates meta-data into an Interaction Prioritisation Index that can be used to help prioritise interologs for further analysis. We show the application of our interolog prediction method to the genomic interactome of the fruit fly, Drosophila melanogaster. We analyse the resulting interaction networks and show that the method proposes new interactome members and interactions that are candidates for future experimental investigation. Conclusions Our interolog prediction tool employs the Ensembl Perl API and PSICQUIC enabled protein interaction data sources to generate up to date interologs 'on-the-fly'. This represents a significant advance on previous methods for interolog prediction as it allows the use of the latest orthology and protein interaction data for all of the genomes in Ensembl. The module outputs simple text files, making it easy to customise the results by

  10. Vinexin β Interacts with Hepatitis C Virus NS5A, Modulating Its Hyperphosphorylation To Regulate Viral Propagation

    PubMed Central

    Xiong, Wei; Yang, Jie; Wang, Mingzhen; Wang, Hailong; Rao, Zhipeng; Zhong, Cheng; Xin, Xiu; Mo, Lin; Yu, Shujuan

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is essential for HCV genome replication and virion production and is involved in the regulation of multiple host signaling pathways. As a proline-rich protein, NS5A is capable of interacting with various host proteins containing Src homology 3 (SH3) domains. Previous studies have suggested that vinexin, a member of the sorbin homology (SoHo) adaptor family, might be a potential binding partner of NS5A by yeast two-hybrid screening. However, firm evidence for this interaction is lacking, and the significance of vinexin in the HCV life cycle remains unclear. In this study, we demonstrated that endogenously and exogenously expressed vinexin β coimmunoprecipitated with NS5A derived from different HCV genotypes. Two residues, tryptophan (W307) and tyrosine (Y325), in the third SH3 domain of vinexin β and conserved Pro-X-X-Pro-X-Arg motifs at the C terminus of NS5A were indispensable for the vinexin-NS5A interaction. Furthermore, downregulation of endogenous vinexin β significantly suppressed NS5A hyperphosphorylation and decreased HCV replication, which could be rescued by expressing a vinexin β short hairpin RNA-resistant mutant. We also found that vinexin β modulated the hyperphosphorylation of NS5A in a casein kinase 1α-dependent on manner. Taken together, our findings suggest that vinexin β modulates NS5A phosphorylation via its interaction with NS5A, thereby regulating HCV replication, implicating vinexin β in the viral life cycle. IMPORTANCE Hepatitis C virus (HCV) nonstructural protein NS5A is a phosphoprotein, and its phosphorylation states are usually modulated by host kinases and other viral nonstructural elements. Additionally, cellular factors containing Src homology 3 (SH3) domains have been reported to interact with proline-rich regions of NS5A. However, it is unclear whether there are any relationships between NS5A phosphorylation and the NS5A-SH3 interaction, and little is known

  11. Modulation instability of ion acoustic waves, solitons, and their interactions in nonthermal electron-positron-ion plasmas

    SciTech Connect

    Zhang Jiefang; Wang Yueyue; Wu Lei

    2009-06-15

    The propagation of ion acoustic waves in plasmas composed of ions, positrons, and nonthermally distributed electrons is investigated. By means of the reduction perturbation technique, a nonlinear Schroedinger equation is derived and the modulation instability of ion acoustic wave is analyzed, where the nonthermal parameter is found to be of significant importance. Furthermore, analytical expressions for the bright and dark solitons are obtained, and the interaction of multiple solitons is discussed.

  12. Corticospinal interaction during isometric compensation for modulated forces with different frequencies

    PubMed Central

    2010-01-01

    Background During isometric compensation of modulated low-level forces corticomuscular coherence (CMC) has been shown to occur in high-beta or gamma-range. The influence of the frequency of force modulation on CMC has up to now remained unexplored. We addressed this question by investigating CMC, motor performance, and cortical spectral power during a visuomotor task in which subjects had to compensate a modulated force of 8% of the maximum voluntary contraction exerted on their right index finger. The effect of three frequencies of force modulation (0.6, 1.0 and 1.6 Hz) was tested. EEG, EMG from first dorsal interosseus, hand flexor and extensor muscles, and finger position were recorded in eight right-handed women. Results Five subjects showed CMC in gamma- (28-45 Hz) and three in beta-range (15-30 Hz). Beta- and gamma-range CMC and cortical motor spectral power were not modulated by the various frequencies. However, a sharp bilateral CMC peak at 1.6 Hz was observed, but only in the five gamma-range CMC subjects. The performance error increased linearly with the frequency. Conclusions Our findings suggest that the frequency of force modulation has no effect on the beta- and gamma-range CMC during isometric compensation for modulated forces at 8% MVC. The beta- and gamma-range CMC may be related to interindividual differences and possibly to strategy differences. PMID:21194447

  13. Modulating non-native aggregation and electrostatic protein-protein interactions with computationally designed single-point mutations.

    PubMed

    O'Brien, C J; Blanco, M A; Costanzo, J A; Enterline, M; Fernandez, E J; Robinson, A S; Roberts, C J

    2016-06-01

    Non-native protein aggregation is a ubiquitous challenge in the production, storage and administration of protein-based biotherapeutics. This study focuses on altering electrostatic protein-protein interactions as a strategy to modulate aggregation propensity in terms of temperature-dependent aggregation rates, using single-charge variants of human γ-D crystallin. Molecular models were combined to predict amino acid substitutions that would modulate protein-protein interactions with minimal effects on conformational stability. Experimental protein-protein interactions were quantified by the Kirkwood-Buff integrals (G22) from laser scattering, and G22 showed semi-quantitative agreement with model predictions. Experimental initial-rates for aggregation showed that increased (decreased) repulsive interactions led to significantly increased (decreased) aggregation resistance, even based solely on single-point mutations. However, in the case of a particular amino acid (E17), the aggregation mechanism was altered by substitution with R or K, and this greatly mitigated improvements in aggregation resistance. The results illustrate that predictions based on native protein-protein interactions can provide a useful design target for engineering aggregation resistance; however, this approach needs to be balanced with consideration of how mutations can impact aggregation mechanisms. PMID:27160179

  14. Drug-Like Protein–Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology

    PubMed Central

    Villoutreix, Bruno O; Kuenemann, Melaine A; Poyet, Jean-Luc; Bruzzoni-Giovanelli, Heriberto; Labbé, Céline; Lagorce, David; Sperandio, Olivier; Miteva, Maria A

    2014-01-01

    Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein–protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow. However, this last decade, the scientific community has challenged the dogma and became more enthusiastic about the modulation of PPIs with small drug-like molecules. In fact, several success stories were reported both, at the preclinical and clinical stages. In this review article, written for the 2014 International Summer School in Chemoinformatics (Strasbourg, France), we discuss in silico tools (essentially post 2012) and databases that can assist the design of low molecular weight PPI modulators (these tools can be found at www.vls3d.com). We first introduce the field of protein–protein interaction research, discuss key challenges and comment recently reported in silico packages, protocols and databases dedicated to PPIs. Then, we illustrate how in silico methods can be used and combined with experimental work to identify PPI modulators. PMID:25254076

  15. Interactive E-learning module in pharmacology: a pilot project at a rural medical college in India.

    PubMed

    Gaikwad, Nitin; Tankhiwale, Suresh

    2014-01-01

    Many medical educators are experimenting with innovative ways of E-learning. E-learning provides opportunities to students for self-directed learning in addition to other advantages. In this study, we designed and evaluated an interactive E-learning module in pharmacology for effectiveness, acceptability and feasibility, with the aim of promoting active learning in this fact-filled subject. A quasi-experimental single-group pre-test/post-test study was conducted with fourth-semester students of the second professionals course (II MBBS), selected using non-probability convenience sampling method. An E-learning module in endocrine pharmacology was designed to comprise three units of interactive PowerPoint presentations. The pre-validated presentations were uploaded on the website according to a predefined schedule and the 42 registered students were encouraged to self-learning using these interactive presentations. Cognitive gain was assessed using an online pre- and post-test for each unit. Students' perceptions were recorded using an online feedback questionnaire on a 5-point Likert scale. Finally, focused group discussion was conducted to further explore students' views on E-learning activity. Significant attrition was observed during the E-learning activity. Of the 42 registered students, only 16 students completed the entire E-learning module. The summed average score of all three units (entire module) was increased significantly from 38.42 % (summed average pre-test score: 11.56/30 ± 2.90) to 66.46 % (summed average post-test score: 19.94/30 ± 6.13). The class-average normalized gain for the entire module was 0.4542 (45.42). The students accepted this E-learning activity well as they perceived it to be innovative, convenient, flexible and useful. The average rating was between 4 (agree) and 5 (strongly agree). The interactive E-learning module in pharmacology was moderately effective and well perceived by the students. The simple, cost-effective and

  16. Observation of relativistic cross-phase modulation in high-intensity laser-plasma interactions.

    PubMed

    Chen, S; Rever, M; Zhang, P; Theobald, W; Umstadter, D

    2006-10-01

    A nonlinear optical phenomenon, relativistic cross-phase modulation, is reported. A relativistically intense light beam (I = 1.3 x 10(18) W cm(-2), lambda = 1.05 microm) is experimentally observed to cause phase modulation of a lower intensity, copropagating light beam in a plasma. The latter beam is generated when the former undergoes the stimulated Raman forward scattering instability. The bandwidth of the Raman satellite is found to be broadened from 3.8-100 nm when the pump laser power is increased from 0.45-2.4 TW. A signature of relativistic cross-phase modulation, namely, asymmetric spectral broadening of the Raman signal, is observed at a pump power of 2.4 TW. The experimental cross-phase modulated spectra compared well with theoretical calculations. Applications to generation of high-power single-cycle pulses are also discussed. PMID:17155181

  17. Planetfinder: An Online Interactive Module for Learning How Astronomers Detect Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    McCray, Richard

    Planetfinder is a Web-based module designed to enable undergraduates to learn how astronomers detect extrasolar planets through observations of the Doppler shifts of a star's spectral lines. The module guides students through the process of measuring the masses and orbital parameters of actual extrasolar planets by fitting model Doppler curves to the data. The main goal of the exercise is to give students an understanding of the process of scientific measurement and model fitting. The exercise can be done at various levels of difficulty, ranging from measuring the properties of planetary systems having nearly circular orbits without using algebra, to exploring properties of systems having eccentric orbits and the associated equations of motion. The module is self-checking. Student work is stored in a database that is easily accessible by the instructor. The module has been tested at several institutions and is available for public use.

  18. A systems biology approach using metabolomic data reveals genes and pathways interacting to modulate divergent growth in cattle

    PubMed Central

    2013-01-01

    Background Systems biology enables the identification of gene networks that modulate complex traits. Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting differential body weight. Results Our study successfully established gene networks and interacting partners affecting growth at the onset of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning the functional role of NCAPG in divergent growth. Conclusions Merging both concepts, systems biology and metabolomic analyses, successfully yielded new insights into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition, the benefit of our innovative concept without prior

  19. A Comparison of Two Objective Measures of Binaural Processing: The Interaural Phase Modulation Following Response and the Binaural Interaction Component.

    PubMed

    Haywood, Nicholas R; Undurraga, Jaime A; Marquardt, Torsten; McAlpine, David

    2015-01-01

    There has been continued interest in clinical objective measures of binaural processing. One commonly proposed measure is the binaural interaction component (BIC), which is obtained typically by recording auditory brainstem responses (ABRs)-the BIC reflects the difference between the binaural ABR and the sum of the monaural ABRs (i.e., binaural - (left + right)). We have recently developed an alternative, direct measure of sensitivity to interaural time differences, namely, a following response to modulations in interaural phase difference (the interaural phase modulation following response; IPM-FR). To obtain this measure, an ongoing diotically amplitude-modulated signal is presented, and the interaural phase difference of the carrier is switched periodically at minima in the modulation cycle. Such periodic modulations to interaural phase difference can evoke a steady state following response. BIC and IPM-FR measurements were compared from 10 normal-hearing subjects using a 16-channel electroencephalographic system. Both ABRs and IPM-FRs were observed most clearly from similar electrode locations-differential recordings taken from electrodes near the ear (e.g., mastoid) in reference to a vertex electrode (Cz). Although all subjects displayed clear ABRs, the BIC was not reliably observed. In contrast, the IPM-FR typically elicited a robust and significant response. In addition, the IPM-FR measure required a considerably shorter recording session. As the IPM-FR magnitude varied with interaural phase difference modulation depth, it could potentially serve as a correlate of perceptual salience. Overall, the IPM-FR appears a more suitable clinical measure than the BIC. PMID:26721925

  20. Screening for Small-Molecule Modulators of Long Noncoding RNA-Protein Interactions Using AlphaScreen

    PubMed Central

    Pedram Fatemi, Roya; Salah-Uddin, Sultan; Modarresi, Farzaneh; Khoury, Nathalie; Wahlestedt, Claes

    2015-01-01

    Long non–protein coding RNAs (lncRNAs) are an important class of molecules that help orchestrate key cellular events. Although their functional roles in cells are not well understood, thousands of lncRNAs and a number of possible mechanisms by which they act have been reported. LncRNAs can exert their regulatory function in cells by interacting with epigenetic enzymes. In this study, we developed a tool to study lncRNA-protein interactions for high-throughput screening of small-molecule modulators using AlphaScreen technology. We tested the interaction of two lncRNAs: brain-derived neurotrophic factor antisense (BDNF-AS) and Hox transcript antisense RNA (HOTAIR), with Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase against a phytochemical library, to look for small-molecule inhibitors that can alter the expression of downstream target genes. We identified ellipticine, a compound that up-regulates BDNF transcription. Our study shows the feasibility of using high-throughput screening to identify modulators of lncRNA-protein interactions and paves the road for targeting lncRNAs that are dysregulated in human disorders using small-molecule therapies. PMID:26173710

  1. Valosin-containing protein (VCP)-Adaptor Interactions are Exceptionally Dynamic and Subject to Differential Modulation by a VCP Inhibitor.

    PubMed

    Xue, Liang; Blythe, Emily E; Freiberger, Elyse C; Mamrosh, Jennifer L; Hebert, Alexander S; Reitsma, Justin M; Hess, Sonja; Coon, Joshua J; Deshaies, Raymond J

    2016-09-01

    Protein quality control (PQC) plays an important role in stemming neurodegenerative diseases and is essential for the growth of some cancers. Valosin-containing protein (VCP)/p97 plays a pivotal role in multiple PQC pathways by interacting with numerous adaptors that link VCP to specific PQC pathways and substrates and influence the post-translational modification state of substrates. However, our poor understanding of the specificity and architecture of the adaptors, and the dynamic properties of their interactions with VCP hinders our understanding of fundamental features of PQC and how modulation of VCP activity can best be exploited therapeutically. In this study we use multiple mass spectrometry-based proteomic approaches combined with biophysical studies to characterize the interaction of adaptors with VCP. Our results reveal that most VCP-adaptor interactions are characterized by rapid dynamics that in some cases are modulated by the VCP inhibitor NMS873. These findings have significant implications for both the regulation of VCP function and the impact of VCP inhibition on different VCP-adaptor complexes. PMID:27406709

  2. Perilipin polymorphism interacts with saturated fat and carbohydrates to modulate insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macronutrient intakes and genetic variants have been shown to interact to alter insulin resistance, but replications of gene-nutrient interactions across independent populations are rare, despite their critical importance in establishing credibility. We aimed to investigate a previously demonstrated...

  3. Interaction of Motility, Directional Sensing, and Polarity Modules Recreates the Behaviors of Chemotaxing Cells

    PubMed Central

    Shi, Changji; Huang, Chuan-Hsiang; Devreotes, Peter N.; Iglesias, Pablo A.

    2013-01-01

    Chemotaxis involves the coordinated action of separable but interrelated processes: motility, gradient sensing, and polarization. We have hypothesized that these are mediated by separate modules that account for these processes individually and that, when combined, recreate most of the behaviors of chemotactic cells. Here, we describe a mathematical model where the modules are implemented in terms of reaction-diffusion equations. Migration and the accompanying changes in cellular morphology are demonstrated in simulations using a mechanical model of the cell cortex implemented in the level set framework. The central module is an excitable network that accounts for random migration. The response to combinations of uniform stimuli and gradients is mediated by a local excitation, global inhibition module that biases the direction in which excitability is directed. A polarization module linked to the excitable network through the cytoskeleton allows unstimulated cells to move persistently and, for cells in gradients, to gradually acquire distinct sensitivity between front and back. Finally, by varying the strengths of various feedback loops in the model we obtain cellular behaviors that mirror those of genetically altered cell lines. PMID:23861660

  4. Just enough, but not too much interactivity leads to better clinical skills performance after a computer assisted learning module

    PubMed Central

    Kalet, A.; Song, H.S.; Sarpel, U.S.; Schwartz, R.; Brenner, J.; Ark, T.K; Plass, J.

    2013-01-01

    Background Well-designed computer-assisted instruction (CAI) can potentially transform medical education. Yet little is known about whether specific design features such as direct manipulation of the content yield meaningful gains in clinical learning. We designed three versions of a multimedia module on the abdominal exam incorporating different types of interactivity. Methods As part of their physical diagnosis course, 162 second-year medical students were randomly assigned (1:1:1) to Watch, Click or Drag versions of the abdominal exam module. First, students’ prior knowledge, spatial ability, and prior experience with abdominal exams were assessed. After using the module, students took a posttest; demonstrated the abdominal exam on a standardized patient; and wrote structured notes of their findings. Results Data from143 students were analyzed. Baseline measures showed no differences among groups regarding prior knowledge, experience, or spatial ability. Overall there was no difference in knowledge across groups. However, physical exam scores were significantly higher for students in the Click group. Conclusions A mid-range level of behavioral interactivity was associated with small to moderate improvements in performance of clinical skills. These improvements were likely mediated by enhanced engagement with the material, within the bounds of learners’ cognitive capacity. These findings have implications for the design of CAI materials to teach procedural skills. PMID:22917265

  5. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine.

    PubMed

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) growth in women's bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the "interactive metabolome", which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI. PMID:27076285

  6. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine

    PubMed Central

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) growth in women’s bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the “interactive metabolome”, which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI. PMID:27076285

  7. The Interaction of Heparin Tetrasaccharides with Chemokine CCL5 Is Modulated by Sulfation Pattern and pH*

    PubMed Central

    Singh, Arunima; Kett, Warren C.; Severin, India C.; Agyekum, Isaac; Duan, Jiana; Amster, I. Jonathan; Proudfoot, Amanda E. I.; Coombe, Deirdre R.; Woods, Robert J.

    2015-01-01

    Interactions between chemokines such as CCL5 and glycosaminoglycans (GAGs) are essential for creating haptotactic gradients to guide the migration of leukocytes into inflammatory sites, and the GAGs that interact with CCL5 with the highest affinity are heparan sulfates/heparin. The interaction between CCL5 and its receptor on monocytes, CCR1, is mediated through residues Arg-17 and -47 in CCL5, which overlap with the GAG-binding 44RKNR47 “BBXB” motifs. Here we report that heparin and tetrasaccharide fragments of heparin are able to inhibit CCL5-CCR1 binding, with IC50 values showing strong dependence on the pattern and extent of sulfation. Modeling of the CCL5-tetrasaccharide complexes suggested that interactions between specific sulfate and carboxylate groups of heparin and residues Arg-17 and -47 of the protein are essential for strong inhibition; tetrasaccharides lacking the specific sulfation pattern were found to preferentially bind CCL5 in positions less favorable for inhibition of the interaction with CCR1. Simulations of a 12-mer heparin fragment bound to CCL5 indicated that the oligosaccharide preferred to interact simultaneously with both 44RKNR47 motifs in the CCL5 homodimer and engaged residues Arg-47 and -17 from both chains. Direct engagement of these residues by the longer heparin oligosaccharide provides a rationalization for its effectiveness as an inhibitor of CCL5-CCR1 interaction. In this mode, histidine (His-23) may contribute to CCL5-GAG interactions when the pH drops just below neutral, as occurs during inflammation. Additionally, an examination of the contribution of pH to modulating CCL5-heparin interactions suggested a need for careful interpretation of experimental results when experiments are performed under non-physiological conditions. PMID:25907556

  8. Impact of Oceanic Scale-Interactions on the Seasonal Modulation of Ocean Dynamics By the Atmosphere

    NASA Astrophysics Data System (ADS)

    Sasaki, H.; Klein, P.; Qiu, B.; Sasai, Y.

    2014-12-01

    A realistic North Pacific simulation at high-resolution (1/30 degree in the horizontal and 100 vertical levels) highlights an efficient energy pathway, involving winter frontal instabilities at submesoscale set up by large-scale atmospheric forcings: these instabilities, through an inverse kinetic energy cascade, lead to a significant seasonal modulation of the kinetic energy over a broad scale range including submesoscales and mesoscales. The kinetic energy within the scale band of 10-200km is doubled in winter relatively to summer. This suggests a significant seasonal modulation of dispersion and transport of heat and tracers triggered by atmospheric forcings through this energy pathway. Monitoring such seasonal modulation is a major challenge because of the lack of high-resolution observations on a global scale. However the resulting meso/submesoscale field has been found to be statistically in geostrophic equilibrium at all seasons. This means that such modulation can be diagnosed, using the geostrophic approximation, from SSH data from the future SWOT and COMPIRA wide-swath altimeter missions.

  9. Plasma protein corona modulates the vascular wall interaction of drug carriers in a material and donor specific manner.

    PubMed

    Sobczynski, Daniel J; Charoenphol, Phapanin; Heslinga, Michael J; Onyskiw, Peter J; Namdee, Katawut; Thompson, Alex J; Eniola-Adefeso, Omolola

    2014-01-01

    The nanoscale plasma protein interaction with intravenously injected particulate carrier systems is known to modulate their organ distribution and clearance from the bloodstream. However, the role of this plasma protein interaction in prescribing the adhesion of carriers to the vascular wall remains relatively unknown. Here, we show that the adhesion of vascular-targeted poly(lactide-co-glycolic-acid) (PLGA) spheres to endothelial cells is significantly inhibited in human blood flow, with up to 90% reduction in adhesion observed relative to adhesion in simple buffer flow, depending on the particle size and the magnitude and pattern of blood flow. This reduced PLGA adhesion in blood flow is linked to the adsorption of certain high molecular weight plasma proteins on PLGA and is donor specific, where large reductions in particle adhesion in blood flow (>80% relative to buffer) is seen with ∼60% of unique donor bloods while others exhibit moderate to no reductions. The depletion of high molecular weight immunoglobulins from plasma is shown to successfully restore PLGA vascular wall adhesion. The observed plasma protein effect on PLGA is likely due to material characteristics since the effect is not replicated with polystyrene or silica spheres. These particles effectively adhere to the endothelium at a higher level in blood over buffer flow. Overall, understanding how distinct plasma proteins modulate the vascular wall interaction of vascular-targeted carriers of different material characteristics would allow for the design of highly functional delivery vehicles for the treatment of many serious human diseases. PMID:25229244

  10. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    PubMed Central

    Bai, Qifeng; Yao, Xiaojun

    2016-01-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1. PMID:26887338

  11. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    NASA Astrophysics Data System (ADS)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  12. Arrangement of scale-interaction and large-scale modulation in high Reynolds number turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2015-11-01

    Interactions between small- and large-scale motions are inherent in the near-wall dynamics of wall-bounded flows. We here examine the scale-interaction embedded within the streamwise velocity component. Data were acquired using hot-wire anemometry in ZPG turbulent boundary layers, for Reynolds numbers ranging from Reτ ≡ δUτ / ν ~ 2800 to 22800. After first decomposing velocity signals into contributions from small- and large-scales, we then represent the time-varying small-scale energy with time series of its instantaneous amplitude and instantaneous frequency, via a wavelet-based method. Features of the scale-interaction are inferred from isocorrelation maps, formed by correlating the large-scale velocity with its concurrent small-scale amplitude and frequency. Below the onset of the log-region, the physics constitutes aspects of amplitude modulation and frequency modulation. Time shifts, associated with the correlation extrema--representing the lead/lag of the small-scale signatures relative to the large-scales--are shown to be governed by inner-scaling. Wall-normal trends of time shifts are explained by considering the arrangement of scales in the log- and intermittent-regions, and how they relate to stochastic top-down and bottom-up processes.

  13. Fast and accurate method for identifying high-quality protein-interaction modules by clique merging and its application to yeast.

    PubMed

    Zhang, Chi; Liu, Song; Zhou, Yaoqi

    2006-04-01

    Molecular networks in cells are organized into functional modules, where genes in the same module interact densely with each other and participate in the same biological process. Thus, identification of modules from molecular networks is an important step toward a better understanding of how cells function through the molecular networks. Here, we propose a simple, automatic method, called MC(2), to identify functional modules by enumerating and merging cliques in the protein-interaction data from large-scale experiments. Application of MC(2) to the S. cerevisiae protein-interaction data produces 84 modules, whose sizes range from 4 to 69 genes. The majority of the discovered modules are significantly enriched with a highly specific process term (at least 4 levels below root) and a specific cellular component in Gene Ontology (GO) tree. The average fraction of genes with the most enriched GO term for all modules is 82% for specific biological processes and 78% for specific cellular components. In addition, the predicted modules are enriched with coexpressed proteins. These modules are found to be useful for annotating unknown genes and uncovering novel functions of known genes. MC(2) is efficient, and takes only about 5 min to identify modules from the current yeast gene interaction network with a typical PC (Intel Xeon 2.5 GHz CPU and 512 MB memory). The CPU time of MC(2) is affordable (12 h) even when the number of interactions is increased by a factor of 10. MC(2) and its results are publicly available on http://theory.med.buffalo.edu/MC2. PMID:16602686

  14. Mycoplasma fermentans and TNF-β interact to amplify immune-modulating cytokines in human lung fibroblasts

    PubMed Central

    Fabisiak, James P.; Gao, Fei; Thomson, Robyn G.; Strieter, Robert M.; Watkins, Simon C.; Dauber, James H.

    2010-01-01

    Mycoplasma can establish latent infections and are associated with arthritis, leukemia, and chronic lung disease. We developed an experimental model in which lung cells are deliberately infected with Mycoplasma fermentans. Human lung fibroblasts (HLF) were exposed to live M. fermentans and immune-modulating cytokine release was assessed with and without known inducers of cytokine production. M. fermentans increased IL-6, IL-8/CXCL8, MCP-1/CCL2, and Gro-α/CXCL1 production. M. fermentans interacted with TNF-β to release more IL-6, CXCL8, and CXCL1 than predicted by the responses to either stimulus alone. The effects of live infection were recapitulated by exposure to M. fermentans-derived macrophage-activating lipopeptide-2 (MALP-2), a Toll-like receptor-2- and receptor-6-specific ligand. The synergistic effect of combined stimuli was more pronounced with prolonged incubations. Preexposure to TNF-β sensitized the cells to subsequent MALP-2 challenge, but preexposure to MALP-2 did not alter the IL-6 response to TNF-β. Exposure to M. fermentans or MALP-2 did not enhance nuclear localization, DNA binding, or transcriptional activity of NF-κB and did not modulate early NF-κB activation in response to TNF-β. Application of specific inhibitors of various MAPKs suggested that p38 and JNK/stress-activated protein kinase were involved in early IL-6 release after exposure to TNF-β and M. fermentans, respectively. The combined response to M. fermentans and TNF-β, however, was uniquely sensitive to delayed application of SP-600125, suggesting that JNK/stress-activated protein kinase contributes to the amplification of IL-6 release. Thus M. fermentans interacts with stimuli such as TNF-β to amplify lung cell production of immune-modulating cytokines. The mechanisms accounting for this interaction can now be dissected with the use of this in vitro model. PMID:16751226

  15. Four imidazolium iodocuprates based on anion-π and π-π interactions: Structural and spectral modulation

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Hao, Pengfei; Yu, Tanlai; Guan, Qi; Fu, Yunlong

    2016-09-01

    Four imidazolium iodocuprates, [(1,3-dimethylimidazole)(Cu2I3)]n (1), [(1,2,3-trimethylimidazole)(Cu2I3)]n (2), [(1,3-dimethylimidazole)(Cu3I5)]n (3) and [(1,3-dimethylbenzimidazole)(CuI2)]n (4) have been solvothermally synthesized and optically characterized. Results exhibit that cationic spatial orientation, anion-π and π-π interactions are beneficial to structural diversity and band gap modulation of iodocuprate hybrids. The UV-vis diffuse reflectance spectra show that compounds 1-4 are potential semiconductor materials.

  16. Helicobacter pylori Modulates Lymphoepithelial Cell Interactions Leading to Epithelial Cell Damage through Fas/Fas Ligand Interactions

    PubMed Central

    Wang, Jide; Fan, Xuejun; Lindholm, Catharina; Bennett, Michael; O'Connoll, Joe; Shanahan, Fergus; Brooks, Edward G.; Reyes, Victor E.; Ernst, Peter B.

    2000-01-01

    Helicobacter pylori causes a common chronic infection of humans that leads to epithelial cell damage. Studies have shown that apoptosis of the gastric epithelium is increased during infection and this response is associated with an expansion of gastric T-helper type 1 (Th1) cells. We report that gastric T cells contribute to apoptosis of the epithelium by a Fas/Fas ligand (FasL) interaction. Fas receptor expression was detected on freshly isolated gastric epithelial cells by flow cytometry and immunohistochemistry, and this level of expression was increased during infection with H. pylori. The expression of Fas receptor on three gastric epithelial cell lines was increased by H. pylori, either alone or in combination with gamma interferon or tumor necrosis factor alpha. The role of Fas in apoptosis of gastric epithelial cell lines was evidenced by DNA fragmentation after cross-linking of Fas with specific antibodies. FasL expression was detected by immunohistochemistry on mononuclear cells in gastric biopsy specimens of infected but not uninfected subjects. Gastric T-cell lines were also shown to express FasL, as evidenced by reverse transcription-PCR and killing of target cells expressing Fas receptor. Moreover, these T-cell lines were capable of killing cultured gastric epithelial target cells and antibodies that block the interaction between Fas receptor and FasL inhibited this cytotoxic activity. These observations demonstrate that local Th1 cells may contribute to the pathogenesis of gastric disease during H. pylori infection by increasing the expression of Fas on gastric epithelial cells and inducing apoptosis through Fas/FasL interactions. PMID:10858249

  17. Pharmacokinetic drug interactions of the selective androgen receptor modulator GTx-024(Enobosarm) with itraconazole, rifampin, probenecid, celecoxib and rosuvastatin.

    PubMed

    Coss, Christopher C; Jones, Amanda; Dalton, James T

    2016-08-01

    GTx-024 (also known as enobosarm) is a first in class selective androgen receptor modulator being developed for diverse indications in oncology. Preclinical studies of GTx-024 supported the evaluation of several potential drug-drug interactions in a clinical setting. A series of open-label Phase I GTx-024 drug-drug interaction studies were designed to interrogate potential interactions with CYP3A4 inhibitor (itraconazole), a CYP3A4 inducer (rifampin), a pan-UGT inhibitor (probenecid), a CYP2C9 substrate (celecoxib) and a BCRP substrate (rosuvastatin). The plasma pharmacokinetics of GTx-024, its major metabolite (GTx-024 glucuronide), and each substrate were characterized in detail. Itraconazole administration had no effect on GTx-024 pharmacokinetics. Likewise, GTx-024 administration did not significantly change the pharmacokinetics of celecoxib or rosuvastatin. Rifampin administration had the largest impact on GTx-024 pharmacokinetics of any co-administered agent and reduced the maximal plasma concentration (Cmax) by 23 % and the area under the curve (AUC∞) by 43 %. Probenecid had a complex interaction with GTx-024 whereby both GTx-024 plasma levels and GTx-024 glucuronide plasma levels (AUC∞) were increased by co-administration of the UGT inhibitor (50 and 112 %, respectively). Overall, GTx-024 was well tolerated and poses very little risk of generating clinically relevant drug-drug interactions. PMID:27105861

  18. Anacardic Acids from Knema hookeriana as Modulators of Bcl-xL/Bak and Mcl-1/Bid Interactions.

    PubMed

    Gény, Charlotte; Rivière, Gwladys; Bignon, Jérome; Birlirakis, Nicolas; Guittet, Eric; Awang, Khaljah; Litaudon, Marc; Roussi, Fanny; Dumontet, Vincent

    2016-04-22

    Proteins of the Bcl-2 family are key targets in anticancer drug discovery. Disrupting the interaction between anti- and pro-apoptotic members of this protein family was the approach chosen in this study to restore apoptosis. Thus, a biological screening on the modulation of the Bcl-xL/Bak and Mcl-1/Bid interactions permitted the selection of Knema hookeriana for further phytochemical investigations. The ethyl acetate extract from the stem bark led to the isolation of six new compounds, three acetophenone derivatives (1-3) and three anacardic acid derivatives (4-6), along with four known anacardic acids (7-10) and two cardanols (11, 12). Their structures were elucidated by 1D and 2D NMR analysis in combination with HRMS experiments. The ability of these compounds to antagonize Bcl-xL/Bak and Mcl-1/Bid association was determined, using a protein-protein interaction assay, but only anacardic acid derivatives (4-10) exhibited significant binding properties, with Ki values ranging from 0.2 to 18 μM. Protein-ligand NMR experiments further revealed that anacardic acid 9, the most active compound, does not interact with the anti-apoptotic proteins Bcl-xL and Mcl-1 but instead interacts with pro-apoptotic protein Bid. PMID:27008174

  19. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. PMID:27080133

  20. Contextual task difficulty modulates stimulus discrimination: Electrophysiological evidence for interaction between sensory and executive processes

    PubMed Central

    Fedota, John R.; McDonald, Craig G.; Roberts, Daniel M.; Parasuraman, Raja

    2012-01-01

    The occipital-temporal N1 component of the event-related potential (ERP) has previously been shown to index a stimulus discrimination process. However, the N1 has not consistently been shown to be sensitive to the difficulty of stimulus discrimination. Here we manipulated the difficulty of stimulus discrimination by modulating the similarity between serially presented targets and non-targets. The same target stimulus was employed in both easy and difficult discrimination contexts, and these physically identical target stimuli elicited a larger N1 and smaller P3b in the difficult task context. Moreover, when targets were incorrectly categorized, N1 amplitude was diminished and a P3b was not elicited. These findings provide evidence that the N1 component reflects a sensory discrimination process that is modulated by executive control, and that this component can index discrimination errors when stimulus discrimination is difficult. PMID:22906001

  1. Interaction of cannabinoid receptor 2 and social environment modulates chronic alcohol consumption.

    PubMed

    Pradier, Bruno; Erxlebe, Edda; Markert, Astrid; Rácz, Ildikó

    2015-01-01

    Genetic and environmental factors contribute nearly in equal power to the development of alcoholism. Environmental factors, such as negative life events or emotionally disruptive conditions, initiate and promote alcohol drinking and relapse. The endocannabinoid system is involved in hedonic control and modulates stress reactivity. Furthermore, chronic alcohol drinking alters endocannabinoid signalling, which in turn influences the stress reactivity. Recently, it has been shown that CB2 receptor activity influences stress sensitivity and alcohol drinking. We hypothesized that CB2 receptors influence the impact of environmental risk factors on alcohol preference and consumption. Therefore, in this study, we investigated the alcohol-drinking pattern of wild-type and CB2-deficient animals under single- and group-housing conditions using different alcohol-drinking models, such as forced drinking, intermittent forced drinking and two-bottle choice paradigms. Our data showed that CB2 receptor modulates alcohol consumption and reward. Interestingly, we detected that lack of CB2 receptors led to increased alcohol drinking in the intermittent forced drinking paradigm under group-housing conditions. Furthermore, we found that CB2 knockout mice consumed more food and that their body weight gain was modulated by social environment. On the basis of these data, we conclude that social environment critically affects the modulatory function of CB2 receptors, especially in alcohol intake. These findings suggest that a treatment strategy targeting CB2 receptors may have a beneficial effect on pathological drinking, particularly in situations of social stress and discomfort. PMID:25827923

  2. Physical interaction between calcineurin and Cav3.2 T-type Ca2+ channel modulates their functions.

    PubMed

    Huang, Ching-Hui; Chen, Yong-Cyuan; Chen, Chien-Chang

    2013-06-19

    Cav3.2 T-type Ca(2+) channel is required for the activation of calcineurin/NFAT signaling in cardiac hypertrophy. We aimed to investigate how Cav3.2 and calcineurin interact. We found that Ca(2+) and calmodulin modulate the Cav3.2/calcineurin interaction. Calcineurin binding to Cav3.2 decreases the enzyme's phosphatase activity and diminishes the channel's current density. Phenylephrine-induced hypertrophy in neonatal cardiac myocytes is reduced by a cell-permeable peptide with the calcineurin binding site sequence. These data suggest that Cav3.2 regulates calcineurin/NFAT pathway through both the Ca(2+) influx and calcineurin binding. Our findings unveiled a reciprocal regulation of Ca(2+) signaling which contributes to our understanding of cardiac hypertrophy. PMID:23669360

  3. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module.

    PubMed

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Heo, Won Do; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named 'exosomes for protein loading via optically reversible protein-protein interactions' (EXPLORs). By integrating a reversible protein-protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  4. Effect of interaction between periodic δ-doping in both well and barrier layers on modulation of superlattice band structure

    NASA Astrophysics Data System (ADS)

    Xu, Huaizhe; Yan, Qiqi; Wang, Tianmin

    2007-08-01

    The modulation of superlattice band structure via periodic δ-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the δ-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic δ-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two δ-doping's positions and heights.

  5. Design of Peptide-Membrane Interactions to Modulate Single-File Water Transport through Modified Gramicidin Channels

    PubMed Central

    Portella, Guillem; Polupanow, Tanja; Zocher, Florian; Boytsov, Danila A.; Pohl, Peter; Diederichsen, Ulf; de Groot, Bert L.

    2012-01-01

    Water permeability through single-file channels is affected by intrinsic factors such as their size and polarity and by external determinants like their lipid environment in the membrane. Previous computational studies revealed that the obstruction of the channel by lipid headgroups can be long-lived, in the range of nanoseconds, and that pore-length-matching membrane mimetics could speed up water permeability. To test the hypothesis of lipid-channel interactions modulating channel permeability, we designed different gramicidin A derivatives with attached acyl chains. By combining extensive molecular-dynamics simulations and single-channel water permeation measurements, we show that by tuning lipid-channel interactions, these modifications reduce the presence of lipid headgroups in the pore, which leads to a clear and selective increase in their water permeability. PMID:23083713

  6. Use of Live Interactive Webcasting for an International Postgraduate Module in eHealth: Case Study Evaluation

    PubMed Central

    Maramba, Inocencio; Boulos, Maged N Kamel; Alexander, Tara

    2009-01-01

    Background Producing “traditional” e-learning can be time consuming, and in a topic such as eHealth, it may have a short shelf-life. Students sometimes report feeling isolated and lacking in motivation. Synchronous methods can play an important part in any blended approach to learning. Objective The aim was to develop, deliver, and evaluate an international postgraduate module in eHealth using live interactive webcasting. Methods We developed a hybrid solution for live interactive webcasting using a scan converter, mixer, and digitizer, and video server to embed a presenter-controlled talking head or copy of the presenter’s computer screen (normally a PowerPoint slide) in a student chat room. We recruited 16 students from six countries and ran weekly 2.5-hour live sessions for 10 weeks. The content included the use of computers by patients, patient access to records, different forms of e-learning for patients and professionals, research methods in eHealth, geographic information systems, and telehealth. All sessions were recorded—presentations as video files and the student interaction as text files. Students were sent an email questionnaire of mostly open questions seeking their views of this form of learning. Responses were collated and anonymized by a colleague who was not part of the teaching team. Results Sessions were generally very interactive, with most students participating actively in breakout or full-class discussions. In a typical 2.5-hour session, students posted about 50 messages each. Two students did not complete all sessions; one withdrew from the pressure of work after session 6, and one from illness after session 7. Fourteen of the 16 responded to the feedback questionnaire. Most students (12/14) found the module useful or very useful, and all would recommend the module to others. All liked the method of delivery, in particular the interactivity, the variety of students, and the “closeness” of the group. Most (11/14) felt

  7. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein–protein interaction module

    PubMed Central

    Yim, Nambin; Ryu, Seung-Wook; Choi, Kyungsun; Lee, Kwang Ryeol; Lee, Seunghee; Choi, Hojun; Kim, Jeongjin; Shaker, Mohammed R.; Sun, Woong; Park, Ji-Ho; Kim, Daesoo; Do Heo, Won; Choi, Chulhee

    2016-01-01

    Nanoparticle-mediated delivery of functional macromolecules is a promising method for treating a variety of human diseases. Among nanoparticles, cell-derived exosomes have recently been highlighted as a new therapeutic strategy for the in vivo delivery of nucleotides and chemical drugs. Here we describe a new tool for intracellular delivery of target proteins, named ‘exosomes for protein loading via optically reversible protein–protein interactions' (EXPLORs). By integrating a reversible protein–protein interaction module controlled by blue light with the endogenous process of exosome biogenesis, we are able to successfully load cargo proteins into newly generated exosomes. Treatment with protein-loaded EXPLORs is shown to significantly increase intracellular levels of cargo proteins and their function in recipient cells in vitro and in vivo. These results clearly indicate the potential of EXPLORs as a mechanism for the efficient intracellular transfer of protein-based therapeutics into recipient cells and tissues. PMID:27447450

  8. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions.

    PubMed

    Basse, Marie-Jeanne; Betzi, Stéphane; Morelli, Xavier; Roche, Philippe

    2016-01-01

    2P2Idb is a hand-curated structural database dedicated to protein-protein interactions with known small molecule orthosteric modulators. It compiles the structural information related to orthosteric inhibitors and their target [i.e. related 3D structures available in the RCSB Protein Data Bank (PDB)] and provides links to other useful databases. 2P2Idb includes all interactions for which both the protein-protein and protein-inhibitor complexes have been structurally characterized. Since its first release in 2010, the database has grown constantly and the current version contains 27 protein-protein complexes and 274 protein-inhibitor complexes corresponding to 242 unique small molecule inhibitors which represent almost a 5-fold increase compared to the previous version. A number of new data have been added, including new protein-protein complexes, binding affinities, molecular descriptors, precalculated interface parameters and links to other webservers. A new query tool has been implemented to search for inhibitors within the database using standard molecular descriptors. A novel version of the 2P2I-inspector tool has been implemented to calculate a series of physical and chemical parameters of the protein interfaces. Several geometrical parameters including planarity, eccentricity and circularity have been added as well as customizable distance cutoffs. This tool has also been extended to protein-ligand interfaces. The 2P2I database thus represents a wealth of structural source of information for scientists interested in the properties of protein-protein interactions and the design of protein-protein interaction modulators. Database URL: http://2p2idb.cnrs-mrs.fr. PMID:26980515

  9. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein–protein interactions

    PubMed Central

    Basse, Marie-Jeanne; Betzi, Stéphane; Morelli, Xavier; Roche, Philippe

    2016-01-01

    2P2Idb is a hand-curated structural database dedicated to protein–protein interactions with known small molecule orthosteric modulators. It compiles the structural information related to orthosteric inhibitors and their target [i.e. related 3D structures available in the RCSB Protein Data Bank (PDB)] and provides links to other useful databases. 2P2Idb includes all interactions for which both the protein–protein and protein–inhibitor complexes have been structurally characterized. Since its first release in 2010, the database has grown constantly and the current version contains 27 protein–protein complexes and 274 protein–inhibitor complexes corresponding to 242 unique small molecule inhibitors which represent almost a 5-fold increase compared to the previous version. A number of new data have been added, including new protein–protein complexes, binding affinities, molecular descriptors, precalculated interface parameters and links to other webservers. A new query tool has been implemented to search for inhibitors within the database using standard molecular descriptors. A novel version of the 2P2I-inspector tool has been implemented to calculate a series of physical and chemical parameters of the protein interfaces. Several geometrical parameters including planarity, eccentricity and circularity have been added as well as customizable distance cutoffs. This tool has also been extended to protein–ligand interfaces. The 2P2I database thus represents a wealth of structural source of information for scientists interested in the properties of protein–protein interactions and the design of protein–protein interaction modulators. Database URL: http://2p2idb.cnrs-mrs.fr PMID:26980515

  10. The HMI™ module: a new tool to study the Host-Microbiota Interaction in the human gastrointestinal tract in vitro

    PubMed Central

    2014-01-01

    Background Recent scientific developments have shed more light on the importance of the host-microbe interaction, particularly in the gut. However, the mechanistic study of the host-microbe interplay is complicated by the intrinsic limitations in reaching the different areas of the gastrointestinal tract (GIT) in vivo. In this paper, we present the technical validation of a new device - the Host-Microbiota Interaction (HMI) module - and the evidence that it can be used in combination with a gut dynamic simulator to evaluate the effect of a specific treatment at the level of the luminal microbial community and of the host surface colonization and signaling. Results The HMI module recreates conditions that are physiologically relevant for the GIT: i) a mucosal area to which bacteria can adhere under relevant shear stress (3 dynes cm−2); ii) the bilateral transport of low molecular weight metabolites (4 to 150 kDa) with permeation coefficients ranging from 2.4 × 10−6 to 7.1 × 10−9 cm sec−1; and iii) microaerophilic conditions at the bottom of the growing biofilm (PmO2 = 2.5 × 10−4 cm sec−1). In a long-term study, the host’s cells in the HMI module were still viable after a 48-hour exposure to a complex microbial community. The dominant mucus-associated microbiota differed from the luminal one and its composition was influenced by the treatment with a dried product derived from yeast fermentation. The latter - with known anti-inflammatory properties - induced a decrease of pro-inflammatory IL-8 production between 24 and 48 h. Conclusions The study of the in vivo functionality of adhering bacterial communities in the human GIT and of the localized effect on the host is frequently hindered by the complexity of reaching particular areas of the GIT. The HMI module offers the possibility of co-culturing a gut representative microbial community with enterocyte-like cells up to 48 h and may therefore contribute to the mechanistic understanding of

  11. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers.

    PubMed

    Eastman, Richard T; Khine, Pwint; Huang, Ruili; Thomas, Craig J; Su, Xin-Zhuan

    2016-01-01

    Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca(2+) and Na(+) channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs. PMID:27147113

  12. PfCRT and PfMDR1 modulate interactions of artemisinin derivatives and ion channel blockers

    PubMed Central

    Eastman, Richard T.; Khine, Pwint; Huang, Ruili; Thomas, Craig J.; Su, Xin-zhuan

    2016-01-01

    Treatment of the symptomatic asexual stage of Plasmodium falciparum relies almost exclusively on artemisinin (ART) combination therapies (ACTs) in endemic regions. ACTs combine ART or its derivative with a long-acting partner drug to maximize efficacy during the typical three-day regimen. Both laboratory and clinical studies have previously demonstrated that the common drug resistance determinants P. falciparum chloroquine resistance transporter (PfCRT) and multidrug resistance transporter (PfMDR1) can modulate the susceptibility to many current antimalarial drugs and chemical compounds. Here we investigated the parasite responses to dihydroartemisinin (DHA) and various Ca2+ and Na+ channel blockers and showed positively correlated responses between DHA and several channel blockers, suggesting potential shared transport pathways or mode of action. Additionally, we demonstrated that PfCRT and PfMDR1 could also significantly modulate the pharmacodynamic interactions of the compounds and that the interactions were influenced by the parasite genetic backgrounds. These results provide important information for better understanding of drug resistance and for assessing the overall impact of drug resistance markers on parasite response to ACTs. PMID:27147113

  13. Functional modulation of the geminivirus AL2 transcription factor and silencing suppressor by self-interaction.

    PubMed

    Yang, Xiaojuan; Baliji, Surendranath; Buchmann, R Cody; Wang, Hui; Lindbo, John A; Sunter, Garry; Bisaro, David M

    2007-11-01

    The DNA genomes of geminiviruses have a limited coding capacity that is compensated for by the production of small multifunctional proteins. The AL2 protein encoded by members of the genus Begomovirus (e.g., Tomato golden mosaic virus) is a transcriptional activator, a silencing suppressor, and a suppressor of a basal defense. The related L2 protein of Beet curly top virus (genus Curtovirus) shares the pathogenicity functions of AL2 but lacks transcriptional activation activity. It is known that AL2 and L2 can suppress local silencing by interacting with adenosine kinase (ADK) and can suppress basal defense by interacting with SNF1 kinase. However, how the activities of these viral proteins are regulated remains an unanswered question. Here, we provide some answers by demonstrating that AL2, but not L2, interacts with itself. The zinc finger-like motif (CCHC) is required but is not sufficient for AL2 self-interaction. Alanine substitutions for the invariant cysteine residues that comprise the motif abolish self-interaction or cause aberrant subnuclear localization but do not abolish interaction with ADK and SNF1. Using bimolecular fluorescence complementation, we show that AL2:AL2 complexes accumulate primarily in the nucleus, whereas AL2:ADK and L2:ADK complexes accumulate mainly in the cytoplasm. Further, the cysteine residue mutations impair the ability of AL2 to activate the coat protein promoter but do not affect local silencing suppression. Thus, AL2 self-interaction correlates with nuclear localization and efficient activation of transcription, whereas AL2 and L2 monomers can suppress local silencing by interacting with ADK in the cytoplasm. PMID:17715241

  14. The relative vertex clustering value - a new criterion for the fast discovery of functional modules in protein interaction networks

    PubMed Central

    2015-01-01

    Background Cellular processes are known to be modular and are realized by groups of proteins implicated in common biological functions. Such groups of proteins are called functional modules, and many community detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the correct clusters, since they are known to be sensitive to noisy data. Results We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to decide when a node can be added to a given node's cluster and which addresses the above three issues. Based on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering functional modules and protein complexes from a PIN data. Conclusions Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for clustering PINs in an agglomerative manner. PMID:25734691

  15. Interaction between positive allosteric modulators and trapping blockers of the NMDA receptor channel

    PubMed Central

    Emnett, Christine M; Eisenman, Lawrence N; Mohan, Jayaram; Taylor, Amanda A; Doherty, James J; Paul, Steven M; Zorumski, Charles F; Mennerick, Steven

    2015-01-01

    Background and Purpose Memantine and ketamine are clinically used, open-channel blockers of NMDA receptors exhibiting remarkable pharmacodynamic similarities despite strikingly different clinical profiles. Although NMDA channel gating constitutes an important difference between memantine and ketamine, it is unclear how positive allosteric modulators (PAMs) might affect the pharmacodynamics of these NMDA blockers. Experimental Approach We used two different PAMs: SGE-201, an analogue of an endogenous oxysterol, 24S-hydroxycholesterol, along with pregnenolone sulphate (PS), to test on memantine and ketamine responses in single cells (oocytes and cultured neurons) and networks (hippocampal slices), using standard electrophysiological techniques. Key Results SGE-201 and PS had no effect on steady-state block or voltage dependence of a channel blocker. However, both PAMs increased the actions of memantine and ketamine on phasic excitatory post-synaptic currents, but neither revealed underlying pharmacodynamic differences. SGE-201 accelerated the re-equilibration of blockers during voltage jumps. SGE-201 also unmasked differences among the blockers in neuronal networks – measured either by suppression of activity in multi-electrode arrays or by neuroprotection against a mild excitotoxic insult. Either potentiating NMDA receptors while maintaining the basal activity level or increasing activity/depolarization without potentiating NMDA receptor function is sufficient to expose pharmacodynamic blocker differences in suppressing network function and in neuroprotection. Conclusions and Implications Positive modulation revealed no pharmacodynamic differences between NMDA receptor blockers at a constant voltage, but did expose differences during spontaneous network activity. Endogenous modulator tone of NMDA receptors in different brain regions may underlie differences in the effects of NMDA receptor blockers on behaviour. PMID:25377730

  16. Equilibrium-fluctuation-analysis of single liposome binding events reveals how cholesterol and Ca2+ modulate glycosphingolipid trans-interactions.

    PubMed

    Kunze, Angelika; Bally, Marta; Höök, Fredrik; Larson, Göran

    2013-01-01

    Carbohydrate-carbohydrate interactions (CCIs) are of central importance for several biological processes. However, the ultra-weak nature of CCIs generates difficulties in studying this interaction, thus only little is known about CCIs. Here we present a highly sensitive equilibrium-fluctuation-analysis of single liposome binding events to supported lipid bilayers (SLBs) based on total internal reflection fluorescence (TIRF) microscopy that allows us to determine apparent kinetic rate constants of CCIs. The liposomes and SLBs both contained natural Le(x) glycosphingolipids (Galβ4(Fucα3)GlcNAcβ3Galβ4Glcβ1Cer), which were employed to mimic cell-cell contacts. The kinetic parameters of the self-interaction between Le(x)-containing liposomes and SLBs were measured and found to be modulated by bivalent cations. Even more interestingly, upon addition of cholesterol, the strength of the CCIs increases, suggesting that this interaction is strongly influenced by a cholesterol-dependent presentation and/or spatial organization of glycosphingolipids in cell membranes. PMID:23486243

  17. Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine

    PubMed Central

    Davis, N A; Crowe, J E; Pajewski, N M; McKinney, B A

    2010-01-01

    The variation in antibody response to vaccination likely involves small contributions of numerous genetic variants, such as single-nucleotide polymorphisms (SNPs), which interact in gene networks and pathways. To accumulate the bits of genetic information relevant to the phenotype that are distributed throughout the interaction network, we develop a network eigenvector centrality algorithm (SNPrank) that is sensitive to the weak main effects, gene–gene interactions and small higher-order interactions through hub effects. Analogous to Google PageRank, we interpret the algorithm as the simulation of a random SNP surfer (RSS) that accumulates bits of information in the network through a dynamic probabilistic Markov chain. The transition matrix for the RSS is based on a data-driven genetic association interaction network (GAIN), the nodes of which are SNPs weighted by the main-effect strength and edges weighted by the gene–gene interaction strength. We apply SNPrank to a GAIN analysis of a candidate-gene association study on human immune response to smallpox vaccine. SNPrank implicates a SNP in the retinoid X receptor α (RXRA) gene through a network interaction effect on antibody response. This vitamin A- and D-signaling mediator has been previously implicated in human immune responses, although it would be neglected in a standard analysis because its significance is unremarkable outside the context of its network centrality. This work suggests SNPrank to be a powerful method for identifying network effects in genetic association data and reveals a potential vitamin regulation network association with antibody response. PMID:20613780

  18. Several lipid-related gene polymorphisms interact with overweight/obesity to modulate blood pressure levels.

    PubMed

    Yin, Rui-Xing; Wu, Dong-Feng; Aung, Lynn Htet Htet; Yan, Ting-Ting; Cao, Xiao-Li; Long, Xing-Jiang; Miao, Lin; Liu, Wan-Ying; Zhang, Lin; Li, Meng

    2012-01-01

    Little is known about the interactions of single nucleotide polymorphisms (SNPs) and overweight/obesity on blood pressure levels. The present study was undertaken to detect 10 lipid-related gene SNPs and their interactions with overweight/obesity on blood pressure levels. Genotyping of ATP-binding cassette transporter A1 (ABCA-1) V825I, acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) rs1044925, low density lipoprotein receptor (LDL-R) AvaII hepatic lipase gene (LIPC) -250G > A, endothelial lipase gene (LIPG) 584C > T, methylenetetrahydrofolate reductase (MTHFR) 677C > T, the E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP) rs3757354, proprotein convertase subtilisin-like kexin type 9 (PCSK9) E670G, peroxisome proliferator-activated receptor delta (PPARD) +294T > C, and Scavenger receptor class B type 1 (SCARB1) rs5888 was performed in 978 normal weight and 751 overweight/obese subjects. The interactions were detected by factorial regression analysis. The genotypes of ACAT-1 AC, LIPC GA and AA, and SCARB1 TT; LDL-R A-A- and LIPC GA; and SCARB1 TT were interacted with overweight/obesity to increase systolic, diastolic blood pressure (SBP, DBP) and pulse pressure (PP) levels; respectively. The genotypes of ACAT-1 CC; ACAT-1 AA and CC were interacted with overweight/obesity to decrease SBP, PP levels (p < 0.01-0.001); respectively. The differences in blood pressure levels between normal weight and overweight/obese subjects might partly result from different interactions of several SNPs and overweight/obesity. PMID:23109900

  19. Several Lipid-Related Gene Polymorphisms Interact with Overweight/Obesity to Modulate Blood Pressure Levels

    PubMed Central

    Yin, Rui-Xing; Wu, Dong-Feng; Aung, Lynn Htet Htet; Yan, Ting-Ting; Cao, Xiao-Li; Long, Xing-Jiang; Miao, Lin; Liu, Wan-Ying; Zhang, Lin; Li, Meng

    2012-01-01

    Little is known about the interactions of single nucleotide polymorphisms (SNPs) and overweight/obesity on blood pressure levels. The present study was undertaken to detect 10 lipid-related gene SNPs and their interactions with overweight/obesity on blood pressure levels. Genotyping of ATP-binding cassette transporter A1 (ABCA-1) V825I, acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) rs1044925, low density lipoprotein receptor (LDL-R) AvaII hepatic lipase gene (LIPC) −250G > A, endothelial lipase gene (LIPG) 584C > T, methylenetetrahydrofolate reductase (MTHFR) 677C > T, the E3 ubiquitin ligase myosin regulatory light chain-interacting protein (MYLIP) rs3757354, proprotein convertase subtilisin-like kexin type 9 (PCSK9) E670G, peroxisome proliferator-activated receptor delta (PPARD) +294T > C, and Scavenger receptor class B type 1 (SCARB1) rs5888 was performed in 978 normal weight and 751 overweight/obese subjects. The interactions were detected by factorial regression analysis. The genotypes of ACAT-1 AC, LIPC GA and AA, and SCARB1 TT; LDL-R A-A- and LIPC GA; and SCARB1 TT were interacted with overweight/obesity to increase systolic, diastolic blood pressure (SBP, DBP) and pulse pressure (PP) levels; respectively. The genotypes of ACAT-1 CC; ACAT-1 AA and CC were interacted with overweight/obesity to decrease SBP, PP levels (p < 0.01–0.001); respectively. The differences in blood pressure levels between normal weight and overweight/obese subjects might partly result from different interactions of several SNPs and overweight/obesity. PMID:23109900

  20. CaM interaction and Ser181 phosphorylation as new K-Ras signaling modulators

    PubMed Central

    Alvarez-Moya, Blanca; Barceló, Carles; Tebar, Francesc; Jaumot, Montserrat

    2011-01-01

    The small G-protein Ras was the first oncogene to be identified and has a very important contribution to human cancer development (20–23% prevalence). K-RasB, one of the members of the Ras family, is the one that is most mutated and plays a prominent role in pancreatic, colon and lung cancer development. Ras proteins are membrane bound GTPases that cycle between inactive, GDP-bound and active, GTP-bound, states. Most of the research into K-RasB activity regulation has focused on the analysis of how GTP-exchange factors (GEFs) and GTPase activating proteins (GAPs) are regulated by external and internal signals. In contrast, oncogenic K-RasB has a very low GTPase activity and furthermore is not deactivated by GAPs. Consequently, the consensus was that activity of oncogenic K-RasB was not modulated. In this extra view we recapitulate some recent data showing that calmodulin binding to K-RasB inhibits phosphorylation of K-RasB at Ser181, near to the membrane anchoring domain, modulating signaling of both non-oncogenic and oncogenic K-RasB. This may be relevant to normal cell physiology, but also opens new therapeutic perspectives for the inhibition of oncogenic K-RasB signaling in tumors. PMID:21776410

  1. Queen reproductive state modulates pheromone production and queen-worker interactions in honeybees

    PubMed Central

    Kocher, Sarah D.; Richard, Freddie-Jeanne; Tarpy, David R.

    2009-01-01

    The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens. PMID:22476212

  2. Selective interaction between microbubbles and modulating waves in a Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Watamura, Tomoaki; Tasaka, Yuji; Murai, Yuichi

    2012-11-01

    Modifications of a coherent vortical structure by dispersed microbubbles have been investigated in a vertical Taylor-Couette flow, which is the flow generated between coaxial-rotating double cylinders. Radii of the inner and outer cylinders are 95 mm and 105 mm, respectively. The radius ratio and aspect ratio are 0.905 and 20, respectively. Flow mode in the experiments represents wavy vortex flow and modulated wavy vortex flow. Hydrogen bubbles with 60 μm in the mean diameter were generated by water electrolysis and dispersed from a platinum-wire electrode mounted at the bottom of the fluid layer. Maximum void fraction estimated by input power is smaller than 0.01%. Velocity distribution of microbubbles in a Taylor vortex array is determined by image analysis, and show preferential distribution and motion in the oscillating vortex tube. The fluctuation power of the basic wave was increased by adding microbubbles, while the power of its modulation was decreased. The gradient of the azimuthal velocity in the radial direction, i.e. origin of skin frictional drag acting on the cylinder walls, was decreased. These modifications of flow structure represent the suppression of the flow transition, due to the excitation of the basic wave oscillation and increase of momentum transfer by bubble swarm.

  3. IP-FCM Measures Physiologic Protein-Protein Interactions Modulated by Signal Transduction and Small-Molecule Drug Inhibition

    PubMed Central

    Smith, Stephen E. P.; Bida, Anya T.; Davis, Tessa R.; Sicotte, Hugues; Patterson, Steven E.; Gil, Diana; Schrum, Adam G.

    2012-01-01

    Protein-protein interactions (PPI) mediate the formation of intermolecular networks that control biological signaling. For this reason, PPIs are of outstanding interest in pharmacology, as they display high specificity and may represent a vast pool of potentially druggable targets. However, the study of physiologic PPIs can be limited by conventional assays that often have large sample requirements and relatively low sensitivity. Here, we build on a novel method, immunoprecipitation detected by flow cytometry (IP-FCM), to assess PPI modulation during either signal transduction or pharmacologic inhibition by two different classes of small-molecule compounds. First, we showed that IP-FCM can detect statistically significant differences in samples possessing a defined PPI change as low as 10%. This sensitivity allowed IP-FCM to detect a PPI that increases transiently during T cell signaling, the antigen-inducible interaction between ZAP70 and the T cell antigen receptor (TCR)/CD3 complex. In contrast, IP-FCM detected no ZAP70 recruitment when T cells were stimulated with antigen in the presence of the src-family kinase inhibitor, PP2. Further, we tested whether IP-FCM possessed sufficient sensitivity to detect the effect of a second, rare class of compounds called SMIPPI (small-molecule inhibitor of PPI). We found that the first-generation non-optimized SMIPPI, Ro-26-4550, inhibited the IL-2:CD25 interaction detected by IP-FCM. This inhibition was detectable using either a recombinant CD25-Fc chimera or physiologic full-length CD25 captured from T cell lysates. Thus, we demonstrate that IP-FCM is a sensitive tool for measuring physiologic PPIs that are modulated by signal transduction and pharmacologic inhibition. PMID:23029201

  4. Capsule expression in Streptococcus mitis modulates interaction with oral keratinocytes and alters susceptibility to human antimicrobial peptides.

    PubMed

    Rukke, H V; Engen, S A; Schenck, K; Petersen, F C

    2016-08-01

    Streptococcus mitis is a colonizer of the oral cavity and the nasopharynx, and is closely related to Streptococcus pneumoniae. Both species occur in encapsulated and unencapsulated forms, but in S. mitis the role of the capsule in host interactions is mostly unknown. Therefore, the aim of this study was to examine how capsule expression in S. mitis can modulate interactions with the host with relevance for colonization. The S. mitis type strain, as well as two mutants of the type strain, an isogenic capsule deletion mutant, and a capsule switch mutant expressing the serotype 4 capsule of S. pneumoniae TIGR4, were used. Wild-type and capsule deletion strains of S. pneumoniae TIGR4 were included for comparison. We found that capsule production in S. mitis reduced adhesion to oral and lung epithelial cells. Further, exposure of oral epithelial cells to encapsulated S. mitis resulted in higher interleukin-6 and CXCL-8 transcription levels relative to the unencapsulated mutant. Capsule expression in S. mitis increased the sensitivity to human neutrophil peptide 1-3 but reduced the sensitivity to human β-defensin-3 and cathelicidin. This was in contrast with S. pneumoniae in which capsule expression has been generally associated with increased sensitivity to human antimicrobial peptides (AMPs). Collectively, these findings indicate that capsule expression in S. mitis is important in modulating interactions with epithelial cells, and is associated with increased or reduced susceptibility to AMPs depending on the nature of the AMP. PMID:26255868

  5. Self-assembly of bridged silsesquioxanes: modulating structural evolution via cooperative covalent and noncovalent interactions.

    PubMed

    Creff, Gaelle; Pichon, Benoît P; Blanc, Christophe; Maurin, David; Sauvajol, Jean-Louis; Carcel, Carole; Moreau, Joël J E; Roy, Pascale; Bartlett, John R; Man, Michel Wong Chi; Bantignies, Jean-Louis

    2013-05-01

    The self-assembly of a bis-urea phenylene-bridged silsesquioxane precursor during sol-gel synthesis has been investigated by in situ infrared spectroscopy, optical microscopy, and light scattering. In particular, the evolution of the system as a function of processing time was correlated with covalent interactions associated with increasing polycondensation and noncovalent interactions such as hydrogen bonding. A comprehensive mechanism based on the hydrolysis of the phenylene-bridged organosilane precursor prior to the crystallization of the corresponding bridged silsesquioxane via H-bonding and subsequent irreversible polycondensation is proposed. PMID:23574041

  6. Modulation of the intermolecular interaction of myoglobin by removal of the heme

    PubMed Central

    Imamura, Hiroshi; Morita, Takeshi; Sumi, Tomonari; Isogai, Yasuhiro; Kato, Minoru; Nishikawa, Keiko

    2013-01-01

    Toward understanding intermolecular interactions governing self-association of proteins, the present study investigated a model protein, myoglobin, using a small-angle X-ray scattering technique. It has been known that removal of the heme makes myoglobin aggregation-prone. The interparticle interferences of the holomyoglobin and the apomyoglobin were compared in terms of the structure factor. Analysis of the structure factor using a model potential of Derjaguin–Laudau–Verwey–Overbeek (DLVO) suggests that the intermolecular interaction potential of apomyoglobin is more attractive than that of holomyoglobin at short range from the protein molecule. PMID:24121340

  7. Ultrafast spontaneous emission modulation of graphene quantum dots interacting with Ag nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwei; Lu, Jian; Wang, Liang; Tian, Linfan; Deng, Xingxia; Tian, Lijun; Pan, Dengyu; Wang, Zhongyang

    2016-07-01

    We investigated the strong interaction between graphene quantum dots and silver nanoparticles in solution using time-resolved photoluminescence techniques. In solution, the silver nanoparticles are surrounded by graphene quantum dots and interacted with graphene quantum dots through exciton-plasmon coupling. An ultrafast spontaneous emission process (lifetime 27 ps) was observed in such a mixed solution. This ultrafast lifetime corresponds to the emission rate exceeding 35 GHz, with the purcell enhancement by a factor of ˜12. These experiment results pave the way for the realization of future high speed light sources applications.

  8. Canine distemper virus envelope protein interactions modulated by hydrophobic residues in the fusion protein globular head.

    PubMed

    Avila, Mislay; Khosravi, Mojtaba; Alves, Lisa; Ader-Ebert, Nadine; Bringolf, Fanny; Zurbriggen, Andreas; Plemper, Richard K; Plattet, Philippe

    2015-01-15

    Membrane fusion for morbillivirus cell entry relies on critical interactions between the viral fusion (F) and attachment (H) envelope glycoproteins. Through extensive mutagenesis of an F cavity recently proposed to contribute to F's interaction with the H protein, we identified two neighboring hydrophobic residues responsible for severe F-to-H binding and fusion-triggering deficiencies when they were mutated in combination. Since both residues reside on one side of the F cavity, the data suggest that H binds the F globular head domain sideways. PMID:25355896

  9. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells.

    PubMed

    Rattay, Kristin; Claude, Janine; Rezavandy, Esmail; Matt, Sonja; Hofmann, Thomas G; Kyewski, Bruno; Derbinski, Jens

    2015-02-01

    Promiscuous expression of a plethora of tissue-restricted Ags (TRAs) by medullary thymic epithelial cells (mTECs) plays an essential role in T cell tolerance. Although the cellular mechanisms by which promiscuous gene expression (pGE) imposes T cell tolerance have been well characterized, the underlying molecular mechanisms remain poorly understood. The autoimmune regulator (AIRE) is to date the only validated molecule known to regulate pGE. AIRE is part of higher-order multiprotein complexes, which promote transcription, elongation, and splicing of a wide range of target genes. How AIRE and its partners mediate these various effects at the molecular level is still largely unclear. Using a yeast two-hybrid screen, we searched for novel AIRE-interacting proteins and identified the homeodomain-interacting protein kinase 2 (HIPK2) as a novel partner. HIPK2 partially colocalized with AIRE in nuclear bodies upon cotransfection and in human mTECs in situ. Moreover, HIPK2 phosphorylated AIRE in vitro and suppressed the coactivator activity of AIRE in a kinase-dependent manner. To evaluate the role of Hipk2 in modulating the function of AIRE in vivo, we compared whole-genome gene signatures of purified mTEC subsets from TEC-specific Hipk2 knockout mice with control mice and identified a small set of differentially expressed genes. Unexpectedly, most differentially expressed genes were confined to the CD80(lo) mTEC subset and preferentially included AIRE-independent TRAs. Thus, although it modulates gene expression in mTECs and in addition affects the size of the medullary compartment, TEC-specific HIPK2 deletion only mildly affects AIRE-directed pGE in vivo. PMID:25552543

  10. STED Nanoscopy Reveals Molecular Details of Cholesterol- and Cytoskeleton-Modulated Lipid Interactions in Living Cells

    PubMed Central

    Mueller, V.; Ringemann, C.; Honigmann, A.; Schwarzmann, G.; Medda, R.; Leutenegger, M.; Polyakova, S.; Belov, V.N.; Hell, S.W.; Eggeling, C.

    2011-01-01

    Details about molecular membrane dynamics in living cells, such as lipid-protein interactions, are often hidden from the observer because of the limited spatial resolution of conventional far-field optical microscopy. The superior spatial resolution of stimulated emission depletion (STED) nanoscopy can provide new insights into this process. The application of fluorescence correlation spectroscopy (FCS) in focal spots continuously tuned down to 30 nm in diameter distinguishes between free and anomalous molecular diffusion due to, for example, transient binding of lipids to other membrane constituents, such as lipids and proteins. We compared STED-FCS data recorded on various fluorescent lipid analogs in the plasma membrane of living mammalian cells. Our results demonstrate details about the observed transient formation of molecular complexes. The diffusion characteristics of phosphoglycerolipids without hydroxyl-containing headgroups revealed weak interactions. The strongest interactions were observed with sphingolipid analogs, which showed cholesterol-assisted and cytoskeleton-dependent binding. The hydroxyl-containing headgroup of gangliosides, galactosylceramide, and phosphoinositol assisted binding, but in a much less cholesterol- and cytoskeleton-dependent manner. The observed anomalous diffusion indicates lipid-specific transient hydrogen bonding to other membrane molecules, such as proteins, and points to a distinct connectivity of the various lipids to other membrane constituents. This strong interaction is different from that responsible for forming cholesterol-dependent, liquid-ordered domains in model membranes. PMID:21961591

  11. A New Approach to Developing Interactive Software Modules through Graduate Education

    ERIC Educational Resources Information Center

    Sanders, Nathan E.; Faesi, Chris; Goodman, Alyssa A.

    2014-01-01

    Educational technology has attained significant importance as a mechanism for supporting experiential learning of science concepts. However, the growth of this mechanism is limited by the significant time and technical expertise needed to develop such products, particularly in specialized fields of science. We sought to test whether interactive,…

  12. Angiopoietin-like 4 Interacts with Matrix Proteins to Modulate Wound Healing*

    PubMed Central

    Goh, Yan Yih; Pal, Mintu; Chong, Han Chung; Zhu, Pengcheng; Tan, Ming Jie; Punugu, Lakshmi; Tan, Chek Kun; Huang, Royston-Luke; Sze, Siu Kwan; Tang, Mark Boon Yang; Ding, Jeak Ling; Kersten, Sander; Tan, Nguan Soon

    2010-01-01

    A dynamic cell-matrix interaction is crucial for a rapid cellular response to changes in the environment. Appropriate cell behavior in response to the changing wound environment is required for efficient wound closure. However, the way in which wound keratinocytes modify the wound environment to coordinate with such cellular responses remains less studied. We demonstrated that angiopoietin-like 4 (ANGPTL4) produced by wound keratinocytes coordinates cell-matrix communication. ANGPTL4 interacts with vitronectin and fibronectin in the wound bed, delaying their proteolytic degradation by metalloproteinases. This interaction does not interfere with integrin-matrix protein recognition and directly affects cell-matrix communication by altering the availability of intact matrix proteins. These interactions stimulate integrin- focal adhesion kinase, 14-3-3, and PKC-mediated signaling pathways essential for effective wound healing. The deficiency of ANGPTL4 in mice delays wound re-epithelialization. Further analysis revealed that cell migration was impaired in the ANGPTL4-deficient keratinocytes. Altogether, the findings provide molecular insight into a novel control of wound healing via ANGPTL4-dependent regulation of cell-matrix communication. Given the known role of ANGPTL4 in glucose and lipid homeostasis, it is a prime therapeutic candidate for the treatment of diabetic wounds. It also underscores the importance of cell-matrix communication during angiogenesis and cancer metastasis. PMID:20729546

  13. GGA3 Interacts with a G Protein-Coupled Receptor and Modulates Its Cell Surface Export.

    PubMed

    Zhang, Maoxiang; Davis, Jason E; Li, Chunman; Gao, Jie; Huang, Wei; Lambert, Nevin A; Terry, Alvin V; Wu, Guangyu

    2016-01-01

    Molecular mechanisms governing the anterograde trafficking of nascent G protein-coupled receptors (GPCRs) are poorly understood. Here, we have studied the regulation of cell surface transport of α2-adrenergic receptors (α2-ARs) by GGA3 (Golgi-localized, γ-adaptin ear domain homology, ADP ribosylation factor-binding protein 3), a multidomain clathrin adaptor protein that sorts cargo proteins at the trans-Golgi network (TGN) to the endosome/lysosome pathway. By using an inducible system, we demonstrated that GGA3 knockdown significantly inhibited the cell surface expression of newly synthesized α2B-AR without altering overall receptor synthesis and internalization. The receptors were arrested in the TGN. Furthermore, GGA3 knockdown attenuated α2B-AR-mediated signaling, including extracellular signal-regulated kinase 1/2 (ERK1/2) activation and cyclic AMP (cAMP) inhibition. More interestingly, GGA3 physically interacted with α2B-AR, and the interaction sites were identified as the triple Arg motif in the third intracellular loop of the receptor and the acidic motif EDWE in the VHS domain of GGA3. In contrast, α2A-AR did not interact with GGA3 and its cell surface export and signaling were not affected by GGA3 knockdown. These data reveal a novel function of GGA3 in export trafficking of a GPCR that is mediated via a specific interaction with the receptor. PMID:26811329

  14. Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles

    DOE PAGESBeta

    Salas, Gorka; Camarero, Julio; Cabrera, David; Takacs, Hélène; Varela, María; Ludwig, Robert; Dähring, Heidi; Hilger, Ingrid; Miranda, Rodolfo; Morales, María del Puerto; et al

    2014-07-23

    Here, we report on the study of heat dissipation power in monodisperse and crystalline magnetite nanoparticles as function of particle and aggregate sizes, magnetic field frequencies (up to 435 kHz) and amplitudes (up to 50 mT), media viscosity and particle concentration. These nanoparticles display specific absorption rate values of few hundreds of WgFe-1 at moderate frequencies (~100 kHz), increasing up to 3632 WgFe-1 at more extreme field conditions (430 kHz and 40 mT) for the largest size. We have found that Néelian relaxation processes are dominant for all nanoparticle sizes, whereas Brownian contribution dominates only for the largest size (22more » nm) at high particle concentrations when dipolar interactions enhance the effective magnetic anisotropy. Besides, the particle concentration dependence of the specific absorption rate reflects the importance of magnetic dipolar interactions which strongly depend on aggregate and particle size. Our results show that dipolar interactions tune the effective magnetic anisotropy determining the Néelian and Brownian contributions into SAR values. The possibility of switching between heating mechanisms via dipolar interactions is of great importance towards controlling the heat exposure supplied by IONP as intracellular heating mediators.« less

  15. Apolipoprotein A5 and lipoprotein lipase interact to modulate anthropometric measures in Hispanics of Caribbean origin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apolipoprotein A5 (APOA5) and lipoprotein lipase (LPL) proteins interact functionally to regulate lipid metabolism, and single nucleotide polymorphisms (SNPs) for each gene have also been associated independently with obesity risk. Evaluating gene combinations may be more effective than single SNP a...

  16. Interaction of cinnamaldehyde and epicatechin with tau: implications of beneficial effects in modulating Alzheimer's disease pathogenesis.

    PubMed

    George, Roshni C; Lew, John; Graves, Donald J

    2013-01-01

    Abnormal modifications in tau such as hyperphosphorylation, oxidation, and glycation interfere with its interaction with microtubules leading to its dissociation and self-aggregation into neurofibrillary tangles, a hallmark of Alzheimer's disease (AD). Previously we reported that an aqueous extract of cinnamon has the ability to inhibit tau aggregation in vitro and can even induce dissociation of tangles isolated from AD brain. In the present study, we carried out investigations with cinnamaldehyde (CA) and epicatechin (EC), two components of active cinnamon extract. We found that CA and the oxidized form of EC (ECox) inhibited tau aggregation in vitro and the activity was due to their interaction with the two cysteine residues in tau. Mass spectrometry of a synthetic peptide, SKCGS, representing the actual tau sequence, identified the thiol as reacting with CA and ECox. Use of a cysteine double mutant of tau showed the necessity of cysteine for aggregation inhibition by CA. The interaction of CA with tau cysteines was reversible and the presence of CA did not impair the biological function of tau in tubulin assembly in vitro. Further, these compounds protected tau from oxidation caused by the reactive oxygen species, H2O2, and prevented subsequent formation of high molecular weight species that are considered to stimulate tangle formation. Finally, we observed that EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. Our results suggest that small molecules that form a reversible interaction with cysteines have the potential to protect tau from abnormal modifications. PMID:23531502

  17. Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles

    SciTech Connect

    Salas, Gorka; Camarero, Julio; Cabrera, David; Takacs, Hélène; Varela, María; Ludwig, Robert; Dähring, Heidi; Hilger, Ingrid; Miranda, Rodolfo; Morales, María del Puerto; Teran, Francisco Jose

    2014-07-23

    Here, we report on the study of heat dissipation power in monodisperse and crystalline magnetite nanoparticles as function of particle and aggregate sizes, magnetic field frequencies (up to 435 kHz) and amplitudes (up to 50 mT), media viscosity and particle concentration. These nanoparticles display specific absorption rate values of few hundreds of WgFe-1 at moderate frequencies (~100 kHz), increasing up to 3632 WgFe-1 at more extreme field conditions (430 kHz and 40 mT) for the largest size. We have found that Néelian relaxation processes are dominant for all nanoparticle sizes, whereas Brownian contribution dominates only for the largest size (22 nm) at high particle concentrations when dipolar interactions enhance the effective magnetic anisotropy. Besides, the particle concentration dependence of the specific absorption rate reflects the importance of magnetic dipolar interactions which strongly depend on aggregate and particle size. Our results show that dipolar interactions tune the effective magnetic anisotropy determining the Néelian and Brownian contributions into SAR values. The possibility of switching between heating mechanisms via dipolar interactions is of great importance towards controlling the heat exposure supplied by IONP as intracellular heating mediators.

  18. Stimulus set size modulates the sex-emotion interaction in face categorization.

    PubMed

    Lipp, Ottmar V; Karnadewi, Fika; Craig, Belinda M; Cronin, Sophie L

    2015-05-01

    Previous research has shown that invariant facial features-for example, sex-and variant facial features-for example, emotional expressions-interact during face categorization. The nature of this interaction is a matter of dispute, however, and has been reported as either asymmetrical, such that sex cues influence emotion perception but emotional expressions do not affect the perception of sex, or symmetrical, such that sex and emotion cues each reciprocally influence the categorization of the other. In the present research, we identified stimulus set size as the critical factor leading to this disparity. Using faces drawn from different databases, in two separate experiments we replicated the finding of a symmetrical interaction between face sex and emotional expression when larger sets of posers were used. Using a subset of four posers, in the same setups, however, did not provide evidence for a symmetrical interaction, which is also consistent with prior research. This pattern of results suggests that different strategies may be used to categorize aspects of faces that are encountered repeatedly. PMID:25737259

  19. PAR3-aPKC regulates Tiam1 by modulating suppressive internal interactions

    PubMed Central

    Matsuzawa, Kenji; Akita, Hiroki; Watanabe, Takashi; Kakeno, Mai; Matsui, Toshinori; Wang, Shujie; Kaibuchi, Kozo

    2016-01-01

    Tiam1 is one of the most extensively analyzed activators of the small GTPase Rac. However, fundamental aspects of its regulation are poorly understood. Here we demonstrate that Tiam1 is functionally suppressed by internal interactions and that the PAR complex participates in its full activation. The N-terminal region of Tiam1 binds to the protein-binding and catalytic domains to inhibit its localization and activation. Atypical PKCs phosphorylate Tiam1 to relieve its intramolecular interactions, and the subsequent stabilization of its interaction with PAR3 allows it to exert localized activity. By analyzing Tiam1 regulation by PAR3-aPKC within the context of PDGF signaling, we also show that PAR3 directly binds PDGF receptor β. Thus we provide the first evidence for the negative regulation of Tiam1 by internal interactions, elucidate the nature of Tiam1 regulation by the PAR complex, and reveal a novel role for the PAR complex in PDGF signaling. PMID:26941335

  20. Infant's action skill dynamically modulates parental action demonstration in the dyadic interaction.

    PubMed

    Fukuyama, Hiroshi; Qin, Shibo; Kanakogi, Yasuhiro; Nagai, Yukie; Asada, Minoru; Myowa-Yamakoshi, Masako

    2015-11-01

    When interacting with infants, human adults modify their behaviours in an exaggerated manner. Previous studies have demonstrated that infant-directed modification affects the infant's behaviour. However, little is known about how infant-directed modification is elicited during infant-parent interaction. We investigated whether and how the infant's behaviour affects the mother's action during an interaction. We recorded three-dimensional information of cup movements while mothers demonstrated a cup-nesting task during interaction with their infants aged 11 to 13 months. Analyses revealed that spatial characteristics of the mother's task demonstration clearly changed depending on the infant's object manipulation. In particular, the variance in the distance that the cup was moved decreased after the infant's cup nesting and increased after the infant's task-irrelevant manipulation (e.g. cup banging). This pattern was not observed for mothers with 6- to 8-month-olds, who do not have the fine motor skill to perform the action. These results indicate that the infant's action skill dynamically affects the infant-directed action and suggest that the mother is sensitive to the infant's potential to learn a novel action. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=VNS2IHwLIhg&feature=youtu.be. PMID:25483121

  1. Genetic variants at PSMD3 interact with dietary fat and carbohydrate to modulate insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteasome (prosome, macropain) 26S subunit, non-ATPase, 3 (PSMD3) encodes subunit 3 of the 26S proteasome, which is involved in regulating insulin signal transduction. We aimed to investigate the associations of PSMD3 variants with glucose-related traits and the interactions of those variants with ...

  2. Genetic Interactions Found Between Calcium Channel Genes Modulate Amyloid Load Measured by Positron Emission Tomography

    PubMed Central

    Koran, Mary Ellen I.; Hohman, Timothy J.; Thornton-Wells, Tricia A.

    2014-01-01

    Late-onset Alzheimer’s disease (LOAD) is known to have a complex, oligogenic etiology, with considerable genetic heterogeneity. We investigated the influence of genetic interactions between genes in the Alzheimer’s disease (AD) pathway on amyloid-beta (Aβ) deposition as measured by PiB or AV-45 ligand positron emission tomography (PET) to aid in understanding LOAD’s genetic etiology. Subsets of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohorts were used for discovery and for two independent validation analyses. A significant interaction between RYR3 and CACNA1C was confirmed in all three of the independent ADNI datasets. Both genes encode calcium channels expressed in the brain. The results shown here support previous animal studies implicating interactions between these calcium channels in amyloidigenesis and suggest that the pathological cascade of this disease may be modified by interactions in the amyloid-calcium axis. Future work focusing on the mechanisms of such relationships may inform targets for clinical intervention. PMID:24026422

  3. Modulation of Additive and Interactive Effects in Lexical Decision by Trial History

    ERIC Educational Resources Information Center

    Masson, Michael E. J.; Kliegl, Reinhold

    2013-01-01

    Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test theoretical claims about the cognitive architecture of word-reading processes. Additive effects among these factors have been taken as evidence for discrete-stage models of word reading. We present evidence from linear mixed-model…

  4. Establishment of a Developmental Compartment Requires Interactions between Three Synergistic Cis-regulatory Modules

    PubMed Central

    Bieli, Dimitri; Kanca, Oguz; Requena, David; Hamaratoglu, Fisun; Gohl, Daryl; Schedl, Paul; Affolter, Markus; Slattery, Matthew; Müller, Martin; Estella, Carlos

    2015-01-01

    The subdivision of cell populations in compartments is a key event during animal development. In Drosophila, the gene apterous (ap) divides the wing imaginal disc in dorsal vs ventral cell lineages and is required for wing formation. ap function as a dorsal selector gene has been extensively studied. However, the regulation of its expression during wing development is poorly understood. In this study, we analyzed ap transcriptional regulation at the endogenous locus and identified three cis-regulatory modules (CRMs) essential for wing development. Only when the three CRMs are combined, robust ap expression is obtained. In addition, we genetically and molecularly analyzed the trans-factors that regulate these CRMs. Our results propose a three-step mechanism for the cell lineage compartment expression of ap that includes initial activation, positive autoregulation and Trithorax-mediated maintenance through separable CRMs. PMID:26468882

  5. Accurate formula for dissipative interaction in frequency modulation atomic force microscopy

    SciTech Connect

    Suzuki, Kazuhiro; Matsushige, Kazumi; Yamada, Hirofumi; Kobayashi, Kei; Labuda, Aleksander

    2014-12-08

    Much interest has recently focused on the viscosity of nano-confined liquids. Frequency modulation atomic force microscopy (FM-AFM) is a powerful technique that can detect variations in the conservative and dissipative forces between a nanometer-scale tip and a sample surface. We now present an accurate formula to convert the dissipation power of the cantilever measured during the experiment to damping of the tip-sample system. We demonstrated the conversion of the dissipation power versus tip-sample separation curve measured using a colloidal probe cantilever on a mica surface in water to the damping curve, which showed a good agreement with the theoretical curve. Moreover, we obtained the damping curve from the dissipation power curve measured on the hydration layers on the mica surface using a nanometer-scale tip, demonstrating that the formula allows us to quantitatively measure the viscosity of a nano-confined liquid using FM-AFM.

  6. Accurate formula for dissipative interaction in frequency modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Kazuhiro; Kobayashi, Kei; Labuda, Aleksander; Matsushige, Kazumi; Yamada, Hirofumi

    2014-12-01

    Much interest has recently focused on the viscosity of nano-confined liquids. Frequency modulation atomic force microscopy (FM-AFM) is a powerful technique that can detect variations in the conservative and dissipative forces between a nanometer-scale tip and a sample surface. We now present an accurate formula to convert the dissipation power of the cantilever measured during the experiment to damping of the tip-sample system. We demonstrated the conversion of the dissipation power versus tip-sample separation curve measured using a colloidal probe cantilever on a mica surface in water to the damping curve, which showed a good agreement with the theoretical curve. Moreover, we obtained the damping curve from the dissipation power curve measured on the hydration layers on the mica surface using a nanometer-scale tip, demonstrating that the formula allows us to quantitatively measure the viscosity of a nano-confined liquid using FM-AFM.

  7. Label-Free Detection of G Protein–SNARE Interactions and Screening for Small Molecule Modulators

    PubMed Central

    2011-01-01

    Gi/o-coupled presynaptic GPCRs are major targets in neuropsychiatric diseases. For example, presynaptic auto- or heteroreceptors include the D2 dopamine receptor, H3 histamine receptor, 5HT1 serotonin receptors, M4 acetylcholine receptors, GABAB receptors, Class II and III metabotropic glutamate receptors, opioid receptors, as well as many other receptors. These GPCRs exert their influence by decreasing exocytosis of synaptic vesicles. One mechanism by which they act is through direct interaction of the Gβγ subunit with members of the SNARE complex downstream of voltage-dependent calcium channels, and specifically with the C-terminus of SNAP25 and the H3 domain of syntaxin1A. (Gerachshenko, T., Blackmer, T., Yoon, E. J., Bartleson, C., Hamm, H. E., and Alford, S. (2005) Gβγ acts at the C terminus of SNAP-25 to mediate presynaptic inhibition, Nat. Neurosci.8, 597–605; Yoon, E. J., Gerachshenko, T., Spiegelberg, B. D., Alford, S., and Hamm, H. E. (2007) Gβγ interferes with Ca2+-dependent binding of synaptotagmin to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, Mol. Pharmacol.72, 1210–1219; Blackmer, T., Larsen, E. C., Bartleson, C., Kowalchyk, J. A., Yoon, E. J., Preininger, A. M., Alford, S., Hamm, H. E., and Martin, T. F. (2005) G protein βγ directly regulates SNARE protein fusion machinery for secretory granule exocytosis, Nat. Neurosci.8, 421–425).1−3 Small molecule inhibitors of the Gβγ–SNARE interaction would allow the study of the relative importance of this mechanism in more detail. We have utilized novel, label-free technology to detect this protein–protein interaction and screen for several small molecule compounds that perturb the interaction, demonstrating the viability of this approach. Interestingly, the screen also produced enhancers of the Gβγ–SNARE interaction. PMID:22368765

  8. Epistatic interactions modulate the evolution of mammalian mitochondrial respiratory complex components

    PubMed Central

    Azevedo, Luísa; Carneiro, João; van Asch, Barbara; Moleirinho, Ana; Pereira, Filipe; Amorim, António

    2009-01-01

    Background The deleterious effect of a mutation can be reverted by a second-site interacting residue. This is an epistatic compensatory process explaining why mutations that are deleterious in some species are tolerated in phylogenetically related lineages, rendering evident that those mutations are, by all means, only deleterious in the species-specific context. Although an extensive and refined theoretical framework on compensatory evolution does exist, the supporting evidence remains limited, especially for protein models. In this current study, we focused on the molecular mechanism underlying the epistatic compensatory process in mammalian mitochondrial OXPHOS proteins using a combination of in-depth structural and sequence analyses. Results Modeled human structures were used in this study to predict the structural impairment and recovery of deleterious mutations alone and combined with an interacting compensatory partner, respectively. In two cases, COI and COIII, intramolecular interactions between spatially linked residues restore the folding pattern impaired by the deleterious mutation. In a third case, intermolecular contact between mitochondrial CYB and nuclear CYT1 encoded components of the cytochrome bc1 complex are likely to restore protein binding. Moreover, we observed different modes of compensatory evolution that have resulted in either a quasi-simultaneous occurrence of a mutation and corresponding compensatory partner, or in independent occurrences of mutations in distinct lineages that were always preceded by the compensatory site. Conclusion Epistatic interactions between individual replacements involving deleterious mutations seems to follow a parsimonious model of evolution in which genomes hold pre-compensating states that subsequently tolerate deleterious mutations. This phenomenon is likely to have been constraining the variability at coevolving sites and shaping the interaction between the mitochondrial and the nuclear genome. PMID

  9. A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis

    PubMed Central

    2012-01-01

    Background The overall influence of gene interaction in human disease is unknown. In cystic fibrosis (CF) a single allele of the cystic fibrosis transmembrane conductance regulator (CFTR-ΔF508) accounts for most of the disease. In cell models, CFTR-ΔF508 exhibits defective protein biogenesis and degradation rather than proper trafficking to the plasma membrane where CFTR normally functions. Numerous genes function in the biogenesis of CFTR and influence the fate of CFTR-ΔF508. However it is not known whether genetic variation in such genes contributes to disease severity in patients. Nor is there an easy way to study how numerous gene interactions involving CFTR-ΔF would manifest phenotypically. Methods To gain insight into the function and evolutionary conservation of a gene interaction network that regulates biogenesis of a misfolded ABC transporter, we employed yeast genetics to develop a 'phenomic' model, in which the CFTR-ΔF508-equivalent residue of a yeast homolog is mutated (Yor1-ΔF670), and where the genome is scanned quantitatively for interaction. We first confirmed that Yor1-ΔF undergoes protein misfolding and has reduced half-life, analogous to CFTR-ΔF. Gene interaction was then assessed quantitatively by growth curves for approximately 5,000 double mutants, based on alteration in the dose response to growth inhibition by oligomycin, a toxin extruded from the cell at the plasma membrane by Yor1. Results From a comparative genomic perspective, yeast gene interactions influencing Yor1-ΔF biogenesis were representative of human homologs previously found to modulate processing of CFTR-ΔF in mammalian cells. Additional evolutionarily conserved pathways were implicated by the study, and a ΔF-specific pro-biogenesis function of the recently discovered ER membrane complex (EMC) was evident from the yeast screen. This novel function was validated biochemically by siRNA of an EMC ortholog in a human cell line expressing CFTR-ΔF508. The precision and

  10. De novo designed library of linear helical peptides: an exploratory tool in the discovery of protein-protein interaction modulators.

    PubMed

    Bonache, M Ángeles; Balsera, Beatriz; López-Méndez, Blanca; Millet, Oscar; Brancaccio, Diego; Gómez-Monterrey, Isabel; Carotenuto, Alfonso; Pavone, Luigi M; Reille-Seroussi, Marie; Gagey-Eilstein, Nathalie; Vidal, Michel; de la Torre-Martinez, Roberto; Fernández-Carvajal, Asia; Ferrer-Montiel, Antonio; García-López, M Teresa; Martín-Martínez, Mercedes; de Vega, M Jesús Pérez; González-Muñiz, Rosario

    2014-05-12

    Protein-protein interactions (PPIs) have emerged as important targets for pharmaceutical intervention because of their essential role in numerous physiological and pathological processes, but screening efforts using small-molecules have led to very low hit rates. Linear peptides could represent a quick and effective approach to discover initial PPI hits, particularly if they have inherent ability to adopt specific peptide secondary structures. Here, we address this hypothesis through a linear helical peptide library, composed of four sublibraries, which was designed by theoretical predictions of helicity (Agadir software). The 13-mer peptides of this collection fixes either a combination of three aromatic or two aromatic and one aliphatic residues on one face of the helix (Ac-SSEEX(5)ARNX(9)AAX(12)N-NH2), since these are structural features quite common at PPIs interfaces. The 81 designed peptides were conveniently synthesized by parallel solid-phase methodologies, and the tendency of some representative library components to adopt the intended secondary structure was corroborated through CD and NMR experiments. As proof of concept in the search for PPI modulators, the usefulness of this library was verified on the widely studied p53-MDM2 interaction and on the communication between VEGF and its receptor Flt-1, two PPIs for which a hydrophobic α-helix is essential for the interaction. We have demonstrated here that, in both cases, selected peptides from the library, containing the right hydrophobic sequence of the hot-spot in one of the protein partners, are able to interact with the complementary protein. Moreover, we have discover some new, quite potent inhibitors of the VEGF-Flt-1 interaction, just by replacing one of the aromatic residues of the initial F(5)Y(9)Y(12) peptide by W, in agreement with previous results on related antiangiogenic peptides. Finally, the HTS evaluation of the full collection on thermoTRPs has led to a few antagonists of TRPV1 and TRPA

  11. Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain

    PubMed Central

    Zhao, Jianfei; Favero, David S.; Peng, Hao; Neff, Michael M.

    2013-01-01

    The Arabidopsis thaliana genome encodes 29 AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) genes, which evolved into two phylogenic clades. The AHL proteins contain one or two AT-hook motif(s) and one plant and prokaryote conserved (PPC)/domain of unknown function #296 (DUF296) domain. Seedlings lacking both SOB3/AHL29 and ESC/AHL27 confer a subtle long-hypocotyl phenotype compared with the WT or either single-null mutant. In contrast, the missense allele sob3-6 confers a dramatic long-hypocotyl phenotype in the light. In this study, we examined the dominant-negative feature of sob3-6 and found that it encodes a protein with a disrupted AT-hook motif that abolishes binding to AT-rich DNA. A loss-of-function approach demonstrated different, yet redundant, contributions of additional AHL genes in suppressing hypocotyl elongation in the light. We showed that AHL proteins interact with each other and themselves via the PPC/DUF296 domain. AHLs also share interactions with other nuclear proteins, such as transcription factors, suggesting that these interactions also contribute to the functional redundancy within this gene family. The coordinated action of AHLs requires an AT-hook motif capable of binding AT-rich DNA, as well as a PPC/DUF296 domain containing a conserved Gly-Arg-Phe-Glu-Ile-Leu region. Alteration of this region abolished SOB3/AHL29’s physical interaction with transcription factors and resulted in a dominant-negative allele in planta that was phenotypically similar to sob3-6. We propose a molecular model where AHLs interact with each other and themselves, as well as other nuclear proteins, to form complexes which modulate plant growth and development. PMID:24218605

  12. The CNK2 scaffold interacts with vilse and modulates Rac cycling during spine morphogenesis in hippocampal neurons.

    PubMed

    Lim, Junghwa; Ritt, Daniel A; Zhou, Ming; Morrison, Deborah K

    2014-03-31

    Protein scaffolds play an important role in signal transduction, functioning to facilitate protein interactions and localize key pathway components to specific signaling sites. Connector enhancer of KSR-2 (CNK2) is a neuronally expressed scaffold recently implicated in nonsyndromic, X-linked intellectual disability (NS-XLID) [1-3]. NS-XLID patients have deficits in cognitive function and their neurons often exhibit dendritic spine abnormalities [4], suggesting a role for CNK2 in synaptic signaling and/or spine formation. To gain insight regarding how CNK2 might contribute to these processes, we used mass spectrometry to identify proteins that interact with the endogenous CNK2 scaffold. Here, we report that the major binding partner of CNK2 is Vilse/ARHGAP39 and that CNK2 complexes are enriched for proteins involved in Rac/Cdc42 signaling, including Rac1 itself, α-PIX and β-PIX, GIT1 and GIT2, PAK3 and PAK4, and members of the cytohesin family. Binding between CNK2 and Vilse was found to be constitutive, mediated by the WW domains of Vilse and a proline motif in CNK2. Through mutant analysis, protein depletion and rescue experiments, we identify CNK2 as a spatial modulator of Rac cycling during spine morphogenesis and find that the interaction with Vilse is critical for maintaining RacGDP/GTP levels at a balance required for spine formation. PMID:24656827

  13. Multiaddressable molecular rectangles with reversible host–guest interactions: Modulation of pH-controlled guest release and capture

    PubMed Central

    Chan, Alan Kwun-Wa; Lam, Wai Han; Tanaka, Yuya; Wong, Keith Man-Chung; Yam, Vivian Wing-Wah

    2015-01-01

    A series of multiaddressable platinum(II) molecular rectangles with different rigidities and cavity sizes has been synthesized by endcapping the U-shaped diplatinum(II) terpyridine moiety with various bis-alkynyl ligands. The studies of the host–guest association with various square planar platinum(II), palladium(II), and gold(III) complexes and the related low-dimensional gold(I) complexes, most of which are potential anticancer therapeutics, have been performed. Excellent guest confinement and selectivity of the rectangular architecture have been shown. Introduction of pH-responsive functionalities to the ligand backbone generates multifunctional molecular rectangles that exhibit reversible guest release and capture on the addition of acids and bases, indicating their potential in controlled therapeutics delivery on pH modulation. The reversible host–guest interactions are found to be strongly perturbed by metal–metal and π–π interactions and to a certain extent, electrostatic interactions, giving rise to various spectroscopic changes depending on the nature of the guest molecules. Their binding mode and thermodynamic parameters have been determined by 2D NMR and van’t Hoff analysis and supported by computational study. PMID:25568083

  14. Modulation of water efflux through functional interaction between TRPV4 and TMEM16A/anoctamin 1.

    PubMed

    Takayama, Yasunori; Shibasaki, Koji; Suzuki, Yoshiro; Yamanaka, Akihiro; Tominaga, Makoto

    2014-05-01

    Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable channel, is highly expressed in the apical membrane of choroid plexus epithelial cells (CPECs) in the brain. The function of TRPV4 is unknown. Here, we show physical and functional interaction between TRPV4 and anoctamin 1 (ANO1) in HEK293T cells and CPECs. Chloride currents induced by a TRPV4 activator (GSK1016790A) were markedly increased in an extracellular calcium-dependent manner in HEK293T cells expressing TRPV4 with ANO1, but not with ANO4, ANO6, or ANO10, the mRNAs of which were expressed in the choroid plexus. We also found physical interaction between TRPV4 and ANO1 in both HEK293T cells and choroid plexus. We observed that ANO1 was activated at a warm temperature (37°C) in HEK293T cells and that the heat-evoked chloride currents were markedly enhanced after GSK1016790A application in CPECs. Simultaneous stimulation by warmth and hyposmosis induced chloride current activation in wild-type, but not in TRPV4-deficient, CPECs. Cell volume changes were induced by ANO1-mediated chloride currents in parallel with membrane potential changes, and the cell volume was significantly decreased at negative membrane potentials by TRPV4-induced ANO1 activation. Thus, physical and functional interactions between TRPV4 and ANO1 can modulate water transport in the choroid plexus. PMID:24509911

  15. Studies of Peptide:N-glycnase-p97 Interaction Suggest that p97 Phosphorylation Modulates Endoplasmic Reticulum-Associated Degradation

    SciTech Connect

    Zhao,G.; Zhou, X.; Wang, L.; Li, G.; Schindelin, H.; Lennarz, W.

    2007-01-01

    During endoplasmic reticulum-associated degradation, the multifunctional AAA ATPase p97 is part of a protein degradation complex. p97 associates via its N-terminal domain with various cofactors to recruit ubiquitinated substrates. It also interacts with alternative substrate-processing cofactors, such as Ufd2, Ufd3, and peptide:N-glycanase (PNGase) in higher eukaryotes. These cofactors determine different fates of the substrates and they all bind outside of the N-terminal domain of p97. Here, we describe a cofactor-binding motif of p97 contained within the last 10 amino acid residues of the C terminus, which is both necessary and sufficient to mediate interactions of p97 with PNGase and Ufd3. The crystal structure of the N-terminal domain of PNGase in complex with this motif provides detailed insight into the interaction between p97 and its substrate-processing cofactors. Phosphorylation of p97's highly conserved penultimate tyrosine residue, which is the main phosphorylation site during T cell receptor stimulation, completely blocks binding of either PNGase or Ufd3 to p97. This observation suggests that phosphorylation of this residue modulates endoplasmic reticulum-associated protein degradation activity by discharging substrate-processing cofactors.

  16. Propoxylation of cationic polymers provides a novel approach to controllable modulation of their cellular toxicity and interaction with nucleic acids.

    PubMed

    Shevchenko, Vesta D; Salakhieva, Diana V; Yergeshov, Abdulla A; Badeev, Yuriy V; Shtyrlin, Yurii G; Abdullin, Timur I

    2016-12-01

    An effective chemical approach to modulation of biological interactions of cationic polymers was proposed and tested using polyethyleneimine (PEI) as a drug carrier. Branched 25kDa PEI was modified in the reaction with propylene oxide (PO) to produce a series of propoxylated PEIs with NH groups grafted by single or oligomer PO units. Clear relationships between the propoxylation degree and biological effects, such as interaction with plasmid DNA, hemolytic, cytotoxic, and pro-apoptotic activities were revealed for PEIs modified upon PO/NH molar ratio of 0.5, 0.75, 1.0 and 3.0. The partial modification of available cationic centers up to 100% is predominantly accompanied by a significant gradual reduction in polycation adverse effects, while ability of complex formation with plasmid DNA is being preserved. Grafted PEI with 0.75 PO/NH ratio provides better protection from nuclease degradation and transfection activity compared with other modified PEIs. Revealed relationships contribute to the development of safe polymeric systems with controllable physicochemical properties and biological interactions. PMID:27612689

  17. Interaction of multiple networks modulated by the working memory training based on real-time fMRI

    NASA Astrophysics Data System (ADS)

    Shen, Jiahui; Zhang, Gaoyan; Zhu, Chaozhe; Yao, Li; Zhao, Xiaojie

    2015-03-01

    Neuroimaging studies of working memory training have identified the alteration of brain activity as well as the regional interactions within the functional networks such as central executive network (CEN) and default mode network (DMN). However, how the interaction within and between these multiple networks is modulated by the training remains unclear. In this paper, we examined the interaction of three training-induced brain networks during working memory training based on real-time functional magnetic resonance imaging (rtfMRI). Thirty subjects assigned to the experimental and control group respectively participated in two times training separated by seven days. Three networks including silence network (SN), CEN and DMN were identified by the training data with the calculated function connections within each network. Structural equation modeling (SEM) approach was used to construct the directional connectivity patterns. The results showed that the causal influences from the percent signal changes of target ROI to the SN were positively changed in both two groups, as well as the causal influence from the SN to CEN was positively changed in experimental group but negatively changed in control group from the SN to DMN. Further correlation analysis of the changes in each network with the behavioral improvements showed that the changes in SN were stronger positively correlated with the behavioral improvement of letter memory task. These findings indicated that the SN was not only a switch between the target ROI and the other networks in the feedback training but also an essential factor to the behavioral improvement.

  18. LHX3 Interacts with Inhibitor of Histone Acetyltransferase Complex Subunits LANP and TAF-1β to Modulate Pituitary Gene Regulation

    PubMed Central

    Witzmann, Frank A.; Rhodes, Simon J.

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex. PMID:23861948

  19. Spin-wave propagation steered by electric field modulated exchange interaction.

    PubMed

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  20. Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex.

    PubMed

    Raj, Ritu; Lercher, Lukas; Mohammed, Shabaz; Davis, Benjamin G

    2016-07-25

    Transcriptional regulation can be established by various post-translational modifications (PTMs) on histone proteins in the nucleosome and by nucleobase modifications on chromosomal DNA. Functional consequences of histone O-GlcNAcylation (O-GlcNAc=O-linked β-N-acetylglucosamine) are largely unexplored. Herein, we generate homogeneously GlcNAcylated histones and nucleosomes by chemical post-translational modification. Mass-spectrometry-based quantitative interaction proteomics reveals a direct interaction between GlcNAcylated nucleosomes and the "facilitates chromatin transcription" (FACT) complex. Preferential binding of FACT to GlcNAcylated nucleosomes may point towards O-GlcNAcylation as one of the triggers for FACT-driven transcriptional control. PMID:27272618

  1. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress.

    PubMed

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-10-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  2. Spin-wave propagation steered by electric field modulated exchange interaction

    PubMed Central

    Wang, Sheng; Guan, Xiawei; Cheng, Xiaomin; Lian, Chen; Huang, Ting; Miao, Xiangshui

    2016-01-01

    Combined ab initio and micromagnetic simulations are carried out to demonstrate the feasibility on the electrical manipulation of spin-wave propagation in ultrathin Fe films. It is discovered that the exchange interaction can be substantially weakened under the influence of electric field applied perpendicular to the magnetic film surface. Furthermore, we demonstrate that the electric field modified exchange constant could effectively control the propagation of spin waves. To be specific, an external applied electric field of 5 V/nm can effectively weaken exchange interaction by 80% and is sufficient to induce nearly twofold change of the wavenumber. This discovery may open a door to energy-efficient local manipulation of the spin wave propagation utilizing electric fields, which is crucial for both fundamental research and spin wave based logic applications. PMID:27587083

  3. KDM5 Interacts with Foxo to Modulate Cellular Levels of Oxidative Stress

    PubMed Central

    Liu, Xingyin; Greer, Christina; Secombe, Julie

    2014-01-01

    Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding. PMID:25329053

  4. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling

    SciTech Connect

    Mace, P.D.; Robinson, H.; Wallez, Y.; Dobaczewska, M. K.; Lee, J. J.; Pasquale, E. B.; Riedl, S. J.

    2011-12-01

    Members of the novel SH2-containing protein (NSP) and Crk-associated substrate (Cas) protein families form multidomain signaling platforms that mediate cell migration and invasion through a collection of distinct signaling motifs. Members of each family interact via their respective C-terminal domains, but the mechanism of this association has remained enigmatic. Here we present the crystal structures of the C-terminal domain from the NSP protein BCAR3 and the complex of NSP3 with p130Cas. BCAR3 adopts the Cdc25-homology fold of Ras GTPase exchange factors, but it has a 'closed' conformation incapable of enzymatic activity. The structure of the NSP3-p130Cas complex reveals that this closed conformation is instrumental for interaction of NSP proteins with a focal adhesion-targeting domain present in Cas proteins. This enzyme-to-adaptor conversion enables high-affinity, yet promiscuous, interactions between NSP and Cas proteins and represents an unprecedented mechanistic paradigm linking cellular signaling networks.

  5. Plasminogen Activator Inhibitor Type 1 Interacts with α3 Subunit of Proteasome and Modulates Its Activity*

    PubMed Central

    Boncela, Joanna; Przygodzka, Patrycja; Papiewska-Pajak, Izabela; Wyroba, Elzbieta; Osinska, Magdalena; Cierniewski, Czeslaw S.

    2011-01-01

    Plasminogen activator inhibitor type-1 (PAI-1), a multifunctional protein, is an important physiological regulator of fibrinolysis, extracellular matrix homeostasis, and cell motility. Recent observations show that PAI-1 may also be implicated in maintaining integrity of cells, especially with respect to cellular proliferation or apoptosis. In the present study we provide evidence that PAI-1 interacts with proteasome and affects its activity. First, by using the yeast two-hybrid system, we found that the α3 subunit of proteasome directly interacts with PAI-1. Then, to ensure that the PAI-1-proteasome complex is formed in vivo, both proteins were coimmunoprecipitated from endothelial cells and identified with specific antibodies. The specificity of this interaction was evidenced after transfection of HeLa cells with pCMV-PAI-1 and coimmunoprecipitation of both proteins with anti-PAI-1 antibodies. Subsequently, cellular distribution of the PAI-1-proteasome complexes was established by immunogold staining and electron microscopy analyses. Both proteins appeared in a diffuse cytosolic pattern but also could be found in a dense perinuclear and nuclear location. Furthermore, PAI-1 induced formation of aggresomes freely located in endothelial cytoplasm. Increased PAI-1 expression abrogated degradation of degron analyzed after cotransfection of HeLa cells with pCMV-PAI-1 and pd2EGFP-N1 and prevented degradation of p53 as well as IκBα, as evidenced both by confocal microscopy and Western immunoblotting. PMID:21135093

  6. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    PubMed

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  7. A Mitochondrial ATP synthase Subunit Interacts with TOR Signaling to Modulate Protein Homeostasis and Lifespan in Drosophila

    PubMed Central

    Sun, Xiaoping; Wheeler, Charles T.; Yolitz, Jason; Laslo, Mara; Alberico, Thomas; Sun, Yaning; Song, Qisheng; Zou, Sige

    2014-01-01

    SUMMARY Diet composition is a critical determinant of lifespan and nutrient imbalance is detrimental health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets, but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress, transcriptional changes in metabolism, proteostasis and immune genes, reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and MAPK signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging. PMID:25220459

  8. Fluid-Structure Interactions Analysis of Shear-Induced Modulation of a Mesenchymal Stem Cell: An Image-Based Study.

    PubMed

    Ghaemi, Roza Vaez; Vahidi, Bahman; Sabour, Mohammad Hossein; Haghighipour, Nooshin; Alihemmati, Zakieh

    2016-03-01

    Although effects of biochemical modulation of stem cells have been widely investigated, only recent advances have been made in the identification of mechanical conditioning on cell signaling pathways. Experimental investigations quantifying the micromechanical environment of mesenchymal stem cells (MSCs) are challenging while computational approaches can predict their behavior due to in vitro stimulations. This study introduces a 3D cell-specific finite element model simulating large deformations of MSCs. Here emphasizing cell mechanical modulation which represents the most challenging multiphysics phenomena in sub-cellular level, we focused on an approach attempting to elicit unique responses of a cell under fluid flow. Fluorescent staining of MSCs was performed in order to visualize the MSC morphology and develop a geometrically accurate model of it based on a confocal 3D image. We developed a 3D model of a cell fixed in a microchannel under fluid flow and then solved the numerical model by fluid-structure interactions method. By imposing flow characteristics representative of vigorous in vitro conditions, the model predicts that the employed external flow induces significant localized effective stress in the nucleo-cytoplasmic interface and average cell deformation of about 40%. Moreover, it can be concluded that a lower strain level is made in the cell by the oscillatory flow as compared with steady flow, while same ranges of effective stress are recorded inside the cell in both conditions. The deeper understanding provided by this study is beneficial for better design of single cell in vitro studies. PMID:26333040

  9. Design and Development of High Voltage Direct Current (DC) Sources for the Solar Array Module Plasma Interaction Experiment

    NASA Technical Reports Server (NTRS)

    Bibyk, Irene K.; Wald, Lawrence W.

    1995-01-01

    Two programmable, high voltage DC power supplies were developed as part of the flight electronics for the Solar Array Module Plasma Interaction Experiment (SAMPIE). SAMPIE's primary objectives were to study and characterize the high voltage arcing and parasitic current losses of various solar cells and metal samples within the space plasma of low earth orbit (LEO). High voltage arcing can cause large discontinuous changes in spacecraft potential which lead to damage of the power system materials and significant Electromagnetic Interference (EMI). Parasitic currents cause a change in floating potential which lead to reduced power efficiency. These primary SAMPIE objectives were accomplished by applying artificial biases across test samples over a voltage range from -600 VDC to +300 VDC. This paper chronicles the design, final development, and test of the two programmable high voltage sources for SAMPIE. The technical challenges to the design for these power supplies included vacuum, space plasma effects, thermal protection, Shuttle vibrations and accelerations.

  10. Computational modeling of laser-plasma interactions: pulse self-modulation and energy transfer between intersecting laser pulses.

    PubMed

    Kupfer, Rotem; Barmashenko, Boris; Bar, Ilana

    2013-07-01

    The nonlinear interaction of intense femtosecond laser pulses with a self-induced plasma channel in air and the energy transfer between two intersecting laser pulses were simulated using the finite-difference time-domain particle-in-cell method. Implementation of a simple numerical code enabled modeling of various phenomena, including pulse self-modulation in the spatiotemporal and spectral domains, conical emission, and energy transfer between two intersecting laser beams. The mechanism for energy transfer was found to be related to a plasma waveguide array induced by Moiré patterns of the interfering electric fields. The simulation results provide a persuasive replication and explanation of previous experimental results, when carried out under comparable physical conditions, and lead to prediction of others. This approach allows us to further examine the effect of the laser and plasma parameters on the simulation results and to investigate the underlying physics. PMID:23944583

  11. Computational modeling of laser-plasma interactions: Pulse self-modulation and energy transfer between intersecting laser pulses

    NASA Astrophysics Data System (ADS)

    Kupfer, Rotem; Barmashenko, Boris; Bar, Ilana

    2013-07-01

    The nonlinear interaction of intense femtosecond laser pulses with a self-induced plasma channel in air and the energy transfer between two intersecting laser pulses were simulated using the finite-difference time-domain particle-in-cell method. Implementation of a simple numerical code enabled modeling of various phenomena, including pulse self-modulation in the spatiotemporal and spectral domains, conical emission, and energy transfer between two intersecting laser beams. The mechanism for energy transfer was found to be related to a plasma waveguide array induced by Moiré patterns of the interfering electric fields. The simulation results provide a persuasive replication and explanation of previous experimental results, when carried out under comparable physical conditions, and lead to prediction of others. This approach allows us to further examine the effect of the laser and plasma parameters on the simulation results and to investigate the underlying physics.

  12. Interaction between excitons and 2DEG Landau levels in modulation doped GaAs/AlGaAs heterojunctions

    NASA Astrophysics Data System (ADS)

    Preezant, Yulia; Gabbay, A.; Eitan, A. A.; Ashkinadze, B. M.; Cohen, E.; Pfeiffer, L. N.

    2007-04-01

    The reflection and photoluminescence spectra of n-type, modulation-doped GaAs/AlxGa1-xAs wide quantum wells (QW) and heterojunctions (HJ) were studied at T = 2K and under a perpendicularly applied magnetic field. The spectra show two groups of very sharp lines that originate in two types of excitations: excitons, whose center of mass motion is quantized, and interband Landau transitions of the 2DEG, that is confined to the QW edges. Abrupt energy and intensity variations of both types of lines are observed at filling factors ν = 1,2 of the 2DEG. These variations are interpreted in terms of an interaction between excitations that are spatially confined in separate parts of the wide QW (or HJ). It leads to energy level splittings and increased exciton dissociation by the magnetized 2DEG layer.

  13. Use of RNA tertiary interaction modules for the crystallisation of the spliceosomal snRNP core domain.

    PubMed

    Leung, Adelaine K W; Kambach, Christian; Kondo, Yasushi; Kampmann, Martin; Jinek, Martin; Nagai, Kiyoshi

    2010-09-10

    RNA is known to perform diverse roles in the cell, often as ribonucleoprotein (RNP) particles. While the crystal structure of these RNP particles could provide crucial insights into their functions, crystallographic work on RNP complexes is often hampered by difficulties in obtaining well-diffracting crystals. The small nuclear ribonucleoprotein (snRNP) core domain, acting as an assembly nucleus for the maturation of snRNPs, plays a crucial role in the biogenesis of four of the spliceosomal snRNPs. We have succeeded in crystallising the human U4 snRNP core domain containing seven Sm proteins and a truncated U4 snRNA variant. The most critical factor in our success in the crystallisation was the introduction of various tertiary interaction modules into the RNA that could promote crystal packing without altering the core structure. Here, we describe various strategies employed in our crystallisation effort that could be applied to crystallisation of other RNP particles. PMID:20643141

  14. Motivational salience and genetic variability of dopamine D2 receptor expression interact in the modulation of interference processing.

    PubMed

    Richter, Anni; Richter, Sylvia; Barman, Adriana; Soch, Joram; Klein, Marieke; Assmann, Anne; Libeau, Catherine; Behnisch, Gusalija; Wüstenberg, Torsten; Seidenbecher, Constanze I; Schott, Björn H

    2013-01-01

    Dopamine has been implicated in the fine-tuning of complex cognitive and motor function and also in the anticipation of future rewards. This dual function of dopamine suggests that dopamine might be involved in the generation of active motivated behavior. The DRD2 TaqIA polymorphism of the dopamine D2 receptor gene (rs1800497) has previously been suggested to affect striatal function with carriers of the less common A1 allele exhibiting reduced striatal D2 receptor density and increased risk for addiction. Here we aimed to investigate the influences of DRD2 TaqIA genotype on the modulation of interference processing by reward and punishment. Forty-six young, healthy volunteers participated in a behavioral experiment, and 32 underwent functional magnetic resonance imaging (fMRI). Participants performed a flanker task with a motivation manipulation (monetary reward, monetary loss, neither, or both). Reaction times (RTs) were shorter in motivated flanker trials, irrespective of congruency. In the fMRI experiment motivation was associated with reduced prefrontal activation during incongruent vs. congruent flanker trials, possibly reflecting increased processing efficiency. DRD2 TaqIA genotype did not affect overall RTs, but interacted with motivation on the congruency-related RT differences, with A1 carriers showing smaller interference effects to reward alone and A2 homozygotes exhibiting a specific interference reduction during combined reward (REW) and punishment trials (PUN). In fMRI, anterior cingulate activity showed a similar pattern of genotype-related modulation. Additionally, A1 carriers showed increased anterior insula activation relative to A2 homozygotes. Our results point to a role for genetic variations of the dopaminergic system in individual differences of cognition-motivation interaction. PMID:23760450

  15. “iBIM” — Internet-based interactive modules: an easy and interesting learning tool for general surgery residents

    PubMed Central

    Azer, Nader; Shi, Xinzhe; de Gara, Chris; Karmali, Shahzeer; Birch, Daniel W.

    2014-01-01

    Background The increased use of information technology supports a resident-centred educational approach that promotes autonomy, flexibility and time management and helps residents to assess their competence, promoting self-awareness. We established a web-based e-learning tool to introduce general surgery residents to bariatric surgery and evaluate them to determine the most appropriate implementation strategy for Internet-based interactive modules (iBIM) in surgical teaching. Methods Usernames and passwords were assigned to general surgery residents at the University of Alberta. They were directed to the Obesity101 website and prompted to complete a multiple-choice precourse test. Afterwards, they were able to access the interactive modules. Residents could review the course material as often as they wanted before completing a multiple-choice postcourse test and exit survey. We used paired t tests to assess the difference between pre- and postcourse scores. Results Out of 34 residents who agreed to participate in the project, 12 completed the project (35.3%). For these 12 residents, the precourse mean score was 50 ± 17.3 and the postcourse mean score was 67 ± 14 (p = 0.020). Conclusion Most residents who participated in this study recommended using the iBIMs as a study tool for bariatric surgery. Course evaluation scores suggest this novel approach was successful in transferring knowledge to surgical trainees. Further development of this tool and assessment of implementation strategies will determine how iBIM in bariatric surgery may be integrated into the curriculum. PMID:24666457

  16. A Role for Intersubunit Interactions in Maintaining SAGA Deubiquitinating Module Structure and Activity

    SciTech Connect

    Samara, Nadine L.; Ringel, Alison E.; Wolberger, Cynthia

    2012-08-31

    The deubiquitinating module (DUBm) of the SAGA coactivator contains the Ubp8 isopeptidase, Sgf11, Sus1, and Sgf73, which form a highly interconnected complex. Although Ubp8 contains a canonical USP catalytic domain, it is only active when in complex with the other DUBm subunits. The Sgf11 zinc finger (Sgf11-ZnF) binds near the Ubp8 active site and is essential for full activity, suggesting that the Sgf11-ZnF helps maintain the active conformation of Ubp8. We report structural and solution studies showing that deletion of the Sgf11-ZnF destabilizes incorporation of Ubp8 within the DUBm, giving rise to domain swapping with a second complex and misaligning active site residues. Activating mutations in Ubp8 that partially restore activity in the absence of the Sgf11-ZnF promote the monomeric form of the DUBm. Our data suggest an unexpected role for Sgf11 in compensating for the absence of structural features that maintain the active conformation of Ubp8.

  17. Tailoring biomaterial surface properties to modulate host-implant interactions: implication in cardiovascular and bone therapy

    PubMed Central

    Pacelli, Settimio; Manoharan, Vijayan; Desalvo, Anna; Lomis, Nikita; Jodha, Kartikeya Singh

    2016-01-01

    Host body response to a foreign medical device plays a critical role in defining its fate post implantation. It is thus important to control host-material interactions by designing innovative implant surfaces. In the recent years, biochemical and topographical features have been explored as main target to produce this new type of bioinert or bioresponsive implants. The review discusses specific biofunctional materials and strategies to achieve a precise control over implant surface properties and presents possible solutions to develop next generation of implants, particularly in the fields of bone and cardiovascular therapy.

  18. Male mate preferences in mutual mate choice: finches modulate their songs across and within male–female interactions

    PubMed Central

    Heinig, Abbie; Pant, Santosh; Dunning, Jeffery; Bass, Aaron; Coburn, Zachary; Prather, Jonathan F.

    2014-01-01

    Male songbirds use song to advertise their attractiveness as potential mates, and the properties of those songs have a powerful influence on female mate preferences. One idea is that males may exert themselves maximally in each song performance, consistent with female evaluation and formation of mate preferences being the primary contributors to mate choice. Alternatively, males may modulate their song behaviour to different degrees in the presence of different females, consistent with both male and female mate preferences contributing to mutual mate choice. Here we consider whether male Bengalese finches, Lonchura striata domestica, express mate preferences at the level of individual females, and whether those preferences are manifest as changes in song behaviour that are sufficient to influence female mate choice. We tested this idea by recording songs performed by individual unmated males during a series of 1 h interactions with each of many unmated females. Across recording sessions, males systematically varied both the quantity and the quality of the songs that they performed to different females. Males also varied their song properties throughout the course of each interaction, and behavioural tests using female birds revealed that songs performed at the onset of each interaction were significantly more attractive than songs performed by the same male later during the same interaction. This demonstration of context-specific variation in the properties of male reproductive signals and a role for that variation in shaping female mate preference reveals that male mate preferences play an important role in mutual mate choice in this species. Because these birds thrive so well in the laboratory and are so amenable to observation and experimentation across generations, these results yield a new model system that may prove especially advantageous in disentangling the role of male and female mate preferences in shaping mutual mate choice and its long-term benefits or

  19. Dual role of FMN in flavodoxin function: electron transfer cofactor and modulation of the protein-protein interaction surface.

    PubMed

    Frago, Susana; Lans, Isaias; Navarro, José A; Hervás, Manuel; Edmondson, Dale E; De la Rosa, Miguel A; Gómez-Moreno, Carlos; Mayhew, Stephen G; Medina, Milagros

    2010-02-01

    Flavodoxin (Fld) replaces Ferredoxin (Fd) as electron carrier from Photosystem I (PSI) to Ferredoxin-NADP(+) reductase (FNR). A number of Anabaena Fld (AnFld) variants with replacements at the interaction surface with FNR and PSI indicated that neither polar nor hydrophobic residues resulted critical for the interactions, particularly with FNR. This suggests that the solvent exposed benzenoid surface of the Fld FMN cofactor might contribute to it. FMN has been replaced with analogues in which its 7- and/or 8-methyl groups have been replaced by chlorine and/or hydrogen. The oxidised Fld variants accept electrons from reduced FNR more efficiently than Fld, as expected from their less negative midpoint potential. However, processes with PSI (including reduction of Fld semiquinone by PSI, described here for the first time) are impeded at the steps that involve complex re-arrangement and electron transfer (ET). The groups introduced, particularly chlorine, have an electron withdrawal effect on the pyrazine and pyrimidine rings of FMN. These changes are reflected in the magnitude and orientation of the molecular dipole moment of the variants, both factors appearing critical for the re-arrangement of the finely tuned PSI:Fld complex. Processes with FNR are also slightly modulated. Despite the displacements observed, the negative end of the dipole moment points towards the surface that contains the FMN, still allowing formation of complexes competent for efficient ET. This agrees with several alternative binding modes in the FNR:Fld interaction. In conclusion, the FMN in Fld not only contributes to the redox process, but also to attain the competent interaction of Fld with FNR and PSI. PMID:19900400

  20. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass.

    PubMed

    Arslan, Baran; Colpan, Mert; Ju, Xiaohui; Zhang, Xiao; Kostyukova, Alla; Abu-Lail, Nehal I

    2016-05-01

    The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity

  1. Male mate preferences in mutual mate choice: finches modulate their songs across and within male-female interactions.

    PubMed

    Heinig, Abbie; Pant, Santosh; Dunning, Jeffery; Bass, Aaron; Coburn, Zachary; Prather, Jonathan F

    2014-10-01

    Male songbirds use song to advertise their attractiveness as potential mates, and the properties of those songs have a powerful influence on female mate preferences. One idea is that males may exert themselves maximally in each song performance, consistent with female evaluation and formation of mate preferences being the primary contributors to mate choice. Alternatively, males may modulate their song behaviour to different degrees in the presence of different females, consistent with both male and female mate preferences contributing to mutual mate choice. Here we consider whether male Bengalese finches, Lonchura striata domestica, express mate preferences at the level of individual females, and whether those preferences are manifest as changes in song behaviour that are sufficient to influence female mate choice. We tested this idea by recording songs performed by individual unmated males during a series of 1 h interactions with each of many unmated females. Across recording sessions, males systematically varied both the quantity and the quality of the songs that they performed to different females. Males also varied their song properties throughout the course of each interaction, and behavioural tests using female birds revealed that songs performed at the onset of each interaction were significantly more attractive than songs performed by the same male later during the same interaction. This demonstration of context-specific variation in the properties of male reproductive signals and a role for that variation in shaping female mate preference reveals that male mate preferences play an important role in mutual mate choice in this species. Because these birds thrive so well in the laboratory and are so amenable to observation and experimentation across generations, these results yield a new model system that may prove especially advantageous in disentangling the role of male and female mate preferences in shaping mutual mate choice and its long-term benefits or

  2. Supramolecular host-guest interaction of trityl-nitroxide biradicals with cyclodextrins: modulation of spin-spin interaction and redox sensitivity

    PubMed Central

    Tan, Xiaoli; Song, Yuguang; Liu, Huiqiang; Zhong, Qinwen; Rockenbauer, Antal; Villamena, Frederick A.; Zweier, Jay L.; Liu, Yangping

    2016-01-01

    Supramolecular host-guest interactions of trityl-nitroxide (TN) biradicals CT02-VT, CT02-AT and CT02-GT with methyl-β-cyclodextrin (M-β-CD), hydroxypropyl-β-cyclodextrin (H-β-CD) and γ-cyclodextrin (γ-CD) were investigated by EPR spectroscopy. In the presence of cyclodextrins (i.e., γ-CD, M-β-CD and H-β-CD), host-guest complexes of CT02-VT are formed where the nitroxide and linker parts possibly interact with the cyclodextrins’ cavities. Complexation with cyclodextrins leads to suppression of the intramolecular through-space spin-spin exchange coupling in CT02-VT, thus allowing determination of the through-bond spin-spin exchange coupling which was calculated to be 1.6 G using EPR simulations. Different types of cyclodextrins have variable binding affinity with CT02-VT with γ-CD (95 M−1) > M-β-CD (70 M−1) > H-β-CD (32 M−1). In addition, the effect of the linkers in TN biradicals on the host-guest interactions was also investigated. Among three TN biradicals studied, CT02-VT has the highest association constant with one designated cyclodextrin derivative. On the other hand, the complexes of CT02-GT (~ 22 G) and CT02-AT (7.7–9.0 G) with cyclodextrins have much higher through-bond spin-spin exchange couplings than that of CT02-VT (1.6 G) due to the shorter linkers than that of CT02-VT. Furthermore, the stability of TN biradicals towards ascorbate was significantly enhanced after the complexation with CDs, with an almost 2-time attenuation of the second-order rate constants for all the biradicals. Therefore, the supramolecular host-guest interactions with cyclodextrins will be an alternative method to modulate the magnitude of the spin-spin interactions and redox sensitivity of TN biradicals and the resulting complexes are promising as highly efficient DNP polarizing agents as well as EPR redox probes. PMID:26700002

  3. Supramolecular host-guest interaction of trityl-nitroxide biradicals with cyclodextrins: modulation of spin-spin interaction and redox sensitivity.

    PubMed

    Tan, Xiaoli; Song, Yuguang; Liu, Huiqiang; Zhong, Qinwen; Rockenbauer, Antal; Villamena, Frederick A; Zweier, Jay L; Liu, Yangping

    2016-02-01

    Supramolecular host-guest interactions of trityl-nitroxide (TN) biradicals CT02-VT, CT02-AT and CT02-GT with methyl-β-cyclodextrin (M-β-CD), hydroxypropyl-β-cyclodextrin (H-β-CD) and γ-cyclodextrin (γ-CD) were investigated by EPR spectroscopy. In the presence of cyclodextrins (i.e., γ-CD, M-β-CD and H-β-CD), host-guest complexes of CT02-VT are formed where the nitroxide and linker parts possibly interact with the cyclodextrins' cavities. Complexation with cyclodextrins leads to suppression of the intramolecular through-space spin-spin exchange coupling in CT02-VT, thus allowing the determination of the through-bond spin-spin exchange coupling which was calculated to be 1.6 G using EPR simulations. Different types of cyclodextrins have different binding affinities with CT02-VT in the order of γ-CD (95 M(-1)) > M-β-CD (70 M(-1)) > H-β-CD (32 M(-1)). In addition, the effect of the linkers in TN biradicals on the host-guest interactions was also investigated. Among the three TN biradicals studied, CT02-VT has the highest association constant with one designated cyclodextrin derivative. On the other hand, the complexes of CT02-GT (∼ 22 G) and CT02-AT (7.7-9.0 G) with cyclodextrins have much higher through-bond spin-spin exchange couplings than those of CT02-VT (1.6 G) due to the shorter linkers than those of CT02-VT. Furthermore, the stability of TN biradicals towards ascorbate was significantly enhanced after the complexation with CDs, with an almost 2-fold attenuation of the second-order rate constants for all the biradicals. Therefore, the supramolecular host-guest interactions with cyclodextrins will be an alternative method to modulate the magnitude of the spin-spin interactions and redox sensitivity of TN biradicals, and the resulting complexes are promising as highly efficient DNP polarizing agents as well as EPR redox probes. PMID:26700002

  4. Interpersonal interactions and empathy modulate perception of threat and defensive responses

    PubMed Central

    Fossataro, C.; Sambo, C. F.; Garbarini, F.; Iannetti, G. D.

    2016-01-01

    The defensive peripersonal space (DPPS) is a vital “safety margin” surrounding the body. When a threatening stimulus is delivered inside the DPPS, subcortical defensive responses like the hand-blink reflex (HBR) are adjusted depending on the perceived threat content. In three experiments, we explored whether and how defensive responses are affected by the interpersonal interaction within the DPPS of the face. In Experiment 1, we found that the HBR is enhanced when the threat is brought close to the face not only by one’s own stimulated hand, but also by another person’s hand, although to a significantly lesser extent. In Experiments 2 and 3, we found that the HBR is also enhanced when the hand of the participant enters the DPPS of another individual, either in egocentric or in allocentric perspective. This enhancement is larger in participants with strong empathic tendency when the other individual is in a third person perspective. These results indicate that interpersonal interactions shape perception of threat and defensive responses. These effects are particularly evident in individuals with greater tendency to having empathic concern to other people. PMID:26839143

  5. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases

    PubMed Central

    Lenz, Tobias L.; Deutsch, Aaron J.; Han, Buhm; Hu, Xinli; Okada, Yukinori; Eyre, Stephen; Knapp, Michael; Zhernakova, Alexandra; Huizinga, Tom W.J.; Abecasis, Goncalo; Becker, Jessica; Boeckxstaens, Guy E.; Chen, Wei-Min; Franke, Andre; Gladman, Dafna D.; Gockel, Ines; Gutierrez-Achury, Javier; Martin, Javier; Nair, Rajan P.; Nöthen, Markus M.; Onengut-Gumuscu, Suna; Rahman, Proton; Rantapää-Dahlqvist, Solbritt; Stuart, Philip E.; Tsoi, Lam C.; Van Heel, David A.; Worthington, Jane; Wouters, Mira M.; Klareskog, Lars; Elder, James T.; Gregersen, Peter K.; Schumacher, Johannes; Rich, Stephen S.; Wijmenga, Cisca; Sunyaev, Shamil R.; de Bakker, Paul I.W.; Raychaudhuri, Soumya

    2015-01-01

    Human leukocyte antigen (HLA) genes confer strong risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen binding repertoires between a heterozygote’s two expressed HLA variants may result in additional non-additive risk effects. We tested non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (RA, Ncases=5,337), type 1 diabetes (T1D, Ncases=5,567), psoriasis vulgaris (Ncases=3,089), idiopathic achalasia (Ncases=727), and celiac disease (Ncases=11,115). In four out of five diseases, we observed highly significant non-additive dominance effects (RA: P=2.5×1012; T1D: P=2.4×10−10; psoriasis: P=5.9×10−6; celiac disease: P=1.2×10−87). In three of these diseases, the dominance effects were explained by interactions between specific classical HLA alleles (RA: P=1.8×10−3; T1D: P=8.6×1027; celiac disease: P=6.0×10−100). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (RA: 1.4%, T1D: 4.0%, and celiac disease: 4.1%, beyond a simple additive model). PMID:26258845

  6. Dynamics of Responses in Compatible Potato - Potato virus Y Interaction Are Modulated by Salicylic Acid

    PubMed Central

    Baebler, Špela; Stare, Katja; Kovač, Maja; Blejec, Andrej; Prezelj, Nina; Stare, Tjaša; Kogovšek, Polona; Pompe-Novak, Maruša; Rosahl, Sabine; Ravnikar, Maja; Gruden, Kristina

    2011-01-01

    To investigate the dynamics of the potato – Potato virus Y (PVY) compatible interaction in relation to salicylic acid - controlled pathways we performed experiments using non-transgenic potato cv. Désirée, transgenic NahG-Désirée, cv. Igor and PVYNTN, the most aggressive strain of PVY. The importance of salicylic acid in viral multiplication and symptom development was confirmed by pronounced symptom development in NahG-Désirée, depleted in salicylic acid, and reversion of the effect after spraying with 2,6-dichloroisonicotinic acid (a salicylic acid - analogue). We have employed quantitative PCR for monitoring virus multiplication, as well as plant responses through expression of selected marker genes of photosynthetic activity, carbohydrate metabolism and the defence response. Viral multiplication was the slowest in inoculated potato of cv. Désirée, the only asymptomatic genotype in the study. The intensity of defence-related gene expression was much stronger in both sensitive genotypes (NahG-Désirée and cv. Igor) at the site of inoculation than in asymptomatic plants (cv. Désirée). Photosynthesis and carbohydrate metabolism gene expression differed between the symptomatic and asymptomatic phenotypes. The differential gene expression pattern of the two sensitive genotypes indicates that the outcome of the interaction does not rely simply on one regulatory component, but similar phenotypical features can result from distinct responses at the molecular level. PMID:22194976

  7. Inducing Resonant Interactions in Ultracold Atoms with a Modulated Magnetic Field

    NASA Astrophysics Data System (ADS)

    Smith, D. Hudson

    2015-11-01

    In systems of ultracold atoms, pairwise interactions can be resonantly enhanced by a new mechanism that does not rely upon a magnetic Feshbach resonance. In this mechanism, interactions are controlled by tuning the frequency of an oscillating parallel component of the magnetic field close to the transition frequency between the scattering atoms and a two-atom bound state. The real part of the resulting s -wave scattering length a is resonantly enhanced when the oscillation frequency is close to the transition frequency. The resonance parameters can be controlled by varying the amplitude of the oscillating field. The amplitude also controls the imaginary part of a , which arises because the oscillating field converts atom pairs into molecules. The real part of a can be made much larger than the background scattering length without introducing catastrophic atom losses from the imaginary part. For the case of a shallow bound state in the scattering channel, the dimensionless resonance parameters are universal functions of the dimensionless oscillation amplitude.

  8. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties.

    PubMed

    Nguyen, Leonard T; Vogel, Hans J

    2016-01-01

    Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein's α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties. PMID:27554435

  9. Interactions between voluntary and involuntary attention modulate the quality and temporal dynamics of visual processing.

    PubMed

    Grubb, Michael A; White, Alex L; Heeger, David J; Carrasco, Marisa

    2015-04-01

    Successfully navigating a dynamic environment requires the efficient distribution of finite neural resources. Voluntary (endogenous) covert spatial attention selectively allocates those processing resources to goal-relevant locations in the visual scene in the absence of eye movements. However, the allocation of spatial attention is not always voluntary; abrupt onsets in the visual periphery automatically enhance processing of nearby stimuli (exogenous attention). In dynamic environments, exogenous events and internal goals likely compete to determine the distribution of attention, but how such competition is resolved is not well understood. To investigate how exogenous events interact with the concurrent allocation of voluntary attention, we used a speed-accuracy trade-off (SAT) procedure. SAT conjointly measures the rate of information accrual and asymptotic discriminability, allowing us to measure how attentional interactions unfold over time during stimulus processing. We found that both types of attention sped information accrual and improved discriminability. However, focusing endogenous attention at the target location reduced the effects of exogenous cues on the rate of information accrual and rendered negligible their effects on asymptotic discriminability. We verified the robustness of these findings in four additional experiments that targeted specific, critical response delays. In conclusion, the speed and quality of visual processing depend conjointly on internally and externally driven attentional states, but it is possible to voluntarily diminish distraction by irrelevant events in the periphery. PMID:25117089

  10. Modulation of nuclear localization of the influenza virus nucleoprotein through interaction with actin filaments.

    PubMed

    Digard, P; Elton, D; Bishop, K; Medcalf, E; Weeds, A; Pope, B

    1999-03-01

    The influenza virus genome is transcribed in the nuclei of infected cells but assembled into progeny virions in the cytoplasm. This is reflected in the cellular distribution of the virus nucleoprotein (NP), a protein which encapsidates genomic RNA to form ribonucleoprotein structures. At early times postinfection NP is found in the nucleus, but at later times it is found predominantly in the cytoplasm. NP contains several sequences proposed to act as nuclear localization signals (NLSs), and it is not clear how these are overridden to allow cytoplasmic accumulation of the protein. We find that NP binds tightly to filamentous actin in vitro and have identified a cluster of residues in NP essential for the interaction. Complexes containing RNA, NP, and actin could be formed, suggesting that viral ribonucleoproteins also bind actin. In cells, exogenously expressed NP when expressed at a high level partitioned to the cytoplasm, where it associated with F-actin stress fibers. In contrast, mutants unable to bind F-actin efficiently were imported into the nucleus even under conditions of high-level expression. Similarly, nuclear import of NLS-deficient NP molecules was restored by concomitant disruption of F-actin binding. We propose that the interaction of NP with F-actin causes the cytoplasmic retention of influenza virus ribonucleoproteins. PMID:9971805

  11. Development of MCAERO wing design panel method with interactive graphics module

    NASA Technical Reports Server (NTRS)

    Hawk, J. D.; Bristow, D. R.

    1984-01-01

    A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.

  12. ACTH Modulates PTP-PEST Activity and Promotes Its Interaction With Paxillin.

    PubMed

    Gorostizaga, Alejandra Beatriz; Mori Sequeiros Garcia, M Mercedes; Acquier, Andrea B; Lopez-Costa, Juan J; Mendez, Carlos F; Maloberti, Paula M; Paz, Cristina

    2016-09-01

    Adrenocorticotropic hormone (ACTH) treatment has been proven to promote paxillin dephosphorylation and increase soluble protein tyrosine phosphatase (PTP) activity in rat adrenal zona fasciculata (ZF). Also, in-gel PTP assays have shown the activation of a 115-kDa PTP (PTP115) by ACTH. In this context, the current work presents evidence that PTP115 is PTP-PEST, a PTP that recognizes paxillin as substrate. PTP115 was partially purified from rat adrenal ZF and PTP-PEST was detected through Western blot in bioactive samples taken in each purification step. Immunohistochemical and RT-PCR studies revealed PTP-PEST expression in rat ZF and Y1 adrenocortical cells. Moreover, a PTP-PEST siRNA decreased the expression of this phosphatase. PKA phosphorylation of purified PTP115 isolated from non-ACTH-treated rats increased KM and VM . Finally, in-gel PTP assays of immunoprecipitated paxillin from control and ACTH-treated rats suggested a hormone-mediated increase in paxillin-PTP115 interaction, while PTP-PEST and paxillin co-localize in Y1 cells. Taken together, these data demonstrate PTP-PEST expression in adrenal ZF and its regulation by ACTH/PKA and also suggest an ACTH-induced PTP-PEST-paxillin interaction. J. Cell. Biochem. 117: 2170-2181, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:27061092

  13. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties

    PubMed Central

    Nguyen, Leonard T.; Vogel, Hans J.

    2016-01-01

    Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein’s α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties. PMID:27554435

  14. ClipR-59 Interacts with Elmo2 and Modulates Myoblast Fusion*

    PubMed Central

    Sun, Yingmin; Ren, Wenying; Côté, Jean-François; Hinds, Philip W.; Hu, Xiaoxiang; Du, Keyong

    2015-01-01

    Recent studies using ClipR-59 knock-out mice implicated this protein in the regulation of muscle function. In this report, we have examined the role of ClipR-59 in muscle differentiation and found that ClipR-59 knockdown in C2C12 cells suppressed myoblast fusion. To elucidate the molecular mechanism whereby ClipR-59 regulates myoblast fusion, we carried out a yeast two-hybrid screen using ClipR-59 as the bait and identified Elmo2, a member of the Engulfment and cell motility protein family, as a novel ClipR-59-associated protein. We showed that the interaction between ClipR-59 and Elmo2 was mediated by the atypical PH domain of Elmo2 and the Glu-Pro-rich domain of ClipR-59 and regulated by Rho-GTPase. We have examined the impact of ClipR-59 on Elmo2 downstream signaling and found that interaction of ClipR-59 with Elmo2 enhanced Rac1 activation. Collectively, our studies demonstrate that formation of an Elmo2·ClipR-59 complex plays an important role in myoblast fusion. PMID:25572395

  15. PKCι interacts with Rab14 and modulates epithelial barrier function through regulation of claudin-2 levels

    PubMed Central

    Lu, Ruifeng; Dalgalan, Dogukan; Mandell, Edward K.; Parker, Sara S.; Ghosh, Sourav; Wilson, Jean M.

    2015-01-01

    PKCι is essential for the establishment of epithelial polarity and the normal assembly of tight junctions. We find that PKCι knockdown does not compromise the steady-state distribution of most tight junction proteins but results in increased transepithelial resistance (TER) and decreased paracellular permeability. Analysis of the levels of tight junction components demonstrates that claudin-2 protein levels are decreased. However, other tight junction proteins, such as claudin-1, ZO-1, and occludin, are unchanged. Incubation with an aPKC pseudosubstrate recapitulates the phenotype of PKCι knockdown, including increased TER and decreased levels of claudin-2. In addition, overexpression of PKCι results in increased claudin-2 levels. ELISA and coimmunoprecipitation show that the TGN/endosomal small GTPase Rab14 and PKCι interact directly. Immunolabeling shows that PKCι and Rab14 colocalize in both intracellular puncta and at the plasma membrane and that Rab14 expression is required for normal PKCι distribution in cysts in 3D culture. We showed previously that knockdown of Rab14 results in increased TER and decreased claudin-2. Our results suggest that Rab14 and aPKC interact to regulate trafficking of claudin-2 out of the lysosome-directed pathway. PMID:25694446

  16. Interaction of IFN-γ with Cholinergic Agonists to Modulate Rat and Human Goblet Cell Function

    PubMed Central

    García-Posadas, L; Hodges, RR; Li, D; Shatos, MA; Storr-Paulsen, T; Diebold, Y; Dartt, DA

    2015-01-01

    Goblet cells populate wet-surfaced mucosa including the conjunctiva of the eye, intestine, and nose, among others. These cells function as part of the innate immune system by secreting high molecular weight mucins that interact with environmental constituents including pathogens, allergens, and particulate pollutants. Herein we determined whether IFN-γ, a Th1 cytokine increased in dry eye, alters goblet cell function. Goblet cells from rat and human conjunctiva were cultured. Changes in intracellular [Ca2+] ([Ca2+]i), high molecular weight glycoconjugate secretion, and proliferation were measured after stimulation with IFN-γ with or without the cholinergic agonist carbachol. IFN-γ itself increased [Ca2+]i in rat and human goblet cells and prevented the increase in [Ca2+]i caused by carbachol. Carbachol prevented IFN-γ-mediated increase in [Ca2+]i. This cross-talk between IFN-γ and muscarinic receptors may be partially due to use of the same Ca2+i reservoirs, but also from interaction of signaling pathways proximal to the increase in [Ca2+]i. IFN-γ blocked carbachol-induced high molecular weight glycoconjugate secretion and reduced goblet cell proliferation. We conclude that increased levels of IFN-γ in dry eye disease could explain the lack of goblet cells and mucin deficiency typically found in this pathology. IFN-γ could also function similarly in respiratory and gastrointestinal tracts. PMID:26129651

  17. Interpersonal interactions and empathy modulate perception of threat and defensive responses.

    PubMed

    Fossataro, C; Sambo, C F; Garbarini, F; Iannetti, G D

    2016-01-01

    The defensive peripersonal space (DPPS) is a vital "safety margin" surrounding the body. When a threatening stimulus is delivered inside the DPPS, subcortical defensive responses like the hand-blink reflex (HBR) are adjusted depending on the perceived threat content. In three experiments, we explored whether and how defensive responses are affected by the interpersonal interaction within the DPPS of the face. In Experiment 1, we found that the HBR is enhanced when the threat is brought close to the face not only by one's own stimulated hand, but also by another person's hand, although to a significantly lesser extent. In Experiments 2 and 3, we found that the HBR is also enhanced when the hand of the participant enters the DPPS of another individual, either in egocentric or in allocentric perspective. This enhancement is larger in participants with strong empathic tendency when the other individual is in a third person perspective. These results indicate that interpersonal interactions shape perception of threat and defensive responses. These effects are particularly evident in individuals with greater tendency to having empathic concern to other people. PMID:26839143

  18. Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila.

    PubMed

    Wangler, Michael F; Reiter, Lawrence T; Zimm, Georgianna; Trimble-Morgan, Jennifer; Wu, Jane; Bier, Ethan

    2011-07-01

    Alzheimer's disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer's disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in Drosophila wing and sensory organ precursors of the fly. This caused phenotypes typical of Notch signaling loss-of-function mutations. We found that while expression of TSA or PAG alone produced no phenotype, co-expression of TSA and PAG with presenilin led to an enhanced Notch loss-of-function phenotype. This phenotype was more severe and more penetrant than that caused by the expression of Psn alone. In order to determine whether these phenotypes were indeed affecting Notch signaling, this experiment was performed in a genetic background carrying an activated Notch (Abruptex) allele. The phenotypes were almost completely rescued by this activated Notch allele. These results link peroxiredoxins with the in vivo function of Presenilin, which ultimately connects two key pathogenetic mechanisms in AD, namely, antioxidant activity and plaque formation, and raises the possibility of a role for peroxiredoxin family members in Alzheimer's pathogenesis. PMID:21822800

  19. Ring1B Contains a Ubiquitin-Like Docking Module for Interaction with Cbx Proteins

    SciTech Connect

    Bezsonova, Irina; Walker, John R.; Bacik, John P.; Duan, Shili; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.

    2010-04-19

    Polycomb group (PcG) proteins are a special set of repressive transcription factors involved in epigenetic modifications of chromatin. They form two functionally distinct groups of catalytically active complexes: Polycomb repressive complex 1 (PRC1) and 2 (PRC2). The PRC1 complex is an important yet poorly characterized multiprotein histone ubiquitylation machine responsible for maintaining transcriptionally silent states of genes through histone H2A K119 modification. The Ring domain containing subunits of PRC1 also have substrate-targeting domains that interact with Cbx proteins, which have been implicated in chromatin and RNA binding. In this work, we present a high resolution structure of the C-terminal domain of Ring1B, revealing a variant ubiquitin-like fold with a distinct conserved surface region. On the basis of crystal structure and mutational analysis of this domain we show that the conserved surface is responsible for interaction with Cbx members of the PRC1 and homodimer formation. These data suggest a mechanism by which Ring1B serves as an adaptor that mediates binding between the members of the PRC1 complex and the nucleosome.

  20. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    SciTech Connect

    Kanginakudru, Sriramana; DeSmet, Marsha; Thomas, Yanique; Morgan, Iain M.; Androphy, Elliot J.

    2015-04-15

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reduced viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication.

  1. Modulation of the interaction between neurotensin receptor NTS1 and Gq protein by lipid

    PubMed Central

    Inagaki, Sayaka; Ghirlando, Rodolfo; White, Jim F.; Gvozdenovic-Jeremic, Jelena; Northup, John K.; Grisshammer, Reinhard

    2012-01-01

    Membrane lipids have been implicated to influence the activity of G protein-coupled receptors (GPCRs). Almost all of our knowledge on the role of lipids on GPCR and G protein function comes from work on the visual pigment rhodopsin and its G protein transducin, which reside in a highly specialized membrane environment. Thus insight gained from rhodopsin signaling may not be simply translated to other non-visual GPCRs. Here, we investigated the effect of lipid head group charges on the signal transduction properties of the class A GPCR neurotensin receptor 1 (NTS1) under defined experimental conditions, using self-assembled phospholipid nanodiscs prepared with the zwitter-ionic lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), the negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG), or a POPC/POPG mixture. A combination of dynamic light scattering and sedimentation velocity showed that NTS1 was monomeric in POPC-, POPC/POPG- and POPG-nanodiscs. Binding of the agonist neurotensin to NTS1 occurred with similar affinities and was essentially unaffected by the phospholipid composition. In contrast, Gq protein coupling to NTS1 in various lipid nanodiscs was significantly different and the apparent affinity of Gαq and Gβ1γ1 to activated NTS1 increased with increasing POPG content. NTS1-catalyzed GDP/GTPγS nucleotide exchange at Gαq in the presence of Gβ1γ1 and neurotensin was crucially affected by the lipid type, with exchange rates higher by one or two orders of magnitude in POPC/POPG- and POPG-nanodiscs, respectively, compared to POPC-nanodiscs. Our data demonstrate that negatively charged lipids in the immediate vicinity of a non-visual GPCR modulate the G protein-coupling step. PMID:22306739

  2. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer.

    PubMed

    Jones, Lee W; Antonelli, Jodi; Masko, Elizabeth M; Broadwater, Gloria; Lascola, Christopher D; Fels, Diane; Dewhirst, Mark W; Dyck, Jason R B; Nagendran, Jeevan; Flores, Catherine T; Betof, Allison S; Nelson, Erik R; Pollak, Michael; Dash, Rajesh C; Young, Martin E; Freedland, Stephen J

    2012-07-01

    The purpose of this study is to investigate the effects of exercise on cancer progression, metastasis, and underlying mechanisms in an orthotopic model of murine prostate cancer. C57BL/6 male mice (6-8 wk of age) were orthotopically injected with transgenic adenocarcinoma of mouse prostate C-1 cells (5 × 10(5)) and randomly assigned to exercise (n = 28) or a non-intervention control (n = 31) groups. The exercise group was given voluntary access to a wheel 24 h/day for the duration of the study. Four mice per group were serially killed on days 14, 31, and 36; the remaining 38 mice (exercise, n = 18; control, n = 20) were killed on day 53. Before death, MRI was performed to assess tumor blood perfusion. Primary tumor growth rate was comparable between groups, but expression of prometastatic genes was significantly modulated in exercising animals with a shift toward reduced metastasis. Exercise was associated with increased activity of protein kinases within the MEK/MAPK and PI3K/mTOR signaling cascades with subsequent increased intratumoral protein levels of HIF-1α and VEGF. This was associated with improved tumor vascularization. Multiplex ELISAs revealed distinct reductions in plasma concentrations of several angiogenic cytokines in the exercise group, which was associated with increased expression of angiogenic and metabolic genes in the skeletal muscle. Exercise-induced stabilization of HIF-1α and subsequent upregulation of VEGF was associated with "productive" tumor vascularization with a shift toward suppressed metastasis in an orthotopic model of prostate cancer. PMID:22604887

  3. Trimethoprim–metformin interaction and its genetic modulation by OCT2 and MATE1 transporters

    PubMed Central

    Grün, Barbara; Kiessling, Michael K; Burhenne, Jürgen; Riedel, Klaus-Dieter; Weiss, Johanna; Rauch, Geraldine; Haefeli, Walter E; Czock, David

    2013-01-01

    Aims Metformin pharmacokinetics depends on the presence and activity of membrane-bound drug transporters and may be affected by transport inhibitors. The aim of this study was to investigate the effects of trimethoprim on metformin pharmacokinetics and genetic modulation by organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 (MATE1) polymorphisms. Methods Twenty-four healthy volunteers received metformin 500 mg three times daily for 10 days and trimethoprim 200 mg twice daily from day 5 to 10. Effects of trimethoprim on steady-state metformin pharmacokinetics were analysed. Results In the population as a whole, trimethoprim significantly reduced the apparent systemic metformin clearance (CL/F) from 74 to 54 l h−1 and renal metformin clearance from 31 to 21 l h−1, and prolonged half-life from 2.7 to 3.6 h (all P < 0.01). This resulted in an increase in the maximal plasma concentration by 38% and in the area under the plasma concentration–time curve by 37%. In volunteers polymorphic for both OCT2 and MATE1, trimethoprim had no relevant inhibitory effects on metformin kinetics. Trimethoprim was associated with a decrease in creatinine clearance from 133 to 106 ml min−1 (P < 0.01) and an increase in plasma lactate from 0.94 to 1.2 mmol l−1 (P = 0.016). Conclusions The extent of inhibition by trimethoprim was moderate, but might be clinically relevant in patients with borderline renal function or high-dose metformin. PMID:23305245

  4. Neutron crystallographic studies reveal hydrogen bond and water-mediated interactions between a carbohydrate-binding module and its bound carbohydrate ligand.

    PubMed

    Fisher, S Zoë; von Schantz, Laura; Håkansson, Maria; Logan, Derek T; Ohlin, Mats

    2015-10-27

    Carbohydrate-binding modules (CBMs) are key components of many carbohydrate-modifying enzymes. CBMs affect the activity of these enzymes by modulating bonding and catalysis. To further characterize and study CBM-ligand binding interactions, neutron crystallographic studies of an engineered family 4-type CBM in complex with a branched xyloglucan ligand were conducted. The first neutron crystal structure of a CBM-ligand complex reported here shows numerous atomic details of hydrogen bonding and water-mediated interactions and reveals the charged state of key binding cleft amino acid side chains. PMID:26451738

  5. Interhemispheric modulation of dopamine receptor interactions in unilateral 6-OHDA rodent model.

    PubMed

    Lawler, C P; Gilmore, J H; Watts, V J; Walker, Q D; Southerland, S B; Cook, L L; Mathis, C A; Mailman, R B

    1995-12-01

    A critical assumption in the unilateral 6-hydroxydopamine (6-OHDA) model is that interactions between the intact and denervated hemispheres do not influence the response to insult. The present study examined this issue by assessing the effects of unilateral substantia nigra 6-OHDA lesions in rats that previously had received corpus callosum transections, a treatment designed to minimize interhemispheric influences. Quantitative autoradiography in the caudate-putamen ipsilateral to the lesion revealed that corpus callosum transection did not alter the increase in D2-like receptors ([125I]-epidepride-labeled sites) that is induced by unilateral 6-OHDA lesion. There were no effects of either 6-OHDA lesion or transection on D1 receptor density ([125I]-SCH23982 autoradiography). As a functional endpoint, dopamine-stimulated cAMP efflux was measured in superfused striatal slices. In this paradigm, the net effect of dopamine (DA) represents a combination of D1 receptor-mediated stimulation and D2 receptor-mediated inhibition. 6-OHDA lesion increased cAMP efflux induced by exposure to 100 microM DA alone; corpus callosum transection did not alter this effect. An interaction between 6-OHDA lesion and transection status was revealed, however, by comparison of results obtained with DA alone vs. DA plus the D2 antagonist sulpiride (to block the D2 inhibitory effects of 100 microM DA). This comparison revealed two important effects of 6-OHDA lesion in rats with an intact corpus callosum: 1) a moderate decrease in dopamine D1 receptor-mediated stimulation; and 2) a dramatic decrease in the ability of D2 receptors to inhibit this stimulation. Corpus callosum transection prevented these effects of 6-OHDA. These results provide a biochemical demonstration of D1:D2 receptor uncoupling in unilateral 6-OHDA lesioned rats, and suggest that interhemispheric influences (e.g., contralateral cortico-striatal glutamatergic projections) may contribute to lesion-induced alterations in D1:D2

  6. Stomatin-domain protein interactions with acid-sensing ion channels modulate nociceptor mechanosensitivity

    PubMed Central

    Moshourab, Rabih A; Wetzel, Christiane; Martinez-Salgado, Carlos; Lewin, Gary R

    2013-01-01

    Acid-sensing ion channels (ASICs) and their interaction partners of the stomatin family have all been implicated in sensory transduction. Single gene deletion of asic3, asic2, stomatin, or stoml3 all result in deficits in the mechanosensitivity of distinct cutaneous afferents in the mouse. Here, we generated asic3−/−:stomatin−/−, asic3−/−:stoml3−/− and asic2−/−:stomatin−/− double mutant mice to characterize the functional consequences of stomatin–ASIC protein interactions on sensory afferent mechanosensitivity. The absence of ASIC3 led to a clear increase in mechanosensitivity in rapidly adapting mechanoreceptors (RAMs) and a decrease in the mechanosensitivity in both Aδ- and C-fibre nociceptors. The increased mechanosensitivity of RAMs could be accounted for by a loss of adaptation which could be mimicked by local application of APETx2 a toxin that specifically blocks ASIC3. There is a substantial loss of mechanosensitivity in stoml3−/− mice in which ∼35% of the myelinated fibres lack a mechanosensitive receptive field and this phenotype was found to be identical in asic3−/−:stoml3−/− mutant mice. However, Aδ-nociceptors showed much reduced mechanosensitivity in asic3−/−:stoml3−/− mutant mice compared to asic3−/− controls. Interestingly, in asic2−/−:stomatin−/− mutant mice many Aδ-nociceptors completely lost their mechanosensitivity which was not observed in asic2−/− or stomatin−/− mice. Examination of stomatin−/−:stoml3−/− mutant mice indicated that a stomatin/STOML3 interaction is unlikely to account for the greater Aδ-nociceptor deficits in double mutant mice. A key finding from these studies is that the loss of stomatin or STOML3 in asic3−/− or asic2−/− mutant mice markedly exacerbates deficits in the mechanosensitivity of nociceptors without affecting mechanoreceptor function. PMID:23959680

  7. Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration.

    PubMed

    Friedman, Meyer J; Shah, Anjali G; Fang, Zhi-Hui; Ward, Elizabeth G; Warren, Stephen T; Li, Shihua; Li, Xiao-Jiang

    2007-12-01

    Expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) causes the neurodegenerative disease spinocerebellar ataxia 17 (SCA17). It remains unclear how the polyQ tract regulates normal protein function and induces selective neuropathology in SCA17. We generated transgenic mice expressing polyQ-expanded TBP. These mice showed weight loss, progressive neurological symptoms and neurodegeneration before early death. Expanded polyQ tracts reduced TBP dimerization but enhanced the interaction of TBP with the general transcription factor IIB (TFIIB). In SCA17 transgenic mice, the small heat shock protein HSPB1, a potent neuroprotective factor, was downregulated, and TFIIB occupancy of the Hspb1 promoter was decreased. Overexpression of HSPB1 or TFIIB alleviated mutant TBP-induced neuritic defects. These findings implicate the polyQ domain of TBP in transcriptional regulation and provide insight into the molecular pathogenesis of SCA17. PMID:17994014

  8. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    PubMed Central

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  9. Combined effect of maternal serotonin transporter genotype and prenatal stress in modulating offspring social interaction

    PubMed Central

    Jones, Karen L.; Smith, Ryan M.; Edwards, Kristin S.; Givens, Bennet; Beversdorf, David Q.

    2010-01-01

    Several studies suggest that prenatal stress is a possible risk factor in the development of autism spectrum disorders. However, many children exposed to stress prenatally are born healthy and develop typically, suggesting that other factors must contribute to autism. Genes that contribute to stress reactivity may, therefore, exacerbate prenatal stress-mediated behavioral changes in the adult offspring. One candidate gene linked to increased stress reactivity encodes the serotonin transporter. Specifically, an insertion/deletion (long/short allele) polymorphism upstream of the serotonin transporter gene correlates with differential expression and function of the serotonin transporter and a heightened response to stressors. Heterozygous serotonin transporter knockout mice show reductions in serotonin transporter expression similar to the human short polymorphism. In this study, the role of prenatal stress and maternal serotonin transporter genotype were assessed in mice to determine whether their combined effect produces reductions in social behavior in the adult offspring. Pregnant serotonin transporter heterozygous knockout and wild-type dams were placed in either a control condition or subjected to chronic variable stress. The adult offspring were subsequently assessed for social interaction and anxiety using a 3-chamber social approach task, ultrasonic vocalization detection, elevated-plus maze and an open field task. Results indicated that prenatal stress and reduced serotonin transporter expression of the dam may have the combined effect of producing changes in social interaction and social interest in the offspring consistent with those observed in autism spectrum disorder. This data indicates a possible combined effect of maternal serotonin transporter genotype and prenatal stress contributing to the production of autistic-like behaviors in offspring. PMID:20470877

  10. DREADD in Parvalbumin Interneurons of the Dentate Gyrus Modulates Anxiety, Social Interaction and Memory Extinction

    PubMed Central

    Zou, D.; Chen, L.; Deng, D.; Jiang, D.; Dong, F.; McSweeney, C.; Zhou, Y.; Liu, L.; Chen, G.; Wu, Y.; Mao, Y.

    2016-01-01

    Parvalbumin (PV)-positive interneurons in the hippocampus play a critical role in animal memory, such as spatial working memory. However, how PV-positive interneurons in the subregions of the hippocampus affect animal behaviors remains poorly defined. Here, we achieved specific and reversible activation of PV-positive interneurons using designer receptors exclusively activated by designer drugs (DREADD) technology. Inducible DREADD expression was demonstrated in vitro in cultured neurons, in which co-transfection of the hM3D-Gq-mCherry vector with a Cre plasmid resulted in a cellular response to hM3Dq ligand clozapine-N-oxide (CNO) stimulation. In addition, the dentate gyrus (DG) of PV-Cre mice received bilateral injection of control lentivirus or lentivirus expressing double floxed hM3D-Gq-mCherry. Selective activation of PV-positive interneurons in the DG did not affect locomotor activity or depression-related behavior in mice. Interestingly, stimulation of PV-positive interneurons induced an anxiolytic effect. Activation of PV-positive interneurons appears to impair social interaction to novelty, but has no effect on social motivation. However, this defect is likely due to the anxiolytic effect as the exploratory behavior of mice expressing hM3D-Gq is significantly increased. Mice expressing hM3D-Gq did not affect novel object recognition. Activation of PV-positive interneurons in the DG maintains intact cued and contextual fear memory but facilitates fear extinction. Collectively, our results demonstrated that proper control of PV interneurons activity in the DG is critical for regulation of the anxiety, social interaction and fear extinction. These results improve our fundamental understanding of the physiological role of PV-positive interneurons in the hippocampus.

  11. Salmonella-host interactions - modulation of the host innate immune system.

    PubMed

    Hurley, Daniel; McCusker, Matthew P; Fanning, Séamus; Martins, Marta

    2014-01-01

    Salmonella enterica (S. enterica) are Gram-negative bacteria that can invade a broad range of hosts causing both acute and chronic infections. This phenotype is related to its ability to replicate and persist within non-phagocytic host epithelial cells as well as phagocytic dendritic cells and macrophages of the innate immune system. Infection with S. enterica manifests itself through a broad range of clinical symptoms and can result in asymptomatic carriage, gastroenteritis, systemic disease such as typhoid fever and in severe cases, death (1). Exposure to S. enterica serovars Typhi and Paratyphi exhibits clinical symptoms including diarrhea, fatigue, fever, and temperature fluctuations. Other serovars such as the non-typhoidal Salmonella (NTS), of which there are over 2,500, are commonly contracted as, but not limited to, food-borne sources causing gastrointestinal symptoms, which include diarrhea and vomiting. The availability of complete genome sequences for many S. enterica serovars has facilitated research into the genetic determinants of virulence for this pathogen. This work has led to the identification of important bacterial components, including flagella, type III secretion systems, lipopolysaccharides, and Salmonella pathogenicity islands, all of which support the intracellular life cycle of S. enterica. Studies focusing on the host-pathogen interaction have provided insights into receptor activation of the innate immune system. Therefore, characterizing the host-S. enterica interaction is critical to understand the pathogenicity of the bacteria in a clinically relevant context. This review outlines salmonellosis and the clinical manifestations between typhoidal and NTS infections as well as discussing the host immune response to infection and the models that are being used to elucidate the mechanisms involved in Salmonella pathogenicity. PMID:25339955

  12. Eph/ephrin interactions modulate muscle satellite cell motility and patterning.

    PubMed

    Stark, Danny A; Karvas, Rowan M; Siegel, Ashley L; Cornelison, D D W

    2011-12-01

    During development and regeneration, directed migration of cells, including neural crest cells, endothelial cells, axonal growth cones and many types of adult stem cells, to specific areas distant from their origin is necessary for their function. We have recently shown that adult skeletal muscle stem cells (satellite cells), once activated by isolation or injury, are a highly motile population with the potential to respond to multiple guidance cues, based on their expression of classical guidance receptors. We show here that, in vivo, differentiated and regenerating myofibers dynamically express a subset of ephrin guidance ligands, as well as Eph receptors. This expression has previously only been examined in the context of muscle-nerve interactions; however, we propose that it might also play a role in satellite cell-mediated muscle repair. Therefore, we investigated whether Eph-ephrin signaling would produce changes in satellite cell directional motility. Using a classical ephrin 'stripe' assay, we found that satellite cells respond to a subset of ephrins with repulsive behavior in vitro; patterning of differentiating myotubes is also parallel to ephrin stripes. This behavior can be replicated in a heterologous in vivo system, the hindbrain of the developing quail, in which neural crest cells are directed in streams to the branchial arches and to the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite. We hypothesize that guidance signaling might impact multiple steps in muscle regeneration, including escape from the niche, directed migration to sites of injury, cell-cell interactions among satellite cell progeny, and differentiation and patterning of regenerated muscle. PMID:22071104

  13. Eph/ephrin interactions modulate muscle satellite cell motility and patterning

    PubMed Central

    Stark, Danny A.; Karvas, Rowan M.; Siegel, Ashley L.; Cornelison, D. D. W.

    2011-01-01

    During development and regeneration, directed migration of cells, including neural crest cells, endothelial cells, axonal growth cones and many types of adult stem cells, to specific areas distant from their origin is necessary for their function. We have recently shown that adult skeletal muscle stem cells (satellite cells), once activated by isolation or injury, are a highly motile population with the potential to respond to multiple guidance cues, based on their expression of classical guidance receptors. We show here that, in vivo, differentiated and regenerating myofibers dynamically express a subset of ephrin guidance ligands, as well as Eph receptors. This expression has previously only been examined in the context of muscle-nerve interactions; however, we propose that it might also play a role in satellite cell-mediated muscle repair. Therefore, we investigated whether Eph-ephrin signaling would produce changes in satellite cell directional motility. Using a classical ephrin ‘stripe’ assay, we found that satellite cells respond to a subset of ephrins with repulsive behavior in vitro; patterning of differentiating myotubes is also parallel to ephrin stripes. This behavior can be replicated in a heterologous in vivo system, the hindbrain of the developing quail, in which neural crest cells are directed in streams to the branchial arches and to the forelimb of the developing quail, where presumptive limb myoblasts emigrate from the somite. We hypothesize that guidance signaling might impact multiple steps in muscle regeneration, including escape from the niche, directed migration to sites of injury, cell-cell interactions among satellite cell progeny, and differentiation and patterning of regenerated muscle. PMID:22071104

  14. The lipid composition of Legionella dumoffii membrane modulates the interaction with Galleria mellonella apolipophorin III.

    PubMed

    Palusińska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Reszczyńska, Emilia; Luchowski, Rafał; Kania, Magdalena; Gisch, Nicolas; Waldow, Franziska; Mak, Paweł; Danikiewicz, Witold; Gruszecki, Wiesław I; Cytryńska, Małgorzata

    2016-07-01

    Apolipophorin III (apoLp-III), an insect homologue of human apolipoprotein E (apoE), is a widely used model protein in studies on protein-lipid interactions, and anti-Legionella activity of Galleria mellonella apoLp-III has been documented. Interestingly, exogenous choline-cultured Legionella dumoffii cells are considerably more susceptible to apoLp-III than non-supplemented bacteria. In order to explain these differences, we performed, for the first time, a detailed analysis of L. dumoffii lipids and a comparative lipidomic analysis of membranes of bacteria grown without and in the presence of exogenous choline. (31)P NMR analysis of L. dumoffii phospholipids (PLs) revealed a considerable increase in the phosphatidylcholine (PC) content in bacteria cultured on choline medium and a decrease in the phosphatidylethanolamine (PE) content in approximately the same range. The interactions of G. mellonella apoLp-III with lipid bilayer membranes prepared from PLs extracted from non- and choline-supplemented L. dumoffii cells were examined in detail by means of attenuated total reflection- and linear dichroism-Fourier transform infrared spectroscopy. Furthermore, the kinetics of apoLp-III binding to liposomes formed from L. dumoffii PLs was analysed by fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy using fluorescently labelled G. mellonella apoLp-III. Our results indicated enhanced binding of apoLp-III to and deeper penetration into lipid membranes formed from PLs extracted from the choline-supplemented bacteria, i.e. characterized by an increased PC/PE ratio. This could explain, at least in part, the higher susceptibility of choline-cultured L. dumoffii to G. mellonella apoLp-III. PMID:27094351

  15. Salmonella–Host InteractionsModulation of the Host Innate Immune System

    PubMed Central

    Hurley, Daniel; McCusker, Matthew P.; Fanning, Séamus; Martins, Marta

    2014-01-01

    Salmonella enterica (S. enterica) are Gram-negative bacteria that can invade a broad range of hosts causing both acute and chronic infections. This phenotype is related to its ability to replicate and persist within non-phagocytic host epithelial cells as well as phagocytic dendritic cells and macrophages of the innate immune system. Infection with S. enterica manifests itself through a broad range of clinical symptoms and can result in asymptomatic carriage, gastroenteritis, systemic disease such as typhoid fever and in severe cases, death (1). Exposure to S. enterica serovars Typhi and Paratyphi exhibits clinical symptoms including diarrhea, fatigue, fever, and temperature fluctuations. Other serovars such as the non-typhoidal Salmonella (NTS), of which there are over 2,500, are commonly contracted as, but not limited to, food-borne sources causing gastrointestinal symptoms, which include diarrhea and vomiting. The availability of complete genome sequences for many S. enterica serovars has facilitated research into the genetic determinants of virulence for this pathogen. This work has led to the identification of important bacterial components, including flagella, type III secretion systems, lipopolysaccharides, and Salmonella pathogenicity islands, all of which support the intracellular life cycle of S. enterica. Studies focusing on the host–pathogen interaction have provided insights into receptor activation of the innate immune system. Therefore, characterizing the host–S. enterica interaction is critical to understand the pathogenicity of the bacteria in a clinically relevant context. This review outlines salmonellosis and the clinical manifestations between typhoidal and NTS infections as well as discussing the host immune response to infection and the models that are being used to elucidate the mechanisms involved in Salmonella pathogenicity. PMID:25339955

  16. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination.

    PubMed

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤ 4 µg/ml) and stimulates CSR at high concentrations (≥ 8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients. PMID:25332688

  17. Modulating Transmembrane α-Helix Interactions through pH-Sensitive Boundary Residues.

    PubMed

    Ng, Derek P; Deber, Charles M

    2016-08-01

    Changes in pH can alter the structure and activity of proteins and may be used by the cell to control molecular function. This coupling can also be used in non-native applications through the design of pH-sensitive biomolecules. For example, the pH (low) insertion peptide (pHLIP) can spontaneously insert into a lipid bilayer when the pH decreases. We have previously shown that the α-helicity and helix-helix interactions of the TM2 α-helix of the proteolipid protein (PLP) are sensitive to the local hydrophobicity at its C-terminus. Given that there is an ionizable residue (Glu-88) at the C-terminus of this transmembrane (TM) segment, we hypothesized that changing the ionization state of this residue through pH may alter the local hydrophobicity of the peptide enough to affect both its secondary structure and helix-helix interactions. To examine this phenomenon, we synthesized peptide analogues of the PLP TM2 α-helix (wild-type sequence (66)AFQYVIYGTASFFFLYGALLLAEGF(90)). Using circular dichroism and Förster resonance energy transfer in the membrane-mimetic detergent sodium dodecyl sulfate, we found that a decrease in pH increases both peptide α-helicity and the extent of self-association. This pH-dependent effect is due specifically to the presence of Glu-88 at the C-terminus. Additional experiments in which Phe-90 was mutated to residues of varying hydrophobicities indicated that the strength of this effect is dependent on the local hydrophobicity near Glu-88. Our results have implications for the design of TM peptide switches and improve our understanding of how membrane protein structure and activity can be regulated through local molecular environmental changes. PMID:27434090

  18. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination

    PubMed Central

    Zhang, Shi-Meng; Zhang, He; Yang, Tian-Yi; Ying, Tian-Yi; Yang, Pei-Xiang; Liu, Xiao-Dan; Tang, Sheng-Jian; Zhou, Ping-Kun

    2014-01-01

    HIV-1 tat targets a variety of host cell proteins to facilitate viral transcription and disrupts host cellular immunity by inducing lymphocyte apoptosis, but whether it influences humoral immunity remains unclear. Previously, our group demonstrated that tat depresses expression of DNA-PKcs, a critical component of the non-homologous end joining pathway (NHEJ) of DNA double-strand breaks repair, immunoglobulin class switch recombination (CSR) and V(D)J recombination, and sensitizes cells to ionizing radiation. In this study, we demonstrated that HIV-1 Tat down-regulates DNA-PKcs expression by directly binding to the core promoter sequence. In addition, Tat interacts with and activates the kinase activity of DNA-PKcs in a dose-dependent and DNA independent manner. Furthermore, Tat inhibits class switch recombination (CSR) at low concentrations (≤4 µg/ml) and stimulates CSR at high concentrations (≥8 µg/ml). On the other hand, low protein level and high kinase activity of DNA-PKcs promotes HIV-1 transcription, while high protein level and low kinase activity inhibit HIV-1 transcription. Co-immunoprecipitation results revealed that DNA-PKcs forms a large complex comprised of Cyclin T1, CDK9 and Tat via direct interacting with CDK9 and Tat but not Cyclin T1. Taken together, our results provide new clues that Tat regulates host humoral immunity via both transcriptional depression and kinase activation of DNA-PKcs. We also raise the possibility that inhibitors and interventions directed towards DNA-PKcs may inhibit HIV-1 transcription in AIDS patients. PMID:25332688

  19. Cis interaction between Semaphorin6A and Plexin-A4 modulates the repulsive response to Sema6A

    PubMed Central

    Haklai-Topper, Liat; Mlechkovich, Guy; Savariego, Dana; Gokhman, Irena; Yaron, Avraham

    2010-01-01

    The correct navigation of axons to their targets depends on guidance molecules in the extra-cellular environment. Differential responsiveness to a particular guidance cue is largely an outcome of disparity in the expression of its receptors on the reacting axons. Here, we show that the differential responsiveness of sympathetic and sensory neurons to the transmembrane Semaphorin Sema6A is mainly determined by its co-expression in the responding neurons. Both sympathetic and sensory neurons express the Sema6A receptor Plexin-A4, but only sympathetic neurons respond to it. The expression of Sema6A counteracts this responsiveness and is detected only in sensory neurons. Remarkably, sensory neurons that lack Sema6A gain sensitivity to it in a Plexin-A4-dependent manner. Using heterologus systems, we show that the co-expression of Sema6A and Plexin-A4 hinders the binding of exogenous ligand, suggesting that a Sema6A–Plexin-A4 cis interaction serves as an inhibitory mechanism. Finally, we provide evidence for differential modes of interaction in cis versus in trans. Thus, co-expression of a transmembrane cue together with its receptor can serve as a guidance response modulator. PMID:20606624

  20. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways.

    PubMed

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  1. Using Surface Enhanced Raman Scattering to Analyze the Interactions of Protein Receptors with Bacterial Quorum Sensing Modulators

    PubMed Central

    2015-01-01

    Many members of the LuxR family of quorum sensing (QS) transcriptional activators, including LasR of Pseudomonas aeruginosa, are believed to require appropriate acyl-homoserine lactone (acyl-HSL) ligands to fold into an active conformation. The failure to purify ligand-free LuxR homologues in nonaggregated form at the high concentrations required for their structural characterization has limited the understanding of the mechanisms by which QS receptors are activated. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can be applied to study proteins at extremely low concentrations in their active state. The high sensitivity of SERS has allowed us to detect molecular interactions between the ligand-binding domain of LasR (LasRLBD) as a soluble apoprotein and modulators of P. aeruginosa QS. We found that QS activators and inhibitors produce differential SERS fingerprints in LasRLBD, and in combination with molecular docking analysis provide insight into the relevant interaction mechanism. This study reveals signal-specific structural changes in LasR upon ligand binding, thereby confirming the applicability of SERS to analyze ligand-induced conformational changes in proteins. PMID:25927541

  2. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase

    PubMed Central

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-01-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix–loop–helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 –, was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  3. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase.

    PubMed

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-06-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix-loop-helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 (-), was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  4. Electron Spin-Echo Envelope Modulation (ESEEM) Reveals Water and Phosphate Interactions with the KcsA Potassium Channel

    SciTech Connect

    Cieslak, John A.; Focia, Pamela J.; Gross, Adrian

    2010-08-13

    Electron spin-echo envelope modulation (ESEEM) spectroscopy is a well-established technique for the study of naturally occurring paramagnetic metal centers. The technique has been used to study copper complexes, hemes, enzyme mechanisms, micellar water content, and water permeation profiles in membranes, among other applications. In the present study, we combine ESEEM spectroscopy with site-directed spin labeling (SDSL) and X-ray crystallography in order to evaluate the technique's potential as a structural tool to describe the native environment of membrane proteins. Using the KcsA potassium channel as a model system, we demonstrate that deuterium ESEEM can detect water permeation along the lipid-exposed surface of the KcsA outer helix. We further demonstrate that {sup 31}P ESEEM is able to identify channel residues that interact with the phosphate headgroup of the lipid bilayer. In combination with X-ray crystallography, the {sup 31}P data may be used to define the phosphate interaction surface of the protein. The results presented here establish ESEEM as a highly informative technique for SDSL studies of membrane proteins.

  5. Vasoactive Intestinal Peptide modulates trophoblast-derived cell line function and interaction with phagocytic cells through autocrine pathways

    PubMed Central

    Vota, Daiana; Paparini, Daniel; Hauk, Vanesa; Toro, Ayelén; Merech, Fatima; Varone, Cecilia; Ramhorst, Rosanna; Pérez Leirós, Claudia

    2016-01-01

    Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation. PMID:27212399

  6. Role of further-neighbor interactions in modulating the critical behavior of the Ising model with frustration.

    PubMed

    Liu, R M; Zhuo, W Z; Dong, S; Lu, X B; Gao, X S; Qin, M H; Liu, J-M

    2016-03-01

    In this work, we investigate the phase transitions and critical behaviors of the frustrated J(1)-J(2)-J(3) Ising model on the square lattice using Monte Carlo simulations, and particular attention goes to the effect of the second-next-nearest-neighbor interaction J(3) on the phase transition from a disordered state to the single stripe antiferromagnetic state. A continuous Ashkin-Teller-like transition behavior in a certain range of J(3) is identified, while the four-state Potts-critical end point [J(3)/J(1)](C) is estimated based on the analytic method reported in earlier work [Jin, Sen, and Sandvik, Phys. Rev. Lett. 108, 045702 (2012)]. It is suggested that the interaction J(3) can tune the transition temperature and in turn modulate the critical behaviors of the frustrated model. Furthermore, it is revealed that an antiferromagnetic J(3) can stabilize the staggered dimer state via a phase transition of strong first-order character. PMID:27078299

  7. Glycosylation Modulates Melanoma Cell α2β1 and α3β1 Integrin Interactions with Type IV Collagen*

    PubMed Central

    Stawikowski, Maciej J.; Aukszi, Beatrix; Stawikowska, Roma; Cudic, Mare; Fields, Gregg B.

    2014-01-01

    Although type IV collagen is heavily glycosylated, the influence of this post-translational modification on integrin binding has not been investigated. In the present study, galactosylated and nongalactosylated triple-helical peptides have been constructed containing the α1(IV)382–393 and α1(IV)531–543 sequences, which are binding sites for the α2β1 and α3β1 integrins, respectively. All peptides had triple-helical stabilities of 37 °C or greater. The galactosylation of Hyl393 in α1(IV)382–393 and Hyl540 and Hyl543 in α1(IV)531–543 had a dose-dependent influence on melanoma cell adhesion that was much more pronounced in the case of α3β1 integrin binding. Molecular modeling indicated that galactosylation occurred on the periphery of α2β1 integrin interaction with α1(IV)382–393 but right in the middle of α3β1 integrin interaction with α1(IV)531–543. The possibility of extracellular deglycosylation of type IV collagen was investigated, but no β-galactosidase-like activity capable of collagen modification was found. Thus, glycosylation of collagen can modulate integrin binding, and levels of glycosylation could be altered by reduction in expression of glycosylation enzymes but most likely not by extracellular deglycosylation activity. PMID:24958723

  8. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    NASA Astrophysics Data System (ADS)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  9. Module-based functional pathway enrichment analysis of a protein-protein interaction network to study the effects of intestinal microbiota depletion in mice

    PubMed Central

    JIA, ZHEN-YI; XIA, YANG; TONG, DANIAN; YAO, JING; CHEN, HONG-QI; YANG, JUN

    2014-01-01

    Complex communities of microorganisms play important roles in human health, and alterations in the intestinal microbiota may induce intestinal inflammation and numerous diseases. The purpose of this study was to identify the key genes and processes affected by depletion of the intestinal microbiota in a murine model. The Affymetrix microarray dataset GSE22648 was downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified using the limma package in R. A protein-protein interaction (PPI) network was constructed for the DEGs using the Cytoscape software, and the network was divided into several modules using the MCODE plugin. Furthermore, the modules were functionally annotated using the PiNGO plugin, and DEG-related pathways were retrieved and analyzed using the GenMAPP software. A total of 53 DEGs were identified, of which 26 were upregulated and 27 were downregulated. The PPI network of these DEGs comprised 3 modules. The most significant module-related DEGs were the cytochrome P450 (CYP) 4B1 isozyme gene (CYP4B1) in module 1, CYP4F14 in module 2 and the tachykinin precursor 1 gene (TAC1) in module 3. The majority of enriched pathways of module 1 and 2 were oxidation reduction pathways (metabolism of xenobiotics by CYPs) and lipid metabolism-related pathways, including linoleic acid and arachidonic acid metabolism. The neuropeptide signaling pathway was the most significantly enriched functional pathway of module 3. In conclusion, our findings strongly suggest that intestinal microbiota depletion affects cellular metabolism and oxidation reduction pathways. In addition, this is the first time, to the best of our knowledge, that the neuropeptide signaling pathway is reported to be affected by intestinal microbiota depletion in mice. The present study provides a list of candidate genes and processes related to the interaction of microbiota with the intestinal tract. PMID:24718810

  10. Module-based functional pathway enrichment analysis of a protein-protein interaction network to study the effects of intestinal microbiota depletion in mice.

    PubMed

    Jia, Zhen-Yi; Xia, Yang; Tong, Danian; Yao, Jing; Chen, Hong-Qi; Yang, Jun

    2014-06-01

    Complex communities of microorganisms play important roles in human health, and alterations in the intestinal microbiota may induce intestinal inflammation and numerous diseases. The purpose of this study was to identify the key genes and processes affected by depletion of the intestinal microbiota in a murine model. The Affymetrix microarray dataset GSE22648 was downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified using the limma package in R. A protein-protein interaction (PPI) network was constructed for the DEGs using the Cytoscape software, and the network was divided into several modules using the MCODE plugin. Furthermore, the modules were functionally annotated using the PiNGO plugin, and DEG-related pathways were retrieved and analyzed using the GenMAPP software. A total of 53 DEGs were identified, of which 26 were upregulated and 27 were downregulated. The PPI network of these DEGs comprised 3 modules. The most significant module-related DEGs were the cytochrome P450 (CYP) 4B1 isozyme gene (CYP4B1) in module 1, CYP4F14 in module 2 and the tachykinin precursor 1 gene (TAC1) in module 3. The majority of enriched pathways of module 1 and 2 were oxidation reduction pathways (metabolism of xenobiotics by CYPs) and lipid metabolism-related pathways, including linoleic acid and arachidonic acid metabolism. The neuropeptide signaling pathway was the most significantly enriched functional pathway of module 3. In conclusion, our findings strongly suggest that intestinal microbiota depletion affects cellular metabolism and oxidation reduction pathways. In addition, this is the first time, to the best of our knowledge, that the neuropeptide signaling pathway is reported to be affected by intestinal microbiota depletion in mice. The present study provides a list of candidate genes and processes related to the interaction of microbiota with the intestinal tract. PMID:24718810

  11. Modulation of the ribonucleotide reductase M1-gemcitabine interaction in vivo by N-ethylmaleimide

    SciTech Connect

    Chen, Zhengming; Zhou, Jun; Zhang, Yingtao; Bepler, Gerold

    2011-09-23

    Highlights: {yields} Gemcitabine induces a RRM1 conformational change in tumor cell lines and xenografts. {yields} The 110 kDa RRM1 is unique to gemcitabine interaction among 12 cytotoxic agents. {yields} The 110 kDa RRM1 can be stabilized by the thiol alkylator N-ethylmaleimide. {yields} C218A, C429A, and E431A mutations in RRM1 abolished the conformational change. {yields} The 110 kDa RRM1 may be a specific biomarker of gemcitabine's therapeutic efficacy. -- Abstract: Ribonucleotide reductase M1 (RRM1) is the regulatory subunit of the holoenzyme that catalyzes the conversion of ribonucleotides to 2'-deoxyribonucleotides. Its function is indispensible in cell proliferation and DNA repair. It also serves as a biomarker of therapeutic efficacy of the antimetabolite drug gemcitabine (2',2'-difluoro-2'-deoxycytidine) in various malignancies. However, a mechanistic explanation remains to be determined. This study investigated how the alkylating agent N-ethylmaleimide (NEM) interacts with the inhibitory activity of gemcitabine on its target protein RRM1 in vivo. We found, when cells were treated with gemcitabine in the presence of NEM, a novel 110 kDa band, along with the 90 kDa native RRM1 band, appeared in immunoblots. This 110 kDa band was identified as RRM1 by mass spectrometry (LC-MS/MS) and represented a conformational change resulting from covalent labeling by gemcitabine. It is specific to gemcitabine/NEM, among 11 other chemotherapy drugs tested. It was also detectable in human tumor xenografts in mice treated with gemcitabine. Among mutations of seven residues essential for RRM1 function, C218A, C429A, and E431A abolished the conformational change, while N427A, C787A, and C790A diminished it. C444A was unique since it was able to alter the conformation even in absence of gemcitabine treatment. We conclude that the thiol alkylator NEM can stabilize the gemcitabine-induced conformational change of RRM1, and this stabilized RRM1 conformation has the potential to

  12. A monomer-dimer equilibrium modulates the interaction of the sunflower homeodomain leucine-zipper protein Hahb-4 with DNA.

    PubMed Central

    Palena, C M; Gonzalez, D H; Chan, R L

    1999-01-01

    We have analysed the interaction of the sunflower homeodomain leucine-zipper (Hd-Zip) protein Hahb-4 with DNA. The complete Hd-Zip domain from Hahb-4 was able to select specific sequences from a random oligonucleotide mixture that contained a 9-bp core with four fixed and five degenerate positions. Analysis of the binding of some of the selected sequences suggests that Hahb-4 preferentially binds the dyad-symmetrical sequence CAAT(A/T)ATTG. Single-nucleotide replacements at positions 1, 5 or 9 of this sequence produced a decrease in binding of 2-4-fold. DNA binding as a function of protein concentration was non-hyperbolic. This behaviour could be explained by an equation in which dimer formation is a pre-requisite for DNA binding. A global dissociation constant (Kd) of 1.31x10(-14) M2 could be calculated. The removal of the leucine zipper promoted a change in specificity and a decrease in binding affinity (Kd=5. 03x10(-5) M). Mutation of Phe-20 of the homeodomain into Leu completely abolished DNA binding. The mutant protein, however, was able to inhibit DNA binding by the non-mutant form, presumably through the formation of heterodimers. The analysis of this inhibitory effect at different mutant concentrations allowed the estimation of the Kd for the dimer-monomer equilibrium [about (2-4)x10(-6) M]; from this, a Kd of 3-6x10(-9) M for the dimer-DNA complex could be estimated. The results obtained indicate that the formation of dimers is the main factor influencing the interaction of Hahb-4 with DNA. It is proposed that shifts in a dimer-monomer equilibrium could be used within the cell to modulate the interaction of this protein with target genes. PMID:10377247

  13. Differential modulation of transcriptional activity of oestrogen receptors by direct protein-protein interactions with retinoid receptors.

    PubMed Central

    Song, M R; Lee, S K; Seo, Y W; Choi, H S; Lee, J W; Lee, M O

    1998-01-01

    Control of oestradiol-responsive gene regulation by oestrogen receptors (ERs) may involve complex cross-talk with retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Recently, we have shown that ERalpha directly interacts with RARalpha and RXRalpha through their ligand binding domains (LBDs). In the present work, we extend these results by showing that ERbeta binds similarly to RARalpha and RXRalpha but not to the glucocorticoid receptor, as demonstrated by the yeast two-hybrid tests and glutathione S-transferase pull-down assays. These direct interactions were also demonstrated in gel-shift assays, in which the oestrogen response element (ERE) binding by ERalpha was enhanced by the RXRalpha LBD but was abolished by the RARalpha LBD. In addition, we showed that RARalpha and RXRalpha bound the ERE as efficiently as ERalpha, suggesting that competition for DNA binding may affect the transactivation function of the ER. In transient transfection experiments, co-expression of RARalpha or RXRalpha, along with ERalpha or ERbeta, revealed differential modulation of the ERE-dependent transactivation, which was distinct from the results when each receptor alone was co-transfected. Importantly, when the LBD of RARalpha was co-expressed with ERalpha, transactivation of ERalpha on the ERE was repressed as efficiently as when wild-type RARalpha was co-expressed. Furthermore, liganded RARalpha or unliganded RXRalpha enhanced the ERalpha transactivation, suggesting the formation of transcriptionally active heterodimer complexes between the ER and retinoid receptors. Taken together, these results suggest that direct protein-protein interactions may play major roles in the determination of the biological consequences of cross-talk between ERs and RARalpha or RXRalpha. PMID:9841885

  14. Modulation of Hyaluronan Synthesis by the Interaction between Mesenchymal Stem Cells and Osteoarthritic Chondrocytes

    PubMed Central

    Antonioli, Eliane; Piccinato, Carla A.; Nader, Helena B.; Cohen, Moisés; Goldberg, Anna Carla; Ferretti, Mario

    2015-01-01

    Bone marrow mesenchymal stem cells (BM-MSCs) are considered a good source for cellular therapy in cartilage repair. But, their potential to repair the extracellular matrix, in an osteoarthritic environment, is still controversial. In osteoarthritis (OA), anti-inflammatory action and extracellular matrix production are important steps for cartilage healing. This study examined the interaction of BM-MSC and OA-chondrocyte on the production of hyaluronan and inflammatory cytokines in a Transwell system. We compared cocultured BM-MSCs and OA-chondrocytes with the individually cultured controls (monocultures). There was a decrease in BM-MSCs cell count in coculture with OA-chondrocytes when compared to BM-MSCs alone. In monoculture, BM-MSCs produced higher amounts of hyaluronan than OA-chondrocytes and coculture of BM-MSCs with OA-chondrocytes increased hyaluronan production per cell. Hyaluronan synthase-1 mRNA expression was upregulated in BM-MSCs after coculture with OA-chondrocytes, whereas hyaluronidase-1 was downregulated. After coculture, lower IL-6 levels were detected in BM-MSCs compared with OA-chondrocytes. These results indicate that, in response to coculture with OA-chondrocytes, BM-MSCs change their behavior by increasing production of hyaluronan and decreasing inflammatory cytokines. Our results indicate that BM-MSCs per se could be a potential tool for OA regenerative therapy, exerting short-term effects on the local microenvironment even when cell:cell contact is not occurring. PMID:26273306

  15. Sleeping Beauty transposase modulates cell-cycle progression through interaction with Miz-1

    PubMed Central

    Walisko, Oliver; Izsvák, Zsuzsanna; Szabó, Kornélia; Kaufman, Christopher D.; Herold, Steffi; Ivics, Zoltán

    2006-01-01

    We used the Sleeping Beauty (SB) transposable element as a tool to probe transposon–host cell interactions in vertebrates. The Miz-1 transcription factor was identified as an interactor of the SB transposase in a yeast two-hybrid screen. Through its association with Miz-1, the SB transposase down-regulates cyclin D1 expression in human cells, as evidenced by differential gene expression analysis using microarray hybridization. Down-regulation of cyclin D1 results in a prolonged G1 phase of the cell cycle and retarded growth of transposase-expressing cells. G1 slowdown is associated with a decrease of cyclin D1/cdk4-specific phosphorylation of the retinoblastoma protein. Both cyclin D1 down-regulation and the G1 slowdown induced by the transposase require Miz-1. A temporary G1 arrest enhances transposition, suggesting that SB transposition is favored in the G1 phase of the cell cycle, where the nonhomologous end-joining pathway of DNA repair is preferentially active. Because nonhomologous end-joining is required for efficient SB transposition, the transposase-induced G1 slowdown is probably a selfish act on the transposon’s part to maximize the chance for a successful transposition event. PMID:16537485

  16. Homodimeric Intrinsic Membrane Proteins. Identification and Modulation of Interactions between Mitochondrial Transporter (Carrier) Subunits

    PubMed Central

    Wohlrab, Hartmut

    2010-01-01

    Transporter (carrier) proteins of the inner mitochondrial membrane link metabolic pathways within the matrix and the cytosol with transport/exchange of metabolites and inorganic ions. Their strict control of these fluxes is required for oxidative phosphorylation. Understanding the ternary complex transport mechanism with which most of these transporters function requires an accounting of the number and interactions of their subunits. The phosphate transporter (PTP, Mir1p) subunit readily forms homodimers with intersubunit affinities changeable by mutations. Cys28, likely at the subunit interface, is a site for mutations yielding transport inhibition or a channel-like transport mode. Such mutations yield a small increase or decrease in affinity between the subunits. The PTP inhibitor N-ethylmaleimide decreases subunit affinity by a small amount. PTP mutations that yield the highest (40%) and the lowest (2%) liposome incorporation efficiencies (LIE) are clustered near Cys28. Such mutant subunits show the lowest and highest subunit affinities respectively. The oxaloacetate transporter (Oac1p) subunit has an almost 2-fold lower affinity than the PTP subunit. The Oac1p, dicarboxylate (Dic1p) and PTP transporter subunits form heterodimers with even lower affinities. These results form a firm basis for detailed studies to establish the effect of subunit affinities on transport mode and activity and for the identification of the mechanism that prevents formation of heterodimers that surely will negatively impact oxidative phosphorylation and ATP levels with serious consequences for the cell. PMID:20171189

  17. Galactic Cosmic-Ray Intensity Modulation by Corotating Interaction Region Stream Interfaces at 1 au

    NASA Astrophysics Data System (ADS)

    Guo, X.; Florinski, V.

    2016-07-01

    We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Our results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.

  18. Rac1 functions as a reversible tension modulator to stabilize VE-cadherin trans-interaction.

    PubMed

    Daneshjou, Nazila; Sieracki, Nathan; van Nieuw Amerongen, Geerten P; Schwartz, Martin A; Komarova, Yulia A; Malik, Asrar B; Conway, Daniel E

    2015-01-01

    The role of the RhoGTPase Rac1 in stabilizing mature endothelial adherens junctions (AJs) is not well understood. In this paper, using a photoactivatable probe to control Rac1 activity at AJs, we addressed the relationship between Rac1 and the dynamics of vascular endothelial cadherin (VE-cadherin). We demonstrated that Rac1 activation reduced the rate of VE-cadherin dissociation, leading to increased density of VE-cadherin at AJs. This response was coupled to a reduction in actomyosin-dependent tension across VE-cadherin adhesion sites. We observed that inhibiting myosin II directly or through photo-release of the caged Rho kinase inhibitor also reduced the rate of VE-cadherin dissociation. Thus, Rac1 functions by stabilizing VE-cadherin trans-dimers in mature AJs by counteracting the actomyosin tension. The results suggest a new model of VE-cadherin adhesive interaction mediated by Rac1-induced reduction of mechanical tension at AJs, resulting in the stabilization of VE-cadherin adhesions. PMID:25559184

  19. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere.

    PubMed

    Sasaki, Hideharu; Klein, Patrice; Qiu, Bo; Sasai, Yoshikazu

    2014-01-01

    Ocean eddies (with a size of 100-300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1-50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed. PMID:25501039

  20. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    PubMed Central

    Lakshminarayanan, Rajamani; Sridhar, Radhakrishnan; Loh, Xian Jun; Nandhakumar, Muruganantham; Barathi, Veluchamy Amutha; Kalaipriya, Madhaiyan; Kwan, Jia Lin; Liu, Shou Ping; Beuerman, Roger Wilmer; Ramakrishna, Seeram

    2014-01-01

    Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole) electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical conformation of gelatin and the presence of gelatin decreased the hemolytic activity of polyenes. The polyene-loaded fiber mats were noncytotoxic to primary human corneal and sclera fibroblasts. The reduction of toxicity with complete retention of activity of the polyene antifungal-loaded gelatin fiber mats can provide new opportunities in the management of superficial skin infections. PMID:24920895

  1. Modulating the Electron-Hole Interaction in a Hybrid Lead Halide Perovskite with an Electric Field.

    PubMed

    Leijtens, Tomas; Srimath Kandada, Ajay Ram; Eperon, Giles E; Grancini, Giulia; D'Innocenzo, Valerio; Ball, James M; Stranks, Samuel D; Snaith, Henry J; Petrozza, Annamaria

    2015-12-16

    Despite rapid developments in both photovoltaic and light-emitting device performance, the understanding of the optoelectronic properties of hybrid lead halide perovskites is still incomplete. In particular, the polarizability of the material, the presence of molecular dipoles, and their influence on the dynamics of the photoexcitations remain an open issue to be clarified. Here, we investigate the effect of an applied external electric field on the photoexcited species of CH3NH3PbI3 thin films, both at room temperature and at low temperature, by monitoring the photoluminescence (PL) yield and PL decays. At room temperature we find evidence for electric-field-induced reduction of radiative bimolecular carrier recombination together with motion of charged defects that affects the nonradiative decay rate of the photoexcited species. At low temperature (190 K), we observe a field-induced enhancement of radiative free carrier recombination rates that lasts even after the removal of the field. We assign this to field-induced alignment of the molecular dipoles, which reduces the vibrational freedom of the lattice and the associated local screening and hence results in a stronger electron-hole interaction. PMID:26579724

  2. Developmental and genetic modulation of arsenic biotransformation: A gene by environment interaction?

    SciTech Connect

    Meza, Mercedes; Gandolfi, A. Jay; Klimecki, Walter T.

    2007-08-01

    The complexity of arsenic toxicology has confounded the identification of specific pathways of disease causation. One focal point of arsenic research is aimed at fully characterizing arsenic biotransformation in humans, a process that appears to be quite variable, producing a mixture of several arsenic species with greatly differing toxic potencies. In an effort to characterize genetic determinants of variability in arsenic biotransformation, a genetic association study of 135 subjects in western Sonora, Mexico was performed by testing 23 polymorphic sites in three arsenic biotransformation candidate genes. One gene, arsenic 3 methyltransferase (AS3MT), was strongly associated with the ratio of urinary dimethylarsinic acid to monomethylarsonic acid (D/M) in children (7-11 years) but not in adults (18-79 years). Subsequent analyses revealed that the high D/M values associated with variant AS3MT alleles were primarily due to lower levels of monomethylarsonic acid as percent of total urinary arsenic (%MMA5). In light of several reports of arsenic-induced disease being associated with relatively high %MMA5 levels, these findings raise the possibility that variant AS3MT individuals may suffer less risk from arsenic exposure than non-variant individuals. These analyses also provide evidence that, in this population, regardless of AS3MT variant status, children tend to have lower %MMA5 values than adults, suggesting that the global developmental regulation of arsenic biotransformation may interact with genetic variants in metabolic genes to result in novel genetic effects such as those in this report.

  3. Discoidin Domain Receptor 1 Protein Is a Novel Modulator of Megakaryocyte-Collagen Interactions*

    PubMed Central

    Abbonante, Vittorio; Gruppi, Cristian; Rubel, Diana; Gross, Oliver; Moratti, Remigio; Balduini, Alessandra

    2013-01-01

    Growing evidence demonstrates that extracellular matrices regulate many aspects of megakaryocyte (MK) development; however, among the different extracellular matrix receptors, integrin α2β1 and glycoprotein VI are the only collagen receptors studied in platelets and MKs. In this study, we demonstrate the expression of the novel collagen receptor discoidin domain receptor 1 (DDR1) by human MKs at both mRNA and protein levels and provide evidence of DDR1 involvement in the regulation of MK motility on type I collagen through a mechanism based on the activity of SHP1 phosphatase and spleen tyrosine kinase (Syk). Specifically, we demonstrated that inhibition of DDR1 binding to type I collagen, preserving the engagement of the other collagen receptors, glycoprotein VI, α2β1, and LAIR-1, determines a decrease in MK migration due to the reduction in SHP1 phosphatase activity and consequent increase in the phosphorylation level of its main substrate Syk. Consistently, inhibition of Syk activity restored MK migration on type I collagen. In conclusion, we report the expression and function of a novel collagen receptor on human MKs, and we point out that an increasing level of complexity is necessary to better understand MK-collagen interactions in the bone marrow environment. PMID:23530036

  4. Chemokine interaction with synergy-inducing molecules: fine tuning modulation of cell trafficking.

    PubMed

    Cecchinato, Valentina; D'Agostino, Gianluca; Raeli, Lorenzo; Uguccioni, Mariagrazia

    2016-06-01

    Directed migration and arrest of leukocytes during homeostasis, inflammation, and tumor development is mediated by the chemokine system, which governs leukocyte migration and activities. Although we understand well the effects of different chemokines one by one, much less was known about the potential consequences of the concomitant expression of multiple chemokines or of their interaction with inflammatory molecules on leukocyte migration and functions. In the past 10 yr, several studies revealed the existence of additional features of chemokines: they can antagonize chemokine receptors or synergize with other chemokines, also by forming heterocomplexes. Moreover, recent data show that not only chemokines but also the alarmin high-mobility group box 1 can for a complex with CXCL12, enhancing its potency on CXCR4. The molecular mechanism underlying the effect of the heterocomplex has been partially elucidated, whereas its structure is a matter of current investigations. The present review discusses the current knowledge and relevance of the functions of heterocomplexes formed between chemokines or between the chemokine CXCL12 and the alarmin high-mobility group box 1. These studies highlight the importance of taking into account, when approaching innovative therapies targeting the chemokine system, also the fact that some chemokines and molecules released in inflammation, can considerably affect the activity of chemokine receptor agonists. PMID:26715684

  5. p97 Disease Mutations Modulate Nucleotide-Induced Conformation to Alter Protein-Protein Interactions.

    PubMed

    Bulfer, Stacie L; Chou, Tsui-Fen; Arkin, Michelle R

    2016-08-19

    The AAA+ ATPase p97/VCP adopts at least three conformations that depend on the binding of ADP and ATP and alter the orientation of the N-terminal protein-protein interaction (PPI) domain into "up" and "down" conformations. Point mutations that cause multisystem proteinopathy 1 (MSP1) are found at the interface of the N domain and D1-ATPase domain and potentially alter the conformational preferences of p97. Additionally, binding of "adaptor" proteins to the N-domain regulates p97's catalytic activity. We propose that p97/adaptor PPIs are coupled to p97 conformational states. We evaluated the binding of nucleotides and the adaptor proteins p37 and p47 to wild-type p97 and MSP1 mutants. Notably, p47 and p37 bind 8-fold more weakly to the ADP-bound conformation of wild-type p97 compared to the ATP-bound conformation. However, MSP1 mutants lose this nucleotide-induced conformational coupling because they destabilize the ADP-bound, "down" conformation of the N-domain. Loss in conformation coupling to PPIs could contribute to the mechanism of MSP1. PMID:27267671

  6. The role of the basement membrane as a modulator of intestinal epithelial-mesenchymal interactions.

    PubMed

    Simon-Assmann, P; Spenle, C; Lefebvre, O; Kedinger, M

    2010-01-01

    Intestinal development is a process of continuous dynamic bidirectional crosstalk between epithelial and underlying mesenchymal cells. This crosstalk is mediated by well-dissected signaling pathways. Another crucial actor in the epithelio-mesenchymal interactions is the stromal microenvironment, which is composed of extracellular matrix molecules. Among them, the basement membrane (BM) molecules are secreted by the epithelium and mesenchyme in a complementary manner. These molecules signal back to the cells via the integrins or other specific receptors. In this review, we mainly focus on the BM molecules, particularly laminins. The major BM molecules are organized in a complex molecular network, which is highly variable among organs. Cell culture, coculture, and grafting models have been of great interest in understanding the importance of these molecules. Mouse gene ablation of laminin chains are interesting models, which often lead to embryonic death and are frequently accompanied by compensatory processes. Overall, the BM molecules have a crucial role in the careful maintenance of intestinal homeostasis. PMID:21075345

  7. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere

    PubMed Central

    Sasaki, Hideharu; Klein, Patrice; Qiu, Bo; Sasai, Yoshikazu

    2014-01-01

    Ocean eddies (with a size of 100–300 km), ubiquitous in satellite observations, are known to represent about 80% of the total ocean kinetic energy. Recent studies have pointed out the unexpected role of smaller oceanic structures (with 1–50 km scales) in generating and sustaining these eddies. The interpretation proposed so far invokes the internal instability resulting from the large-scale interaction between upper and interior oceanic layers. Here we show, using a new high-resolution simulation of the realistic North Pacific Ocean, that ocean eddies are instead sustained by a different process that involves small-scale mixed-layer instabilities set up by large-scale atmospheric forcing in winter. This leads to a seasonal evolution of the eddy kinetic energy in a very large part of this ocean, with an amplitude varying by a factor almost equal to 2. Perspectives in terms of the impacts on climate dynamics and future satellite observational systems are briefly discussed. PMID:25501039

  8. Developmental and Genetic Modulation of Arsenic Biotransformation: A Gene by Environment Interaction?

    PubMed Central

    Meza, Mercedes; Gandolfi, A. Jay; Klimecki, Walter T.

    2007-01-01

    The complexity of arsenic toxicology has confounded the identification of specific pathways of disease causation. One focal point of arsenic research is aimed at fully characterizing arsenic biotransformation in humans, a process that appears to be quite variable, producing a mixture of several arsenic species with greatly differing toxic potencies. In an effort to characterize genetic determinants of variability in arsenic biotransformation, a genetic association study of 135 subjects in western Sonora, Mexico was performed by testing 23 polymorphic sites in three arsenic biotransformation candidate genes. One gene, arsenic 3 methyltransferase (AS3MT), was strongly associated with the ratio of urinary dimethylarsinic acid to monomethylarsonic acid (D/M) in children (7-11 years) but not in adults (18-79 years). Subsequent analyses revealed that the high D/M values associated with variant AS3MT alleles were primarily due to lower levels of monomethylarsonic acid as percent of total urinary arsenic (%MMA5). In light of several reports of arsenic-induced disease being associated with relatively high %MMA5 levels, these findings raise the possibility that variant AS3MT individuals may suffer less risk from arsenic exposure than non-variant individuals. These analyses also provide evidence that in this population, regardless of AS3MT variant status, children tend to have lower %MMA5 values than adults, suggesting that the global developmental regulation of arsenic biotransformation may interact with genetic variants in metabolic genes to result in novel genetic effects such as those in this report. PMID:17306849

  9. Developmental and genetic modulation of arsenic biotransformation: a gene by environment interaction?

    PubMed

    Meza, Mercedes; Gandolfi, A Jay; Klimecki, Walter T

    2007-08-01

    The complexity of arsenic toxicology has confounded the identification of specific pathways of disease causation. One focal point of arsenic research is aimed at fully characterizing arsenic biotransformation in humans, a process that appears to be quite variable, producing a mixture of several arsenic species with greatly differing toxic potencies. In an effort to characterize genetic determinants of variability in arsenic biotransformation, a genetic association study of 135 subjects in western Sonora, Mexico was performed by testing 23 polymorphic sites in three arsenic biotransformation candidate genes. One gene, arsenic 3 methyltransferase (AS3MT), was strongly associated with the ratio of urinary dimethylarsinic acid to monomethylarsonic acid (D/M) in children (7-11 years) but not in adults (18-79 years). Subsequent analyses revealed that the high D/M values associated with variant AS3MT alleles were primarily due to lower levels of monomethylarsonic acid as percent of total urinary arsenic (%MMA5). In light of several reports of arsenic-induced disease being associated with relatively high %MMA5 levels, these findings raise the possibility that variant AS3MT individuals may suffer less risk from arsenic exposure than non-variant individuals. These analyses also provide evidence that, in this population, regardless of AS3MT variant status, children tend to have lower %MMA5 values than adults, suggesting that the global developmental regulation of arsenic biotransformation may interact with genetic variants in metabolic genes to result in novel genetic effects such as those in this report. PMID:17306849

  10. Cell-matrix interactions modulate interstitial collagenase expression by human keratinocytes actively involved in wound healing.

    PubMed Central

    Saarialho-Kere, U K; Kovacs, S O; Pentland, A P; Olerud, J E; Welgus, H G; Parks, W C

    1993-01-01

    We reported that interstitial collagenase is produced by keratinocytes at the edge of ulcers in pyogenic granuloma, and in this report, we assessed if production of this metalloproteinase is a common feature of the epidermal response in a variety of wounds. In all samples of chronic ulcers, regardless of etiology, and in incision wounds, collagenase mRNA, localized by in situ hybridization, was prominently expressed by basal keratinocytes bordering the sites of active re-epithelialization indicating that collagenolytic activity is a characteristic response of the epidermis to wounding. No expression of mRNAs for 72- and 92-kD gelatinases or matrilysin was seen in keratinocytes, and no signal for any metalloproteinase was detected in normal epidermis. Immunostaining for type IV collagen showed that collagenase-positive keratinocytes were not in contact with an intact basement membrane and, unlike normal keratinocytes, expressed alpha 5 beta 1 receptors. These observations suggest that cell-matrix interactions influence collagenase expression by epidermal cells. Indeed, as determined by ELISA, primary cultures of human keratinocytes grown on basement membrane proteins (Matrigel; Collaborative Research Inc., Bedford, MA) did not express significant levels of collagenase, whereas cells grown on type I collagen produced markedly increased levels. These results suggest that migrating keratinocytes actively involved in re-epithelialization acquire a collagenolytic phenotype upon contact with the dermal matrix. Images PMID:8254040

  11. Hypothesis: genetic and epigenetic risk factors interact to modulate vulnerability and resilience to FASD

    PubMed Central

    Tunc-Ozcan, Elif; Sittig, Laura J.; Harper, Kathryn M.; Graf, Evan N.; Redei, Eva E.

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) presents a collection of symptoms representing physiological and behavioral phenotypes caused by maternal alcohol consumption. Symptom severity is modified by genetic differences in fetal susceptibility and resistance as well as maternal genetic factors such as maternal alcohol sensitivity. Animal models demonstrate that both maternal and paternal genetics contribute to the variation in the fetus' vulnerability to alcohol exposure. Maternal and paternal genetics define the variations in these phenotypes even without the effect of alcohol in utero, as most of these traits are polygenic, non-Mendelian, in their inheritance. In addition, the epigenetic alterations that instigate the alcohol induced neurodevelopmental deficits can interact with the polygenic inheritance of respective traits. Here, based on specific examples, we present the hypothesis that the principles of non-Mendelian inheritance, or “exceptions” to Mendelian genetics, can be the driving force behind the severity of the prenatal alcohol-exposed individual's symptomology. One such exception is when maternal alleles lead to an altered intrauterine hormonal environment and, therefore, produce variations in the long-term consequences on the development of the alcohol-exposed fetus. Another exception is when epigenetic regulation of allele-specific gene expression generates disequilibrium between the maternal vs. paternal genetic contributions, and thereby, modifies the effect of prenatal alcohol exposure on the fetus. We propose that these situations in which one parent has an exaggerated influence over the offspring's vulnerability to prenatal alcohol are major contributing mechanisms responsible for the variations in the symptomology of FASD in the exposed generation and beyond. PMID:25140173

  12. Hypothesis: genetic and epigenetic risk factors interact to modulate vulnerability and resilience to FASD.

    PubMed

    Tunc-Ozcan, Elif; Sittig, Laura J; Harper, Kathryn M; Graf, Evan N; Redei, Eva E

    2014-01-01

    Fetal alcohol spectrum disorder (FASD) presents a collection of symptoms representing physiological and behavioral phenotypes caused by maternal alcohol consumption. Symptom severity is modified by genetic differences in fetal susceptibility and resistance as well as maternal genetic factors such as maternal alcohol sensitivity. Animal models demonstrate that both maternal and paternal genetics contribute to the variation in the fetus' vulnerability to alcohol exposure. Maternal and paternal genetics define the variations in these phenotypes even without the effect of alcohol in utero, as most of these traits are polygenic, non-Mendelian, in their inheritance. In addition, the epigenetic alterations that instigate the alcohol induced neurodevelopmental deficits can interact with the polygenic inheritance of respective traits. Here, based on specific examples, we present the hypothesis that the principles of non-Mendelian inheritance, or "exceptions" to Mendelian genetics, can be the driving force behind the severity of the prenatal alcohol-exposed individual's symptomology. One such exception is when maternal alleles lead to an altered intrauterine hormonal environment and, therefore, produce variations in the long-term consequences on the development of the alcohol-exposed fetus. Another exception is when epigenetic regulation of allele-specific gene expression generates disequilibrium between the maternal vs. paternal genetic contributions, and thereby, modifies the effect of prenatal alcohol exposure on the fetus. We propose that these situations in which one parent has an exaggerated influence over the offspring's vulnerability to prenatal alcohol are major contributing mechanisms responsible for the variations in the symptomology of FASD in the exposed generation and beyond. PMID:25140173

  13. Beyond aggression: Androgen-receptor blockade modulates social interaction in wild meerkats.

    PubMed

    delBarco-Trillo, Javier; Greene, Lydia K; Goncalves, Ines Braga; Fenkes, Miriam; Wisse, Jillian H; Drewe, Julian A; Manser, Marta B; Clutton-Brock, Tim; Drea, Christine M

    2016-02-01

    In male vertebrates, androgens are inextricably linked to reproduction, social dominance, and aggression, often at the cost of paternal investment or prosociality. Testosterone is invoked to explain rank-related reproductive differences, but its role within a status class, particularly among subordinates, is underappreciated. Recent evidence, especially for monogamous and cooperatively breeding species, suggests broader androgenic mediation of adult social interaction. We explored the actions of androgens in subordinate, male members of a cooperatively breeding species, the meerkat (Suricata suricatta). Although male meerkats show no rank-related testosterone differences, subordinate helpers rarely reproduce. We blocked androgen receptors, in the field, by treating subordinate males with the antiandrogen, flutamide. We monitored androgen concentrations (via baseline serum and time-sequential fecal sampling) and recorded behavior within their groups (via focal observation). Relative to controls, flutamide-treated animals initiated less and received more high-intensity aggression (biting, threatening, feeding competition), engaged in more prosocial behavior (social sniffing, grooming, huddling), and less frequently initiated play or assumed a 'dominant' role during play, revealing significant androgenic effects across a broad range of social behavior. By contrast, guarding or vigilance and measures of olfactory and vocal communication in subordinate males appeared unaffected by flutamide treatment. Thus, androgens in male meerkat helpers are aligned with the traditional trade-off between promoting reproductive and aggressive behavior at a cost to affiliation. Our findings, based on rare endocrine manipulation in wild mammals, show a more pervasive role for androgens in adult social behavior than is often recognized, with possible relevance for understanding tradeoffs in cooperative systems. PMID:26545817

  14. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    PubMed

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release. PMID:18816790

  15. Cannabinoid Receptor–Interacting Protein 1a Modulates CB1 Receptor Signaling and Regulation

    PubMed Central

    Smith, Tricia H.; Blume, Lawrence C.; Straiker, Alex; Cox, Jordan O.; David, Bethany G.; McVoy, Julie R. Secor; Sayers, Katherine W.; Poklis, Justin L.; Abdullah, Rehab A.; Egertová, Michaela; Chen, Ching-Kang; Mackie, Ken; Elphick, Maurice R.; Howlett, Allyn C.

    2015-01-01

    Cannabinoid CB1 receptors (CB1Rs) mediate the presynaptic effects of endocannabinoids in the central nervous system (CNS) and most behavioral effects of exogenous cannabinoids. Cannabinoid receptor–interacting protein 1a (CRIP1a) binds to the CB1R C-terminus and can attenuate constitutive CB1R-mediated inhibition of Ca2+ channel activity. We now demonstrate cellular colocalization of CRIP1a at neuronal elements in the CNS and show that CRIP1a inhibits both constitutive and agonist-stimulated CB1R-mediated guanine nucleotide–binding regulatory protein (G-protein) activity. Stable overexpression of CRIP1a in human embryonic kidney (HEK)-293 cells stably expressing CB1Rs (CB1-HEK), or in N18TG2 cells endogenously expressing CB1Rs, decreased CB1R-mediated G-protein activation (measured by agonist-stimulated [35S]GTPγS (guanylyl-5′-[O-thio]-triphosphate) binding) in both cell lines and attenuated inverse agonism by rimonabant in CB1-HEK cells. Conversely, small-interfering RNA–mediated knockdown of CRIP1a in N18TG2 cells enhanced CB1R-mediated G-protein activation. These effects were not attributable to differences in CB1R expression or endocannabinoid tone because CB1R levels did not differ between cell lines varying in CRIP1a expression, and endocannabinoid levels were undetectable (CB1-HEK) or unchanged (N18TG2) by CRIP1a overexpression. In CB1-HEK cells, 4-hour pretreatment with cannabinoid agonists downregulated CB1Rs and desensitized agonist-stimulated [35S]GTPγS binding. CRIP1a overexpression attenuated CB1R downregulation without altering CB1R desensitization. Finally, in cultured autaptic hippocampal neurons, CRIP1a overexpression attenuated both depolarization-induced suppression of excitation and inhibition of excitatory synaptic activity induced by exogenous application of cannabinoid but not by adenosine A1 agonists. These results confirm that CRIP1a inhibits constitutive CB1R activity and demonstrate that CRIP1a can also inhibit agonist

  16. Modulation of amphotericin B membrane interaction by cholesterol and ergosterol--a molecular dynamics study.

    PubMed

    Czub, Jacek; Baginski, Maciej

    2006-08-24

    Amphotericin B (AmB) is a well-known polyene macrolide antibiotic used to treat systemic fungal infections. According to a well-documented hypothesis, molecules of AmB form ionic membrane channels that are responsible for chemotherapeutic action. These channels disturb the barrier function of the cell membrane which, in consequence, leads to cell death. The presence of sterols in the cell membrane is necessary for full manifestation of the antibiotic's ionophoric activity, at least in vivo. Ergosterol-containing fungal membranes are targeted more efficiently by AmB than mammalian membranes containing cholesterol. However, a similar level of disturbance of fungal and mammalian membranes is responsible for serious toxicity of the antibiotic. Due to the importance of AmB and lack of better antifungal alternatives, the search for new less toxic derivatives of this antibiotic still continues. Therefore, studies of the AmB-membrane interaction are very important. The present work constitutes a continuation of a broad program of study on AmB mode of action in our group. In particular, molecular dynamics simulations of AmB monomers inside the bilayers of three different compositions (pure dimiristoylphosphatidylcholine (DMPC) and DMPC bilayer containing approximately 25 mol % of cholesterol or ergosterol) were carried out. In general, analysis of generated trajectories resulted in identifying many significant differences in the behavior of AmB monomers depending on the membrane environment. In particular, it was established that the antibiotic increases the internal order of DMPC bilayer containing 25 mol % of cholesterol, while it has no effect on the order of the bilayer with the same amount of ergosterol. Performed calculations also revealed that relatively rigid and elongated AmB molecules exhibit higher affinity toward the sterol-containing lo phases and, therefore, may be cumulated in ordered membrane domains (e.g., lipid rafts). Since the partition coefficient

  17. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    /tracking response as the curve of the surface changed. We propose that the interaction of touch and gravity sensing/response systems combine to strictly control the tropic growth of the root. Such signal integration is likely a critical part of growth control in the stimulus-rich environment of the soil. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Kapitza-Dirac effect with lasers and non-resonant interaction for quantum modulation of electron beams (Schwarz-Hora effect)

    SciTech Connect

    Hora, Heinrich; Handel, Peter H.

    2013-04-08

    The initial Kapitza-Dirac effect for crossing energetic electron beams with laser beams had been generalized for quantum modulation of the electrons. The recent developments provide advanced insights with the initial experimental facts, where consequences are leading to results about non-resonant laser interaction with condensed media including nonlinearities with applications to quantum 1/f noise theory in electronic devices.

  19. High and Low Computer Self-Efficacy Groups and Their Learning Behavior from Self-Regulated Learning Perspective While Engaged in Interactive Learning Modules

    ERIC Educational Resources Information Center

    Santoso, Harry B.; Lawanto, Oenardi; Becker, Kurt; Fang, Ning; Reeve, Edward M.

    2014-01-01

    The purpose of this research was to investigate high school students' computer self-efficacy (CSE) and learning behavior in a self-regulated learning (SRL) framework while utilizing an interactive learning module. The researcher hypothesizes that CSE is reflected on cognitive actions and metacognitive strategies while the students are engaged with…

  20. Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain.

    PubMed

    Takahashi, Hideyuki; Terada, Kazunori; Morita, Tomoyo; Suzuki, Shinsuke; Haji, Tomoki; Kozima, Hideki; Yoshikawa, Masahiro; Matsumoto, Yoshio; Omori, Takashi; Asada, Minoru; Naito, Eiichi

    2014-09-01

    Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple matching-pennies game with a human, human-like android, mechanical robot, interactive robot, and a computer. Before playing this game in the scanner, participants experienced social interactions with each opponent separately and scored their initial impressions using two questionnaires. We found that the participants perceived opponents in two mental dimensions: one represented "mind-holderness" in which participants attributed anthropomorphic impressions to some of the opponents that had mental functions, while the other dimension represented "mind-readerness" in which participants characterized opponents as intelligent. Interestingly, this "mind-readerness" dimension correlated to participants frequently changing their game tactic to prevent opponents from envisioning their strategy, and this was corroborated by increased entropy during the game. We also found that the two factors separately modulated activity in distinct social brain regions. Specifically, mind-holderness modulated activity in the dorsal aspect of the temporoparietal junction (TPJ) and medial prefrontal and posterior paracingulate cortices, while mind-readerness modulated activity in the ventral aspect of TPJ and the temporal pole. These results clearly demonstrate that activity in social brain networks is modulated through pre-scanning experiences of social interaction with a variety of agents. Furthermore, our findings elucidated the existence of two distinct functional networks in the social human brain

  1. Magnesium and manganese interactively modulate parthenolide accumulation and the antioxidant defense system in the leaves of Tanacetum parthenium.

    PubMed

    Farzadfar, Soudeh; Zarinkamar, Fatemeh; Behmanesh, Mehrdad; Hojati, Mostafa

    2016-09-01

    A balanced nutrient supply is a critical factor affecting accumulation of terpenoids in plants, yet data related to the interactive effects of two essential nutrients for the biosynthesis of sesquiterpenes are scarce. Here, the interactional effects between magnesium (Mg) and manganese (Mn) on plant growth, oxidative status, parthenolide accumulation and expression of key genes involved in parthenolide biosynthesis including 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR), 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMGR), germacrene A synthase (GAS), germacrene A oxidase (GAO), costunolide synthase (COS) and parthenolide synthase (PTS) in the leaves of feverfew plants grown at different Mn and Mn levels were assessed. Plant growth and leaf pigment concentrations were associated with the amount of applied Mg but could be modified by the Mn level. Deprivation and the addition of both Mg and Mn induce oxidative stress. Mg supply also alleviated the adverse effects of Mn excess on plant growth and oxidative status. In addition, parthenolide biosynthesis decreased under deprivation of Mg or Mn, but the addition of Mn up to 50μM under 2mM Mg supply considerably increased its accumulation. The parthenolide accumulation trend might reflect the up-regulation of terpenoid-related genes and enzyme activities as well as the oxidative status of feverfew leaves. Our data suggest a profound effect of the combined supply of Mg and Mn on parthenolide biosynthesis through the activation of terpene synthases, which concomitantly modulate by oxidative status. PMID:27450490

  2. Nucleotide binding interactions modulate dNTP selectivity and facilitate 8-oxo-dGTP incorporation by DNA polymerase lambda

    PubMed Central

    Burak, Matthew J.; Guja, Kip E.; Garcia-Diaz, Miguel

    2015-01-01

    8-Oxo-7,8,-dihydro-2′-deoxyguanosine triphosphate (8-oxo-dGTP) is a major product of oxidative damage in the nucleotide pool. It is capable of mispairing with adenosine (dA), resulting in futile, mutagenic cycles of base excision repair. Therefore, it is critical that DNA polymerases discriminate against 8-oxo-dGTP at the insertion step. Because of its roles in oxidative DNA damage repair and non-homologous end joining, DNA polymerase lambda (Pol λ) may frequently encounter 8-oxo-dGTP. Here, we have studied the mechanisms of 8-oxo-dGMP incorporation and discrimination by Pol λ. We have solved high resolution crystal structures showing how Pol λ accommodates 8-oxo-dGTP in its active site. The structures indicate that when mispaired with dA, the oxidized nucleotide assumes the mutagenic syn-conformation, and is stabilized by multiple interactions. Steady-state kinetics reveal that two residues lining the dNTP binding pocket, Ala510 and Asn513, play differential roles in dNTP selectivity. Specifically, Ala510 and Asn513 facilitate incorporation of 8-oxo-dGMP opposite dA and dC, respectively. These residues also modulate the balance between purine and pyrimidine incorporation. Our results shed light on the mechanisms controlling 8-oxo-dGMP incorporation in Pol λ and on the importance of interactions with the incoming dNTP to determine selectivity in family X DNA polymerases. PMID:26220180

  3. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan

    2015-01-01

    A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494

  4. Light-Dependent Phosphorylation of Bardet Biedl Syndrome 5 in Photoreceptor Cells Modulates its Interaction with Arrestin1

    PubMed Central

    Smith, Tyler S.; Spitzbarth, Benjamin; Li, Jian; Dugger, Donald R.; Stern-Schneider, Gabi; Sehn, Elisabeth; Bolch, Susan N.; McDowell, J. Hugh; Tipton, Jeremiah; Wolfrum, Uwe; Smith, W. Clay

    2013-01-01

    Arrestins are dynamic proteins which move between cell compartments triggered by stimulation of G-protein-coupled receptors. Even more dynamically in vertebrate photoreceptors, arrestin1 (Arr1) moves between the inner and outer segments according to the lighting conditions. Previous studies have shown that the light-driven translocation of Arr1 in rod photoreceptors is initiated by rhodopsin through a phospholipase C/protein kinase C (PKC) signaling cascade. The purpose of this study is to identify the PKC substrate that regulates the translocation of Arr1. Mass spectrometry was used to identify the primary phosphorylated proteins in extracts prepared from PKC-stimulated mouse eye cups, confirming the finding with in vitro phosphorylation assays. Our results show that BBS5 is the principal protein phosphorylated either by phorbol ester stimulation or by light stimulation of PKC. Via immunoprecipitation of BBS5 in rod outer segments, Arr1 was pulled down; phosphorylation of BBS5 reduced this co-precipitation of Arr1. Immunofluorescence and immunoelectron microscopy showed that BBS5 principally localizes along the axonemes of rods and cones, but also in photoreceptor inner segments, and synaptic regions. Our principal findings in this study are three-fold. First, we demonstrate that BBS5 is post-translationally regulated by phosphorylation via PKC, an event that is triggered by light in photoreceptor cells. Second, we find a direct interaction between BBS5 and Arr1, an interaction that is modulated by phosphorylation of BBS5. Finally, we show that BBS5 is distributed along the photoreceptor axoneme, co-localizing with Arr1 in the dark. These findings suggest a role for BBS5 in regulating light-dependent translocation of Arr1 and a model describing its role in Arr1 translocation is proposed. PMID:23817741

  5. Dengue NS3, an RNAi suppressor, modulates the human miRNA pathways through its interacting partner.

    PubMed

    Kakumani, Pavan Kumar; Rajgokul, K S; Ponia, Sanket Singh; Kaur, Inderjeet; Mahanty, Srikrishna; Medigeshi, Guruprasad R; Banerjea, Akhil C; Chopra, Arun Prasad; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2015-10-01

    RNAi acts as a host immune response against non-self molecules, including viruses. Viruses evolved to neutralize this response by expressing suppressor proteins. In the present study, we investigated dengue virus non structural protein 3 (dvNS3), for its RNAi-suppressor activity in human cell lines. Dengue virus (DV) NS3 reverts the GFP expression in GFP-silenced cell lines. Pull-down assays of dvNS3 revealed that it interacts with the host factor human heat shock cognate 70 (hHSC70). Down-regulation of hHSC70 resulted in accumulation of dengue viral genomic RNA. Also, the interaction of dvNS3 with hHSC70 perturbs the formation of RISC (RNA-induced silencing complex)-loading complex (RLC), by displacing TRBP (TAR RNA-binding protein) and possibly impairing the downstream activity of miRNAs. Interestingly, some of these miRNAs have earlier been reported to be down-regulated upon DV infection in Huh7 cells. Further studies on the miRNA-mRNA relationship along with mRNA profiling of samples overexpressing dvNS3 revealed up-regulation of TAZ (tafazzin) and SYNGR1 (synaptogyrin 1), known dengue viral host factors (DVHFs). Importantly, overexpression of dvNS3 in human embryonic kidney (HEK) 293T cells resulted in modulation of both mature and precursor miRNAs in human cell lines. Subsequent analysis suggested that dvNS3 induced stage-specific down-regulation of miRNAs. Taken together, these results suggest that dvNS3 affects biogenesis and function of host miRNAs to regulate DVHFs for favouring DV replication. PMID:26221025

  6. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-06-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These

  7. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-03-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity by 6-fold during a 19 day incubation period, while ammonia oxidation activity was significantly inhibited in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like type Ia MOB, and nitrifying communities appeared to be suppressed by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to equal increase in Methylosarcina and Methylobacter-related MOB, indicating the differential growth requirements of representatives of these genera. Strikingly, type Ib MOB did not respond to methane nor to urea. Increase in 13C-assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, in addition of nitrite

  8. Negatively Charged Metal Oxide Nanoparticles Interact with the 20S Proteasome and Differentially Modulate Its Biologic Functional Effects

    PubMed Central

    Falaschetti, Christine A.; Paunesku, Tatjana; Kurepa, Jasmina; Nanavati, Dhaval; Chou, Stanley S.; De, Mrinmoy; Song, MinHa; Jang, Jung-tak; Wu, Aiguo; Dravid, Vinayak P.; Cheon, Jinwoo; Smalle, Jan; Woloschak, Gayle E.

    2013-01-01

    The multicatalytic ubiquitin-proteasome system (UPS) carries out proteolysis in a highly orchestrated way and regulates a large number of cellular processes. Deregulation of the UPS in many disorders has been documented. In some cases, e.g. carcinogenesis, elevated proteasome activity has been implicated in disease development, while the etiology of other diseases, e.g. neurodegeneration, includes decreased UPS activity. Therefore, agents that alter proteasome activity could suppress as well as enhance a multitude of diseases. Metal oxide nanoparticles, often developed as diagnostic tools, have not previously been tested as modulators of proteasome activity. Here, several types of metal oxide nanoparticles were found to adsorb to the proteasome and show variable preferential binding for particular proteasome subunits with several peptide binding “hotspots” possible. These interactions depend on the size, charge, and concentration of the nanoparticles and affect proteasome activity in a time-dependent manner. Should metal oxide nanoparticles increase proteasome activity in cells, as they do in vitro, unintended effects related to changes in proteasome function can be expected. PMID:23930940

  9. Leucine-rich repeat kinase 2 functionally interacts with microtubules and kinase-dependently modulates cell migration.

    PubMed

    Caesar, Mareike; Zach, Susanne; Carlson, Coby B; Brockmann, Kathrin; Gasser, Thomas; Gillardon, Frank

    2013-06-01

    Recent studies indicate that the Parkinson's disease-linked leucine-rich repeat kinase 2 (LRRK2) modulates cytoskeletal functions by regulating actin and tubulin dynamics, thereby affecting neurite outgrowth. By interactome analysis we demonstrate that the binding of LRRK2 to tubulins is significantly enhanced by pharmacological LRRK2 inhibition in cells. Co-incubation of LRRK2 with microtubules increased the LRRK2 GTPase activity in a cell-free assay. Destabilization of microtubules causes a rapid decrease in cellular LRRK2(S935) phosphorylation indicating a decreased LRRK2 kinase activity. Moreover, both human LRRK2(G2019S) fibroblasts and mouse LRRK2(R1441G) fibroblasts exhibit alterations in cell migration in culture. Treatment of mouse fibroblasts with the selective LRRK2 inhibitor LRRK2-IN1 reduces cell motility. These findings suggest that LRRK2 and microtubules mutually interact both in non-neuronal cells and in neurons, which might contribute to our understanding of its pathogenic effects in Parkinson's disease. PMID:23318930

  10. A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits.

    PubMed

    Cross, Joanna M; Clancy, Maureen; Shaw, Janine R; Boehlein, Susan K; Greene, Thomas W; Schmidt, Robert R; Okita, Thomas W; Hannah, L Curtis

    2005-02-01

    The heterotetrameric, allosterically regulated enzyme, adenosine-5'-diphosphoglucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch synthesis. Despite vast differences in allosteric properties and a long evolutionary separation, heterotetramers of potato small subunit and maize large subunit have activity comparable to either parent in an Escherichia coli expression system. In contrast, co-expression of maize small subunit with the potato large subunit produces little activity as judged by in vivo activity stain. To pinpoint the region responsible for differential activity, we expressed chimeric maize/potato small subunits in E. coli. This identified a 55-amino acid motif of the potato small subunit that is critical for glycogen production when expressed with the potato large subunit. Potato and maize small subunit sequences differ at five amino acids in this motif. Replacement experiments revealed that at least four amino acids of maize origin were required to reduce staining. An AGPase composed of a chimeric potato small subunit containing the 55-amino acid maize motif with the potato large subunit exhibited substantially less affinity for the substrates, glucose-1-phosphate and ATP and an increased Ka for the activator, 3-phosphoglyceric acid. Placement of the potato motif into the maize small subunit restored glycogen synthesis with the potato large subunit. Hence, a small polymorphic motif within the small subunit influences both catalytic and allosteric properties by modulating subunit interactions. PMID:15686515

  11. The Modulation of the Symbiont/Host Interaction between Wolbachia pipientis and Aedes fluviatilis Embryos by Glycogen Metabolism

    PubMed Central

    da Rocha Fernandes, Mariana; Martins, Renato; Pessoa Costa, Evenilton; Casagrande Pacidônio, Etiene; Araujo de Abreu, Leonardo; da Silva Vaz, Itabajara; Moreira, Luciano A.; da Fonseca, Rodrigo Nunes; Logullo, Carlos

    2014-01-01

    Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+) and Wolbachia-negative (W−) mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3) levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism. PMID:24926801

  12. Disparate bilingual experiences modulate task-switching advantages: A diffusion-model analysis of the effects of interactional context on switch costs.

    PubMed

    Hartanto, Andree; Yang, Hwajin

    2016-05-01

    Drawing on the adaptive control hypothesis (Green & Abutalebi, 2013), we investigated whether bilinguals' disparate interactional contexts modulate task-switching performance. Fifty-eight bilinguals within the single-language context (SLC) and 75 bilinguals within the dual-language context (DLC) were compared in a typical task-switching paradigm. Given that DLC bilinguals switch between languages within the same context, while SLC bilinguals speak only one language in one environment and therefore rarely switch languages, we hypothesized that the two groups' stark difference in their interactional contexts of conversational exchanges would lead to differences in switch costs. As predicted, DLC bilinguals showed smaller switch costs than SLC bilinguals. Our diffusion-model analyses suggest that DLC bilinguals' benefits in switch costs are more likely driven by task-set reconfiguration than by proactive interference. Our findings underscore the modulating role of the interactional context of conversational exchanges in task switching. PMID:26848731

  13. Distant electrostatic interactions modulate the free energy level of Q{sub A}{sup -} in the photosynthetic reaction center

    SciTech Connect

    Miksovska, J.; Sebban, P.; Tandori, J.

    1996-12-03

    In the reaction centers from the purple photosynthetic bacterium Rhodobacter capsulatus, we have determined that residue L212Glu, situated near the secondary quinone acceptor Q{sub B}, modulates the free energy level of the reduced primary quinone molecule A{sub A}{sup -} at high pH. Even though the distance between L212Glu and Q{sub A} is 17 {angstrom}, our results indicate an apparent interaction energy between them of 30 {plus_minus} 18 meV. This interaction was measured by quantitating the stoichiometry of partial proton uptake upon formation of Q{sub A}{sup -} as a function of pH in four mutant strains which lack L212Glu, in comparison with the wild type. Below pH 7.5, the stoichiometry of proton uptake form all stains is nearly superimposable with that of the wild type. However, at variance with the wild type, reaction centers from all strains that lack L212Glu fail to take up protons above pH 9. The lack of a change in the free energy level is confirmed by the determination of the pH dependence of the rate (k{sub AP}) of P{sup +}Q{sub A}{sup -} charge recombination in the reaction centers where the native Q{sub A} is replaced by quinones having low redox potentials. Our data show that the ionization state of L212Glu, either on its own or via interactions with closely associated ionizable groups, is mainly involved in the proton uptake at high pH by reaction centers in the PQ{sub A}{sup -} state. This suggests that the formation of the Q{sub A}{sup -} semiquinone state induces shifts in pK{sub a}S of residues in the Q{sub B} proteic environment. This long-distance influence of ionization states is a mechanism which would facilitate electron transfer from Q{sub A} to Q{sub B} on the first and second flashes. The functional communication between the two quinone protein pockets may involve the iron-ligand complex which spans the distance between them. 48 refs., 4 figs.

  14. Comparison of Modules of Wild Type and Mutant Huntingtin and TP53 Protein Interaction Networks: Implications in Biological Processes and Functions

    PubMed Central

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, Pradeep K.

    2013-01-01

    Disease-causing mutations usually change the interacting partners of mutant proteins. In this article, we propose that the biological consequences of mutation are directly related to the alteration of corresponding protein protein interaction networks (PPIN). Mutation of Huntingtin (HTT) which causes Huntington's disease (HD) and mutations to TP53 which is associated with different cancers are studied as two example cases. We construct the PPIN of wild type and mutant proteins separately and identify the structural modules of each of the networks. The functional role of these modules are then assessed by Gene Ontology (GO) enrichment analysis for biological processes (BPs). We find that a large number of significantly enriched () GO terms in mutant PPIN were absent in the wild type PPIN indicating the gain of BPs due to mutation. Similarly some of the GO terms enriched in wild type PPIN cease to exist in the modules of mutant PPIN, representing the loss. GO terms common in modules of mutant and wild type networks indicate both loss and gain of BPs. We further assign relevant biological function(s) to each module by classifying the enriched GO terms associated with it. It turns out that most of these biological functions in HTT networks are already known to be altered in HD and those of TP53 networks are altered in cancers. We argue that gain of BPs, and the corresponding biological functions, are due to new interacting partners acquired by mutant proteins. The methodology we adopt here could be applied to genetic diseases where mutations alter the ability of the protein to interact with other proteins. PMID:23741403

  15. The nphp-2 and arl-13 Genetic Modules Interact to Regulate Ciliogenesis and Ciliary Microtubule Patterning in C. elegans

    PubMed Central

    Warburton-Pitt, Simon R. F.; Silva, Malan; Nguyen, Ken C. Q.; Hall, David H.; Barr, Maureen M.

    2014-01-01

    Cilia are microtubule-based cellular organelles that mediate signal transduction. Cilia are organized into several structurally and functionally distinct compartments: the basal body, the transition zone (TZ), and the cilia shaft. In vertebrates, the cystoprotein Inversin localizes to a portion of the cilia shaft adjacent to the TZ, a region termed the “Inversin compartment” (InvC). The mechanisms that establish and maintain the InvC are unknown. In the roundworm C. elegans, the cilia shafts of amphid channel and phasmid sensory cilia are subdivided into two regions defined by different microtubule ultrastructure: a proximal doublet-based region adjacent to the TZ, and a distal singlet-based region. It has been suggested that C. elegans cilia also possess an InvC, similarly to mammalian primary cilia. Here we explored the biogenesis, structure, and composition of the C. elegans ciliary doublet region and InvC. We show that the InvC is conserved and distinct from the doublet region. nphp-2 (the C. elegans Inversin homolog) and the doublet region genes arl-13, klp-11, and unc-119 are redundantly required for ciliogenesis. InvC and doublet region genes can be sorted into two modules—nphp-2+klp-11 and arl-13+unc-119—which are both antagonized by the hdac-6 deacetylase. The genes of this network modulate the sizes of the NPHP-2 InvC and ARL-13 doublet region. Glutamylation, a tubulin post-translational modification, is not required for ciliary targeting of InvC and doublet region components; rather, glutamylation is modulated by nphp-2, arl-13, and unc-119. The ciliary targeting and restricted localization of NPHP-2, ARL-13, and UNC-119 does not require TZ-, doublet region, and InvC-associated genes. NPHP-2 does require its calcium binding EF hand domain for targeting to the InvC. We conclude that the C. elegans InvC is distinct from the doublet region, and that components in these two regions interact to regulate ciliogenesis via cilia placement, ciliary

  16. Recapitulating the α-helix: nonpeptidic, low-molecular-weight ligands for the modulation of helix-mediated protein-protein interactions.

    PubMed

    Lanning, Maryanna; Fletcher, Steven

    2013-12-01

    Protein-protein interactions play critical roles in a wide variety of biological processes, and their dysregulations contribute to the pathogenesis of several diseases, including cancer. Chemical entities that can abrogate aberrant protein-protein interactions may provide novel therapeutic agents. A large number of protein-protein interactions are mediated by protein secondary structure, the most commonly encountered form of which is the α-helix. Accordingly, over the last decade, there has been a flood of nonpeptidic small molecules that recapitulate the projection and chemical nature of key side chains of the canonical α-helix as a strategy to disrupt helix-mediated protein-protein interactions. In this review, we discuss recent advances (post 2006) in the design of synthetic α-helix mimetics, which include single-faced and two-faced/amphipathic structures, for the modulation of protein-protein interactions. PMID:24261892

  17. Differential Modulation of Functional Dynamics and Allosteric Interactions in the Hsp90-Cochaperone Complexes with p23 and Aha1: A Computational Study

    PubMed Central

    Blacklock, Kristin; Verkhivker, Gennady M.

    2013-01-01

    Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide “molecular brakes” that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity

  18. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice.

    PubMed

    Bermudez-Silva, Francisco J; Romero-Zerbo, Silvana Y; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases. PMID:26563389

  19. Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection

    PubMed Central

    Pandey, Rajesh; Bhattacharya, Aniket; Bhardwaj, Vivek; Jha, Vineet; Mandal, Amit K.; Mukerji, Mitali

    2016-01-01

    Primate-specific Alus harbor different regulatory features, including miRNA targets. In this study, we provide evidence for miRNA-mediated modulation of transcript isoform levels during heat-shock response through exaptation of Alu-miRNA sites in mature mRNA. We performed genome-wide expression profiling coupled with functional validation of miRNA target sites within exonized Alus, and analyzed conservation of these targets across primates. We observed that two miRNAs (miR-15a-3p and miR-302d-3p) elevated in stress response, target RAD1, GTSE1, NR2C1, FKBP9 and UBE2I exclusively within Alu. These genes map onto the p53 regulatory network. Ectopic overexpression of miR-15a-3p downregulates GTSE1 and RAD1 at the protein level and enhances cell survival. This Alu-mediated fine-tuning seems to be unique to humans as evident from the absence of orthologous sites in other primate lineages. We further analyzed signatures of selection on Alu-miRNA targets in the genome, using 1000 Genomes Phase-I data. We found that 198 out of 3177 Alu-exonized genes exhibit signatures of selection within Alu-miRNA sites, with 60 of them containing SNPs supported by multiple evidences (global-FST > 0.3, pair-wise-FST > 0.5, Fay-Wu’s H < −20, iHS > 2.0, high ΔDAF) and implicated in p53 network. We propose that by affecting multiple genes, Alu-miRNA interactions have the potential to facilitate population-level adaptations in response to environmental challenges. PMID:27586304

  20. Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection.

    PubMed

    Pandey, Rajesh; Bhattacharya, Aniket; Bhardwaj, Vivek; Jha, Vineet; Mandal, Amit K; Mukerji, Mitali

    2016-01-01

    Primate-specific Alus harbor different regulatory features, including miRNA targets. In this study, we provide evidence for miRNA-mediated modulation of transcript isoform levels during heat-shock response through exaptation of Alu-miRNA sites in mature mRNA. We performed genome-wide expression profiling coupled with functional validation of miRNA target sites within exonized Alus, and analyzed conservation of these targets across primates. We observed that two miRNAs (miR-15a-3p and miR-302d-3p) elevated in stress response, target RAD1, GTSE1, NR2C1, FKBP9 and UBE2I exclusively within Alu. These genes map onto the p53 regulatory network. Ectopic overexpression of miR-15a-3p downregulates GTSE1 and RAD1 at the protein level and enhances cell survival. This Alu-mediated fine-tuning seems to be unique to humans as evident from the absence of orthologous sites in other primate lineages. We further analyzed signatures of selection on Alu-miRNA targets in the genome, using 1000 Genomes Phase-I data. We found that 198 out of 3177 Alu-exonized genes exhibit signatures of selection within Alu-miRNA sites, with 60 of them containing SNPs supported by multiple evidences (global-FST > 0.3, pair-wise-FST > 0.5, Fay-Wu's H < -20, iHS > 2.0, high ΔDAF) and implicated in p53 network. We propose that by affecting multiple genes, Alu-miRNA interactions have the potential to facilitate population-level adaptations in response to environmental challenges. PMID:27586304

  1. The interaction of copper(II) and glycyl-L-histidyl-L-lysine, a growth-modulating tripeptide from plasma.

    PubMed

    Lau, S J; Sarkar, B

    1981-12-01

    The interaction between Cu(II) and the growth-modulating tripeptide glycyl-L-histidyl-L-lysine in the presence and absence of L-histidine was investigated by potentiometric titration and visible-absorption spectrophotometry at 25 degrees C in 0.15 M-NaCl. Analyses of the results in the pH range 3.5--10.6 indicated the presence of multiple species in solution in the binary system and extensive amounts of the ternary complexes in the ternary system. The species distribution and the stability constants, as well as the visible-absorption spectra of the species, were evaluated. The combined results were used to propose the structure of some of the complexes. The influence of the epsilon-amino group of the peptide in the enhancement of the stability constants was reflected prominently when compared with those complexes formed by either glycyl-L-histidine or glycyl-L-histidylglycine. The results obtained from the equilibrium-dialysis experiments showed that this tripeptide was able to compete with albumin for Cu(II) at pH 7.5 and 6 degrees C. At equimolar concentrations of albumin and the peptide, about 42% of the Cu(II) was bound to the peptide. At the physiologically relevant concentrations of Cu(II), albumin, L-histidine and this peptide, about 6% of the Cu(II) was associated with the low-molecular-weight components. This distribution could be due to the binary as well as the ternary complexes. The possible physiological role of these complexes in the transportation of Cu(II) from blood to tissues is discussed. PMID:7340824

  2. The interaction of copper(II) and glycyl-L-histidyl-L-lysine, a growth-modulating tripeptide from plasma.

    PubMed Central

    Lau, S J; Sarkar, B

    1981-01-01

    The interaction between Cu(II) and the growth-modulating tripeptide glycyl-L-histidyl-L-lysine in the presence and absence of L-histidine was investigated by potentiometric titration and visible-absorption spectrophotometry at 25 degrees C in 0.15 M-NaCl. Analyses of the results in the pH range 3.5--10.6 indicated the presence of multiple species in solution in the binary system and extensive amounts of the ternary complexes in the ternary system. The species distribution and the stability constants, as well as the visible-absorption spectra of the species, were evaluated. The combined results were used to propose the structure of some of the complexes. The influence of the epsilon-amino group of the peptide in the enhancement of the stability constants was reflected prominently when compared with those complexes formed by either glycyl-L-histidine or glycyl-L-histidylglycine. The results obtained from the equilibrium-dialysis experiments showed that this tripeptide was able to compete with albumin for Cu(II) at pH 7.5 and 6 degrees C. At equimolar concentrations of albumin and the peptide, about 42% of the Cu(II) was bound to the peptide. At the physiologically relevant concentrations of Cu(II), albumin, L-histidine and this peptide, about 6% of the Cu(II) was associated with the low-molecular-weight components. This distribution could be due to the binary as well as the ternary complexes. The possible physiological role of these complexes in the transportation of Cu(II) from blood to tissues is discussed. PMID:7340824

  3. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylose maize starch.

    PubMed

    Chai, Yanwei; Wang, Mingzhu; Zhang, Genyi

    2013-09-11

    High-amylose maize starch (HAM) is a common source material to make resistant starch with its high content of amylose (>70%). In the current investigation, the self-assembly of amylose in the presence of bioactive tea polyphenols (TPLs) and resulting slow digestion property of starch were explored. The experimental results using a mouse model showed a slow digestion property can be achieved with an extended and moderate glycemic response to HAM starch cocooked with TPLs. Further studies using a dilute aqueous amylose solution (0.1%, w/v) revealed an increased hydrodynamic radius of amylose molecules, indicating that TPLs could bridge them together, leading to increased molecular sizes. On the other hand, the bound TPLs interrupted the normal process of amylose recrystallizaiton evidenced by a decreased viscosity and storage modulus (G') of HAM (5%) gel, a rough surface of the cross-section of HAM film, and decreased short-range orders examined by Fourier transform infrared spectral analysis. Single-step degradation curves in the thermal gravimetric profile demonstrated the existence of a self-assembled amylose-TPL complex, which is mainly formed through hydrogen bonding interaction according to the results of iodine binding and X-ray powder diffraction analysis. Collectively, the amylose-TPL complexation influences the normal self-assembling process of amylose, leading to a low-ordered crystalline structure, which is the basis for TPLs' function in modulating the digestion property of HAM starch to produce a slowly digestible starch material that is beneficial to postprandial glycemic control and related health effects. PMID:23964645

  4. The cannabinoid CB1 receptor and mTORC1 signalling pathways interact to modulate glucose homeostasis in mice

    PubMed Central

    Bermudez-Silva, Francisco J.; Romero-Zerbo, Silvana Y.; Haissaguerre, Magalie; Ruz-Maldonado, Inmaculada; Lhamyani, Said; El Bekay, Rajaa; Tabarin, Antoine; Marsicano, Giovanni; Cota, Daniela

    2016-01-01

    ABSTRACT The endocannabinoid system (ECS) is an intercellular signalling mechanism that is present in the islets of Langerhans and plays a role in the modulation of insulin secretion and expansion of the β-cell mass. The downstream signalling pathways mediating these effects are poorly understood. Mammalian target of rapamycin complex 1 (mTORC1) signalling is a key intracellular pathway involved in energy homeostasis and is known to importantly affect the physiology of pancreatic islets. We investigated the possible relationship between cannabinoid type 1 (CB1) receptor signalling and the mTORC1 pathway in the endocrine pancreas of mice by using pharmacological analysis as well as mice genetically lacking the CB1 receptor or the downstream target of mTORC1, the kinase p70S6K1. In vitro static secretion experiments on islets, western blotting, and in vivo glucose and insulin tolerance tests were performed. The CB1 receptor antagonist rimonabant decreased glucose-stimulated insulin secretion (GSIS) at 0.1 µM while increasing phosphorylation of p70S6K1 and ribosomal protein S6 (rpS6) within the islets. Specific pharmacological blockade of mTORC1 by 3 nM rapamycin, as well as genetic deletion of p70S6K1, impaired the CB1-antagonist-mediated decrease in GSIS. In vivo experiments showed that 3 mg/kg body weight rimonabant decreased insulin levels and induced glucose intolerance in lean mice without altering peripheral insulin sensitivity; this effect was prevented by peripheral administration of low doses of rapamycin (0.1 mg/kg body weight), which increased insulin sensitivity. These findings suggest a functional interaction between the ECS and the mTORC1 pathway within the endocrine pancreas and at the whole-organism level, which could have implications for the development of new therapeutic approaches for pancreatic β-cell diseases. PMID:26563389

  5. Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon.

    PubMed

    Mandadi, Kranthi K; Scholthof, Karen-Beth G

    2015-01-01

    In eukaryotes, alternative splicing (AS) promotes transcriptome and proteome diversity. The extent of genome-wide AS changes occurring during a plant-microbe interaction is largely unknown. Here, using high-throughput, paired-end RNA sequencing, we generated an isoform-level spliceome map of Brachypodium distachyon infected with Panicum mosaic virus and its satellite virus. Overall, we detected ∼44,443 transcripts in B. distachyon, ∼30% more than those annotated in the reference genome. Expression of ∼28,900 transcripts was ≥2 fragments per kilobase of transcript per million mapped fragments, and ∼42% of multi-exonic genes were alternatively spliced. Comparative analysis of AS patterns in B. distachyon, rice (Oryza sativa), maize (Zea mays), sorghum (Sorghum bicolor), Arabidopsis thaliana, potato (Solanum tuberosum), Medicago truncatula, and poplar (Populus trichocarpa) revealed conserved ratios of the AS types between monocots and dicots. Virus infection quantitatively altered AS events in Brachypodium with little effect on the AS ratios. We discovered AS events for >100 immune-related genes encoding receptor-like kinases, NB-LRR resistance proteins, transcription factors, RNA silencing, and splicing-associated proteins. Cloning and molecular characterization of SCL33, a serine/arginine-rich splicing factor, identified multiple novel intron-retaining splice variants that are developmentally regulated and modulated during virus infection. B. distachyon SCL33 splicing patterns are also strikingly conserved compared with a distant Arabidopsis SCL33 ortholog. This analysis provides new insights into AS landscapes conserved among monocots and dicots and uncovered AS events in plant defense-related genes. PMID:25634987

  6. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm.

    PubMed

    Xiao, Jin; Klein, Marlise I; Falsetta, Megan L; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Heydorn, Arne; Koo, Hyun

    2012-01-01

    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and p

  7. Fair play doesn't matter: MEP modulation as a neurophysiological signature of status quo bias in economic interactions.

    PubMed

    Pisoni, Alberto; Lo Gerfo, Emanuele; Ottone, Stefania; Ponzano, Ferruccio; Zarri, Luca; Vergallito, Alessandra; Romero Lauro, Leonor Josefina

    2014-11-01

    quo, in the block in which the status quo maintenance occurred more often. Data support the hypothesis that the economic meaning of the observed actions differently modulates MEP amplitude, pointing at an influence on MF exerted by a peculiar interaction between economic outcomes and variation of the subjects' initial status quo. PMID:24983714

  8. Aggressive behavior during social interaction in mice is controlled by the modulation of tyrosine hydroxylase expression in the prefrontal cortex.

    PubMed

    Cambon, K; Dos-Santos Coura, R; Groc, L; Carbon, A; Weissmann, D; Changeux, J P; Pujol, J F; Granon, S

    2010-12-15

    The Balb/c strain and the C57BL/6 strain show constitutive differences for tyrosine hydroxylase expression, and noradrenaline (NA) prefrontal transmission. Male mice of these strains also show striking differences in social interaction behaviors, with an increased aggressiveness for the Balb/c strain. To test a potential link between these neurobiological and behavioral parameters, we evaluated the behavioral effects of chronic treatment of mice with BC19, a noreburnamine compound previously known as RU24722, found to modify cell organisation, tyrosine hydoxylase (TH) expression, and its activity into the locus coeruleus (LC). We compared the pharmacological effects between the two strains in social behaviors. Our results show that the emergence of additional TH-expressing (TH+) neurons in the rostral part of the LC of Balb/c mice was associated with an increase in the density of TH+ and noradrenergic (NA+) fibers in the molecular layer in the cingular (Cg1) and prelimbic (PrL) parts of the prefrontal cortex (PFC). BC19 treatment resulted in the near-equalization of the LC number of TH+ neurons and of the density of TH+ and NA+ fibers between both strains. The aggressiveness in Balb/c mice was considerably diminished by BC19 treatment, while the originally non aggressive behavior of C57Bl/6 mice was much less affected by BC19 treatment, despite a moderate increase in some offensive behaviors. In additional control experiments, we checked the effect of BC19 on a separate test for anxiety and assessed the effect of noradrenergic N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) mediated lesions in C57BL/6 mice on social behaviors. In the present study we show that the BC19 effect in Balb/c mice was independent of anxiety as measured in the light/dark test and that DSP-4 lesions in C57BL/6 mice produced a robust increase in aggressive social interaction. Altogether, these results show that the noradrenergic system, and particularly its projections to

  9. The Exopolysaccharide Matrix Modulates the Interaction between 3D Architecture and Virulence of a Mixed-Species Oral Biofilm

    PubMed Central

    Xiao, Jin; Klein, Marlise I.; Falsetta, Megan L.; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Heydorn, Arne; Koo, Hyun

    2012-01-01

    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and p

  10. A "Do-It-Yourself" Interactive Bone Structure Module: Development and Evaluation of an Online Teaching Resource

    ERIC Educational Resources Information Center

    Rich, Peter; Guy, Richard

    2013-01-01

    A stand-alone online teaching module was developed to cover an area of musculoskeletal anatomy (structure of bone) found to be difficult by students. The material presented in the module was not formally presented in any other way, thus providing additional time for other curriculum components, but it was assessed in the final examination. The…

  11. Prefrontal activity during working memory is modulated by the interaction of variation in CB1 and COX2 coding genes and correlates with frequency of cannabis use.

    PubMed

    Taurisano, Paolo; Antonucci, Linda A; Fazio, Leonardo; Rampino, Antonio; Romano, Raffaella; Porcelli, Annamaria; Masellis, Rita; Colizzi, Marco; Quarto, Tiziana; Torretta, Silvia; Di Giorgio, Annabella; Pergola, Giulio; Bertolino, Alessandro; Blasi, Giuseppe

    2016-08-01

    The CB1 cannabinoid receptor is targeted in the brain by endocannabinoids under physiological conditions as well as by delta9-tetrahydrocannabinol under cannabis use. Furthermore, its signaling appears to affect brain cognitive processing. Recent findings highlight a crucial role of cyclooxygenase-2 (COX-2) in the mechanism of intraneuronal CB1 signaling transduction, while others indicate that two single nucleotide polymorphisms (SNPs) (rs1406977 and rs20417) modulate expression of CB1 (CNR1) and COX-2 (PTGS2) coding genes, respectively. Here, our aim was to use fMRI to investigate in healthy humans whether these SNPs interact in modulating prefrontal activity during working memory processing and if this modulation is linked with cannabis use. We recruited 242 healthy subjects genotyped for CNR1 rs1406977 and PTGS2 rs20417 that performed the N-back working memory task during fMRI and were interviewed using the Cannabis Experience Questionnaire (CEQ). We found that the interaction between CNR1 rs1406977 and PTGS2 rs20417 is associated with dorsolateral prefrontal cortex (DLPFC) activity such that specific genotype configurations (CNR1 C carriers/PTGS2 C carriers and CNR1 TT/PTGS2 GG) predict lower cortical response versus others in spite of similar behavioral accuracy. Furthermore, DLPFC activity in the cluster associated with the CNR1 by PTGS2 interaction was negatively correlated with behavioral efficiency and positively correlated with frequency of cannabis use in cannabis users. These results suggest that a genetically modulated balancing of signaling within the CB1-COX-2 pathway may reflect on more or less efficient patterns of prefrontal activity during working memory. Frequency of cannabis use may be a factor for further modulation of CNR1/PTGS2-mediated cortical processing associated with this cognitive process. PMID:27261878

  12. A new level of regulation in gluconeogenesis: metabolic state modulates the intracellular localization of aldolase B and its interaction with liver fructose-1,6-bisphosphatase.

    PubMed

    Droppelmann, Cristian A; Sáez, Doris E; Asenjo, Joel L; Yáñez, Alejandro J; García-Rocha, Mar; Concha, Ilona I; Grez, Manuel; Guinovart, Joan J; Slebe, Juan C

    2015-12-01

    Understanding how glucose metabolism is finely regulated at molecular and cellular levels in the liver is critical for knowing its relationship to related pathologies, such as diabetes. In order to gain insight into the regulation of glucose metabolism, we studied the liver-expressed isoforms aldolase B and fructose-1,6-bisphosphatase-1 (FBPase-1), key enzymes in gluconeogenesis, analysing their cellular localization in hepatocytes under different metabolic conditions and their protein-protein interaction in vitro and in vivo. We observed that glucose, insulin, glucagon and adrenaline differentially modulate the intracellular distribution of aldolase B and FBPase-1. Interestingly, the in vitro protein-protein interaction analysis between aldolase B and FBPase-1 showed a specific and regulable interaction between them, whereas aldolase A (muscle isozyme) and FBPase-1 showed no interaction. The affinity of the aldolase B and FBPase-1 complex was modulated by intermediate metabolites, but only in the presence of K(+). We observed a decreased association constant in the presence of adenosine monophosphate, fructose-2,6-bisphosphate, fructose-6-phosphate and inhibitory concentrations of fructose-1,6-bisphosphate. Conversely, the association constant of the complex increased in the presence of dihydroxyacetone phosphate (DHAP) and non-inhibitory concentrations of fructose-1,6-bisphosphate. Notably, in vivo FRET studies confirmed the interaction between aldolase B and FBPase-1. Also, the co-expression of aldolase B and FBPase-1 in cultured cells suggested that FBPase-1 guides the cellular localization of aldolase B. Our results provide further evidence that metabolic conditions modulate aldolase B and FBPase-1 activity at the cellular level through the regulation of their interaction, suggesting that their association confers a catalytic advantage for both enzymes. PMID:26417114

  13. Interactions Between Odorant Functional Group and Hydrocarbon Structure Influence Activity in Glomerular Response Modules in the Rat Olfactory Bulb

    PubMed Central

    Johnson, Brett A.; Farahbod, Haleh; Leon, Michael

    2008-01-01

    To investigate the effect of odorant hydrocarbon structure on spatial representations in the olfactory bulb systematically, we exposed rats to odorant chemicals possessing one of four different oxygen-containing functional groups on one of five different hydrocarbon backbones. We also used several hydrocarbon odorants lacking other functional groups. Hydrocarbon structural categories included straight-chained, branched, double-bonded, alicyclic, and aromatic features. Activity throughout the entire glomerular layer was measured as uptake of [14C]2-deoxyglucose and was mapped into anatomically standardized data matrices for statistical comparisons across different animals. Patterns evoked by straight-chained aliphatic odorants confirmed an association of activity in particular glomerular response modules with particular functional groups. However, the amount of activity in these same modules also was affected significantly by differences in hydrocarbon structure. Thus, the molecular features recognized by receptors projecting to these response modules appear to involve both functional group and hydrocarbon structural elements. In addition, particular benzyl and cyclohexyl odorants evoked activity in dorsal modules previously associated with the ketone functional group, which represents an exception to the rule of one feature per response module that had emerged from our previous studies. These dorsal modules also responded to nitrogen-containing aromatic compounds involving pyridine and pyrazine rings. The unexpected overlap in modular responses to ketones and odorants seemingly unrelated to ketones may reflect some covert shared molecular feature, the existence of odorant sensory neurons with multiple specificities, or a mosaic of sensory neuron projections to these particular modules. PMID:15678471

  14. Angle-dependent modulated spectral peaks of proton beams generated in ultrashort intense laser-solid interactions

    SciTech Connect

    Su, L. N.; Hu, Z. D.; Zheng, Y.; Liu, M.; Li, Y. T. Wang, W. M.; Shen, Z. W.; Fan, H. T.; Chen, L. M.; Lu, X.; Ma, J. L.; Wang, X.; Wang, Z. H.; Wei, Z. Y.; Sheng, Z. M.; Yuan, X. H.; Zhang, J.; Xu, M. H.

    2014-09-15

    Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.

  15. Protein Interaction Profiling of the p97 Adaptor UBXD1 Points to a Role for the Complex in Modulating ERGIC-53 Trafficking*

    PubMed Central

    Haines, Dale S.; Lee, J. Eugene; Beauparlant, Stephen L.; Kyle, Dane B.; den Besten, Willem; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Deshaies, Raymond J.

    2012-01-01

    UBXD1 is a member of the poorly understood subfamily of p97 adaptors that do not harbor a ubiquitin association domain or bind ubiquitin-modified proteins. Of clinical importance, p97 mutants found in familial neurodegenerative conditions Inclusion Body Myopathy Paget's disease of the bone and/or Frontotemporal Dementia and Amyotrophic Lateral Sclerosis are defective at interacting with UBXD1, indicating that functions regulated by a p97-UBXD1 complex are altered in these diseases. We have performed liquid chromatography-mass spectrometric analysis of UBXD1-interacting proteins to identify pathways in which UBXD1 functions. UBXD1 displays prominent association with ERGIC-53, a hexameric type I integral membrane protein that functions in protein trafficking. The UBXD1-ERGIC-53 interaction requires the N-terminal 10 residues of UBXD1 and the C-terminal cytoplasmic 12 amino acid tail of ERGIC-53. Use of p97 and E1 enzyme inhibitors indicate that complex formation between UBXD1 and ERGIC-53 requires the ATPase activity of p97, but not ubiquitin modification. We also performed SILAC-based quantitative proteomic profiling to identify ERGIC-53 interacting proteins. This analysis identified known (e.g. COPI subunits) and novel (Rab3GAP1/2 complex involved in the fusion of vesicles at the cell membrane) interactions that are also mediated through the C terminus of the protein. Immunoprecipitation and Western blotting analysis confirmed the proteomic interaction data and it also revealed that an UBXD1-Rab3GAP association requires the ERGIC-53 binding domain of UBXD1. Localization studies indicate that UBXD1 modules the sub-cellular trafficking of ERGIC-53, including promoting movement to the cell membrane. We propose that p97-UBXD1 modulates the trafficking of ERGIC-53-containing vesicles by controlling the interaction of transport factors with the cytoplasmic tail of ERGIC-53. PMID:22337587

  16. Testing the interaction between analytical modules: an example with Roundup Ready® soybean line GTS 40-3-2

    PubMed Central

    2010-01-01

    Background The modular approach to analysis of genetically modified organisms (GMOs) relies on the independence of the modules combined (i.e. DNA extraction and GM quantification). The validity of this assumption has to be proved on the basis of specific performance criteria. Results An experiment was conducted using, as a reference, the validated quantitative real-time polymerase chain reaction (PCR) module for detection of glyphosate-tolerant Roundup Ready® GM soybean (RRS). Different DNA extraction modules (CTAB, Wizard and Dellaporta), were used to extract DNA from different food/feed matrices (feed, biscuit and certified reference material [CRM 1%]) containing the target of the real-time PCR module used for validation. Purity and structural integrity (absence of inhibition) were used as basic criteria that a DNA extraction module must satisfy in order to provide suitable template DNA for quantitative real-time (RT) PCR-based GMO analysis. When performance criteria were applied (removal of non-compliant DNA extracts), the independence of GMO quantification from the extraction method and matrix was statistically proved, except in the case of Wizard applied to biscuit. A fuzzy logic-based procedure also confirmed the relatively poor performance of the Wizard/biscuit combination. Conclusions For RRS, this study recognises that modularity can be generally accepted, with the limitation of avoiding combining highly processed material (i.e. biscuit) with a magnetic-beads system (i.e. Wizard). PMID:20687918

  17. Exploration of Energy Modulations in Novel RhB-TPE-Based Bichromophoric Materials via Interactions of Cu(2+) Ion under Various Semiaqueous and Micellar Conditions.

    PubMed

    Singh, Ravinder; Dwivedi, Atul Kumar; Singh, Ashutosh; Lin, Chien-Min; Arumugaperumal, Reguram; Wei, Kung-Hwa; Lin, Hong-Cheu

    2016-03-01

    Novel bichromophoric materials TR-A and TR-B consisting of an entirely new combination of TPE and RhB units were developed to explore the optimum conditions of energy modulations via pH variation and Cu(2+) interaction at various water contents of CH3CN. Interestingly, TR-A and TR-B, at 60 and 70% water contents, respectively, favored the optimum Cu(2+)-mediated energy modulations from TPE to RhB and thus achieve the brightest orange emissions of free RhB with complete disappearance of aggregation-induced emission (AIE) from TPE. Furthermore, various micellar conditions of triton-X-100, SDS, and CTAB were employed to adjust energy modulations of TR-A and TR-B at high water contents (at 80 and 90%, respectively). The incorporation of RhB into triton-X-100 micellar cavities disrupted AIE from TPE; thus, none of the energy modulations from TPE to RhB occurred even in the presence of Cu(2+) ion. Interestingly, the micellar conditions of anionic surfactant (SDS) favored the increased local concentration of Cu(2+) ions in the vicinity of scavangable RhB and facilitated the generation of noncyclic free RhB in situ via bright-orange emissions. PMID:26910632

  18. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules

    PubMed Central

    Sangith, Nikhil; Srinivasaraghavan, Kannan; Sahu, Indrajit; Desai, Ankita; Medipally, Spandana; Somavarappu, Arun Kumar; Verma, Chandra; Venkatraman, Prasanna

    2014-01-01

    PSMD9 (Proteasome Macropain non-ATPase subunit 9), a proteasomal assembly chaperone, harbors an uncharacterized PDZ-like domain. Here we report the identification of five novel interacting partners of PSMD9 and provide the first glimpse at the structure of the PDZ-domain, including the molecular details of the interaction. We based our strategy on two propositions: (a) proteins with conserved C-termini may share common functions and (b) PDZ domains interact with C-terminal residues of proteins. Screening of C-terminal peptides followed by interactions using full-length recombinant proteins, we discovered hnRNPA1 (an RNA binding protein), S14 (a ribosomal protein), CSH1 (a growth hormone), E12 (a transcription factor) and IL6 receptor as novel PSMD9-interacting partners. Through multiple techniques and structural insights, we clearly demonstrate for the first time that human PDZ domain interacts with the predicted Short Linear Sequence Motif (SLIM) at the C-termini of the client proteins. These interactions are also recapitulated in mammalian cells. Together, these results are suggestive of the role of PSMD9 in transcriptional regulation, mRNA processing and editing, hormone and receptor activity and protein translation. Our proof-of-principle experiments endorse a novel and quick method for the identification of putative interacting partners of similar PDZ-domain proteins from the proteome and for discovering novel functions. PMID:25009770

  19. The Interaction of a Carbohydrate-Binding Module from a Clostridium perfringens N-Acetyl-beta-hexosaminidase with its Carbohydrate Receptor

    SciTech Connect

    Ficko-Blean,E.; Boraston, A.

    2006-01-01

    Clostridium perfringens is a notable colonizer of the human gastrointestinal tract. This bacterium is quite remarkable for a human pathogen by the number of glycoside hydrolases found in its genome. The modularity of these enzymes is striking as is the frequent occurrence of modules having amino acid sequence identity with family 32 carbohydrate-binding modules (CBMs), often referred to as F5/8 domains. Here we report the properties of family 32 CBMs from a C. perfringens N-acetyl-{beta}-hexosaminidase. Macroarray, UV difference, and isothermal titration calorimetry binding studies indicate a preference for the disaccharide LacNAc ({beta}-d-galactosyl-1,4-{beta}-d-N-acetylglucosamine). The molecular details of the interaction of this CBM with galactose, LacNAc, and the type II blood group H-trisaccharide are revealed by x-ray crystallographic studies at resolutions of 1.49, 2.4, and 2.3 Angstroms, respectively.

  20. Dickkopf-1 regulates gastrulation movements by coordinated modulation of Wnt/βcatenin and Wnt/PCP activities, through interaction with the Dally-like homolog Knypek

    PubMed Central

    Caneparo, Luca; Huang, Ya-Lin; Staudt, Nicole; Tada, Masasumi; Ahrendt, Reiner; Kazanskaya, Olga; Niehrs, Christof; Houart, Corinne

    2007-01-01

    Dickkopf-1 (Dkk1) is a secreted protein that negatively modulates the Wnt/βcatenin pathway. Lack of Dkk1 function affects head formation in frog and mice, supporting the idea that Dkk1 acts as a “head inducer” during gastrulation. We show here that lack of Dkk1 function accelerates internalization and rostral progression of the mesendoderm and that gain of function slows down both internalization and convergence extension, indicating a novel role for Dkk1 in modulating these movements. The motility phenotype found in the morphants is not observed in embryos in which the Wnt/βcatenin pathway is overactivated, and that dominant-negative Wnt proteins are not able to rescue the gastrulation movement defect induced by absence of Dkk1. These data strongly suggest that Dkk1 is acting in a βcatenin independent fashion when modulating gastrulation movements. We demonstrate that the glypican 4/6 homolog Knypek (Kny) binds to Dkk1 and that they are able to functionally interact in vivo. Moreover, Dkk1 regulation of gastrulation movements is kny dependent. Kny is a component of the Wnt/planar cell polarity (PCP) pathway. We found that indeed Dkk1 is able to activate this pathway in both Xenopus and zebrafish. Furthermore, concomitant alteration of the βcatenin and PCP activities is able to mimic the morphant accelerated cell motility phenotype. Our data therefore indicate that Dkk1 regulates gastrulation movement through interaction with LRP5/6 and Kny and coordinated modulations of Wnt/βcatenin and Wnt/PCP pathways. PMID:17322405

  1. Two autonomous structural modules in the fimbrial shaft adhesin FimA mediate Actinomyces interactions with streptococci and host cells during oral biofilm development

    SciTech Connect

    Mishra, Arunima; Devarajan, Bharanidharan; Reardon, Melissa E.; Dwivedi, Prabhat; Krishnan, Vengadesan; Cisar, John O.; Das, Asis; Narayana, Sthanam V.L.; Ton-That, Hung

    2011-09-06

    By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.

  2. Electron spin echo modulation study of sodium dodecyl sulfate and dodecyltrimethylammonium bromide micellar solutions in the presence of urea: Evidence for urea interaction at the micellar surface

    SciTech Connect

    Baglioni, P. ); Ferroni, E. ); Kevan, L. )

    1990-05-17

    Electron spin echo studies have been carried out for a series of x-doxylstearic acid (x-DSA, x = 5,7,10,12,16) and 4-octanoyl-2,2,6,6-tetramethylpiperidine-1-oxy (C{sub 8}-TEMPO) spin probes in micellar solutions of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) in D{sub 2}O and in the presence of 2 or 6 M urea or urea-d{sub 4}. Modulation effects due to the interaction of the unpaired electron with urea and water deuteriums show that urea does not affect the bent conformation of the x-DSA probe in the micelle. The analysis of the deuterium modulation depth and the Fourier transformation of the two-pulse electron spin echo spectra show that urea interacts with the surfactant polar headgroups at the micelle surface. These results support recent molecular dynamics and Monte Carlo calculations of micellar systems and are in agreement with direct interaction of urea at micellar surfaces in which it replaces some water molecules in the surface region.

  3. Protein interaction module-assisted function X (PIMAX) approach to producing challenging proteins including hyperphosphorylated tau and active CDK5/p25 kinase complex.

    PubMed

    Sui, Dexin; Xu, Xinjing; Ye, Xuemei; Liu, Mengyu; Mianecki, Maxwell; Rattanasinchai, Chotirat; Buehl, Christopher; Deng, Xiexiong; Kuo, Min-Hao

    2015-01-01

    Many biomedically critical proteins are underrepresented in proteomics and biochemical studies because of the difficulty of their production in Escherichia coli. These proteins might possess posttranslational modifications vital to their functions, tend to misfold and be partitioned into bacterial inclusion bodies, or act only in a stoichiometric dimeric complex. Successful production of these proteins requires efficient interaction between these proteins and a specific "facilitator," such as a protein-modifying enzyme, a molecular chaperone, or a natural physical partner within the dimeric complex. Here we report the design and application of a protein interaction module-assisted function X (PIMAX) system that effectively overcomes these hurdles. By fusing two proteins of interest to a pair of well-studied protein-protein interaction modules, we were able to potentiate the association of these two proteins, resulting in successful production of an enzymatically active cyclin-dependent kinase complex and hyperphosphorylated tau protein, which is intimately linked to Alzheimer disease. Furthermore, using tau isoforms quantitatively phosphorylated by GSK-3β and CDK5 kinases via PIMAX, we demonstrated the hyperphosphorylation-stimulated tau oligomerization in vitro, paving the way for new Alzheimer disease drug discoveries. Vectors for PIMAX can be easily modified to meet the needs of different applications. This approach thus provides a convenient and modular suite with broad implications for proteomics and biomedical research. PMID:25385071

  4. The role of merged interaction regions and drafts in the heliospheric modulation of cosmic rays beyond 20 AU - A computer simulation

    NASA Technical Reports Server (NTRS)

    Potgieter, M. S.; Le Roux, J. A.; Burlaga, L. F.; Mcdonald, F. B.

    1993-01-01

    Voyager 2 magnetic field measurements are used to simulate merged interaction and rarefaction regions (MIRs and RRs) for 1985-1989 via numerical solutions of the time-dependent, axially symmetric transport equation of cosmic rays in the heliosphere, together with the concurrent use of the wavy neutral sheet as a time-dependent drift parameter. This drift approach was found to be more successful, because it was able to reproduce the intensity levels, the factor modulation, and latitudinal gradients for 1 GeV protons at 23 AU.

  5. EWS/FLI and its Downstream Target NR0B1 Interact Directly to Modulate Transcription and Oncogenesis in Ewing's Sarcoma

    PubMed Central

    Kinsey, Michelle; Smith, Richard; Iyer, Anita K.; McCabe, Edward R.B.; Lessnick, Stephen L.

    2009-01-01

    Most Ewing's sarcomas harbor chromosomal translocations that encode fusions between EWS and ETS family members. The most common fusion, EWS/FLI, consists of an EWSR1-derived strong transcriptional activation domain fused, in frame, to the DNA binding domain-containing portion of FLI1. EWS/FLI functions as an aberrant transcription factor to regulate genes that mediate the oncogenic phenotype of Ewing's sarcoma. One of these regulated genes, NR0B1, encodes a co-repressor protein, and likely plays a transcriptional role in tumorigenesis. However, the genes that NR0B1 regulates and the transcription factors it interacts with in Ewing's sarcoma are largely unknown. We used transcriptional profiling and chromatin immunoprecipitation to identify genes that are regulated by NR0B1, and compared these data to similar data for EWS/FLI. While the transcriptional profile overlapped as expected, we also found that the genome-wide localization of NR0B1and EWS/FLI overlapped as well, suggesting that they regulate some genes coordinately. Further analysis revealed that NR0B1 and EWS/FLI physically interact. This protein-protein interaction is likely to be relevant for Ewing's sarcoma development because mutations in NR0B1 that disrupt the interaction have transcriptional consequences and also abrogate oncogenic transformation. Taken together, these data suggest that EWS/FLI and NR0B1 physically interact, coordinately modulate gene expression, and mediate the transformed phenotype of Ewing's sarcoma. PMID:19920188

  6. Direct interaction of cellular hnRNP-F and NS1 of influenza A virus accelerates viral replication by modulation of viral transcriptional activity and host gene expression

    SciTech Connect

    Lee, Jun Han; Kim, Sung-Hak; Pascua, Philippe Noriel Q.; Song, Min-Suk; Baek, Yun Hee; Jin, Xun; Choi, Joong-Kook; Kim, Chul-Joong; Kim, Hyunggee; Choi, Young Ki

    2010-02-05

    To investigate novel NS1-interacting proteins, we conducted a yeast two-hybrid analysis, followed by co-immunoprecipitation assays. We identified heterogeneous nuclear ribonucleoprotein F (hnRNP-F) as a cellular protein interacting with NS1 during influenza A virus infection. Co-precipitation assays suggest that interaction between hnRNP-F and NS1 is a common and direct event among human or avian influenza viruses. NS1 and hnRNP-F co-localize in the nucleus of host cells, and the RNA-binding domain of NS1 directly interacts with the GY-rich region of hnRNP-F determined by GST pull-down assays with truncated proteins. Importantly, hnRNP-F expression levels in host cells indicate regulatory role on virus replication. hnRNP-F depletion by small interfering RNA (siRNA) shows 10- to 100-fold increases in virus titers corresponding to enhanced viral RNA polymerase activity. Our results delineate novel mechanism of action by which NS1 accelerates influenza virus replication by modulating normal cellular mRNA processes through direct interaction with cellular hnRNP-F protein.

  7. Magnetosheath-ionospheric plasma interactions in the cusp/cleft. 1: Observations of modulated injections and upwelling ion fluxes

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Menietti, J. D.; Peterson, W. K.; Burch, J. L.; Waite, J. H., Jr.; Giles, B.

    1993-01-01

    In situ observations of the cusp/cleft are important as they allow a direct investigation of coupling solar wind energy to the ionosphere, plus they provide an opportunity for the remote sensing of the magnetopause. High time resolution observations from Dynamic Explorer 1 are used to investigate these processes. It is shown that in the spacecraft frame the injection is modulated or pulsating with a period of approximately 18-30 s with the injection duration possibly being as short as 6 s. This modulation indicates that there may be fast time scale and/or short scale length processes modulating the injection of the magnetosheath plasma across the magnetopause. In addition, the pulsating injection is seen to modulate the outflow of upwelling ionospheric ions to the magnetosphere. These upwelling ions are seen prior to the magnetosheath ion injection and therefore are not directly created by the injection. During the injection itself, the intensity of the upwelling ions is seen to dramatically decrease but their average energy increases. At end of the magnetosheath injections, the intensity of the upwelling ion flux is seen to increase to levels comparable to levels prior to the magnetosheath injection. On two occasions during the encounter, the particle fluxes are sufficiently high that enhanced downward flows of perpendicularly heated ions, of presumably ionospheric origin, are observed in association with a reduction in the intensity of the upwelling ions. These observations are probably the first detection of downward conics and suggest that there is momentum transfer between the magnetosheath and ionospheric ions. This momentum transfer eventually leads to an enhanced outflow of heated ionospheric plasma where their energy has been raised from a few tens of eV to a few hundred eV.

  8. Calcium binding to tandem repeats of EGF-like modules. Expression and characterization of the EGF-like modules of human Notch-1 implicated in receptor-ligand interactions.

    PubMed Central

    Rand, M. D.; Lindblom, A.; Carlson, J.; Villoutreix, B. O.; Stenflo, J.

    1997-01-01

    The Ca(2+)-binding epidermal growth factor (cbEGF)-like module is a structural component of numerous diverse proteins and occurs almost exclusively within repeated motifs. Notch-1, a fundamental receptor for cell fate decisions, contains 36 extracellular EGF modules in tandem, of which 21 are potentially Ca(2+)-binding. We report the Ca(2+)-binding properties of EGF11-12 and EGF10-13 from human Notch-1 (hNEGF11-12 and hNEGF10-13), modules previously shown to support Ca(2+)-dependent interactions with the ligands Delta and Serrate. Ca2+ titrations in the presence of chromophoric chelators, 5,5'-Br2BAPTA and 5-NBAPTA, gave two binding constants for hNEGF11-12, Kd1 = 3.4 x 10(-5) M and Kd2 > 2.5 x 10(-4) M. The high-affinity site was found to be localized to hNEGF12. Titration of hNEGF10-13 gave three binding constants, Kd1 = 3.1 x 10(-6) M, Kd2 = 1.6 x 10(-4) M, and Kd3 > 2.5 x 10(-4) M, demonstrating that assembly of EGF modules in tandem can increase Ca2+ affinity. The highest affinity sites in hNEGF11-12 and hNEGF10-13 had 10 to 100-fold higher affinity than reported for EGF32-33 and EGF25-31, respectively, from fibrillin-1, a connective tissue protein with 43 cbEGF modules. A model of hNEGF11-12 based on fibrillin-1 EGF32-33 demonstrates electronegative potential that could contribute to the higher affinity of the Ca(2+)-binding site in hNEGF12. These data demonstrate that the Ca2+ affinity of cbEGF repeats can be highly variable among different classes of cbEGF containing proteins. PMID:9336830

  9. Integrating Module - NEMS Documentation

    EIA Publications

    2014-01-01

    Provides an overview of the complete National Energy Modeling System (NEMS) model, and includes brief descriptions of the modules with which the Integrating Module interacts. The emphasis and focus, however, is on the structure and function of the Integrating Module of NEMS.

  10. Protein-Protein Interactions Modulate the Docking-Dependent E3-Ubiquitin Ligase Activity of Carboxy-Terminus of Hsc70-Interacting Protein (CHIP).

    PubMed

    Narayan, Vikram; Landré, Vivien; Ning, Jia; Hernychova, Lenka; Muller, Petr; Verma, Chandra; Walkinshaw, Malcolm D; Blackburn, Elizabeth A; Ball, Kathryn L

    2015-11-01

    CHIP is a tetratricopeptide repeat (TPR) domain protein that functions as an E3-ubiquitin ligase. As well as linking the molecular chaperones to the ubiquitin proteasome system, CHIP also has a docking-dependent mode where it ubiquitinates native substrates, thereby regulating their steady state levels and/or function. Here we explore the effect of Hsp70 on the docking-dependent E3-ligase activity of CHIP. The TPR-domain is revealed as a binding site for allosteric modulators involved in determining CHIP's dynamic conformation and activity. Biochemical, biophysical and modeling evidence demonstrate that Hsp70-binding to the TPR, or Hsp70-mimetic mutations, regulate CHIP-mediated ubiquitination of p53 and IRF-1 through effects on U-box activity and substrate binding. HDX-MS was used to establish that conformational-inhibition-signals extended from the TPR-domain to the U-box. This underscores inter-domain allosteric regulation of CHIP by the core molecular chaperones. Defining the chaperone-associated TPR-domain of CHIP as a manager of inter-domain communication highlights the potential for scaffolding modules to regulate, as well as assemble, complexes that are fundamental to protein homeostatic control. PMID:26330542

  11. Generation and analysis of quasimonoenergetic electron beams by laser-plasma interaction in transitional region from the self-modulated laser wakefield to bubble acceleration regime

    SciTech Connect

    Masuda, S.; Miura, E.

    2009-09-15

    Generation of quasimonoenergetic electron beams in a transitional region from the self-modulated laser wakefield to bubble acceleration regime is reported. Quasimonoenergetic electron beams containing more than 3x10{sup 8} electrons in the monoenergetic peak with energies of 40-60 MeV have been obtained from a plasma with an electron density of 1.6x10{sup 19} cm{sup -3} produced by an 8 TW, 50 fs laser pulse. The generation of quasimonoenergetic electron beams is investigated by two-dimensional particle-in-cell simulations. Few periods of the plasma wave are located inside the laser pulse, because the laser pulse duration is longer than the wavelength of the plasma wave. Electrons trapped in the first period of the plasma wave can form the monoenergetic bunch, even though the trapped electrons interact directly with the laser field. The quasimonoenergetic electron beam can be obtained due to the small contribution of the direct acceleration by the laser field. This type of monoenergetic electron acceleration is different from that of both the self-modulated laser wakefield and bubble acceleration regimes, in which the trapped electrons in the plasma wave are located behind the laser pulse due to the pulse compression or fragmentation and free from the laser electric field. This result suggests a new regime for the quasimonoenergetic electron acceleration in the region between the self-modulation and bubble regime.

  12. Modulation of Ultrafast Conformational Dynamics in Allosteric Interaction of Gal Repressor Protein with Different Operator DNA Sequences.

    PubMed

    Choudhury, Susobhan; Naiya, Gitashri; Singh, Priya; Lemmens, Peter; Roy, Siddhartha; Pal, Samir Kumar

    2016-04-01

    Although all forms of dynamical behaviour of a protein under allosteric interaction with effectors are predicted, little evidence of ultrafast dynamics in the interaction has been reported. Here, we demonstrate the efficacy of a combined approach involving picosecond-resolved FRET and polarisation-gated fluorescence for the exploration of ultrafast dynamics in the allosteric interaction of the Gal repressor (GalR) protein dimer with DNA operator sequences OE and OI . FRET from the single tryptophan residue to a covalently attached probe IAEDANS at a cysteine residue in the C-terminal domain of GalR shows structural perturbation and conformational dynamics during allosteric interaction. Polarisation-gated fluorescence spectroscopy of IAEDANS and another probe (FITC) covalently attached to the operator directly revealed the essential dynamics for cooperativity in the protein-protein interaction. The ultrafast resonance energy transfer from IAEDANS in the protein to FITC also revealed different dynamic flexibility in the allosteric interaction. An attempt was made to correlate the dynamic changes in the protein dimers with OE and OI with the consequent protein-protein interaction (tetramerisation) to form a DNA loop encompassing the promoter segment. PMID:26914958

  13. Protein kinase A modulates transforming growth factor-β signaling through a direct interaction with Smad4 protein.

    PubMed

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M

    2013-03-22

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290-300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281-285 and 320-329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo. PMID:23362281

  14. Tumor suppressor protein Pdcd4 interacts with Daxx and modulates the stability of Daxx and the Hipk2-dependent phosphorylation of p53 at serine 46.

    PubMed

    Kumar, N; Wethkamp, N; Waters, L C; Carr, M D; Klempnauer, K-H

    2013-01-01

    The tumor suppressor protein Pdcd4 is a nuclear/cytoplasmic shuttling protein that has been implicated in the development of several types of human cancer. In the nucleus, Pdcd4 affects the transcription of specific genes by modulating the activity of several transcription factors. We have identified the Daxx protein as a novel interaction partner of Pdcd4. Daxx is a scaffold protein with roles in diverse processes, including transcriptional regulation, DNA-damage signaling, apoptosis and chromatin remodeling. We show that the interaction of both proteins is mediated by the N-terminal domain of Pdcd4 and the central part of Daxx, and that binding to Pdcd4 stimulates the degradation of Daxx, presumably by disrupting the interaction of Daxx with the de-ubiquitinylating enzyme Hausp. Daxx has previously been shown to serve as a scaffold for protein kinase Hipk2 and tumor suppressor protein p53 and to stimulate the phosphorylation of p53 at serine 46 (Ser-46) in response to genotoxic stress. We show that Pdcd4 also disrupts the Daxx-Hipk2 interaction and inhibits the phosphorylation of p53. We also show that ultraviolet irradiation decreases the expression of Pdcd4. Taken together, our results support a model in which Pdcd4 serves to suppress the phosphorylation of p53 in the absence of DNA damage, while the suppressive effect of Pdcd4 is abrogated after DNA damage owing to the decrease of Pdcd4. Overall, our data demonstrate that Pdcd4 is a novel modulator of Daxx function and provide evidence for a role of Pdcd4 in restraining p53 activity in unstressed cells. PMID:23536002

  15. In vivo pharmacological interactions between a type II positive allosteric modulator of α7 nicotinic ACh receptors and nicotinic agonists in a murine tonic pain model

    PubMed Central

    Freitas, K; Negus, SS; Carroll, FI; Damaj, MI

    2013-01-01

    Background and Purpose The α7 nicotinic ACh receptor subtype is abundantly expressed in the CNS and in the periphery. Recent evidence suggests that α7 nicotinic ACh receptor (nAChR) subtypes, which can be activated by an endogenous cholinergic tone comprising ACh and the α7 agonist choline, play an important role in chronic pain and inflammation. In this study, we evaluated whether type II α7 positive allosteric modulator PNU-120596 induces antinociception on its own and in combination with choline in the formalin pain model. Experimental Approach We assessed the effects of PNU-120596 and choline and the nature of their interactions in the formalin test using an isobolographic analysis. In addition, we evaluated the interaction of PNU-120596 with PHA-54613, an exogenous selective α7 nAChR agonist, in the formalin test. Finally, we assessed the interaction between PNU-120596 and nicotine using acute thermal pain, locomotor activity, body temperature and convulsing activity tests in mice. Key Results We found that PNU-120596 dose-dependently attenuated nociceptive behaviour in the formalin test after systemic administration in mice. In addition, mixtures of PNU-120596 and choline synergistically reduced formalin-induced pain. PNU-120596 enhanced the effects of nicotine and α7 agonist PHA-543613 in the same test. In contrast, PNU-120596 failed to enhance nicotine-induced convulsions, hypomotility and antinociception in acute pain models. Surprisingly, it enhanced nicotine-induced hypothermia via activation of α7 nAChRs. Conclusions and Implications Our results demonstrate that type II α7 positive allosteric modulators produce antinociceptive effects in the formalin test through a synergistic interaction with the endogenous α7 agonist choline. PMID:23004024

  16. A photon-working on/off switch for intramolecular donor-acceptor interactions and invisible modulation of the fluorescence.

    PubMed

    Takeuchi, Sakiko; Nakagawa, Tetsuya; Yokoyama, Yasushi

    2016-03-01

    An on/off switching for charge-transfer interactions between the side chains of a diarylethene based on photochromic reactions has been proved by the disappearance and appearance of an additional fluorescence band. PMID:26906945

  17. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells.

    PubMed

    Myers, Samuel A; Peddada, Sailaja; Chatterjee, Nilanjana; Friedrich, Tara; Tomoda, Kiichrio; Krings, Gregor; Thomas, Sean; Maynard, Jason; Broeker, Michael; Thomson, Matthew; Pollard, Katherine; Yamanaka, Shinya; Burlingame, Alma L; Panning, Barbara

    2016-01-01

    The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. PMID:26949256

  18. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells

    PubMed Central

    Myers, Samuel A; Peddada, Sailaja; Chatterjee, Nilanjana; Friedrich, Tara; Tomoda, Kiichrio; Krings, Gregor; Thomas, Sean; Maynard, Jason; Broeker, Michael; Thomson, Matthew; Pollard, Katherine; Yamanaka, Shinya; Burlingame, Alma L; Panning, Barbara

    2016-01-01

    The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. DOI: http://dx.doi.org/10.7554/eLife.10647.001 PMID:26949256

  19. Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.

    PubMed

    Naushad, Shaik Mohammad; Ramaiah, M Janaki; Pavithrakumari, Manickam; Jayapriya, Jaganathan; Hussain, Tajamul; Alrokayan, Salman A; Gottumukkala, Suryanarayana Raju; Digumarti, Raghunadharao; Kutala, Vijay Kumar

    2016-04-15

    In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demographic variables to investigate how micronutrients modulate susceptibility to breast cancer. The developed ANN model explained 94.2% variability in breast cancer prediction. Fixed effect models of folate (400 μg/day) and B12 (6 μg/day) showed 33.3% and 11.3% risk reduction, respectively. Multifactor dimensionality reduction analysis showed the following interactions in responders to folate: RFC1 G80A × MTHFR C677T (primary), COMT H108L × CYP1A1 m2 (secondary), MTR A2756G (tertiary). The interactions among responders to B12 were RFC1G80A × cSHMT C1420T and CYP1A1 m2 × CYP1A1 m4. ANN simulations revealed that increased folate might restore ER and PR expression and reduce the promoter CpG island methylation of extra cellular superoxide dismutase and BRCA1. Dietary intake of folate appears to confer protection against breast cancer through its modulating effects on ER and PR expression and methylation of EC-SOD and BRCA1. PMID:26784656

  20. Combined effects of potassium chloride and ethanol as mobile phase modulators on hydrophobic interaction and reversed-phase chromatography of three insulin variants.

    PubMed

    Johansson, Karolina; Frederiksen, Søren S; Degerman, Marcus; Breil, Martin P; Mollerup, Jørgen M; Nilsson, Bernt

    2015-02-13

    The two main chromatographic modes based on hydrophobicity, hydrophobic interaction chromatography (HIC) and reversed-phase chromatography (RPC), are widely used for both analytical and preparative chromatography of proteins in the pharmaceutical industry. Despite the extensive application of these separation methods, and the vast amount of studies performed on HIC and RPC over the decades, the underlying phenomena remain elusive. As part of a systematic study of the influence of mobile phase modulators in hydrophobicity-based chromatography, we have investigated the effects of both KCl and ethanol on the retention of three insulin variants on two HIC adsorbents and two RPC adsorbents. The focus was on the linear adsorption range, separating the modulator effects from the capacity effects, but some complementary experiments at higher load were included to further investigate observed phenomena. The results show that the modulators have the same effect on the two RPC adsorbents in the linear range, indicating that the modulator concentration only affects the activity of the solute in the mobile phase, and not that of the solute-ligand complex, or that of the ligand. Unfortunately, the HIC adsorbents did not show the same behavior. However, the insulin variants displayed a strong tendency toward self-association on both HIC adsorbents; on one in particular. Since this causes peak fronting, the retention is affected, and this could probably explain the lack of congruity. This conclusion was supported by the results from the non-linear range experiments which were indicative of double-layer adsorption on the HIC adsorbents, while the RPC adsorbents gave the anticipated increased tailing at higher load. PMID:25595534

  1. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    PubMed Central

    Ramirez, Andres D.; Gotter, Anthony L.; Fox, Steven V.; Tannenbaum, Pamela L.; Yao, Lihang; Tye, Spencer J.; McDonald, Terrence; Brunner, Joseph; Garson, Susan L.; Reiss, Duane R.; Kuduk, Scott D.; Coleman, Paul J.; Uslaner, Jason M.; Hodgson, Robert; Browne, Susan E.; Renger, John J.; Winrow, Christopher J.

    2013-01-01

    Dual orexin receptor antagonists (DORAs) are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA)-A receptor modulators of distinct chemical structure and pharmacological properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone, and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam [0.3–30 mg/kg administered orally (PO)] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.5 g/kg) induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO) nor almorexant (30–300 mg/kg, PO) impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone, and diazepam) and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development. PMID:24399926

  2. Heat Shock Partially Dissociates the Overlapping Modules of the Yeast Protein-Protein Interaction Network: A Systems Level Model of Adaptation

    PubMed Central

    Mihalik, Ágoston; Csermely, Peter

    2011-01-01

    Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244

  3. Development of a Physiologically Based Pharmacokinetic Model to Predict Disease-Mediated Therapeutic Protein-Drug Interactions: Modulation of Multiple Cytochrome P450 Enzymes by Interleukin-6.

    PubMed

    Jiang, Xiling; Zhuang, Yanli; Xu, Zhenhua; Wang, Weirong; Zhou, Honghui

    2016-05-01

    Disease-mediated therapeutic protein-drug interactions have recently gained attention from regulatory agencies and pharmaceutical industries in the development of new biological products. In this study, we developed a physiologically based pharmacokinetic (PBPK) model using SimCYP to predict the impact of elevated interleukin-6 (IL-6) levels on cytochrome P450 (CYP) enzymes and the treatment effect of an anti-IL-6 monoclonal antibody, sirukumab, in patients with rheumatoid arthritis (RA). A virtual RA patient population was first constructed by incorporating the impact of systemic IL-6 level on hepatic and intestinal expression of multiple CYP enzymes with information from in vitro studies. Then, a PBPK model for CYP enzyme substrates was developed for healthy adult subjects. After incorporating the virtual RA patient population, the PBPK model was applied to quantitatively predict pharmacokinetics of multiple CYP substrates in RA patients before and after sirukumab treatment from a clinical cocktail drug interaction study. The results suggested that, compared with observed clinical data, changes in systemic exposure to multiple CYP substrates by anti-IL-6 treatment in virtual RA patients have been reasonably captured by the PBPK model, as manifested by modulations in area under plasma concentration versus time curves for midazolam, omeprazole, S-warfarin, and caffeine. This PBPK model reasonably captured the modulation effect of IL-6 and sirukumab on activity of CYP3A, CYP2C9, CYP2C19, and CYP1A2 and holds the potential to be utilized to assess the modulation effect of sirukumab on the metabolism and pharmacokinetics of concomitant small-molecule drugs in RA patients. PMID:26961818

  4. Intrinsic disorder in the C-terminal domain of the Shaker voltage-activated K+ channel modulates its interaction with scaffold proteins

    PubMed Central

    Magidovich, Elhanan; Orr, Irit; Fass, Deborah; Abdu, Uri; Yifrach, Ofer

    2007-01-01

    The interaction of membrane-embedded voltage-activated potassium channels (Kv) with intracellular scaffold proteins, such as the postsynaptic density 95 (PSD-95) protein, is mediated by the channel C-terminal segment. This interaction underlies Kv channel clustering at unique membrane sites and is important for the proper assembly and functioning of the synapse. In the current study, we address the molecular mechanism underlying Kv/PSD-95 interaction. We provide experimental evidence, based on hydrodynamic and spectroscopic analyses, indicating that the isolated C-terminal segment of the archetypical Shaker Kv channel (ShB-C) is a random coil, suggesting that ShB-C belongs to the recently defined class of intrinsically disordered proteins. We show that isolated ShB-C is still able to bind its scaffold protein partner and support protein clustering in vivo, indicating that unfoldedness is compatible with ShB-C activity. Pulldown experiments involving C-terminal chains differing in flexibility or length further demonstrate that intrinsic disorder in the C-terminal segment of the Shaker channel modulates its interaction with the PSD-95 protein. Our results thus suggest that the C-terminal domain of the Shaker Kv channel behaves as an entropic chain and support a “fishing rod” molecular mechanism for Kv channel binding to scaffold proteins. The importance of intrinsically disordered protein segments to the complex processes of synapse assembly, maintenance, and function is discussed. PMID:17666528

  5. STD1 (MSN3) interacts directly with the TATA-binding protein and modulates transcription of the SUC2 gene of Saccharomyces cerevisiae.

    PubMed Central

    Tillman, T S; Ganster, R W; Jiang, R; Carlson, M; Schmidt, M C

    1995-01-01

    STD1 (MSN3) was isolated independently as a multicopy suppressor of mutations in the TATA-binding protein and in SNF4, suggesting that STD1 might couple the SNF1 kinase signaling pathway to the transcriptional machinery. We report here a direct physical interaction between STD1 and the TATA-binding protein (TBP), observed in vivo by the two-hybrid system and in vitro by binding studies. STD1 bound both native TBP in yeast cell-free extracts and purified recombinant TBP. This interaction was altered when TBP delta 57 was used, suggesting a role for the non-conserved N-terminal domain of TBP in mediating protein-protein interactions. We also show that perturbation of STD1-TBP stoichiometry alters SUC2 expression in vivo and that this effect is dependent on the N-terminal domain of TBP. The activation of SUC2 expression by increased copy number of STD1 occurs at the level of mRNA accumulation and it requires the same TATA element and uses the same transcription start site as does activation of SUC2 by glucose limitation. Taken together, these results suggest that STD1 modulates SUC2 transcription through direct interactions with TBP. Images PMID:7667094

  6. In vitro interaction between components of the inner membrane complex of the maltose ABC transporter of Escherichia coli: modulation by ATP.

    PubMed

    Mourez, M; Jéhanno, M; Schneider, E; Dassa, E

    1998-10-01

    Interactions between domains of ATP-binding cassette (ABC) transporters are of great functional importance and yet are poorly understood. To gain further knowledge of these protein-protein interactions, we studied the inner membrane complex of the maltose transporter of Escherichia coli. We focused on interactions between the nucleotide-binding protein, MalK, and the transmembrane proteins, MalF and MalG. We incubated purified MalK with inverted membrane vesicles containing MalF and MalG. MalK bound specifically to MalF and MalG and reconstituted a functional complex. We used this approach and limited proteolysis with trypsin to show that binding and hydrolysis of ATP, inducing conformational changes in MalK, modulate its interaction with MalF and MalG. MalK in the reconstituted complex was less sensitive to protease added from the cytoplasmic side of the membrane, and one proteolytic cleavage site located in the middle of a putative helical domain of MalK was protected. These results suggest that the putative helical domain of the nucleotide-binding domains is involved, through its conformational changes, in the coupling between the transmembrane domains and ATP binding/hydrolysis at the nucleotide-binding domains. PMID:9791180

  7. Cytokines Modulate the “Immune-Metabolism” Interactions during Behçet Disease: Effect on Arginine Metabolism

    PubMed Central

    Lahmar-Belguendouz, Karima; Messaoudene, Djamel; Djeraba, Zineb; Otmani, Fifi; Hakem, Djennat; Lahlou-Boukoffa, Ouided S.; Youinou, Pierre; Touil-Boukoffa, Chafia

    2015-01-01

    Aim and Methods. In this study, we evaluated NOS and arginase activities and their regulation during Behçet disease, a systemic chronic inflammatory disorder with uncertain etiology. The peripheral blood mononuclear cells of 36 patients and 15 control samples (PBMC) were cultured in either RPMI 1640, MEM, or DMEM complemented with 10% of FBS and antibiotics. Cultures were performed with or without the control or patients plasma. Subsequent treatment contained anticytokines (IL-6, TGF-β), a mitogenic effector (PHA), or NOS modulators (L-NMMA, BH4). Culture supernatants were harvested after 24 h of incubation. NO and urea measurements were, respectively, performed by modified Griess and Berthelot methods. Results. Higher urea levels were found in patients' plasma compared to the control's (P < 0.05). NOS modulators induced inverted production profiles for NO and urea (P < 0.05). Their results differed depending on the clinical findings (P < 0.05). It was also found that cytokine neutralization induced different response profiles in patients as opposed to control cultures (P < 0.05). Conclusion. Our results suggest that arginases can compete with NOS2 for L-arginine during Behçet disease. Both enzymes are regulated by environmental cytokines and substrate availability. Furthermore, it seems that NOS/arginase balance is dependent on clinical expression. PMID:25692069

  8. Cytokines Modulate the "Immune-Metabolism" Interactions during Behçet Disease: Effect on Arginine Metabolism.

    PubMed

    Belguendouz, Houda; Lahmar-Belguendouz, Karima; Messaoudene, Djamel; Djeraba, Zineb; Otmani, Fifi; Hakem, Djennat; Lahlou-Boukoffa, Ouided S; Youinou, Pierre; Touil-Boukoffa, Chafia

    2015-01-01

    Aim and Methods. In this study, we evaluated NOS and arginase activities and their regulation during Behçet disease, a systemic chronic inflammatory disorder with uncertain etiology. The peripheral blood mononuclear cells of 36 patients and 15 control samples (PBMC) were cultured in either RPMI 1640, MEM, or DMEM complemented with 10% of FBS and antibiotics. Cultures were performed with or without the control or patients plasma. Subsequent treatment contained anticytokines (IL-6, TGF-β), a mitogenic effector (PHA), or NOS modulators (L-NMMA, BH4). Culture supernatants were harvested after 24 h of incubation. NO and urea measurements were, respectively, performed by modified Griess and Berthelot methods. Results. Higher urea levels were found in patients' plasma compared to the control's (P < 0.05). NOS modulators induced inverted production profiles for NO and urea (P < 0.05). Their results differed depending on the clinical findings (P < 0.05). It was also found that cytokine neutralization induced different response profiles in patients as opposed to control cultures (P < 0.05). Conclusion. Our results suggest that arginases can compete with NOS2 for L-arginine during Behçet disease. Both enzymes are regulated by environmental cytokines and substrate availability. Furthermore, it seems that NOS/arginase balance is dependent on clinical expression. PMID:25692069

  9. Tumour cell–derived extracellular vesicles interact with mesenchymal stem cells to modulate the microenvironment and enhance cholangiocarcinoma growth

    PubMed Central

    Haga, Hiroaki; Yan, Irene K.; Takahashi, Kenji; Wood, Joseph; Zubair, Abba; Patel, Tushar

    2015-01-01

    The contributions of mesenchymal stem cells (MSCs) to tumour growth and stroma formation are poorly understood. Tumour cells can transfer genetic information and modulate cell signalling in other cells through the release of extracellular vesicles (EVs). We examined the contribution of EV-mediated inter-cellular signalling between bone marrow MSCs and tumour cells in human cholangiocarcinoma, highly desmoplastic cancers that are characterized by tumour cells closely intertwined within a dense fibrous stroma. Exposure of MSCs to tumour cell–derived EVs enhanced MSC migratory capability and expression of alpha-smooth muscle actin mRNA, in addition to mRNA expression and release of CXCL-1, CCL2 and IL-6. Conditioned media from MSCs exposed to tumour cell–derived EVs increased STAT-3 phosphorylation and proliferation in tumour cells. These effects were completely blocked by anti-IL-6R antibody. In conclusion, tumour cell–derived EVs can contribute to the generation of tumour stroma through fibroblastic differentiation of MSCs, and can also selectively modulate the cellular release of soluble factors such as IL-6 by MSCs that can, in turn, alter tumour cell proliferation. Thus, malignant cells can “educate” MSCs to induce local microenvironmental changes that enhance tumour cell growth. PMID:25557794

  10. Rapeseed calcineurin B-like protein CBL4, interacting with CBL-interacting protein kinase CIPK24, modulates salt tolerance in plants.

    PubMed

    Liu, Wu-Zhen; Deng, Min; Li, Liang; Yang, Bo; Li, Hongwei; Deng, Hanqing; Jiang, Yuan-Qing

    2015-11-20

    Calcium is a ubiquitous intracellular secondary messenger in eukaryotes. Upon stress challenge, cytosolic Ca(2+) fluctuation could be sensed and bound by calcineurin B-like proteins (CBLs), which further regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs) to relay the signal and induce cellular responses. Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in rapeseed. In the present study, we characterized CBL4 gene from rapeseed. We found that CBL4 is localized at the plasma membrane and it interacted with CIPK24 in both yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays. Unlike the orthologs in Arabidopsis, rapeseed CIPK24 did not interact with CBL10. Furthermore, expression of rapeseed CBL4 rescued the salt-sensitive phenotype of sos3-1 mutant and overexpression of rapeseed CBL4 in Arabidopsis showed enhanced tolerance of salt stress than wild-type. Overall, the results clarified the function of CBL4 in rapeseed. PMID:26462466

  11. Modulation of kinase-inhibitor interactions by auxiliary protein binding: Crystallography studies on Aurora A interactions with VX-680 and with TPX2

    SciTech Connect

    Zhao, Baoguang; Smallwood, Angela; Yang, Jingsong; Koretke, Kristin; Nurse, Kelvin; Calamari, Amy; Kirkpatrick, Robert B.; Lai, Zhihong

    2008-10-24

    VX-680, also known as MK-0457, is an ATP-competitive small molecule inhibitor of the Aurora kinases that has entered phase II clinical trials for the treatment of cancer. We have solved the cocrystal structure of AurA/TPX2/VX-680 at 2.3 {angstrom} resolution. In the crystal structure, VX-680 binds to the active conformation of AurA. The glycine-rich loop in AurA adopts a unique bent conformation, forming a {pi}-{pi} interaction with the phenyl group of VX-680. In contrast, in the published AurA/VX-680 structure, VX-680 binds to AurA in the inactive conformation, interacting with a hydrophobic pocket only present in the inactive conformation. These data suggest that TPX2, a protein cofactor, can alter the binding mode of VX-680 with AurA. More generally, the presence of physiologically relevant cofactor proteins can alter the kinetics, binding interactions, and inhibition of enzymes, and studies with these multiprotein complexes may be beneficial to the discovery and optimization of enzyme inhibitors as therapeutic agents.

  12. Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry

    PubMed Central

    Albarran, Letizia; Lopez, Jose J.; Amor, Nidhal Ben; Martin-Cano, Francisco E.; Berna-Erro, Alejandro; Smani, Tarik; Salido, Gines M.; Rosado, Juan A.

    2016-01-01

    Ca2+ influx by store-operated Ca2+ channels is a major mechanism for intracellular Ca2+ homeostasis and cellular function. Here we present evidence for the dynamic interaction between the SOCE-associated regulatory factor (SARAF), STIM1 and Orai1. SARAF overexpression attenuated SOCE and the STIM1-Orai1 interaction in cells endogenously expressing STIM1 and Orai1 while RNAi-mediated SARAF silencing induced opposite effects. SARAF impaired the association between Orai1 and the Orai1-activating small fragment of STIM1 co-expressed in the STIM1-deficient NG115-401L cells. Cell treatment with thapsigargin or physiological agonists results in direct association of SARAF with Orai1. STIM1-independent interaction of SARAF with Orai1 leads to activation of this channel. In cells endogenously expressing STIM1 and Orai1, Ca2+ store depletion leads to dissociation of SARAF with STIM1 approximately 30s after treatment with thapsigargin, which paralleled the increase in SARAF-Orai1 interaction, followed by reinteraction with STIM1 and dissociation from Orai1. Co-expression of SARAF and either Orai1 or various N-terminal deletion Orai1 mutants did not alter SARAF-Orai1 interaction; however, expression of C-terminal deletion Orai1 mutants or blockade of the C-terminus of Orai1 impair the interaction with SARAF. These observations suggest that SARAF exerts an initial positive role in the activation of SOCE followed by the facilitation of SCDI of Orai1. PMID:27068144

  13. Dynamic interaction of SARAF with STIM1 and Orai1 to modulate store-operated calcium entry.

    PubMed

    Albarran, Letizia; Lopez, Jose J; Amor, Nidhal Ben; Martin-Cano, Francisco E; Berna-Erro, Alejandro; Smani, Tarik; Salido, Gines M; Rosado, Juan A

    2016-01-01

    Ca(2+) influx by store-operated Ca(2+) channels is a major mechanism for intracellular Ca(2+) homeostasis and cellular function. Here we present evidence for the dynamic interaction between the SOCE-associated regulatory factor (SARAF), STIM1 and Orai1. SARAF overexpression attenuated SOCE and the STIM1-Orai1 interaction in cells endogenously expressing STIM1 and Orai1 while RNAi-mediated SARAF silencing induced opposite effects. SARAF impaired the association between Orai1 and the Orai1-activating small fragment of STIM1 co-expressed in the STIM1-deficient NG115-401L cells. Cell treatment with thapsigargin or physiological agonists results in direct association of SARAF with Orai1. STIM1-independent interaction of SARAF with Orai1 leads to activation of this channel. In cells endogenously expressing STIM1 and Orai1, Ca(2+) store depletion leads to dissociation of SARAF with STIM1 approximately 30s after treatment with thapsigargin, which paralleled the increase in SARAF-Orai1 interaction, followed by reinteraction with STIM1 and dissociation from Orai1. Co-expression of SARAF and either Orai1 or various N-terminal deletion Orai1 mutants did not alter SARAF-Orai1 interaction; however, expression of C-terminal deletion Orai1 mutants or blockade of the C-terminus of Orai1 impair the interaction with SARAF. These observations suggest that SARAF exerts an initial positive role in the activation of SOCE followed by the facilitation of SCDI of Orai1. PMID:27068144

  14. Kaposi's sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation.

    PubMed

    Rossetto, Cyprian C; Pari, Gregory S

    2011-12-01

    During lytic infection, Kaposi's sarcoma-associated herpesvirus (KSHV) expresses a polyadenylated nuclear RNA (PAN RNA). This noncoding RNA (ncRNA) is localized to the nucleus and is the most abundant viral RNA during lytic infection; however, to date, the role of PAN RNA in the virus life cycle is unknown. Many examples exist where ncRNAs have a defined key regulatory function controlling gene expression by various mechanisms. Our goal for this study was to identify putative binding partners for PAN RNA in an effort to elucidate a possible function for the transcript in KSHV infection. We employed an in vitro affinity protocol where PAN RNA was used as bait for factors present in BCBL-1 cell nuclear extract to show that PAN RNA interacts with several virus- and host cell-encoded factors, including histones H1 and H2A, mitochondrial and cellular single-stranded binding proteins (SSBPs), and interferon regulatory factor 4 (IRF4). RNA chromatin immunoprecipitation (ChIP) assays confirmed that PAN RNA interacted with these factors in the infected cell environment. A luciferase reporter assay showed that PAN RNA expression interfered with the ability of IRF4/PU.1 to activate the interleukin-4 (IL-4) promoter, strongly suggesting a role for PAN RNA in immune modulation. Since the proteomic screen and functional data suggested a role in immune responses, we investigated if constitutive PAN RNA expression could affect other genes involved in immune responses. PAN RNA expression decreased expression of gamma interferon, interleukin-18, alpha interferon 16, and RNase L. These data strongly suggest that PAN RNA interacts with viral and cellular proteins and can function as an immune modulator. PMID:21957289

  15. Cfh genotype interacts with dietary glycemic index to modulate age-related macular degeneration-like features in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related macular degeneration (AMD) is a leading cause of visual impairment worldwide. Genetics and diet contribute to the relative risk for developing AMD, but their interactions are poorly understood. Genetic variations in Complement Factor H (CFH), and dietary glycemic index (GI) are major ris...

  16. Interactions between Brainstem Noradrenergic Neurons and the Nucleus Accumbens Shell in Modulating Memory for Emotionally Arousing Events

    ERIC Educational Resources Information Center

    Kerfoot, Erin C.; Williams, Cedric L.

    2011-01-01

    The nucleus accumbens shell (NAC) receives axons containing dopamine-[beta]-hydroxylase that originate from brainstem neurons in the nucleus of the solitary tract (NTS). Recent findings show that memory enhancement produced by stimulating NTS neurons after learning may involve interactions with the NAC. However, it is unclear whether these…

  17. SARM modulates MyD88-mediated TLR activation through BB-loop dependent TIR-TIR interactions.

    PubMed

    Carlsson, Emil; Ding, Jeak Ling; Byrne, Bernadette

    2016-02-01

    Toll-like receptors (TLRs) recognise invading pathogens and initiate an innate immune response by recruiting intracellular adaptor proteins via heterotypic Toll/interleukin-1 receptor (TIR) domain interactions. Of the five TIR domain-containing adaptor proteins identified, Sterile α- and armadillo-motif-containing protein (SARM) is functionally unique; suppressing immune signalling instead of promoting it. Here we demonstrate that the recombinantly expressed and purified SARM TIR domain interacts with both the major human TLR adaptors, MyD88 and TRIF. A single glycine residue located in the BB-loop of the SARM TIR domain, G601, was identified as essential for interaction. A short peptide derived from this motif was also found to interact with MyD88 in vitro. SARM expression in HEK293 cells was found to significantly suppress lipopolysaccharide (LPS)-mediated upregulation of inflammatory cytokines, IL-8 and TNF-α, an effect lost in the G601A mutant. The same result was observed with cytokine activation initiated by MyD88 expression and stimulation of TLR2 with lipoteichoic acid (LTA), suggesting that SARM is capable of suppressing both TRIF- and MyD88- dependent TLR signalling. Our findings indicate that SARM acts on a broader set of target proteins than previously thought, and that the BB-loop motif is functionally important, giving further insight into the endogenous mechanisms used to suppress inflammation in immune cells. PMID:26592460

  18. Modulation of the summer hydrological cycle evolution over western Europe by anthropogenic aerosols and soil-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Boé, J.

    2016-07-01

    Large decadal variations in solar radiation at surface have been observed over Europe for 60 years. These variations might have impacted the hydrological cycle, through a modulation of the energy available for evapotranspiration. Here a large ensemble of climate models is analyzed to characterize the impacts of anthropogenic aerosols on the hydrological cycle over western Europe in summer and the associated uncertainties. Some models simulate strong aerosols-driven changes in evapotranspiration and also precipitation on the historical period, while other models show virtually no impact. These opposed responses are largely determined by two seemingly independent properties of the models: the magnitude of the impact of anthropogenic aerosols on solar radiation and whether evapotranspiration is predominantly water or energy limited. Both properties, characterized on the past climate, are highly uncertain in current climate models and continue to impact the evolution of the hydrological cycle through the 21st century.

  19. Sex matters! Interactions of sex and polymorphisms of a cholinergic receptor gene (CHRNA5) modulate response speed.

    PubMed

    Schneider, Katja K; Hüle, Lilian; Schote, Andrea B; Meyer, Jobst; Frings, Christian

    2015-03-01

    Acetylcholine influences the speed of information processing. We examined the effect of the rs3841324 polymorphism (L/S) and the rs16969968 (G/A) polymorphism on response speed in the Stroop task and the Negative priming task. These polymorphisms are located in the gene that encodes the nicotinic acetylcholine receptor α5-subunit (CHRNA5). Male carriers of the rs3841324 S/S genotype and the rs16969968 G/G genotype were faster than male carriers of at least one L allele or one A allele. In contrast, female carriers of the rs3841324 S/S genotype and the rs16969968 G/G genotype were slower than female carriers of at least one L allele or one A allele. These results indicate that the minor alleles of both polymorphisms modulate response speed in a sex-dependent, diametrically opposed manner. PMID:25674902

  20. Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation.

    PubMed

    Xie, Zhihui; Eagleson, Kathie L; Wu, Hsiao-Huei; Levitt, Pat

    2016-01-01

    MET, a pleiotropic