Science.gov

Sample records for modulating antioxidant status

  1. Nigella sativa fixed and essential oil improves antioxidant status through modulation of antioxidant enzymes and immunity.

    PubMed

    Sultan, Muhammad Tauseef; Butt, Masood Sadiq; Karim, Roselina; Ahmad, Nisar; Ahmad, Rabia Shabbir; Ahmad, Waqas

    2015-03-01

    The onset of 21st century witnessed the awareness among the masses regarding the diet-health linkages. The researchers attempted to explore traditional products/plants were in the domain of pharmacy and nutrition focussing on their health benefits. In the present research intervention, we investigate the role of Nigella sativa fixed oil (NSFO) and essential oil (NSEO) in improving antioxidant status and modulation of enzymes. The National Institute of Health (NIH) provided us 30 Sprague Dawley rats that were equally placed in three groups. The groups were fed on their respective diets (56 days) two experimental diets i.e. D2 (NSFO @ 4.0%) and D3 (NSEO @ 0.30%) and control. The indices pertaining to antioxidant status, antioxidant enzymes, and parameters pertaining to immunity were evaluated at 4 weeks interval. The experimental diets (NSFO@ 4.0% & NSEO@ 0.30%) modulated the activities of antioxidant enzymes i.e., catalase (CAT), superoxide dismutase (SOD), glutathione transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx), positively. Indices of antioxidant status like tocopherols and glutathione were in linear relationship with that of GPx, GR and GST (P<0.01). Myeloperoxidase activities were in negative correlation with GST (P<0.01) but positive correlation with some other parameters. In the nutshell, the fixed and essential oil of Nigella sativa are effective in improving the indices pertaining to antioxidant status, however, the immune boosting potential needs further clarification. However, authors are of the view that there is need to explore the molecular targets of Nigella sativa fixed and essential oils. Findings from such studies would be useful to validate this instant study for health promoting potential against diabetes mellitus and cardiovascular disorders. PMID:25730812

  2. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    PubMed

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. PMID:26631806

  3. Redox Modulations, Antioxidants, and Neuropsychiatric Disorders

    PubMed Central

    Fraunberger, Erik A.; Scola, Gustavo; Laliberté, Victoria L. M.; Duong, Angela; Andreazza, Ana C.

    2016-01-01

    Although antioxidants, redox modulations, and neuropsychiatric disorders have been widely studied for many years, the field would benefit from an integrative and corroborative review. Our primary objective is to delineate the biological significance of compounds that modulate our redox status (i.e., reactive species and antioxidants) as well as outline their current role in brain health and the impact of redox modulations on the severity of illnesses. Therefore, this review will not enter into the debate regarding the perceived medical legitimacy of antioxidants but rather seek to clarify their abilities and limitations. With this in mind, antioxidants may be interpreted as natural products with significant pharmacological actions in the body. A renewed understanding of these often overlooked compounds will allow us to critically appraise the current literature and provide an informed, novel perspective on an important healthcare issue. In this review, we will introduce the complex topics of redox modulations and their role in the development of select neuropsychiatric disorders. PMID:26640614

  4. Phenolic Acids (Gallic and Tannic Acids) Modulate Antioxidant Status and Cisplatin Induced Nephrotoxicity in Rats

    PubMed Central

    Akomolafe, Seun F.; Akinyemi, Ayodele J.; Anadozie, Scholarstical O.

    2014-01-01

    Cisplatin (cis-diamminedichloroplatinum (II) or CDDP), used in the treatment of many solid-tissue cancers, has its chief side-effect in nephrotoxicity. Hence, this study sought to investigate and compare the protective effect of gallic acid (GA) and tannic acid (TA) against cisplatin induced nephrotoxicity in rats. The rats were given a prophylactic treatment of GA and TA orally at a dose of 20 and 40 mg/kg body weight for 7 consecutive days before the administration of a single intraperitoneal (i.p.) injection of cisplatin (CP) at 7.5 mg/kg bwt. The protective effects of both GA and TA on CP induced nephrotoxicity were investigated by assaying renal function, oxidative stress biomarkers, and histopathological examination of kidney architecture. A single dose of cisplatin (7.5 mg/kg bwt) injected i.p. caused a significant increase in some biomarkers of renal function (creatinine, uric acid, and urea levels), with a marked elevation in malondialdehyde (MDA) content accompanied by a significant (P < 0.05) decrease in reduced glutathione (GSH) content (103.27%) of kidney tissue as compared to control group. Furthermore, a significant (P < 0.05) reduction in kidney antioxidant enzymes (SOD, catalase, GPx, and GST) activity was observed. However, pretreatment with oral administration of tannic acid and gallic acid at a dose of 20 and 40 mg/kg body weight, respectively, for 7 days prior to cisplatin administration reduced histological renal damage and suppressed the generation of ROS, lipid peroxidation, and oxidative stress in kidney tissues. These results indicate that both gallic and tannic acids could serve as a preventive strategy against cisplatin induced nephrotoxicity. PMID:27382634

  5. Age-related changes in the brain antioxidant status: modulation by dietary supplementation of Decalepis hamiltonii and physical exercise.

    PubMed

    Ravikiran, Tekupalli; Sowbhagya, Ramachandregowda; Anupama, Sindhghatta Kariyappa; Anand, Santosh; Bhagyalakshmi, Dundaiah

    2016-08-01

    The synergistic effects of physical exercise and diet have profound benefits on brain function. The present study was aimed to determine the effects of exercise and Decalepis hamiltonii (Dh) on age-related responses on the antioxidant status in discrete regions of rat brain. Male Wistar albino rats of 4 and 18 months old were orally supplemented with Dh extract and swim trained at 3 % intensity for 30 min/day, 5 days/week, for a period of 30 days. Supplementation of 100 mg Dh aqueous extract/kg body weight and its combination with exercise significantly elevated the antioxidant enzyme activities irrespective of age. Age-related and region-specific changes were observed in superoxide levels, and protein carbonyl and malondialdehyde contents, and were found to be decreased in both trained and supplemented groups. Levels of total thiols, protein, and nonprotein thiols decreased with age and significantly increased in the SW-T(+100 mg) groups. Our results demonstrated that the interactive effects of two treatments enhanced the antioxidant status and decreased the risk of protein and lipid oxidation in the rat brain. PMID:27379504

  6. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax)

    PubMed Central

    Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    Salinity fluctuation is one of the main factors affecting the overall fitness of marine fish. In addition, water borne ammonia may occur simultaneously with salinity stress. Additionally, under such stressful circumstances, fish may encounter food deprivation. The physiological and ion-osmo regulatory adaptive capacities to cope with all these stressors alone or in combination are extensively addressed in fish. To date, studies revealing the modulation of antioxidant potential as compensatory response to multiple stressors are rather lacking. Therefore, the present work evaluated the individual and combined effects of salinity challenge, ammonia toxicity and nutritional status on oxidative stress and antioxidant status in a marine teleost, European sea bass (Dicentrarchus labrax). Fish were acclimated to normal seawater (32 ppt), to brackish water (20 ppt and 10 ppt) and to hypo-saline water (2.5 ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20 mg/L representing 50% of 96h LC50 value for ammonia) for 12 h, 48 h, 84 h and 180 h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Results show that in response to decreasing salinities, oxidative stress indices such as xanthine oxidase activity, levels of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde, MDA) increased in the hepatic tissue of fasted fish but remained unaffected in fed fish. HEA exposure at normal salinity (32 ppt) and at reduced salinities (20 ppt and 10 ppt) increased ammonia accumulation significantly (84 h–180 h) in both feeding regimes which was associated with an increment of H2O2 and MDA contents. Unlike in fasted fish, H2O2 and MDA levels in fed fish were restored to control levels (84 h–180 h); with a concomitant increase in superoxide dismutase (SOD), catalase (CAT), components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and

  7. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).

    PubMed

    Sinha, Amit Kumar; AbdElgawad, Hamada; Zinta, Gaurav; Dasan, Antony Franklin; Rasoloniriana, Rindra; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2015-01-01

    Salinity fluctuation is one of the main factors affecting the overall fitness of marine fish. In addition, water borne ammonia may occur simultaneously with salinity stress. Additionally, under such stressful circumstances, fish may encounter food deprivation. The physiological and ion-osmo regulatory adaptive capacities to cope with all these stressors alone or in combination are extensively addressed in fish. To date, studies revealing the modulation of antioxidant potential as compensatory response to multiple stressors are rather lacking. Therefore, the present work evaluated the individual and combined effects of salinity challenge, ammonia toxicity and nutritional status on oxidative stress and antioxidant status in a marine teleost, European sea bass (Dicentrarchus labrax). Fish were acclimated to normal seawater (32 ppt), to brackish water (20 ppt and 10 ppt) and to hypo-saline water (2.5 ppt). Following acclimation to different salinities for two weeks, fish were exposed to high environmental ammonia (HEA, 20 mg/L representing 50% of 96h LC50 value for ammonia) for 12 h, 48 h, 84 h and 180 h, and were either fed (2% body weight) or fasted (unfed for 7 days prior to HEA exposure). Results show that in response to decreasing salinities, oxidative stress indices such as xanthine oxidase activity, levels of hydrogen peroxide (H2O2) and lipid peroxidation (malondialdehyde, MDA) increased in the hepatic tissue of fasted fish but remained unaffected in fed fish. HEA exposure at normal salinity (32 ppt) and at reduced salinities (20 ppt and 10 ppt) increased ammonia accumulation significantly (84 h-180 h) in both feeding regimes which was associated with an increment of H2O2 and MDA contents. Unlike in fasted fish, H2O2 and MDA levels in fed fish were restored to control levels (84 h-180 h); with a concomitant increase in superoxide dismutase (SOD), catalase (CAT), components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and

  8. Oral supplementation with troxerutin (trihydroxyethylrutin), modulates lipid peroxidation and antioxidant status in 1,2-dimethylhydrazine-induced rat colon carcinogenesis.

    PubMed

    Vinothkumar, R; Vinoth Kumar, R; Karthikkumar, V; Viswanathan, P; Kabalimoorthy, J; Nalini, N

    2014-01-01

    The present study was aimed to investigate the chemopreventive potential of troxerutin on 1,2-dimethylhydrazine (DMH) induced rat colon carcinogenesis by evaluating the antioxidant and lipid peroxidation (LPO) status. Rats were randomly divided into six groups. Group I rats served as control. Group II rats received troxerutin (50 mg/kgb.w., p.o.) for 16 weeks. Groups III-VI rats received subcutaneous injections of DMH (20 mg/kgb.w., s.c.) once a week, for the first 4 weeks. In addition to DMH, groups IV-VI rats received troxerutin at the doses of 12.5, 25 and 50 mg/kgb.w., respectively. In DMH treated rats, our results showed decreased activities of antioxidants and increased levels of LPO in the liver. Moreover, LPO and antioxidants in the colon were found to be significantly diminished in DMH the treated rats. Furthermore, enhanced activity of colonic vitamin C and vitamin E levels were observed in DMH alone treated rats (group III), which was significantly reversed on troxerutin supplementation. Troxerutin at the dose of 25 mg/kgb.w. had shown profound beneficial effects by exhibiting near normal biochemical profile and well-preserved colon histology as compared to the other two tested doses (12.5 and 50 mg/kgb.w.). These findings suggest that troxerutin could serve as a novel agent for colon cancer chemoprevention. PMID:24355798

  9. Mallotus roxburghianus modulates antioxidant responses in pancreas of diabetic rats.

    PubMed

    Roy, V K; Chenkual, L; Gurusubramanian, G

    2016-03-01

    Mallotus roxburghianus has long been used by Mizo tribal people for the treatment of diabetes. Scientific validation at known doses may provide information about its safety and efficacy. Methanolic leaf extract of M. roxburghianus (MRME 100 and 400mg/kg) was tested in comparison with normal and alloxan diabetic rats for 28 days p.o. in terms of body and pancreatic weight, blood glucose level, antioxidant enzymes, expression of visfatin and PCNA, histopathology and histomorphometric measurements of pancreas. The results were evaluated statistically using ANOVA, correlation and regression and Principal component analysis (PCO). MRME (100 and 400mg/kg) treatment significantly (p<0.0001) decreased the body weight, blood glucose level, improved the mass and size of pancreas, elevated the levels of antioxidant enzymes and up regulate the expression of visfatin and PCNA. PCO analysis was good to fitness and prediction distinguishes the therapeutic effects of M. roxburghianus from the alloxan induced diabetic rats. MRME has significant role in protecting animals from alloxan-induced diabetic oxidative stress in pancreas and exhibited promising antihyperglycaemic and antioxidant activities along with significant reversal of disturbed antioxidant status and lipid peroxidative damage. Pancreatic architecture and physiology under diabetic oxidative stress have been significantly modulated by MRME and validated as a drug candidate for antidiabetic treatment. M. roxburghianus treatment restores the antioxidant enzyme system and rejuvenates the islets mass in alloxanized rat by accelerating visfatin and PCNA expression in pancreatic tissue. PMID:26764087

  10. Spray-dried plasma promotes growth, modulates the activity of antioxidant defenses, and enhances the immune status of gilthead sea bream (Sparus aurata) fingerlings.

    PubMed

    Gisbert, E; Skalli, A; Campbell, J; Solovyev, M M; Rodríguez, C; Dias, J; Polo, J

    2015-01-01

    Terrestrial animal byproduct meals, including nonruminant blood meal and blood products, represent the largest and largely untapped safe source of animal protein available within the international market for the aquafeed industry. Spray-dried blood and spray-dried plasma (SDP) proteins have long been recognized as high-quality feed ingredients for farmed animals. In this study, we evaluated the inclusion of SDP from porcine blood (SDPP) in growing diets for gilthead sea bream. Three isonitrogenous (CP = 51.2%) and isolipidic (fat = 12.4%) diets manufactured by cold extrusion (0.8 to 1.5 mm pellet size) were prepared by substituting high-quality fish meal with 0, 3, and 6% SDPP. The diets were tested for a period of 60 d at 22°C with 4 replicates each (400-L cylindroconical tanks, 150 fish per tank, and initial density = 0.5 kg/m(3)). The SDPP inclusion in diets for gilthead sea bream fingerlings were evaluated in terms of growth performance, feed utilization, histological organization of the intestinal mucosa, activity of oxidative stress enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and glutathione reductase) in the intestine, and nonspecific serum immune parameters (lysozyme and bactericidal activity). Results from this study indicated that dietary SDPP promoted fish growth in terms of BW and length; fish fed 3% SDPP were 10.5% heavier (P < 0.05) than those fed the control diet. Spray-dried plasma from porcine blood modulated the activity of the antioxidative defenses in the intestine (P < 0.05) and increased the density of goblet cells in the intestine (P < 0.05) and benefited the host by providing an effective immune barrier against gut pathogenic microbiota. The nonspecific serum immune response in fish fed diets with SDPP was greater (P < 0.05) than in fish fed the control diet. These results indicated that the inclusion of SDPP in gilthead sea bream feed could be beneficial for the fish by enhancing intestinal and serum innate immune

  11. Antioxidant status in vivo: the case for regular consumption of antioxidant rich fruits and vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since metabolism of energy is a major source of reactive oxygen species, the quantity of dietary antioxidants needed may be related to energy consumption. Antioxidant status in vivo can be altered by diet, but the postprandial response is dependent upon factors such as 1) antioxidant capacity (AOC) ...

  12. Invivo antioxidant status: a putative target of antidepressant action.

    PubMed

    Zafir, Ayesha; Ara, Anjum; Banu, Naheed

    2009-03-17

    Oxidative stress is a critical route of damage in various psychological stress-induced disorders, such as depression. Antidepressants are widely prescribed to treat these conditions; however, few animal studies have investigated the effect of these drugs on endogenous antioxidant status in the brain. The present study employed a 21-day chronic regimen of random exposure to restraint stress to induce oxidative stress in brain, and behavioural aberrations, in rodents. The forced swimming (FST) and sucrose preference tests were used to identify depression-like phenotypes, and reversal in these indices indicated the effectiveness of treatment with fluoxetine (FLU; 20 mg/kg/day, p.o.; selective serotonin reuptake inhibitor), imipramine (IMI; 10 mg/kg/day, p.o.; tricyclic antidepressant) and venlafaxine (VEN; 10 mg/kg/day, p.o.; dual serotonin/norepinephrine reuptake inhibitor) following restraint stress. The antioxidant status was investigated in the brain of these animals. The results evidenced a significant recovery in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione (GSH) levels by antidepressant treatments following a restraint stress-induced decline of these parameters. The severely accumulated lipid peroxidation product malondialdehyde (MDA) and protein carbonyl contents in stressed animals were significantly normalized by antidepressant treatments. The altered oxidative status is implicated in various aspects of cellular function affecting the brain. Thus, it is possible that augmentation of in vivo antioxidant defenses could serve as a convergence point for multiple classes of antidepressants as an important mechanism underlying the neuroprotective pharmacological effects of these drugs observed clinically in the treatment of various stress disorders. Consequently, pharmacological modulation of stress-induced oxidative damage as a possible stress-management approach should

  13. Serum Biomarkers of (Anti)Oxidant Status for Epidemiological Studies

    PubMed Central

    Jansen, Eugène; Ruskovska, Tatjana

    2015-01-01

    In this review, we disclose a selection of serum/plasma biomarkers of (anti)oxidant status related to nutrition, which can be used for measurements in large-scale epidemiological studies. From personal experience, we have come to the following proposal of a set of biomarkers for nutritional intake, (anti)oxidant status, and redox status. We have selected the individual antioxidant vitamins E and A, and the carotenoids which can be measured in large series by HPLC. In addition, vitamin C was selected, which can be measured by an auto-analyzer or HPLC. As a biomarker for oxidative stress, the ROM assay (reactive oxygen metabolites) was selected; for the redox status, the total thiol assay; and for the total antioxidant status the BAP assay (biological antioxidant potential). All of these biomarkers can be measured in large quantities by an auto-analyzer. Critical points in biomarker validation with respect to blood sampling, storage conditions, and measurements are discussed. With the selected biomarkers, a good set is presented for use in the risk assessment between nutrition and (chronic) diseases in large-scale epidemiological studies. Examples of the successful application of these biomarkers in large international studies are presented. PMID:26580612

  14. Plasma oxidant-antioxidant status in different respiratory disorders.

    PubMed

    Rai, Raghunath R; Phadke, Madhavi S

    2006-09-01

    This study confirms the fact that in different respiratory disorders, the status of plasma oxidants and antioxidants shifts from normal. The status of oxidants in plasma as represented by malondialdehyde (MDA) levels increased significantly in the conditions of chronic obstructive pulmonary disease (COPD), emphysema, bronchiectasis and bronchial asthma. The two vitamin antioxidants vitamin C and vitamin E showed decreased levels than in controls. In patients with COPD the endogenous antioxidant viz. reduced glutathione (GSH) estimated from whole blood was comparable to that of control group, whereas in patients with emphysema, bronchiectasis and bronchial asthma, GSH concentration was increased to that of control group. The activity of enzyme superoxide dismutase (SOD) was significantly decreased in all study groups. Pulmonary function tests were found to have no correlation with MDA and antioxidants. PMID:23105636

  15. Assessing Current Status. Module 4.

    ERIC Educational Resources Information Center

    DuBois, Phyllis

    This staff development module is part of one of three groups of career guidance modules developed, field-tested and revised by a six-state consortium coordinated by the American Institutes for Research. This module is the fourth in a series on developing a comprehensive career guidance program at the high school level, designed to aid guidance…

  16. Association of Age-Related Macular Degeneration with Erythrocyte Antioxidant Enzymes Activity and Serum Total Antioxidant Status

    PubMed Central

    Plestina-Borjan, Ivna; Katusic, Damir; Medvidovic-Grubisic, Maria; Supe-Domic, Daniela; Bucan, Kajo; Tandara, Leida; Rogosic, Veljko

    2015-01-01

    The aim was to estimate association of the oxidative stress with the occurrence of age-related macular degeneration (AMD). The activities of erythrocyte antioxidant enzymes: superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) and additionally serum total antioxidant status (TAS) were used as indicators of the oxidative stress level. 57 AMD patients (32 early and 25 late AMD) and 50 healthy, age and gender matched controls were included. GPx activity (P < 0.001) and serum TAS (P = 0.015) were significantly lower in AMD patients. The difference was not significant for SOD or CAT activities. Significant interaction between GPx and SOD was detected (P = 0.003). At high levels of SOD activity (over 75th percentile), one standard deviation decrease in GPx increases the odds for AMD for six times (OR = 6.22; P < 0.001). ROC analysis revealed that combined values of GPx activity and TAS are significant determinants of AMD status. Accuracy, sensitivity, specificity, and positive and negative predictive values were 75%, 95%, 52%, 69%, and 90%, respectively. The study showed that low GPx activity and TAS are associated with AMD. SOD modulates the association of GPx and AMD. The results suggest that erythrocyte antioxidant enzymes activity and serum TAS could be promising markers for the prediction of AMD. PMID:25815109

  17. Vitamins, trace elements, and antioxidant status in dementia disorders.

    PubMed

    Tabet, N; Mantle, D; Walker, Z; Orrell, M

    2001-09-01

    Antioxidants, such as vitamins C and E, have been proposed for the treatment of dementia disorders. Although other vitamins and trace elements may also have antioxidant-enhancing activities, it is not known whether the overall antioxidant status in dementia patients is associated with the intake level of these vitamins and trace elements. In this study, we assessed the levels of vitamins and trace elements in the diet of patients with Alzheimer's disease (AD), vascular dementia (VaD), and dementia with Lewy bodies (DLB) and a group of carers, along with blood levels of total antioxidant capacity (TAC). Results show that the dietary intake was decreased for most measured vitamins and trace elements in severe AD, but not in other dementia groups. In addition, we found no significant difference in the levels of TAC between any of the dementia groups. There was, however, a significant correlationbetween intake of vitamin B1, vitamin B12, zinc, and selenium and blood levels of TAC in the VaD group, but not in the AD and DLB groups. Furthermore, no association was observed in any of the dementia groups between zinc and copper intake and Cu/Zn superoxide dismutase activity, or between dietary selenium intake and glutathione peroxidase activity. The activities of these two endogenous antioxidant enzymes do not seem to be influenced by intake levels of relevant substances. The data indicate that the influence of dietary vitamins and metal ions on the overall antioxidant status is limited to VaD patients only. Clinical trials are needed to ascertain the value of antioxidant supplementation in VaD patients. PMID:11768374

  18. Oxidant/antioxidant status in cattle with liver cystic echinococcosis.

    PubMed

    Heidarpour, M; Mohri, M; Borji, H; Moghdass, E

    2013-07-01

    The objective of the present study was to evaluate the changes of antioxidants and oxidative stress markers in cattle with cystic echinococcosis (CE). Thirty cattle with liver CE along with 30 healthy cattle were used for the study. Parasitized cattle presented a significantly higher lipid peroxidation assessed by the malondialdehyde (MDA) compared with healthy animals (P<0.05). A significantly lower erythrocyte superoxide dismutase (SOD) and glucose 6-phosphate dehydrogenase (G6PD), and a significantly higher erythrocyte glutathione peroxidase (GPx) in the parasitized group, were observed when compared with healthy group (P<0.05). No significant differences were observed for serum total antioxidant status (TAS), zinc, copper and iron between parasitized and healthy groups. The results obtained in this study suggest that CE in cattle induces changes in the activity of antioxidant enzymes. These changes render host cells susceptible to oxidants and exaggerate the generation of free radicals with a consequent lipid peroxidation enhancement. PMID:23414616

  19. Dietary nutrient intake and antioxidant status in preeclamptic women

    PubMed Central

    Sheykhi, Mahdiye; Paknahad, Zamzam; Hasanzadeh, Akbar

    2015-01-01

    Background: Preeclampsia (PE) is the most common cause of maternal death in the world. Some studies showed that inadequate intake of foods rich in antioxidant leads to increase oxidative stress and adverting obstetrical outcomes. The aim of the present study was to investigate the relationship between antioxidant status and dietary nutrient intake in pregnant women with PE. Materials and Methods: This cross-sectional study was conducted among 55 pregnant women with PE admitted in the Obstetrics and Gynecology department of Shahid Beheshti Hospital in Isfahan, Iran. The subjects were interviewed about demographic data and dietary intakes by using a 168-items semi-quantitative food frequency questionnaire (FFQ). The total antioxidant capacity (TAC) of this serum was measured by using a double-antibody sandwich enzyme-linked immune-sorbent assay (ELISA). Nonparametric correlation statistics were used to meet assumptions of normality and equal variances. Results: Total antioxidant status was significantly higher in comparison with healthy pregnant women (which measured as pilot). Intake of vitamin E was below the dietary reference intakes, and was positively associated with serum TAC (r = 0.367, P = 0.003), but this correlation was significantly negative about dietary selenium. There wasn’t any significant correlation between intake of vitamin C, β-carotene, riboflavin, copper and serum TAC. Conclusion: Our findings showed that intake of vitamin E was positively associated with serum TAC. Little support was found on a relationship between dietary intakes of other micronutrients and serum TAC. Further research is required to explore the relationships between maternal nutrient intake and antioxidant status in women with PE. PMID:26605222

  20. Jian carp (Cyprinus carpio var. Jian) intestinal immune responses, antioxidant status and tight junction protein mRNA expression are modulated via Nrf2 and PKC in response to dietary arginine deficiency.

    PubMed

    Wang, Biao; Feng, Lin; Chen, Gang-Fu; Jiang, Wei-Dan; Liu, Yang; Kuang, Sheng-Yao; Jiang, Jun; Tang, Ling; Wu, Pei; Tang, Wu-Neng; Zhang, Yong-An; Zhao, Juan; Zhou, Xiao-Qiu

    2016-04-01

    This study investigated the effect of dietary arginine on the immune response, antioxidant status and tight junction mRNA expression in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). A total of 1200 juvenile Jian carp with an average initial weight of 6.33 ± 0.03 g were fed graded levels of arginine (9.8-24.5 g kg(-1) diet) for nine weeks. The study showed that arginine deficiency up-regulated interleukin 1, interleukin 8 and transforming growth factor-β and down-regulated tumour necrosis factor α gene expression (P < 0.05). Additionally, arginine deficiency increased malondialdehyde (MDA), protein carbonyl (PC) and glutathione contents and decreased the activities of copper/zinc superoxide dismutase (SOD1), glutathione peroxidase (GPx), catalase (CAT) and glutathione reductase (GR) and glutathione-S-transferase (GST) (P < 0.05). Meanwhile, arginine deficiency significantly increased claudin 7, occludin, protein kinase C, NF-E2-related factor 2 and Kelch-like-ECH- associated protein 1 mRNA expression and decreased SOD1, CAT and GR mRNA expression (P < 0.05). All of these results indicated that arginine deficiency impaired intestinal immune function via the regulation of mRNA expression of cytokines, tight junction proteins, antioxidant enzymes, Nrf2/Keap1 and PKC in fish intestine. PMID:26518504

  1. Development Status of the ILC Marx Modulator

    SciTech Connect

    Nguyen, M.; Beukers, T.; Burkhart, C.; Larsen, R.; Olsen, J.; Tang, T.; /SLAC

    2008-06-16

    The ILC Marx Modulator is under development as a lower cost alternative to the 'Baseline Conceptual Design' (BCD) klystron modulator. Construction of a prototype Marx is complete and testing is underway at SLAC. The Marx employs solid state elements, IGBTs and diodes, to control the charge, discharge and isolation of the modules. The prototype is based on a stack of sixteen modules, each initially charged to {approx}11 kV, which are arranged in a Marx topology. Initially, eleven modules combine to produce the 120 kV output pulse. The remaining modules are switched in after appropriate delays to compensate for the voltage droop that results from the discharge of the energy storage capacitors. Additional elements will further regulate the output voltage to {+-} 0.5%. The Marx presents several advantages over the conventional klystron modulator designs. It is physically smaller; there is no pulse transformer (quite massive at these parameters) and the energy storage capacitor bank is quite small, owing to the active droop compensation. It is oil-free; voltage hold-off is achieved using air insulation. It is air cooled; the secondary air-water heat exchanger is physically isolated from the electronic components. This paper outlines the current developmental status of the prototype Marx. It presents a detailed electrical and mechanical description of the modulator and operational test results. It will discuss electrical efficiency measurements, fault testing, and output voltage regulation.

  2. Development Status of The ILC Marx Modulator

    SciTech Connect

    Nguyen, M; Beukers, T.; Burkhart, C.; Larsen, R.; Olsen, J.; Tang, T.; /SLAC

    2010-06-07

    The ILC Marx Modulator is under development as a lower cost alternative to the 'Baseline Conceptual Design' (BCD) klystron modulator. Construction of a prototype Marx is complete and testing is underway at SLAC. The Marx employs solid state elements, IGBTs and diodes, to control the charge, discharge and isolation of the modules. The prototype is based on a stack of sixteen modules, each initially charged to {approx}11 kV, which are arranged in a Marx topology. Initially, eleven modules combine to produce the 120 kV output pulse. The remaining modules are switched in after appropriate delays to compensate for the voltage droop that results from the discharge of the energy storage capacitors. Additional elements will further regulate the output voltage to {+-}0.5%. The Marx presents several advantages over the conventional klystron modulator designs. It is physically smaller; there is no pulse transformer (quite massive at these parameters) and the energy storage capacitor bank is quite small, owing to the active droop compensation. It is oil-free; voltage hold-off is achieved using air insulation. It is air cooled; the secondary air-water heat exchanger is physically isolated from the electronic components. This paper outlines the current developmental status of the prototype Marx. It presents a detailed electrical and mechanical description of the modulator and operational test results. It will discuss electrical efficiency measurements, fault testing, and output voltage regulation.

  3. Effect of acute airway inflammation on the pulmonary antioxidant status.

    PubMed

    Deaton, Christopher M; Marlin, David J; Smith, Nicola C; Harris, Patricia A; Dagleish, Mark P; Schroter, Robert C; Kelly, Frank J

    2005-09-01

    Effects of acute airway inflammation induced by organic dust inhalation on pulmonary antioxidant status were investigated in healthy horses and horses affected by recurrent airway obstruction. Exposure to organic dust induced acute airway neutrophilia, which was associated with increases in elastase and decreases in ascorbic acid concentrations in bronchoalveolar lavage fluid. However, markers of oxidative stress were unaffected, as was hydrogen peroxide in breath condensate. Decreases in ascorbic acid correlated with increased respiratory resistance (P = .001) when both groups were combined. In conclusion, acute neutrophilic airway inflammation does not result in significant evidence of oxidative stress in horses affected by recurrent airway obstruction. PMID:16203621

  4. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts.

    PubMed

    Denev, Petko; Kratchanova, Maria; Ciz, Milan; Lojek, Antonin; Vasicek, Ondrej; Blazheva, Denitsa; Nedelcheva, Plamena; Vojtek, Libor; Hyrsl, Pavel

    2014-01-01

    The present study provides a comprehensive data on the antioxidant, antimicrobial and neutrophil-modulating activities of extracts from six medicinal plants--blackberry (Rubus fruticosus) leaves, chokeberry (Aronia melanocarpa) leaves, hawthorn (Crataegus monogyna) leaves, lady's mantle (Alchemilla glabra) aerial parts, meadowsweet (Filipendula ulmaria) aerial parts and raspberry (Rubus idaeus) leaves. In order to analyze the antioxidant activity of the herbs, several methods (ORAC, TRAP, HORAC and inhibition of lipid peroxidation) were used. Blackberry leaves and meadowsweet extracts revealed the highest antioxidant activities via all methods. All extracts studied blocked almost completely the opsonized zymosan particle-activated ROS production by neutrophils from human whole blood. On the other hand, the effect of extracts on phorbol myristate acetate-activated ROS production was much milder and even nonsignificant in the case of chokeberry leaves. This latter result suggests that extracts (apart from their antioxidative activity) interfere with the signaling cascade of phagocyte activation upstream of the protein kinase C activation. The antimicrobial activity of the investigated extracts against 11 human pathogens was investigated using three different methods. Meadowsweet and blackberry leaves extracts had the highest antimicrobial effect and the lowest minimal inhibiting concentrations (MICs) against the microorganisms tested. PMID:24945135

  5. ILC Marx Modulator Development Program Status

    SciTech Connect

    Burkhart, C.; Beukers, T.; Larsen, R.; Macken, K.; Nguyen, M.; Olsen, J.; Tang, T.; /SLAC

    2009-03-04

    Development of a first generation prototype (P1) Marx-topology klystron modulator for the International Linear Collider is nearing completion at the Stanford Linear Accelerator Center. It is envisioned as a smaller, lower cost, and higher reliability alternative to the present, bouncer-topology, 'Baseline Conceptual Design'. The Marx presents several advantages over conventional klystron modulator designs. It is physically smaller; there is no pulse transformer (quite massive at ILC parameters) and the energy storage capacitor bank is quite small, owing to the active droop compensation. It is oil-free; voltage hold-off is achieved using air insulation. It is air cooled; the secondary air-water heat exchanger is physically isolated from the electronic components. The P1-Marx employs all solid state elements; IGBTs and diodes, to control the charge, discharge and isolation of the cells. A general overview of the modulator design and the program status are presented.

  6. Comparison between the antioxidant status of terrestrial and diving mammals.

    PubMed

    Wilhelm Filho, D; Sell, F; Ribeiro, L; Ghislandi, M; Carrasquedo, F; Fraga, C G; Wallauer, J P; Simões-Lopes, P C; Uhart, M M

    2002-11-01

    Many diving mammals are known for their ability to deal with nitrogen supersaturation and to tolerate apnea for extended periods. They are all characterized by high oxygen-carrying capacity in blood together with high oxygen storage in their muscle mass due to large myoglobin concentrations. The above properties theoretically also imply a high tissue antioxidant defenses (AD) to counteract reactive oxygen species (ROS) generation associated with the rapid transition from apnea to reoxygenation. Different enzymatic (superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase), and non-enzymatic (levels of glutathione) AD as well as cellular damage (thiobarbituric acid-reactive substances contents, as a measure of lipoperoxidation) were measured in blood samples obtained from anesthetized animals, and also in blood obtained from recently dead diving mammals, and compared to some terrestrial mammals (n=5 in both groups). The results confirmed that diving mammals have, in general, higher antioxidant status compared to non-diving mammals. Apparently, to avoid exposure of tissues to changing high oxygen levels, and therefore to avoid an oxidative stress condition related to antioxidant consumption and increased ROS generation, diving mammals possess constitutive high levels of antioxidants in tissues. These data are in agreement with short-term AD adaptations related to torpor and to animals that experience large daily changes in oxygen consumption. These data are similar to the long-term adaptations of animals that undergo hibernation, estivation, freezing-thawing and dehydration-rehydration processes. In summary, animals that routinely face high changes in oxygen availability and/or consumption seem to show a general strategy to prevent oxidative damage by having either appropriate high constitutive AD and/or the ability to undergo arrested states, where depressed metabolic rates minimize the oxidative challenge. PMID

  7. The Oxidant and Antioxidant Status in Pityriasis Rosea

    PubMed Central

    Emre, Selma; Akoglu, Gulsen; Metin, Ahmet; Demirseren, Duriye Deniz; Isikoglu, Semra; Oztekin, Aynure; Erel, Ozcan

    2016-01-01

    Background: Pityriasis rosea (PR) is usually an asymptomatic and self-limiting papulosquamous skin disease with acute onset. The etiology has not been clarified yet. Recently, increased oxidative stress was found to play a role in etiopathogenesis of multiple cutaneous diseases with T cell-mediated immune response. However, there are no studies demonstrating the oxidative stress status in PR. Aim: The aim of the study is to determine the status of oxidative stress (OS) and paraoxonase (PON) 1/arylesterase enzyme activities in PR. Materials and Methods: Study included 51 patients with active PR lesions, and 45 healthy volunteers. Serum levels of total oxidant status (TOS), total antioxidant status (TAS), and PON1/arylesterase (ARES) activity were determined and oxidative stress index (OSI) was calculated in all patients and controls. Results: TAS levels and ARES activities in the patient group were significantly lower than the control group. On the other hand, TOS and OSI levels were significantly higher in patients compared with controls. There was no significant correlation between the duration of disease and TAS, TOS, OSI levels, and ARES activities. Conclusion: A systemic oxidative stress exists in PR, which suggests that OS may be involved in the etiopathogenesis of disease. PMID:26955119

  8. Phenolic constituents, furans, and total antioxidant status of distilled spirits.

    PubMed

    Goldberg, D M; Hoffman, B; Yang, J; Soleas, G J

    1999-10-01

    The concentrations of 11 phenols and 5 furans were measured in 12 categories of distilled spirits by HPLC methodology, together with the total antioxidant status (TAS) of the same beverages. Ellagic acid was the phenol present in highest concentration in all beverages. Moderate amounts of syringaldehyde, syringic acid, and gallic acid, as well as lesser amounts of vanillin and vanillic acid, were measurable in most samples of whiskey, brandy, and rum but were largely undetectable in gin, vodka, liqueurs, and miscellaneous spirits. 5-(Hydroxymethyl)furfural was the predominant furan in the former three beverages, notably cognac, with 2-furaldehyde the next highest, but these were undetectable in most of the latter beverages. Highest TAS values were given by armagnac, cognac, and bourbon whiskey, all three of which tended toward the highest concentrations of phenols. Negative TAS values were exhibited by rum, vodka, gin, and miscellaneous spirits in line with the low or undetectable phenol concentrations in these beverages. Wood aging is the most likely source of phenols and furans in distilled spirits. Those beverages exposed to this treatment contain significant antioxidant activity, which is between the ranges for white and red wines, with the potential to augment the antiatherosclerotic functions attributable to the ethanol that they contain. PMID:10552753

  9. Total Antioxidant Status in Type 2 Diabetic Patients in Palestine.

    PubMed

    Kharroubi, Akram T; Darwish, Hisham M; Akkawi, Mutaz A; Ashareef, Abdelkareem A; Almasri, Zaher A; Bader, Khaldoun A; Khammash, Umaiyeh M

    2015-01-01

    The objective of this study was to compare the level of total antioxidant status (TAS) in type 2 diabetic and normal Palestinian subjects as well as the major factors influencing TAS levels. A sample of convenience composed of 212 type 2 diabetic and 208 normal subjects above the age of 40 were recruited. Only 9.8% of the subjects had normal body mass index (BMI) levels (<25), 29% were overweight (≥25 to <30), and 61.2% were obese (≥30). The mean levels of TAS were significantly higher in diabetic compared to control subjects (2.18 versus 1.84 mM Trolox, P = 0.001) and in hypertensive subjects compared to subjects with normal blood pressure (BP). Mean TAS levels were higher in obese compared to nonobese subjects (2.12 versus 1.85 mM Trolox, P = 0.001). Mean TAS levels were similarly higher in subjects with high fasting plasma glucose (FPG) compared to normal FPG (2.19 versus 1.90 mM Trolox) and high HbA1c (≥6.5%) compared to HbA1c < 6.5% (2.14 versus 1.91 mM Trolox). Multivariate analysis revealed that only diabetic status (P = 0.032) and the level of education (P = 0.036) were significantly associated with TAS. In conclusion diabetic patients had 18.5% increase in TAS levels compared to control subjects. PMID:26090472

  10. ILC MARX MODULATOR DEVELOPMENT PROGRAM STATUS

    SciTech Connect

    Burkhart, Craig; Benwell, Andrew; Beukers, Tony; Kemp, Mark; Larsen, Raymond; MacNair, David; Nguyen, Minh; Olsen, Jeff; Tang, Tao; /SLAC

    2010-08-25

    A Marx-topology klystron modulator is under development for the International Linear Collider (ILC) project. It is envisioned as a lower cost, smaller footprint, and higher reliability alternative to the present, bouncer-topology, baseline design. The application requires 120 kV (+/-0.5%), 140 A, 1.6 ms pulses at a rate of 5 Hz. The Marx constructs the high voltage pulse by combining, in series, a number of lower voltage cells. The Marx employs solid state elements; IGBTs and diodes, to control the charge, discharge and disolation of the cells. Active compensation of the output is used to achieve the voltage regulation while minimizing the stored energy. The developmental testing of a first generation prototype, P1, has been completed. This modulator has been integrated into a test stand with a 10 MW L-band klystron, where each is undergoing life testing. Development of a second generation prototype, P2, is underway. The P2 is based on the P1 topology but incorporates an alternative cell configuration to increase redundancy and improve availability. Status updates for both prototypes are presented.

  11. Antitumor and antioxidant status of Terminalia catappa against Ehrlich ascites carcinoma in Swiss albino mice

    PubMed Central

    Pandya, Naitik B.; Tigari, Prakash; Dupadahalli, Kotresha; Kamurthy, Hemalatha; Nadendla, Rama Rao

    2013-01-01

    Objective: The present study was undertaken to evaluate the antitumor and antioxidant status of ethanol extract of Terminalia catappa leaves against Ehrlich ascites carcinoma (EAC) in Swiss albino mice. Materials and Methods: The leaves powder was extracted with Soxhlet apparatus and subjected to hot continuous percolation using ethanol (95% v/v). Tumor bearing animals was treated with 50 and 200 mg/kg of ethanol extract. EAC induced in mice by intraperitoneal injection of EAC cells 1 × 106 cells/mice. The study was assed using life span of EAC-bearing hosts, hematological parameters, volume of solid tumor mass and status of antioxidant enzymes such as lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activities. Total phenolics and flavonoids contents from the leaves extract were also determined. Results: Total phenolics and flavonoids contents from the leaves extract were found 354.02 and 51.67 mg/g extract. Oral administration of ethanol extract of T. catappa (50 and 200 mg/kg) increased the life span (27.82% and 60.59%), increased peritoneal cell count (8.85 ± 0.20 and 10.37 ± 0.26) and significantly decreased solid tumor mass (1.16 ± 0.14 cm2) at 200 mg/kg as compared with EAC-tumor bearing mice (P < 0.01). Hematological profile including red blood cell count, white blood cell count, hemoglobin (11.91 ± 0.47 % g) and protein estimation were found to be nearly normal levels in extract-treated mice compared with tumor bearing control mice. Treatment with T. catappa significantly decreased levels of LPO and GSH, and increased levels of SOD and CAT activity (P < 0.01). Conclusion: T. catappa exhibited antitumor effect by modulating LPO and augmenting antioxidant defense systems in EAC bearing mice. The phenolic and flavonoid components in this extract may be responsible for antitumor activity. PMID:24130380

  12. Effects of thyroid hormones on the antioxidative status in the uterus of young adult rats

    PubMed Central

    KONG, Lingfa; WEI, Quanwei; FEDAIL, Jaafar Sulieman; SHI, Fangxiong; NAGAOKA, Kentaro; WATANABE, Gen

    2015-01-01

    Thyroid hormones and oxidative stress play significant roles in the normal functioning of the female reproductive system. Nitric oxide (NO), a free radical synthesized by nitric oxide synthases (NOS), participates in the regulation of thyroid function and is also a good biomarker for assessment of the oxidative stress status. Therefore, the purpose of this study was to investigate effects of thyroid hormones on uterine antioxidative status in young adult rats. Thirty immature female Sprague-Dawley rats were randomly divided into three groups: control, hypothyroid (hypo-T) and hyperthyroid (hyper-T). The results showed the body weights decreased significantly in both the hypo-T and hyper-T groups and that uterine weights were decreased significantly in the hypo-T group. The serum concentrations of total triiodothyronine (T3) and thyroxine (T4), as well as estradiol (E2), were significantly decreased in the hypo-T group, but increased in the hyper-T group. The progesterone (P4) concentrations in the hypo- and hyperthyroid rats markedly decreased. Immunohistochemistry results provided evidence that thyroid hormone nuclear receptor α/β (TRα/β) and three NOS isoforms were located in different cell types of rat uteri. The NO content and total NOS and inducible NOS (iNOS) activities were markedly diminished in the hypo-T group but increased in the hyper-T group. Moreover, the activities of both glutathione peroxidase (GSH-Px) and catalase (CAT) exhibited significant decreases and increases in the hypo-T and hyper-T groups, respectively. The malondialdehyde (MDA) contents in both the hypo-T and hyper-T groups showed a significant increase. Total superoxide dismutase (T-SOD) activity in the hypo- and hyper-T rats markedly decreased. In conclusion, these results indicated that thyroid hormones have an important influence on the modulation of uterine antioxidative status. PMID:25797533

  13. Antioxidant activity and nutritional status in anorexia nervosa: effects of weight recovery.

    PubMed

    Oliveras-López, María-Jesús; Ruiz-Prieto, Inmaculada; Bolaños-Ríos, Patricia; De la Cerda, Francisco; Martín, Franz; Jáuregui-Lobera, Ignacio

    2015-04-01

    Few studies are focused on the antioxidant status and its changes in anorexia nervosa (AN). Based on the hypothesis that renutrition improves that status, the aim was to determine the plasma antioxidant status and the antioxidant enzymes activity at the beginning of a personalized nutritional program (T0) and after recovering normal body mass index (BMI) (T1). The relationship between changes in BMI and biochemical parameters was determined. Nutritional intake, body composition, anthropometric, hematological and biochemical parameters were studied in 25 women with AN (19.20 ± 6.07 years). Plasma antioxidant capacity and antioxidant enzymes activity were measured. Mean time to recover normal weight was 4.1 ± 2.44 months. Energy, macronutrients and micronutrients intake improved. Catalase activity was significantly modified after dietary intake improvement and weight recovery (T0 = 25.04 ± 1.97 vs. T1 = 35.54 ± 2.60 μmol/min/mL; p < 0.01). Total antioxidant capacity increased significantly after gaining weight (T0 = 1033.03 ± 34.38 vs. T1 = 1504.61 ± 99.73 μmol/L; p < 0.01). Superoxide dismutase activity decreased (p < 0.05) and glutathione peroxidase did not change. Our results support an association between nutrition improvement and weight gain in patients with AN, followed by an enhancement of antioxidant capacity and catalase antioxidant system. PMID:25830944

  14. Antioxidant Activity and Nutritional Status in Anorexia Nervosa: Effects of Weight Recovery

    PubMed Central

    Oliveras-López, María-Jesús; Ruiz-Prieto, Inmaculada; Bolaños-Ríos, Patricia; De la Cerda, Francisco; Martín, Franz; Jáuregui-Lobera, Ignacio

    2015-01-01

    Few studies are focused on the antioxidant status and its changes in anorexia nervosa (AN). Based on the hypothesis that renutrition improves that status, the aim was to determine the plasma antioxidant status and the antioxidant enzymes activity at the beginning of a personalized nutritional program (T0) and after recovering normal body mass index (BMI) (T1). The relationship between changes in BMI and biochemical parameters was determined. Nutritional intake, body composition, anthropometric, hematological and biochemical parameters were studied in 25 women with AN (19.20 ± 6.07 years). Plasma antioxidant capacity and antioxidant enzymes activity were measured. Mean time to recover normal weight was 4.1 ± 2.44 months. Energy, macronutrients and micronutrients intake improved. Catalase activity was significantly modified after dietary intake improvement and weight recovery (T0 = 25.04 ± 1.97 vs. T1 = 35.54 ± 2.60μmol/min/mL; p < 0.01). Total antioxidant capacity increased significantly after gaining weight (T0 = 1033.03 ± 34.38 vs. T1 = 1504.61 ± 99.73 μmol/L; p < 0.01). Superoxide dismutase activity decreased (p < 0.05) and glutathione peroxidase did not change. Our results support an association between nutrition improvement and weight gain in patients with AN, followed by an enhancement of antioxidant capacity and catalase antioxidant system. PMID:25830944

  15. Alterations in Lipid Metabolism and Antioxidant Status in Lichen Planus

    PubMed Central

    Panchal, Falguni H; Ray, Somshukla; Munshi, Renuka P; Bhalerao, Supriya S; Nayak, Chitra S

    2015-01-01

    Background: Lichen planus (LP), a T-cell-mediated inflammatory disorder, wherein inflammation produces lipid metabolism disturbances, is linked to increase in cardiovascular (CV) risk with dyslipidemia. Increased reactive oxygen species and lipid peroxides have also been implicated in its pathogenesis. Aim and Objective: The aim of the study was to evaluate the status on lipid disturbances, oxidative stress, and inflammation in LP patients. Materials and Methods: The study was initiated after obtaining Institutional Ethics Committee permission and written informed consent from participants. The study included 125 patients (74 LP patients and 51 age and sex-matched controls) visiting the outpatient clinic in the dermatology department of our hospital. Variables analyzed included lipid profile, C-reactive protein (CRP), malondialdehyde (MDA), and catalase (CAT) activity. Results: Analysis of lipid parameters revealed significantly higher levels of total cholesterol (TC), triglycerides, and low-density lipoprotein cholesterol (LDL-C) along with decreased levels of high-density lipoprotein cholesterol (HDL-C) in LP patients as compared to their respective controls. LP patients also presented with a significantly higher atherogenic index that is, (TC/HDL-C) and LDL-C/HDL-C ratios than the controls. A significant increase in CRP levels was observed among the LP patients. There was a statistically significant increase in the serum levels of the lipid peroxidation product, MDA and a statistically significant decrease in CAT activity in LP patients as compared to their respective controls. A statistically significant positive correlation (r = 0.96) was observed between serum MDA levels and duration of LP whereas a significantly negative correlation (r = −0.76) was seen between CAT activity and LP duration. Conclusion: Chronic inflammation in patients with LP may explain the association with dyslipidemia and CV risk. Our findings also suggest that an increase in oxidative

  16. Lentinus squarrosulus (Mont.) mycelium enhanced antioxidant status in rat model

    PubMed Central

    Mhd Omar, Nor Adila; Abdullah, Sumaiyah; Abdullah, Noorlidah; Kuppusamy, Umah Rani; Abdulla, Mahmood Ameen; Sabaratnam, Vikineswary

    2015-01-01

    Aim Lentinus squarrosulus is an edible wild mushroom commonly found in Asia. This species has several interesting features such as rapid mycelial growth, and hence has the potential to be used as food, functional food, and nutraceuticals. Our previous study shows that L. squarrosulus contains potent antioxidant compounds in vitro. This study aims to investigate the in vivo bioavailability of L. squarrosulus mycelium extract and its antioxidant effect on biomarkers of antioxidant defense and oxidative stress. Methods Water extract of mycelial biomass of L. squarrosulus was analyzed for in vivo antioxidant effects, including cupric-reducing antioxidant capacity (CUPRAC), glutathione peroxidase (GPx), xanthine oxidase (XO), advanced oxidation protein products (AOPPs), and lipid hydroperoxides (LHPs) at 0 and 28 days. GPx and XO were also analyzed in liver homogenates. Normal Sprague Dawley rats were treated with 250 and 500 mg/kg of extract for 28 days. Results The serum CUPRAC level increased after treatment with both concentrations, indicating that there was sufficient bioavailability of the extract which contributed to the total antioxidant capacity. GPx activity in both serum and liver was increased and this correlated with LHP level after treatment with 250 mg/kg of extract, but XO activity was significantly decreased after treatment with 500 mg/kg of the extract. Lack of difference between AOPP levels implied that there were no significant changes in oxidative damage of protein after treatment. Conclusion This study clearly showed that L. squarrosulus mycelium antioxidant extract contains absorbable antioxidants that enter the circulating plasma and cause a significant acute increase in plasma antioxidant capacity. Thus, the water extract of L. squarrosulus mycelium, which can be obtained abundantly by liquid fermentation, may serve as an antioxidant ingredient in functional foods and nutraceuticals. PMID:26604694

  17. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis turcica

    PubMed Central

    Aksoy, Laçine; Kolay, Erdi; Ağılönü, Yasin; Aslan, Zeyneb; Kargıoğlu, Mustafa

    2013-01-01

    Thermopsis turcica, endemic to Turkey, is in danger of extinction. Studies on this species are very few due to the fact that it was only discovered in 1983 and grows in a small circumscribed area in Turkey. In this study, free radical scavenging activity, total phenolic content, total oxidant status (TOS), and total antioxidant status (TAS) of methanol (TTM) and acetone (TTA) extracts of T. turcica were measured spectroscopically. Free radical scavenging activity was determined according to the elimination of DPPH radicals and total phenol content was determined by the Folin–Ciocalteu reaction. Total oxidant status (TOS) and total antioxidant status (TAS) were measured with commercially available kits. Methanol and acetone extracts of T. turcica were found to have a specific radical scavenging effect. This effect was found to be related to the total phenolic content of the extracts. Since the TTA had a higher phenolic content than the methanol extract, it had a stronger radical scavenging effect. In addition, the total antioxidant capacity of the methanol extract was observed to be higher than that of its acetone counterpart. As a result, due to its antioxidative properties, T. turcica is thought to be a natural source of antioxidants. PMID:23961240

  18. What are the Antioxidant Status Predictors’ Factors among Male Chronic Obstructive Pulmonary Disease (COPD) Patients?

    PubMed Central

    Pirabbasi, Elham; Najafiyan, Mahin; Cheraghi, Maria; Shahar, Suzana; Manaf, Zahara Abdul; Rajab, Norfadilah; Manap, Roslina Abdul

    2013-01-01

    Imbalance between antioxidant and oxidative stress is a major risk factor for pathogenesis of some chronic diseases such as chronic obstructive pulmonary disease (COPD). This study aimed to determine antioxidant and oxidative stress status, and also theirs association with respiratory function of male COPD patients to find the antioxidant predictors’ factors. A total of 149 subjects were involved in a cross-sectional study. The study was conducted at two medical centers in Kuala Lumpur, Malaysia. Results of the study showed that plasma vitamin C was low in most of the subjects (86.6%). Total antioxidant capacity was the lowest in COPD stage IV compare to other stages (p < 0.05). Level of plasma vitamin A (p= 0.012) and vitamin C (p= 0.007) were low in malnourished subjects. The predictors for total antioxidant capacity were forced vital capacity (FVC) % predicted and intake of β-carotene (R2= 0.104, p= 0.002). Number of cigarette (pack/year) and smoking index (number/year) were not associated with total antioxidant capacity of this COPD population. Plasma oxidative stress as assessed plasma lipid peroxidation (LPO) was only positively correlated with plasma glutathione (p= 0.002). It might be a need to evaluate antioxidant status especially in older COPD patients to treat antioxidant deficiency which is leading to prevent COPD progression. PMID:23283038

  19. Frequency Modulated Translocational Oscillations of Nrf2 Mediate the Antioxidant Response Element Cytoprotective Transcriptional Response

    PubMed Central

    Xue, Mingzhan; Momiji, Hiroshi; Rabbani, Naila; Barker, Guy; Bretschneider, Till; Shmygol, Anatoly; Rand, David A.

    2015-01-01

    Abstract Aims: Stress responsive signaling coordinated by nuclear factor erythroid 2-related factor 2 (Nrf2) provides an adaptive response for protection of cells against toxic insults, oxidative stress and metabolic dysfunction. Nrf2 regulates a battery of protective genes by binding to regulatory antioxidant response elements (AREs). The aim of this study was to examine how Nrf2 signals cell stress status and regulates transcription to maintain homeostasis. Results: In live cell microscopy we observed that Nrf2 undergoes autonomous translocational frequency-modulated oscillations between cytoplasm and nucleus. Oscillations occurred in quiescence and when cells were stimulated at physiological levels of activators, they decrease in period and amplitude and then evoke a cytoprotective transcriptional response. We propose a mechanism whereby oscillations are produced by negative feedback involving successive de-phosphorylation and phosphorylation steps. Nrf2 was inactivated in the nucleus and reactivated on return to the cytoplasm. Increased frequency of Nrf2 on return to the cytoplasm with increased reactivation or refresh-rate under stress conditions activated the transcriptional response mediating cytoprotective effects. The serine/threonine-protein phosphatase PGAM5, member of the Nrf2 interactome, was a key regulatory component. Innovation: We found that Nrf2 is activated in cells without change in total cellular Nrf2 protein concentration. Regulation of ARE-linked protective gene transcription occurs rather through translocational oscillations of Nrf2. We discovered cytoplasmic refresh rate of Nrf2 is important in maintaining and regulating the transcriptional response and links stress challenge to increased cytoplasmic surveillance. We found silencing and inhibition of PGAM5 provides potent activation of Nrf2. Conclusion: Frequency modulated translocational oscillations of Nrf2 mediate the ARE-linked cytoprotective transcriptional response. Antioxid. Redox

  20. Effect of occupation on lipid peroxidation and antioxidants' status in masons.

    PubMed

    Mallika, R; Srinivasan, K N; Pugalendi, K V

    2000-01-01

    Effect of occupation on haematological factors, lipid peroxidation and antioxidants' status was studied in masons and compared with normal subjects. Red blood corpuscles (RBC), haemoglobin (Hb), Vitamin C, Vitamin E, beta-carotene levels and glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities decreased. Thiobarbituric acid reacting substances (TBARS) level increased. Occupational exposure to cement increased lipid peroxidation but decreased antioxidants' levels in masons. Increased lipid peroxidation seems to be responsible for the reduction in RBC and Hb. PMID:10919101

  1. Antioxidant modulation of nevirapine induced hepatotoxicity in rats

    PubMed Central

    Popoola, Temidayo; Rotimi, Kunle; Ikumawoyi, Victor; Okunowo, Wahab

    2015-01-01

    HIV/AIDS related mortality has been dramatically reduced by the advent of antiretroviral therapy (ART). However, ART presents with associated adverse effects. One of such adverse effects is hepatotoxicity observed with nevirapine (NVP) containing ART. Since previous studies showed that NVP hepatotoxicity may be due to oxidative stress via generation of oxidative radicals, this study sought to evaluate the protective effects of antioxidants in alleviating NVP induced hepatotoxicity. Rats were divided into 6 groups with 8 animals per group and received doses of the antioxidants jobelyn (10.7 mg/kg/day), vitamin C (8 mg/kg/day), vitamin E (5 mg/kg/day) and/or NVP (6 mg/kg/day) for 60 days. The animals were sacrificed on day 61 by cervical dislocation, blood samples were collected for biochemical and hematological examination. The liver of the sacrificed animals was weighed and subjected to histopathological examination. There was a statistically significant (p<0.05) elevation in MDA level observed in the NVP group as compared with control. The results further showed non-significant decreases in the levels of MDA in the NVP plus antioxidant groups, except vitamin C, when compared with the NVP alone group. Vitamin E and Vitamin E plus C treated groups showed significantly (p<0.05) higher levels of SOD, CAT and GSH. The results also showed statistically significantly (p<0.05) lower levels of ALT and AST in the antioxidant treated groups There was an observed significantly (p<0.05) higher level of TP and urea in the antioxidant treated rats. A significantly (p<0.05) higher white blood cell count was observed in the antioxidant groups. Histopathological assessment of the liver extracted from the rats showed no visible pathology across the groups. Observations from this study suggest a potentially positive modulatory effect of antioxidants and may be indicative for the inclusion of antioxidants in nevirapine containing ART. PMID:27486354

  2. Effect of the co-occurring components from olive oil and thyme extracts on the antioxidant status and its bioavailability in an acute ingestion in rats.

    PubMed

    Rubió, Laura; Serra, Aida; Chen, C-Y Oliver; Macià, Alba; Romero, Maria-Paz; Covas, Maria-Isabel; Solà, Rosa; Motilva, Maria-José

    2014-04-01

    The aim of this work was to examine whether bioactives in thyme could enhance the antioxidant capacity of phenolics in virgin olive oil and their bioavailability in Wistar rats. After acute oral administration of extracts from olive cake (OE), thyme (TE) or their combination (OTE), blood samples were collected from 0 to 360 min. Plasma antioxidant status was analyzed by DPPH and FRAP in plasma and by SOD, CAT and GPx activities in erythrocytes. Plasma pharmacokinetics of the main metabolites of bioactives in olive oil and thyme were characterized. Plasma non-enzymatic antioxidant capacity was significantly modulated by OE, TE, and OTE in a time-, assay, and extract-dependent manner. OE, TE, and OTE all significantly decreased superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity and catalase (CAT) activity was increased. Pharmacokinetic results showed that plasma concentration (Cmax) of the main olive phenolic metabolites in rats fed with OTE were similar to those of OE. These results indicate that an enhanced bioavailability of olive phenolic compounds could occur in the presence of thyme, although any synergistic effect was observed in the antioxidant status when both phenolic extracts were administered. Antioxidant protection by phenolics from olive and thyme against oxidative stress occurs primarily through a direct antioxidant effect and may be related to the phenolic plasmatic metabolites. PMID:24554091

  3. LDL oxidation as a biomarker of antioxidant status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past four decades, several hypotheses have evolved about the cause of atherosclerosis including vascular response to injury, vascular wall retention of low density lipoprotein (LDL), and oxidative modification of LDL. Because plasma contains robust antioxidant defenses and LDL contains li...

  4. Antioxidant status and biomarkers of oxidative stress in canine lymphoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background – Oxidative stress might play a role in carcinogenesis, as well as impacting morbidity and mortality of veterinary cancer patients. The purpose of this study was to evaluate antioxidant concentrations and biomarkers of oxidative stress in dogs with newly-diagnosed lymphoma prior to treatm...

  5. Nutritional antioxidants and the modulation of inflammation: theory and practice.

    PubMed

    Grimble, R F

    1994-05-01

    Highly potent substances are produced by the immune system. These substances include cytokines and oxidant molecules, such as hydrogen peroxide, free radicals, and hypochlorous acid. The purpose of immune cell products is to destroy invading organisms and damaged tissue, bringing about recovery. However, oxidants and cytokines can damage healthy tissue. Excessive or inappropriate production of these substances is associated with mortality and morbidity after infection and trauma, and in inflammatory diseases. Oxidants enhance interleukin-1, interleukin-8, and tumor necrosis factor production in response to inflammatory stimuli by activating the nuclear transcription factor, NF kappa B. Sophisticated antioxidant defenses directly and indirectly protect the host against the damaging influence of cytokines and oxidants. Indirect protection is afforded by antioxidants, which reduce activation of NF kappa B, thereby preventing up-regulation of cytokine production by oxidants. Cytokines increase both oxidant production and antioxidant defenses, thus minimizing damage to the host. While antioxidant defenses interact when a component is compromised, the nature and extent of the defenses are influenced by dietary intake of sulfur amino acids, for glutathione synthesis, and vitamins E and C. In animal studies, in vivo and in vitro responses to inflammatory stimuli are influenced by dietary intake of copper, zinc, selenium, N-acetylcysteine, cysteine, methionine, taurine, and vitamin E. Information from animal studies has yet to be fully translated into a clinical context. However, N-acetylcysteine, vitamin E, and a cocktail of antioxidant nutrients have reduced inflammatory symptoms in inflammatory joint disease, acute and chronic pancreatitis, and adult respiratory distress syndrome. Impaired antioxidant defenses may contribute to disease progression after infection with human immunodeficiency virus. Powerful arguments have been advanced for treatment with antioxidants to

  6. Comparison of Antioxidant Status and Vitamin D Levels between Multiple Sclerosis Patients and Healthy Matched Subjects

    PubMed Central

    Hejazi, Ehsan; Amani, Reza; SharafodinZadeh, Naser; Cheraghian, Bahman

    2014-01-01

    Objective. The aim of the present study was to compare the serum levels of total antioxidant status (TAS) and 25(OH) D3 and dietary intake of multiple sclerosis (MS) patients with those of normal subjects. Method. Thirty-seven MS patients (31 women) and the same number of healthy matched controls were compared for their serum levels and dietary intake of 25(OH) D3 and TAS. Sun exposure and the intake of antioxidants and vitamin D rich foods were estimated through face-to-face interview and food frequency questionnaire. Results. Dietary intake of antioxidants and vitamin D rich foods, vitamin C, vitamin A, and folate was not significantly different between the two groups. There were also no significant differences in the mean levels of 25(OH) D3 and TAS between the study groups. Both groups had low serum levels of 25(OH) D3 and total antioxidants. Conclusion. No significant differences were detected in serum levels and dietary intake of vitamin D and antioxidants between MS patients and healthy controls. All subjects had low antioxidant status and vitamin D levels. PMID:24834356

  7. Oxidant and antioxidant status of cadmium administered rats

    NASA Astrophysics Data System (ADS)

    Toplan, S.; Ozcelik, D.; Dariyerli, N.; Akyolcu, M. C.

    2003-05-01

    Cadmium is one of the industrial elements that lead environmental pollution. Biological half-life of cadmium is relatively longer, so its clearance from tissue is considerably long. In present study, oxidant stress and antioxidant defense mechanism due to exposure to cadmium in rats wanted to be investigated. For such a purpose adult female wistar albino rats were divided into two as control and experimental groups. During experimental period while both group animals were fed by standard fodder, cadmium added (20 μg Cd/ml as cadmium sulfate) drinking water was given to experimental group for four weeks. At the end of four weeks blood samples were drawn from animals under ether anesthesia. As a Last product of lipid peroxidation malondialdehyde (MDA) level, superoxide dismutas (SOD) activity which is sign of antioxidant defense enzyme activity and glutathione levels (GSH) were measured. Increase in lipid peroxidation has been observed by increased MDA levels in experimental group (p<0.001). SOD enzyme activity was also found to be significantly lower in experimental group (p<0.001). Glutathione level of experimental group found to be decreased according to control group values (p<0.01). As a result of present study it may be concluded that cadmium may lead to increase in lipid peroxidation. On the other hand SOD activity and glutathione levels may also be decreased by effect of cadmium in erythrocytes. So the resultant would be the disturbed antioxidant mechanism

  8. Effect of nutritional antioxidant supplementation on systemic and pulmonary antioxidant status, airway inflammation and lung function in heaves-affected horses.

    PubMed

    Kirschvink, N; Fiévez, L; Bougnet, V; Art, T; Degand, G; Smith, N; Marlin, D; Roberts, C; Harris, P; Lekeux, P

    2002-11-01

    An oxidant/antioxidant imbalance in favour of oxidants has been identified as playing a decisive role in the pathogenesis of chronic inflammatory airway diseases. Nutritional antioxidant supplementation might reduce oxidative damage by enhancement of the antioxidant defence, thereby modulating inflammatory processes. In a placebo-controlled, blind study, it was tested whether a dietary antioxidant supplement administered for 4 weeks would improve lung function and reduce airway inflammation in heaves-affected horses. Eight horses in clinical remission of heaves were investigated at rest and after a standardised exercise test before and after treatment with an antioxidant supplement (consisting of a mixture of natural antioxidants including vitamins E and C and selenium from a variety of sources) or placebo (oatfeed pellets without additive). Pulmonary function and exercise tolerance were monitored; systemic and pulmonary lining fluid uric acid, glutathione and 8-epi-PGF(2alpha) were analysed, and bronchoalveolar lavage (BAL) cytology and inflammatory scoring of the airways were performed. The antioxidant treatment significantly improved exercise tolerance and significantly reduced endoscopic inflammatory score. Plasma uric acid concentrations were significantly reduced, suggesting downregulation of the xanthine-dehydrogenase and xanthine-oxydase pathway. Haemolysate glutathione showed a nonsignificant trend to increase, while plasma 8-epi-PGF(2alpha) remained unchanged. Pulmonary markers and BAL cytology were not significantly affected by antioxidant supplementation. The present study suggests that the antioxidant supplement tested modulated oxidant/antioxidant balance and airway inflammation of heaves-affected horses. PMID:12455842

  9. Status of trace elements and antioxidants in premenopausal and postmenopausal phase of life: a comparative study

    PubMed Central

    Ansar, Sabah; Alhefdhi, Tayef; Aleem, Ansari M

    2015-01-01

    The aim of the study was to determine the extent of free radical damage in the form of oxidative stress, the antioxidant status and correlate with trace element levels in postmenopausal females as compared to premenopausal females. Participants between the ages of 30-60 years were recruited for the study and status of antioxidant enzymes and trace metals level was determined. The serum Calcium (Ca) levels after menopause was higher than that of the premenopausal group (P<0.001). The changes in copper (Cu) and Zinc (Zn) between the groups were not significant (p>0.05). In postmenopausal women, antioxidant enzymes like superoxide dismutase (SOD) and glutathione peroxidase (GPX), catalase (CAT) significantly decreased (P<0.001) in postmenopausal women showing oxidative stress in the cells. Concentrations of vitamin-C pointed out a significant decrease (P<0.05) in postmenopausal women when compared with premenopausal women. In conclusion. PMID:26770597

  10. Status of photovoltaic concentrator modules and systems

    SciTech Connect

    Maish, A.B.

    1994-04-01

    Several leading line- and point-focus photovoltaic concentrator system development programs are reviewed, including those by ENTECH, SEA Corporation, AMONIX, and Alpha Solarco. Concentrating collectors and trackers are gaining maturity and reaching product status as designs are made more manufacturable and reliable. Utilities are starting to take notice of this emerging technology, and several privately-funded utility installations are underway. Several advantages are offered by concentrators, including low system and capital cost and rapid production ramp-up. These are discussed along with issues generally raised concerning concentrator technology.

  11. Near-term Brayton module status

    SciTech Connect

    Davis, S.B.

    1984-03-01

    The integration of subsystem components and the testing of a Parabolic Dish Module (PDM) to convert solar energy to grid compatible electric power is examined. System components are selected on a basis of current and projected performance efficiencies, technology readiness, future production probabilities and prices, current cost and availability. Potential for a near-term, 8 kW derivative of the PDM is adjudged to be superior to that of a 20 kW system. The PDM is suited to both grid connected and standalone applications, and it may be fired by solar, fossil, or solar/fossil hydrid means.

  12. Near-term Brayton Module Status

    NASA Technical Reports Server (NTRS)

    Davis, S. B.

    1984-01-01

    The integration of subsystem components and the testing of a Parabolic Dish Module (PDM) to convert solar energy to grid compatible electric power is examined. System components are selected on a basis of current and projected performance efficiencies, technology readiness, future production probabilities and prices, current cost and availability. Potential for a near-term, 8 kW derivative of the PDM is adjudged to be superior to that of a 20 kW system. The PDM is suited to both grid connected and standalone applications, and it may be fired by solar, fossil, or solar/fossil hydrid means.

  13. Serum total antioxidant capacity status of HTLV-1 infected patients.

    PubMed

    Shomali, S; Avval, F Zahedi; Boostani, R; Jarahi, L; Youssefi, M

    2015-06-01

    Many aspects of the pathogenesis of Human T-cell lymphotropic virus type 1 (HTLV-1) still need further elucidations. Previous studies have indicated that oxidative stress occurs during infection with the other retrovirus, human immunodeficiency virus 1 (HIV-1). Similar results have been observed in some other chronic viral infections including hepatitis B (HBV) and hepatitis C (HCV). In order to reveal possible oxidative stress in HTLV-1-infected patients, we evaluated serum total antioxidant capacity (TAC) as an indicator of oxidative stress in these patients. Forty-four HTLV-1-seropositive individuals were included in this study, consisting of 12 symptomatic and 32 asymptomatic (carrier) cases. Controls consisted of 36 apparently healthy, HTLV-1-, HIV- and hepatitis-seronegative individuals. All symptomatic patients had HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Serum TAC levels in patients and healthy individuals were measured using a quantitative TAC assay. The antioxidant capacity in HTLV-1-seropositive cases was significantly reduced compared to control group (P = 0.001). In addition, TAC was lower in patients with more than 5 years history of HAM/TSP compared to those with ≤5 years duration of the myelopathy (P = 0.03). Our results show a depletion of TAC during HTLV-1 infection, which intensifies along with the disease progress. This finding indicates a role of the oxidative stress in pathogenesis of HTLV-1. These results may prompt further research to evaluate any possible therapeutic effect of antioxidant dietary supplements for HTLV-1 infected individuals. PMID:26104339

  14. Zizyphus lotus L. (Desf.) modulates antioxidant activity and human T-cell proliferation

    PubMed Central

    2010-01-01

    Background Zizyphus lotus L. (Desf.) also known as Jujube, is a deciduous shrub which belongs to Rhamnaceae family. This plant is used in Algerian traditional medicine for its anti-diabetic, sedative, analgesic, anti-inflammatory and hypoglycaemic activities. In the present study, we determined the concentrations of different vitamins (vitamin A, C and E) and fatty acids in root, stem, leaves, fruit pulp and seed of Zizyphus lotus L. (Desf.) and assessed the effects of their aqueous extracts on antioxidant status and human T-cell proliferation. Methods Aqueous filtrates from different parts, i.e, root, leaf, stem, fruit pulp and seed, of Zizyphus lotus L. (Desf.) were prepared. Vitamin C levels were determined by precipitating with 10% trichloroacetic acid and vitamin A and E were assessed by HPLC. Lipid composition of these extracts was determined by gas-liquid chromatography. Anti-oxidant capacity was evaluated by using anti-radical resistance kit [Kit Radicaux Libres (KRL@; Kirial International SA, Couternon, France)]. T-cell blastogenesis was assessed by the incorporation of 3H-thymidine. IL-2 gene expression was evaluated by RT-qPCR. Results Our results show that fruit pulp contained higher vitamin A and C contents than other parts of the plant. Furthermore, the fruit pulp was the richest source of linoleic acid (18:2n-6), a precursor of n-6 fatty acids. Fruit seeds possessed higher vitamin C levels than leaves, roots and stem. The leaves were the richest source of vitamin E and linolenic acid (18:3n-3), a precursor of n-3 fatty acids. The antioxidant capacity of the different extracts, measured by KRL@ test, was as follows: pulp < seed

  15. Evaluation of total antioxidant status, total oxidant status and oxidative stress index in patients with alopecia areata

    PubMed Central

    Motor, Sedat; Ozturk, Sahin; Ozcan, Oguzhan; Gurpinar, Ahmet Burak; Can, Yesim; Yuksel, Rana; Yenin, Julide Zehra; Seraslan, Gamze; Ozturk, O Hasan

    2014-01-01

    Objectives: In this study, we aimed to evaluate total oxidative stress and total antioxidant capacity in serum samples from patients with Alopesia Areata (AA) in our laboratory conditions. Methods: In this study, 46 subjects with AA (26 females, 20 males) and the control subjects of 36 (20 females, 16 males) age- and sex-matched healthy volunteers from our hospital staffs were enrolled (the mean age was 23.7 ± 11.0 years). Blood samples were obtained following an overnight fasting state, and were collected on ice at 4°C. The serum samples were separated from the cells by centrifugation at 3000 rpm for 15 min and were stored at -80°C and used for the analysis of the Total Antioxidant Status (TAS) and Total Oxidant Status (TOS). Results: Total Antioxidant Status (TAS) and Total Oxidant Status (TOS), Oxidative Stress Index (OSI) (TOS/TAS) levels of AA patients were 1.4777 ± 0.1986; 9.7490 ± 6.0445; 0.6593 ± 0.4069 respectively. TAS; TOS; OSİ (TOS/TAS) levels of controls were 1.4028 ± 0.1687; 9.4627 ± 4.2781; 0.6875 ± 0.3232 respectively. TAS, TOS and OSİ levels showed no significant difference between the control and AA group (p > 0.05). Conclusion: Future studies about AA pathogenesis should be based not only on oxidant/antioxidant balance but also on several other factors. Because it was observed that the disease showed recurrence in different situations. Since the selection criteria of patients is affected from disease severity and environmental and genetical factors, multicentric studies with better sampled patient population and higher patient number is required. PMID:24955187

  16. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes.

    PubMed

    Huang, He; Taraboletti, Alexandra; Shriver, Leah P

    2015-08-01

    Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis. Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid chromatography-mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids, indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic alterations are also associated with protection from oxidant challenge. This study provides insight into the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple sclerosis. PMID:25967672

  17. Iron and exercise induced alterations in antioxidant status. Protection by dietary milk proteins.

    PubMed

    Zunquin, Gautier; Rouleau, Vincent; Bouhallab, Said; Bureau, Francois; Theunynck, Denis; Rousselot, Pierre; Arhan, Pierre; Bougle, Dominique

    2006-05-01

    Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model. Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload. PMID:17390518

  18. Effect of dietary antioxidant supplementation on the oxidative status of plasma in broilers.

    PubMed

    Vossen, E; Ntawubizi, M; Raes, K; Smet, K; Huyghebaert, G; Arnouts, S; De Smet, S

    2011-04-01

    In this study, the effect of dietary antioxidants on the plasma oxidative status of growing birds fed a diet rich in polyunsaturated fatty acids was investigated. One-day-old broilers were fed for 42 days a diet containing 4% linseed oil and supplemented with single plant extracts rich in antioxidants (natural tocopherols, rosemary, grape seed, green tea, tomato) or a combination of some of these plant extracts, in two different total doses (100 and 200 mg product/kg feed). A diet with synthetic antioxidants with and without α-tocopheryl acetate (200 mg/kg feed) were also included. The plasma oxidative status was evaluated measuring the ferric reducing ability of plasma (FRAP), the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. Lipid peroxidation was measured by thiobarbituric acid-reactive substances (TBARS). No significant effect of the dietary treatments was observed for FRAP as well as for TBARS. However, diet affected GSH-Px activity (p = 0.002) and a trend for an effect on SOD activity was observed (p=0.084). A higher GSH-Px activity was found for 200 mg/kg tomato extract and natural α-tocopherol in relation to the corresponding 100 mg/kg treatment, and the lowest GSH-Px activity was measured for the synthetic antioxidants treatment. The lowest and highest SOD activity were found for the 200. and 100 mg/kg treatment with tomato extract respectively. In conclusion, the oxidative status and lipid oxidation of plasma in broilers was not affected by feeding natural antioxidant extracts at the doses in the present study, but some changes in antioxidant enzyme activities were observed, of which the implication remains to be elucidated. PMID:20796081

  19. Relationship between antioxidant status and oxidative stability in lamb meat reinforced with dietary rosemary diterpenes.

    PubMed

    Ortuño, Jordi; Serrano, Rafael; Jordán, María José; Bañón, Sancho

    2016-01-01

    The relationship between the antioxidant status of fresh meat and oxidative stability of chilled-packed meat obtained from lambs fed on a diet supplemented with two different doses of a rosemary extract containing carnosic acid and carnosol was studied. The incorporation of rosemary extract in the lamb diet led to the deposition of functional levels of the diterpenic metabolite C19H22O3 in meat, which improved its stability against oxidation. The antioxidant status could be assessed through both the radical scavenging capacity (DPPH and TEAC) and the ferric reducing antioxidant power (FRAP). In general, antioxidant status values correlated better (P < 0.05) with the changes in CIELAB colour, malondialdehyde and sensory scoring than with the changes in hexanal and protein carboxylation measured in the lamb cuts kept under protective atmosphere for up to 14 days. The FRAP and DPPH assays were more suitable than the TEAC assay for predicting meat oxidation and any resulting discolouration and rancidity. PMID:26213076

  20. The Antioxidant Status and Concentrations of Coenzyme Q10 and Vitamin E in Metabolic Syndrome

    PubMed Central

    Yen, Chi-Hua; Yang, Nae-Cherng; Lee, Bor-Jen; Lin, Jui-Yuan; Hsia, Simon

    2013-01-01

    The purpose of this study was to investigate the levels of coenzyme Q10 and vitamin E and the antioxidant status in subjects with metabolic syndrome (MS). Subjects with MS (n = 72) were included according to the criteria for MS. The non-MS group (n = 105) was comprised of healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, vitamin E concentrations, lipid profiles, and antioxidant enzymes levels (catalase, superoxide dismutase, and glutathione peroxidase) were measured. The subjects with MS had significantly higher concentrations of plasma coenzyme Q10 and vitamin E than those in the non-MS group, but these differences were not significant after being normalized for triglyceride level. The levels of antioxidant enzymes were significantly lower in the MS group than in the non-MS group. The subjects with the higher antioxidant enzymes activities had significant reductions in the risk of MS (P < 0.01) after being adjusted for coenzyme Q10 and vitamin E. In conclusion, the subjects with MS might be under higher oxidative stress resulting in low levels of antioxidant enzyme activities. A higher level of antioxidant enzymes activities was significantly associated with a reduction in the risk of MS independent of the levels of coenzyme Q10 and vitamin E. PMID:24082857

  1. Altered antioxidant status in peripheral skeletal muscle of patients with COPD.

    PubMed

    Gosker, Harry R; Bast, Aalt; Haenen, Guido R M M; Fischer, Marc A J G; van der Vusse, Ger J; Wouters, Emiel F M; Schols, Annemie M W J

    2005-01-01

    Despite the growing field of interest in the role of pulmonary oxidative stress in chronic obstructive pulmonary disease (COPD), barely any data are available with respect to antioxidant capacity in the peripheral musculature of these patients. The main objective of this study was to assess in detail the antioxidant status in skeletal muscle of patients with COPD. Biopsies from the vastus lateralis of 21 patients with COPD and 12 healthy age-matched controls were analysed. Total antioxidant capacity, vitamin E, glutathione, and uric acid levels were determined and the enzyme activities of superoxide dismutase, glutathione reductase, glutathione peroxidase, and glutathione-S-transferase were measured. Malondialdehyde was measured as an index of lipid peroxidation. The total antioxidant capacity and the uric acid levels were markedly higher in COPD patients than in healthy controls (25%, P = 0.006 and 24%, P = 0.029, respectively). Glutathione-S-transferase activity was also increased (35%; P = 0.044) in patients compared to healthy subjects. Vitamin E level was lower in patients than in controls (P < 0.05). The malondialdehyde level was not different between the two groups. It can be concluded that the muscle total antioxidant capacity is increased in patients with COPD. Together with the reduced vitamin E levels, the increased glutathione-S-transferase activity and normal levels of lipid peroxidation products, these findings suggest that the antioxidant system may be exposed to and subsequently triggered by elevated levels of reactive oxygen species. PMID:15672860

  2. Brahma Rasayana enhances in vivo antioxidant status in cold-stressed chickens (Gallus gallus domesticus)

    PubMed Central

    Ramnath, V.; Rekha, P.S.

    2009-01-01

    Objective: To evaluate the antioxidant status of chicken during cold stress and to investigate if there are any beneficial effects of Brahma Rasayana supplementation in cold stressed chicken. Materials and Methods: Activities of enzymatic and levels of non-enzymatic antioxidants in blood / serum and liver tissue were evaluated in chicken exposed to cold (4 ± 10C and relative humidity of 40 ± 5%, for six consecutive hours daily, for 5 or 10 days). The antioxidant properties of Brahma Rasayana (BR) supplementation (2 g/kg daily, orally) during cold stress was also studied. Results: There was a significant (P < 0.05) decrease in antioxidant enzyme in the blood, such as, superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR), and serum reduced glutathione (GSH) in cold stressed chicken. Serum and liver lipid peroxidation levels were significantly (P < 0.05) higher in cold stressed untreated chickens when compared to the treated and unstressed groups. There was also a significant (P < 0.05) increase in the antioxidant enzymes in the blood, such as, catalase (CAT) and SOD, in the liver CAT and SOD, and in GPX and GR in BR-treated cold stressed chicken, when compared to the untreated controls. Conclusions: Results of the present study conclude that in chicken, BR supplementation during cold stress brings about enhanced actions of the enzymatic and non-enzymatic antioxidants, which nullify the undesired side effects of free radicals generated during cold stress. PMID:20442818

  3. Impaired Antioxidant Status and Reduced Energy Metabolism in Autistic Children

    ERIC Educational Resources Information Center

    Essa, M. M.; Braidy, N.; Waly, M. I.; Al-Farsi, Y. M.; Al-Sharbati, M.; Subash, S.; Amanat, A.; Al-Shaffaee, M. A.; Guillemin, G. J.

    2013-01-01

    Accumulating evidence suggests that oxidative stress induced mechanisms are believed to be associated with the pathophysiology of autism. In this study, we recruited 19 Omani autistic children with age-matched controls to analyze their plasma and serum redox status and the levels of ATP, NAD[superscript +] and NADH using well established…

  4. Social status modulates the neural response to unfairness.

    PubMed

    Hu, Jie; Blue, Philip R; Yu, Hongbo; Gong, Xiaoliang; Xiang, Yang; Jiang, Changjun; Zhou, Xiaolin

    2016-01-01

    In human society, which is organized by social hierarchies, resources are usually allocated unequally and based on social status. In this study, we analyze how being endowed with different social statuses in a math competition affects the perception of fairness during asset allocation in a subsequent Ultimatum Game (UG). Behavioral data showed that when participants were in high status, they were more likely to reject unfair UG offers than in low status. This effect of social status correlated with activity in the right anterior insula (rAI) and with the functional connectivity between the rAI and a region in the anterior middle cingulate cortex, indicating that these two brain regions are crucial for integrating contextual factors and social norms during fairness perception. Additionally, there was an interaction between social status and UG offer fairness in the amygdala and thalamus, implicating the role of these regions in the modulation of social status on fairness perception. These results demonstrate the effect of social status on fairness perception and the potential neural underpinnings for this effect. PMID:26141925

  5. Antioxidants

    MedlinePlus

    Antioxidants are man-made or natural substances that may prevent or delay some types of cell damage. Antioxidants are found in many foods, including fruits and ... are also available as dietary supplements. Examples of antioxidants include Beta-carotene Lutein Lycopene Selenium Vitamin A ...

  6. L-Theanine healed NSAID-induced gastric ulcer by modulating pro/antioxidant balance in gastric ulcer margin.

    PubMed

    Chatterjee, Sirshendu; Chatterjee, Ananya; Roy, Surmi; Bera, Biswajit; Bandyopadhyay, Sandip K

    2014-10-01

    L-Theanine is a unique non-protein-forming amino acid present in tea [Camellia sinensis (L.) O. Kuntze]. In the present work, we evaluated the healing effect of L-theanine on NSAID (indomethacin)-induced gastric ulcer. Histology of the stomach tissues revealed maximum ulceration on the third day after indomethacin administration (18 mg/kg, single dose p.o.) which was accompanied by increased lipid peroxidation; protein carbonylation; Th1 cytokine synthesis, and depletion of thiol, mucin, prostaglandin (PG) E, Th2 cytokine synthesis; and total antioxidant status in mice. L-Theanine healed gastric ulcer at a dose of 10 mg/kg b.w. but aggravated the ulcerated condition at a higher dose of 40 mg/kg b.w. At 10 mg/kg b.w., L-theanine significantly alleviated the adverse oxidative effect of indomethacin through enhanced synthesis of PGE2 by modulation of cyclo-oxygenase-1 and 2 [COX-1 and COX-2] expression, Th1/Th2 cytokine balance, and restoration of cellular antioxidant status at the gastric ulcer margin. The present study revealed for the first time the dose-dependent biphasic effect of a natural neuroprotective agent, L-theanine, on gastric ulcer disease. PMID:24981317

  7. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress.

    PubMed

    Fatnassi, Imen Challougui; Chiboub, Manel; Saadani, Omar; Jebara, Moez; Jebara, Salwa Harzalli

    2015-04-01

    Plant-growth-promoting bacteria (PGPR) may help reduce the toxicity of heavy metals in plants in polluted environments. In this work, the effects of dual inoculation with Rhizobium and PGPR strains on the growth of Vicia faba grown under copper stress were assessed during hydroponic culture. Growth parameters, copper (Cu) accumulation and antioxidant enzyme activities were studied. Copper concentrations above 1mM damaged plant growth, but co-inoculation reduced its harmful effect. Co-inoculation of plants treated with 1mM Cu and 2mM Cu increased the dry weights as compared with Cu-treated and uninoculated plants. However, it decreased copper uptake up to 80% in the roots of 1-mM-Cu-treated plants as compared to non-inoculated control. Copper tolerance in Vicia faba is linked to the activity of antioxidant systems that are modulated by metal concentrations: both superoxide dismutase (SOD) and catalase (CAT) were higher in the presence of Cu; a lower Cu dose of 0.5mM stimulated ascorbate peroxidase (APX) and/or peroxidase (POX) activities in shoots and roots; however in nodules CAT appeared to be the main peroxidase in H2O2 scavenging. The 1mM Cu treatment enhanced SOD, CAT and APX activities in roots and only SOD and POX were activated in shoots. All enzyme activities were inhibited by inoculation of 2mM Cu. The effect of inoculation with copper-accumulating PGPRs and the status of the antioxidant enzyme system were linked to changes in the copper tolerance status of Vicia faba. Our results suggested that Vicia faba inoculation with Rhizobium and PGPR Enterobacter clocae and Pseudomonas sp. could help to alleviate copper stress under hydroponic conditions. This result should be tested under field conditions for soil fertilization and phytostabilisation purposes. PMID:25747267

  8. Antioxidant status and hormonal profile reflected by experimental feeding of probiotics.

    PubMed

    Ghoneim, Magdy A; Moselhy, Said S

    2016-04-01

    Excessive production of free radicals can result in tissue damage, which mainly involves generation of hydroxyl radical and other oxidants. Such free radical-induced cell damage appears to play a major role in the pathogenesis of many diseases. Probiotics have been used therapeutically to modulate immunity, improve digestive processes, lower cholesterol, treat rheumatoid arthritis, and prevent cancer. The proposed research was designed to evaluate the changes in oxidative and antioxidative profile in addition to metabolic-related hormones of living animal model, which may generally affect the health status. Two groups of rabbits (10 animals each) were allocated in hygienic cages of controlled animal house. Control group received standard diet, and the other group received the same diet containing one probiotic for 30 days. Lactate dehydrogenase (LDH) activity in leukocytes, blood glucose, reduced glutathione (GSH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were estimated in different tissues. Malondialdehyde (MDA) and total proteins were also determined in different tissues. Certain hormones related to metabolism and growth were also evaluated. Leukocytic LDH activity was significantly increased along with nonsignificant increase of blood glucose in probiotics-fed animals. Results showed significant decreases in the levels of triiodothyronine and thyroid-stimulating hormone but showed significant elevations in thyroxine, insulin, growth hormone, and testosterone levels in animals fed with probiotics. Total proteins content was highly significantly elevated in liver, kidneys, and muscles of probiotic-administered animals. Microsomal GSH level was significantly decreased only in skeletal muscles of probiotic-treated animals. MDA was significantly lowered in animal tissues fed with probiotics. GSH-Px activity was elevated in hepatic and muscular microsomes of probiotic-supplemented animals while it was nonsignificantly increased in renal

  9. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?

    PubMed

    Gomez-Cabrera, Mari Carmen; Salvador-Pascual, Andrea; Cabo, Helena; Ferrando, Beatriz; Viña, Jose

    2015-09-01

    Physical exercise increases the cellular production of reactive oxygen species (ROS) in muscle, liver, and other organs. This is unlikely due to increased mitochondrial production but rather to extramitochondrial sources such as NADPH oxidase or xanthine oxidase. We have reported a xanthine oxidase-mediated increase in ROS production in many experimental models from isolated cells to humans. Originally, ROS were considered as detrimental and thus as a likely cause of cell damage associated with exhaustion. In the past decade, evidence showing that ROS act as signals has been gathered and thus the idea that antioxidant supplementation in exercise is always recommendable has proved incorrect. In fact, we proposed that exercise itself can be considered as an antioxidant because training increases the expression of classical antioxidant enzymes such as superoxide dismutase and glutathione peroxidase and, in general, lowering the endogenous antioxidant enzymes by administration of antioxidant supplements may not be a good strategy when training. Antioxidant enzymes are not the only ones to be activated by training. Mitochondriogenesis is an important process activated in exercise. Many redox-sensitive enzymes are involved in this process. Important signaling molecules like MAP kinases, NF-κB, PGC-1α, p53, heat shock factor, and others modulate muscle adaptation to exercise. Interventions aimed at modifying the production of ROS in exercise must be performed with care as they may be detrimental in that they may lower useful adaptations to exercise. PMID:25889822

  10. Selenium and Antioxidant Status in Dairy Cows at Different Stages of Lactation.

    PubMed

    Gong, Jian; Xiao, Min

    2016-05-01

    Thirty-five multiparous Holstein cows averaging 550 ± 50 kg of body weight and in 2 to 4 parity were divided into three groups according to lactation stage (group A: nine cows from 4 to 1 weeks prepartum; group B: 11 cows from 1 to 30 days postpartum; group C: 15 cows from 30 to 100 days postpartum). Selenium concentration, malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px) activity, thioredoxin reductase (TrxR) activity, and total antioxidant status (TAS) in serum were determined to evaluate selenium and antioxidant status in dairy cows at different stages of lactation. The results showed that mean serum selenium concentration, MDA level, and GSH-Px activity of cows in early lactation increased significantly (P < 0.05) when compared with cows in the dry period and peak lactation. Conversely, serum TrxR activity and TAS declined during this period (P < 0.05). The increase of serum MDA level during early lactation indicate that the reactive oxygen species, including lipid hydroperoxides, increase in this period, thus placing the cows at a greater risk of oxidative stress. The significant decrease in TrxR activity that is accompanied with a decrease in TAS during early lactation suggests that dairy cows have low antioxidant defense in this period and TrxR may be an important antioxidant defense mechanism in transition dairy cows. PMID:26384688

  11. Antioxidant Status before and after Dietary Intervention in Cardiovascular Disease (CVD) Patients.

    PubMed

    Karajibani, M; Hashemi, M; Montazerifar, F; Dikshit, M

    2010-12-01

    There is some evidence showing an inverse correlation between dietary sources including natural antioxidant vitamins and the risk of cardiovascular disease (CVD). The aim of this study was to evaluate the effect of dietary antioxidants on oxidative stress in CVD patients. This study was carried out on 31 CVD patients and 63 healthy individuals. Nutritional status and dietary antioxidant vitamins were assessed by 48-hour recall. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities as well as the levels of vitamins A, E, C, total antioxidant capacity (TAC) and malondialdehyde (MDA) were determined before and after serving fresh fruits and vegetables for 3 months. Before intervention intake, levels of vitamins A, E and C were significantly lower in patients than in normal individuals (P<0.001). The serum levels of vitamins A, E and C were significantly lower in the cases than in the control subjects. After intervention, the serum levels of vitamins A, E and C were increased significantly (P<0.0001). Similarly, the levels of TAC as well as the activities of SOD and GPx were found to increase by end of 3 months. In addition, a significant increase of TAC and a decrease in MDA levels were observed. In conclusion, the findings show that dietary supplementation improves the antioxidant defense system in CVD patients. PMID:22691986

  12. Isoflurane and Propofol Contribute to Increasing the Antioxidant Status of Patients During Minor Elective Surgery

    PubMed Central

    Braz, Mariana G.; Braz, Leandro G.; Freire, Cristiana M.M.; Lucio, Lorena M.C.; Braz, José R.C.; Tang, Guangwen; Salvadori, Daisy M.F.; Yeum, Kyung-Jin

    2015-01-01

    Abstract Isoflurane is a volatile halogenated anesthetic used especially for anesthesia maintenance whereas propofol is a venous anesthetic utilized for anesthesia induction and maintenance, and reportedly an antioxidant. However, there are still controversies related to isoflurane-induced oxidative stress and it remains unanswered whether the antioxidant effects occur in patients under propofol anesthesia. Taking into account the importance of better understanding the role of anesthetics on oxidative stress in anesthetized patients, the present study was designed to evaluate general anesthesia maintained with isoflurane or propofol on antioxidant status in patients who underwent minimally invasive surgeries. We conducted a prospective randomized trial in 30 adult patients without comorbidities who underwent elective minor surgery (septoplasty) lasting at least 2 h admitted to a Brazilian tertiary hospital. The patients were randomly allocated into 2 groups, according to anesthesia maintenance (isoflurane, n = 15 or propofol, n = 15). Peripheral blood samples were drawn before anesthesia (baseline) and 2-h after anesthesia induction. The primary outcomes were to investigate the effect of either isoflurane or propofol anesthesia on aqueous plasma oxidizability and total antioxidant performance (TAP) by fluorometry as well as several individual antioxidants by high-performance liquid chromatography. As secondary outcome, oxidized genetic damage (7,8-dihydro-8-oxoguanine, known as 8-oxo-Gua) was investigated by the comet assay. Both anesthesia techniques (isoflurane or propofol) for a 2-h period resulted in a significant decrease of plasma α-tocopherol, but not other antioxidants including uric acid, carotenoids, and retinol (P > 0.05). Propofol, in contrast to isoflurane anesthesia, significantly increased (P < 0.001) anti-inflammatory/antioxidant plasma γ-tocopherol concentration in patients. Both anesthesia types significantly enhanced

  13. Do changes in transcardiac impedance modulation correlate with haemodynamic status?

    PubMed

    Weiss, S M; Einstein, R; Matthews, R J; Leer, T W; Cincunegui, J L; McCulloch, R

    1992-06-01

    Implantable cardiac pacemakers and defibrillators have the ability to revert a variety of arrhythmias to normal sinus rhythm. For correct operation, such devices require accurate arrhythmia classification. Arrhythmia classification by these devices could be improved with the addition of a suitable haemodynamic sensor. This study investigated the use of transcardiac impedance for haemodynamic sensing. Ventricular fibrillation, ventricular tachycardia, electro-mechanical dissociation and five rates of ventricular pacing, each having a different associated level of haemodynamic compromise, were induced in each of seven mongrel dogs. The amplitude responses of the modulations of transcardiac impedance were compared with those of arterial pulse pressure (an established measure of haemodynamic status), and changes in cycle length. The correlation coefficient for changes in transcardiac impedance modulation amplitude and arterial pulse pressure was found to be 0.89. For transcardiac impedance modulation amplitude and cycle length, the correlation coefficient was 0.77, and for arterial pulse pressure and cycle length, the correlation coefficient was 0.85. In the acute anaesthetised dog, changes in the amplitude of transcardiac impedance modulations were shown to reflect different levels of haemodynamic status. PMID:1642572

  14. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for the Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during phase I operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units to achieve modularization. The design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  15. Space Station Freedom photovoltaic power module design status

    NASA Technical Reports Server (NTRS)

    Jimenez, Amador P.; Hoberecht, Mark A.

    1989-01-01

    Electric power generation for Space Station Freedom will be provided by four photovoltaic (PV) power modules using silicon solar cells during Phase 1 operation. Each PV power module requires two solar arrays with 32,800 solar cells generating 18.75 kW of dc power for a total of 75 kW. A portion of this power will be stored in nickel-hydrogen batteries for use during eclipse, and the balance will be processed and converted to 20 kHz ac power for distribution to end users through the power management and distribution system. The design incorporates an optimized thermal control system, pointing and tracking provision with the application of gimbals, and the use of orbital replacement units (ORU's) to achieve modularization. Design status of the PV power module, as derived from major trade studies, is discussed at hardware levels ranging from component to system. Details of the design are presented where appropriate.

  16. Phenolic composition and antioxidant activity in sparkling wines: modulation by the ageing on lees.

    PubMed

    Stefenon, C A; Bonesi, C De M; Marzarotto, V; Barnabé, D; Spinelli, F R; Webber, V; Vanderlinde, R

    2014-02-15

    Sparkling wines (SW) have a special biological ageing on lees that is performed using two distinct methods: in the bottle (Champenoise) or in isobaric tanks (Charmat method). The objective of this study was to compare the levels of phenolic compounds, β-Glucosidase and antioxidant activity during the ageing on lees, in samples of SW produced at industrial scale by both methods. The β-Glucosidase activity has been constant over time, showing a close relationship with all the polyphenols studied (resveratrol, piceid, tyrosol, gallic, caffeic and ferulic acids), which were affected by the sur lie time. With these cross-reactions, the biological properties of the SW were also modulated. The results showed that the long period of ageing decreased the antioxidant potential in all samples. This work demonstrates that the sur lie is more important than the production method itself, due to its ability to modulate the necessary changes to achieve the specific objective. PMID:24128480

  17. Pro/antioxidant status in young healthy women using oral contraceptives.

    PubMed

    Kowalska, Katarzyna; Milnerowicz, Halina

    2016-04-01

    The aim of the study was to analyze the effects of oral contraceptives (OCs) on pro/antioxidant status in the blood of healthy women aged 20-25 years. Individuals were divided into OCs users and OCs nonusers. Markers of oxidative stress in the blood such as Cu, Cu/Zn ratio, malondialdehyde (MDA), glutathione oxidized (GSSG), and gamma-glutamyl transpeptidase (GGT) were determined. Antioxidants such as glutathione reduced (GSH), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), and superoxide dismutase (SOD) were estimated. Higher Cu concentrations, Cu/Zn ratio and GGT activity in women taking OCs were noted. A significant increase in MDA concentrations in oral OCs users was observed. Heightened activity of CAT in plasma was observed in OCs users, whereas SOD activity remained unchanged in plasma and erythrocyte lysate. A decline of GSH and GSSG in whole blood and glutathiono-dependent enzymes (GPx in plasma, GR in plasma and GST in lysate) was shown. Use of OCs leads to a pro/antioxidant imbalance. The results in the present study confirmed that GGT is an early marker of oxidative stress. Catalase is the main antioxidant, involved in the removal of free radicals in OCs users. PMID:26921793

  18. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants.

    PubMed

    Boo, Hee-Ock; Heo, Buk-Gu; Gorinstein, Shela; Chon, Sang-Uk

    2011-10-01

    The contents of two bioactive compounds (polyphenols and flavonoids) and their antioxidant and enzyme activities were determined in the leaves of six lettuce (Latuca sativa L.) cultivars subjected to 4 different day/night temperatures for 6 weeks. The total polyphenol and anthocyanin contents and the corresponding antioxidant activities were the highest at 13/10°C and 20/13°C, followed by 25/20°C and 30/25°C. The enzymatic activities of polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) were also the highest at low day/night temperatures, but the peroxidase (POD) activity was decreased at low day/night temperatures and increased at high day/night temperatures. The most significant positive correlation existed between anthocyanin content and PPO activity, total polyphenols and their antioxidant activities. The results showed that at relatively low temperatures, lettuce plants have a high antioxidant and enzymatic status. These results provide additional information for the lettuce growers. PMID:21889055

  19. Total oxidant status, total antioxidant capacity and ischemia modified albumin levels in children with celiac disease.

    PubMed

    Sayar, Ersin; Özdem, Sebahat; Uzun, Gülbahar; İşlek, Ali; Yılmaz, Aygen; Artan, Reha

    2015-01-01

    In our study, we aimed to investigate ischemia modified albumin (IMA) as an oxidative stress marker, as well as other oxidant and antioxidant markers that have not been evaluated in children with celiac disease. A total of 37 pediatric patients who were diagnosed with celiac disease (CD) and 29 healthy children were enrolled in this prospective study. We evaluated the IMA, total oxidant status, total antioxidant capacity, sulfhydryl, and advanced oxidation protein products in all of the subjects. We also compared the levels at the time of the diagnosis, and following a gluten-free diet (GFD) in the children with CD. While the IMA and the other oxidant marker levels were significantly higher in the patient group compared to the control group, the antioxidant marker levels were found to be significantly lower in the patient group, compared to the control group. We also determined that the tissue transglutaminase IgA showed a highly positive correlation, and that the IMA showed a moderately positive correlation with the Marsh-Oberhuber histopathological stage. Additionally, the IMA and other oxidant marker levels were significantly lower, while the antioxidant marker levels were significantly higher after the GFD, compared to the pre-diet period. We detected that oxidative stress played a role in the pathogenesis of CD, and that this could be evaluated using oxidative stress markers, which would regress after the GFD. We also detected that IMA is a marker that shows a correlation with the histopathological stage, and may be used in the diagnosis. PMID:27411418

  20. Sperm characteristics, antioxidant status and hormonal profile in rats treated with artemisinin.

    PubMed

    Farombi, E O; Adedara, I A; Abolaji, A O; Anamelechi, J P; Sangodele, J O

    2014-10-01

    The indiscriminate use, abuse and patients' noncompliance to normal prescription of artemisinin and its derivatives are a common practice during the treatment for drug-resistant malaria parasites in most developing countries. This study investigated the influence of artemisinin on the testicular and epididymal sperm antioxidant systems as well as on the plasma levels of hormones from the pituitary and thyroid components of the brain-pituitary-testicular axis. Oral exposure of rats to 0, 7 and 35 mg kg(-1) artemisinin for 7 days showed that the testicular antioxidant status at both therapeutic dose (7 mg kg(-1) ) and overdose (35 mg kg(-1) ), and the sperm antioxidant status at therapeutic dose of artemisinin remained unaffected compared with control. However, increased hydrogen peroxide and lipid peroxidation levels were accompanied by a concomitant decrease in glutathione peroxidase and glutathione-S-transferase activities as well as glutathione level in spermatozoon of rats administered with overdose of artemisinin. While plasma levels of all the hormones investigated remained unaffected, severe epididymal degeneration with concomitant decrease in sperm quantity and quality was observed in rats treated with overdose of artemisinin compared with control. Overall, induction of oxidative stress in the epididymis, but not in the testes, could cause reproductive deficits in individuals unduly undergoing artemisinin therapy. PMID:24079412

  1. Dawn of antioxidants and immune modulators to stop HIV-progression and boost the immune system in HIV/AIDS patients: An updated comprehensive and critical review.

    PubMed

    Singh, Gurinder; Pai, Roopa S

    2015-06-01

    In the last two decades, human immunodeficiency virus (HIV), the retrovirus responsible for the acquired immunodeficiency syndrome (AIDS), is one of the leading causes of morbidity and mortality, worldwide. Providing the optimum management of HIV/AIDS is a major challenge in the 21st century. Since, HIV-infected persons have an extended lifespan due to the development of effective antiretroviral therapies, malnutrition is becoming central factors of long-term survivors. The nutrition status of AIDS patients has a significant influence on the maintenance and optimal effectiveness of the immune system. Micronutrient therapy in combination with allopathic treatments can extend and improve the quality and quantity of life in individuals infected with HIV/AIDS. HIV infection is thought to lead to augmented oxidative stress which may in turn lead to faster development of HIV disease. Hence, antioxidants might have a significant role in the treatment of HIV/AIDS. An additional approach to treating HIV infection is fortifying the immune response of infected people. Immune modulators help to activate and boost the normal immune function. The present review first describes the boon of antioxidants (especially Vitamin A) and immune modulators (cytolin, resveratrol, murabutide, setarud, tucaresol, AVR118, Immunitin (HE2000), reticulose, and interleukin-7) in the treatment of HIV/AIDS. Then, providing a comparatively succinct outline on updated patents study on antioxidants and immune modulators to treat HIV/AIDS will be discussed. PMID:25933975

  2. Antioxidant status in a group of institutionalised elderly people with chronic obstructive pulmonary disease.

    PubMed

    Rodríguez-Rodríguez, Elena; Ortega, Rosa M; Andrés, Pedro; Aparicio, Aránzazu; González-Rodríguez, Liliana G; López-Sobaler, Ana M; Navia, Beatriz; Perea, José M; Rodríguez-Rodríguez, Paula

    2016-05-28

    Chronic obstructive pulmonary disease (COPD) is one of the most important and prevalent diseases suffered by the elderly. Evidence exists that its onset and severity might be conditioned by antioxidant status. The aim of the present study was to investigate the relationship between antioxidant status and COPD in institutionalised elderly people. In all, 183 elderly people aged >65 years (twenty-one had COPD and 160 healthy controls) were studied. The subjects' diets were investigated via the use of precise individual weighing for 7 d. Body weight, height, and biceps and triceps skinfold thickness were measured, and body fat (kg) and BMI (kg/m2) were calculated. Serum retinol, α-tocopherol, β-carotene and vitamin C levels were determined. Subjects with COPD ate less fruits than healthy controls (117 (sd 52) v. 192 (sd 161) g/d), their coverage of the recommended intake of vitamin C was smaller (150 (sd 45) v. 191 (sd 88) %; note that both exceeded 100 %) and their diets had a lower antioxidant capacity (6558 (sd 2381) v. 9328 (sd 5367) mmol trolox equivalent/d). Those with COPD had lower serum vitamin C and α-tocopherol concentrations than healthy controls (32·4 (sd 15·3) v. 41·5 (sd 14·8) µmol/l and 12·1 (sd 3·2) v. 13·9 (sd 2·8) µmol/l, respectively). In addition, subjects with α-tocopherol <14·1µmol/l (50th percentile) were at 6·43 times greater risk of having COPD than those subjects with ≥14·1µmol/l (OR 6·43; 95 % CI 1·17, 35·24; P<0·05), taking sex, age, use of tobacco, body fat and vitamin E intake as covariables. Subjects with COPD had diets of poorer antioxidant quality, especially with respect to vitamins C and E, compared with healthy controls. PMID:27002926

  3. In vitro antioxidant activity and effect of Parkia biglobosa bark extract on mitochondrial redox status.

    PubMed

    Komolafe, Kayode; Olaleye, Tolulope Mary; Omotuyi, Olaposi Idowu; Boligon, Aline Augusti; Athayde, Margareth Linde; Akindahunsi, Akintunde Afolabi; Teixeira da Rocha, Joao Batista

    2014-08-01

    Aqueous-methanolic extract of Parkia biglobosa bark (PBB) was screened for its polyphenolic constituents, in vitro antioxidant activity, and effect on mitochondria redox status. The in vitro antioxidant activity was assessed by using the scavenging abilities and the reducing powers of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium salt radical cation against Fe(3+). Subsequently, the ability of PBB to inhibit lipid peroxidation induced by FeSO(4) (10 μm) and its metal-chelating potential were investigated. The effects of the extract on basal reactive oxygen species (ROS) generation and on the mitochondrial membrane potential (ΔΨm) in isolated mitochondria were determined by using 2', 7'-dichlorodihydrofluorescin (DCFH) oxidation and safranin fluorescence, respectively. PBB mitigated the Fe(II)-induced lipid peroxidation in rat tissues and showed dose-dependent scavenging of DPPH (IC(50): 98.33 ± 10.0 μg/mL) and ABTS. (trolox equivalent antioxidant concentration, TEAC value = 0.05), with considerable ferric-reducing and moderate metal-chelating abilities. PBB caused slight decreases in both the liver and the brain mitochondria potentials and resulted in a significant decrease (p < 0.001) in DCFH oxidation. Screening for polyphenolics using high-performance liquid chromatography coupled to a diode array detector (HPLC-DAD) revealed the presence of caffeic acid, gallic acid, catechin, epigalocatechin, rutin, and quercetin. These results demonstrate for the first time the considerable in vitro antioxidant activity and favorable effect of PBB on mitochondria redox status and provide justification for the use of the plant in ethnomedicine. PMID:25151454

  4. Mutant p53 protein expression and antioxidant status deficiency in breast cancer

    PubMed Central

    Milicevic, Zorka; Kasapovic, Jelena; Gavrilovic, Ljubica; Milovanovic, Zorka; Bajic, Vladan; Spremo-Potparevic, Biljana

    2014-01-01

    It is well recognized that cancers develop and grow as a result of disordered function of tumor suppressor genes and oncogenes, which may be exploited for screening purposes. Extensive evidence indicated tumor suppressor protein p53 as candidate marker for mutation identification. We have investigated mutant p53 protein expression in human breast tumors in relation to antioxidant status deficiency. The study included 100 breast cancer patients. p53 protein expression was evaluated by Western blot assay and immunostaining using a CM-1, DO-7 and Pab240 antibodies. Antioxidant parameters and lipid peroxidation were estimated by biochemical analyses. Western blotting with epitopespecific monoclonal antibody Pab240 strongly suggests that nuclear extracts from breast cancer cells express mutant forms of p53. It is of interest that the mutant forms of p53 overexpression in conjunction with the appearance of nuclear bodies are observed in highly aggressive carcinomas. Expression of isoform Δp53 (45 kDa) and isoform of ~ 29 kDa were more common in cases with LN metastasis. These studies point out the molecular consequences of oxidative stress (lipid peroxides, LP, p<0.001) and antioxidant status deficiency (copper, zinc superoxid dismutase, SOD, p<0.001; catalase, CAT, p<0.01; glutathione reductase, GR, p<0.001; glutathione, GSH, p<0.05) and indicate the importance of p53 mutation as the commonest genetic alteration detected in breast cancer cells. The expression of mutant p53 is correlated to increased lipid peroxides (0.346, p<0.05 ) and lowered antioxidant activity of CAT (- 0.437, p<0.01) in the breast cancer patients. PMID:26417293

  5. Antioxidant status of turkey breast meat and blood after feeding a diet enriched with histidine.

    PubMed

    Kopec, W; Wiliczkiewicz, A; Jamroz, D; Biazik, E; Pudlo, A; Hikawczuk, T; Skiba, T; Korzeniowska, M

    2016-01-01

    The objective of this study was to investigate the effects of 1) spray dried blood cells rich in histidine and 2) pure histidine added to feed on the antioxidant status and concentration of carnosine related components in the blood and breast meat of female turkeys. The experiment was performed on 168 Big7 turkey females randomly assigned to 3 dietary treatments: control; control with the addition of 0.18% L-histidine (His); and control with the addition of spray dried blood cells (SDBC). Birds were raised for 103 d on a floor with sawdust litter, with drinking water and feed ad libitum. The antioxidant status of blood plasma and breast muscle was analyzed by ferric reducing ability (FRAP) and by 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging ability. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was analyzed in the blood and breast meat, with the content of carnosine and anserine quantified by HPLC. Proximate analysis as well as amino acid profiling were carried out for the feed and breast muscles. Growth performance parameters also were calculated. Histidine supplementation of the turkey diet resulted in increased DPPH radical scavenging capacity in the breast muscles and blood, but did not result in higher histidine dipeptide concentrations. The enzymatic antioxidant system of turkey blood was affected by the diet with SDBC. In the plasma, the SDBC addition increased both SOD and GPx activity, and decreased GPx activity in the erythrocytes. Feeding turkeys with an SDBC containing diet increased BW and the content of isoleucine and valine in breast muscles. PMID:26574038

  6. Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status.

    PubMed

    Zhang, Jianjun; Munger, Ronald G; West, Nancy A; Cutler, D Richard; Wengreen, Heidi J; Corcoran, Christopher D

    2006-01-01

    The role of antioxidant intake in osteoporotic hip fracture risk is uncertain and may be modified by smoking. In the Utah Study of Nutrition and Bone Health, a statewide, population-based case-control study, the authors investigated whether antioxidant intake was associated with risk of osteoporotic hip fracture and whether this association was modified by smoking status. The analyses included data on 1,215 male and female cases aged > or = 50 years who incurred a hip fracture during 1997-2001 and 1,349 age- and sex-matched controls. Diet was assessed by food frequency questionnaire. Among ever smokers, participants in the highest quintile of vitamin E intake (vs. the lowest) had a lower risk of hip fracture after adjustment for confounders (odds ratio = 0.29, 95% confidence interval (CI): 0.16, 0.52; p-trend < 0.0001). The corresponding odds ratio for beta-carotene intake was 0.39 (95% CI: 0.23, 0.68; p-trend = 0.0004), and for selenium intake it was 0.27 (95% CI: 0.12, 0.58; p-trend = 0.0003). Vitamin C intake did not have a significant graded association with hip fracture risk among ever smokers. Similar findings were obtained when an overall antioxidant intake score was used (odds ratio = 0.19, 95% CI: 0.10, 0.37; p-trend < 0.0001). No similar associations were found in never smokers. Antioxidant intake was associated with reduced risk of osteoporotic hip fracture in these elderly subjects, and the effect was strongly modified by smoking status. PMID:16306312

  7. Antioxidant status and oxidative stress in professional rugby players: evolution throughout a season.

    PubMed

    Finaud, J; Scislowski, V; Lac, G; Durand, D; Vidalin, H; Robert, A; Filaire, E

    2006-02-01

    Physical training is known to increase the antioxidant defence system and reduce exercise-induced oxidative stress. However, intense physical aerobic and anaerobic training and competition such as those imposed on professional rugby players, can induce an increase of oxidative stress which can be implicated with the arrival of overtraining. The aim of this study was to test the effect of training and competition load on oxidative stress, antioxidant status, haematological, and cell damage markers in high-level rugby players during a competitive season. Blood samples were collected four times in one year. Oxidative stress (Rmax), antioxidant (vitamin E, uric acid, TAC, and lag phase), haematological (neutrophils and monocytes) and biochemical (CK and myoglobin) parameters, as well as training and competition load, and competition results were measured. Intense periods of training and competition (T1 and T4) induced a significant higher maximum rate of conjugated dienes oxidation (+67.2% in T1 and +40.6% in T4) compared to those observed at the reference time (T3). Those periods also induced an increase in uric acid (+6.9% and 3.2%), and inflammatory markers such as monocytes (+13.3% and 10.7%). On the other hand, vitamin E (-8.7% in T1) and lag phase (-23.0% and -14.7%) were lower during these periods showing a possible training-induced antioxidant down-regulation. The less intense period of training (T2) was accompanied by lower neutrophils (-8.5%), CK (-53.7%), and myoglobin (-16.2%) values. The results suggest that oxidative stress and antioxidant measurement are significant in the biological follow-up of athletes. PMID:16475052

  8. Association between biomarker-quantified antioxidant status during pregnancy and infancy and allergic disease during early childhood: a systematic review.

    PubMed

    Patelarou, Evridiki; Giourgouli, Gianna; Lykeridou, Aikaterini; Vrioni, Evagelia; Fotos, Nikolaos; Siamaga, Eleni; Vivilaki, Victoria; Brokalaki, Hero

    2011-11-01

    Recent findings suggest a significant association between the antioxidant status of pregnant women and of their children during the first years of life and the development of allergic disease during childhood. The aim of this review was to identify all studies that estimated the effect of intake of antioxidants in pregnant women and their children on the development of allergic disease during early childhood. A systematic review was conducted of epidemiological studies featuring original peer-reviewed data on the association between dietary antioxidant status and allergic disease during childhood. A systematic search was performed following the Meta-analysis of Observational Studies in Epidemiology Guidelines. A comprehensive search of the literature yielded 225 studies, 18 of which were selected for the extraction of results and were related to antioxidant status and allergic disease. The systematic review included five prospective cohort studies, four cross-sectional studies, and nine case-control studies. Eight studies reported an important association between antioxidant status and asthma onset during childhood. Similarly, wheezing and eczema were studied as an outcome in six and in five studies, respectively. Recent observational studies suggest that a higher intake of antioxidant vitamins, zinc, and selenium during pregnancy and childhood reduces the likelihood of childhood asthma, wheezing, and eczema. PMID:22029830

  9. Effects of White Rice, Brown Rice and Germinated Brown Rice on Antioxidant Status of Type 2 Diabetic Rats

    PubMed Central

    Imam, Mustapha Umar; Musa, Siti Nor Asma; Azmi, Nur Hanisah; Ismail, Maznah

    2012-01-01

    Oxidative stress is implicated in the pathogenesis of diabetic complications, and can be increased by diet like white rice (WR). Though brown rice (BR) and germinated brown rice (GBR) have high antioxidant potentials as a result of their bioactive compounds, reports of their effects on oxidative stress-related conditions such as type 2 diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve antioxidant status, they would be better for rice consuming populations instead of the commonly consumed WR that is known to promote oxidative stress. This will then provide further reasons why less consumption of WR should be encouraged. We studied the effects of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our results provide insight into the effects of different rice types on antioxidant status in type 2 diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may worsen antioxidant status that may lead to more damage by free radicals. From the data so far, the antioxidant effects of BR and GBR are worth studying further especially on a long term to determine their effects on development of oxidative stress-related problems, which WR consumption predisposes to. PMID:23202932

  10. Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus.

    PubMed

    Santin, Katiane; da Rocha, Ricardo Fagundes; Cechetti, Fernanda; Quincozes-Santos, André; de Souza, Daniela Fraga; Nardin, Patrícia; Rodrigues, Letícia; Leite, Marina Concli; Moreira, José Cláudio Fonseca; Salbego, Christianne Gazzana; Gonçalves, Carlos Alberto

    2011-11-01

    Physical activity has been related to antioxidant adaptations, which is associated with health benefits, including those to the nervous system. Additionally, available data suggest exercise and a caloric restriction regimen may reduce both the incidence and severity of neurological disorders. Therefore, our aim was to compare hippocampal redox status and glial parameters among sedentary, trained, caloric-restricted sedentary and caloric-restricted trained rats. Forty male adult rats were divided into 4 groups: ad libitum-fed sedentary (AS), ad libitum-fed exercise training (AE), calorie-restricted sedentary (RS) and calorie-restricted exercise training (RE). The caloric restriction (decrease of 30% in food intake) and exercise training (moderate in a treadmill) were carried out for 3 months. Thereafter hippocampus was surgically removed, and then redox and glial parameters were assessed. Increases in reduced glutathione (GSH) levels and total antioxidant reactivity (TAR) were observed in AE, RS and RE. The nitrite/nitrate levels decreased only in RE. We found a decrease in carbonyl content in AE, RS and RE, while no modifications were detected in thiobarbituric acid reactive substances (TBARS). Total reactive antioxidant potential (TRAP), superoxide dismutase (SOD) activity, S100B and glial fibrilary acid protein (GFAP) content did not change, but caloric restriction was able to increase glutamine synthetase (GS) activity in RS and glutamate uptake in RS and RE. Exercise training, caloric restriction and both combined can decrease oxidative damage in the hippocampus, possibly involving modulation of astroglial function, and could be used as a strategy for the prevention of neurodegenerative diseases. PMID:21974860

  11. The status of antioxidants, malondialdehyde and some trace elements in serum of patients with breast cancer

    PubMed Central

    Sadati Zarrini, Azadeh; Moslemi, Dariush; Parsian, Hadi; Vessal, Mahmood; Mosapour, Abbas; Shirkhani Kelagari, Ziba

    2016-01-01

    Background: There are studies that indicated dyshomeostasis of oxidant/antioxidant and trace elements in breast cancer patients, but the data regarding the status of these parameters in various stages of breast cancer are limited. The aim of this study was to highlight the status of these biochemical factors in various stages of breast cancer. Methods: Fifty-eight breast cancers patients participated in this study and underwent staging work up for the assessment of disease stage. Serum total antioxidant capacity and lipid peroxidation were determined spectrophotometically. Glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) levels were analyzed by ELISA method. The serum level of Cu, Mn and Zn was measured by atomic absorption spectrophotometer. Student t-test and one-way analysis of variance (ANOVA) were used to compare group means. Results: All the patients included in the study classified as mild (stages I+II) and advanced stages (stages III+IV). Patients in advanced stage had lower serum antioxidant capacity and higher lipid peroxidation levels, but the differences were not statistically differet (P=0.690 and 0.666, respectively). Patients in advanced stage had higher, but not statistically different serum levels of CAT, GPX and SOD levels (p>0.05). Patients in both groups had to some extent similar serum Cu, Mn and Zn levels. Conclusion: There was no evidence of remarkable discrepancy in the status of analyzed factors in various stages of breast cancer. It seems that the severity of oxidative stress in different stages of breast cancer is similar to some extent. PMID:26958330

  12. Oxidant and enzymatic antioxidant status (gene expression and activity) in the brain of chickens with cold-induced pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Hassanpour, Hossein; Khalaji-Pirbalouty, Valiallah; Nasiri, Leila; Mohebbi, Abdonnaser; Bahadoran, Shahab

    2015-11-01

    To evaluate oxidant and antioxidant status of the brain (hindbrain, midbrain, and forebrain) in chickens with cold-induced pulmonary hypertension, the measurements of lipid peroxidation, protein oxidation, antioxidant capacity, enzymatic activity, and gene expression (for catalase, glutathione peroxidase, and superoxide dismutases) were done. There were high lipid peroxidation/protein oxidation and low antioxidant capacity in the hindbrain of cold-induced pulmonary hypertensive chickens compared to control ( P < 0.05). In the hypertensive chickens, superoxide dismutase activity was decreased (forebrain, midbrain, and hindbrain), while catalase activity was increased (forebrain and midbrain) ( P < 0.05). Glutathione peroxidase activity did not change. Relative gene expression of catalase and superoxide dismutases (1 and 2) was downregulated, while glutathione peroxidase was upregulated in the brain of the cold-induced pulmonary hypertensive chickens. Probably, these situations in the oxidant and antioxidant status of the brain especially hindbrain may change its function at cardiovascular center and sympathetic nervous system to exacerbate pulmonary hypertension.

  13. Antioxidant status in oral subchronic toxicity of fipronil and fluoride co-exposure in buffalo calves.

    PubMed

    Gill, Kamalpreet Kaur; Dumka, Vinod Kumar

    2016-02-01

    The effects of fipronil and fluoride co-exposure were investigated on antioxidant status of buffalo calves. A total of 24 healthy male buffalo calves divided into 4 groups were treated for 98 consecutive days. Group I, receiving no treatment, served as the control. Animals of groups II and III were orally administered with fipronil at the dosage of 0.5 mg/kg/day and sodium fluoride (NaF) at the dosage of 6.67 mg/kg/day, respectively, for 98 days. Group IV was coadministered with fipronil and NaF at the same dosages as groups II and III. Administration of fipronil alone produced significant elevation in lipid peroxidation (LPO) and decrease in the levels of nonenzymatic antioxidant glutathione (GSH). However, it did not produce any significant effect on the activities of enzymatic antioxidants including glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD). NaF exposure led to enhanced oxidative stress as shown by significant increase in the LPO and SOD activities while GPx and CAT activities and GSH levels were significantly decreased. Co-exposure to fipronil and NaF showed additive effects on LPO, GPx activity, and GSH levels. PMID:24097355

  14. Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus.

    PubMed

    Sidhu, Gagan Preet Singh; Singh, Harminder Pal; Batish, Daizy R; Kohli, Ravinder Kumar

    2016-08-01

    A screenhouse experiment was conducted to assay the effect of Lead (Pb) on oxidative status, antioxidative response and metal accumulation in Coronopus didymus after 6 weeks. Results revealed a good Pb tolerance and accumulation potential of C. didymus towards the increasing Pb concentrations (500, 900, 1800, 2900 mg kg(-1)) in soil. The content of Pb in roots and shoots elevated with higher Pb levels and reached a maximum of 3684.3 mg kg(-1) and 862.8 mg kg(-1) Pb dry weight, respectively, at 2900 mg kg(-1) treatment. Pb exposure stimulated electrolyte leakage, H2O2 level, MDA content and the activities of antioxidant machinery (SOD, CAT, APX, GPX and GR). However, at the highest Pb concentration, the activities of SOD and CAT declined. The H2O2 level and MDA content in roots increased significantly up to ∼500% and 213%, respectively, over the control, at 2900 mg kg(-1) Pb treatment. Likewise, concurrent findings were noticed in shoots of C. didymus, with the increasing Pb concentration. The present work suggests that C. didymus exhibited a good accumulation potential for Pb and can tolerate Pb-induced oxidative stress by an effective antioxidant defense mechanism. PMID:27214085

  15. Antioxidant status in rat kidneys after coexposure to uranium and gentamicin.

    PubMed

    Poisson, C; Rouas, C; Manens, L; Dublineau, I; Gueguen, Y

    2014-02-01

    Uranium (U) accumulates and produces its toxic effects preferentially in the kidneys, especially in the proximal tubular structure. U disturbs the balance of pro-/antioxidants in the renal cortex after acute exposure. Other nephrotoxic agents, such as medications, also cause oxidative stress, but the effects of coexposure are not known. The aim of this study was to analyze the effect of chronic exposure to U and acute gentamicin treatment on the pro- and antioxidant status of the renal cortex of rats. Animals were chronically exposed (9 months) to a nonnephrotoxic level of U (40 mg/L) and then treated with daily injections of gentamicin at a range of doses (0, 5, 25, 100, and 150 mg/kg) during the last week of contamination. We studied changes in the gene expression, protein expression, and enzyme activity of key factors involved in the pro-/antioxidant balance in the renal cortex. At and above a dose of 100 mg/kg, gentamicin decreased the messenger RNA (mRNA) levels of catalase (CAT), copper/zinc superoxide dismutase (SOD) and increased the mRNA levels of heme oxygenase-1 in contaminated rats. This treatment decreased CAT activity, but did not significantly change the SOD protein level. Chronic exposure to U did not worsen these effects in our experimental conditions. In conclusion, gentamicin treatment disturbed the oxidative balance in our model's renal cortex, but the chronic exposure to U at this nonnephrotoxic level did not appear to reinforce these effects. PMID:23900305

  16. Effect of nicotine on melanogenesis and antioxidant status in HEMn-LP melanocytes

    SciTech Connect

    Delijewski, Marcin; Beberok, Artur; Otręba, Michał; Wrześniok, Dorota; Rok, Jakub; Buszman, Ewa

    2014-10-15

    Nicotine is a natural ingredient of tobacco plants and is responsible for the addictive properties of tobacco. Nowadays nicotine is also commonly used as a form of smoking cessation therapy. It is suggested that nicotine may be accumulated in human tissues containing melanin. This may in turn affect biochemical processes in human cells producing melanin. The aim of this study was to examine the effect of nicotine on melanogenesis and antioxidant status in cultured normal human melanocytes HEMn-LP. Nicotine induced concentration-dependent loss in melanocytes viability. The value of EC{sub 50} was determined to be 7.43 mM. Nicotine inhibited a melanization process in human light pigmented melanocytes and caused alterations of antioxidant defense system. Significant changes in cellular antioxidant enzymes: superoxide dismutase and catalase activities and in hydrogen peroxide content were stated. The obtained results may explain a potential influence of nicotine on biochemical processes in melanocytes in vivo during long term exposition to nicotine. - Graphical abstract: Nicotine inhibits melanogenesis and induces oxidative stress in HEMn-LP melanocytes. - Highlights: • Nicotine induces concentration-dependent loss in melanocytes viability. • Nicotine in non-cytotoxic concentrations inhibits melanogenesis. • Nicotine in higher concentrations induces oxidative stress.

  17. Evaluation of oxidant-antioxidant status in overweight and morbidly obese Saudi children

    PubMed Central

    Albuali, Waleed H

    2014-01-01

    AIM: To evaluate the antioxidant enzymes and oxidative products in overweight and obese Saudi children before the onset of metabolic complications. METHODS: The study was carried out on 231 Saudi children. They were classified into three groups: uncomplicated overweight, uncomplicated morbid obesity, and the matched age group as control. All subjects underwent anthropometric measurements and activities of superoxide dismutase, catalase, glutathione peroxidase (GSH-Px), glutathione reductase, the concentrations of reduced GSH, malondialdehyde (MDA) oxidized low-density lipoprotein (ox-LDL) and advanced oxidation protein products (AOPPs) were measured in the blood of these groups. RESULTS: Overweight and obese children had a significantly higher body mass index, while obese children only had a significantly higher waist-to-hip ratio compared to that of the control group. The enzyme activities under study were significantly elevated in the overweight group, although they were significantly reduced among obese children. The concentration of GSH was reduced in both the overweight and obese groups. The mean values of ox-LDL, MDA and AOPP were non-significantly increased in overweight children, while they were significantly elevated in obese children compared to that of normal weight children. A significant disturbance of oxidant-antioxidant status was observed in severely morbid children. CONCLUSION: The increase of oxidative stress in obese children is associated with the increase in AOPPs and MDA which reflects an imbalance between reactive oxygen species production and antioxidant defense. PMID:25254179

  18. Relation between antioxidant status and postpartum anestrous condition in Murrah buffalo

    PubMed Central

    Ghosh, Mayukh; Gupta, Meenakshi; Kumar, Rajesh; Kumar, Sunil; Balhara, A. K.; Singh, Inderjeet

    2015-01-01

    Aim: Objective of the present study was to investigate the relation between antioxidant status and postpartum anestrous (PPA) condition in Murrah buffalo. Materials and Methods: Jugular blood samples were collected from two different groups of Murrah buffaloes each group consisting of 20 animals. Group I was of PPA and Group II were of cyclic buffaloes. The animals selected were examined for confirmation for cyclic and acyclic condition (>120 days) after calving by routine transrectal ultrasonography. Heard record was also used for cross confirmation. Results: The analysis of antioxidants in plasma and hemolysates revealed that the levels of vitamin E, β-carotene and reduced glutathione in plasma and superoxide dismutase (SOD) in hemolysate were significantly higher in cyclic animals than PPA animals. The levels of vitamin C, SOD and glutathione peroxidase in plasma did not show any significant difference among the two groups studied. The low antioxidant level in affected animals may predispose them toward PPA condition. Conclusion: Stress imposed by pregnancy and lactation affected the reproductive performance in PPA animals which might be inherently more susceptible to these stressors than those who were normal cyclic as all the animals were maintained under similar feeding and management practices. PMID:27047011

  19. Antioxidant status of faeces of captive black rhinoceros (Diceros bicornis) in relation to dietary tannin supplementation.

    PubMed

    Clauss, M; Pellegrini, N; Castell, J C; Kienzle, E; Dierenfeld, E S; Hummel, J; Flach, E J; Streich, W J; Hatt, J-M

    2006-08-01

    In context with the frequent observations of excessive iron (Fe) storage in captive black rhinoceroses (Diceros bicornis), it has been suggested that both an excessive dietary Fe content and a lack of dietary Fe-chelating substances, such as tannins, is the underlying cause. Therefore, studies on the effects of tannin supplementation to captive diet are warranted. Six captive rhinoceroses were fed their normal zoo diet (N), and a similar diet supplemented with either tannic acid (T, hydrolysable tannin) or quebracho (Q, condensed tannins), and the total antioxidant capacity (TAC) was measured as mmol Trolox equivalents per kg fresh faeces. The TAC values on diets N (1.24 +/- 0.39 mmol/kg fresh faeces) and T (1.34 +/- 0.33 mmol/kg fresh faeces) were similar, but significantly higher on diet Q (2.32 +/- 0.61 mmol/kg fresh faeces). In contrast to expectations, faecal TAC increased with increasing faecal Fe, possibly as a result of the fact that the faecal Fe content was positively correlated to the proportion of concentrate feeds in the diet, which also contain antioxidants, such as vitamin E, in addition to Fe. Increased antioxidant status caused by the use of tannin substances could have a beneficial effect on animal health, but if tannins should be incorporated in designed diets, other tannin sources, such as grape pomace should be tested. PMID:16901277

  20. Effect of Potentilla fulgens on lipid peroxidation and antioxidant status in alloxan-induced diabetic mice

    PubMed Central

    Saio, Valrielyn; Syiem, Donkupar; Sharma, Ramesh

    2012-01-01

    Potentilla fulgens (Rosaceae) root traditionally used as a folk remedy by local health practitioners of Khasi Hills, Meghalaya was investigated for its effects on lipid peroxidation and antioxidant status in alloxan-induced diabetic mice. Significant increase in levels of thiobarbituric acid reactive substances (TBARS) and decrease in activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were observed under diabetic condition. Intraperitoneal administration of methanol extract of P. fulgens roots at a dose of 250 mg/kg body weight to male swiss albino diabetic mice for 14 days caused significant reduction in the elevated TBARS level, while increasing the activities of the antioxidant enzymes in diabetic mice. Maximum reduction in TBARS level was observed in liver tissue (75%, p<0.001). Kidney exhibited the highest elevation in the activity for catalase (68%, p<0.001) and superoxide dismutase (29%, p<0.001) while maximum increase in glutathione peroxidase activity was seen in brain (50%, p<0.001). The effects of P. fulgens was compared against known antioxidant, vitamin C. Results indicate that Potentilla fulgens methanolic root extract can reduce free radical mediated oxidative stress in experimental diabetes mellitus. PMID:24826032

  1. The impact of match-play tennis in a hot environment on indirect markers of oxidative stress and antioxidant status

    PubMed Central

    Knez, Wade L; Périard, JP

    2014-01-01

    Objectives The purpose of this study was to determine the impact of changes in oxidative stress and antioxidant status in response to playing tennis in HOT (∼36°C and 35% relative humidity (RH)) and COOL (∼22°C and 70% RH) conditions. Methods 10 male tennis players undertook two matches for an effective playing time (ie, ball in play) of 20 min, corresponding to ∼122 and ∼107 min of total play in HOT and COOL conditions, respectively. Core body temperature, body mass and indirect markers of oxidative stress (diacrons reactive oxygen metabolic test) and antioxidant status (biological antioxidant potential test) were assessed immediately prematch, midmatch and postmatch, and 24 and 48 h into recovery. Results Regardless of the condition, oxidative stress remained similar throughout play and into recovery. Likewise, match-play tennis in the COOL had no impact on antioxidant status. However, antioxidants status increased significantly in the HOT compared with COOL environment (p<0.05). Body mass losses (∼0.5 kg) were similar between conditions. Rectal temperature increased during both matches (p<0.05), but with a greater magnitude in the HOT (39.3±0.5°C) versus COOL (38.7±0.2°C) environment (p<0.05). Conclusions Match-play tennis in the heat does not exacerbate the development of oxidative stress, but significantly increases antioxidant status. These data suggest that the heat stress observed in the HOT environment may provide a necessary signal for the upregulation of antioxidant defence, dampening cellular damage. PMID:24668382

  2. Evaluation of oxidant-antioxidant status in tissue samples in oral cancer: A case control study

    PubMed Central

    Srivastava, Kumar Chandan; Austin, Ravi David; Shrivastava, Deepti

    2016-01-01

    Background: Imbalances between the oxidant-antioxidant status have been implicated in the pathogenesis of several diseases, including cancer. The aim of this study was to evaluate the extent of lipid peroxidation and antioxidants in the tissue samples of oral squamous cell carcinoma (OSCC) patients of different clinical stages in comparison with the healthy controls. Materials and Methods: A case-control study was designed with 20 new histopathologically proven oral carcinoma patients and an equal number of age, sex, and tobacco chewing habit matched healthy subjects. Their tissue samples were subjected to evaluation of lipid peroxidation product and antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and glutathione peroxidase (GPx) using spectrophotometric methods. The data are expressed as mean ± standard deviation. The statistical comparisons between the study groups were performed by independent Student's unpaired t-test and one-way analysis of variance. Post-hoc analysis was performed for within study group comparisons. Karl Pearson correlation was performed for the biochemical parameters within the group and between the groups. For statistically significant correlations, simple linear regression was performed using SPSS (α=0.05). Results: Significant reduction in lipid peroxidation (P < 0.001) SOD and CAT (P < 0.001) was observed in the tissue of OSCC patients as compared with the healthy controls. On the other hand, reduced GSH and GPx were significantly increased in tumor samples. Conclusion: Reduced lipid peroxidation and increased activity of reduced GSH and GPx provides the suitable environment for the local growth and invasion of the tumor and metastasis in the later stages. Among the antioxidant enzymes, GSH reductase appears to have a profound role in carcinogenesis and thus it can be considered as potential prognostic marker. PMID:27076834

  3. The immune responses and antioxidant status of Portunus trituberculatus individuals with different body weights.

    PubMed

    Ren, Xianyun; Yu, Xuan; Gao, Baoquan; Li, Jian; Liu, Ping

    2016-04-01

    Vibrio alginolyticus is a virulent pathogen that affects crab aquacultures. In the present study, the immune responses and antioxidant status of big and small (based on body weight and size) 80-, 100- and 120-day-old specimens of Portunus trituberculatus, challenged for 72 h with Vibrio alginolyticus, were studied. The total hemocyte count (THC), and phagocytic, prophenoloxidase and phenoloxidase activities, of the big individuals (BIs) were higher than those of the small individuals (SIs) (P < 0.05). The antioxidant status of the organisms showed a similar pattern: superoxide dismutase (SOD) activity and glutathione/oxidized glutathione (GSH/GSSG) in the cell-free hemolymph and hepatopancreases of the BIs were higher than in the SIs (P < 0.05). There were no significant differences in α2-macroglobulin (α2-M), antibacterial and bacteriolytic activities in the cell-free hemolymph, or glutathione peroxidase activity in the cell-free hemolymph or hepatopancreas between the BIs and SIs. The α2-M and crustin gene expression levels in the hemocytes, and SOD expression in the hemocytes and hepatopancreas, were also significantly higher in the BIs. The results suggest that, compared with the SIs, the BIs possessed a higher resistance to V. alginolyticus infection. PMID:26952172

  4. The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation.

    PubMed

    Abuelo, A; Hernández, J; Benedito, J L; Castillo, C

    2015-12-01

    Dairy cows are especially vulnerable to health disorders during the transition period, when they shift from late pregnancy to the onset of lactation. Diseases at this stage affect not only the animals' well-being, but also cause a major economic impact in dairy farms, because apart from treatment costs, affected cows will not reach their peak milk-producing capacity. The overproduction of reactive oxygen species (ROS) leads to oxidative stress, which has been identified as an underlying factor of dysfunctional inflammatory responses. Supplementation with vitamins and trace elements attempts to minimize the harmful consequences of excessive ROS production, thereby trying to improve animals' health status and to reduce disease incidence. However, results regarding the effects of supplementing antioxidants on dairy cows' health and performance have been inconsistent, because in most cases, the antioxidant potential of the animals was not assessed beforehand and the nutritional strategy planned accordingly. Therefore, reviewing the physiological and harmful effects of ROS production, along with the different options available for assessing the redox balance in dairy cattle and some of the key findings of different supplementation trials, could bring one step forward the on-farm application of determinations of oxidative status for establishing nutritional strategies early enough in the dry period that could improve transition cow health. PMID:25475653

  5. Effect of thyme essential oil and selenium on intestine integrity and antioxidant status of broilers.

    PubMed

    Placha, I; Takacova, J; Ryzner, M; Cobanova, K; Laukova, A; Strompfova, V; Venglovska, K; Faix, S

    2014-02-01

    1. This study evaluated the duodenal wall integrity, antioxidant status as well as some immunological parameters of broiler chickens supplemented with 0.5 g Thymus vulgaris essential oil (EO)/kg diet and 0.4 mg Se/kg DM (dry matter) derived from sodium selenite. 2. A total of 192 one-d-old randomly divided chickens of both sexes (Ross 308 hybrid broilers) were divided into 4 treatment groups of 48 birds each. 3. The first group was fed on a nutritionally balanced basal diet (BD). The other three groups received BD supplemented with 0.5 g/kg thyme oil, or 0.4 mg Se/kg DM, or both feed additives together. 4. The results for the evaluated feed additives were (1) thyme oil - decreased malondialdehyde (MDA) concentration in duodenal mucosa and kidney, increased immunoglobulin A (IgA) concentration in duodenal mucosa, stimulated phagocytic activity in blood, improved intestinal barrier integrity (2) selenium - increased glutathione peroxidase (GPx) activity in blood and liver as well as thioredoxin reductase (TrxR) activity in duodenal mucosa, liver and in the kidney, (3) EO with selenium - increased thioredoxin reductase (TrxR) activity in duodenal mucosa. 5. These results demonstrated that thyme oil alone showed more effective potential to improve intestinal barrier integrity and antioxidant status as well as evoking an immune response in chickens, than if diets were supplemented with both thyme oil and selenium. PMID:24397472

  6. Antioxidants

    MedlinePlus

    ... carotene Lutein Lycopene Selenium Vitamin A Vitamin C Vitamin E Vegetables and fruits are rich sources of antioxidants. There is good ... eating a diet with lots of vegetables and fruits is healthy and lowers risks ... smokers. High doses of vitamin E may increase risks of prostate cancer and ...

  7. Status of high efficiency module design and fabrication. [of solar cells

    NASA Technical Reports Server (NTRS)

    Nowlan, M. J.; Spitzer, M. B.

    1984-01-01

    The status of an ongoing DOE program to develop an AM1 photoelectric module with 15 percent conversion efficiency at normal heating temperatures, is reviewed. Emphasis is given to the efforts of a private company to develop a high efficiency module which also has high durability in normal operating conditions. The main design options considered are: high efficiency modules; large area modules; and optimized module fabrication techniques. The design of an automatic system for encapsulating module stacks is described.

  8. Effects of dietary pyrroloquinoline quinone disodium on growth performance, carcass yield and antioxidant status of broiler chicks.

    PubMed

    Samuel, K G; Zhang, H J; Wang, J; Wu, S G; Yue, H Y; Sun, L L; Qi, G H

    2015-03-01

    Pyrroloquinoline quinone (PQQ), a putative essential nutrient and redox modulator in microorganisms, cell and animal models, has been recognized as a growth promoter in rodents. Growth performance, carcass yield and antioxidant status were evaluated on broiler chickens fed different levels of PQQ disodium (PQQ.Na2). A total of 784 day-old male Arbor Acres (AA) broilers were randomly allotted into seven dietary groups: negative control group (NC) fed a basal diet without virginiamycin (VIR) or PQQ.Na2; a positive control group (PC) fed a diet with 15 mg of VIR/kg diet; and PQQ.Na2 groups fed with 0.05, 0.10, 0.20, 0.40 or 0.80 mg PQQ.Na2/kg diet. Each treatment contained eight replicates with 14 birds each. The feeding trial lasted for 6 weeks. The results showed that chicks fed 0.2 mg PQQ.Na2/kg diet significantly improved growth performance comparable to those in PC group, and the feed efficiency enhancement effects of dietary PQQ.Na2 was more apparent in grower phase. Dietary addition of PQQ.Na2 had the potential to stimulate immune organs development, and low level dietary addition (<0.1 mg/kg) increased plasma lysozyme level. Broilers fed 0.2 mg PQQ.Na2/kg diet gained more carcasses at day 42, and had lower lipid peroxide malondialdehyde content and higher total antioxidant power in plasma. The results indicated that dietary PQQ.Na2 (0.2 mg/kg diet) had the potential to act as a growth promoter comparable to antibiotic in broiler chicks. PMID:25229409

  9. Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea.

    PubMed

    Wani, Arif Shafi; Ahmad, Aqil; Hayat, Shamsul; Fariduddin, Qazi

    2013-04-01

    The present study was carried out to examine salt-induced modulation in growth, photosynthetic characteristics and antioxidant system in two cultivars of Brassica juncea Czern and Coss varieties (Varuna and RH-30). The surface sterilized seeds of these varieties were sown in the soil amended with different levels (2.8, 4.2 or 5.6 dsm(-1)) of sodium chloride under a simple randomized block design. The salt treatment significantly decreased growth, net photosynthetic rate and its related attributes, chlorophyll fluorescence, SPAD value of chlorophyll, leaf carbonic anhydrase activity and leaf water potential, whereas electrolyte leakage, proline content, and activity of catalase, peroxidase and superoxide dismutase enzymes increased in both the varieties at 30 d stage of growth. The variety Varuna was found more resistant than RH-30 to the salt stress and possessed higher values for growth, photosynthetic attributes and antioxidant enzymes. Out of the graded concentrations (2.8, 4.2 or 5.6 dsm(-1)) of sodium chloride, 2.8 sm(-1) was least toxic and 5.6 dsm(-1) was most harmful. The variation in the responses of these two varieties to salt stress is attributed to their differential photosynthetic traits, SPAD chlorophyll value and antioxidant capacity, which can be used as potential markers for screening mustard plants for salt tolerance. PMID:23961235

  10. Green Tea and Bone Marrow Transplantation: From Antioxidant Activity to Enzymatic and Multidrug-resistance Modulation.

    PubMed

    Peluso, Ilaria; Palmery, Maura; Vitalone, Annabella

    2016-10-25

    Epigallocatechin-3-gallate (EGCG), the main flavonoid of green tea (GT), could play an active role in the prevention of oxidative-stress-related diseases, such as hematologic malignancies. Some effects of EGCG are not imputable to antioxidant activity, but involve modulation of antioxidant enzymes and uric acid (UA) levels. The latter is the major factor responsible of the plasma non-enzymatic antioxidant capacity (NEAC). However, hyperuricemia is a frequent clinical feature caused by tumor lysis syndrome or cyclosporine side effects, both before and after bone marrow transplantation (BMT). Besides this, food-drug interactions could be associated with GT consumption and could have clinical implications. The molecular mechanisms involved in the redox and drug metabolizing/transporting pathways were discussed, with particular reference to the potential role of GT and EGCG in BMT. Moreover, on reviewing data on NEAC, isoprostanes, uric acid, and various enzymes from human studies on GT, its extract, or EGCG, an increase in NEAC, without effect on isoprostanes, and contrasting results on UA and enzymes were observed. Currently, few and contrasting available evidences suggest caution for GT consumption in BMT patients and more studies are needed to better understand the potential impact of EGCG on oxidative stress and metabolizing/transporting systems. PMID:26047551

  11. Solar simulated irradiation modulates gene expression and activity of antioxidant enzymes in cultured human dermal fibroblasts.

    PubMed

    Leccia, M T; Yaar, M; Allen, N; Gleason, M; Gilchrest, B A

    2001-08-01

    Exposure of skin to solar irradiation generates reactive oxygen species that damage DNA, membranes, mitochondria and proteins. To protect against such damage, skin cells have evolved antioxidant enzymes including glutathione peroxidase (GSH-Px), copper and zinc-dependent superoxide dismutase (SOD1), the mitochondrial manganese-dependent superoxide dismutase (SOD2), and catalase. This report examines the effect of a single low or moderate dose exposure to solar-simulating combined UVB and UVA irradiation on the gene expression and activities of these antioxidant enzymes in cultured normal human fibroblasts. We find that both doses initially decrease GSH-Px, SOD2 and catalase activities, but within 5 days after irradiation the activities of the enzymes return to pre-irradiation level (catalase) or are induced slightly (SOD1, GSH-Px) or substantially (SOD2) above the basal level. For SOD1, SOD2 and catalase, the higher dose also detectably modulates the mRNA level of these enzymes. Our results indicate that the effects of a single physiologic solar simulated irradiation dose persist for at least several days and suggest that skin cells prepare for subsequent exposure to damaging irradiation by upregulating this antioxidant defense system, in particular the mitochondrial SOD2. Our findings are consistent with the existence of a broad-based SOS-like response in irradiated human skin. PMID:11493316

  12. Salt-induced modulation in growth, photosynthesis and antioxidant system in two varieties of Brassica juncea

    PubMed Central

    Wani, Arif Shafi; Ahmad, Aqil; Hayat, Shamsul; Fariduddin, Qazi

    2013-01-01

    The present study was carried out to examine salt-induced modulation in growth, photosynthetic characteristics and antioxidant system in two cultivars of Brassica juncea Czern and Coss varieties (Varuna and RH-30). The surface sterilized seeds of these varieties were sown in the soil amended with different levels (2.8, 4.2 or 5.6 dsm−1) of sodium chloride under a simple randomized block design. The salt treatment significantly decreased growth, net photosynthetic rate and its related attributes, chlorophyll fluorescence, SPAD value of chlorophyll, leaf carbonic anhydrase activity and leaf water potential, whereas electrolyte leakage, proline content, and activity of catalase, peroxidase and superoxide dismutase enzymes increased in both the varieties at 30 d stage of growth. The variety Varuna was found more resistant than RH-30 to the salt stress and possessed higher values for growth, photosynthetic attributes and antioxidant enzymes. Out of the graded concentrations (2.8, 4.2 or 5.6 dsm−1) of sodium chloride, 2.8 sm−1 was least toxic and 5.6 dsm−1 was most harmful. The variation in the responses of these two varieties to salt stress is attributed to their differential photosynthetic traits, SPAD chlorophyll value and antioxidant capacity, which can be used as potential markers for screening mustard plants for salt tolerance. PMID:23961235

  13. Low plasma antioxidant status in patients with epilepsy and the role of antiepileptic drugs on oxidative stress

    PubMed Central

    Menon, Bindu; Ramalingam, Krishnan; Kumar, Rajendiran Vinoth

    2014-01-01

    Background: Oxidative stress has been implicated in various disorders including epilepsy. We studied the antioxidant status in patients with epilepsy and aimed at determining whether there was any difference in the antioxidant levels between patients and controls, patients who are not on antiepileptic drugs (AEDs), and on treatment, between individual AEDs and patients on monotherapy and polytherapy. Materials and Methods: Antioxidant levels like catalase, glutathione peroxidase (GPx), vitamin E, glutathione (GSH), thiol group (SH), uric acid, and total antioxidant capacity (TAC) were compared between 100 patients with epilepsy and equal number of controls. Twenty-five patients who were not on AEDs were compared with patients on AEDs and the control group. Patients were divided into monotherapy and polytherapy group and antioxidant status was compared between the two groups and between individual drugs. Results: Catalase, SH, vitamin E, and TAC were significantly low in patients with epilepsy than those in the control group (P < 0.001). GSH and uric acid did not show any difference; GPx in patients was significantly higher than those in the control group There were no differences in the antioxidant levels between the treated and the untreated groups; however, it was lower in untreated patients than controls (P < 0.001), suggesting that AEDs do not modify the oxidative stress. Patients on Valproate (VPA) showed higher catalase and GPx levels. Catalase was higher in the monotherapy than polytherapy group (P < 0.04). Conclusion: Our study found significantly low levels of antioxidant in patients as compared to controls. AED did not influence the antioxidant status suggesting that seizures induce oxidative stress. PMID:25506160

  14. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates.

    PubMed

    Miller, N J; Rice-Evans, C; Davies, M J; Gopinathan, V; Milner, A

    1993-04-01

    1. A new method has been developed for measuring the total antioxidant capacity of body fluids and drug solutions, based on the absorbance of the ABTS.+ radical cation. 2. An automated method for use on a centrifugal analyser, as well as a manual method, is described. 3. The procedure has been applied to physiological antioxidant compounds and radical-scavenging drugs, and an antioxidant ranking was established based on their reactivity relative to a 1.0 mmol/l Trolox standard. 4. The Trolox equivalent antioxidant capacity of plasma from an adult reference population has been measured, and the method optimized and validated. 5. The method has been applied to investigate the total plasma antioxidant capacity of neonates and how this may be compromised in prematurity. PMID:8482045

  15. Grape extract improves antioxidant status and physical performance in elite male athletes

    PubMed Central

    Lafay, Sophie; Jan, Caroline; Nardon, Karine; Lemaire, Benoit; Ibarra, Alvin; Roller, Marc; Houvenaeghel, Marc; Juhel, Christine; Cara, Louis

    2009-01-01

    Excessive physical exercise overproduces reactive oxygen species. Even if elite sportsmen increase their antioxidant status by regular physical training, during the competition period, this improvement is not sufficient to limit free radical production which could be detrimental to the body. The aim of this randomized, double-blind, placebo controlled, and crossover study on 20 elite sportsmen (handball = 10, basketball = 5, sprint = 4, and volleyball = 1) during the competition period was to determine if the consumption of a grape extract (GE; Vitis vinifera L.) was able to improve the parameters related to (i) anti-oxidative status and oxidative stress and (ii) physical performance. Specific biomarkers of antioxidant capacity, oxidative stress, skeletal cell muscle damage, and other general biomarkers were determined in plasma and urine before (D0) and after one month (D30) of placebo or GE supplementation (400mg·d-1). Effort tests were conducted using the Optojump® system, which allows determining the total physical performance (EnRJ45), explosive power (RJ110), and fatigue (RJL5). The plasma ORAC value was not modified in the placebo group; however, GE increased the ORAC value compared to the placebo at D30 (14 966+/-335 vs 14 242+/-339 dµmol Teq·L-1; p < 0.05). The plasma FRAP value was significantly reduced in the placebo group, but not in the GE group. Therefore, GE limited the reduction of FRAP compared to the placebo at D30 (1 053.7+/-31.5 vs 993.7+/-26.7 µmol Teq·L-1; p < 0.05). Urinary isoprostane values were increased in the placebo group, but were not modified in the GE group. Consequently, GE limited the production of isoprostanes compared to the placebo at D30 (1.24+/-0.12 vs 1.26+/-0.13 ng·mg-1 creatinine; p < 0.05). GE administration, compared to the placebo at D30, reduced the plasmatic creatine phosphokinase concentration (CPK, 695.7+/-177.0 vs 480.0+/-81.1 IU·L-1, p = 0.1) and increased hemoglobin levels (Hb, 14.5+/-0.2 vs 14.8+/-0.2 vs

  16. Effects of chestnut tannins on performance and antioxidative status of transition dairy cows.

    PubMed

    Liu, H W; Zhou, D W; Li, K

    2013-09-01

    This study was conducted to evaluate the effects of chestnut tannins (CT) on performance and antioxidative status of transition dairy cows. Twenty multiparous Chinese Holstein cows in late gestation were paired according to expected calving date and randomly assigned either to a diet supplemented with CT (CNT, 10 g of CT/kg of diet, dry matter basis) or to an unsupplemented control (CON) diet from 3 wk prepartum to 3 wk postpartum. Blood samples were taken on d -21, 1, 7, and 21 relative to calving for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and malondialdehyde (MDA). Liver samples were taken by puncture biopsy on d 1 and 21 relative to calving for analysis of SOD, GSH-Px, and MDA. Data were analyzed for a completely randomized block design with repeated measures. The addition of CT had no significant effects on dry matter intake, body weight, body condition score, milk yield, 3.5% fat-corrected milk yield, and milk composition but did decrease milk MDA and somatic cell score in transition dairy cows. Dry matter intake decreased from d -21 to 0 and increased from d 1 to 21 relative to calving across treatments. During the experimental period, body weight and body condition score decreased, whereas milk MDA and somatic cell score increased across treatments. A time effect was also observed for plasma MDA, which peaked on d 1 relative to calving and remained higher than that on d -21 relative to calving across treatments. Addition of CT decreased MDA concentrations in plasma and liver. Neither time nor CT × time effects were observed for SOD and T-AOC in plasma and SOD and GSH-Px in liver; a time effect was observed for plasma GSH-Px, which peaked on d 1 relative to calving and remained higher than those on d -21 relative to calving across treatments. Addition of CT increased SOD, GSH-Px, and T-AOC activities in plasma and SOD and GSH-Px activities in liver. In conclusion, addition of CT might

  17. Plasma adipocytokines and antioxidants-status in Korean overweight and obese females with dyslipidemia

    PubMed Central

    Ha, Ae Wha; Jeong, Su Youn; Kang, Nam E

    2014-01-01

    BACKGROUD/OBEJECTIVES It is hypothesized that obese people with dyslipidemia is more likely to have increased oxidative stress and decreased antioxidant status, in comparison with the controls who were obese without dyslipidemia. Thus, the aims of the present study were to determine the dietary intakes, plasma adipokines, and antioxidative systems between obese with dyslipidemia and obese without dyslipidemia were investigated. SUBJECTS/METHODS Female subjects who were between 20 and 55 years old, and whose BMI was 23 or greater were recruited. Subjects who met the criteria of BMI ≥ 23, total cholesterol ≥ 200 mg/dL, LDL cholesterol ≥ 130 mg/dL, and TG ≥ 110 mg/dL were categorized Obese with dyslipidemia. Anthropometric measurements and blood biochemical tests were conducted. The diet survey was conducted by a trained dietitian using two days of 24 hour dietary recall. The lipid peroxidation, the plasma total antioxidant capacity (TAC), the activities of antioxidantive enzymes, and various antioxidantive vitamins levels were determined. RESULTS Plasma adiponectin and leptin levels were also determined. There were no significant differences for age, Body Mass index (BMI), and body fat (%), waist-size between two groups. Obese with dyslipidemia had significantly high levels of total cholesterol, triglyceride, LDL-cholesterol, the ratio of total cholesterol/HDL-C, and the ratio of HDL-C/LDL-C, respectively. Blood alkaline phosphatase level was statistically different between the two groups (P < 0.05). No statistical significance in dietary intake between two groups was shown. In case of obese with dyslipidemia group, the levels of GSH-Px (P < 0.05) and catalase (P < 0.05) as well as adjusted blood retinol (P < 0.05) and tocopherol level (P < 0.05) were significantly low. However, the plasma concentration of leptin was significantly high (P < 0.05). CONCLUSIONS Obesity with dyslipidemia was shown to have high arthtrogenic index, depleted antioxidant status, and

  18. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    SciTech Connect

    Zheng, Ruijin; Heck, Diane E.; Mishin, Vladimir; Black, Adrienne T.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-03-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86–98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2 −/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a reactive aldehyde. • 4-HNE induces antioxidant proteins in mouse keratinocytes. • Induction of

  19. Modulation of antioxidant enzymes in bleomycin-treated rats by vitamin C and beta-carotene.

    PubMed

    Desai, V G; Lyn-Cook, L E; Aidoo, A; Casciano, D A; Feuers, R J

    1997-01-01

    Bleomycin (BLM), an antineoplastic drug, is known to induce DNA strand breaks and is also mutagenic in mammalian cells; however, its mechanism of action is not well understood. It has been proposed that BLM cytotoxicity is mediated through the generation of reactive oxygen species. We have determined the effects of BLM on endogenous hepatic antioxidant enzymes such as glutathione peroxidase (GPx), glutathione reductase, and glucose-6-phosphate dehydrogenase in rats exposed to BLM in conjunction with dietary vitamins, vitamin C and beta-carotene (BC). Male Fischer 344 rats of two different age groups were treated with BLM in the presence or absence of antioxidant vitamins. In control animals, an age-associated decrease in GPx activity was noted (p < 0.05). The decrease in GPx activity observed in BLM-treated old animals given vitamin C was significant (p < 0.05) compared with BLM-treated young animals fed vitamin C. BC moderately induced GPx and glutathione reductase activities in old BLM-treated animals; however, the increase in GPx was statistically significant (p < 0.05) only compared with old controls. A similar increase was noted in the activities of all the enzymes examined in young animals. Our results indicate that BLM exposure was accompanied by alterations in the activities of endogenous antioxidant enzymes, with a profound increase in activities occurring in old animals. In addition, the observed enzyme activities were modulated by antioxidant vitamin administration. The observation that both vitamins displayed differential effects on the enzyme activities also suggests that vitamin C and BC exert their effects by separate mechanisms. PMID:9427975

  20. Modulation of keratinocyte expression of antioxidants by 4-hydroxynonenal, a lipid peroxidation end product

    PubMed Central

    Zheng, Ruijin; Heck, Diane E.; Mishin, Vladimir; Black, Adrienne T.; Shakarjian, Michael P.; Kong, Ah-Ng Tony; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    4-Hydroxynonenal (4-HNE) is a lipid peroxidation end product generated in response to oxidative stress in the skin. Keratinocytes contain an array of antioxidant enzymes which protect against oxidative stress. In these studies, we characterized 4-HNE-induced changes in antioxidant expression in mouse keratinocytes. Treatment of primary mouse keratinocytes and PAM 212 keratinocytes with 4-HNE increased mRNA expression for heme oxygenase-1 (HO-1), catalase, NADPH:quinone oxidoreductase (NQO1) and glutathione S-transferase (GST) A1-2, GSTA3 and GSTA4. In both cell types, HO-1 was the most sensitive, increasing 86-98 fold within 6 h. Further characterization of the effects of 4-HNE on HO-1 demonstrated concentration- and time-dependent increases in mRNA and protein expression which were maximum after 6 h with 30 μM. 4-HNE stimulated keratinocyte Erk1/2, JNK and p38 MAP kinases, as well as PI3 kinase. Inhibition of these enzymes suppressed 4-HNE-induced HO-1 mRNA and protein expression. 4-HNE also activated Nrf2 by inducing its translocation to the nucleus. 4-HNE was markedly less effective in inducing HO-1 mRNA and protein in keratinocytes from Nrf2−/− mice, when compared to wild type mice, indicating that Nrf2 also regulates 4-HNE-induced signaling. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that 4-HNE-induced HO-1 is localized in keratinocyte caveolae. Treatment of the cells with methyl-β-cyclodextrin, which disrupts caveolar structure, suppressed 4-HNE-induced HO-1. These findings indicate that 4-HNE modulates expression of antioxidant enzymes in keratinocytes, and that this can occur by different mechanisms. Changes in expression of keratinocyte antioxidants may be important in protecting the skin from oxidative stress. PMID:24423726

  1. Age-dependent effects of esculetin on mood-related behavior and cognition from stressed mice are associated with restoring brain antioxidant status.

    PubMed

    Martín-Aragón, Sagrario; Villar, Ángel; Benedí, Juana

    2016-02-01

    Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex. PMID:26290950

  2. Dimerization Controls Marburg Virus VP24-dependent Modulation of Host Antioxidative Stress Responses.

    PubMed

    Johnson, Britney; Li, Jing; Adhikari, Jagat; Edwards, Megan R; Zhang, Hao; Schwarz, Toni; Leung, Daisy W; Basler, Christopher F; Gross, Michael L; Amarasinghe, Gaya K

    2016-08-28

    Marburg virus (MARV), a member of the Filoviridae family that also includes Ebola virus (EBOV), causes lethal hemorrhagic fever with case fatality rates that have exceeded 50% in some outbreaks. Within an infected cell, there are numerous host-viral interactions that contribute to the outcome of infection. Recent studies identified MARV protein 24 (mVP24) as a modulator of the host antioxidative responses, but the molecular mechanism remains unclear. Using a combination of biochemical and mass spectrometry studies, we show that mVP24 is a dimer in solution that directly binds to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) to regulate nuclear factor (erythroid-derived 2)-like 2 (Nrf2). This interaction between Keap1 and mVP24 occurs through the Kelch interaction loop (K-Loop) of mVP24 leading to upregulation of antioxidant response element transcription, which is distinct from other Kelch binders that regulate Nrf2 activity. N-terminal truncations disrupt mVP24 dimerization, allowing monomeric mVP24 to bind Kelch with higher affinity and stimulate higher antioxidative stress response element (ARE) reporter activity. Mass spectrometry-based mapping of the interface revealed overlapping binding sites on Kelch for mVP24 and the Nrf2 proteins. Substitution of conserved cysteines, C209 and C210, to alanine in the mVP24 K-Loop abrogates Kelch binding and ARE activation. Our studies identify a shift in the monomer-dimer equilibrium of MARV VP24, driven by its interaction with Keap1 Kelch domain, as a critical determinant that modulates host responses to pathogenic Marburg viral infections. PMID:27497688

  3. [Antioxidative status changes in golden syrian hamsters with experimental metabolic syndrome].

    PubMed

    Zahaĭko, A L; Voronina, L M; Kaliman, P A; Strel'chenko, K V

    2008-01-01

    Some indices of the antioxidant status (content of the alpha-tocopherol, reduced glutathione and ascorbic acid, activity of the glutathione reductase and aryl-esterase) and lipid peroxidation processes in the liver, blood serum, and some blood serum lipoprotein fractions of the Golden Syrian hamsters of different sex and age status under high-caloric diet were investigated. It has been shown that the hypercaloric diet leads to a decreaseng of reduced glutathione content and increase of the level of lipid peroxidation products in the liver of experimental animals. The ascorbic acids content in male liver is decreased and in female liver is increased. In the blood serum under hypercaloric nutrition the accumulation of lipid peroxidation products and alpha-tocopherol content a decrease in ApoB-lipoproteins and HDL is observed. Simultaneously the ascorbic acid content is increased in the blood serum of all experimental animals. Activation of free-radical oxidation both in the liver, and blood serum is more significant in males compared with females. The data obtained allow to suppose that atherosclerotic complications of metabolic syndrome development may be connected to the lipoprotein oxidant status infringement. PMID:18959034

  4. Assessment of oxidant/antioxidant status in saliva of cell phone users.

    PubMed

    Khalil, Ahmad M; Abu Khadra, Khalid M; Aljaberi, Ahmad M; Gagaa, Marwan H; Issa, Hamzah S

    2014-06-01

    Hazardous health effects resulting from exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from cell phones have been reported in the literature. However, the cellular and molecular targets of RF-EMR are still controversial. The aim of this study was to examine the oxidant/antioxidant status in saliva of cell phone users. Saliva samples collected before using a cell phone as well as at the end of 15 and 30 min calls were tested for two commonly used oxidative stress biomarkers: malondialdehyde (MDA) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-Oxo-dG). The 8-oxo-dG levels were determined by enzyme-linked immunosorbent (ELISA) competitive assay, while the MDA levels were measured using the OxiSelect MDA adduct ELISA Kit. The antioxidant capacity of the saliva was evaluated using the oxygen radical absorption capacity (ORAC) and the hydroxyl radical averting capacity (HORAC) assays according to the manufacture instructions. The mean 8-oxo-dG and the Bradford protein concentrations (ng/ml and mg/ml, respectively) peaked at 15 min. The levels of HORAC, ORAC and MDA progressively increased with time and reached maximum at 30 min. However, there was no significant effect of talking time on the levels of 8-OxodG and MDA. Similarly, there was no statistically significant effect of talking time on the oxygen and hydroxyl radicals averting capacities, (ORAC) and (HORAC), respectively. These findings suggest that there is no relationship between exposure to radio frequency radiation (RFR) and changes in the salivary oxidant/antioxidant profile. PMID:23781989

  5. Oxidative stress and antioxidant status in a lizard Phrynocephalus vlangalii at different altitudes or acclimated to hypoxia.

    PubMed

    Zhang, Yang; Liang, Shiwei; He, Jianzheng; Bai, Yucheng; Niu, Yonggang; Tang, Xiaolong; Li, Dongqin; Chen, Qiang

    2015-12-01

    Oxidative stress is a major challenge for the survival of animals living on plateaus; however, lifelong exposure to high altitudes could generate certain adaptabilities which make them more tolerant to these environments. The aim of the present study was to compare the oxidative stress and antioxidant status between low altitude (LA, 2900m) and high altitude (HA, 4200m) populations of Phrynocephalus vlangalii. The results showed that malondialdehyde levels in the HA populations decreased significantly in the brain, but markedly increased in the muscle and had no significant difference in the liver compared to LA populations. The activity of catalase in the brain was much higher in HA than LA. Except for total antioxidant capacity and glutathione reductase, other antioxidants were similar between the two populations in livers. By contrast, the levels of most antioxidants in muscle decreased markedly with elevation. We also explored the effects of hypoxia on oxidative damage and antioxidant defenses in P. vlangalii. The lizards were acclimated in a simulated hypoxic chamber (15% O2 and 8% O2) for 6weeks. The results showed that in the 8% O2 group, the levels of malondialdehyde, catalase, glutathione and total antioxidant capacity in the brain, and malondialdehyde, catalase and superoxide dismutase in the liver were significantly higher than the 15% O2 group. These findings indicate that in this species the oxidative stress and antioxidant capacity are subject to altitude and hypoxia and this lizard may have acquired some ability to deal with the oxidative stress. PMID:26310105

  6. Salivary oxidant/ antioxidant status and hematological parameters in patients with recurrent aphthous stomatitis

    PubMed Central

    Babaee, Neda; Hosseinkazemi, Hamed; Pouramir, Mahdi; Khakbaz Baboli, Oveis; Salehi, Maede; Khadir, Fatemeh; Bijani, Ali; Mehryari, Mahsa

    2016-01-01

    Background: Recurrent aphthous stomatitis (RAS) is the most common inflammatory ulcerative condition of oral cavity. The aim of this study was to compare the levels of the salivary Malondialdehyde (MDA) and total antioxidant capacity (TAC) and blood parameter in RAS versus healthy controls. Methods: This case-control study consisted of 28 patients with RAS and 28 age and sex -matched control without RAS. Cell blood count was assessed by sysmex system, serum iron and total iron binding capacity was measured by standard laboratory kit and for ferritin ELISA kit was utilized. Salivary TAC and MDA level determined using FRAP and TBARS method respectively. Statistical analysis was performed using SPSS Version 21, chi-square test was used to compare proportions, and student’s t-test and Mann Whitney U-test were used for the comparison of quantitative variables Results: Salivary MDA level was significantly higher (p<0.001) and TAC level was significantly lower (p<0.042) in RAS as compared with the control group. Also, serum ferritin level was significantly higher in RAS patients (p<0.008). Conclusion: These findings indicate the alteration of oxidant/antioxidant status was observed in recurrent aphthous stomatitis, may be also associated with changing several hematinic parameters in this study. The finding maybe helpful to clarify the etiologies of RAS and possibely to improve the management or preventive options. PMID:26958327

  7. The influence of maca (Lepidium meyenii) on antioxidant status, lipid and glucose metabolism in rat.

    PubMed

    Vecera, Rostislav; Orolin, Jan; Skottová, Nina; Kazdová, Ludmila; Oliyarnik, Olena; Ulrichová, Jitka; Simánek, Vilím

    2007-06-01

    This work focused on the effect of Maca on lipid, anti-oxidative, and glucose parameters in hereditary hypertriglyceridemic (HHTg) rat. Maca (1%) was administred to rats as a part of a high-sucrose diet (HSD) for 2 weeks. Rosiglitazone (0.02%) was used as a positive control. Maca significantly decreased the levels of VLDL (very low density lipoproteins), LDL (low density lipoproteins), and total cholesterol, and also the level of TAG (triacylglycerols) in the plasma, VLDL, and liver. Maca, as well as rosiglitazone, significantly improved glucose tolerance, as the decrease of AUC (area under the curve) of glucose showed, and lowered levels of glucose in blood. The activity of SOD (superoxide dismutase) in the liver, the GPX (glutathione peroxidase) in the blood, and the level of GSH (glutathione) in liver increased in all cases significantly. Results demonstrate that maca seems to be promising for a positive influence on chronic human diseases (characterized by atherogenous lipoprotein profile, aggravated antioxidative status, and impaired glucose tolerance), and their prevention. PMID:17333395

  8. Curcuma aromatica Water Extract Attenuates Ethanol-Induced Gastritis via Enhancement of Antioxidant Status

    PubMed Central

    Jeon, Woo-Young; Lee, Mee-Young; Shin, In-Sik; Jin, Seong Eun; Ha, Hyekyung

    2015-01-01

    Curcuma aromatica is an herbal medicine and traditionally used for the treatment of various diseases in Asia. We investigated the effects of C. aromatica water extract (CAW) in the stomach of rats with ethanol-induced gastritis. Gastritis was induced in rats by intragastric administration of 5 mL/kg body weight of absolute ethanol. The CAW groups were given 250 or 500 mg of extract/kg 2 h before administration of ethanol, respectively. To determine the antioxidant effects of CAW, we determined the level of lipid peroxidation, the level of reduced glutathione (GSH), the activities of catalase, degree of inflammation, and mucus production in the stomach. CAW reduced ethanol-induced inflammation and loss of epithelial cells and increased the mucus production in the stomach. CAW reduced the increase in lipid peroxidation associated with ethanol-induced gastritis (250 and 500 mg/kg, p < 0.01, resp.) and increased mucosal GSH content (500 mg/kg, p < 0.01) and the activity of catalase (250 and 500 mg/kg, p < 0.01, resp.). CAW increased the production of prostaglandin E2. These findings suggest that CAW protects against ethanol-induced gastric mucosa injury by increasing antioxidant status. We suggest that CAW could be developed for the treatment of gastritis induced by alcohol. PMID:26483844

  9. Decrease in Antioxidant Status of Plasma and Erythrocytes from Geriatric Population

    PubMed Central

    Kumawat, Manjulata; Sharma, Tarun Kumar; Singh, Ishwar; Singh, Neelima; Singh, Sanjeev Kumar; Ghalaut, Veena Singh; Shankar, Vijay; Vardey, Satish Kumar

    2012-01-01

    Background: Ageing is associated with an accumulation of free radical damage, which leads to physiological and clinical modifications. The study aims to find out the status of lipid profile, antioxidant enzymes, malondialdehyde in geriatric population. Patients/methods: The study was conducted on 150 subjects (75 healthy control between the ages of 20–30 years and 75 elderly subjects between ages of 50–70 years as cases). The following parameters were analyzed using the standard reference methods: lipid profile, reduced glutathione, glutathione peroxidase, glutathione reductase, catalase, superoxide dismutase and malondialdehyde. Results: The present study was conducted to estimate the oxidative stress parameters in geriatric population. Highly significant increase in total cholesterol (TC), triglyceride (TG), LDL-cholesterol (LDL-C), VLDL-cholesterol (VLDL-C), malondialdehyde, catalase and decrease in high density lipoprotein cholesterol (HDL-C), reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase was observed in geriatrics when compared with their younger counterparts. Conclusion: This study concluded that there is enhanced oxidative stress and decreased antioxidant defence in geriatrics as compared to younger subjects which could play an important role in ageing. Dyslipidemia has become one of the important risk factors for the increasing prevalence of cardiovascular diseases. There is lack of awareness on the relationship between blood lipids and the risk of cardiovascular diseases in geriatric population. The strategy of early prevention should be adopted against dyslipidemia. PMID:23089922

  10. Antioxidant status of erythrocytes and their response to oxidative challenge in humans with argemone oil poisoning

    SciTech Connect

    Babu, Challagundla K.; Khanna, Subhash K.; Das, Mukul

    2008-08-01

    Oxidative damage of biomolecules and antioxidant status in erythrocytes of humans from an outbreak of argemone oil (AO) poisoning in Kannauj (India) and AO intoxicated experimental animals was investigated. Erythrocytes of the dropsy patients and AO treated rats were found to be more susceptible to 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) induced peroxidative stress. Significant decrease in RBC glutathione (GSH) levels (46, 63%) with concomitant enhancement in oxidized glutathione (172, 154%) levels was noticed in patients and AO intoxicated animals. Further, depletion of glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G-6-PDH) and glutathione-S-transferase (GST) (42-52%) was observed in dropsy patients. Oxidation of erythrocyte membrane lipids and proteins was increased (120-144%) in patients and AO treated animals (112-137%) along with 8-OHdG levels in whole blood (180%) of dropsy patients. A significant reduction in {alpha}-tocopherol content (68%) was noticed in erythrocytes of dropsy patients and hepatic, plasma and RBCs of AO treated rats (59-70%) thereby indicating the diminished antioxidant potential to scavenge free radicals or the limited transport of {alpha}-tocopherol from liver to RBCs leading to enhanced oxidation of lipids and proteins in erythrocytes. These studies implicate an important role of erythrocyte degradation in production of anemia and breathlessness in epidemic dropsy.

  11. Evaluation of Antioxidant Status of Two Limoniastrum Species Growing Wild in Tunisian Salty Lands

    PubMed Central

    Debouba, Mohamed; Zouari, Sami; Zouari, Nacim

    2013-01-01

    We aim to highlight the differential antioxidant status of Limoniastrum guyonianum and Limoniastrum monopetalum in relation to their respective chemical and location characteristics. Metabolite analysis revealed similar contents in phenolic, flavonoïds, sugars and chlorophyll in the two species’ leaves. Higher amounts of proline (Pro), carotenoïds (Carot), sodium (Na) and potassium (K) were measured in L. monopetalum leaves relative to L. guyonianum ones. While the two Limoniastrum species have similar free radical DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity, L. guyonianum showed more than two-fold higher ferrous ions chelating activity relative to L. monopetalum. However, highest reducing power activity was observed in L. monopetalum. Thiobarbituric acid-reactive substances (TBARS) determination indicated that L. monopetalum behave better lipid membrane integrity relative to L. guyonianum. These findings suggested that the lesser stressful state of L. monopetalum was related to higher metabolites accumulation and reducing capacity compared to L. guyonianum. PMID:26784341

  12. Effect of Dietary n − 3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    PubMed Central

    Guermouche, B.; Soulimane-Mokhtari, N. A.; Bouanane, S.; Merzouk, H.; Merzouk, S.; Narce, M.

    2014-01-01

    The aim of this work was to determine the effect of dietary n − 3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL), and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n − 3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control) or with the EPAX diet (enriched in n − 3 PUFAs), by streptozotocin. The macrosomic pups were killed at birth (day 0) and at adulthood (day 90). Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC), hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n − 3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation. PMID:24987679

  13. Decreased total antioxidants status in the plasma of patients with pseudoexfoliation glaucoma

    PubMed Central

    Kondkar, Altaf A.; Mousa, Ahmed; Osman, Essam A.; Al-Obeidan, Saleh A.

    2011-01-01

    Purpose To evaluate total antioxidant status (TAS) in the plasma of pseudoexfoliation glaucoma (PEG) patients and to compare this level with a matching control group. Additionally, we aim to investigate the effect of the combined action of the lysyl oxidase-like 1 (LOXL1) mutation status with TAS level on the development of PEG. Methods Plasma samples were obtained from 54 PEG patients and 54 controls of matching age, sex, and ethnicity. TAS in all samples was determined by spectrophotometric and enzyme-linked immunosorbent assay methods. The coding region of LOXL1, where it encompasses both single nucleotide polymorphisms (SNPs; rs1048661 and rs3825942), was sequenced. Results The mean (±SD) total antioxidant (TAS) value was lower among patients: 0.87 (0.24), range 0.9–1.41 than controls: 1.07 (0.23), range 0.72–1.94, and this difference was statistically significant (p<0.0001: 95%CI: −0.295–0.114). Evaluating the impact of age, sex, and the mutation in addition to the mean TAS value in patients with PEG, a logistic regression analysis was conducted using diseased/not diseased as the outcome of interest (the dependent variable). Results show that, controlling for all other variables, mean TAS value (p<0.0001) and the mutation G/G in rs3825942 (p=0.041) are significant risk factors for PEG. Conclusions Our findings provide evidence that TAS decreases in the plasma of PEG patients, suggesting that TAS may have an important role in the pathogenesis of PEG. The combined effect of the “G” allele and the decreased TAS may contribute to the overall pathogenesis of PEG. PMID:22065931

  14. In vitro antioxidant activities of barley, husked oat, naked oat, triticale, and buckwheat wastes and their influence on the growth and biomarkers of antioxidant status in rats.

    PubMed

    Zduńczyk, Zenon; Flis, Marianna; Zieliński, Henryk; Wróblewska, Monika; Antoszkiewicz, Zofia; Juśkiewicz, Jerzy

    2006-06-14

    The study was aimed at verification of the following hypothesis: differences in antioxidant capacity of diets consisting of different cereals and byproducts affect the antioxidant status of the consumers of these diets. To validate that hypothesis this study investigated the contents of polyphenols and alpha-tocopherol as well as the total antioxidant capacity (TAC) in vitro of cereals and their fractions (barley, husked and naked oat, oat bran, and triticale); the nutritional and antioxidant properties of diets containing these cereals, applied in a 4-week feeding experiment on rats, were also assessed. Among the cereals examined, the highest TAC was reported for barley (13.16 micromol of Trolox/g) and the lowest for naked oat (3.84 micromol of Trolox/g). Compared with cereals, the TAC of buckwheat waste was 2-3 times higher (25.2 micromol of Trolox/g). The antioxidant capacity of diets, calculated in vitro, ranged from 6.35 micromol of Trolox/g for naked oat type diet to 10.51 micromol of Trolox/g for barley type diet. Results of an in vitro study were confirmed in changes of glutathione peroxidase (GPx) activities and the level of thiobarbituric acid-reactive substances (TBARS) in the serum of rats fed diets with the highest and lowest antioxidant capacities in vitro; the barley diet increased the activity of GPx (37.63 units/mL) and decreased the level of TBARS (4.82 microg/g), whereas the naked oat diet had an opposite effect (31.16 units/mL and 5.91 microg/g, respectively). PMID:16756343

  15. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    PubMed Central

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2∙−) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation. PMID:27594971

  16. The natural antioxidants, pomegranate extract and soy isoflavones, favourably modulate canine endothelial cell function.

    PubMed

    Baumgartner-Parzer, Sabina M; Waldenberger, Ferdinand Rudolf; Freudenthaler, Angelika; Ginouvès-Guerdoux, Amandine; McGahie, David; Gatto, Hugues

    2012-01-01

    Cardiovascular disease, preceded by vascular endothelial dysfunction, is a prominent cause of death in dogs. L-carnitine and taurine, well known for their antioxidative capacity, beneficially affect cardiovascular disease as well as certain dog cardiomyopathies. It is well established that vascular endothelial dysfunction precedes cardiovascular disease and that "vasoprotective factors" (NO and antioxidants) prevent apoptosis, whereas "risk factors" such as oxidized LDL, hyperglycemia, and free fatty acids trigger it in cultured human vascular endothelial cells. Whereas human vascular cell in vitro models are widely established and used for the characterisation of potential vasoprotective substances, such models are not available for canine endothelial cells. In the present study we therefore developed an in vitro model, which allows the testing of the effects of different substances on proliferation and apoptosis in canine aortic endothelial cells. This model was used to test L-carnitine, taurine, pomegranate extract, and Soy Isoflavones in comparison to reference substances (glutathione and pioglitazone) previously shown to modulate human endothelial cell function. L-carnitine and taurine neither exhibited antiproliferative nor antiapoptotic activities in the context of this study. However extracts from pomegranate and soy isoflavones dramatically reduced proliferation and apoptosis in a dose dependent fashion, being in line with a vasoprotective activity in dogs. PMID:23762588

  17. Tocopherol Succinate: Modulation of Antioxidant Enzymes and Oncogene Expression, and Hematopoietic Recovery

    SciTech Connect

    Singh, Vijay K.; Parekh, Vaishali I.; Brown, Darren S.; Kao, Tzu-Cheg; Mog, Steven R.

    2011-02-01

    Purpose: A class of naturally occurring isoforms of tocopherol (tocols) was shown to have varying degrees of protection when administered before radiation exposure. We recently demonstrated that {alpha}-tocopherol succinate (TS) is a potential radiation prophylactic agent. Our objective in this study was to further investigate the mechanism of action of TS in mice exposed to {sup 60}Co {gamma}-radiation. Methods and Materials: We evaluated the effects of TS on expression of antioxidant enzymes and oncogenes by quantitative RT-PCR in bone marrow cells of {sup 60}Co {gamma}-irradiated mice. Further, we tested the ability of TS to rescue and repopulate hematopoietic stem cells by analyzing bone marrow cellularity and spleen colony forming unit in spleen of TS-injected and irradiated mice. Results: Our results demonstrate that TS modulated the expression of antioxidant enzymes and inhibited expression of oncogenes in irradiated mice at different time points. TS also increased colony forming unit-spleen numbers and bone marrow cellularity in irradiated mice. Conclusions: Results provide additional support for the observed radioprotective efficacy of TS and insight into mechanisms.

  18. Chromium-induced modulation in the antioxidant defense system during phenological growth stages of Indian mustard.

    PubMed

    Diwan, Hema; Ahmad, Altaf; Iqbal, Muhammad

    2010-02-01

    Chromium-induced modulation in the enzymes and metabolites of antioxidants was investigated at various phenological stages of Indian mustard (Brassica juncea (L.) Czern. & Coss. cv Pusa Jai Kisan)], grown with various levels of chromium (Cr) in pots under natural environmental conditions. Chromium accumulation in the root, stem and leaves increased with the advancement in the age of the plants. Growth of Indian mustard was not affected significantly by the supply of Cr up to the levels of 400 mg kg(-1) soil. Activities of superoxide dismutase (SOD), ascorbate peroxide (APX), catalase (CAT), and glutathione reductase (GR) increased in the leaves of Cr-treated plants, when compared with control. High activities of antioxidant enzymes supported by high Cr concentrations in roots and aerial parts (except seeds) established the Indian mustard as a potential hyperaccumulator anda hypertolerant species to Cr stress. For this study, an edible crop was chosen intentionally so as to tap maximum benefit by remediating the contaminated site on one hand and getting uncontaminated seeds to raise the next generation, on the other. PMID:20734612

  19. Dimethyl fumarate modulation of immune and antioxidant responses: application to HIV therapy

    PubMed Central

    Gill, Alexander J.; Kolson, Dennis L.

    2013-01-01

    The persistence of chronic immune activation and oxidative stress in human immunodeficiency virus (HIV)-infected, antiretroviral drug-treated individuals are major obstacles to fully preventing HIV disease progression. The immune modulator and antioxidant dimethyl fumarate (DMF) is effective in treating immune-mediated diseases and it also has potential applications to limiting HIV disease progression. Among the relevant effects of DMF and its active metabolite monomethyl fumarate (MMF) are induction of a Th1 → Th2 lymphocyte shift, inhibition of pro-inflammatory cytokine signaling, inhibition of NF-κB nuclear translocation, inhibition of dendritic cell maturation, suppression of lymphocyte and endothelial cell adhesion molecule expression, and induction of the Nrf2-dependent antioxidant response element (ARE) and effector genes. Associated with these effects are reduced lymphocyte and monocyte infiltration into psoriatic skin lesions in humans and immune-mediated demyelinating brain lesions in rodents, which confirms potent systemic and central nervous system (CNS) effects. In addition, DMF and MMF limit HIV infection in macrophages in vitro, albeit by unknown mechanisms. Finally, DMF and MMF also suppress neurotoxin production from HIV-infected macrophages, which drives CNS neurodegeneration. Thus, DMF might protect against systemic and CNS complications in HIV infection through its effective suppression of immune activation, oxidative stress, HIV replication, and macrophage-associated neuronal injury. PMID:23971529

  20. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.

    PubMed

    Abraham, Gerard; Dhar, Dolly Wattal

    2010-09-01

    Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl. PMID:20422236

  1. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    SciTech Connect

    Perez-de-Arce, Karen; Foncea, Rocio . E-mail: rfoncea@med.puc.cl; Leighton, Federico

    2005-12-16

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-{kappa}B activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy.

  2. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses.

    PubMed

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui; Wei, Zhao-Jun; Zhang, Hua

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 (∙-)) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation. PMID:27594971

  3. Evaluation of organ function and oxidant/antioxidant status in goats with sarcoptic mange.

    PubMed

    De, Ujjwal K; Dey, S

    2010-12-01

    The objective of the present study was to investigate the hemato-biochemical changes and status of oxidative stress in goats with scabies infection. The study was conducted on 12 Jamunapari goats; six clinically infected with scabies (group I) and six healthy goats as control (group II). The examination of skin scraping revealed the presence of Sarcoptes scabiei in the infected group. In hemato-biochemical indicators, hemoglobin%, packed cell volume, total erythrocyte count, albumin and albumin: globulin ratio decreased whereas, globulin, alanine aminotransferase, bilirubin, creatinine, and blood urea nitrogen increased significantly (p<0.05) in group I animals as compared to group II healthy goats. Among the oxidative stress indices, plasma nitrate and erythrocytic lipid peroxidation were increased and reduced glutathione levels decreased significantly (p<0.05) in group I goats as compared to group II healthy goats. The results of the present study suggest that scabies infection alters the hemato-biochemical indicators, increases oxidative stress and decreases antioxidant status in goat. PMID:20623336

  4. Modulation of Fibrosis in Systemic Sclerosis by Nitric Oxide and Antioxidants

    PubMed Central

    Dooley, Audrey; Bruckdorfer, K. Richard; Abraham, David J.

    2012-01-01

    Systemic sclerosis (scleroderma: SSc) is a multisystem, connective tissue disease of unknown aetiology characterized by vascular dysfunction, autoimmunity, and enhanced fibroblast activity resulting in fibrosis of the skin, heart, and lungs, and ultimately internal organ failure, and death. One of the most important and early modulators of disease activity is thought to be oxidative stress. Evidence suggests that the free radical nitric oxide (NO), a key mediator of oxidative stress, can profoundly influence the early microvasculopathy, and possibly the ensuing fibrogenic response. Animal models and human studies have also identified dietary antioxidants, such as epigallocatechin-3-gallate (EGCG), to function as a protective system against oxidative stress and fibrosis. Hence, targeting EGCG may prove a possible candidate for therapeutic treatment aimed at reducing both oxidant stress and the fibrotic effects associated with SSc. PMID:22111028

  5. Regular consumption of an antioxidant-rich juice improves oxidative status and causes metabolome changes in healthy adults.

    PubMed

    Díaz-Rubio, M Elena; Pérez-Jiménez, Jara; Martínez-Bartolomé, Miguel Ángel; Álvarez, Inmaculada; Saura-Calixto, Fulgencio

    2015-03-01

    An improvement in oxidative status is associated with a reduction in the incidence of several chronic diseases. However, daily intake of antioxidants in Western diets is decreasing. This study evaluates the effect of daily consumption of an antioxidant-rich juice (ARJ) on oxidative status, cardiovascular disease risk parameters, and untargeted plasma and urine metabolomes. Twenty-eight healthy young adults participated in an 8-week clinical trial by drinking 200 mL of ARJ (pomegranate and grape) daily. At the end of the study, the subjects showed a significant decrease (-29%) in plasma lipid oxidation (malondialdehyde concentration), and a significant increase (+115%) in plasma antioxidant capacity. Plasma and urine metabolomes were also significantly modified and some ions modified in urine were identified, including metabolites of polyphenols, ascorbic acid and biliary acids. No significant changes were observed in lipid profile, inflammation, blood pressure or glycaemia. These results show that incorporating antioxidant-rich beverages into common diets may improve oxidative status in healthy subjects. PMID:25481643

  6. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism.

    PubMed

    Sánchez-Martín, Javier; Heald, Jim; Kingston-Smith, Alison; Winters, Ana; Rubiales, Diego; Sanz, Mariluz; Mur, Luis A J; Prats, Elena

    2015-07-01

    Although a wealth of information is available on the induction of one or several drought-related responses in different species, little is known of how their timing, modulation and crucially integration influence drought tolerance. Based upon metabolomic changes in oat (Avena sativa L.), we have defined key processes involved in drought tolerance. During a time course of increasing water deficit, metabolites from leaf samples were profiled using direct infusion-electrospray mass spectroscopy (DI-ESI-MS) and high-performance liquid chromatography (HPLC) ESI-MS/MS and analysed using principal component analysis (PCA) and discriminant function analysis (DFA). The involvement of metabolite pathways was confirmed through targeted assays of key metabolites and physiological experiments. We demonstrate an early accumulation of salicylic acid (SA) influencing stomatal opening, photorespiration and antioxidant defences before any change in the relative water content. These changes are likely to maintain plant water status, with any photoinhibitory effect being counteracted by an efficient antioxidant capacity, thereby representing an integrated mechanism of drought tolerance in oats. We also discuss these changes in relation to those engaged at later points, consequence of the different water status in susceptible and resistant genotypes. PMID:25533379

  7. Effects of grape seed extract as a natural antioxidant on growth performance, carcass characteristics and antioxidant status of rabbits during heat stress.

    PubMed

    Hassan, Fawzia A; Mahrose, Khalid M; Basyony, Mohammed M

    2016-04-01

    The present study aimed to investigate the effects of different levels of dietary supplementation of grape seed extract (GSE) on growth performance, carcass traits and antioxidant status of rabbits under heat stress conditions (temperature humidity index 87.5-93.5). Weaned male New Zealand White (NZW) rabbits about 6 weeks old (n = 144, mean body weight 705 g) were randomly allotted to four dietary groups. The Control group was fed a basal diet without GSE; the experimental groups received the basal diet with 100, 200 and 300 mg GSE/kg (Groups 100 GSE, 200 GSE and 300 GSE, respectively). The experimental period lasted for 8 weeks. Compared with other groups, rabbits of Group 300 GSE had the best body weight gain and feed conversion ratio and the lowest mortality. Dietary GSE improved carcass weight, percentage of hot carcass, intestine and edible giblets, while total non-edible parts were reduced (p ≤ 0.05) in comparison with the Control group. In Groups 200 GSE and 300 GSE, plasma total protein, albumin and globulin were increased (p ≤ 0.05). In contrast, all supplementation levels of GSE reduced (p ≤ 0.05) the plasma concentrations of total lipids, total cholesterol, triglycerides and low-density lipoproteins. Antioxidant enzymes of rabbits (superoxide dismutase, catalase, glutathione peroxidase, glutathione transferase) and total antioxidant capacity in blood were increased (p ≤ 0.05) by adding dietary GSE. However, malondialdehyde was reduced (p ≤ 0.001) with increasing GSE levels. Generally, grape seeds can be considered as rich source of phenolic and flavonoid compounds. The results of the study revealed that all tested levels of GSE were useful as a natural protection against heat stress to maintain performance, carcass traits and antioxidant status and could reduce the negative effects of heat stress in rabbits. PMID:26829476

  8. Serum Homocysteine and Total Antioxidant Status in Vitiligo: A Case Control Study in Indian Population

    PubMed Central

    Gupta, Shikha; D'souza, Paschal; Dhali, Tapan Kumar; Arora, Sarika

    2016-01-01

    Background: Oxidative stress is considered as an initial pathogenic event in melanocyte destruction. These free radicals are scavenged by antioxidants, whose sum of activity in serum is measured by total antioxidant status (TAS). In addition, homocysteine (Hcy) may mediate melanocyte destruction via increased oxidative damage. However, previous studies investigating these parameters in vitiligo provide equivocal results. Aims: To study and compare serum Hcy and TAS levels in vitiligo patients with controls and also to correlate these parameters with the various disease characteristics. The present study further looked into any correlation between serum Hcy and TAS in vitiligo. Materials and Methods: A case control study was conducted on 82 vitiligo patients and 83 controls aged 18–45 years after excluding factors which could potentially alter serum Hcy or TAS levels. Disease characteristics were studied and blood samples were obtained for measuring serum Hcy and TAS levels. Results: TAS levels were lower in vitiligo patients than controls (1.79 ± 0.51 vs. 2.16 ± 0.63 mmol/L; P < 0.001) and had a negative correlation with disease activity (r = −0.410, P < 0.001). However, serum Hcy levels were comparable between vitiligo patients (18.68 ± 9.90 μmol/L) and controls (20.21 ± 13.39 μmol/L) (P = 0.406). No significant correlation was found between serum Hcy and serum TAS levels. Conclusions: Serum TAS may be further investigated to establish its role as biomarker for vitiligo since its levels also correlate with disease activity. However, serum Hcy may not be a reliable marker in Indian population probably because of differences in dietary habits. PMID:27057010

  9. Selenium, Zinc, Copper, and Total Antioxidant Status in the Serum of Patients with Chronic Tonsillitis.

    PubMed

    Michalska-Mosiej, Małgorzata; Socha, Katarzyna; Soroczyńska, Jolanta; Karpińska, Elżbieta; Łazarczyk, Bogdan; Borawska, Maria Halina

    2016-09-01

    Antioxidants can play a significant role in chronic inflammatory process. The aim of this study was to evaluate the content of selenium (Se), zinc (Zn), copper (Cu), and total antioxidant status (TAS) of patients with chronic tonsillitis (CT). The study group consisted of 84 patients with CT from 18 to 62 years old and the control group of 67 healthy people aged 19-65 years. Se, Zn, and Cu concentration in serum samples were determined by atomic absorption spectrometry. Serum TAS was measured spectrophotometrically, using the test by Randox Laboratories-Us Ltd. The mean content of Se and Zn in the serum of patients with CT (61.122 ± 12.73 μg/L, 0.887 ± 0.26 mg/L, respectively) was lower compared to the control group (77.969 ± 12.73 μg/L, 0.993 ± 0.32 mg/L, respectively). The mean serum concentration of Cu in patients with CT (1.219 ± 0.35 mg/L) was higher compared to its serum concentration in healthy people (1.033 ± 0.37 mg/L). Serum TAS of patients with CT (1.171 ± 0.33 mmol/L) was lower in comparison with healthy volunteers (1.333 ± 0.42 mmol/L). The serum concentration of Se, Zn, and TAS in patients with CT was lower, whereas the concentration of Cu was higher compared to healthy volunteers. Smoking has an influence on reducing the concentration of Se and TAS of patients with CT. PMID:26847690

  10. A preliminary study on the effects of star fruit consumption on antioxidant and lipid status in elderly Thai individuals

    PubMed Central

    Leelarungrayub, Jirakrit; Yankai, Araya; Pinkaew, Decha; Puntumetakul, Rungthip; Laskin, James J; Bloomer, Richard J

    2016-01-01

    Objective The aims of this preliminary study were to evaluate the antioxidant and lipid status before and after star fruit juice consumption in healthy elderly subjects, and the vitamins in star fruit extracts. Methods A preliminary designated protocol was performed in 27 elderly individuals with a mean (±SD) age of 69.5±5.3 years, by planning a 2-week control period before 4 weeks of consumption of star fruit twice daily. Oxidative stress parameters such as total antioxidant capacity, glutathione, malondialdehyde, protein hydroperoxide, multivitamins such as l-ascorbic acid (Vit C), retinoic acid (Vit A), and tocopherol (Vit E), and the lipid profile parameters such as cholesterol, triglyceride, high-density lipoprotein-cholesterol (HDL-C) and low-density lipoprotein-cholesterol (LDL-C) were analyzed. Moreover, Vit C, Vit A, and Vit E levels were evaluated in the star fruit extracts during the 4-week period. Results In the 2-week control period, all parameters showed no statistically significant difference; after 4 weeks of consumption, significant improvement in the antioxidant status was observed with increased total antioxidant capacity and reduced malondialdehyde and protein hydroperoxide levels, as well as significantly increased levels of Vit C and Vit A, when compared to the two-time evaluation during the baseline periods. However, glutathione and Vit E showed no statistical difference. In addition, the HDL-C level was higher and the LDL-C level was significantly lower when compared to both baseline periods. But the levels of triglyceride and cholesterol showed no difference. Vit C and Vit A were identified in small quantities in the star fruit extract. Conclusion This preliminary study suggested that consumption of star fruit juice twice daily for 1 month improved the elderly people’s antioxidant status and vitamins, as well as improved the lipoproteins related to Vit C and Vit A in the star fruit extract. PMID:27621606

  11. Impact of ovariectomy, high fat diet, and lifestyle modifications on oxidative/antioxidative status in the rat liver

    PubMed Central

    Vuković, Rosemary; Blažetić, Senka; Oršolić, Ivana; Heffer, Marija; Vari, Sandor G.; Gajdoš, Martin; Krivošíková, Zora; Kramárová, Patrícia; Kebis, Anton; Has-Schön, Elizabeta

    2014-01-01

    Aim To estimate the impact of high fat diet and estrogen deficiency on the oxidative and antioxidative status in the liver of the ovariectomized rats, as well as the ameliorating effect of physical activity or consumption of functional food containing bioactive compounds with antioxidative properties on oxidative damage in the rat liver. Methods The study was conducted from November 2012 to April 2013. Liver oxidative damage was determined by lipid peroxidation levels expressed in terms of thiobarbituric acid reactive substances (TBARS), while liver antioxidative status was determined by catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities, and glutathione (GSH) content. Sixty-four female Wistar rats were divided into eight groups: sham operated and ovariectomized rats that received either standard diet, high fat diet, or high fat diet supplemented with cereal selenized onion biscuits or high fat diet together with introduction of physical exercise of animals. Results High fat diet significantly increased TBARS content in the liver compared to standard diet (P = 0.032, P = 0.030). Furthermore, high fat diet decreased the activities of CAT, GR, and GST, as well as the content of GSH (P < 0.050). GPx activity remained unchanged in all groups. Physical activity and consumption of cereal selenized onion biscuits showed protective effect through increased GR activity in sham operated rats (P = 0.026, P = 0.009), while in ovariectomized group CAT activity was increased (P = 0.018) in rats that received cereal selenized onion biscuits. Conclusion Feeding rats with high fat diet was accompanied by decreased antioxidative enzyme activities and increased lipid peroxidation. Bioactive compounds of cereal selenized onion biscuits showed potential to attenuate the adverse impact of high fat diet on antioxidative status. PMID:24891280

  12. Adherence to Cancer Prevention Recommendations and Antioxidant and Inflammatory Status in Premenopausal Women

    PubMed Central

    Morimoto, Yukiko; Beckford, Fanchon; Cooney, Robert V.; Franke, Adrian A.; Maskarinec, Gertraud

    2016-01-01

    For cancer prevention, the World Cancer Research Fund & American Institute for Cancer Research (WCRF/AICR) emphasize recommendations to improve individual behavior including avoidance of tobacco products, maintaining a lean body mass, participating in physical activity, consuming a plant based diet, and minimizing the consumption of calorie dense foods, such as sodas, red and processed meats, and alcohol. In this study of 275 healthy premenopausal women, we explored the association of adherence scores with levels of three biomarkers of antioxidant and inflammation status: serum C-reactive protein (CRP), serum γ-tocopherol, and urinary F2-isoprostane. The statistical analysis applied linear regression across categories of adherence to WCRF/AICR recommendations. Overall, 72 women were classified as low (≤4), 150 as moderate (5–6), and 53 as high adherers (≥7). The unadjusted means for CRP were 2.7, 2.0, and 1.7 mg/L for low, moderate, and high adherers (ptrend=0.03); this association was strengthened after adjustment for confounders (ptrend=0.006). The respective values for serum γ-tocopherol were 1.97, 1.63, and 1.45 μg/mL (ptrend=0.02 before and ptrend=0.03 after adjustment). Only for urinary F2-isoprostane, the lower values in high adherers (16.0, 14.5, and 13.3 ng/mL) did not reach statistical significance (ptrend=0.18). In an analysis by body mass index (BMI), overweight and obese women had higher biomarker levels than normal weight women; the trend was significant for CRP (ptrend<0.001) and γ-tocopherol (ptrend=0.003) but not for F2-isoprostane (ptrend=0.14). These findings suggest that both adherence to the WCRF/AICR guidelines and normal BMI status are associated with lower levels of biomarkers that indicate oxidative stress and inflammation. PMID:26051510

  13. Effects of N-acetyl-L-cysteine and glutathione on antioxidant status of human serum and 3T3 fibroblasts.

    PubMed Central

    Hong, Sae-Yong; Yang, Jong-Oh; Lee, Eun-Young; Lee, Zee-Won

    2003-01-01

    The effectiveness of several sulfhydryl compounds in the treatment of paraquat intoxication has been previously tested based on their antioxidant ability. However, practical guidelines for their clinical use remain to be determined. As a preliminary pharmacokinetic study on sulfhydryl compounds, we attempted to establish the optimal concentration of N-acetyl-L-cysteine, glutathione, superoxide dismutase, and catalase. We measured the antioxidant effect of these antioxidants in normal pooled plasma and on intracellular reactive oxygen species (ROS) induced by paraquat. N-acetyl-L-cysteine begins to suppress the production of ROS in plasma at concentrations as low as 5 mM, with the suppression being maximal at 40 mM. In the same way, glutathione increased the total antioxidant status in plasma at concentrations of 5-40 mM in a dose-dependent manner. Complete suppression of ROS in plasma induced by exposure to 500 micro M paraquat for 40 min was observed when using 40 mM N-acetyl-L-cysteine and 5 mM glutathione. These concentrations are comparable with 50 units of catalase, which reduced ROS at concentrations of 5-100 units. Further pharmacokinetic study into the systemic administration of these antioxidants is necessary, using effective concentrations of 5-40 mM for both N-acetyl-L-cysteine and glutathione, and 1-50 units of catalase. PMID:14555815

  14. Design of the interface of edible nanoemulsions to modulate the bioaccessibility of neuroprotective antioxidants.

    PubMed

    Plaza-Oliver, M; Baranda, J Fernández Sainz de; Rodríguez Robledo, V; Castro-Vázquez, L; Gonzalez-Fuentes, J; Marcos, P; Lozano, M V; Santander-Ortega, M J; Arroyo-Jimenez, M M

    2015-07-25

    Most frequently the use of bioactive molecules for the supplementation of food and beverages is hampered by stability limitations or inadequate intestinal absorption. This work evaluates in vitro the role that the interface of the nanoemulsion has on the physicochemical properties, the stability behavior and the enzymatic degradation after oral intake. For that purpose three soybean oil (SB) formulations were studied. These formulations were based on the emulsifier lecithin but modified with two non-ionic surfactants Pluronic(®) F68 (PF68) or Pluronic(®) F127 (PF127) yielding (i) SB-NE (only lecithin on the interface), (ii) SB-NE PF68 (lecithin plus PF68) and 9 (iii) SB-NE PF127 (lecithin plus PF127). All the formulations tested were low polydispersed and showed a size of about 200 nm and ζ-potential of -50 mV. The in vitro colloidal stability assay showed that lecithin itself was able to promote that formulations reach unaltered to the small intestine and facilitate the absorption of the antioxidant payload on a tunable fashion there (with in vitro bioaccessibility values from around 40% up to a 70%). PF68 was able to sterically stabilize the formulation against the aggregation induced by the pH and electrolytes of the simulated gastrointestinal track; however, this surfactant was easily displaced by the lipases of the simulated intestinal milieu being unable to modulate the digestion pattern of the oil droplets in the small intestine. Finally, PF127 displayed a strong steric potential that dramatically reduced the interaction of the oil droplets with lipases in vitro, which will compromise the capacity of the formulation to improve the bioaccessibility of the loaded antioxidant. PMID:25997659

  15. Antioxidant Defenses of Francisella tularensis Modulate Macrophage Function and Production of Proinflammatory Cytokines.

    PubMed

    Rabadi, Seham M; Sanchez, Belkys C; Varanat, Mrudula; Ma, Zhuo; Catlett, Sally V; Melendez, Juan Andres; Malik, Meenakshi; Bakshi, Chandra Shekhar

    2016-03-01

    Francisella tularensis, the causative agent of a fatal human disease known as tularemia, has been used in the bioweapon programs of several countries in the past, and now it is considered a potential bioterror agent. Extreme infectivity and virulence of F. tularensis is due to its ability to evade immune detection and to suppress the host's innate immune responses. However, Francisella-encoded factors and mechanisms responsible for causing immune suppression are not completely understood. Macrophages and neutrophils generate reactive oxygen species (ROS)/reactive nitrogen species as a defense mechanism for the clearance of phagocytosed microorganisms. ROS serve a dual role; at high concentrations they act as microbicidal effector molecules that destroy intracellular pathogens, and at low concentrations they serve as secondary signaling messengers that regulate the expression of various inflammatory mediators. We hypothesized that the antioxidant defenses of F. tularensis maintain redox homeostasis in infected macrophages to prevent activation of redox-sensitive signaling components that ultimately result in suppression of pro-inflammatory cytokine production and macrophage microbicidal activity. We demonstrate that antioxidant enzymes of F. tularensis prevent the activation of redox-sensitive MAPK signaling components, NF-κB signaling, and the production of pro-inflammatory cytokines by inhibiting the accumulation of ROS in infected macrophages. We also report that F. tularensis inhibits ROS-dependent autophagy to promote its intramacrophage survival. Collectively, this study reveals novel pathogenic mechanisms adopted by F. tularensis to modulate macrophage innate immune functions to create an environment permissive for its intracellular survival and growth. PMID:26644475

  16. Plasma total antioxidant status in horses after 8-hours of road transportation

    PubMed Central

    2013-01-01

    Background The aim of this study was to investigate the effects of 8-hour road transport on plasma total antioxidant status (PTAS) and general clinical appearance in horses. Findings The study was conducted on a group of 60 horses of different breeds aged from 4 to 10 years. Venous blood was collected and a clinical examination was performed immediately before loading horses onto trailers for an 8 hour transport (I), immediately after unloading them from the trailer (II), and after a subsequent 24 hour stall rest (III). The ferric-reducing ability of plasma (FRAP) was used to determine PTAS. The transportation significantly increased respiratory and heart rates. The average PTAS increased during the three subsequent samplings: I: 170 ± 77 (μmol/l) II: 204 ± 70 (μmol/l) III: 221 ± 74 (μmol/l). Conclusion Long-distance transport increased the PTAS horses, as well as respiratory and heart rates. PMID:23945316

  17. Prooxidative effects of aspartame on antioxidant defense status in erythrocytes of rats.

    PubMed

    Prokic, Marko D; Paunovic, Milica G; Matic, Milos M; Djordjevic, Natasa Z; Ognjanovic, Branka I; Stajn, Andras S; Saicic, Zorica S

    2014-12-01

    Since aspartame (L-aspartyl-L-phenylalanine methyl ester, ASP) is one of the most widely used artificial sweeteners, the aim of the present study was to investigate its effects on serum glucose and lipid levels as well as its effects on oxidative/antioxidative status in erythrocytes of rats. The experiment included two groups of animals: the control group was administered with water only, while the experimental group was orally administered with ASP (40 mg/kg b.w.) daily, for a period of six weeks. When compared with the control group, the group administrated with ASP indicated higher values of serum glucose, cholesterol and triglycerides. Significantly increased concentrations of superoxide anion (O2 .-), hydrogen peroxide (H2O2), peroxynitrite (?N??-) and lipid peroxides (LPO) were recorded in the erythrocytes of ASP treated group in comparison to the control group. In the course of chronic ASP administration, the following was observed: the concentration of reduced glutathione (GSH) and the activity of catalase (CAT) increased. Thus, these findings suggest that long-term consumption of ASP leads to hyperglycemia and hyperlipidemia, as well as to oxidative stress in erythrocytes. PMID:25431414

  18. Close-packed-array (CPA) thermoelectric module development status

    NASA Astrophysics Data System (ADS)

    Brittain, Wayne M.

    The technical approach for modifying the current two-watt radioisotope thermoelectric generator (RTG) thermoelectric module to expand its applicability to more severe terrestrial applications and planetary space missions is to increase the operating temperature capability of the current design as well as reconfigure the minicouple array into a more densely packed CPA arrangement with the objective of increasing the module dynamic loading capability while minimizing size and weight. Use of the CPA technology will result in approximately a factor of five reduction in the area of the thermoelectric module cross section from the current minicouple packing density exemplified by the two-watt module.

  19. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep.

    PubMed

    Chauhan, S S; Celi, P; Leury, B J; Clarke, I J; Dunshea, F R

    2014-08-01

    The present study was undertaken to investigate the impact of heat (thermal) stress and dietary antioxidant supplementation on the oxidative and physiological status of sheep. Twenty-four Merino × Poll Dorset crossbred ewes were housed in 1 of 2 climatic chambers (thermoneutral or heat stress) and offered either a control (10 IU vitamin E/kg DM and 0.24 mg Se/kg DM) or high antioxidant (100 IU vitamin E/kg DM and 1.20 mg Se/kg DM) diet. The sheep were exposed to 2 thermal (temperature) treatments (thermoneutral [TN]: 18-21°C and 26-30% relative humidity; and heat stress [HS]: 28-40°C and 40-50% relative humidity) for 2 wk in a single reversal design. After 1 wk of dietary treatment, animals in 1 chamber were subjected to HS for 1 wk, with the temperature being increased to 40°C between 0900 and 1700 h and then maintained at 28°C overnight. Those sheep in the TN group were maintained at 18 to 21°C. Physiological parameters were recorded 4 times a day (0900, 1300, 1700, and 2100 h) and blood samples were collected on d 1 and 7 of heat treatment. Plasma samples and red blood cell lysates were assayed for oxidative stress biomarkers. The thermal treatments were then reversed and the above measures repeated. All measured physiological parameters were elevated (P < 0.001) by thermal treatment. Respiration rate was lower during HS in sheep supplemented with antioxidants as indicated by a diet × temperature × time interaction (P = 0.010). There was 13% decline (P = 0.014) in feed intake of the unsupplemented animals during HS whereas the same was maintained in sheep supplemented with high doses of antioxidants. Plasma reactive oxygen metabolites concentrations were reduced (114 vs. 85 units/dL; P < 0.005) while biological antioxidant potential tended to be increased (3,688 vs. 3,985 μmol/L; P = 0.070) in heat stressed sheep supplemented with antioxidants. The oxidative stress index was 30% lower (P < 0.001) in supplemented sheep (2.16 ± 0.06 arbitrary units

  20. NREL PV Module Reliability and Performance R&D Status and Accomplishments

    SciTech Connect

    Osterwald, C. R.

    2005-01-01

    This paper presents a brief overview of the status and accomplishments during Fiscal Year (FY)2004 of the Photovoltaic (PV) Module Reliability and Performance R&D Subtask, which is part of the PV Module Reliability R&D Project (a joint NREL-Sandia project).

  1. Alterations of antioxidant status in asymptomatic hypercholesterolemic individuals after resveratrol intake.

    PubMed

    Apostolidou, C; Adamopoulos, K; Iliadis, S; Kourtidou-Papadeli, C

    2015-08-01

    High cholesterol is one of the risk factors for atherogenesis, leading to oxidative stress and cardiovascular disease (CVD). The focus of this study was to evaluate the role and the pathways of action of a natural antioxidant, resveratrol, in asymptomatic hypercholesterolemic (AHC) individuals. Forty healthy AHCs and normocholesterolemics (NCs) participated in the study. They received random-order resveratrol and placebo capsules for four weeks. Total antioxidant capacity (TAC), vitamin E and total cholesterol (TC) were measured at baseline and at the end of each intervention. Resveratrol provided a direct antioxidant effect in healthy NC individuals, but in AHC individuals, with a higher demand for antioxidant activity due to higher cholesterol levels, it acted by facilitating an increase in vitamin E. Our findings suggest that resveratrol acts synergistically with other antioxidants against oxidative stress and highlights the importance of hypercholesterolemic individuals consuming natural antioxidants instead of medications to reduce the risk of CVD, while the situation is still reversible. PMID:27108746

  2. Effects of triploidy induction on antioxidant defense status in rainbow trout (Oncorhynchus mykiss) during early development.

    PubMed

    Taghipoor, Kaveh; Keyvanshokooh, Saeed; Salati, Amir Parviz; Pasha-Zanoosi, Hossein; Babaheydari, Samad Bahrami

    2016-08-01

    The objective of the present study was to examine the antioxidant status of rainbow trout (Oncorhynchus mykiss) during the early stages of development (fertilized egg, eyed egg, alevin and fry) as an effect of triploidy induction. Eggs and milt were taken from eight females and six males. After insemination, the eggs were incubated at 10°C for 10min. Half of the fertilized eggs were then subjected to heat-shock for 10min submerged in a 28°C water bath to induce triploidy. The remainder were incubated normally and used as diploid controls. Three batches of eggs were randomly selected from each group (control and heat-shocked) and were incubated at 10-11°C under the same environmental conditions in hatchery troughs until the fry stage. Triplicate samples of fertilized eggs from each experimental group were randomly selected 1.5h post-fertilization and at the eyed egg stage of development (18 days post-fertilization, dpf). At 27 dpf, triplicate samples of alevins were chosen from each group. Based on ploidy determination experiment performed on both groups, nine diploid and nine triploid fry (76 dpf) were also selected. The triploidy induction success rate was 87.1%. Vitamin C was in lesser concentrations in fertilized eggs and eyed eggs of the heat-shock treatment group as compared with eggs of the diploid group. Alevins of the heat-shock treatment group had a lower superoxide dismutase (SOD) activity than alevins of the diploid group. Glutathione peroxidase (GPx) level was greater in fertilized eggs and alevins of the heat-shock treatment group as compared to diploids. Catalse (CAT) activity was greater in fertilized eggs, alevins and fry of the heat-shock treatment group than those of the diploid group. Malondialdehyde (MDA), as an index of lipid peroxidation, was in greater concentration in fertilized eggs of the group that was heat-shocked, but it was lesser in alevins and fry of the group in which the eggs were heat-shocked as compared to diploid counterparts

  3. Status Update on the Second-Generation ILC Marx Modulator Prototype

    SciTech Connect

    Kemp, Mark A.; Benwell, Andrew; Burkhart, Craig; Larsen, Ray; MacNair, David; Nguyen, Minh; Olsen, Jeff; /SLAC

    2010-08-26

    This paper is a status update of the SLAC P2 Marx. This Marx-topology klystron modulator is a second-generation modulator which builds upon experience gained from the SLAC P1 Marx. There are several fundamental differences between these modulators including the correction scheme, bus voltages, and the control system architecture. These differences, along with preliminary experimental results and the schedule for further development, are detailed in this paper.

  4. Antioxidant intake and status, and oxidative stress in relation to breast cancer risk: a case-control study.

    PubMed

    Sharhar, Suzana; Normah, H; Fatimah, A; Fadilah, R Nor; Rohi, G Ahmad; Amin, I; Cham, B G; Rizal, R Mohd; Fairulnizal, M N

    2008-01-01

    A case control study was carried out to investigate associations between breast cancer risk, antioxidant status and oxidative stress among women in Klang Valley and Selangor. A total of 57 newly diagnosed cases aged 30 to 66 years old participated and were matched for age and ethnicity with 139 controls with no diagnosis of cancer or other chronic diseases. An interview based questionnaire designed to collect information on demographic and socioeconomic status, as well as reproductive, medical and dietary history was used. Anthropometric measurements including weight, height, waist and hip circumference were made and a 10 ml fasting venous blood sample was taken for glucose testing and analysis of plasma vitamin antioxidants and malondialdehyde. Hair and toenail samples were taken for selenium analysis. Results showed that the mean intake of vitamin A, vitamin E and selenium among cases (606.8 +/- 334.8 microg/d, 6.1 +/- 2.4 g/d, 56.9 +/- 16.2 microg/d) was lower than controls (724.7 +/- 414 microg/day, 6.9 +/- 3.0 g/d, 60.8 +/- 17.5 microg/d, respectively) (p<0.05 for all parameters). A similar trend was noted for plasma vitamin A and E and also selenium in hair and toenails. Poor antioxidant status as indicated by low plasma vitamin A (<284.3 microg/l or <366.3 microg/l) increased risk of breast cancer by approximately two fold, whilst low plasma vitamin E (<2.5 mg/dl, <2.8 mg/dl and <3.1 mg/dl) increased the risk by two to three fold [Adjusted OR 2.97 (95% CI 1.38-3.48), 2.32 (95% CI 1.07-2.41) and 2.12 (95% CI 1.00-4.21)]. Cases had a greater level of malondialdehyde 4.4 +/- 1.1 mmol/g protein), an indicator of oxidative stress, as compared to controls (3.2 +/- 1.7 mmol/g protein) (p<0.05). A high level of MDA (> or = 4.8 mmol/g protein) was associated with breast cancer [Adjusted OR 6.82 (95% CI 1.95-23.9)]. It is concluded that a poor antioxidant status and high oxidative stress are associated with breast cancer risk. Thus, it is essential for Malaysian women

  5. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2.

    PubMed

    Cardozo, Ludmila F M F; Pedruzzi, Liliana M; Stenvinkel, Peter; Stockler-Pinto, Milena B; Daleprane, Julio B; Leite, Maurilo; Mafra, Denise

    2013-08-01

    The nuclear factor E2-related factor 2 (Nrf2) plays an important role in cellular protection against cancer, renal, pulmonary, cardiovascular and neurodegenerative diseases where oxidative stress and inflammation are common conditions. The Nrf2 regulates the expression of detoxifying enzymes by recognizing the human Antioxidant Response Element (ARE) binding site and it can regulate antioxidant and anti-inflammatory cellular responses, playing an important protective role on the development of the diseases. Studies designed to investigate how effective Nrf2 activators or modulators are need to be initiated. Several recent studies have shown that nutritional compounds can modulate the activation of Nrf2-Keap1 system. This review aims to discuss some of the key nutritional compounds that promote the activation of Nrf2, which may have impact on the human health. PMID:23643732

  6. Social status modulates neural activity in the mentalizing network

    PubMed Central

    Muscatell, Keely A.; Morelli, Sylvia A.; Falk, Emily B.; Way, Baldwin M.; Pfeifer, Jennifer H.; Galinsky, Adam D.; Lieberman, Matthew D.; Dapretto, Mirella; Eisenberger, Naomi I.

    2013-01-01

    The current research explored the neural mechanisms linking social status to perceptions of the social world. Two fMRI studies provide converging evidence that individuals lower in social status are more likely to engage neural circuitry often involved in ‘mentalizing’ or thinking about others' thoughts and feelings. Study 1 found that college students' perception of their social status in the university community was related to neural activity in the mentalizing network (e.g., DMPFC, MPFC, precuneus/PCC) while encoding social information, with lower social status predicting greater neural activity in this network. Study 2 demonstrated that socioeconomic status, an objective indicator of global standing, predicted adolescents' neural activity during the processing of threatening faces, with individuals lower in social status displaying greater activity in the DMPFC, previously associated with mentalizing, and the amygdala, previously associated with emotion/salience processing. These studies demonstrate that social status is fundamentally and neurocognitively linked to how people process and navigate their social worlds. PMID:22289808

  7. Moringa oleifera Enhances Liver Antioxidant Status via Elevation of Antioxidant Enzymes Activity and Counteracts Paracetamol-induced Hepatotoxicity.

    PubMed

    Uma, N; Fakurazi, S; Hairuszah, I

    2010-08-01

    This study investigated the role of antioxidant enzyme system following crude hydroethanolic extract of Moringa oleifera leaves (MO) in acute paracetamol (PCM) induced hepatotoxicity. Hydroethanolic extract (80%) of MO (200 mg/kg and 800 mg/kg; p.o) was pre-administered before a single oral dose of 3 g/kg PCM intoxication to male Sprague-Dawley rats. Pre-treatment of the extract was found to have reduced lipid peroxidation level when compared to the group treated with PCM only. The level of glutathione peroxidase (GPx), glutathione-Stransferase (GST) and glutathione reductase (GR) was restored to near normal in groups that were pre-treated with MO. Histopathological studies have further confirmed the hepatoprotective activity of MO compared to group treated with PCM only. The results obtained were comparable to silymarin (200 mg/kg; p.o). The MO extract was found to have significantly protected the liver against toxicity following PCM intoxication by enhancing the level of antioxidant enzyme activity. PMID:22691934

  8. Evaluation of oxidant/antioxidant status, trace mineral levels, and erythrocyte osmotic fragility in goats naturally infected with Anaplasma ovis.

    PubMed

    Jalali, Seyedeh Missagh; Bahrami, Somayeh; Rasooli, Aria; Hasanvand, Saman

    2016-08-01

    Anaplasma ovis, an arthropod-borne pathogen that infects erythrocytes, is the major cause of ovine and caprine anaplasmosis. This study was performed to assess in goats infected with A. ovis the osmotic fragility of erythrocytes, antioxidant status, and serum levels of microminerals. Blood samples were collected from 104 mixed breed goats in Ahvaz area, southwest Iran and subjected to parasitologic, hematologic, oxidant/antioxidant, and micromineral assessment. Anaplasma infection was detected in 30 samples (28.8 %) by microscopic examination of blood smears while PCR-RFLP analysis revealed infection with A. ovis in 68 samples (65.4 %). Studied animals were divided into three groups based on A. ovis infection: Uninfected goats as control group (group 1), PCR positive without parasitemia (group 2) and PCR positive with parasitemia (group 3). Hematological evaluation showed significantly increased lymphocyte and monocyte counts in Anaplasma-infected groups (group 2 and 3). A significantly lower MCHC and higher MCV were also observed in infected groups. In group 3 significant rises in erythrocyte's osmotic fragility in different salt concentrations and also in median corpuscular fragility (MCF) was seen. Evaluation of the antioxidant defense system of the erythrocytes revealed a decrease in total antioxidant capacity (TAC) and superoxide dismutase (SOD) activity in group 3. There was no significant difference in serum micromineral levels between infected and uninfected animals. Overall, the observed substantial decrease in the antioxidant enzyme activities with remarkable elevated levels of erythrocyte osmotic fragility indicate high exposure of erythrocytes to oxidative damage in Anaplasma-infected goats. These results also suggest that the disturbed antioxidant defense mechanisms in caprine anaplasmosis can promote the development of anemia. PMID:27142027

  9. Induced lipid peroxidation in ram sperm: semen profile, DNA fragmentation and antioxidant status.

    PubMed

    Hamilton, Thais Rose dos Santos; de Castro, Letícia Signori; Delgado, Juliana de Carvalho; de Assis, Patrícia Monken; Siqueira, Adriano Felipe Perez; Mendes, Camilla Mota; Goissis, Marcelo Demarchi; Muiño-Blanco, Teresa; Cebrián-Pérez, José Álvaro; Nichi, Marcílio; Visintin, José Antonio; D'Ávila Assumpção, Mayra Elena Ortiz

    2016-04-01

    Action of reactive oxygen species, protamination failures and apoptosis are considered the most important etiologies of sperm DNA fragmentation. This study evaluated the effects of induced lipid peroxidation susceptibility on native semen profile and identified the mechanisms involved in sperm DNA fragmentation and testicular antioxidant defense on Santa Ines ram sperm samples. Semen was collected from 12 adult rams (Ovis aries) performed weekly over a 9-week period. Sperm analysis (motility, mass motility, abnormalities, membrane and acrosome status, mitochondrial potential, DNA fragmentation, lipid peroxidation and intracellular free radicals production); protamine deficiency; PRM1, TNP1 and TNP2 gene expression; and determination of glutathione peroxidase (GPx), glutathione reductase, catalase (CAT) and superoxide dismutase activity and immunodetection in seminal plasma were performed. Samples were distributed into four groups according to the sperm susceptibility to lipid peroxidation after induction with ascorbate and ferrous sulfate (low, medium, high and very high). The results were analyzed by GLM test and post hoc least significant difference. We observed an increase in native GPx activity and CAT immunodetection in groups with high susceptibility to induced lipid peroxidation. We also found an increase in total sperm defects, acrosome and membrane damages in the group with the highest susceptibility to induced lipid peroxidation. Additionally, the low mitochondrial membrane potential, susceptible to chromatin fragmentation and the PRM1 mRNA were increased in the group showing higher susceptibility to lipid peroxidation. Ram sperm susceptibility to lipid peroxidation may compromise sperm quality and interfere with the oxidative homeostasis by oxidative stress, which may be the main cause of chromatin damage in ram sperm. PMID:26811546

  10. Antioxidant Status in the Serum of Persons with Intellectual Disability and Hypothyroidism: A Pilot Study

    ERIC Educational Resources Information Center

    Carmeli, Eli; Bachar, Assad; Barchad, Shemuel; Morad, Mohammed; Merrick, Joav

    2008-01-01

    Hypothyroidism (HPO) in humans is widely believed to impair health. The biochemical factors mediating decline in health, however, are poorly elucidated. Pathological consequences of HPO point to a high potential for antioxidant imbalance. The objectives of this study were to investigate the major antioxidants in persons with intellectual…

  11. Antioxidants Status of Humans after Intervention with Watermelon and Tomato Juice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Watermelon and tomato are both excellent sources of lycopene with similar compositions of other carotenoids. In plant extract studies, both foods exhibited strong antioxidant activity. Increased antioxidant capacity of plasma as measured by ferric reducing ability of plasma (FRAP) and malondialdehyd...

  12. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling

    PubMed Central

    Tomášek, Oldřich; Gabrielová, Barbora; Kačer, Petr; Maršík, Petr; Svobodová, Jana; Syslová, Kamila; Vinkler, Michal; Albrecht, Tomáš

    2016-01-01

    Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution. PMID:27000655

  13. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling.

    PubMed

    Tomášek, Oldřich; Gabrielová, Barbora; Kačer, Petr; Maršík, Petr; Svobodová, Jana; Syslová, Kamila; Vinkler, Michal; Albrecht, Tomáš

    2016-01-01

    Several recent hypotheses consider oxidative stress to be a primary constraint ensuring honesty of condition-dependent carotenoid-based signalling. The key testable difference between these hypotheses is the assumed importance of carotenoids for redox homeostasis, with carotenoids being either antioxidant, pro-oxidant or unimportant. We tested the role of carotenoids in redox balance and sexual signalling by exposing adult male zebra finches (Taeniopygia guttata) to oxidative challenge (diquat dibromide) and manipulating carotenoid intake. As the current controversy over the importance of carotenoids as antioxidants could stem from the hydrophilic basis of commonly-used antioxidant assays, we used the novel measure of in vivo lipophilic antioxidant capacity. Oxidative challenge reduced beak pigmentation but elicited an increase in antioxidant capacity suggesting resource reallocation from signalling to redox homeostasis. Carotenoids counteracted the effect of oxidative challenge on lipophilic (but not hydrophilic) antioxidant capacity, thereby supporting carotenoid antioxidant function in vivo. This is inconsistent with hypotheses proposing that signalling honesty is maintained through either ROS-induced carotenoid degradation or the pro-oxidant effect of high levels of carotenoid-cleavage products acting as a physiological handicap. Our data further suggest that assessment of lipophilic antioxidant capacity is necessary to fully understand the role of redox processes in ecology and evolution. PMID:27000655

  14. Adherence to cancer prevention recommendations and antioxidant and inflammatory status in premenopausal women.

    PubMed

    Morimoto, Yukiko; Beckford, Fanchon; Cooney, Robert V; Franke, Adrian A; Maskarinec, Gertraud

    2015-07-14

    For cancer prevention, the World Cancer Research Fund and American Institute for Cancer Research (WCRF/AICR) emphasise recommendations to improve individual behaviour, including avoidance of tobacco products, maintaining a lean body mass, participating in physical activity, consuming a plant-based diet, and minimising the consumption of energy-dense foods, such as sodas, red and processed meats and alcohol. In the present study of 275 healthy premenopausal women, we explored the association of adherence scores with levels of three biomarkers of antioxidant and inflammation status: serum C-reactive protein (CRP), serum γ-tocopherol and urinary F2-isoprostane. The statistical analysis applied linear regression across categories of adherence to WCRF/AICR recommendations. Overall, seventy-two women were classified as low ( ≤ 4), 150 as moderate (5-6), and fifty-three as high adherers ( ≥ 7). The unadjusted means for CRP were 2.7, 2.0 and 1.7 mg/l for low, moderate and high adherers (P trend= 0.03); this association was strengthened after adjustment for confounders (P trend= 0.006). The respective values for serum γ-tocopherol were 1.97, 1.63 and 1.45 μg/ml (P trend= 0.02 before and P trend= 0.03 after adjustment). Only for urinary F2-isoprostane, the lower values in high adherers (16.0, 14.5, and 13.3 ng/ml) did not reach statistical significance (P trend= 0.18). In an analysis by BMI, overweight and obese women had higher biomarker levels than normal weight women; the trend was significant for CRP (P trend< 0.001) and γ-tocopherol (P trend= 0.003) but not for F2-isoprostane (P trend= 0.14). These findings suggest that both adherence to the WCRF/AICR guidelines and normal BMI status are associated with lower levels of biomarkers that indicate oxidative stress and inflammation. PMID:26051510

  15. Extract of green tea leaves partially attenuates streptozotocin-induced changes in antioxidant status and gastrointestinal functioning in rats.

    PubMed

    Juśkiewicz, Jerzy; Zduńczyk, Zenon; Jurgoński, Adam; Brzuzan, Łucja; Godycka-Kłos, Irena; Zary-Sikorska, Ewa

    2008-05-01

    Rats with severe streptozotocin (STZ)-induced diabetes were subjected to dietary green tea extract supplementation at 2 doses (0.01% and 0.2%; GTL and GTH groups, respectively) to evaluate their effects on antioxidant, gastrointestinal, and renal parameters of experimental animals. The lower dietary supplementation reflects daily consumption of 3 cups of green tea for an average adult weighing 70 kg. Supplementation of a diet with green tea extract had no influence on elevated food intake, body weight loss, increased glucose concentration, or declined antioxidant capacity of water-soluble substances in plasma in the diabetic rats. In cases of intestinal maltase activity, attenuation of liver and kidney hypertrophy, triacylglycerol concentration, and aspartate aminotransferase activity in the serum, both dietary treatments normalized metabolic disorders caused by STZ injection to a similar extent. Unlike the GTL group, the GTH treatment significantly ameliorated development of diabetes-induced abnormal values for small intestinal saccharase and lactase activities, renal microalbuminuria, thiobarbituric acid-reactive substance content in kidney tissue, as well as total antioxidant status in the serum of rats. The GTH group was also characterized by higher antioxidant capacity of lipid-soluble substances in plasma and superoxide dismutase activity in the serum. Although the higher dose of green tea extract did not completely protect against STZ-induced hyperglycemia and oxidative stress in experimental rats, this study suggests that green tea extract ingested at high amounts may prove to be a useful therapeutic option in the reversal of diabetic dysfunction. PMID:19083430

  16. Blood biochemistry, thyroid hormones, and oxidant/antioxidant status of guinea pigs challenged with sodium arsenite or arsenic trioxide.

    PubMed

    Mohanta, Ranjan Kumar; Garg, Anil Kumar; Dass, Ram Sharan; Behera, Suvendu Kumar

    2014-08-01

    The present experiment aimed to compare the two most commonly used compounds of arsenic (sodium arsenite and arsenic trioxide) for their effect on blood metabolites, thyroid hormones, and oxidant/antioxidant status in guinea pigs. Twenty-one adult guinea pigs were randomly divided into three equal groups. Animals in group T1 (control) were fed a basal diet, whereas 50 ppm arsenic was added in the basal diet either as sodium arsenite (T2) or arsenic trioxide (T3) and fed for 11 weeks. Serum aspartate aminotransferase and alanine aminotransferase activities were significantly increased along with a decrease in blood hemoglobin level in both the arsenic-administered groups. The level of erythrocytic antioxidants (catalase, superoxide dismutase, reduced glutathione, glutathione-S-transferase, and glutathione reductase) was decreased and lipid peroxidation was elevated upon arsenic exposure. Serum thyroid hormone levels were reduced and arsenic levels in tissues increased in both the arsenic-exposed groups, irrespective of the arsenic compound. Thus, sodium arsenite and arsenic trioxide exerted similar adverse effects on blood metabolic profile, antioxidant status, and thyroid hormones in guinea pigs. PMID:24948398

  17. Winter-swimming as a building-up body resistance factor inducing adaptive changes in the oxidant/antioxidant status.

    PubMed

    Lubkowska, Anna; Dołęgowska, Barbara; Szyguła, Zbigniew; Bryczkowska, Iwona; Stańczyk-Dunaj, Małgorzata; Sałata, Daria; Budkowska, Marta

    2013-01-01

    The aim of our research was to examine whether winter-swimming for five consecutive months results in adaptational changes improving tolerance to stress induced by exposure to cryogenic temperatures during whole-body cryostimulation (WBC). The research involved 15 healthy men, with normal bodyweight, who had never been subjected to either WBC or cold water immersion. During the experiment, the participants were twice subjected to WBC (3 min/- 130°C), namely before the winter-swimming season and after the season. Blood was taken seven times: In the morning before each cryostimulation, 30 min after each cryostimulation and the next morning. Additionally, control blood was collected in the middle of the winter season, in February. Our analysis concerned changes in hematological parameters as well as in reduced glutathione and oxidized glutathione, total oxidant status, total antioxidant status and in components of the antioxidant system: Superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and 8-Isoprostanes as a sensitive indicator of oxidative stress. We found significant changes in hemoglobin concentration, the number of red blood cells, the hematocrit index and mean corpuscular volume of red blood cell and the percentage of monocytes and granulocytes after the winter swimming season. The response to cryogenic temperatures was milder after five months of winter-swimming. The obtained results may indicate positive adaptive changes in the antioxidant system of healthy winter-swimmers. These changes seem to increase the readiness of the human body to stress factors. PMID:23514015

  18. Close-packed-array (CPA) thermoelectric module development status

    NASA Astrophysics Data System (ADS)

    Brittain, Wayne M.

    1991-01-01

    Prior effort on the U.S. Department of Energy-sponsored Special Applications Radioisotope Thermoelectric Generator (RTG) Technology Program and Two-Watt RTG Program has focused on terrestrial applications where the RTG will be exposed to relatively low temperature thermal environments (subsea). Thus, effort has been oriented towards design optimization at cold junction temperatures in the 10 to 93 °C (50 to 200 °F) range. However, for other more severe design environments (such as space applications where a high heat rejection radiator temperature in the 177 to 204 °C (350 to 400 °F) range is required to minimize RTG size and weight, and high g shock/vibration capability is necessary) a modified thermoelectric module design is dictated. In order to minimize the RTG system size and weight, and to increase the mechanical strength of the thermoelectric module to withstand increased dynamic loads, a close-packed-array (CPA) module configuration is desirable. The monolithic nature of such a module generally results in greater shear and compression load capability than free-standing individual couples. A CPA module is especially attractive for terrestrial and space applications where severe structural loads will be imposed such as airborne deployment or planetary landers and penetrators. An additional benefit of the CPA module is the potential for obtaining higher output voltage and increased circuit redundancy. The CPA module construction will permit fabrication and installation of smaller cross section thermoelectric minicouples due to the enhanced structural configuration. This is an important factor for small size, low power, high voltage terrestrial and space RTSs as well as modularity considerations in higher power space RTGs where circuit redundancy as well as high voltage are desirable.

  19. Influence of prebiotics and antioxidants in bread on the immune system, antioxidative status and antioxidative capacity in male smokers and non-smokers.

    PubMed

    Seidel, Christiane; Boehm, Volker; Vogelsang, Heinz; Wagner, Andreas; Persin, Christoph; Glei, Michael; Pool-Zobel, Beatrice L; Jahreis, Gerhard

    2007-02-01

    Interest in functional foods is increasing. The aim of the present study was to investigate breads supplemented with functional components. One was bread supplemented with inulin, linseed and soya fibre (prebiotic bread). The other was a prebiotic antioxidant bread (pre-aox-bread), which additionally contained green tea powder, herbs and tomato paste. The effects of these two breads on immunological and antioxidative parameters were compared with control bread (placebo). Twenty smokers and eighteen non-smokers were enrolled in the randomised parallel study, which consisted of a control period and an intervention period, each lasting for 5 weeks. Daily intake of bread and nutrients did not differ between the intervention and the control period. Most of the twenty-three investigated immunological parameters measured in peripheral blood were unaffected. However, the percentage of CD19 increased after intervention with prebiotic bread, whereas intercellular adhesion molecule-1 (ICAM-1) and CD3+NK+ (P < 0.05) decreased in both intervention arms. The ferric reducing ability of plasma (FRAP) was increased after consumption of the pre-aox-bread for non-smokers (1256 v. 1147 micromol/l; P = 0.019) and remained unchanged for smokers consuming the pre-aox-bread. All analysed carotenoids (P antioxidative potentials for this type of functional food. PMID:17298705

  20. Close-packed-array (CPA) thermoelectric module development status

    SciTech Connect

    Brittain, W.M. )

    1991-01-05

    Prior effort on the U.S. Department of Energy-sponsored Special Applications Radioisotope Thermoelectric Generator (RTG) Technology Program and Two-Watt RTG Program has focused on terrestrial applications where the RTG will be exposed to relatively low temperature thermal environments (subsea). Thus, effort has been oriented towards design optimization at cold junction temperatures in the 10 to 93 {degree}C (50 to 200 {degree}F) range. However, for other more severe design environments (such as space applications where a high heat rejection radiator temperature in the 177 to 204 {degree}C (350 to 400 {degree}F) range is required to minimize RTG size and weight, and high g shock/vibration capability is necessary) a modified thermoelectric module design is dictated. In order to minimize the RTG system size and weight, and to increase the mechanical strength of the thermoelectric module to withstand increased dynamic loads, a close-packed-array (CPA) module configuration is desirable. The monolithic nature of such a module generally results in greater shear and compression load capability than free-standing individual couples. A CPA module is especially attractive for terrestrial and space applications where severe structural loads will be imposed such as airborne deployment or planetary landers and penetrators.

  1. Abnormal secretion of reproductive hormones and antioxidant status involved in quinestrol-induced reproductive toxicity in adult male rat.

    PubMed

    Li, Jian; Wang, Hongwei; Zhang, Jiliang; Zhou, Bianhua; Si, Lifang; Wei, Lan; Li, Xiang

    2014-02-01

    This study aimed to evaluate the effects of quinestrol, a synthetic oestrogen homologue with reproductive toxicity, on the secretion of reproductive hormones and antioxidant status in adult male rat. Our results showed that quinestrol exposure significantly decreased the weight of the testis, epididymides, seminal vesicle, and prostate, as well as the sperm counts in the cauda epididymis of rats. Quinestrol significantly reduced the size of seminiferous tubules and the total number of spermatogenic cells. Serum testosterone, follitropin, and lutropin were also significantly reduced in a dose-related manner after quinestrol exposure. Meanwhile, the activity of superoxide dismutase, glutathione peroxidase, and total antioxide capacity significantly decreased, whereas the malondialdehyde and nitric oxide concentrations significantly increased in the testes. These findings revealed that endocrine disorders of reproductive hormones and oxidative stress may be involved in reproductive toxicity induced by quinestrol in adult male rats. PMID:24183492

  2. Palm oil and ground nut oil supplementation effects on blood glucose and antioxidant status in alloxan-induced diabetic rats.

    PubMed

    Adewale, Olabiyi Folorunso; Isaac, OlatunjiOlusola; Tunmise, Makinwa Temitope; Omoniyi, OguntibejuOluwafemi

    2016-01-01

    This study investigated the effects of two common cooking oils (palm oil, PO) and (groundnut oil, GO) supplementation on the antioxidant status and diabetic indices in Alloxan (100mg/kg) induced diabetic Wistar rats. A total of forty-eight Wistar rats of both sexes were used for this study. They were divided into four groups of 12 animals each as: control, diabetic non-supplemented, diabetic supplemented with PO (200mg/kg/day) and diabetic supplemented with GO (200mg/kg/day) rats. Blood glucose, plasma vitamin E, SOD, Total Protein and Albumin levels were measured using standard laboratory procedures. After three weeks of supplementation there was a significant (p<0.05) reduction in blood glucose of supplemented groups compared with the diabetic non-supplemented group. Plasma Vitamins C and E, SOD, and Albumin levels were significantly (p<0.05) increased in the supplemented groups when compared with the diabetic non-supplemented group. However, the plasma levels of these parameters were found to be significantly (p<0.05) higher in the GO supplemented rats compared with the PO supplemented group. The plasma vitamin C levels in the diabetic groups were lower than in other groups while increased levels in the plasma total protein were not significant. There was no significant difference in the measured parameters in reference to the gender of the animals. It was concluded from this study that GO exhibited superior antioxidant activities and that the supplementation of red palm oil and ground nut oil as a source of antioxidant was beneficial in diabetic state as it reduced blood glucose and enhance antioxidant status. PMID:26826842

  3. Effects of Lactobacillus plantarum on production performance, immune characteristics, antioxidant status, and intestinal microflora of bursin-immunized broilers.

    PubMed

    Shen, Xuejiao; Yi, Dan; Ni, Xueqin; Zeng, Dong; Jing, Bo; Lei, Mingxia; Bian, Zhengrong; Zeng, Yan; Li, Tao; Xin, Jinge

    2014-04-01

    Examples of probiotics that can promote host health by improving its intestinal microbial balance and intestinal immunity belong to the genus Lactobacillus. Bursin (BS) is a peptide isolated from the bursa of Fabricius for use as an adjuvant for a variety of immunogens. To investigate the synergistic effects of Lactobacillus plantarum (LP) dietary supplementation and BS immunization on production performance, immune characteristics, antioxidant status, and intestinal microflora in broilers, we randomly allocated 200 1-day-old broilers of mixed sex into 4 treatments in a 2 × 2 factorial arrangement (LP-/BS-, LP-/BS+, LP+/BS-, LP+/BS+) for 42 days. BS immunization enhanced immune response by increasing serum total immunoglobulin G concentration and interleukin-6 concentration, promoted antioxidant capacity by increasing catalase activities in serum and liver and by decreasing serum malondialdehyde (MDA) content at 42 days of age (DOA), and enriched intestinal microflora diversity. LP supplementation enhanced immune response by increasing interleukin-2 concentration at 42 DOA; promoted antioxidant capacity by increasing liver catalase activities, increasing glutathione peroxidase activities in serum and liver at 21 DOA, and decreasing serum MDA content at 42 DOA; promoted intestinal microflora composition by decreasing total aerobes and Escherichia coli counts at 21 DOA, by increasing total anaerobes count at 21 DOA, and by increasing Lactobacillus spp. and Bifidobacterium spp. counts at both 21 and 42 DOA. The interactions between BS and LP had a significant effect on daily body mass gain and feed conversion ratio in the starter period (1-21 DOA); on interleukin-2 concentration and liver MDA content at 21 DOA; and on thymus index, peripheral lymphocyte proliferation, and E. coli counts at 42 DOA. Overall, these data suggest that the combination of LP dietary supplementation and BS immunization promoted the production performance, immune characteristics, antioxidant

  4. The relation between serum Vitamin D levels and body antioxidant status in ischemic stroke patients: A case–control study

    PubMed Central

    Afshari, Laleh; Amani, Reza; Soltani, Farhad; Haghighizadeh, Mohammad Hossein; Afsharmanesh, Mohammad Reza

    2015-01-01

    Background: Stroke is the second cause of death among elderly people. Oxidative stress plays an important role in brain damage after stroke. Currently, Vitamin D has been shown as an antioxidant. The aim of this study was to evaluate the status of Vitamin D, antioxidant enzymes, and the relation between them in ischemic stroke patients. Materials and Methods: This case–control study was carried out on 36 patients with ischemic stroke patients and 36 matched subjects as controls. Intake of fruits and vegetables, exposure of sunlight, serum lipid profile, concentrations of serum 25-dihydroxy Vitamin D (25(OH) D), activities of serum superoxide dismutase, and glutathione peroxidase enzymes were determined. Results: Severe Vitamin D deficiency was seen in 30% of the patients versus 11% of the controls (P < 0.05). Consumption of fruits and vegetables was lower in patients than that of controls (P < 0.05). Activities of antioxidant enzymes and intake of fruits were positively correlated in stroke patients (P = 0.02). The most potent predictors of stroke risk were hypertension, high levels of low-density lipoprotein cholesterol (LDL-C) and history of cardiovascular disease (CVD) (odds ratios: 3.33, 3.15, and 3.14, respectively, P < 0.05 for all). There was no association between 25(OH) D levels with activities of serum antioxidant enzymes and lipid profile in the two groups. Conclusion: Ischemic stroke patients have higher prevalence of severe Vitamin D deficiency and lower intakes of fruits and vegetables. Intake of fruits was positive correlated to higher antioxidant enzymes levels. High levels of blood pressure, history of CVD, and high LDL-C levels are the strongest predictors of ischemic stroke. PMID:26605242

  5. Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing.

    PubMed

    Gruber, Jan; Fong, Sheng; Chen, Ce-Belle; Yoong, Sialee; Pastorin, Giorgia; Schaffer, Sebastian; Cheah, Irwin; Halliwell, Barry

    2013-01-01

    Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology. PMID:23022622

  6. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes.

    PubMed

    Bennedsen, M; Wang, X; Willén, R; Wadström, T; Andersen, L P

    1999-12-01

    Helicobacter pylori is a gram-negative bacterium affecting about half of the world population, causing chronic gastritis type B dominated by activated phagocytes. In some patients the disease evolves into gastric ulcer, duodenal ulcer, gastric cancer or MALT lymphoma. The pathogenesis is in part caused by the immunological response. In mouse models and in human disease, the mucosal immune response is characterized by activated phagocytes. Mucosal T-lymphocytes are producing IFN-gamma thus increasing mucosal inflammation and mucosal damage. A low dietary intake of antioxidants such as carotenoids and vitamin C may be an important factor for acquisition of H. pylori by humans. Dietary antioxidants may also affect both acquisition of the infection and the bacterial load of H. pylori infected mice. Antioxidants, including carotenoids, have anti-inflammatory effects. The aim of the present study was to investigate whether dietary antoxidant induced modulation of H. pylori in mice affected the cytokines produced by H. pylori specific T-cells. We found that treatment of H. pylori infected mice with an algal cell extract containing the antioxidant astaxanthin reduces bacterial load and gastric inflammation. These changes are associated with a shift of the T-lymphocyte response from a predominant Th1-response dominated by IFN-gamma to a Th1/Th2-response with IFN-gamma and IL-4. To our knowledge, a switch from a Th1-response to a mixed Th1/Th2-response during an ongoing infection has not been reported previously. PMID:10656672

  7. Iron (FeII) Chelation, Ferric Reducing Antioxidant Power, and Immune Modulating Potential of Arisaema jacquemontii (Himalayan Cobra Lily)

    PubMed Central

    Sudan, Rasleen; Bhagat, Madhulika; Singh, Jasvinder; Koul, Anupurna

    2014-01-01

    This study explored the antioxidant and immunomodulatory potential of ethnomedicinally valuable species, namely, Arisaema jacquemontii of north-western Himalayan region. The tubers, leaves, and fruits of this plant were subjected to extraction using different solvents. In vitro antioxidant studies were performed in terms of chelation power on ferrous ions and FRAP assay. The crude methanol extract of leaves was found to harbour better chelating capacity (58% at 100 μg/mL) and reducing power (FRAP value 1085.4 ± 0.11 μMFe3+/g dry wt.) than all the other extracts. The crude methanol extract was thus further partitioned with solvents to yield five fractions. Antioxidant study of fractions suggested that the methanol fraction possessed significant chelation capacity (49.7% at 100 μg/mL) and reducing power with FRAP value of 1435.4 μM/g dry wt. The fractions were also studied for immune modulating potential where it was observed that hexane fraction had significant suppressive effect on mitogen induced T-cell and B-cell proliferation and remarkable stimulating effect on humoral response by 141% and on DTH response by 168% in immune suppressed mice as compared to the controls. Therefore, it can be concluded that A. jacquemontii leaves hold considerable antioxidant and immunomodulating potential and they can be explored further for the identification of their chemical composition for a better understanding of their biological activities. PMID:24895548

  8. Helicobacter pylori Seropositivity’s Association with Markers of Iron, 1-Carbon Metabolism, and Antioxidant Status among US Adults: A Structural Equations Modeling Approach

    PubMed Central

    Beydoun, May A.; Dore, Greg A.; Canas, Jose A.; Beydoun, Hind A.; Zonderman, Alan B.

    2015-01-01

    Objectives We tested a model in which Helicobacter pylori seropositivity (Hps) predicted iron status, which in turn acted as a predictor for markers of 1-C metabolism that were then allowed to predict antioxidant status. Methods National Health and Nutrition Examination Surveys (NHANES 1999–2000) cross-sectional data among adults aged 20–85 y were analyzed (n = 3,055). Markers of Hps, iron status (serum ferritin and transferrin saturation (TS)); 1-C metabolism (serum folate (FOLserum), B-12, total homocysteine (tHcy), methylmalonic acid (MMA)) and antioxidant status (vitamins A and E) were entered into a structural equations model (SEM). Results Predictors of Hps included older age, lower education and income, racial/ethnic groups (lowest among Non-Hispanic Whites), and lifetime cigarette smoking. SEM modeling indicated that Hps had a direct inverse relationship with iron status (combining serum ferritin and TS) which in turn was positively related to 1-C metabolites (higher serum folate, B-12 or lower tHcy/MMA) that were positively associated with antioxidant status (combining serum vitamins A and E). Another pathway that was found bypassed 1-C metabolites (Hps → Iron_st → Antiox). The sum of all indirect effects from Hps combining both pathways and the other indirect pathways in the model (Hps → Iron_st → OneCarbon; Hps →OneCarbon →Antiox) was estimated at β = -0.006±0.003, p<0.05. Conclusions In sum, of the total effect of H. pylori seropositivity on antioxidant status, two significant indirect pathways through Iron status and 1-Carbon metabolites were found. Randomized controlled trials should be conducted to uncover the concomitant causal effect of H. pylori eradication on improving iron status, folate, B-12 and antioxidant status among H. pylori seropositive individuals. PMID:25815731

  9. Comparative Study of Antioxidant Status in Androgenic Embryos of Aesculus hippocastanum and Aesculus flava

    PubMed Central

    Štajner, Dubravka; Popović, Boris M.; Ćalić, Dušica; Štajner, Marijana

    2014-01-01

    In vivo (leaves and seed embryos) and in vitro (androgenic embryos) antioxidant scavenging activity of Aesculus hippocastanum and Aesculus flava medical plants was examined. Here we report antioxidant enzyme activities of superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase, reduced glutathione quantity, flavonoids, soluble protein contents, quantities of malondialdehyde, and •OH radical presence in the investigated plant samples. Total antioxidant capacity of all the samples of A. hippocastanum and A. flava was determined using FRAP, DPPH, and NO• radical scavenger capacity. The leaves of A. flava collected from the botanical garden exhibited stronger antioxidant activity (higher activities of SOD, and higher quantities of GSH, TSH, TPC, and scavenging abilities of DPPH and NO•, and higher FRAP values and lowest quantities of •OH and MDA) than in vitro obtained cultures. However, the leaves of A. flava showed higher antioxidant activity than the leaves of A. hippocastanum, and therefore they have a stronger tolerance of oxidative stress. Androgenic embryos of both species had low amount of antioxidants due to controlled in vitro environmental conditions (T, photoperiod, humidity, nutritive factors, and pathogen-free). Our results confirmed that we found optimal in vitro conditions for producing androgenic embryos of both Aesculus species. Also, we assume that horse chestnut androgenic embryos can be used as an alternative source for large-scale aescin production. PMID:24672369

  10. Plasma and Dietary Antioxidant Status as Cardiovascular Disease Risk Factors: A Review of Human Studies

    PubMed Central

    Wang, Ying; Chun, Ock K.; Song, Won O.

    2013-01-01

    Extensive evidence has demonstrated that many antioxidants such as vitamin C, vitamin E, carotenoids and polyphenols have protective effects in preventing cardiovascular disease (CVD), a chronic disease that is mediated by oxidative stress and inflammation. This review focuses on evidence from prospective cohort studies and clinical trials in regard to the associations between plasma/dietary antioxidants and cardiovascular events. Long-term, large-scale, population-based cohort studies have found that higher levels of serum albumin, bilirubin, glutathione, vitamin E, vitamin C, and carotenoids were associated with a lower risk of CVD. Evidence from the cohort studies in regard to dietary antioxidants also supported the protective effects of dietary vitamin E, vitamin C, carotenoids, and polyphenols on CVD risk. However, results from large randomized controlled trials did not support long-term use of single antioxidant supplements for CVD prevention due to their null or even adverse effects on major cardiovascular events or cancer. Diet quality indexes that consider overall diet quality rather than single nutrients have been drawing increasing attention. Cohort studies and intervention studies that focused on diet patterns such as high total antioxidant capacity have documented protective effects on CVD risk. This review provides a perspective for future studies that investigate antioxidant intake and risk of CVD. PMID:23912327

  11. Comparative study of antioxidant status in androgenic embryos of Aesculus hippocastanum and Aesculus flava.

    PubMed

    Štajner, Dubravka; Popović, Boris M; Ćalić, Dušica; Št, Marijana

    2014-01-01

    In vivo (leaves and seed embryos) and in vitro (androgenic embryos) antioxidant scavenging activity of Aesculus hippocastanum and Aesculus flava medical plants was examined. Here we report antioxidant enzyme activities of superoxide dismutase, catalase, guaiacol peroxidase and glutathione peroxidase, reduced glutathione quantity, flavonoids, soluble protein contents, quantities of malondialdehyde, and (•)OH radical presence in the investigated plant samples. Total antioxidant capacity of all the samples of A. hippocastanum and A. flava was determined using FRAP, DPPH, and NO(•) radical scavenger capacity. The leaves of A. flava collected from the botanical garden exhibited stronger antioxidant activity (higher activities of SOD, and higher quantities of GSH, TSH, TPC, and scavenging abilities of DPPH and NO(•), and higher FRAP values and lowest quantities of (•)OH and MDA) than in vitro obtained cultures. However, the leaves of A. flava showed higher antioxidant activity than the leaves of A. hippocastanum, and therefore they have a stronger tolerance of oxidative stress. Androgenic embryos of both species had low amount of antioxidants due to controlled in vitro environmental conditions (T, photoperiod, humidity, nutritive factors, and pathogen-free). Our results confirmed that we found optimal in vitro conditions for producing androgenic embryos of both Aesculus species. Also, we assume that horse chestnut androgenic embryos can be used as an alternative source for large-scale aescin production. PMID:24672369

  12. Antioxidants as a Preventive Treatment for Epileptic Process: A Review of the Current Status

    PubMed Central

    Martinc, Boštjan; Grabnar, Iztok; Vovk, Tomaž

    2014-01-01

    Epilepsy is known as one of the most frequent neurological diseases, characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in pathways leading to neurodegeneration, which serves as the most important propagating factor, leading to the epileptic condition and cognitive decline. Moreover, there is also a growing body of evidence showing the disturbance of antioxidant system balance and consequently increased production of reactive species in patients with epilepsy. A meta-analysis, conducted in the present review confirms an association between epilepsy and increased lipid peroxidation. Furthermore, it was also shown that some of the antiepileptic drugs could potentially be responsible for additionally increased lipid peroxidation. Therefore, it is reasonable to propose that during the epileptic process neuroprotective treatment with antioxidants could lead to less sever structural damages, reduced epileptogenesis and milder cognitive deterioration. To evaluate this hypothesis studies investigating the neuroprotective therapeutic potential of various antioxidants in cells, animal seizure models and patients with epilepsy have been reviewed. Numerous beneficial effects of antioxidants on oxidative stress markers and in some cases also neuroprotective effects were observed in animal seizure models. However, despite these encouraging results, till now only a few antioxidants have been further applied to patients with epilepsy as an add-on therapy. Based on the several positive findings in animal models, a strong need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation of antioxidants efficacy in patients with epilepsy is warranted. PMID:25977679

  13. Effect of dietary vanadium and vitamin C on egg quality and antioxidant status in laying hens.

    PubMed

    Wang, J P; He, K R; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Su, Z W; Xuan, Y; Zhang, K Y

    2016-06-01

    This study assessed the effect of dietary vanadium (V) and vitamin C (VC) on production performance, egg quality and antioxidant status in laying hens. A total of 360 laying hens (31-week-old) were randomly allotted into a 3 × 3 factorial arrangement treatments (four replicates and 10 chicks per replicate) with three levels of dietary V (0, 5 and 10 mg/kg) and three levels of vitamin C (0, 50 and 100 mg/kg) for 12 weeks. The effect of V and VC did not alter egg production, egg weight, average daily feed intake and feed conversion ratio during 1-12 week. Albumen height and Haugh unit value were linearly decreased (p < 0.001) by addition of V, whereas the effect of 100 mg/kg VC was observed to counteract (p < 0.05) this effect in V-containing treatments during 1-12 week. Hens fed V-containing diet laid lighter (linear effect, p < 0.05) coloured eggs (higher lightness value, lower redness and yellowness value), and the VC exerted no influence on it during 1-12 week. The serum superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, ability to inhibit hydroxyl radical, were significantly decreased, and the malondialdehyde (MDA) and V contents were increased (p < 0.05) by effect of V during 4, 8 and 12 week. The effect of VC alone and the interactive effect between VC and V were shown to increase serum (p < 0.05) SOD activity in 4 week and decrease MAD levels in 12 week. The result indicate that V decreased the egg quality and caused the oxidative stress at level of 5 mg/kg and 10 mg/kg, and the addition of 100 mg/kg vitamin C can alleviate its egg quality reduction effect and can mitigate the oxidative stress to some extent. PMID:26259765

  14. Temporal Dynamics Underlying the Modulation of Social Status on Social Attention

    PubMed Central

    Dalmaso, Mario; Galfano, Giovanni; Coricelli, Carol; Castelli, Luigi

    2014-01-01

    Fixating someone suddenly moving the eyes is known to trigger a corresponding shift of attention in the observer. This phenomenon, known as gaze-cueing effect, can be modulated as a function of the social status of the individual depicted in the cueing face. Here, in two experiments, we investigated the temporal dynamics underlying this modulation. To this end, a gaze-cueing paradigm was implemented in which centrally-placed faces depicting high- and low-status individuals suddenly shifted the eyes towards a location either spatially congruent or incongruent with that occupied by a subsequent target stimulus. Social status was manipulated by presenting fictive Curriculum Vitae before the experimental phase. In Experiment 1, in which two temporal intervals (50 ms vs. 900 ms) occurred between the direct-gaze face and the averted-gaze face onsets, a stronger gaze-cueing effect in response to high-status faces than low-status faces was observed, irrespective of the time participants were allowed for extracting social information. In Experiment 2, in which two temporal intervals (200 ms vs. 1000 ms) occurred between the averted-gaze face and target onset, a stronger gaze cueing for high-status faces was observed at the shorter interval only. Taken together, these results suggest that information regarding social status is extracted from faces rapidly (Experiment 1), and that the tendency to selectively attend to the locations gazed by high-status individuals may decay with time (Experiment 2). PMID:24667700

  15. Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats.

    PubMed

    Bhasker, T Vijay; Gowda, N K S; Mondal, S; Krishnamoorthy, P; Pal, D T; Mor, A; Bhat, S Karthik; Pattanaik, A K

    2016-07-01

    The influence of Boron (B) supplementation on immune and antioxidant status of rats with or without abiotic stress induced by dietary calcium (Ca) restriction was studied in a feeding trial of 90 days. Wistar strain rats (3-4 wk age, n=84) were divided into 7 dietary groups (4 replicates of 3 each) viz., normal-calcium (100%) basal diet alone (NC, control) or supplemented with B at 5 (NCB-5), 10 (NCB-10), 20 (NCB-20) and 40ppm (NCB-40) levels; low-calcium (50%) basal diet alone (LC) or supplemented with 40ppm B (LCB-40). After 75 days of experimental feeding, rats were challenged with intraperitoneal injection of sheep RBCs to assess their humoral immunity. At the end of the trial, cell-mediated immunity was assessed as foot pad reaction to sheep RBCs injected into the hind leg paws. Eight rats from each group were sacrificed to collect blood for estimation of minerals and total antioxidant activity, and liver for superoxide dismutase gene expression analysis. Supplementation of graded levels of B (5, 10, 20 and 40ppm) as borax in NC diets significantly increased (P<0.01) the footpad thickness and serum total antioxidant activity, hepatic expression levels of both Cu-Zn SOD (SOD1) and Mn-SOD (SOD2) mRNAs. The erythrocytic SOD activity and humoral response did not differ significantly among the dietary groups. In Ca restricted groups, humoral immune response was significantly decreased (P<0.01) compared to control but increased (P<0.05) with 40ppm B supplementation. Serum levels of copper (Cu) and zinc (Zn) remained similar among the dietary groups, while the manganese (Mn) content was significantly decreased (P<0.01) with increased levels of dietary B. In conclusion, B supplementation increased the hepatic mRNA expression levels of both SOD isoenzymes, thereby improving the immune and antioxidant status. PMID:27259355

  16. Specific antioxidant compounds differentially modulate cytotoxic activity of doxorubicin and cisplatin: in vitro and in vivo study

    PubMed Central

    Panchuk, Rostyslav; Skorokhyd, Nadia; Chumak, Vira; Lehka, Lilya; Omelyanchik, Sofya; Gurinovich, Valery; Moiseenok, Andrey; Heffeter, Petra; Berger, Walter; Stoika, Rostyslav

    2014-01-01

    Aim To use the antioxidant compounds (sodium selenite, selenomethionine, D-pantethine) for modulation of cytotoxic effect of doxorubicin and cisplatin toward wild type and drug-resistant mutants of several human tumor cells. Similar treatments were applied in vivo toward adult male Wistar rats. Methods Human tumor cells of different lines (HCT-116, Jurkat and HL-60) with various mechanisms of drug-resistance were treated with doxorubicin or cisplatin, alone or in combination with sodium selenite, selenomethionine, or D-pantethine. Cell viability, induction of apoptosis, and production of O2- radicals were measured. Activity of redox potential modulating enzymes was measured in the liver and blood plasma of adult male Wistar rats subjected to similar treatments. Results All antioxidants used in physiologically harmless concentration inhibited cytotoxic action of doxorubicin toward tumor cells sensitive to chemotherapy treatment by 15%-30%, and slightly enhanced cytotoxic effect of this medicine toward drug-resistant malignant cells. At the same time, there was no significant effect of these antioxidants on cisplatin action. Such effects were accompanied by a complete inhibition of production of superoxide radicals induced by doxorubicin. The results of in vivo study in adult male Wistar rats were in agreement with the results of in vitro study of human tumor cells. Conclusion Protective effect of specific antioxidant agents during cytotoxic action of doxorubicin was demonstrated in vitro in drug-sensitive human tumor cells and in adult male Wistar rats, while there was no protective effect in drug-resistant sub-lines of these tumor cells during action of doxorubicin and cisplatin. PMID:24891279

  17. Influence of Sulfur Induced Stress on Oxidative Status and Antioxidative Machinery in Leaves of Allium cepa L.

    PubMed

    Chandra, Neelam; Pandey, Nalini

    2014-01-01

    A pot culture experiment was carried out to assess the effect of sulfur stress on growth, oxidative status, and antioxidative metabolism. Onion plants were treated with three different levels of sulfur, namely, 1.0, 4.0, and 8.0 mM S L(-1). Plants raised with 4.0 mM S L(-1) represent sufficient growth for the best vegetative yield. Plants supplied with 1.0 and 8.0 mM S L(-1) showed retarded growth, chlorosis, and reduction in biomass and photoassimilatory pigments. Tissue sulfur concentration and cysteine were increased with increasing sulfur supply. Carbohydrates (sugars and starch) were accumulated in sulfur stressed plants. Hydrogen peroxide levels were increased in sulfur stressed plants. Thiobarbituric acid reactive substances levels were also increased which was an indicator of lipid peroxidation. Enzymatic (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase) and nonenzymatic (asorbate) antioxidative components were enhanced in sulfur stressed plants. Glutathione was increased with increasing sulfur supply. The present study showed that the adverse effects of inadequate sulfur supply result in irregular metabolic activities and antioxidant machinery. PMID:27379315

  18. Morin modulates the oxidative stress-induced NF-kappaB pathway through its anti-oxidant activity.

    PubMed

    Kim, Ji Min; Lee, Eun Kyeong; Park, Gwangli; Kim, Mi Kyung; Yokozawa, Takako; Yu, Byung Pal; Chung, Hae Young

    2010-04-01

    Morin is a flavone that has anti-inflammatory effects through a mechanism that is not well understood. Based on the extreme sensitive nature of the transcription factor, NF-kB to redox change, it is postulated that morin's anti-NF-kappaB activation likely depends on its ability to scavenge excessive reactive species [RS]. The present study assessed the extent of morin's ability to modulate RS-induced NF-kappaB activation through its scavenging activity. Results indicate that morin neutralized RS in vitro and inhibited t-BHP-induced RS generation. It also examined morin for suppressed redox-sensitive transcription factor NF-kappaB activation via reduced DNA binding activity, I kappaB alpha phosphorylation and p65/p50 nuclear translocation. The more important finding was that suppression of the NF-kappaB cascade by morin was modulated through the ERK and p38 MAPKs signal transduction pathways in endothelial cells. As a consequence, morin's anti-oxidant effect extended expression level of NF-kappaB dependent pro-inflammatory genes, thereby reducing COX-2, iNOS and 5-LOX. The data indicate that morin has strong anti-oxidative power against RS-induced NF-kappaB modulation through the ERK and p38 MAPKs signalling pathways by its RS scavenging activity. The significance of the current study is the new revelation that morin may have potential as an effective anti-inflammatory therapeutic agent. PMID:20187708

  19. Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes mellitus

    PubMed Central

    2014-01-01

    Background Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses. Methods Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications. Parameters investigated were antioxidant potential, oxidative stress, and the immunity by in vivo experiments. Results The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly (P < 0.05). Experimental diets increased the tocopherol contents (P < 0.01) and enhanced the expression of hepatic enzymes (P < 0.01). Correlation matrix further indicated that antioxidant potential is positively associated (P < 0.05) responsible for the modulation of hepatic enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications. Conclusions Overall, results of present study supported the traditional use of N. sativa and its derived products as a treatment for hyperglycemia and allied abnormalities. Moreover, N. sativa fixed and essential oils significantly ameliorate free radicals and improve antioxidant capacity thus reducing the risk of diabetic complications. PMID:24939518

  20. Fermented goat milk consumption improves melatonin levels and influences positively the antioxidant status during nutritional ferropenic anemia recovery.

    PubMed

    Moreno-Fernandez, Jorge; Diaz-Castro, Javier; Alférez, M José M; Nestares, Teresa; Ochoa, Julio J; Sánchez-Alcover, Ana; López-Aliaga, Inmaculada

    2016-02-01

    The aim of the current study was to assess the influence of fermented goat or cow milk on melatonin levels and antioxidant status and during anemia recovery. Eighty male Wistar rats were placed on a pre-experimental period of 40 days and randomly divided into two groups, a control group receiving normal-Fe diet (45 mg kg(-1)) and the Fe-deficient group receiving low-Fe diet (5 mg kg(-1)). Then, the rats were fed with fermented goat or cow milk-based diets with a normal-Fe content or Fe-overload (450 mg kg(-1)) for 30 days. After 30 days of feeding the fermented milks, the total antioxidant status (TAS) was higher in both groups of animals fed fermented goat milk with the normal-Fe content. Plasma and urine 8-OHdG were lower in control and anemic rats fed fermented goat milk. Melatonin and corticosterone increased in the anemic groups during Fe replenishment with both fermented milks. Urine isoprostanes were lower in both groups fed fermented goat milk. Lipid and protein oxidative damage were higher in all tissues with fermented cow milk. During anemia instauration, an increase in melatonin was observed, a fact that would improve the energy metabolism and impaired inflammatory signaling, however, during anemia recovery, fermented goat milk had positive effects on melatonin and TAS, even in the case of Fe-overload, limiting the evoked oxidative damage. PMID:26662041

  1. Effects of chestnut tannins on the meat quality, welfare, and antioxidant status of heat-stressed lambs.

    PubMed

    Liu, Huawei; Li, Ke; Mingbin, Lv; Zhao, Jinshan; Xiong, Benhai

    2016-06-01

    A study was conducted to evaluate the effects of chestnut tannins (CT) on the meat quality, welfare and antioxidant status of heat-stressed lambs. Lambs in one group were raised at 20°C and fed a basal diet (N), and three other groups (32°C) were fed a basal diet with 0 (CT0), 5 (CT5), and 10 g (CT10) of CT/kg. Addition of CT increased the b* and L* values of meat and superoxide dismutase and glutathione peroxidase activity in the serum and liver of heat-stressed lambs. The malondialdehyde concentration in meat, serum, and liver of heat-stressed lambs was decreased by dietary CT supplementation. Lambs in the CT0 group had higher cortisol, T3, and T4 levels, creatine kinase activity, white blood cell count, neutrophil count, neutrophil:lymphocyte ratio and a lower lymphocyte count than that in the N and CT10 groups. In conclusion, the addition of CT improved meat quality, certain stress parameters, and the antioxidant status of heat-stressed lambs. PMID:26914512

  2. Influence of mannan oligosaccharide, Ligustrum lucidum and Schisandra chinensis on parameters of antioxidative and immunological status of broilers.

    PubMed

    Ma, Deying; Li, Qundao; Du, Juan; Liu, Yuqin; Liu, Shengwang; Shan, Anshan

    2006-12-01

    The study was conducted to evaluate effects of dietary supplementation with Ligustrum lucidum (LL, 10 g/kg), Schisandra chinensis (SC, 10 g/kg), LL (10 g/kg) + mannan oligosaccharides (MOS, 50 mg/kg), or SC (10 g/kg) + MOS (50 mg/kg) on growth performance and parameters of antioxidative and immunological status of broilers. The results showed that feeding LL, SC, LL + MOS, or SC + MOS had no significant effect on growth performance of broilers relative to the control. However, compared to the control, LL, SC, LL + MOS, or SC + MOS significantly decreased malondialdehyde concentration in serum, thigh, and heart of broilers. In addition, glutathione reductase activity of heart and sera of the birds were significantly elevated by supplementation LL, SC, LK + MOS, or SC + MOS. Furthermore, LL, SC, LL + MOS, or SC + MOS significantly improved antibody titres against Newcastle disease virus and lymphocyte proliferation of broilers (p < 0.05). Whereas, no cooperating effect between LL (or SC) and MOS on antioxidant status and immunity of broilers were found. PMID:17236706

  3. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes-An in vitro study

    SciTech Connect

    Kiruthiga, P.V.; Pandian, S. Karutha; Devi, K. Pandima

    2010-09-01

    PAHs are a ubiquitous class of environmental contaminants that have a large number of hazardous consequences on human health. An important prototype of PAHs, B(a)P, is notable for being the first chemical carcinogen to be discovered and the one classified by EPA as a probable human carcinogen. It undergoes metabolic activation to QD, which generate ROS by redox cycling system in the body and oxidatively damage the macromolecules. Hence, a variety of antioxidants have been tested as possible protectors against B(a)P toxicity. Silymarin is one such compound, which has high human acceptance, used clinically and consumed as dietary supplement around the world for its strong anti-oxidant efficacy. Silymarin was employed as an alternative approach for treating B(a)P induced damage and oxidative stress in PBMC, with an emphasis to provide the molecular basis for the effect of silymarin against B(a)P induced toxicity. PBMC cells exposed to either benzopyrene (1 {mu}M) or silymarin (2.4 mg/ml) or both was monitored for toxicity by assessing LPO, PO, redox status (GSH/GSSG ratio), glutathione metabolizing enzymes GR and GPx and antioxidant enzymes CAT and SOD. This study also investigated the protective effect of silymarin against B(a)P induced biochemical alteration at the molecular level by FT-IR spectroscopy. Our findings were quite striking that silymarin possesses substantial protective effect against B(a)P induced oxidative stress and biochemical changes by restoring redox status, modulating glutathione metabolizing enzymes, hindering the formation of protein oxidation products, inhibiting LPO and further reducing ROS mediated damages by changing the level of antioxidant enzymes. The results suggest that silymarin exhibits multiple protections and it should be considered as a potential protective agent for environmental contaminant induced immunotoxicity.

  4. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile

    SciTech Connect

    Kasperczyk, Aleksandra; Dobrakowski, Michał; Czuba, Zenon P.; Horak, Stanisław; Kasperczyk, Sławomir

    2015-05-01

    We investigated the associations between environmental exposure to lead and a repertoire of cytokines in seminal plasma of males with normal semen profile according to the WHO criteria. Based on the median lead concentration in seminal plasma, 65 samples were divided into two groups: low (LE) and high exposure to lead (HE). Differences in semen volume and the pH, count, motility and morphology of sperm cells were not observed between the examined groups. The total oxidant status value and the level of protein sulfhydryl groups as well as the activities of manganese superoxide dismutase and catalase were significantly higher in the HE group, whereas the total antioxidant capacity value and the activities of glutathione reductase and glutathione-S-transferase were depressed. IL-7, IL-10, IL-12, and TNF-α levels were significantly higher in the HE group compared with the LE group. Environmental exposure to lead is sufficient to induce oxidative stress in seminal plasma and to modulate antioxidant defense system. - Highlights: • Lead induces oxidative stress in seminal plasma in human. • Lead modulates antioxidant defense system in seminal plasma in human. • Lead does not change a Th1/Th2 imbalance in seminal plasma in human.

  5. The Effect of Seasonal Thermal Stress on Lipid Mobilisation, Antioxidant Status and Reproductive Performance in Dairy Cows.

    PubMed

    Turk, R; Podpečan, O; Mrkun, J; Flegar-Meštrić, Z; Perkov, S; Zrimšek, P

    2015-08-01

    Heat stress is a major factor contributing to low fertility of dairy cows with a great economic impact in dairy industry. Heat-stressed dairy cows usually have reduced nutrient intake, resulting in a higher degree of negative energy balance (NEB). The aim of this study was to investigate the seasonal thermal effect on lipid metabolism, antioxidant activity and reproductive performance in dairy cows. Thirty-two healthy dairy heifers were included in the study. According to the ambient temperature, animals were divided into two groups: winter (N = 14) and summer season (N = 18). Metabolic parameters, paraoxonase-1 (PON1) activity and total antioxidant status (TAS) were monitored at the time of insemination (basal values) and from 1 week before until 8 weeks after calving. Number of services per conception and calving-to-conception (CC) interval were calculated from the farm recording data. Serum triglyceride, non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) concentrations were significantly increased after calving in summer compared to winter, indicating higher degree of NEB in cows during summer. PON1 activity was significantly decreased after calving in both summer and winter group. TAS concentration was significantly lower in summer than that in winter. A significantly higher number of services were needed for conception in summer compared to winter, and CC interval was significantly longer in summer than that in winter as well. Additionally, reproductive performance significantly correlated with the severity of NEB, suggesting that lipid mobilization and lower antioxidant status contributed to poor reproduction ability in dairy cows during hot months. PMID:25996438

  6. Biofortified Carrot Intake Enhances Liver Antioxidant Capacity and Vitamin A Status in Mongolian Gerbils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofortification efforts have increased concentrations of bioactive compounds in carrots. Vitamin A bioefficacy and antioxidant potential of four biofortified carrot varieties [purple/orange (PO), purple/orange/red (POR), orange/red (OR) and orange (O)] were measured in Mongolian gerbils (n = 73). ...

  7. Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum

    PubMed Central

    Pan, Ling; Zhang, Xinquan; Wang, Jianping; Ma, Xiao; Zhou, Meiliang; Huang, LinKai; Nie, Gang; Wang, Pengxi; Yang, Zhongfu; Li, Ji

    2016-01-01

    Drought is a major environmental stress that limits growth and development of cool-season annual grasses. Drought transcriptional profiles of resistant and susceptible lines were studied to understand the molecular mechanisms of drought tolerance in annual ryegrass (Lolium multiflorum L.). A total of 4718 genes exhibited significantly differential expression in two L. multiflorum lines. Additionally, up-regulated genes associated with drought response in the resistant lines were compared with susceptible lines. Gene ontology enrichment and pathway analyses revealed that genes partially encoding drought-responsive proteins as key regulators were significantly involved in carbon metabolism, lipid metabolism, and signal transduction. Comparable gene expression was used to identify the genes that contribute to the high drought tolerance in resistant lines of annual ryegrass. Moreover, we proposed the hypothesis that short-term drought have a beneficial effect on oxidation stress, which may be ascribed to a direct effect on the drought tolerance of annual ryegrass. Evidence suggests that some of the genes encoding antioxidants (HPTs, GGT, AP, 6-PGD, and G6PDH) function as antioxidant in lipid metabolism and signal transduction pathways, which have indispensable and promoting roles in drought resistance. This study provides the first transcriptome data on the induction of drought-related gene expression in annual ryegrass, especially via modulation of metabolic homeostasis, signal transduction, and antioxidant defenses to improve drought tolerance response to short-term drought stress. PMID:27200005

  8. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts

    PubMed Central

    Herath, Thanuja D. K.; Darveau, Richard P.; Seneviratne, Chaminda J.; Wang, Cun-Yu; Wang, Yu; Jin, Lijian

    2016-01-01

    Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis. PMID:27538450

  9. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts.

    PubMed

    Herath, Thanuja D K; Darveau, Richard P; Seneviratne, Chaminda J; Wang, Cun-Yu; Wang, Yu; Jin, Lijian

    2016-01-01

    Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis. PMID:27538450

  10. Modulation of hypothalamic-pituitary-interrenal axis function by social status in rainbow trout.

    PubMed

    Jeffrey, Jennifer D; Esbaugh, Andrew J; Vijayan, Mathilakath M; Gilmour, Kathleen M

    2012-04-01

    Juvenile rainbow trout (Oncorhynchus mykiss) form stable dominance hierarchies when confined in pairs. These hierarchies are driven by aggressive competition over limited resources and result in one fish becoming dominant over the other. An important indicator of low social status is sustained elevation of circulating cortisol levels as a result of chronic activation of the hypothalamic-pituitary-interrenal (HPI) axis. In the present study it was hypothesized that social status modulates the expression of key proteins involved in the functioning of the HPI axis. Cortisol treatment and fasting were used to assess whether these characteristics seen in subordinate fish also affected HPI axis function. Social status modulated plasma adrenocorticotropic hormone (ACTH) levels, cortisol synthesis, and liver glucocorticoid receptor (GR) expression. Plasma ACTH levels were lower by approximately 2-fold in subordinate and cortisol-treated fish, consistent with a negative feedback role for cortisol in modulating HPI axis function. Although cortisol-treated fish exhibited differences in corticotropin-releasing factor (CRF) and CRF-binding protein (CRF-BP) mRNA relative abundances in the preoptic area and telencephalon, respectively, no effect of social status on CRF or CRF-BP was detected. Head kidney melanocortin 2 receptor (MC2R) mRNA relative levels were unaffected by social status, while mRNA relative abundances of steroidogenic acute regulatory protein (StAR) and cytochrome P450 side chain cleavage (P450scc) enzyme were elevated in dominant fish. Liver GR2 mRNA and total GR protein levels in subordinate fish were lower than control values by approximately 2-fold. In conclusion, social status modulated the functioning of the HPI axis in rainbow trout. Our results suggest altered cortisol dynamics and reduced target tissue response to this steroid in subordinate fish, while the higher transcript levels for steroid biosynthesis in dominant fish leads us to propose an

  11. Status Report on NEAMS System Analysis Module Development

    SciTech Connect

    Hu, R.; Fanning, T. H.; Sumner, T.; Yu, Y.

    2015-12-01

    Under the Reactor Product Line (RPL) of DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, an advanced SFR System Analysis Module (SAM) is being developed at Argonne National Laboratory. The goal of the SAM development is to provide fast-running, improved-fidelity, whole-plant transient analyses capabilities. SAM utilizes an object-oriented application framework MOOSE), and its underlying meshing and finite-element library libMesh, as well as linear and non-linear solvers PETSc, to leverage modern advanced software environments and numerical methods. It also incorporates advances in physical and empirical models and seeks closure models based on information from high-fidelity simulations and experiments. This report provides an update on the SAM development, and summarizes the activities performed in FY15 and the first quarter of FY16. The tasks include: (1) implement the support of 2nd-order finite elements in SAM components for improved accuracy and computational efficiency; (2) improve the conjugate heat transfer modeling and develop pseudo 3-D full-core reactor heat transfer capabilities; (3) perform verification and validation tests as well as demonstration simulations; (4) develop the coupling requirements for SAS4A/SASSYS-1 and SAM integration.

  12. Extracellular-signal-regulated kinase 5 modulates the antioxidant response by transcriptionally controlling Sirtuin 1 expression in leukemic cells.

    PubMed

    Lopez-Royuela, Nuria; Rathore, Moeez G; Allende-Vega, Nerea; Annicotte, Jean-Sébastien; Fajas, Lluis; Ramachandran, Bindu; Gulick, Tod; Villalba, Martin

    2014-08-01

    Cancer cell metabolism differs from that of non-transformed cells in the same tissue. This specific metabolism gives tumor cells growing advantages besides the effect in increasing anabolism. One of these advantages is immune evasion mediated by a lower expression of the mayor histocompatibility complex class I molecules. The extracellular-signal-regulated kinase-5 regulates both mayor histocompatibility complex class I expression and metabolic activity. However, the mechanisms underlying are largely unknown. We show here that extracellular-signal-regulated kinase-5 regulates the transcription of the NADH(+)-dependent histone deacetylase silent mating type information regulation 2 homolog 1 (Sirtuin 1) in leukemic Jurkat T cells. This involves the activation of the transcription factor myocyte enhancer factor-2 and its binding to the sirt1 promoter. In addition, extracellular-signal-regulated kinase-5 is required for T cell receptor-induced and oxidative stress-induced full Sirtuin 1 expression. Extracellular-signal-regulated kinase-5 induces the expression of promoters containing the antioxidant response elements through a Sirtuin 1-dependent pathway. On the other hand, down modulation of extracellular-signal-regulated kinase-5 expression impairs the anti-oxidant response. Notably, the extracellular-signal-regulated kinase-5 inhibitor BIX02189 induces apoptosis in acute myeloid leukemia tumor cells without affecting T cells from healthy donors. Our results unveil a new pathway that modulates metabolism in tumor cells. This pathway represents a promising therapeutic target in cancers with deep metabolic layouts such as acute myeloid leukemia. PMID:24880091

  13. Chemoprevention of rat mammary carcinogenesis by Azadirachta indica leaf fractions: modulation of hormone status, xenobiotic-metabolizing enzymes, oxidative stress, cell proliferation and apoptosis.

    PubMed

    Vinothini, G; Manikandan, P; Anandan, R; Nagini, S

    2009-08-01

    We evaluated the chemopreventive potential of the ethyl acetate fraction (EAF) and methanolic fraction (MF) of Azadirachta indica (neem) leaf on 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary carcinogenesis. Estradiol and estrogen receptor status, xenobiotic-metabolizing enzyme activities, redox status, DNA and protein modifications, and the expression of cell proliferation, and apoptosis related proteins in the mammary gland and liver were used as biomarkers of chemoprevention. Administration of both EAF and MF at a dose of 10mg/kg bw effectively suppressed tumour incidence. Chemoprevention by neem leaf fractions was associated with modulation of hormone and receptor status, xenobiotic-metabolising enzymes, and lipid and protein oxidation, with upregulation of antioxidants, inhibition of oxidative DNA damage, protein modification, and cell proliferation, and induction of apoptosis. However EAF rich in constituent phytochemicals was more effective than MF in modulating multiple molecular targets. These results provide evidence for the chemopreventive efficacy of neem leaf fractions in the rat mammary tumour model. PMID:19427891

  14. Social status modulates prosocial behavior and egalitarianism in preschool children and adults

    PubMed Central

    Guinote, Ana; Cotzia, Ioanna; Sandhu, Sanpreet; Siwa, Pramila

    2015-01-01

    Humans are a cooperative species, capable of altruism and the creation of shared norms that ensure fairness in society. However, individuals with different educational, cultural, economic, or ethnic backgrounds differ in their levels of social investment and endorsement of egalitarian values. We present four experiments showing that subtle cues to social status (i.e., prestige and reputation in the eyes of others) modulate prosocial orientation. The experiments found that individuals who experienced low status showed more communal and prosocial behavior, and endorsed more egalitarian life goals and values compared with those who experienced high status. Behavioral differences across high- and low-status positions appeared early in human ontogeny (4–5 y of age). PMID:25561527

  15. Antioxidant status in blood of gynaecological patients: influence of diagnosis and reproductive factors.

    PubMed

    Pejić, S; Stojiljković, V; Todorović, A; Gavrilović, L; Popović, N; Pavlović, I; Pajović, S B

    2015-01-01

    Cancer of the reproductive tract is an important cause of morbidity and mortality among women worldwide. In this study we evaluated the influence of diagnostic categories, age and reproductive factors on antioxidant enzymes and lipid hydroperoxides in the blood of gynaecological patients diagnosed with endometrial polyp, myoma, hyperplasia simplex, hyperplasia complex and endometrial adenocarcinoma. Multivariate regression analysis was used to assess the association of diagnosis, age, parity, abortions and abnormal uterine bleeding with the examined parameters. Diagnosis provided the best predictive model for superoxide dismutase, catalase and glutathione peroxidase activities, and also for the lipid hydroperoxide level. Abortions fitted the best predictive model for superoxide dismutase activity. A significant correlation was also found between the predictor variables themselves. This study showed that reproductive and other factors may be associated, at least partially, with antioxidant capacity and ability to defend against the oxidative damage in gynaecological patients with various diagnoses. PMID:25958308

  16. Hypoglycemic activity of Gymnema sylvestre extracts on oxidative stress and antioxidant status in diabetic rats.

    PubMed

    Kang, Myung-Hwa; Lee, Min Sun; Choi, Mi-Kyeong; Min, Kwan-Sik; Shibamoto, Takayuki

    2012-03-14

    Diabetes mellitus, which is associated with oxidative damage, has a significant impact on health, quality of life, and life expectancy. An ethanol extract of Gymnema sylvestre leaf was examined in vitro and in vivo to investigate the role of antioxidants in diabetic rats. The extract exhibited strong antioxidant activity in the assays, including TBA (56%), SOD-like (92%), and ABTS (54%). Blood glucose levels in the diabetic rats fed G. sylvestre extract decreased to normal levels. The presence of the antihyperglycemic compounds gymnemagenin and gymnemic acids in G. sylvestre extract was detected by LC/MS analysis. Lipid peroxidation levels were decreased by 31.7% in serum, 9.9% in liver, and 9.1% in kidney in the diabetic rats fed the extract. Feeding G. sylvestre extract to the diabetic rats decreased the activity of glutathione peroxidase in cytosolic liver and glutamate pyruvate transaminase in serum to normal levels. PMID:22360666

  17. Alteration of antioxidant defense status precedes humoral immune response abnormalities in macrosomia

    PubMed Central

    Haddouche, Mustapha; Aribi, Mourad; Moulessehoul, Soraya; Smahi, Mohammed Chems-Eddine Ismet; Lammani, Mohammed; Benyoucef, Mohammed

    2011-01-01

    Summary Background This study aimed to investigate whether the anomalies affecting the antioxidant and humoral immune defenses could start at birth and to check whether the decrease in antioxidant defenses may precede the immune abnormalities in macrosomic newborns. Material/Methods Thirty macrosomic and 30 sex-matched control newborns were recruited for a retrospective case-control study at the Maghnia Maternity Hospital of Tlemcen Department (Algeria). Results The serum IgG levels were similar in both groups. However, plasma ORAC, albumin, vitamin E, SOD, CAT and GSH-Px levels were significantly decreased in macrosomic as compared to control newborns, yet no difference was observed after adjustment for weight. Additionally, serum concentrations of complement C3, MDA and XO were significantly higher in macrosomic as compared to controls before adjustment for weight. Moreover, macrosomia was significantly associated with high levels of complement C3 (OR=8, p=0.002); whereas no association with those of IgG was observed (OR<1, p>0.05). Furthermore, macrosomia was significantly associated with low levels of ORAC (OR=4.96, p=0.027), vitamin E (OR=4.5, p=0.018), SOD (OR=6.88, p=0.020) and CAT (OR=5.67, p=0.017), and with high levels of MDA (OR=10.29, p=0.005). Conclusions Abnormalities of the humoral defense system in excessive weight could be preceded by alterations of the anti-oxidative defense and by inflammatory response and activation of innate immunity at birth. Additionally, excessive weight could be a potential factor contributing to decreased anti-oxidative capacity and increased oxidative stress. PMID:22037745

  18. Effects of Monascus-fermented grain extracts on plasma antioxidant status and tissue levels of ubiquinones and α-tocopherol in hyperlipidemic rats.

    PubMed

    Pyo, Young-Hee; Seong, Ki-Seung

    2013-11-01

    We investigated the effects of Monascus-fermented mixed grain extracts (MFGEs) enriched with bioactive mevinolins (natural statins) and coenzyme Qs (CoQ9+CoQ10) on the blood lipids, antioxidant status, and tissue levels of CoQs and α-tocopherol (α-Toc) in hyperlipidemic rats. The oral administration of MFGEs (300 mg/kg body weight per day) for 8 weeks resulted in a significant decrease in blood levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and LDL-C/high-density lipoprotein cholesterol (HDL-C) ratio compared to the control and lovastatin supplement group of a dosage of 20mg/kg per day (p<0.05). Furthermore, a significant increase in the ratios of α-Toc/LDL-C and CoQs/LDL-C in plasma and tissues and improvement in plasma antioxidant status as measured by TBARS and TRAP were observed in hypercholesterolemic rats (p<0.05). Regarding the effects of MFGEs on antioxidant levels of plasma and tissues, there were significant increases in the levels of α-Toc (p<0.05) and CoQs (p<0.01) after the 8-week MFGEs treatment. These data indicate that MFGEs supplementation not only decreases blood lipids and lipid peroxidation but also increases levels of antioxidants such as α-Toc and CoQs and may improve plasma antioxidant status as well as a hypolipidemic effect. PMID:23768376

  19. The oxidative stress, antioxidant profile and acid-base status in preterm and term canine neonates.

    PubMed

    Vannucchi, C I; Kishi, D; Regazzi, F M; Silva, L C G; Veiga, G A L; Angrimani, D S R; Lucio, C F; Nichi, M

    2015-04-01

    During the initiation of neonatal pulmonary respiration, there is an exponential increase in reactive oxygen species that must be scavenged by antioxidant defences. However, neonate and preterm newborns are known to possess immature antioxidant mechanisms to neutralize these toxic effects. The purposes of this study were to compare the development of antioxidant system between preterm and term canine neonates and to evaluate the magnitude of acid-base balance during the initial 4 h of life. A prospective study was conducted involving 18 neonatal puppies assigned to Term Group (63 days of gestation; n = 5), Preterm-57 Group (57 days of gestation; n = 8) and Preterm-55 Group (55 days of gestation; n = 5). Neonates were physically examined through Apgar score and venous haemogasometry within 5 min, 2 and 4 h after birth. No difference on amniotic fluid and serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and the marker of oxidative stress (thiobarbituric acid reactive substances; TBARS) was verified. Irrespective of prematurity, all neonates presented low vitality, hypothermia, acidosis, hypoxaemia and hypercapnia at birth. However, term puppies clinically evolved more rapidly than preterm newborns. During the course of the study, premature neonates presented more severe complications, such as prolonged hypoxaemia and even death. In conclusion, premature puppies have no signs of immature enzymatic mechanisms for controlling oxidative stress, although SOD and GPx may participate in achieving acid-base balance. Aside from initial unremarkable symptoms, premature puppies should be carefully followed up, as they are at high risk of succumbing to odds of prematurity. PMID:25611795

  20. Role of free radicals and antioxidant status in childhood nephrotic syndrome

    PubMed Central

    Ghodake, S. R.; Suryakar, A. N.; Ankush, R. D.; Katkam, R. V.; Shaikh, K.; Katta, A. V.

    2011-01-01

    Nephrotic syndrome (NS) is characterized by heavy proteinuria and hypoalbuminuria. Reactive oxygen species (ROS) seem to play an important role in the etiopathogenesis of proteinuria in NS. This study aims to evaluate the potential role of reactive oxygen species in pathogenesis of NS by estimating the levels of oxidants and antioxidants in children with NS. Thirty patients of NS and thirty age, sex-matched healthy subjects, were selected for the study. As compared to healthy controls, the levels of serum lipid peroxide were significantly elevated while levels of nitric oxide, erythrocyte-superoxide dismutase activity, levels of vitamin C, albumin and total antioxidant capacity were significantly reduced in nephrotic patients. The levels of uric acid and bilirubin were significantly increased in children with NS as compared to controls. There was no significant difference in vitamin E level between patients and controls. It can be concluded that increased ROS generation and decreased antioxidant defense may be related to the pathogenesis of proteinuria in NS. PMID:21655168

  1. Effect of occupation on lipid peroxidation and antioxidant status in coal-fired thermal plant workers

    PubMed Central

    Kaur, Sandeep; Gill, Manmeet Singh; Gupta, Kapil; Manchanda, KC

    2013-01-01

    Background: Air pollution from coal-fired power units is large and varied, and contributes to a significant number of negative environmental and health effects. Reactive oxygen species (ROS) have been implicated in the pathogenesis of coal dust-induced toxicity in coal-fired power plants. Aim: The aim of the study was to measure free radical damage and the antioxidant activity in workers exposed to varying levels of coal dust. Material and Methods: The study population consisted of workers in coal handling unit, turbine unit, and boiler unit (n = 50 each), working in thermal power plant; and electricians (n = 50) from same department were taken as controls. Lipid peroxidation was measured by malondialdehyde (MDA) levels and antioxidant activity was determined by superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels. Statistical analysis was carried out by Student's unpaired t-test. Result: MDA levels showed significant increase (P > 0.001) in the thermal power plant workers than the electricians working in the city. The levels of SOD and GPx were significantly higher (P > 0.001) in electricians as compared to subjects working in thermal plant. Among the thermal plant workers, the coal handling unit workers showed significant increase (P > 0.001) in MDA and significant decrease in SOD and GPx than the workers of boiler and turbine unit workers. Conclusion: Oxidative stress due to increase in lipid peroxidation and decrease in antioxidant activity results from exposure to coal dust and coal combustion products during thermal plant activities. PMID:24083143

  2. Effects of clinoptilolite on growth performance and antioxidant status in broilers.

    PubMed

    Wu, Yanan; Wu, Qiujue; Zhou, Yanmin; Ahmad, Hussain; Wang, Tian

    2013-11-01

    The objective of this study was to compare the effects of natural clinoptilolite and modified clinoptilolite on growth performance and antioxidant capacity in broiler chicks. Two hundred forty 1-day-old commercial Arbor Acres broilers were randomly distributed into three treatments, each of which had eight replicates. Each replicate contains 10 chicks. Control (CON) group fed with the basal diets, natural clinoptilolite (NCLI) group fed basal diets with 2 % natural clinoptilolite, and modified clinoptilolite (MCLI) group fed basal diets with 2 % modified clinoptilolite for 42 days. The results showed that the 2 % supplementation of natural clinoptilolite and modified clinoptilolite had no adverse effect on growth performance of broilers at 42 days of age. Relative weights of organs were not influenced by dietary treatments at 21 and 42 days. The activity of total nitric oxide synthase was significantly (P < 0.05) decreased in MCLI group than CON group at 21 days of age. At 21 and 42 days, the activities of glutathione peroxidase, catalase, total superoxide dismutase, total antioxidant capacity (T-AOC) were significantly (P < 0.05) increased in NCLI and MCLI groups than the CON group while there was no difference in T-AOC between CON and NCLI groups. The malondialdehyde content was significantly (P < 0.05) decreased in NCLI and MCLI groups than the CON group. It was concluded that the addition of 2 % natural clinoptilolite and modified clinoptilolite to diet can improve antioxidant capacity in broilers, although their effects on growth performance was negligible. PMID:23949793

  3. Antioxidant modulation of skin inflammation: preventing inflammatory progression by inhibiting neutrophil influx

    PubMed Central

    McGilvray, Ian D.; Rotstein, Ori D.

    1999-01-01

    Objective To test the hypothesis that antioxidants might affect local inflammation by impairing inflammatory cell influx. Design A laboratory study using a Swiss–Webster mouse model of local inflammation. Setting A university-affiliated hospital. Methods Intradermal injection of 30 μg of S. minnesota endotoxin (LPS) to Swiss–Webster mice initiates a local inflammatory reaction characterized by an early rise in vascular permeability and a later influx of neutrophils. Animals were pretreated intraperitoneally with either pyrrolidine dithiocarbamate (PDTC, 2 mmol/kg), which inhibits free radical generation, or dimethylthiourea (DMTU, 450 mg/kg), a free radical scavenger. Main outcome measures Histologic findings of tissue samples taken at sites of injection; local changes in tissue vascular permeability (PI) determined by iodine-125 albumin injection before sacrifice; neutrophil accumulation quantified by tissue myeloperoxidase levels; tissue levels of the endothelial adhesion molecules intercellular adhesion molecule-1 protein (ICAM-1) and vascular cell adhesion molecule-1 protein (VCAM-1) assessed by immunohistochemistry and Western blot, respectively. Results Neither antioxidant had a significant effect on the early increase in PI, but both decreased the late rise in PI and reduced neutrophil influx. Both ICAM-1 and VCAM-1 were upregulated in response to LPS; however, only the increase in VCAM-1 was attenuated by antioxidant pretreatment. Conclusion These data suggest that antioxidants disrupt the propagation phase of an inflammatory response, possibly by altering neutrophil migration. PMID:10223071

  4. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants

    PubMed Central

    Cort, Aysegul; Ozben, Tomris; Saso, Luciano; De Luca, Chiara

    2016-01-01

    Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed. PMID:26881027

  5. Redox Control of Multidrug Resistance and Its Possible Modulation by Antioxidants.

    PubMed

    Cort, Aysegul; Ozben, Tomris; Saso, Luciano; De Luca, Chiara; Korkina, Liudmila

    2016-01-01

    Clinical efficacy of anticancer chemotherapies is dramatically hampered by multidrug resistance (MDR) dependent on inherited traits, acquired defence against toxins, and adaptive mechanisms mounting in tumours. There is overwhelming evidence that molecular events leading to MDR are regulated by redox mechanisms. For example, chemotherapeutics which overrun the first obstacle of redox-regulated cellular uptake channels (MDR1, MDR2, and MDR3) induce a concerted action of phase I/II metabolic enzymes with a temporal redox-regulated axis. This results in rapid metabolic transformation and elimination of a toxin. This metabolic axis is tightly interconnected with the inducible Nrf2-linked pathway, a key switch-on mechanism for upregulation of endogenous antioxidant enzymes and detoxifying systems. As a result, chemotherapeutics and cytotoxic by-products of their metabolism (ROS, hydroperoxides, and aldehydes) are inactivated and MDR occurs. On the other hand, tumour cells are capable of mounting an adaptive antioxidant response against ROS produced by chemotherapeutics and host immune cells. The multiple redox-dependent mechanisms involved in MDR prompted suggesting redox-active drugs (antioxidants and prooxidants) or inhibitors of inducible antioxidant defence as a novel approach to diminish MDR. Pitfalls and progress in this direction are discussed. PMID:26881027

  6. Role of the Immune System in Hypertension: Modulation by Dietary Antioxidants

    PubMed Central

    Vasdev, Sudesh; Stuckless, Jennifer; Richardson, Vernon

    2011-01-01

    Hypertension is a major health problem worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease, and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Insulin resistance is a common feature of hypertension in both humans and animal models affecting glucose and lipid metabolism producing excess aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates called advanced glycation end products (AGEs). This alters protein structure and function and can affect vascular and immune cells leading to their activation and secretion of inflammatory cytokines. AGEs also act via receptors for advanced glycation end products on these cells altering the function of antioxidant and metabolic enzymes, and ion channels. This results in an increase in cytosolic free calcium, decrease in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance, and infiltration of vascular and kidney tissue with inflammatory cells leading to hypertension. Supplementation with dietary antioxidants including vitamins C, E, or B6, thiols such as cysteine and lipoic acid, have been shown to lower blood pressure and plasma inflammatory cytokines in animal models and humans with essential hypertension. A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin resistance and associated alterations. Dietary supplementation with antioxidants may be a beneficial, inexpensive, front-line alterative treatment modality for hypertension. PMID:23204821

  7. Antioxidant/oxidant status and cardiac function in bradykinin B(1)- and B(2)-receptor null mice.

    PubMed

    Delemasure, S; Blaes, N; Richard, C; Couture, R; Bader, M; Dutartre, P; Girolami, J-P; Connat, J-L; Rochette, L

    2013-01-01

    Kinin-vasoactive peptides activate two G-protein-coupled receptors (R), B(1)R (inducible) and B(2)R (constitutive). Their complex role in cardiovascular diseases could be related to differential actions on oxidative stress. This study investigated impacts of B(1)R or B(2)R gene deletion in mice on the cardiac function and plasma antioxidant and oxidant status. Echocardiography-Doppler was performed in B(1)R (B(1)R(-/-)) and B(2)R (B(2)R(-/-)) deficient and wild type (WT) adult male mice. No functional alteration was observed in B(2)R(-/-) hearts. B(1)R(-/-) mice had significantly lowered fractional shortening and increased isovolumetric contraction time. The diastolic E and A waves velocity ratio was similar in all mice groups. Thus B(1)R(-/-) mice provide a model of moderate systolic dysfunction, whereas B(2)R(-/-) mice displayed a normal cardiac phenotype. Plasma antioxidant capacity (ORAC) was significantly decreased in both B(1)R(-/-) and B(2)R(-/-) mice whereas the vitamin C levels were decreased in B(2)R(-/-) mice only. Plasma ascorbyl free radical was significantly higher in B(1)R(-/-) compared to WT and B(2)R(-/-) mice. Therefore, the oxidative stress index, ascorbyl free radical to vitamin C ratio, was increased in both B(1)R(-/-) and B(2)R(-/-) mice. Hence, B(1)R and B(2)R deficiency are associated with increased oxidative stress, but there is a differential imbalance between free radical production and antioxidant defense. The interrelationship between the differential B(1)R and B(2)R roles in oxidative stress and cardiovascular diseases remain to be investigated. PMID:24020815

  8. Modulatory efficacy of rosmarinic acid on premalignant lesions and antioxidant status in 1,2-dimethylhydrazine induced rat colon carcinogenesis.

    PubMed

    Karthikkumar, V; Sivagami, G; Vinothkumar, R; Rajkumar, D; Nalini, N

    2012-11-01

    Colorectal cancer is one of the leading causes of cancer related deaths in Western countries and is becoming increasingly common in Asia. Rosmarinic acid (RA), one of the major components of polyphenol possesses attractive remedial features. The purpose of this study is to investigate the possible chemopreventive mechanism of action of RA against 1,2-dimethylhydrazine (DMH) induced rat colon carcinogenesis by evaluating the circulatory antioxidant status and colonic bacterial enzymes activities. Additionally, we analyzed the aberrant crypt foci (ACF) formation and multiplicity in the colon of experimental groups. Wistar male rats were divided into six groups. Group 1 was control rats, group 2 rats received RA (10 mg/kg b.w., p.o. everyday), rats in groups 3-6 received DMH (20 mg/kg b.w., s.c.) for the first 4 weeks. In addition to DMH, groups 4-6 received 2.5, 5, and 10 mg/kg b.w. RA respectively. The results revealed that supplementation with RA significantly reduced the formation of ACF and ACF multiplicity in DMH treated rats. Moreover RA supplementation prevented the alterations in circulatory antioxidant enzymes and colonic bacterial enzymes activities. Overall, our results showed that all three doses of RA inhibited carcinogenesis, though the effect of the intermediary dose of 5 mg/kg b.w. was more pronounced. PMID:22960260

  9. Total Antioxidant Capacity and Total Oxidant Status in Saliva of Periodontitis Patients in Relation to Bacterial Load

    PubMed Central

    Zhang, Taowen; Andrukhov, Oleh; Haririan, Hady; Müller-Kern, Michael; Liu, Shutai; Liu, Zhonghao; Rausch-Fan, Xiaohui

    2016-01-01

    The detection of salivary biomarkers has a potential application in early diagnosis and monitoring of periodontal inflammation. However, searching sensitive salivary biomarkers for periodontitis is still ongoing. Oxidative stress is supposed to play an important role in periodontitis progression and tissue destruction. In this cross-sectional study, we investigated total antioxidant capacity (TAC) and total oxidant status (TOS) in saliva of periodontitis patients compared to healthy controls and their relationship with periodontopathic bacteria and periodontal disease severity. Unstimulated saliva was collected from 45 patients with generalized severe periodontitis and 37 healthy individuals and the TAC/TOS were measured. In addition, salivary levels of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Fusobacterium nucleatum in saliva were measured. Salivary TAC was lower in periodontitis patients compared to healthy controls. Moreover, a significant negative correlation of salivary TAC with clinical attachment loss was observed in periodontitis patients. No significant difference in the salivary TOS was observed between periodontitis patients and healthy controls. Bacterial load was enhanced in periodontitis patients and exhibited correlation with periodontal disease severity but not with salivary TAC/TOS. Our data suggest that changes in antioxidant capacity in periodontitis patients are not associated with increased bacterial load and are probably due to a dysregulated immune response. PMID:26779448

  10. Effects of gluten-free breads, with varying functional supplements, on the biochemical parameters and antioxidant status of rat serum.

    PubMed

    Świeca, Michał; Reguła, Julita; Suliburska, Joanna; Złotek, Urszula; Gawlik-Dziki, Urszula

    2015-09-01

    This paper examines the effects of gluten-free bread enriched with functional ingredients (milk powder, poppy, sunflower and pumpkin seeds, egg yolk, carum, hazel nuts and amaranth) on the morphological and biochemical parameters and antioxidant status of rats serum. Rats were provided test diets--gluten-free breads and water ad libitum. After 14 days, the animals were weighed and killed. A hazel nut-amaranth bread diet significantly increased the level of thrombocytes when compared to control bread. A mixed bread diet significantly decreased cholesterol levels in rats. All fortified breads decreased triglyceride levels and alanine transaminase activity and caused an increase in antiradical activity of the serum. In rats fed with poppy-milk bread, milk-seed bread and mixed bread, a marked decrease in superoxide dismutase activity was found. Enriched breads reduced the levels of triglyceride and improved the antiradical properties of serum, although the physiological relevance of this needs to be confirmed by human studies. PMID:25842337

  11. Nurses' perception about a DVD module on 'mental status examination demonstration'.

    PubMed

    Gandhi, Sailaxmi; Lalitha, K; Thennarasu, K; Nagarajaiah; Ramachandra

    2013-01-01

    Computer-based multimedia can improve learning and retention of learnt material A video recorded DVD module on role play of mental status examination was visualised by 226 nursing students and 133 nursing teachers. Their opinion of the DVD on various parameters such as audibility, visibility, clarity, methodical, organisation of content, following the principles of psychiatric interview, symptom elicitation, therapist behaviour, therapist communication skill and ease in understanding revealed that the DVD module was of high quality and could be used as a teaching tool PMID:24683759

  12. Effect of Spirulina Intervention on Oxidative Stress, Antioxidant Status, and Lipid Profile in Chronic Obstructive Pulmonary Disease Patients

    PubMed Central

    Ismail, Md.; Hossain, Md. Faruk; Tanu, Arifur Rahman

    2015-01-01

    Background and Objective. Oxidative stress is intimately associated with many diseases, including chronic obstructive pulmonary disease (COPD). Study objectives include a comparison of the oxidative stress, antioxidant status, and lipid profile between COPD patients and controls and evaluation of the effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile of COPD patients. Methods. 30 patients with COPD and 20 controls with no respiratory problems were selected. Global Initiative for Chronic Obstructive Lung Disease criteria were served as the basis of COPD diagnosis. The serum content of malondialdehyde (MDA), lipid hydroperoxide, glutathione (GSH), vitamin C, cholesterol, triglyceride (TG), and high density lipoprotein (HDL) was measured. The activity of superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST) was also measured. Two different doses, (500 × 2) mg and (500 × 4) mg spirulina, were given to two groups, each of which comprises 15 COPD patients. Results. All targeted blood parameters have significant difference (P = 0.000) between COPD patients and controls except triglyceride (TG). Spirulina intake for 30 and 60 days at (500 × 2) mg dose has significantly reduced serum content of MDA, lipid hydroperoxide, and cholesterol (P = 0.000) while increasing GSH, Vit C level (P = 0.000), and the activity of SOD (P = 0.000) and GST (P = 0.038). At the same time, spirulina intake for 30 and 60 days at (500 × 4) mg dose has favorable significant effect (P = 0.000) on all targeted blood parameters except for HDL (P = 0.163). PMID:25685791

  13. 2100-MHz electromagnetic fields have different effects on visual evoked potentials and oxidant/antioxidant status depending on exposure duration.

    PubMed

    Hidisoglu, Enis; Kantar Gok, Deniz; Er, Hakan; Akpinar, Deniz; Uysal, Fatma; Akkoyunlu, Gokhan; Ozen, Sukru; Agar, Aysel; Yargicoglu, Piraye

    2016-03-15

    The purpose of the present study was to investigate the duration effects of 2100-MHz electromagnetic field (EMF) on visual evoked potentials (VEPs) and to assess lipid peroxidation (LPO), nitric oxide (NO) production and antioxidant status of EMF exposed rats. Rats were randomized to following groups: Sham rats (S1 and S10) and rats exposed to 2100-MHz EMF (E1 and E10) for 2h/day for 1 or 10 weeks, respectively. At the end of experimental periods, VEPs were recorded under anesthesia. Brain thiobarbituric acid reactive substances (TBARS) and 4-hydroxy-2-nonenal (4-HNE) levels were significantly decreased in the E1 whereas increased in the E10 compared with their control groups. While brain catalase (CAT), glutathione peroxidase (GSH-Px) activities and NO and glutathione (GSH) levels were significantly increased in the E1, reduction of superoxide dismutase (SOD) activity was detected in the same group compared with the S1. Conversely, decreased CAT, GSH-Px activities and NO levels were observed in the E10 compared with the S10. Latencies of all VEP components were shortened in the E1 compared with the S1, whereas latencies of all VEP components, except P1, were prolonged in the E10 compared with the S10. There was a positive correlation between all VEP latencies and brain TBARS and 4-HNE values. Consequently, it could be concluded that different effects of EMFs on VEPs depend on exposure duration. In addition, our results indicated that short-term EMF could provide protective effects, while long-term EMF could have an adverse effect on VEPs and oxidant/antioxidant status. PMID:26776477

  14. Effects of Tributyrin on Intestinal Energy Status, Antioxidative Capacity and Immune Response to Lipopolysaccharide Challenge in Broilers

    PubMed Central

    Li, Jiaolong; Hou, Yongqing; Yi, Dan; Zhang, Jun; Wang, Lei; Qiu, Hongyi; Ding, Binying; Gong, Joshua

    2015-01-01

    This study was carried out to investigate the effects of tributyrin (TB) on the growth performance, pro-inflammatory cytokines, intestinal morphology, energy status, disaccharidase activity, and antioxidative capacity of broilers challenged with lipopolysaccharide (LPS). A total of 160 one-day-old Cobb broilers were allocated to 1 of 4 treatments, with 4 replicated pens per treatment and 10 birds per pen. The experiment consisted of a 2×2 factorial arrangements of treatments with TB supplementation (0 or 500 mg/kg) and LPS challenge (0 or 500 μg/kg body weight [BW]). On days 22, 24, and 26 of the trial, broilers received an intraperitoneal administration of 500 μg/kg BW LPS or saline. Dietary TB showed no effect on growth performance. However, LPS challenge decreased the average daily gain of broilers from day 22 to day 26 of the trial. Dietary TB supplementation inhibited the increase of interleukin-1β (in the jejunum and ileum), interleukin-6 (in the duodenum and jejunum), and prostaglandin E2 (in the duodenum) of LPS-challenged broilers. Similar inhibitory effects of TB in the activities of total nitric oxide synthase (in the ileum) and inducible nitric oxide synthase (in the jejunum) were also observed in birds challenged with LPS. Additionally, TB supplementation mitigated the decrease of ileal adenosine triphosphate, adenosine diphosphate and total adenine nucleotide and the reduction of jejunal catalase activity induced by LPS. Taken together, these results suggest that the TB supplementation was able to reduce the release of pro-inflammatory cytokines and improve the energy status and anti-oxidative capacity in the small intestine of LPS-challenged broilers. PMID:26580447

  15. Release-Modulated Antioxidant Activity of a Composite Curcumin-Chitosan Polymer.

    PubMed

    O'Toole, Martin G; Soucy, Patricia A; Chauhan, Rajat; Raju, Mandapati V Ramakrishnam; Patel, Dhruvina N; Nunn, Betty M; Keynton, Megan A; Ehringer, William D; Nantz, Michael H; Keynton, Robert S; Gobin, Andrea S

    2016-04-11

    Curcumin is known to have immense therapeutic potential but is hindered by poor solubility and rapid degradation in solution. To overcome these shortcomings, curcumin has been conjugated to chitosan through a pendant glutaric anhydride linker using amide bond coupling chemistry. The hybrid polymer has been characterized by UV-visible, fluorescence, and infrared spectroscopies as well as zeta potential measurements and SEM imaging. The conjugation reactivity was confirmed through gel permeation chromatography and quantification of unconjugated curcumin. An analogous reaction of curcumin with glucosamine, a small molecule analogue for chitosan, was performed and the purified product characterized by mass spectrometry, UV-visible, fluorescence, and infrared spectroscopies. Conjugation of curcumin to chitosan has greatly improved curcumin aqueous solubility and stability, with no significant curcumin degradation detected after one month in solution. The absorbance and fluorescence properties of curcumin are minimally perturbed (λmax shifts of 2 and 5 nm, respectively) by the conjugation reaction. This conjugation strategy required use of one out of two curcumin phenols (one of the main antioxidant functional groups) for covalent linkage to chitosan, thus temporarily attenuating its antioxidant capacity. Hydrolysis-based release of curcumin from the polymer, however, is accompanied by full restoration of curcumin's antioxidant potential. Antioxidant assays show that curcumin radical scavenging potential is reduced by 40% after conjugation, but that full antioxidant potential is restored upon hydrolytic release from chitosan. Release studies show that curcumin is released over 19 days from the polymer and maintains a concentration of 0.23 ± 0.12 μM curcumin/mg polymer/mL solution based on 1% curcumin loading on the polymer. Release studies in the presence of carbonic anhydrase, an enzyme with known phenolic esterase activity, show no significant difference from

  16. Effects of a safflower tea supplement on antioxidative status and bone markers in postmenopausal women

    PubMed Central

    Jang, Jeong-Hee; Yoon, Ji Young; Han, Chi-Dong; Choi, Youngsun; Choi, Sang-Won

    2011-01-01

    We conducted this study to examine the effects of safflower seed granular tea containing physiologically active polyphenols on antioxidative activities and bone metabolism. Forty postmenopausal women ages 49 to 64-years were recruited from Daegu and Gyeongbuk and were randomly assigned to either a safflower tea supplement (Saf-tea) group (n = 27) or a placebo group (n = 13). The Saf-tea group received 20 g of safflower seed granule tea per day containing a 13% ethanol extract of defatted safflower seeds, whereas the placebo group received a similar type of tea that lacked the ethanol extract. No significant changes in nutrient intake for either the placebo or Saf-tea groups were observed before or after the study period, except vitamin A intake increased after 6 months in the Saf-tea group. Dietary phytoestrogen intakes were similar in the Saf-tea group (60.3 mg) and placebo group (52.5 mg). Significant increases in plasma genistein and enterolactone were observed in the Saf-tea group. After 6 months of supplementation, serum levels of antioxidant vitamins such as α-tocopherol and ascorbic acid increased significantly, and TBARS levels decreased in the Saf-tea group compared to the placebo group. Serum osteocalcin levels were reduced (P < 0.05) in the Saf-tea group after 6 months, whereas serum osteocalcin did not change in the placebo group. Urinary deoxypyridinoline/creatinine excretion was not different between the two groups at baseline, and did not change in either group after 6 months. Bone mineral density decreased significantly in the placebo group (P < 0.01) but not in the supplemented group. It was concluded that polyphenols (72 mg/day), including serotonin derivatives, in the Saf-tea had both antioxidant and potential bone protecting effects in postmenopausal women without liver toxicity. PMID:21487492

  17. Probable preventive effects of placenta from oxidative stress; Evaluation of total antioxidant status, total oxidant status and oxidative stress index in fetal cord blood during the delivery.

    PubMed

    Camkurt, Mehmet Akif; Fındıklı, Ebru; Tolun, Fatma İnanç; Bakacak, Murat; Bal, Nilay Gül; Sakallı, Hilal; Güneş, Mehmet

    2016-06-30

    Depression in pregnancy may have negative effects on birth outcomes. It may also effect the intrauterine environment of the fetus. The umbilical cord is the conduit between the fetus and placenta, and functions in the transport between fetus and mother. Investigating biochemical parameters in fetal cord blood (FCB) during delivery may be helpful to understanding to what the fetus is exposed to, at least in the last trimester. In this study, we aimed to investigate total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) in the FCB of depressed mothers and healthy controls during delivery. Our study included 33 depressed mothers and 37 healthy controls. TAS, TOS, and OSI were measured according to Erel's method. We found that TAS, TOS, and OSI levels were similar in patients and healthy controls; however, the birth weights of depressed patients were significantly lower than those of healthy controls. Our results suggest that the placental barrier may prevent from oxidative stress. Future studies should include blood samples collected simultaneously from mothers during delivery. PMID:27124206

  18. Pollutant resilience in embryos of the Antarctic sea urchin Sterechinus neumayeri reflects maternal antioxidant status.

    PubMed

    Lister, Kathryn N; Lamare, Miles D; Burritt, David J

    2015-04-01

    Legacy pollutants, including polycyclic aromatic hydrocarbons (PAHs) and metals, can occur in high concentrations in some Antarctic marine environments, particularly near scientific research stations. Oxidative stress is an important unifying feature underlying the toxicity of many chemical contaminants to aquatic organisms. However, the potential impacts of pollutants on the oxidative physiology of Antarctic marine invertebrates are not well documented. Sterechinus neumayeri is a common animal in the shallow subtidal benthos surrounding Antarctica, and is considered an important keystone species. The aim of the present study was to collect baseline oxidative biomarker data for S. neumayeri and to investigate the impacts of field exposure to chemical contaminants on gamete health and parent-to-offspring transfer of oxidative stress resilience. We analysed antioxidant enzyme activities, levels of the molecular antioxidant glutathione, protein carbonylation, lipid peroxidation and levels of 8-OHdG as oxidative stress biomarkers in S. neumayeri from a contaminant-impacted site near McMurdo Station and a relatively pristine site at Cape Evans. Biomarkers were analysed in adult gamete tissue and in early stage embryos exposed to AN8 fuel oil. PAHs were quantified as a proxy for contamination and were found to be elevated in urchins from the contaminated site (up to 231.67ng/g DW). These contaminant-experienced adult urchins produced eggs with greater levels of a broad suite of antioxidants, particularly superoxide dismutase, catalase and glyoxalase-I, than those from Cape Evans. In addition, embryos that were derived from contaminant-experienced mothers were endowed with higher baseline levels of antioxidants, which conferred an enhanced capacity to minimize oxidative damage to lipids, proteins and DNA when exposed to AN8 fuel. This pattern was strongest following exposure to 900ppm AN8, where lipid and protein damage was 5-7 times greater than baseline levels in

  19. Cell Damage, Antioxidant Status, and Cortisol Levels Related to Nutrition in Ski Mountaineering During a Two-Day Race

    PubMed Central

    Diaz, Elena; Ruiz, Fatima; Hoyos, Itziar; Zubero, Jaime; Gravina, Leyre; Gil, Javier; Irazusta, Jon; Gil, Susana Maria

    2010-01-01

    The aim of this study was to measure the effect of nutrition on cell damage, antioxidant enzymes, and cortisol during a two-day ski mountaineering competition. Twenty-one male skiers participated in the study. Creatine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH), alkaline phosphatase (AP), cortisol and C-reactive protein (CRP), glutathione peroxidase (GPx) and reductase activities (GR) and C-reactive protein (CRP) levels, total antioxidant status, and cortisol levels were measured in serum the day before and immediately after the race. Their diet was also analysed during the competition. Enzymes and cortisol levels significantly increased after the competition. CK and LDH and cortisol levels were negatively correlated to total energy, protein, and fat intake. Intake of vitamin A, B1, B2, B6 and niacin was negatively correlated to LDH and AP. A negative correlation was also found between CK activity and Na, Fe, and Zn intake. Cortisol levels were negatively correlated to the intake of vitamins C, B1 and B2, and niacin. A positive correlation was found between serum GPx and intake of energy, carbohydrates, proteins, A and B vitamins, and folic acid. Skiers with the lowest nutrient intake during the competition were the ones who showed greater cell damage and lower antioxidant enzyme activity and cortisol levels, which may impair performance and also cause injuries and accidents. Particularly, skiers should have high intakes of total energy, macronutrients, vitamins A and B, Na, Zn, and Fe in order to decrease the deleterious effect of strenuous exercise. Key points A two-day ski mountaineering race produced muscle cell damage and oxidative stress and an increase in cortisol levels. There was a marked insufficient intake of carbohydrates which has been shown to affect performance Those skiers with lowest nutrient intake showed greater cell damage, lower antioxidant

  20. An evaluation of zinc bearing palygorskite inclusion on the growth performance, mineral content, meat quality, and antioxidant status of broilers.

    PubMed

    Yang, W L; Chen, Y P; Cheng, Y F; Li, X H; Zhang, R Q; Wen, C; Zhou, Y M

    2016-04-01

    The current study was conducted to investigate the effect of zinc (Zn) bearing palygorskite (ZnPal) inclusion on the growth performance, mineral content, meat quality, and antioxidant status of broilers. A total of 240 one-day-old Arbor Acres broiler chicks were randomly allocated into 5 dietary treatments with 6 replicates of 8 chicks. Broilers in the 5 treatments were fed a basal diet supplemented with 0, 20, 40, 60, and 80 mg/kg Zn diet in the form of ZnPal for 42 d, respectively. Birds exhibited similar average daily gain (ADG), average daily feed intake (ADFI), and feed/gain ratio (F:G) among groups during the 42-day study (P>0.05). ZnPal supplementation linearly increased iron (Fe) (P=0.031) and magnesium (Mg) (P=0.002) content in the pectoralis major muscle. Similarly, the inclusion of ZnPal tended to increase Zn content in the thigh (P=0.072) and linearly increase Zn content in the pectoralis major muscle (P=0.055). The concentration of copper (Cu) in the thigh was linearly decreased by ZnPal inclusion (P=0.011). Meanwhile, a quadratic trend for reduced Cu content was observed in the pectoralis major muscle (P=0.074) and thigh (P=0.082), respectively. The supplementation of ZnPal linearly reduced cooking loss in the pectoralis major muscle (P=0.013), and linearly (P=0.029) and quadratically (P=0.034) decreased cooking loss in the thigh. Malondialdehyde (MDA) concentration in the thigh was linearly (P=0.020) and quadratically (P=0.017) reduced by ZnPal inclusion. Additionally, ZnPal supplementation tended to linearly enhance total antioxidant capacity (T-AOC) activity of the pectoralis major muscle (P=0.083). The results obtained in the current study indicated that ZnPal inclusion could alter muscular mineral accumulation, improve meat quality, and enhance the muscular antioxidant capacity of broilers, and Zn supplementation in the form of ZnPal at the dosage of 20 mg/kg would be sufficient in improving meat quality and muscular oxidative status. PMID

  1. RBM45 Modulates the Antioxidant Response in Amyotrophic Lateral Sclerosis through Interactions with KEAP1

    PubMed Central

    Bakkar, Nadine; Kousari, Arianna; Kovalik, Tina; Li, Yang

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons. Various factors contribute to the disease, including RNA binding protein dysregulation and oxidative stress, but their exact role in pathogenic mechanisms remains unclear. We have recently linked another RNA binding protein, RBM45, to ALS via increased levels of protein in the cerebrospinal fluid of ALS patients and its localization to cytoplasmic inclusions in ALS motor neurons. Here we show RBM45 nuclear exit in ALS spinal cord motor neurons compared to controls, a phenotype recapitulated in vitro in motor neurons treated with oxidative stressors. We find that RBM45 binds and stabilizes KEAP1, the inhibitor of the antioxidant response transcription factor NRF2. ALS lumbar spinal cord lysates similarly show increased cytoplasmic binding of KEAP1 and RBM45. Binding of RBM45 to KEAP1 impedes the protective antioxidant response, thus contributing to oxidative stress-induced cellular toxicity. Our findings thus describe a novel link between a mislocalized RNA binding protein implicated in ALS (RBM45) and dysregulation of the neuroprotective antioxidant response seen in the disease. PMID:25939382

  2. Antioxidant proteins TSA and PAG interact synergistically with Presenilin to modulate Notch signaling in Drosophila.

    PubMed

    Wangler, Michael F; Reiter, Lawrence T; Zimm, Georgianna; Trimble-Morgan, Jennifer; Wu, Jane; Bier, Ethan

    2011-07-01

    Alzheimer's disease (AD) pathogenesis is characterized by senile plaques in the brain and evidence of oxidative damage. Oxidative stress may precede plaque formation in AD; however, the link between oxidative damage and plaque formation remains unknown. Presenilins are transmembrane proteins in which mutations lead to accelerated plaque formation and early-onset familial Alzheimer's disease. Presenilins physically interact with two antioxidant enzymes thiol-specific antioxidant (TSA) and proliferation-associated gene (PAG) of the peroxiredoxin family. The functional consequences of these interactions are unclear. In the current study we expressed a presenilin transgene in Drosophila wing and sensory organ precursors of the fly. This caused phenotypes typical of Notch signaling loss-of-function mutations. We found that while expression of TSA or PAG alone produced no phenotype, co-expression of TSA and PAG with presenilin led to an enhanced Notch loss-of-function phenotype. This phenotype was more severe and more penetrant than that caused by the expression of Psn alone. In order to determine whether these phenotypes were indeed affecting Notch signaling, this experiment was performed in a genetic background carrying an activated Notch (Abruptex) allele. The phenotypes were almost completely rescued by this activated Notch allele. These results link peroxiredoxins with the in vivo function of Presenilin, which ultimately connects two key pathogenetic mechanisms in AD, namely, antioxidant activity and plaque formation, and raises the possibility of a role for peroxiredoxin family members in Alzheimer's pathogenesis. PMID:21822800

  3. Chain breaking antioxidant status in rheumatoid arthritis: clinical and laboratory correlates.

    PubMed Central

    Situnayake, R D; Thurnham, D I; Kootathep, S; Chirico, S; Lunec, J; Davis, M; McConkey, B

    1991-01-01

    The ability of fresh sera to resist attack by peroxyl radicals (TRAP) was found to be significantly lower in 20 patients with rheumatoid arthritis (RA) than in 20 healthy controls, consistent with the existence of a redox stress in RA imposed by inflammation. TRAP values in RA varied inversely with a combination of visual analogue pain scale, duration of early morning stiffness, grip strength, and articular index (reflecting inflammatory activity) using multiple linear regression analysis. The concentration of the antioxidant vitamin ascorbic acid was lower in RA plasma and the oxidation-reduction equilibrium of ascorbic acid was disturbed, giving further support to the existence of a redox stress. The major determinant of TRAP in vitro was found to be serum uric acid in RA and serum vitamin E in controls. Serum urate concentration in RA correlated inversely with oxidative changes in serum albumin and IgG. It is suggested that serum urate might have an antioxidant role under certain conditions by limiting free radical induced oxidative changes to protein during inflammation. PMID:1998395

  4. Antitumor activity and antioxidant status of Streblus asper bark against Dalton's ascitic lymphoma in mice

    PubMed Central

    Kumar, R.B. Suresh; Kar, Biswakanth; Dolai, Narayan; Karmakar, Indrajit; Bhattacharya, Sanjib

    2015-01-01

    Streblus asper Lour (Moraceae), commonly known as Siamee Rough Brush in English is widely distributed in subtropical Asia and traditionally used for several medicinal purposes. In the present study, the ethyl acetate fraction of the methanol extract from Streblus asper bark (EASA) was evaluated for antitumor effect against Dalton's ascitic lymphoma (DAL) in Swiss albino mice. Twenty-four hours after intraperitoneal inoculation of DAL cells in mice, EASA was administered intraperitoneally at 200 and 400 mg/kg body weight for 9 consecutive days. On the 10th day, half of the mice were sacrificed to determine the tumor growth parameters, and the rest were kept alive for survival assessment. Hematological, serum biochemical and tissue (liver, kidney) antioxidant profiles were also determined. EASA exhibited significant and dose dependent decrease in tumor growth parameters and increased survival of DAL bearing animals. EASA significantly and dose-dependently normalized the altered hematological, serum biochemical and tissue antioxidant parameters as compared with the DAL control mice. From the present study it may be concluded that S. asper bark possesses remarkable antitumor efficacy mediated by amelioration of oxidative stress by multiple mechanisms. PMID:27486371

  5. Mcy protein, a potential antidiabetic agent: evaluation of carbohydrate metabolic enzymes and antioxidant status.

    PubMed

    Marella, Saritha; Maddirela, Dilip Rajasekhar; Kumar, E G T V; Tilak, Thandaiah Krishna; Badri, Kameswara Rao; Chippada, Apparao

    2016-05-01

    The objective of the present study is to elucidate the long-term effects of anti-hyperglycemic active principle, Mcy protein (MCP), isolated from the fruits of Momordica cymbalaria on carbohydrate metabolism and oxidative stress in experimental diabetic rats. We used streptozotocin induced diabetic rats for the current studies. Our studies showed that MCP (2.5mg/kg.b.w) treatment significantly normalized the deranged activities of critical carbohydrate metabolizing enzymes, hexokinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase and fructose-1,6-bis phosphatase. In addition MCP showed inhibitory activity on α-glucosidase and aldose reductase enzymes in in vitro assays. Further MCP treatment improved the antioxidant defensive mechanism by preventing deleterious oxidative products of cellular metabolism, which initiates the lipid peroxidation and by normalizing the antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) activities. Additional structural studies using circular dichroism spectroscopy indicate that MCP contains majorly α-helix. Our findings suggest MCP regulates blood glucose and better manage diabetes mellitus associated complications by regulating carbohydrate metabolism and by protecting from the deleterious effects of oxidative stress. PMID:26826289

  6. A status report on the investigation of the effects of antioxidants upon oxygen degradation of methyldiethanolamine

    SciTech Connect

    Pundari, A.N.; Singh, M.; Bullin, J.A.

    1987-01-01

    Natural gas production is an important source of energy for the country. The gas directly from the gas fields is not suitable for consumption due to the presence of acidic impurities. The process of gas treating separates impurities such as carbon dioxide-(CO/sub 2/), hydrogen sulfide (H/sub 2/S), and sulfur dioxide (SO/sub 2/) from the gas stream. Industrial processes such as hydrogen manufacture and ammonia production also require acid gas removal systems. The oxygen degradation reactions of MDEA (Melhyl Diethanolamine) solutions were investigated. Several primary and secondary antioxidants were tested and found to be ineffective in the first series of batch reactor experiments at 195/sup 0/F and 50 psig O/sub 2/. This may be due to an excessively high oxygen pressure whereby the inhibitor reacted with the oxygen directly in a short period of time and thus the amine was not protected against degradation. Another possibility is that the severe experimental conditions may accelerate heat stable salts formation reactions at a constant rate. The current preliminary results are indicative that oxygen degradation reactions are quite complicated. Further studies are needed to determine the best antioxidants needed for amine sweetening systems.

  7. Different exercise protocols improve metabolic syndrome markers, tissue triglycerides content and antioxidant status in rats

    PubMed Central

    2011-01-01

    Background An increase in the prevalence of obesity entails great expenditure for governments. Physical exercise is a powerful tool in the combat against obesity and obesity-associated diseases. This study sought to determine the effect of three different exercise protocols on metabolic syndrome and lipid peroxidation markers and the activity of antioxidant enzymes in adult Wistar rats (120 days old). Methods Animals were randomly divided into four groups: the control (C) group was kept sedentary throughout the study; the aerobic group (A) swam1 h per day, 5 days per week, at 80% lactate threshold intensity; the strength group (S) performed strength training with four series of 10 jumps, 5 days per week; and the Concurrent group (AS) was trained using the aerobic protocol three days per week and the strength protocol two days per week. Results Groups A and S exhibited a reduction in body weight compared to group C. All exercised animals showed a reduction in triglyceride concentrations in fatty tissues and the liver. Exercised animals also exhibited a reduction in lipid peroxidation markers (TBARS) and an increase in serum superoxide dismutase activity. Animals in group A had increased levels of liver catalase and superoxide dismutase activities. Conclusions We concluded that all physical activity protocols improved the antioxidant systems of the animals and decreased the storage of triglycerides in the investigated tissues. PMID:22182600

  8. Growth and antioxidant status of broilers fed supplemental lysine and pyridoxine under high ambient temperature

    PubMed Central

    Khakpour Irani, Farzaneh; Daneshyar, Mohsen; Najafi, Ramin

    2015-01-01

    Three levels of lysine (90, 100 and 110% of Ross requirement) and of pyridoxine (3, 6 and 9 mg kg-1) were used in a 3 × 3 factorial experiment to investigate the growth and blood antioxidant ability of broilers under high ambient temperature. None of the dietary supplements affected the weight gain during the starter and grower periods. Although no significant differences were detected between the treatments during the entire period, high lysine level fed birds had a lower weight gain. At any levels of pyridoxine, high lysine fed birds were lighter than others. Neither the lysine nor pyridoxine changed the feed intake or feed conversion ratio during the starter, grower and entire period. However there was no significant difference between the treatments for blood malondialdehyde (MDA) concentration, medium lysine fed birds had lower blood MDA than other ones. No significant effects on blood triglyceride, total protein and blood superoxide dismutase activity were indicated with addition of any lysine or pyridoxine level. Medium lysine fed birds had decreased blood glutathione peroxidase activity compared to the birds of other treatments. It was concluded that providing the proposed dietary lysine requirement of Ross strain during heat stress ensuring the best body weight gain and body antioxidant ability. Higher lysine level causes the retarded weight gain due to higher excretion of arginine from the body and consequently higher lipid peroxidation. PMID:26261713

  9. Kidney antioxidant status, biochemical parameters and histopathological changes induced by methomyl in CD-1 mice.

    PubMed

    El-Demerdash, Fatma; Dewer, Youssef; ElMazoudy, Reda H; Attia, Azza A

    2013-09-01

    The widespread of pesticide in public health and agriculture has caused severe environmental pollution and health hazards. Methomyl is used worldwide in agriculture and health programs. Besides its advantages in the agriculture, it causes several toxic effects. In this study, we aimed to investigate the effects of methomyl at different time intervals on lipid peroxidation, reduced glutathione (GSH), total sulfhydryl group (T-SH), antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and histopathological changes in mice kidney. Ten CD-1 mice per group were assigned to one of four treatment groups. Group one served as control while groups 2, 3 and 4 were orally treated with 1mgmethomyl/kg BW for 10, 20 and 30 days, respectively. Methomyl significantly increased lipid peroxidation in kidney as compared to control group. Levels of GSH and T-SH and activities of SOD, CAT and GST were found to be decreased. On the other hand, methomyl significantly increased the levels of urea, uric acid and creatinine in serum. The histological examination of kidney revealed damage involving the entire renal nephrons in both 20 and 30 days of methomyl exposure. Severe dilatation of the cortical tissue, congested glomerulus with swelling of the endothelial cells and degeneration of the epithelium cells lining the tubules were observed. In conclusion, the results suggest that methomyl exposure can cause renal damage, oxidative stress, perturbations in antioxidant defense system and histopathologic changes in mice kidney in a time dependent manner. PMID:23375192

  10. An assessment of antioxidant status in patients with carbon monoxide poisoning

    PubMed Central

    Zengin, Suat; A, Behcet; Karta, Sahin; Can, Basri; Orkmez, Mustafa; Taskin, Abdullah; Lok, Ugur; Gulen, Bediha; Yildirim, Cuma; Taysi, Seyithan

    2014-01-01

    BACKGROUND: Carbon monoxide poisoning (COP) is an important cause of mortality and morbidity worldwide. This study was to investigate the levels of serum paraoxonase (PON), arylesterase (ARYL), ceruloplasmin (Cp), and sulfhydryl (-SH) in the treatment of COP, and to further understand the pathophysiology of COP. METHODS: This prospective study comprised 107 individuals with COP (group 1) and 50 healthy volunteers (group 2). Serum, plasma, and erythrocyte samples were taken on admission from all participants with COP. This process was repeated in the 90th and 180th minutes of treatment. Samples were taken from the control group only once. The levels of plasma PON, ARYL, Cp activity and -SH were measured in both groups. RESULTS: Age, gender, and carboxyhemoglobin level were not correlated with PON, ARYL, Cp, and -SH levels. PON, ARYL, and -SH levels were significantly decreased in group 1 compared with group 2. Conversely, Cp was significantly elevated in group 1 in contrast to group 2. Although ARYL was lower on admission in patients with COP than that was observed in the 90th and 180th minutes (P<0.001), Cp was higher on admission than at the other time points (P<0.001). CONCLUSIONS: Participants with COP had decreased levels of antioxidants (PON, ARLY, and -SH). COP represses the antioxidant system. PMID:25215155

  11. Modulation of the antioxidant activities in dox-sensitive and -resistant Friend leukemia cells. Effect of doxorubicin.

    PubMed

    Crescimanno, M; D'Alessandro, N; Armata, M G; Toulmond, S; Tapiero, H

    1991-01-01

    Tumor cell resistance to anthracyclines has been associated with increased activity against free radicals. Here, we have investigated the direct effect of doxorubicin (DOX) in the modulation of glutathione level and antioxidant activities in DOX-sensitive and-resistant cells (288 fold). The glutathione level in untreated cells was 88% greater in resistant than in sensitive cells. The activities of the superoxide dismutase, glutathione -S-transferase and glutathione reductase were respectively 24, 15 and 38% higher in resistant cells than in their sensitive counterparts. In contrast, catalase and total glutathione peroxidase were reduced in resistant cells by 18 and 21% respectively. Moreover, the activity of selenium-dependent glutathione peroxidase was lowered by 47% in the resistant as compared to the sensitive cells. Exposure of sensitive or resistant cells to low doses of DOX did not affect these levels in either cell variant. It is concluded therefore that resistance to anthracyclines may not always be associated with an elevated level of intracellular antioxidant activity enzymes. PMID:2064348

  12. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars.

    PubMed

    Islam, Faisal; Ali, Basharat; Wang, Jian; Farooq, Muhammad A; Gill, Rafaqat A; Ali, Shafaqat; Wang, Danying; Zhou, Weijun

    2016-10-01

    Plants are simultaneously exposed to a combination of biotic and abiotic stresses in field conditions. Crops respond to the combined stress in a unique way which cannot be understood by extrapolating the results of individual stress. In the present study, effects of individual and combined stress of herbicide (2,4-dichlorophenoxyacetic acid) and salinity (NaCl) on two Oryza sativa cultivars (ZJ 88 and XS 134) were investigated. Both herbicide and saline stress affected the plant growth differentially and produced oxidative stress in rice cultivars. Interestingly, the combination of herbicide and salinity showed a significant protection to both rice cultivars by reducing ROS (H2O2, O2(-)) and lipid peroxidation through modulation of enzymatic (SOD, POD, CAT and APX) and non-enzymatic (TSP, sugars, phenolic and proline) antioxidants. In addition, active regulation of transcript levels of genes encoding Na(+) and K(+) (OsHKT1;5, OsLti6a,b, OsHKT2;1, OsSOS1, OsCNGC1, OsNHX1 and OsAKT1) transporter proteins reduced sodium and enhanced potassium accumulation under combined stress, resulted a better growth and ionic homeostasis in both rice cultivars. The production of ABA and IAA was significantly higher in cultivar XS 134 compared to cultivar ZJ 88 under control conditions. However, combined herbicide and saline stress enhanced the accumulation of phytohormones (IAA and ABA) and transcription of ethylene in cultivar ZJ 88, which might be one of the factors responsible for poor salt tolerance in sensitive cultivar. These findings indicated that herbicide application under saline stress confers tolerance to salinity in rice cultivars, likely by reducing oxidative damage, modulating mineral absorption, upgradation of antioxidant defense and by dynamic regulation of key genes involved in Na(+) and K(+) homeostasis in plants. PMID:27258572

  13. The immune system is limited by oxidative stress: Dietary selenium promotes optimal antioxidative status and greatest immune defense in pacu Piaractus mesopotamicus.

    PubMed

    Biller-Takahashi, Jaqueline D; Takahashi, Leonardo S; Mingatto, Fábio E; Urbinati, Elisabeth C

    2015-11-01

    Reactive oxygen species (ROS) are reactive molecules containing oxygen, that form as byproducts of aerobic metabolism, including immune system processes. Too much ROS may cause oxidative stress. In this study, we examined whether it can also limit the production of immune system compounds. To assess the relationship between antioxidant status and immunity we evaluated the effect of dietary supplementation with organic selenium, given at various levels for 10 days, on the antioxidant and immune system of the pacu fish (Piaractus mesopotamicus). Fish fed a diet containing 0.6 mg Se-yeast kg(-1) showed significant improvement in antioxidant status, as well as in hematological and immunological profiles. Specifically, they had the highest counts for catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), red blood cells, and thrombocytes; the highest leukocyte count (particularly for monocytes); and the highest serum lysozyme activity. There was also a positive correlation between GPx and lysozyme in this group of fish. These findings indicate that short-term supplementation with 0.6 mg Se-yeast kg(-1) reestablished the antioxidative status, allowing the production of innate components which can boost immunity without the risk of oxidative stress. This study shows a relationship between oxidative stress and immunity, and, from a practical perspective, shows that improving immunity and health in pacu through the administration of selenium could improve their growth performance. PMID:26370542

  14. Effects of lutein or lutein in combination with vitamin C on mRNA expression and activity of antioxidant enzymes and status of the antioxidant system in SD rats

    PubMed Central

    Song, Min-Hae; Shin, Eu-Chul; Hwang, Dae-Youn

    2015-01-01

    This study was conducted to investigate the effects of lutein alone or in combination with vitamin C on the antioxidant defense system in rats. A total of 18 eight-week-old male Sprague Dawley (SD) rats were randomly assigned to three groups for 4 weeks: control (CON), lutein (LUT, 50 mg lutein/kg BW) and lutein plus vitamin C (LVC, 50 mg lutein/kg BW+1,000 mg vitamin C/kg BW). No differences in body weight, relative live weight or plasma biochemical profiles were observed among treatment groups. In the hepatic antioxidant defense systems, the mRNA expression of superoxide dismutase (SOD) in the LUT and LVC groups was significantly (P<0.05) higher than that in the CON group, whereas the mRNA level of glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) was not affected by the administration of antioxidants. SOD and GST activities in the LUT and LVC groups were significantly higher (P<0.05) than those in the CON group, whereas GPX, CAT and lipid peroxidation did not differ among groups. In addition, the LVC group showed a significant (P<0.05) increase in plasma and hepatic total antioxidant power (TAP) relative to the CON group. Overall, administration of lutein in combination with vitamin C improved the status of the total antioxidant defense system in SD rats. PMID:26472964

  15. Effects of Repeated Oral Administration of Pazufloxacin Mesylate and Meloxicam on the Antioxidant Status in Rabbits

    PubMed Central

    Khan, Adil Mehraj; Rampal, Satyavan

    2014-01-01

    Prolonged antibiotic and antiinflammatory therapy for complicated infections exposes the body to xenobiotics that can produce several adverse effects for which oxidative damage is the proposed underlying mechanism. In this context, we evaluated the effect of pazufloxacin, a fluoroquinolone antimicrobial, and meloxicam, a nonsteroidal antiinflammatory drug, on antioxidant parameters and lipid peroxidation in rabbits after oral administration for 21 d. Reduced glutathione levels were significantly decreased in rabbits (n = 4 per group) given pazufloxacin, meloxicam, or their combination. In addition, glutathione peroxidase activity was induced in the rabbits treated with pazufloxacin only. Administration of pazufloxacin and meloxicam, as single agents as well as in combination, produced significant lipid peroxidation compared with levels in untreated controls. In conclusion, both pazufloxacin and meloxicam potentially can induce oxidative damage in rabbits. PMID:25199097

  16. Antioxidant-Mediated Modulation of Protein Reactivity for 3,4-Dihydroxyphenylacetaldehyde, a Toxic Dopamine Metabolite.

    PubMed

    Anderson, David G; Florang, Virginia R; Schamp, Josephine H; Buettner, Garry R; Doorn, Jonathan A

    2016-07-18

    3,4-Dihydroxyphenylacetaldehyde (DOPAL) is an endogenously produced toxic aldehyde. It is a bifunctional electrophile implicated in the loss of dopaminergic cells concomitant with Parkinson's disease and neurodegeneration. DOPAL is known to react with proteins and amino acids such as N-acetyl lysine (NAL); oxidation of the catechol moiety to the quinone of DOPAL increases this reactivity. Here, we demonstrate the ability of the antioxidants N-acetylcysteine, glutathione, and ascorbic acid to mitigate the reactivity of DOPAL with proteins and amino acids in a dose-dependent fashion. Conversely, Trolox did not lessen the observed reactivity with proteins. Interestingly, use of tricine, a buffer and reducing agent, in these systems also decreased the reactivity of DOPAL with amines, yielding tricine-derived free radical species. Modification of amines with aldehydes typically involves Schiff base chemistry; however, the observance of free radicals suggests that an oxidative step is involved in the reaction of DOPAL with lysine. Furthermore, while Schiff base formation is usually optimal at pH 5, the reaction rate of DOPAL with NAL is negligible at pH 5 and is enhanced under basic conditions (e.g., pH 9). Conditions of high pH are also favorable for catechol auto-oxidation, known to occur for DOPAL. The antioxidant-mediated protection demonstrated here suggests that oxidative stress may impart cellular vulnerability to protein modification by DOPAL. Therefore, depleted antioxidants and increased levels of lipid peroxidation products, known to prevent the detoxifying metabolism of DOPAL, may present a survival challenge to dopaminergic cells targeted in Parkinson's disease. PMID:27268734

  17. Evaluation of Nutritional and Antioxidant Status of Lepidium latifolium Linn.: A Novel Phytofood from Ladakh

    PubMed Central

    Koul, Sushma; Vishwakarma, Ram; Vyas, Dhiraj

    2013-01-01

    Lepidium latifolium Linn. (perennial pepperweed) is one of the preferred phytofoods among cold arid region of Ladakh, India and its leaves contribute significantly to people's diet. This study was conducted to determine its nutritive value and antioxidant activity. Plant samples from three different locations were selected in the present study. Results showed that this plant is an excellent source of glucosinolates, notably sinigrin that is present in very high amount (∼70–90%). Its value ranged from 149 to 199 µg per g fresh weight. Fatty acid composition analysis showed that its leaves were abundant in unsaturated fatty acids, specifically linolenic acid (18∶3) whose percentage is about 50%. Higher glucose and crude protein along with higher nitrogen to sulfur ratio, supplements the nutritive value of this plant. Based on total phenol, flavanoids, free radical scavenging activity and DNA protective activity showed that this ecotype of perennial pepperweed contains high antioxidant properties. The percentage inhibition for O2− scavenging activity ranged from 41.3% to 83.9%. Higher content of phenols (26.89 to 50.51 mg gallic acid equivalents per g dry weight) and flavanoids (38.66 to 76.00 mg quercetin equivalents per g dry weight) in leaves could be responsible for the free radical scavenging activity of this plant. Depending upon the location of the plants, variations were observed in different activities. Based on the systematic evaluation in this study, preparations of Lepidium latifolium from Ladakh can be promoted as substitute to dietary requirements. PMID:23936316

  18. Growth and antioxidant status of oriental river prawn Macrobrachium nipponense fed with diets containing vitamin E

    NASA Astrophysics Data System (ADS)

    Zhao, Weihong; Wang, Zisheng; Yu, Yebing; Qi, Zhitao; Lü, Linlan; Zhang, Yuxia; Lü, Fu

    2015-11-01

    A feeding trial was carried out to investigate the dietary vitamin E requirement of the oriental river prawn Macrobrachium nipponense (weight of 0.3-0.4 g) and its effect role on antioxidant activity. Prawns were fed with seven levels of vitamin E (0, 25, 50, 75, 100, 200, and 400 mg/kg diet) for 60 days. The results show that dietary vitamin E supplementation could significantly increased the prawn weight (P<0.05). The activity of superoxide dismutase (SOD) in the hepatopancreas was significantly higher in prawns fed with diets supplemented with ≤75 mg/kg vitamin E than in those fed with diets supplemented with 100-400 mg/kg vitamin E (P<0.05). The activity of catalase (CAT) in the hepatopancreas decreased significantly as dietary vitamin E supplementation increased (P<0.05), and no significant difference was detected in glutathione peroxidase (GSH-Px) activity between different dietary groups (P>0.05). The contents of vitamin E in the hepatopancreas and in the muscle increased with increasing dietary vitamin E. There was a linear correlation between the vitamin E level in diet and that in muscle, and between the vitamin E level in diet and that in the hepatopancreas. All the above results indicated that dietary vitamin E can be stored in the hepatopancreas and muscle and lower both the activities of SOD and CAT in the hepatopancreas, suggesting that it is a potential antioxidant in M. nipponense. Broken line analysis conducted on the weight gains of prawns in each diet group showed that the dietary vitamin E requirement for maximum growth is 94.10 mg/kg.

  19. Responses of bovine lymphocytes to heat shock as modified by breed and antioxidant status.

    PubMed

    Kamwanja, L A; Chase, C C; Gutierrez, J A; Guerriero, V; Olson, T A; Hammond, A C; Hansen, P J

    1994-02-01

    We tested whether resistance of lymphocytes to heat stress is modified by breed, intracellular glutathione content, and extracellular antioxidants. In the first experiment, lymphocytes from Angus (Bos taurus, non-heat-tolerant), Brahman (B. indicus, heat-tolerant), and Senepol (B. taurus, heat-tolerant) heifers (12 heifers per breed) were cultured at 45 degrees C for 3 h to evaluate thermal killing, at 42 degrees C for 12 h in a 60-h phytohemagglutinin-induced proliferation test, and at 42 degrees C for 1 h to measure induction of heat shock protein 70 (HSP70). Killing at 45 degrees C was affected by breed x temperature (P < .01); the decrease in viability caused by a temperature of 45 degrees C was greater for Angus than for Brahman or Senepol. For phytohemagglutinin-stimulated lymphocytes, heating to 42 degrees C reduced [3H]thymidine incorporation equally for all breeds. Viability at the end of culture was affected (P < .001) by a breed x temperature interaction because the decrease in viability caused by culture at 42 degrees C was greatest for lymphocytes from Angus heifers. Heat shock for 1 h at 42 degrees C caused a two- to threefold increase in intracellular concentrations of HSP70, but there was no interaction of temperature with breed. In another experiment (with lymphocytes harvested from three Holstein cows), buthionine sulfoximine, a glutathione synthesis inhibitor, inhibited (P < .01) proliferation of phytohemagglutinin-stimulated lymphocytes at 38.5 and 42 degrees C. Addition of the antioxidants glutathione or thioredoxin to culture did not reduce the effects of heating to 42 degrees C on proliferation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8157528

  20. Growth and antioxidant status of oriental river prawn Macrobrachium nipponense fed with diets containing vitamin E

    NASA Astrophysics Data System (ADS)

    Zhao, Weihong; Wang, Zisheng; Yu, Yebing; Qi, Zhitao; Lü, Linlan; Zhang, Yuxia; Lü, Fu

    2016-05-01

    A feeding trial was carried out to investigate the dietary vitamin E requirement of the oriental river prawn Macrobrachium nipponense (weight of 0.3-0.4 g) and its effect role on antioxidant activity. Prawns were fed with seven levels of vitamin E (0, 25, 50, 75, 100, 200, and 400 mg/kg diet) for 60 days. The results show that dietary vitamin E supplementation could significantly increased the prawn weight ( P < 0.05). The activity of superoxide dismutase (SOD) in the hepatopancreas was significantly higher in prawns fed with diets supplemented with ≤75 mg/kg vitamin E than in those fed with diets supplemented with 100-400 mg/kg vitamin E ( P < 0.05). The activity of catalase (CAT) in the hepatopancreas decreased significantly as dietary vitamin E supplementation increased ( P < 0.05), and no significant difference was detected in glutathione peroxidase (GSH-Px) activity between different dietary groups ( P >0.05). The contents of vitamin E in the hepatopancreas and in the muscle increased with increasing dietary vitamin E. There was a linear correlation between the vitamin E level in diet and that in muscle, and between the vitamin E level in diet and that in the hepatopancreas. All the above results indicated that dietary vitamin E can be stored in the hepatopancreas and muscle and lower both the activities of SOD and CAT in the hepatopancreas, suggesting that it is a potential antioxidant in M. nipponense. Broken line analysis conducted on the weight gains of prawns in each diet group showed that the dietary vitamin E requirement for maximum growth is 94.10 mg/kg.

  1. Antioxidant status of blood and liver of turkeys fed diets enriched with polyunsaturated fatty acids and fruit pomaces as a source of polyphenols.

    PubMed

    Jankowski, J; Juśkiewicz, J; Zduńczyk, P; Kosmala, M; Zieliński, H; Antoszkiewicz, Z; Zduńczyk, Z

    2016-01-01

    It was hypothesized that dietary polyphenol-rich fruit pomaces can improve the antioxidant status of both diets and the tissues of turkeys fed such diets. Turkeys were fed diets containing a cellulose preparation (C) or 5% dried apple pomace (AP), blackcurrant pomace (BCP), strawberry pomace (SP) and seedless strawberry pomace (SSP). Blood and liver biochemical parameters were determined in 7 birds from each experimental group slaughtered at 15 weeks of age, after 5 weeks of feeding diets containing soybean oil and linseed oil (approx. 1:1 ratio). Dietary linseed oil added to diets at 2.5% lowered the n-6/n-3 PUFA ratio from approx. 7:1 to below 2:1, thus reducing the antioxidant properties of diets measured using DPPH, ABTS and photo-chemiluminescence assays, compared with diets containing only soybean oil and administered to birds in the first phase of feeding. Fruit pomaces, in particular SSP with the highest polyphenol content (32.81 g/kg) and the highest antioxidant activity (256.4 μM Trolox/g), increased the antioxidant capacity of turkey diets. In comparison with the control group, the dietary treatments with fruit pomaces improved blood antioxidant parameters, including catalase activity (groups AP and BCP), the total antioxidant capacity of hydrophilic (group AP) and lipophilic (groups AP, SP, and SSP) compounds, peroxide levels (groups AP and SSP) and antioxidant capacity measured by the FRAP (ferric reducing antioxidant power of plasma) assay (groups AP, BCP and SSP). Significantly lower concentrations of both vitamin E and thiobarbituric acid reactive substances (TBARS) were noted in the livers of turkeys fed all diets with dried fruit pomaces. PMID:27096792

  2. Evaluation of antioxidant status of female diabetic patients in Nnamdi Azikiwe University Teaching Hospital, Anambra State, Nigeria.

    PubMed

    Okuonghae, E O P; Onyenekwe, C C; Ahaneku, J E; Ukibe, N R; Nwani, P O; Asomugha, A L; Osakue, N O; Aidomeh, F; Awalu, C C

    2015-01-01

    Diabetes mellitus has become an onerous disease to developing countries such as Nigeria. Rapid acceptance of urbanisation and sedentary life styles pose an encumbrance to its prevention and management. Increased oxidative stress in diabetes mellitus has been implicated as a culprit in perpetuating antioxidant depletion and diabetic complications in diabetes mellitus individuals. This study aims to evaluate the level of antioxidant status in type 2 diabetes mellitus (DM) female participants visiting the out-patient diabetic clinic of Nnamdi Azikiwe University Teaching Hospital (NAUTH), Nnewi, Anambra State, Nigeria. A total of 86 participants aged 51±10 years were recruited for this study. The test group consists of 43 already confirmed type 2 diabetes mellitus females, while the control group consists of 43 apparently healthy females. The test subjects were further subgrouped into good and poor glycaemic control groups, using a cut-off of <7% for HbA1c. Whole blood was collected from participants and aliquoted into specified sample containers for analysis of the following parameters: random blood glucose (RBG; mg/dL), glycosylated haemoglobin (HbA1c; %), glutathione reductase (GR; U/L) and total antioxidant status (TAS; mmol/L). Results from this study showed that the mean differences in RBG (197.74±49.29 mg/dL) and HbA1c (9.86±1.44%) were significantly higher in the test group compared to the control group RBG (104.79±11.33 mg/dL) and HbA1c (5.21±1.23%) (P<0.05). The mean differences of GR (45.81±20.45 U/L) and TAS (1.81±1.04 mmol/L) were significantly lower in the test group compared to the control group GR (61.21±14.34 U/L) and TAS (2.73±2.08 mmol/L) (P<0.05). The poor glycaemic test group was observed to have the highest RBG (200.34±50.4 mg/dL) and HbA1c (10.23±1.33%) compared both to good glycaemic test group RBG (186.38±45.39 mg/dL), HbA1c (6.54±0.45%) and non-diabetic group RBG (104.79±11.33 mg/dL) and HbA1c (5.21±1.23%) (P<0.05). Glutathione

  3. Phosphorous and sulfur nutrition modulate antioxidant defenses in Myracrodruom urundeuva plants exposed to arsenic.

    PubMed

    Gomes, M P; Soares, A M; Garcia, Q S

    2014-07-15

    We investigated if plant nutrition and antioxidant system activation are correlated features of arsenic (As)-tolerance in Myracrodruom urundeuva. Plants were grown for 120 days in substrates with 0, 10, 50 and 100mg Askg(-1) and its As-tolerance was demonstrated. As-concentrations greater than 10mgkg(-1) decreased plant growth and photosynthesis but did not induce plant death. Plants coupled alterations in stomatal conductance and transpiration to avoid As-deleterious effects to the photosynthetic apparatus. As-toxicity in M. urundeuva was due to lipid peroxidation induced by hydrogen peroxide accumulation. Ascorbate peroxidase (APX) and gluthatione peroxidase (GPX) had central roles in hydrogen peroxide (H2O2) scavenging in leaves, and their activities were linked to changes in redox potentials (ascorbate and glutathione pools). APX and GPX inactivation/degeneration led to H2O2 accumulation and related lipid peroxidation. Increased phosphorus (P) and sulfur (S) concentrations in leaves were related to increased APX and GPX activities by stimulating increases in glutathione biosynthesis. We concluded that P and S nutrition were directly linked to As-tolerance in M. urundeuva plants by increasing antioxidant system activities. PMID:24866559

  4. Toxicity of Ochratoxin A and Its Modulation by Antioxidants: A Review

    PubMed Central

    Sorrenti, Valeria; Di Giacomo, Claudia; Acquaviva, Rosaria; Barbagallo, Ignazio; Bognanno, Matteo; Galvano, Fabio

    2013-01-01

    Ochratoxin A (OTA) is a mycotoxin involved in the development of different types of cancers in rats, mice and humans. A growing number of in vitro and in vivo studies has been collected and has described evidence compatible with a role for oxidative stress in OTA toxicity and carcinogenicity. Because the contribution of the oxidative stress response in the development of cancers is well established, a role in OTA carcinogenicity is plausible. Several studies have been performed to try to counteract the adverse effects of oxygen radicals generated under OTA-exposure. A number of molecules with various antioxidant properties were tested, using in vivo or in vitro models. Protection against OTA-induced DNA damage, lipid peroxidation, as well as cytotoxicity were observed, further confirming the link between OTA toxicity and oxidative damage. These studies demonstrated that antioxidants are able to counteract the deleterious effects of chronic consumption or exposure to OTA and confirmed the potential effectiveness of dietary strategies to counteract OTA toxicity. PMID:24152986

  5. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells.

    PubMed

    da Silva, E P; Nachbar, R T; Levada-Pires, A C; Hirabara, S M; Lambertucci, R H

    2016-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual's performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells. PMID:26386577

  6. Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity.

    PubMed

    Rozpądek, P; Wężowicz, K; Stojakowska, A; Malarz, J; Surówka, E; Sobczyk, Ł; Anielska, T; Ważny, R; Miszalski, Z; Turnau, K

    2014-10-01

    Cichorium intybus (common chicory), a perennial plant, common in anthropogenic sites, has been the object of a multitude of studies in recent years due to its high content of antioxidants utilized in pharmacy and food industry. Here, the role of arbuscular mycorrhizal fungi (AMF) in the biosynthesis of plant secondary metabolites and the activity of enzymatic antioxidants under toxic metal stress was studied. Plants inoculated with Rhizophagus irregularis and non-inoculated were grown on non-polluted and toxic metal enriched substrata. The results presented here indicate that AMF improves chicory fitness. Fresh and dry weight was found to be severely affected by the fungi and heavy metals. The concentration of hydroxycinnamates was increased in the shoots of mycorrhizal plants cultivated on non-polluted substrata, but no differences were found in plants cultivated on metal enriched substrata. The activity of SOD and H2O2 removing enzymes CAT and POX was elevated in the shoots of mycorrhizal plants regardless of the cultivation environment. Photochemical efficiency of inoculated chicory was significantly improved. Our results indicate that R. irregularis inoculation had a beneficial role in sustaining the plants ability to cope with the deleterious effects of metal toxicity. PMID:25048909

  7. Oxidative stress and antioxidant status in rat blood, liver and muscle: effect of dietary lipid, carnitine and exercise.

    PubMed

    Karanth, Jyothsna; Jeevaratnam, Kadirvelu

    2005-09-01

    The purpose of this study was to determine the effect of dietary fat, carnitine supplementation, and exercise on oxidative damage and antioxidant status. Male Wistar rats (60 days old) were fed diets containing either hydrogenated fat (HF) or peanut oil (PO) with or without 0.5 mg % (of dry diet) carnitine. The rats were given exercise, i.e. swimming for 60 minutes, for 6 days/week for 6 months under each dietary condition. The blood malondialdehyde (MDA) level was higher in PO-fed rats, more so in exercising ones, while the same was not altered in carnitine-supplemented rats irrespective of the dietary fat or physical activity. The MDA level was significantly decreased in muscle, while increased in liver, of carnitine-fed rats. The blood glutathione (GSH) level also significantly increased in exercising rats as compared to sedentary ones, while carnitine supplementation elevated it in all the groups. Exercise and carnitine supplementation significantly lowered GSH levels in liver while increasing it in muscle. The glutathione peroxidase (GPX) activity was significantly increased in blood and muscle from PO-fed exercising rats as compared to sedentary ones, while carnitine supplementation elevated GPX activity in all the groups. The liver and muscle catalase (CAT) activities were significantly increased in PO-fed exercising rats, while carnitine did not have any effect. The pro-oxidative effect of the monounsaturated fatty acid (MUFA)-rich PO diet and prolonged regular exercise was less pronounced due to augmented antioxidant enzymes, GPX and CAT, induced by training to protect against the oxidative stress, while carnitine supplementation could help to counter lipid peroxidation due to exercise through redistribution of GSH from liver to blood and muscle. PMID:16477765

  8. Respiratory Burst Enzymes, Pro-Oxidants and Antioxidants Status in Bangladeshi Population with β-Thalassemia Major

    PubMed Central

    Hossain, Md. Faruk; Ismail, Md.; Tanu, Arifur Rahman; Shekhar, Hossain Uddin

    2015-01-01

    Background: Oxidative stress is intimately associated with many diseases, including β-thalassemia. Aim: The study was to estimate the status of respiratory burst enzymes, pro-oxidants, and antioxidants in β-thalassemia major patients in Bangladesh and to compare with apparently healthy individuals. Materials and Methods: A total of 49 subjects were recruited which included 25 patients (age range 5 to 40 years) with β-thalassemia major and 24 controls (age and sex matched). Superoxide dismutase (SOD) and catalase (CAT) represented respiratory burst enzymes; malondialdehyde (MDA), lipid hydroperoxide (LHP), and xanthine oxidase (XO) were measured as pro-oxidants; and glutathione S transferase (GST), vitamin C (Vit.C), and glutathione (GSH) were the measured antioxidants. Results: The activity of SOD was significantly (P < 0.001) increased by about 79% and the activity of CAT was significantly (P < 0.001) decreased by more than 34% in the blood of β-thalassemia major patients compared to the control group. The content of pro-oxidants such as MDA, LHP, and XO was significantly (P < 0.001) higher in patients by about 228%, 241.3% and 148.1% respectively compared to control group. The level of GSH and Vit.C were significantly (P = 0.000) decreased in patients by about 59% and 81% versus the healthy group, respectively; and GST activity was significantly (P < 0.001) declined by 44.25% in patients group. Conclusion: β-thalassemia major patients demonstrate raised oxidative stress compared to healthy subjects. PMID:26199921

  9. Blood glutathione status and activity of glutathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training.

    PubMed

    Janiak, M; Suska, M; Dudzińska, W; Skotnicka, E

    2010-04-01

    The aim of this study was to evaluate response of blood glutathione status and activity of glutathione-metabolizing antioxidant enzymes in erythrocytes of young trotters in basic training. Nine untrained trotters (aged 16-20 months) were exposed to a 4-month training program based on exercises at low-to-moderate intensity. The conditioning consisted of breaking the horses and running them on distances varying from 4 to 40 km a week. The workloads were increased on a 3-week basis. Exercise intensity was monitored by measuring heart rate and blood lactate. Blood samples were collected at rest, before (RES0) and after (RESt) the conditioning period; moreover, on the latter occasion (on day 112 of training), the blood was also taken immediately after the routine exercise (EXE0) and 60 min thereafter (EXE60). The whole blood samples were analysed for the concentration of reduced, oxidized and total glutathione (GSH, GSSG and TGSH, respectively), while the activities of glutathione peroxidase (GPX) and glutathione-disulfide reductase (GR) were determined in haemolysates. Additionally, the erythrocytic concentrations of oxidized nicotinamide adenine dinucleotide (NAD(+)) and its phosphate (NADP(+)) were measured. All investigated parameters except NAD(+) and reduced/oxidized glutathione ratio (GSH/GSSG) changed during the training period. Following the effortm GPX, NADP(+) and GSH/GSSG were significantly lower (p < 0.05, p < 0.01, p < 0.001, respectively) while GSSG was markedly higher than at rest (RESt). The drop in NADP(+), low GSH/GSSG and high GSSG concentration were sustained at EXE60. Glutathione-disulfide reductase activity was higher after the workout but only at EXE60 the increase in activity was significant. Despite the activities of the GSH-GSSG cycle, enzymes were considerably higher after the training period, the elevated concentration of GSSG and significantly lower GSH/GSSG ratio in the post-exercise measurements suggest that production of reactive oxygen

  10. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study.

    PubMed

    Plaza, Merichel; Batista, Ângela Giovana; Cazarin, Cinthia Baú Betim; Sandahl, Margareta; Turner, Charlotta; Östman, Elin; Maróstica Júnior, Mário Roberto

    2016-11-15

    Brazilian berries, such as Myrciaria jaboticaba (jaboticaba), are good sources of polyphenols with a recognized function in oxidative stress attenuation proved in non-clinical studies. In the present study, the polyphenols profile and their contribution to the antioxidant capacity of the jaboticaba peel were analyzed using high-performance liquid chromatography (HPLC) with photodiode array (DAD), electrochemical (ECD), charged aerosol (CAD), and mass spectrometry (MS) detections. Anthocyanins, ellagitannins and gallotannins, ellagic acid and derivatives, and flavonols were found in jaboticaba. Anthocyanins were the phenolics found in higher concentrations. However, ellagitannins were the main contributors to the total antioxidant capacity. Moreover, the effect of jaboticaba peel intake on antioxidant and glucose parameters in a single-blind placebo-controlled crossover study was investigated. The serum antioxidant capacity was significantly higher when the subjects had consumed the test meal containing jaboticaba. Serum insulin decreased subsequent to the second meal at 4h after jaboticaba peel consumption. PMID:27283622

  11. Lipid peroxidation and antioxidant status in kidney and liver of rats treated with sulfasalazine.

    PubMed

    Linares, Victoria; Alonso, Virginia; Albina, Maria L; Bellés, Montserrat; Sirvent, Juan J; Domingo, José L; Sánchez, Domènec J

    2009-02-27

    Sulfasalazine (SASP) is a drug commonly used in the treatment of inflammatory bowel diseases (IBD). In this study, the changes in endogenous antioxidant capacity and oxidative damage in liver and kidney of SASP-treated rats were investigated. Adult male Sprague-Dawley rats were orally given 0, 300, or 600 mg SASP/kg body weight for 14 days. One half of the animals in each group remained 14 additional days without SASP treatment. At the end of the experimental period, rats were euthanized and liver and kidney were removed. In both organs, the following stress markers were determined: reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid-reactive substances (TBARS). Moreover, histological examination of kidneys showed phagolysosomes after 14 days of SASP withdrawal. A dropsical degeneration was also observed in renal tissue. Oral SASP administration induced a significant increase in TBARS levels in both liver and kidney. After 2 weeks without SASP administration, a recovery of these levels was noted. SOD activity was significantly reduced, while CAT activity significantly increased at 600 mg SASP/(kg day). In kidney, GPx activity significantly increased, while GST activity and GSH levels were significantly reduced at 600 mg SASP/(kg day). These results suggest that in male rats, oxidative damage can be a mechanism for nephro- and hepatotoxicity related with SASP treatment. PMID:19071188

  12. Aronia melanocarpa treatment and antioxidant status in selected tissues in Wistar rats.

    PubMed

    Francik, Renata; Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir

    2014-01-01

    Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed. PMID:25057488

  13. Aronia melanocarpa Treatment and Antioxidant Status in Selected Tissues in Wistar Rats

    PubMed Central

    Krośniak, Mirosław; Sanocka, Ilona; Bartoń, Henryk; Hebda, Tomasz; Francik, Sławomir

    2014-01-01

    Aronia juice is considered to be a source of compounds with high antioxidative potential. We conducted a study on the impact of compounds in the Aronia juice on oxidative stress in plasma and brain tissues. The influence of Aronia juice on oxidative stress parameters was tested with the use of a model with a high content of fructose and nonsaturated fats. Therefore, the activity of enzymatic (catalase, CAT, and paraoxonase, PON) and nonenzymatic (thiol groups, SH, and protein carbonyl groups, PCG) oxidative stress markers, which indicate changes in the carbohydrate and protein profiles, was marked in brain tissue homogenates. Adding Aronia caused statistically significant increase in the CAT activity in plasma in all tested diets, while the PON activity showed a statistically significant increase only in case of high fat diet. In animals fed with Aronia juice supplemented with carbohydrates or fat, statistically significant increase in the PON activity and the decrease in the CAT activity in brain tissue were observed. In case of the high fat diet, an increase in the number of SH groups and a decrease in the number of PCG groups in brain tissue were observed. PMID:25057488

  14. A comparative study of oxidant-antioxidant status in stable and active vitiligo patients.

    PubMed

    Ines, Dammak; Sonia, Boudaya; Riadh, Ben Mansour; Amel, El Gaied; Slaheddine, Marrekchi; Hamida, Turki; Hamadi, Attia; Basma, Hentati

    2006-09-01

    The pathogenetic mechanisms in vitiligo have not been completely clarified. One of the major hypotheses in the pathogenesis of vitiligo is the oxidative stress hypothesis. The active or stable phase of vitiligo is defined on the basis of the progression or appearance of new lesions in the last 3 months and the absence of new lesions or their progression in the last 6 months, respectively. Eighteen patients with active vitiligo, 18 patients with stable vitiligo, and 40 controls were included in this study. We examined serum levels of malondialdehyde, selenium, vitamin E and A, and the erythrocyte activities of glutathione peroxidase, superoxide dismutase, and catalase. Our results revealed a significantly higher level of serum malondialdehyde, selenium in patients with active disease compared with the controls. Significant higher increase in erythrocytes superoxide dismutase activities was observed in active vitiligo group, erythrocyte glutathione peroxidase activity was decreased significantly in active disease, whereas erythrocyte catalase activity and plasma vitamin E and A levels were not different in vitiligo patients as compared with controls. Our study shows that oxidative stress is involved in the pathophysiology of both active and stable vitiligo but increased imbalance of antioxidants was observed in the blood of active vitiligo patients. PMID:16897080

  15. Experimentally induced hyperthyroidism influences oxidant and antioxidant status and impairs male gonadal functions in adult rats.

    PubMed

    Asker, M E; Hassan, W A; El-Kashlan, A M

    2015-08-01

    The objective of the present experiment was to study the effect of hyperthyroidism on male gonadal functions and oxidant/antioxidant biomarkers in testis of adult rats. Induction of hyperthyroidism by L-thyroxine (L-T4, 300 μg kg(-1) body weight) treatment once daily for 3 or 8 weeks caused a decrease in body weight gain as well as in absolute genital sex organs weight. The epididymal sperm counts and their motility were significantly decreased in a time-dependent manner following L-T4 treatment. Significant decline in serum levels of luteinising hormone, follicle stimulating hormone and testosterone along with significant increase in serum estradiol level was observed in hyperthyroid rats compared with euthyroid ones. Significant increase in malondialdehyde and nitric oxide concentration associated with significant decrease in superoxide dismutase and catalase activity was also noticed following hyperthyroidism induction. Both reduced glutathione content and glutathione peroxidase activity were increased in hyperthyroid rats compared with control rats. Marked histopathological alterations were observed in testicular section of hyperthyroid rats. These results provide evidence that hypermetabolic state induced by excess level of thyroid hormones may be a causative factor for the impairment of testicular physiology as a consequence of oxidative stress. PMID:25220112

  16. Issues Relating to Women's Immigration Status. Tierra de Oportunidad Module 8. LAES: Latino Adult Education Services Project.

    ERIC Educational Resources Information Center

    Kissam, Ed; Dorsey, Holda

    This module, which may be used as the basis for a workshop or as a special topic unit in adult basic education or English-as-a-Second-Language (ESL) courses, focuses on issues related to women's immigration status. The following items are included: module overview; list of basic, thinking, interpersonal, information utilization, and other skills…

  17. Alpha-lipoic acid protects against indomethacin-induced gastric oxidative toxicity by modulating antioxidant system.

    PubMed

    Kaplan, Kursat Ali; Odabasoglu, Fehmi; Halici, Zekai; Halici, Mesut; Cadirci, Elif; Atalay, Fadime; Aydin, Ozlem; Cakir, Ahmet

    2012-11-01

    Gastroprotective effects of α-lipoic acid (ALA) against oxidative gastric damage induced by indomethacin (IND) have been investigated. All doses (50, 75, 100, 150, 200, and 300 mg/kg body weight) of ALA reduced the ulcer index with 88.2% to 96.1% inhibition ratio. In biochemical analyses of stomach tissues, ALA administration decreased the level of lipid peroxidation (LPO) and activities of myeloperoxidase (MPO) and catalase (CAT) in gastric tissues, which were increased after IND application. ALA also increased the level of glutathione (GSH) and activities of superoxide dismutase (SOD) and glutathione S-transferase (GST) that were decreased in gastric damaged stomach tissues. In conclusion, the gastroprotective effect of ALA could be attributed to its ameliorating effect on the antioxidant defense systems. PMID:23057764

  18. Coagulants modulate the antioxidant properties & hypocholesterolemic effect of tofu (curdled soymilk).

    PubMed

    Oboh, G; Ekperigin, M M; Akindahunsi, A A

    2007-01-01

    The recent increase in Soymilk and tofu (coagulated soymilk) consumption especially in Western Country is due to the recognition of the health benefits of soy foods; consumption of soybean would prevent heart diseases. In Nigeria Calcium salt, alum and steep water from pap production are usually used as coagulant in tofu production. The effect of those coagulants on the antioxidant properties of tofu and serum cholesterol, high-density lipoproteins (HDL) and low-density lipoproteins (LDL) level of albino rats fed tofu for 14 days is been assessed. The result of the study revealed that there was no significant difference (P > 0.05) in the tofu yield (17.6-18.3%), however steep water coagulated tofu had a significantly higher (P < 0.05) total phenol (12.0 g/kg) content, reducing power (0.6 OD700) and DPPH free radical scavenging ability (69.1%) than tofu produced using other coagulants. Furthermore, feeding albino rats with tofu and water ad libitum for 14 days caused a significant decrease (P < 0.05) in the serum cholesterol and low-density lipoproteins when compared with the control, while there was no significant difference (P > 0.05) in the average daily feed intake of the rats. Conversely, there was a significant increase (P < 0.05) in the serum high-density lipoproteins when compared with the control. However, rats fed steep water coagulated tofu had the lowest serum level of cholesterol and LDL level followed by those fed CaCl2 and alum coagulated tofu respectively, while those fed with calcium chloride coagulated tofu had the highest serum HDL level, and closely followed by those fed steep water coagulated tofu. It was therefore concluded that of all the coagulant, steep water appeared to be the most promising coagulant with regard to the production of tofu with higher antioxidant and hypocholesterolemic effect. PMID:18087868

  19. Butyrate modulates antioxidant enzyme expression in malignant and non-malignant human colon tissues.

    PubMed

    Jahns, Franziska; Wilhelm, Anne; Jablonowski, Nadja; Mothes, Henning; Greulich, Karl Otto; Glei, Michael

    2015-04-01

    The induction of antioxidant enzymes is an important mechanism in colon cancer chemoprevention, but the response of human colon tissue to butyrate, a gut fermentation product derived from dietary fiber, remains largely unknown. Therefore, our study investigated the effect of a butyrate treatment on catalase (CAT) and superoxide dismutase (SOD2) in matched human colon tissues of different transformation stages (n = 3-15 in each group) ex vivo. By performing quantitative real-time PCR, Western blot, and spectrophotometric measurements, we found an increase in SOD2 at expression and activity level in colonic adenocarcinomas (mRNA: 1.96-fold; protein: 1.41-fold, activity: 1.8-fold; P < 0.05). No difference was detectable for CAT between normal, adenoma, and carcinoma colon tissues. Treatment of normal colon epithelium (12 h) with a physiologically relevant concentration of butyrate (10 mM) resulted in a significant increase (P < 0.05) in CAT mRNA (1.24-fold) and protein (1.39-fold), without affecting the enzymatic activity. Consequently, preliminary experiments failed to show any protective effect of butyrate against H2 O2 -mediated DNA damage. Despite a significantly lowered SOD2 transcript (0.51-fold, P < 0.01) and, to a lesser extent, protein level (0.86-fold) after butyrate exposure of normal colon cells, the catalytic activity was significantly enhanced (1.19-fold, P < 0.05), suggesting an increased protection against tissue superoxide radicals. In malignant tissues, greater variations in response to butyrate were observed. Furthermore, both enzymes showed an age-dependent decrease in activity in normal colon epithelium (CAT: r = -0.49, P = 0.09; SOD2: r = -0.58, P = 0.049). In conclusion, butyrate exhibited potential antioxidant features ex vivo but cellular consequences need to be investigated more in depth. PMID:24677319

  20. Quercetin, a flavonoid antioxidant, modulates endothelium-derived nitric oxide bioavailability in diabetic rat aortas.

    PubMed

    Machha, Ajay; Achike, Francis I; Mustafa, Ali Mohd; Mustafa, Mohd Rais

    2007-06-01

    The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress. PMID:17513143

  1. Buckwheat achenes antioxidant profile modulates Aspergillus flavus growth and aflatoxin production.

    PubMed

    Chitarrini, G; Nobili, C; Pinzari, F; Antonini, A; De Rossi, P; Del Fiore, A; Procacci, S; Tolaini, V; Scala, V; Scarpari, M; Reverberi, M

    2014-10-17

    Buckwheat (Fagopyrum spp.) is a "pseudo-cereal" of great interest in the production of healthy foods since its flour, derived from achenes, is enriched with bioactive compounds and, due to the absence of gluten, may be used in composition of celiac diets. Amongst buckwheat species, F. tataricum achenes possess a larger amount of the antioxidant flavenol rutin than the common buckwheat F. esculentum. Ongoing climate change may favor plant susceptibility to the attack by pathogenic, often mycotoxigenic, fungi with consequent increase of mycotoxins in previously unexploited feeds and foodstuffs. In particular, Aspergillus flavus, under suitable environmental conditions such as those currently occurring in Italy, may produce aflatoxin B1 (AFB1), the most carcinogenic compound of fungal origin which is classified by IARC as Category 1. In this study, the viable achenes of two buckwheat species, F. tataricum (var. Golden) and F. esculentum (var. Aelita) were inoculated with an AFB1-producing A. flavus NRRL 3357 to analyze their relative performances against fungal invasion and toxin contamination. Notably, we sought the existence of a correlation between the amount of tocols/flavonols in the achenes of buckwheat, infected and non-infected with A. flavus, and to analyze the ability of the pathogen to grow and produce toxin during achene infection. Results suggest that achenes of F. tataricum, the best producer of antioxidant compounds in this study, are less susceptible to A. flavus infection and consequently, but not proportionally, to mycotoxin contamination compared with F. esculentum. Moreover, rutin-derived quercetin appears to be more efficient in inhibiting aflatoxin biosynthesis than the parent compound. PMID:25108759

  2. Efficacy of Ascorbic Acid (Vitamin C) and/N-Acetylcysteine (NAC) Supplementation on Nutritional and Antioxidant Status of Male Chronic Obstructive Pulmonary Disease (COPD) Patients.

    PubMed

    Pirabbasi, Elham; Shahar, Suzana; Manaf, Zahara Abdul; Rajab, Nor Fadilah; Manap, Roslina Abdul

    2016-01-01

    Antioxidant therapy has a potential to be introduced as therapeutic modality for chronic obstructive pulmonary disease (COPD) patients. This study aimed to determine the effect of antioxidant supplementation [ascorbic acid and N-Acetylcysteine (NAC)] on nutritional and antioxidant status in male COPD patients. A parallel and single blind randomised controlled clinical trial (RCT) was conducted at two medical centers in Kuala Lumpur, Malaysia. Seventy-nine subjects were recruited and randomly divided into four trial arms (i.e., NAC, vitamin C, NAC+vitamin C and control groups) for six mo. The primary outcome was changes in body mass index by estimating power of 90% and significance level of p<0.05. Repeated Measure ANOVA showed that there was a significant interaction effect on BMI (p=0.046) and carbohydrate intake (p=0.030), especially in the NAC group. Plasma glutathione (GSH) increased significantly in all intervention groups, especially in vitamin C (p=0.005). A single supplementation of NAC or vitamin C improved nutritional and antioxidant status of subjects. PMID:27117852

  3. Total antioxidant and oxidant status of plasma and renal tissue of cisplatin-induced nephrotoxic rats: protection by floral extracts of Calendula officinalis Linn.

    PubMed

    Verma, Pawan Kumar; Raina, Rajinder; Sultana, Mudasir; Singh, Maninder; Kumar, Pawan

    2016-01-01

    The present study was aimed to determine the total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) of plasma and renal tissue in cisplatin (cDDP) induced nephrotoxic rats and its protection by treatments with floral extracts of Calendula officinalis Linn. Treatment with cDDP elevated (p < 0.05) the levels of blood urea nitrogen, creatinine (CR), TOS, OSI and malondialdehyde (MDA) but lowered (p < 0.05) total plasma proteins, TAS, total thiols (TTH), blood glutathione (GSH) and antioxidant enzymes compared to the control group. Pre- and post-treatments of ethanolic floral extract of C. officinalis along with cDDP restored (p > 0.05) CR, albumin, TOS, GSH and activities of antioxidant enzymes in blood and renal tissue. Ethanolic extract treatments reduced (p < 0.05) MDA level in renal tissue without restoring the erythrocyte MDA level following cDDP treatment. These observations were further supported by the histopathological findings in renal tissue. Observations of the present study have shown that treatments with ethanolic floral extract of C. officinalis protect cDDP induced nephrotoxicity by restoring antioxidant system of the renal tissue. PMID:26513373

  4. Antioxidant vitamins status in children and young adults undergoing dialysis: A single center study

    PubMed Central

    Naseri, M.; Shahri, H. Motaghi Moghadam; Horri, M.; Rasoli, Z.; Salemian, F.; Jahanshahi, S.; Moeenolroayaa, G.; Pourhasan, M.

    2015-01-01

    Vitamin E and C are well-known antioxidant vitamins. Oxidative stress is common in chronic kidney diseases. We evaluated 43 dialysis subjects prospectively in a cross-sectional survey. Serum vitamin E concentration was checked in all subjects; 37 cases underwent blood sampling for measurement of serum vitamin C. The enrolled subjects consisted of 12 (27.9%) peritoneal dialysis (PD) and 25 (58.1%) hemodialysis (HD) patients. Six (13.9%) patients were switched from PD to HD or vice versa. Serum concentration of vitamin E was normal, low and high in 9 (20.9%), 31 (72%) and 3 (7.1%) patients, respectively. There were no significant differences regarding age, gender, modality and duration of dialysis, and characteristics of dialysis sessions, mean serum blood urea nitrogen, and albumin levels between vitamin E deficient cases with those with normal serum vitamin E concentration (P > 0.05 for all). The serum vitamin C levels were low in 5 (13.5%) and normal in 32 (86.5%) patients. vitamin C deficiency was more prevalent in HD versus continuous ambulatory peritoneal dialysis patients (P = 0.128). Mean serum vitamin C concentration was higher in patients who were supplemented by vitamin C compared with those who didn’t receive the vitamin supplement (P = 0.043). Vitamin E deficiency was a prevalent finding and supplementary vitamin C 30–60 mg/day was sufficient to prevent deficiency. Regular assessments of serum vitamin E level may be needed in dialysis centers. PMID:26199471

  5. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa)

    PubMed Central

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham JJ; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  6. Elucidating the genetic basis of antioxidant status in lettuce (Lactuca sativa).

    PubMed

    Damerum, Annabelle; Selmes, Stacey L; Biggi, Gaia F; Clarkson, Graham Jj; Rothwell, Steve D; Truco, Maria José; Michelmore, Richard W; Hancock, Robert D; Shellcock, Connie; Chapman, Mark A; Taylor, Gail

    2015-01-01

    A diet rich in phytonutrients from fruit and vegetables has been acknowledged to afford protection against a range of human diseases, but many of the most popular vegetables are low in phytonutrients. Wild relatives of crops may contain allelic variation for genes determining the concentrations of these beneficial phytonutrients, and therefore understanding the genetic basis of this variation is important for breeding efforts to enhance nutritional quality. In this study, lettuce recombinant inbred lines, generated from a cross between wild and cultivated lettuce (Lactuca serriola and Lactuca sativa, respectively), were analysed for antioxidant (AO) potential and important phytonutrients including carotenoids, chlorophyll and phenolic compounds. When grown in two environments, 96 quantitative trait loci (QTL) were identified for these nutritional traits: 4 for AO potential, 2 for carotenoid content, 3 for total chlorophyll content and 87 for individual phenolic compounds (two per compound on average). Most often, the L. serriola alleles conferred an increase in total AOs and metabolites. Candidate genes underlying these QTL were identified by BLASTn searches; in several cases, these had functions suggesting involvement in phytonutrient biosynthetic pathways. Analysis of a QTL on linkage group 3, which accounted for >30% of the variation in AO potential, revealed several candidate genes encoding multiple MYB transcription factors which regulate flavonoid biosynthesis and flavanone 3-hydroxylase, an enzyme involved in the biosynthesis of the flavonoids quercetin and kaempferol, which are known to have powerful AO activity. Follow-up quantitative RT-PCR of these candidates revealed that 5 out of 10 genes investigated were significantly differentially expressed between the wild and cultivated parents, providing further evidence of their potential involvement in determining the contrasting phenotypes. These results offer exciting opportunities to improve the nutritional

  7. Effects of aqueous extracts of garlic (Allium sativum) and neem (Azadirachta indica) leaf on hepatic and blood oxidant-antioxidant status during experimental gastric carcinogenesis.

    PubMed

    Arivazhagan, S; Velmurugan, B; Bhuvaneswari, V; Nagini, S

    2004-01-01

    The modifying effects of aqueous extracts of garlic and neem leaf during the pre-initiation and post-initiation phases of gastric carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine were investigated in male Wistar rats. The extent of lipid peroxidation and the status of phase II biotransformation enzymes such as glutathione peroxidase and glutathione-S-transferase that use reduced glutathione (GSH) as substrate were used to biomonitor the chemopreventive potential of these extracts. Enhanced lipid peroxidation in the liver and blood of tumor-bearing animals was accompanied by significant decreases in the activities of GSH-dependent antioxidants in the pre-initiation as well as in the post-initiation phases. Our results suggest that the modulatory effects of garlic and neem leaf on hepatic and blood oxidant-antioxidant status may play a key role in preventing cancer development at extrahepatic sites. PMID:15383228

  8. Selenium ameliorates arsenic induced oxidative stress through modulation of antioxidant enzymes and thiols in rice (Oryza sativa L.).

    PubMed

    Kumar, Amit; Singh, Rana Pratap; Singh, Pradyumna Kumar; Awasthi, Surabhi; Chakrabarty, Debasis; Trivedi, Prabodh Kumar; Tripathi, Rudra Deo

    2014-09-01

    Arsenic (As) contamination of rice is a major problem for South-East Asia. In the present study, the effect of selenium (Se) on rice (Oryza sativa L.) plants exposed to As was studied in hydroponic culture. Arsenic accumulation, plant growth, thiolic ligands and antioxidative enzyme activities were assayed after single (As and Se) and simultaneous supplementations (As + Se). The results indicated that the presence of Se (25 µM) decreased As accumulation by threefold in roots and twofold in shoots as compared to single As (25 µM) exposed plants. Arsenic induced oxidative stress in roots and shoots was significantly ameliorated by Se supplementation. The observed positive response was found associated with the increased activities of ascorbate peroxidase (APX; EC 1.11.1.11), catalase (CAT; EC 1.11.1.6) and glutathione peroxidase (GPx; EC 1.11.1.9) and induced levels of non-protein thiols (NPTs), glutathione (GSH) and phytochelatins (PCs) in As + Se exposed plants as compared to single As treatment. Selenium supplementation modulated the thiol metabolism enzymes viz., γ-glutamylcysteine synthetase (γ-ECS; EC 6.3.2.2), glutathione-S-transferase (GST; EC 2.5.1.18) and phytochelatin synthase (PCS; EC 2.3.2.15). Gene expression analysis of several metalloid responsive genes (LOX, SOD and MATE) showed upregulation during As stress, however, significant downregulation during As + Se exposure as compared to single As treatment. Gene expressions of enzymes of antioxidant and GSH and PC biosynthetic systems, such as APX, CAT, GPx, γ-ECS and PCS were found to be significantly positively correlated with their enzyme activities. The findings suggested that Se supplementation could be an effective strategy to reduce As accumulation and toxicity in rice plants. PMID:24985886

  9. Light history modulates antioxidant and photosynthetic responses of biofilms to both natural (light) and chemical (herbicides) stressors.

    PubMed

    Bonnineau, Chloé; Sague, Irene Gallardo; Urrea, Gemma; Guasch, Helena

    2012-05-01

    In multiple stress situations, the co-occurrence of environmental and chemical factors can influence organisms' ability to cope with toxicity. In this context, the influence of light adaptation on the response of freshwater biofilms to sudden light changes or to herbicides exposure was investigated by determining various parameters: diatom community composition, photosynthetic parameters, chlorophyll a content, antioxidant enzyme activities. Biofilms were grown in microcosms under sub-optimal, saturating, and high light intensities and showed already described characteristics of shade/light adaptation (community structure, photosynthetic adaptation, etc.). Light history modulated antioxidant and photosynthetic responses of biofilms to the stress caused by short-term exposure to sudden light changes or to herbicides. First biofilms adapted to sub-optimal light intensity (shade-adapted) were found to be more sensitive to an increase in light intensity than high-light adapted ones to a reduction in light intensity. Second, while light history influenced biofilms' response to glyphosate, it had little influence on biofilms' response to copper and none on its response to oxyfluorfen. Indeed glyphosate exposure led to a stronger decrease in photosynthetic efficiency of shade-adapted biofilms (EC(50) = 11.7 mg L(-1)) than of high-light adapted communities (EC(50) = 35.6 mg L(-1)). Copper exposure led to an activation of ascorbate peroxidase (APX) in biofilms adapted to sub-optimal and saturating light intensity while the protein content decreased in all biofilms exposed to copper. Oxyfluorfen toxicity was independent of light history provoking an increase in APX activity. In conclusion this study showed that both previous exposure to contaminants and physical habitat characteristics might influence community tolerance to disturbances strongly. PMID:22407402

  10. Red beet (Beta vulgaris L.) leaf supplementation improves antioxidant status in C57BL/6J mice fed high fat high cholesterol diet.

    PubMed

    Lee, Jeung Hee; Son, Chan Wook; Kim, Mi Yeon; Kim, Min Hee; Kim, Hye Ran; Kwak, Eun Shil; Kim, Sena; Kim, Mee Ree

    2009-01-01

    The effect of diet supplemented with red beet (Beta vulgaris L.) leaf on antioxidant status of plasma and tissue was investigated in C57BL/6J mice. The mice were randomly divided into two groups after one-week acclimation, and fed a high fat (20%) and high cholesterol (1%) diet without (control group) or with 8% freeze-dried red beet leaf (RBL group) for 4 weeks. In RBL mice, lipid peroxidation determined as 2-thiobarbituric acid-reactive substances (TBARS value) was significantly reduced in the plasma and selected organs (liver, heart, and kidney). Levels of antioxidants (glutathione and beta-carotene) and the activities of antioxidant enzyme (glutathione peroxidase) in plasma and liver were considerably increased, suggesting that antioxidant defenses were improved by RBL diet. Comet parameters such as tail DNA (%), tail extent moment, olive tail moment and tail length were significantly reduced by 25.1%, 49.4%, 35.4%, and 23.7%, respectively, in plasma lymphocyte DNA of RBL mice compared with control mice, and indicated the increased resistance of lymphocyte DNA to oxidative damage. In addition, the RBL diet controlled body weight together with a significant reduction of fat pad (retroperitoneal, epididymal, inguinal fat, and total fat). Therefore, the present study suggested that the supplementation of 8% red beet leaf in high fat high cholesterol diet could prevent lipid peroxidation and improve antioxidant defense system in the plasma and tissue of C57BL/6J mice. PMID:20016711

  11. Challenges for and current status of research into positive modulators of AMPA receptors

    PubMed Central

    Ward, Simon E; Bax, Benjamin D; Harries, Mark

    2010-01-01

    AMPA receptors consist of a family of hetero-oligomeric (tetrameric) receptors arising from four genes, each of which encodes a distinct receptor subunit (GluA1-4). Recombinant homo-tetrameric AMPA receptors, comprising four identical subunits, are functionally active and have been used in in vitro assays. However, the many different subunit permutations make possible the functional and anatomical diversity of AMPA receptors throughout the CNS. Furthermore, AMPA receptor subunit stoichiometry influences the biophysical and functional properties of the receptor. A number of chemically diverse positive modulators of AMPA receptor have been identified which potentiate AMPA receptor-mediated activity in vitro as well as improving cognitive performance in rodents and non-human primates with several being taken further in the clinic. This review article summarizes the current status in the research on positive allosteric modulation of AMPA receptors and outlines the challenges involved in identifying a chemically distinct series of AMPA receptor positive modulators, addressing the challenges created by the heterogeneity of the AMPA receptor populations and the development of structure-activity relationships driven by homomeric, recombinant systems on high-throughput platforms. We also review the role of X-ray crystallography in the selection and prioritization of targets for lead optimization for AMPA receptor positive modulators. PMID:20423333

  12. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit

    NASA Astrophysics Data System (ADS)

    Chao, Michael Y.; Komatsu, Hidetoshi; Fukuto, Hana S.; Dionne, Heather M.; Hart, Anne C.

    2004-10-01

    Serotonin (5-HT) modulates synaptic efficacy in the nervous system of vertebrates and invertebrates. In the nematode Caenorhabditis elegans, many behaviors are regulated by 5-HT levels, which are in turn regulated by the presence or absence of food. Here, we show that both food and 5-HT signaling modulate chemosensory avoidance response of octanol in C. elegans, and that this modulation is both rapid and reversible. Sensitivity to octanol is decreased when animals are off food or when 5-HT levels are decreased; conversely, sensitivity is increased when animals are on food or have increased 5-HT signaling. Laser microsurgery and behavioral experiments reveal that sensory input from different subsets of octanol-sensing neurons is selectively used, depending on stimulus strength, feeding status, and 5-HT levels. 5-HT directly targets at least one pair of sensory neurons, and 5-HT signaling requires the G protein GPA-11. Glutamatergic signaling is required for response to octanol, and the GLR-1 glutamate receptor plays an important role in behavioral response off food but not on food. Our results demonstrate that 5-HT modulation of neuronal activity via G protein signaling underlies behavioral plasticity by rapidly altering the functional circuitry of a chemosensory circuit.

  13. Bioactive Constituents from “Triguero” Asparagus Improve the Plasma Lipid Profile and Liver Antioxidant Status in Hypercholesterolemic Rats

    PubMed Central

    Vázquez-Castilla, Sara; De la Puerta, Rocío; Giménez, María Dolores García; Fernández-Arche, María Angeles; Guillén-Bejarano, Rafael

    2013-01-01

    We have previously shown that the Andalusian-cultivated Asparagus officinalis L. “triguero” variety produces hypocholesterolemic and hepatoprotective effects on rats. This asparagus is a rich source of phytochemicals although we hypothesized there would be some of them more involved in these functional properties. Thus, we aimed to study the effects of asparagus (500 mg/kg body weight (bw)/day) and their partially purified fractions in flavonoids (50 mg/kg bw/day), saponins (5 mg/kg bw/day) and dietary fiber (500 mg/kg bw/day) on oxidative status and on lipid profile in rats fed a cholesterol-rich diet. After 5 weeks treatment, plasma lipid values, hepatic enzyme activities and liver malondialdehyde (MDA) concentrations were measured. With the exception of the saponin fraction (SF), the administration of lyophilized asparagus (LA), fiber fraction (FF), and flavonoid fraction (FVF) to hypercholesterolemic rats produced a significant hypolipidemic effect compare to a high-cholesterol diet (HCD). In addition, the LA and FVF groups exhibited a significant increase in enzyme activity from multiple hepatic antioxidant systems including: superoxide dismutase, catalase, and gluthatione reductase/peroxidase as well as a decrease in MDA concentrations compared to HCD group. These results demonstrate that “triguero” asparagus possesses bioactive constituents, especially dietary fiber and flavonoids, that improve the plasma lipid profile and prevent hepatic oxidative damage under conditions of hypercholesterolemia. PMID:24284391

  14. Changes in Liver Antioxidant Status of Offspring Mice Induced by Maternal Fluoride Exposure During Gestation and Lactation.

    PubMed

    Niu, Ruiyan; Han, Haijun; Zhang, Yuliang; Wang, Jinming; Zhang, Jianhai; Yin, Wei; Yin, Xiufang; Sun, Zilong; Wang, Jundong

    2016-07-01

    Excessive fluoride intake for a long time has been demonstrated to provoke hepatic oxidative stress in adults. However, the response to fluoride toxicity of liver in newborns exposed to fluoride during embryonic and suckling stages remains unclear. In this study, female Kunming mice were administrated with 25, 50, and 100 mg/L sodium fluoride (NaF) from prenatal day 0 to day 21 after delivery, and the antioxidative status in the liver of their pups at postnatal day 21 was evaluated. The results showed that compared with the control group, NaF significantly increased malondialdehyde (MDA) level and reduced catalase (CAT) activity, while no statistical difference was observed in activities and mRNA expressions of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR). Notably, with comparison to the controls, the protein level of CAT was significantly reduced in medium- and high-fluoride groups, while its relative mRNA abundance was enhanced which could result from the encouragement of the lowered CAT protein expression. These findings suggested that CAT was more susceptible to low-fluoride exposure in early life. PMID:26613789

  15. Antioxidant and Anticoagulant Status Were Improved by Personalized Dietary Intervention Based on Biochemical and Clinical Parameters in Cancer Patients.

    PubMed

    Lee, Ga-Yi; Lee, Jong Jyun; Lee, Seung-Min

    2015-01-01

    We investigated whether personalized dietary intervention could improve clinical measurements such as immune cell-mediated cytotoxicity, serum albumin, derivatives of reactive oxygen metabolites (D-ROMS), D-dimer, and fibrinogen. Cancer patients received either a treatment support diet (TD, for those with chemotherapy), or a remission support diet (RD; for those in remission) for at least 3 wk (21-61 days). Both diets were low glycemic, low fat, and high plant protein diets; the diet for the TD group contained an additional 0.5 servings of protein. Based on clinical values, additional amounts of garlic, onion, tomato, shiitake, rice bran, kale, blueberry, pineapples, and/or turmeric powder were provided in regular meals. Estimated daily intake of protein, plant fat, garlic, onion, allicin, and quercetin was greater in the TD compared to the RD. An increased intake of vitamin A, vitamin C, vitamin E and selenium and a reduction in D-dimer were noted compared to baseline diets in both groups. A decrease in D-ROMS in the RD and an increase in albumin and an increased tendency in cytotoxicity in the TD were observed. In conclusion, personalized diets with supplemented functional ingredients improved antioxidant status and/or anticoagulant activity in cancer patients undergoing chemotherapy and in remission. PMID:26333154

  16. Consumption of cranberry beverage improved endogenous antioxidant status and protected against bacteria adhesion in healthy humans: a randomized controlled trial.

    PubMed

    Mathison, Bridget D; Kimble, Lindsey L; Kaspar, Kerrie L; Khoo, Christina; Chew, Boon P

    2014-05-01

    Consumption of polyphenol-rich foods is associated with lower risk from many chronic diseases. We hypothesized that a single dose of cranberry beverage would improve indices of oxidative stress, inflammation, and urinary antibacterial adhesion activity in healthy humans. Six males and 6 females (18-35 years; body mass index, 19-25 kg/m(2)) consumed placebo, cranberry leaf extract beverage, or low-calorie cranberry juice cocktail (LCJC) once in a randomized, double-blind, placebo-controlled cross-over experimental design trial. The washout period between beverages was 1 week. Blood was collected 0, 2, 4, 8, and 24 hours after beverage consumption for measuring oxidative and inflammatory biomarkers. Urine was collected at 0, 0 to 3, 3 to 6, 6 to 9, 9 to 12, and 24 hours postintervention to assess antibacterial adhesion activity. Consumption of cranberry leaf extract beverage elevated (P < .05) blood glutathione peroxidase activity, whereas LCJC consumption increased (P < .05) glutathione concentrations and superoxide dismutase activity compared with placebo. Cranberry leaf extract beverage and LCJC consumption had no effect on the inflammatory biomarkers measured as compared with placebo. At 0 to 3 hours postconsumption, urine from participants who consumed cranberry beverages had higher (P < .05) ex vivo antiadhesion activity against P-fimbriated Escherichia coli compared with placebo. An acute dose of cranberry beverages improved biomarkers of antioxidant status and inhibition of bacterial adhesion in urine. PMID:24916555

  17. Antioxidant enzymes status and reproductive health of adult male workers exposed to brick kiln pollutants in Pakistan.

    PubMed

    Jahan, Sarwat; Falah, Samreen; Ullah, Hizb; Ullah, Asad; Rauf, Naveed

    2016-07-01

    The present study was designed to study the effect of brick kilns emissions on the reproductive health and biochemical status of brick kiln workers and people living in the area near brick kilns. Body mass index (BMI) was significantly reduced in brick makers, carriers, and bakers compared to the control. Red blood cells count and hematocrit (%) were significantly high in brick bakers while MCH was significantly reduced in brick makers and brick bakers. Heavy metals (lead, cadmium, and chromium) concentration in whole blood of the brick kiln workers were significantly higher as compared to the control. Antioxidant enzymes (CAT, SOD, POD, GSH, and GR) were significantly reduced in brick kiln workers as compared to the control while TBARS level were significantly high in brick bakers as compared to the control. Plasma leutinizing hormone (LH) was significantly high in brick bakers while testosterone concentrations were significantly reduced in brick makers, carriers, and bakers. The present study shows that brick kiln workers and people living in the brick kiln vicinity are exposed to heavy metals and other pollutants that is a serious threat to their health. Alternate technology is needed to be developed and brick kilns should be replaced. PMID:26996903

  18. Bioactive constituents from "triguero" asparagus improve the plasma lipid profile and liver antioxidant status in hypercholesterolemic rats.

    PubMed

    Vázquez-Castilla, Sara; De la Puerta, Rocío; Garcia Gimenez, María Dolores; Fernández-Arche, María Angeles; Guillén-Bejarano, Rafael

    2013-01-01

    We have previously shown that the Andalusian-cultivated Asparagus officinalis L. "triguero" variety produces hypocholesterolemic and hepatoprotective effects on rats. This asparagus is a rich source of phytochemicals although we hypothesized there would be some of them more involved in these functional properties. Thus, we aimed to study the effects of asparagus (500 mg/kg body weight (bw)/day) and their partially purified fractions in flavonoids (50 mg/kg bw/day), saponins (5 mg/kg bw/day) and dietary fiber (500 mg/kg bw/day) on oxidative status and on lipid profile in rats fed a cholesterol-rich diet. After 5 weeks treatment, plasma lipid values, hepatic enzyme activities and liver malondialdehyde (MDA) concentrations were measured. With the exception of the saponin fraction (SF), the administration of lyophilized asparagus (LA), fiber fraction (FF), and flavonoid fraction (FVF) to hypercholesterolemic rats produced a significant hypolipidemic effect compare to a high-cholesterol diet (HCD). In addition, the LA and FVF groups exhibited a significant increase in enzyme activity from multiple hepatic antioxidant systems including: superoxide dismutase, catalase, and gluthatione reductase/peroxidase as well as a decrease in MDA concentrations compared to HCD group. These results demonstrate that "triguero" asparagus possesses bioactive constituents, especially dietary fiber and flavonoids, that improve the plasma lipid profile and prevent hepatic oxidative damage under conditions of hypercholesterolemia. PMID:24284391

  19. Effect of Cocoa Butter and Sunflower Oil Supplementation on Performance, Immunoglobulin, and Antioxidant Vitamin Status of Rats

    PubMed Central

    Çınar, Miyase; Yalçınkaya, İlkay; Atmaca, Nurgül; Güncüm, Enes

    2014-01-01

    This study investigated the effects of cocoa butter and sunflower oil alone and in combination on performance, some biochemical parameters, immunoglobulin, and antioxidant vitamin status in Wistar rats. Forty-eight male rats were assigned to four groups, consisting of 12 rats with 3 replicates. Control received balanced rat diet without oil, cocoa butter group received 3.5% cocoa butter, sunflower oil group received 3.5% sunflower oil, the last group received 1.75% sunflower oil + 1.75% cocoa butter supplementation in the rat diet for 8 weeks. The total feed consumption in sunflower oil group was statistically lower than in the other groups. The serum creatinine level was decreased in cocoa butter group compared to control. Triglyceride and VLDL cholesterol levels were decreased in only sunflower oil and only cocoa butter groups as compared to control. The level of Ig M was statistically lower in cocoa butter and cocoa butter + sunflower oil groups than in control and sunflower oil groups. There were no statistically important difference in vitamin concentrations among trial groups. It was concluded that the supplementation of cocoa butter in diet decreased Ig M level, while the supplementation of cocoa butter and sunflower oil alone decreased the triglyceride and VLDL cholesterol levels. PMID:25136602

  20. Effect of Vitamin C Supplementation on Blood Lead Level, Oxidative Stress and Antioxidant Status of Battery Manufacturing Workers of Western Maharashtra, India

    PubMed Central

    Ghanwat, Ganesh; Patil, Jyotsna; Kshirsagar, Mandakini; Sontakke, Ajit; Ayachit, R.K.

    2016-01-01

    Introduction The high blood lead level induces oxidative stress and alters the antioxidant status of battery manufacturing workers. Supplementation of vitamin C is beneficial to reduce the oxidative stress and to improve the antioxidant status of these workers. Aim The main aim of this study was to observe the changes in blood lead levels, oxidative stress i.e. serum lipid peroxide and antioxidant status parameters such as erythrocyte superoxide dismutase and catalase and serum nitrite after the vitamin C supplementation in battery manufacturing workers. Materials and Methods This study included 36 battery manufacturing workers from Western Maharashtra, India, having age between 20-60 years. All study group subjects were provided vitamin C tablets (500 mg/day for one month) and a blood sample of 10 ml each was drawn by puncturing the anterior cubital vein before and after vitamin C supplementation. The biochemical parameters were estimated by using the standard methods. Results Blood lead levels were not significantly altered, however, serum lipid peroxide (p<0.001, -15.56%) and serum nitrite (p<0.001, -21.37%) levels showed significant decrease and antioxidant status parameters such as erythrocyte superoxide dismutase (p<0.001, 38.02%) and catalase (p<0.001, 32.36%) revealed significant increase in battery manufacturing workers after the supplementation of vitamin C. Conclusion One month vitamin C supplementation in battery manufacturing workers is not beneficial to decrease the blood lead levels. However, it is helpful to reduce the lipid peroxidation and nitrite formation and enhances the erythrocytes superoxide dismutase and catalase activity. PMID:27190789

  1. Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: a randomized, cross-over pilot study

    PubMed Central

    2010-01-01

    Background Compared with other common plant foods, walnuts (Juglans regia) are consistently ranked among the highest in antioxidant capacity. In vitro, walnut polyphenols inhibit plasma and LDL oxidation, while in animal models they lower biomarkers of oxidative stress and raise antioxidant capacity. A limited number of human feeding trials indicate that walnuts improve some measures of antioxidant status, but not others. Methods A 19 wk, randomized crossover trial was conducted in 21 generally healthy men and postmenopausal women ≥50 y to study the dose-response effects of walnut intake on biomarkers of antioxidant activity, oxidative stress, and nutrient status. Subjects were randomized to receive either 21 or 42 g raw walnuts/d during each 6 wk intervention phase with a 6 wk washout between phases. Subjects were instructed to consume their usual diet, but refrain from eating any other tree nuts, seeds, peanuts, or ellagitannin-rich foods during the entire study, and other polyphenol-rich foods for 2 d prior to each study visit. Results Compared to baseline levels, red blood cell (RBC) linoleic acid and plasma pyridoxal phosphate (PLP) were significantly higher after 6 wk with 42 g/d walnuts (P < 0.05 for both). Overall, changes in plasma total thiols, and other antioxidant biomarkers, were not significant with either walnut dose. However, when compared to fasting levels, plasma total thiols were elevated within 1 h of walnut consumption with both doses during the baseline and end visits for each intervention phase (P < 0.05 for all). Despite the observed increase in RBC linoleic and linolenic acids associated with walnut consumption, this substrate for lipid peroxidation only minimally affected malondialdehyde (MDA) and antioxidant capacity. The proportional changes in MDA and Oxygen Radical Absorbance Capacity (ORAC) were consistent with a dose-response effect, although no significant within- or between-group differences were observed for these measures

  2. Evaluation of Azadirachta indica leaf fractions for in vitro antioxidant potential and in vivo modulation of biomarkers of chemoprevention in the hamster buccal pouch carcinogenesis model.

    PubMed

    Manikandan, P; Letchoumy, P Vidjaya; Gopalakrishnan, M; Nagini, S

    2008-07-01

    We evaluated the chemopreventive potential of Azadirachta indica (neem) leaf fractions based on in vitro antioxidant assays, and in vivo inhibitory effects on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. In addition we also identified the major constituents in neem leaf fractions by HPLC. Analysis of the free radical scavenging activities and reducing potential of crude ethanolic extract (CEE), ethyl acetate fraction (EAF) and methanolic fraction (MF) of neem leaf revealed a concentration-dependent increase in antioxidant potential that was in the order EAF>MF>CEE. Administration of neem leaf fractions reduced the incidence of DMBA-induced HBP carcinomas at a lower concentration compared to the crude extract. Chemoprevention by neem leaf fractions was associated with modulation of phase I and phase II xenobiotic-metabolising enzymes, lipid and protein oxidation, upregulation of antioxidant defences, inhibition of cell proliferation and angiogenesis, and induction of apoptosis. However, EAF was more effective than MF in terms of antiproliferative and antiangiogenic effects, and expression of CYP isoforms. The greater efficacy of EAF may be due to higher content of constituent phytochemicals as revealed by HPLC analysis. The results of the present study suggest that the antioxidant properties of neem leaf fractions may be responsible for modulating key hallmark capabilities of cancer cells such as cell proliferation, angiogenesis and apoptosis in the HBP carcinogenesis model. PMID:18442880

  3. Effect of chromium (VI) exposure on antioxidant defense status and trace element homeostasis in acute experiment in rat.

    PubMed

    Kotyzová, Dana; Hodková, Anna; Bludovská, Monika; Eybl, Vladislav

    2015-11-01

    Occupational exposure to hexavalent chromium (Cr(VI)) compounds is of concern in many Cr-related industries and their surrounding environment. Cr(VI) is a proven toxin and carcinogen. The Cr(VI) compounds are easily absorbed, can diffuse across cell membranes, and have strong oxidative potential. Despite intensive studies of Cr(VI) pro-oxidative effects, limited data exist on the influence of Cr(VI) on selenoenzymes thioredoxin reductase (TrxR) and glutathione peroxidase (GPx)-important components of antioxidant defense system. This study investigates the effect of Cr(VI) exposure on antioxidant defense status, with focus on these selenoenzymes, and on trace element homeostasis in an acute experiment in rat. Male Wistar rats (130-140g) were assigned to two groups of 8 animals: I. control; and II. Cr(VI) treated. The animals in Cr(VI) group were administered a single dose of K2Cr2O7 (20 mg /kg, intraperitoneally (ip)). The control group received saline solution. After 24 h, the animals were sacrificed and the liver and kidneys were examined for lipid peroxidation (LP; thiobarbituric acid reactive substances (TBARS) concentration), the level of reduced glutathione (GSH) and the activities of GPx-1, TrxR-1, and glutathione reductase (GR). Samples of tissues were also used to estimate Cr accumulation and alterations in zinc, copper, and iron levels. The acute Cr(VI) exposure caused an increase in both hepatic and renal LP (by 70%, p < 0.01 and by 15%, p < 0.05, respectively), increased hepatic GSH level and GPx-1 activity, and decreased renal GPx-1 activity. The activity of GR was not changed. A significant inhibitory effect of Cr(VI) was found on TrxR-1 activity in both the liver and the kidneys. The ability of Cr(VI) to cause TrxR inhibition could contribute to its cytotoxic effects. Further investigation of oxidative responses in different in vivo models may enable the development of strategies to protect against Cr(VI) oxidative damage. PMID:23625905

  4. Allicin Modulates the Antioxidation and Detoxification Capabilities of Primary Rat Hepatocytes

    PubMed Central

    Wu, Chih-Chung; Chu, Yung-Lin; Sheen, Lee-Yan

    2012-01-01

    The effect of allicin, an active ingredient of garlic, on lactate dehydrogenase (LDH) leakage, lipid peroxidation, glutathione (GSH) content, and GSH-related enzyme activity was investigated in primary hepatocytes. In this study, allicin was synthesized in our laboratory as an experimental material, and primary hepatocytes isolated from Sprague-Dawley rats were used as an experimental model. According to the results, hepatocytes treated with 10 μM allicin did not differ from the control on LDH leakage during various incubation times. When the hepatocytes were treated with 10 μM allicin, their levels of thiobarbituric acid reactive-substances (TBARS) did not differ significantly from that of the control within the 8-h incubation. However, the TBARS values of hepatocytes treated with 30 and 50 μM allicin were higher compared to the control after incubation for 4 h and 8 h, respectively. The hepatocyte intracellular GSH content was significantly higher than that of the control after 30 μM allicin treatment, but treatment with 50 μM allicin caused a significant GSH depletion after incubation for 4 h or longer. In addition, when hepatocytes were treated for 24 h with 10 or 30 μM allicin, glutathione peroxidase (GPx) activity was significantly increased compared to that of the control, whereas 50 μM allicin treatment for 24 h or longer significantly decreased the GPx activity. Glutathione reductase (GRd) activity was significantly increased when the hepatocytes were treated with 10 μM allicin for 24 h, but GRd activity significantly decreased when the hepatocytes were treated with 50 μM allicin. However, hepatocytes treated for 24 h with 10 or 30 μM allicin showed significantly increased glutathione S-transferase (GST) activity compared to the control. These results suggest that 10 μM allicin potentially enhances the antioxidation and detoxification capabilities of primary rat hepatocytes. PMID:24716147

  5. Magnesium and manganese interactively modulate parthenolide accumulation and the antioxidant defense system in the leaves of Tanacetum parthenium.

    PubMed

    Farzadfar, Soudeh; Zarinkamar, Fatemeh; Behmanesh, Mehrdad; Hojati, Mostafa

    2016-09-01

    A balanced nutrient supply is a critical factor affecting accumulation of terpenoids in plants, yet data related to the interactive effects of two essential nutrients for the biosynthesis of sesquiterpenes are scarce. Here, the interactional effects between magnesium (Mg) and manganese (Mn) on plant growth, oxidative status, parthenolide accumulation and expression of key genes involved in parthenolide biosynthesis including 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR), 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMGR), germacrene A synthase (GAS), germacrene A oxidase (GAO), costunolide synthase (COS) and parthenolide synthase (PTS) in the leaves of feverfew plants grown at different Mn and Mn levels were assessed. Plant growth and leaf pigment concentrations were associated with the amount of applied Mg but could be modified by the Mn level. Deprivation and the addition of both Mg and Mn induce oxidative stress. Mg supply also alleviated the adverse effects of Mn excess on plant growth and oxidative status. In addition, parthenolide biosynthesis decreased under deprivation of Mg or Mn, but the addition of Mn up to 50μM under 2mM Mg supply considerably increased its accumulation. The parthenolide accumulation trend might reflect the up-regulation of terpenoid-related genes and enzyme activities as well as the oxidative status of feverfew leaves. Our data suggest a profound effect of the combined supply of Mg and Mn on parthenolide biosynthesis through the activation of terpene synthases, which concomitantly modulate by oxidative status. PMID:27450490

  6. PLASMA ANTIOXIDANT CAPACITY CHANGES FOLLOWING A MEAL AS A MEASURE OF THE ABILITY OF A FOOD TO ALTER IN VIVO ANTIOXIDANT STATUS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The change in antioxidant capacity in plasma following consumption of various berries and fruits (blueberry, dried plum, dried plum juice, grape, cherry, kiwi and strawberry) following a single meal was studied in 5 different clinical trials. The area under the curve (AUC) of the change from baselin...

  7. Effects of dietary n-6:n-3 fatty acid ratio and vitamin E on semen quality, fatty acid composition and antioxidant status in boars.

    PubMed

    Liu, Q; Zhou, Y F; Duan, R J; Wei, H K; Jiang, S W; Peng, J

    2015-11-01

    The aim of the present study was to evaluate the effects of dietary n-6:n-3 fatty acid (FA) ratio and vitamin E on the semen quality, FA composition and antioxidant status of boars. Forty-eight Landrace boars were randomly distributed in a 3×2 factorial design with three n-6:n-3 FA ratios (14.4, 6.6 and 2.2) by the inclusion of three oil sources (soybean, fish/soybean, fish) and two vitamin E levels (200 and 400mg/kg). During the 8 weeks of treatment, semen parameters were evaluated. Serum, sperm and seminal plasma samples were taken at 0 and 8 weeks to monitor the FA composition and antioxidant status. Results showed that the 6.6 and 2.2 dietary ratios very effectively increased docosahexaenoic acid (DHA) and n-3 polyunsaturated fatty acid (PUFA) and decreased docosapentaenoic acid (DPA) and n-6:n-3 ratio in spermatozoa. The 6.6 dietary ratio contributed to a greater progressive sperm motility (P<0.05) than the 14.4 and 2.2 dietary ratio, and this ratio also enhanced the superoxide dismutase (SOD) and total antioxidant capacity (TAC) (P<0.05) in seminal plasma more significantly than the other two ratios at week 8. Compared with 200mg/kg supplementation of vitamin E, 400mg/kg supplementation of vitamin E increased the progressive sperm motility, SOD of sperm, TAC and SOD of seminal plasma and serum, and decreased sperm malondialdehyde (MDA) (P<0.05). In conclusion, the 6.6 dietary ratio and 400mg/kg vitamin E supplementation improve progressive sperm motility by modifying the sperm FA composition and antioxidant status. PMID:26417649

  8. Effects of dietary canthaxanthin and 25-hydroxycholecalciferol supplementation on the antioxidant status and tibia quality of duck breeders and newly hatched ducklings.

    PubMed

    Ren, Z Z; Jiang, S Z; Zeng, Q F; Ding, X M; Bai, S P; Wang, J P; Luo, Y H; Su, Z W; Xuan, Y; Zhang, K Y

    2016-09-01

    This study evaluated the effects of dietary canthaxanthin (CX) and 25-hydroxycholecalciferol (25-OH-D3) supplementation on the antioxidant status and tibia quality of duck breeders and newly hatched ducklings. In total, 780 female and 156 male duck breeders were randomly allotted to 2 treatments. Duck breeders were fed either a commercial diet (containing 3,000 IU/kg vitamin D3) or the same diet plus a mixture of CX (6 mg/kg) and 25-OH-D3 (0.069 mg/kg) for 40 wk. The antioxidant status of duck breeders, egg yolk, and ducklings; tibia quality of duck breeders and ducklings; and shell quality of breeder eggs were investigated. The total antioxidant capacity of breeder female liver (P = 0.028), breeder male testis (P = 0.049), egg yolk (P = 0.032), one-day-old duckling liver (P = 0.024), and one-day-old duckling yolk sac (P = 0.012) were increased by dietary supplementation of the mixture of CX and 25-OH-D3 The inclusion of CX and 25-OH-D3 decreased liver protein carbonyl of breeder females (P = 0.030), and liver malonaldehyde (P = 0.050) and protein carbonyl (P = 0.030) of breeder males. Yolk (P < 0.001), shank (P < 0.001), and yolk sac pigmentation (P < 0.001) of one-day-old ducklings were increased by the supplementation of the CX and 25-OH-D3 mixture. No differences (P > 0.05) were observed in tibia quality or eggshell quality between treatments. In conclusion, the inclusion of the mixture of CX and 25-OH-D3 in a diet sufficient in vitamin D3 increased antioxidant status but not tibia quality of duck breeders and newly hatched ducklings. PMID:26994193

  9. Influence of different histidine sources and zinc supplementation of broiler diets on dipeptide content and antioxidant status of blood and meat.

    PubMed

    Kopeć, W; Jamroz, D; Wiliczkiewicz, A; Biazik, E; Pudlo, A; Hikawczuk, T; Skiba, T; Korzeniowska, M

    2013-01-01

    1. The objective of this study was to investigate how a diet containing spray-dried blood cells (SDBC) (4%) with or without zinc (Zn) would affect the concentration of two histidine heterodipeptides and the antioxidant status of broiler blood and breast muscles. 2. The study was carried out on 920 male Flex chickens randomly assigned to 4 dietary treatments: I - control, II - diet I with SDBC, III - diet I with SDBC and supplemented with Zn and IV - diet I supplemented with L-histidine. Birds were raised on floor littered with wood shavings, given free access to water and fed ad libitum. Performance indices were measured on d 1, 21 and 42. 3. The activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase was analysed in plasma, erythrocytes and muscle tissue. The total antioxidant capacity of plasma and breast muscles was measured by 2,2-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, as well as by ferric reducing antioxidant power (FRAP). Carnosine/anserine content of meat and plasma were determined using HPLC. Diets and breast muscles were analysed for amino acid profile and selected microelement content. 4. Histidine supplementation of the diet increased glutathione peroxidase activity in plasma and superoxide dismutase activity in erythrocytes. Moreover, the addition of SDBC or pure histidine in the diet increased histidine dipeptide content and activated enzymatic and non-enzymatic antioxidant systems in chicken blood and muscles. However, it led to lower growth performance indices. 5. The enrichment of broiler diets with Zn increased the antioxidant potential and the activity of superoxide dismutase in plasma, which was independent of the histidine dipeptide concentration. Zn supplementation combined with SDBC in a broiler diet led to the increase of superoxide dismutase and glutathione peroxidase activity, but it did not affect the radical

  10. [Relationship between serum lipids and status of vitamin C and E as antioxidants in Venezuelan elderly people].

    PubMed

    Meertens, Lesbia; Ruido, Tathiana; Díaz, Nayka; Naddaf, Gloria; Rodríguez, Adelmo; Solano, Liseti

    2008-12-01

    During aging there is a tendency towards hyperlipidemia and changes in the distribution of lipoproteins. A decline in the functioning of the body's antioxidant defense system is also observed at this time. The objective of this study was to establish the relationship between serum concentrations of total cholesterol and fractions, triglycerides, and Vitamins C and E. 61 adults over 60 years of age were evaluated from January to March, 2006. Nutritional status was diagnosed by BMI (WHO); serum levels of triglycerides (TG), total cholesterol (TC) and fractions (HDL-c and LDL-c) were determined by enzyme method; Vitamin C (colorimetric method) and Vitamin E by HPLC. ATPIII values were used as a reference for risk of TG, TC, HDL, LDL-c, vitamin C: > 0.9 mg/dL (normal), < 0.9 mg/dL (deficit); vitamin E: = 1300 microg/dL (normal), 1300 = microg /dL (deficit). Consumption of vitamins C and E were estimated by the direct weighing method 3 days per week. According to BMI, 19.7% had nutritional deficit, 39.3% overweight, and 11.5% obesity. TG, TC, LDL-c levels were at risk in females, and HDL-c in both genders. Prevalence of risk for heart disease was: TG (45.2%), HDL-c (51.1%), and LDL-c (52.5%). Consumption and serum levels of vitamin E were low in both genders. There was no association between variables. A significant and positive correlation between TG, TC, LDL-C, serum vitamin E, and BMI was observed. The female group showed overweight, hypertriglyceridemia and hypercholesterolemia, HDL-c and LDL-c at risk, and vitamin E deficiency, all of which are important risk factors for cardiovascular disease in this age group. PMID:19368297

  11. Antioxidant Vitamin Status in the Serum and Amniotic Fluid of Women with Premature Rupture of the Fetal Membranes.

    NASA Astrophysics Data System (ADS)

    Barrett, Bridget M.

    The purpose of this study was to examine the status of antioxidant vitamins in women with premature rupture of the fetal membranes. Specimens of blood and amniotic fluid were obtained from 80 pregnant subjects included both smokers and non-smokers during the third trimester. The concentrations of ascorbic acid (ASA), beta -carotene, retinol and alpha -tocopherol in serum and amniotic fluid were determined. The experimental group consisted of those subjects with PROM while the control subjects were those with normal pregnancy. No statistical differences were found between the PROM and control groups in retinol and vitamin E concentrations in amniotic fluid and serum. Serum ASA concentrations of PROM subjects were not different from controls, but the PROM subjects had significantly lower amniotic fluid ASA concentrations. However, in a study with fewer subjects a lower serum ASA concentration in the PROM subjects was observed. The ratio of amniotic fluid ASA concentration to ASA serum concentration was significantly lower in PROM patients than in controls in both studies. This suggests that low levels of ASA in the amniotic fluid, but not in serum is better associated with PROM. A low amniotic fluid concentration of ASA may reflect an inefficient transfer and/or increased fetal utilization. Alterations in ASA concentration in the amniotic fluid may affect the integrity of the chorioamnion leading to PROM. beta -Carotene was not found in the amniotic fluid. Serum beta-carotene levels were significantly lower in the PROM group compared to the control group. Low concentrations of beta-carotene in maternal serum in smokers not only associated with poor maternal outcome (PROM) but also compromised the fetal outcome (decreased birth weight). Maintenance of adequate serum beta-carotene concentration and amniotic fluid ASA in smokers may result in better maternal and fetal outcome. This study demonstrated that nutrition is an important factor in the prevention of PROM.

  12. Influence of Condensed Tannins from Ficus bengalensis Leaves on Feed Utilization, Milk Production and Antioxidant Status of Crossbred Cows.

    PubMed

    Dey, Avijit; De, Partha Sarathi

    2014-03-01

    This study was conducted to examine the effects of condensed tannins (CT) from Ficus bengalensis leaves on the feed utilization, milk production and health status of crossbred cows. Eighteen crossbred dairy cows at their second and mid lactation (avg. BW 351.6±10.6 kg) were randomly divided into two groups of nine each in a completely randomized block design and fed two iso-nitrogenous supplements formulated to contain 0% and 1.5% CT through dried and ground leaves of Ficus bengalensis. The diets were designated as CON and FBLM, respectively and fed to cows with a basal diet of rice straw to meet requirements for maintenance and milk production. The daily milk yield was significantly (p<0.05) increased due to supplementation of FBLM diet. The 4% fat corrected milk yield was also significantly (p<0.01) higher due to increased (p<0.05) milk fat in cows under diet FBLM as compared to CON. The inclusion of CT at 1.5% in the supplement did not interfere with the feed intake or digestibility of DM, OM, CP, EE, NDF, and ADF by lactating cows. Digestible crude protein (DCP) and total digestible nutrients (TDN) values of the composite diets were comparable between the groups. The blood biochemical parameters remained unaltered except significantly (p<0.05) lowered serum urea concentration in cows fed FBLM diet. There was a significant (p<0.05) increase intracellular reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activity in cows supplemented with condensed tannins. The total thiol group (T-SH) was found to be higher with reduction in lipid peroxidation (LPO) in cows of FBLM group. The cost of feeding per kg milk production was also reduced due to supplementation of Ficus bengalensis leaves. Therefore, a perceptible positive impact was evident on milk production and antioxidant status in crossbred cows during mid-lactation given supplement containing 1.5% CT through Ficus bengalensis leaves. PMID:25049960

  13. Influence of Condensed Tannins from Ficus bengalensis Leaves on Feed Utilization, Milk Production and Antioxidant Status of Crossbred Cows

    PubMed Central

    Dey, Avijit; De, Partha Sarathi

    2014-01-01

    This study was conducted to examine the effects of condensed tannins (CT) from Ficus bengalensis leaves on the feed utilization, milk production and health status of crossbred cows. Eighteen crossbred dairy cows at their second and mid lactation (avg. BW 351.6±10.6 kg) were randomly divided into two groups of nine each in a completely randomized block design and fed two iso-nitrogenous supplements formulated to contain 0% and 1.5% CT through dried and ground leaves of Ficus bengalensis. The diets were designated as CON and FBLM, respectively and fed to cows with a basal diet of rice straw to meet requirements for maintenance and milk production. The daily milk yield was significantly (p<0.05) increased due to supplementation of FBLM diet. The 4% fat corrected milk yield was also significantly (p<0.01) higher due to increased (p<0.05) milk fat in cows under diet FBLM as compared to CON. The inclusion of CT at 1.5% in the supplement did not interfere with the feed intake or digestibility of DM, OM, CP, EE, NDF, and ADF by lactating cows. Digestible crude protein (DCP) and total digestible nutrients (TDN) values of the composite diets were comparable between the groups. The blood biochemical parameters remained unaltered except significantly (p<0.05) lowered serum urea concentration in cows fed FBLM diet. There was a significant (p<0.05) increase intracellular reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) activity in cows supplemented with condensed tannins. The total thiol group (T-SH) was found to be higher with reduction in lipid peroxidation (LPO) in cows of FBLM group. The cost of feeding per kg milk production was also reduced due to supplementation of Ficus bengalensis leaves. Therefore, a perceptible positive impact was evident on milk production and antioxidant status in crossbred cows during mid-lactation given supplement containing 1.5% CT through Ficus bengalensis leaves. PMID:25049960

  14. Design, status and first operations of the spallation neutron source polyphase resonant converter modulator system

    SciTech Connect

    Reass, W. A.; Apgar, S. E.; Baca, D. M.; Doss, James D.; Gonzales, J.; Gribble, R. F.; Hardek, T. W.; Lynch, M. T.; Rees, D. E.; Tallerico, P. J.; Trujillo, P. B.; Anderson, D. E.; Heidenreich, D. A.; Hicks, J. D.; Leontiev, V. N.

    2003-01-01

    The Spallation Neutron Source (SNS) is a new 1.4 MW average power beam, 1 GeV accelerator being built at Oak Ridge National Laboratory. The accelerator requires 15 converter-modulator stations each providing between 9 and 11 MW pulses with up to a 1 .I MW average power. The converter-modulator can be described as a resonant 20 kHz polyphase boost inverter. Each converter modulator derives its buss voltage from a standard substation cast-core transformer. Each substation is followed by an SCR pre-regulator to accommodate voltage changes from no load to full load, in addition to providing a soft-start function. Energy storage is provided by self-clearing metallized hazy polypropylene traction capacitors. These capacitors do not fail short, but clear any internal anomaly. Three 'H-Bridge' IGBT transistor networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are time-gated to generate the desired klystron pulse width. Pulse width modulation of the individual 20 lcHz pulses is utilized to provide regulated output waveforms with DSP based adaptive feedforward and feedback techniques. The boost transformer design utilizes nanocrystalline alloy that provides low core loss at design flux levels and switching frequencies. Capacitors are used on the transformer secondary networks to resonate the leakage inductance. The transformers are wound for a specific leakage inductance, not turns ratio. This design technique generates multiple secondary volts per turn as compared to the primary. With the appropriate tuning conditions, switching losses are minimized. The resonant topology has the added benefit of being deQed in a klystron fault condition, with little energy deposited in the arc. This obviates the need of crowbars or other related networks. A review of these design parameters, operational performance, production status, and OWL installation and performance to date will be presented.

  15. Effect of Commiphora mukul gum resin on hepatic marker enzymes, lipid peroxidation and antioxidants status in pancreas and heart of streptozotocin induced diabetic rats

    PubMed Central

    Ramesh, B; Karuna, R; Sreenivasa, Reddy S; Haritha, K; Sai, Mangala D; Sasi, Bhusana Rao B; Saralakumari, D

    2012-01-01

    Objective To study the antioxidant efficacy of Commiphora mukul (C. mukul) gum resin ethanolic extract in streptozotocin (STZ) induced diabetic rats. Methods The male Wistar albino rats were randomly divided into four groups of eight animals each: Control group (C), CM-treated control group (C+CMEE), Diabetic control group (D), CM- treated diabetic group (D+CMEE). Diabetes was induced by intraperitoneal injection of STZ (55 mg/kg/ bwt). After being confirmed the diabetic rats were treated with C. mukul gum resin ethanolic extract (CMEE) for 60 days. The biochemical estimations like antioxidant, oxidative stress marker enzymes and hepatic marker enzymes of tissues were performed. Results The diabetic rats showed increased level of enzymatic activities aspartate aminotransaminase (AST), alanine aminotransaminase (ALT) in liver and kidney and oxidative markers like lipid peroxidation (LPO) and protein oxidation (PO) in pancreas and heart. Antioxidant enzyme activities were significantly decreased in the pancreas and heart compared to control group. Administration of CMEE (200 mg/kg bw) to diabetic rats for 60 days significantly reversed the above parameters towards normalcy. Conclusions In conclusion, our data indicate the preventive role of C. mukul against STZ-induced diabetic oxidative stress; hence this plant could be used as an adjuvant therapy for the prevention and/or management of diabetes and aggravated antioxidant status. PMID:23569867

  16. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance.

    PubMed

    Chen, Fei; Wang, Fang; Wu, Feibo; Mao, Weihua; Zhang, Guoping; Zhou, Meixue

    2010-08-01

    Soil cadmium (Cd) contamination has posed a serious problem for safe food production and become a potential agricultural and environmental hazard worldwide. Greenhouse hydroponic experiments were conducted to investigate the modulation of exogenous GSH (reduced glutathione) in antioxidant defense system against the Cd-induced toxicity in plants exposed to 5 muM Cd using two barley genotypes differing in Cd tolerance. Addition of 20 mg L(-1) GSH in 5 muM Cd culture medium significantly alleviated Cd-induced growth inhibition, especially for the sensitive genotype Dong 17 and dramatically depressed O(2)(-), H(2)O(2) and malondialdehyde (MDA) accumulation. GSH mediated intracellular GSH content to keep the level over the control especially in the case of Cd-induced GSH reduction. External GSH counteracted Cd-induced alterations of certain antioxidant enzymes, e.g. brought root dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione peroxidase (GPX) activities of the both genotypes down towards the control level, but elevated the depressed ascorbate peroxidase (APX) and catalase (CAT) activities in Dong 17 after 10-15 d treatment. The examination of APX and superoxide dismutase (SOD) isoenzymes revealed GSH significantly increased MnSOD, sAPX and tAPX activities in the both genotypes, and strongly stimulated Cd-induced decrease in cAPX in the sensitive genotype. Furthermore, External GSH up-regulated root cAPX and leaf cAPX, CAT1, and CAT2 expression at transcript level in Dong 17 to achieve stimulation. These data, especially from the results of depressed O(2)(-), H(2)O(2) and MDA accumulation and elevated Cd-induced decrease in GSH content and APX (strongly stimulated cAPX, sAPX and tAPX) and CAT activities by GSH addition in the sensitive genotype, suggest that elevated intracellular GSH and stimulated APX (especially cAPX, sAPX and tAPX iosenzymes) and CAT activities, when concerning ROS scavenging systems, play an important role

  17. Protective Effect of Pulp Oil Extracted from Canarium odontophyllum Miq. Fruit on Blood Lipids, Lipid Peroxidation, and Antioxidant Status in Healthy Rabbits

    PubMed Central

    Shakirin, Faridah Hanim; Azlan, Azrina; Ismail, Amin; Amom, Zulkhairi; Cheng Yuon, Lau

    2012-01-01

    The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO) on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids). The pulp oil is rich in polyphenols. Male New Zealand white (NZW) rabbits were fed for 4 weeks on a normal diet containing pulp (NP) or kernel oil (NK) of CO while corn oil was used as control (NC). Total cholesterol (TC), HDL-C, LDL-c and triglycerides (TG) levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise), thiobarbiturate reactive substances (TBARSs), and plasma total antioxidant status (TAS) were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels) with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil. PMID:22685623

  18. The effect of maternal immunization on female oxidative status, yolk antioxidants and offspring survival in a songbird.

    PubMed

    Casasole, G; Costantini, D; Cichoń, M; Rutkowska, J

    2016-04-01

    Immune defense involves inflammatory reactions in which immune cells produce reactive oxygen species (ROS) to fight pathogens. ROS may however cause damage to the host if they are not balanced by antioxidant defenses. Therefore, one should expect individuals undergoing an immune reaction to use antioxidants to prevent oxidative stress. Antioxidants are vital compounds that provide important protection against oxidative damage of embryos and newly hatched chicks. Thus, during egg laying a female that contracted an infection may face a trade-off between the allocation of antioxidants into self-maintenance and into her offspring via the eggs. In our study we investigated whether immunized females face this trade-off and consequently modify the antioxidant allocation into the eggs and whether this allocation affects offspring performance. We injected female zebra finches (Taeniopygia guttata) with lipopolysaccharide prior to egg laying while some females were left unimmunized. We removed the second egg of each clutch, while we allowed the other eggs to hatch. We assessed oxidative stress in females 24h after immunization, yolk antioxidant capacity of the second egg of the clutch and survival success of the offspring until adulthood. Compared to controls, immunized females had higher oxidative damage, but similar plasma non-enzymatic antioxidant levels. The treatment did not affect yolk antioxidants, clutch size, laying date and offspring survival. However, we found a positive correlation between yolk antioxidant capacity and offspring survival, irrespective of the treatment. Our study suggests that our immune challenge may not have changed female strategy of antioxidant allocation between self-maintenance and offspring survival. PMID:26812206

  19. Effects of Lactofermented Beetroot Juice Alone or with N-nitroso-N-methylurea on Selected Metabolic Parameters, Composition of the Microbiota Adhering to the Gut Epithelium and Antioxidant Status of Rats

    PubMed Central

    Klewicka, Elżbieta; Zduńczyk, Zenon; Juśkiewicz, Jerzy; Klewicki, Robert

    2015-01-01

    An objective of this work was to assess the biological activity of beetroot juice (Chrobry variety, Beta vulgaris L. ssp. vulgaris), which was lactofermented by probiotic bacteria Lactobacillus brevis 0944 and Lactobacillus paracasei 0920. The oxidative status of blood serum, kidneys, and liver of rats consuming the fermented beetroot juice were determined. The experimental rats were divided into four groups on diet type: Basal diet, basal diet supplemented with fermented beetroot juice, basal diet and N-nitroso-N-methylurea treatment, and basal diet supplemented with fermented beetroot juice and N-nitroso-N-methylurea treatment. Mutagen N-nitroso-N-methylurea, which was added to diet in order to induce aberrant oxidative and biochemical processes and disadvantageous changes in the count and metabolic activity of the gut epithelium microbiota. The nutritional in vivo study showed that supplementing the diet of the rats with the lactofermented beetroot juice reduced the level of ammonia by 17% in the group treated with N-nitroso-N-methylurea. Furthermore, the positive modulation of the gut microflora and its metabolic activity was observed in groups of rats fed with the diet supplemented with the fermented beetroot juice. A concomitant decrease in the β-glucuronidase activity was a consequence of the gut epithelium microbiota modulation. The antioxidant capacity of blood serum aqueous fraction was increased by about 69% in the group of rats treated N-nitroso-N-methylurea mixed with the fermented beetroot juice and N-nitroso-N-methylurea versus to the N-nitroso-N-methylurea treatment, whereas the antioxidant parameters of the blood serum lipid fraction, kidneys, and liver remained unchanged. PMID:26193312

  20. Effects of Lactofermented Beetroot Juice Alone or with N-nitroso-N-methylurea on Selected Metabolic Parameters, Composition of the Microbiota Adhering to the Gut Epithelium and Antioxidant Status of Rats.

    PubMed

    Klewicka, Elżbieta; Zduńczyk, Zenon; Juśkiewicz, Jerzy; Klewicki, Robert

    2015-07-01

    An objective of this work was to assess the biological activity of beetroot juice (Chrobry variety, Beta vulgaris L. ssp. vulgaris), which was lactofermented by probiotic bacteria Lactobacillus brevis 0944 and Lactobacillus paracasei 0920. The oxidative status of blood serum, kidneys, and liver of rats consuming the fermented beetroot juice were determined. The experimental rats were divided into four groups on diet type: Basal diet, basal diet supplemented with fermented beetroot juice, basal diet and N-nitroso-N-methylurea treatment, and basal diet supplemented with fermented beetroot juice and N-nitroso-N-methylurea treatment. Mutagen N-nitroso-N-methylurea, which was added to diet in order to induce aberrant oxidative and biochemical processes and disadvantageous changes in the count and metabolic activity of the gut epithelium microbiota. The nutritional in vivo study showed that supplementing the diet of the rats with the lactofermented beetroot juice reduced the level of ammonia by 17% in the group treated with N-nitroso-N-methylurea. Furthermore, the positive modulation of the gut microflora and its metabolic activity was observed in groups of rats fed with the diet supplemented with the fermented beetroot juice. A concomitant decrease in the b-glucuronidase activity was a consequence of the gut epithelium microbiota modulation. The antioxidant capacity of blood serum aqueous fraction was increased by about 69% in the group of rats treated N-nitroso-N-methylurea mixed with the fermented beetroot juice and N-nitroso-N-methylurea versus to the N-nitroso-N-methylurea treatment, whereas the antioxidant parameters of the blood serum lipid fraction, kidneys, and liver remained unchanged. PMID:26193312

  1. James Webb Space Telescope Optical Telescope Element Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Julie; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated ScienceInstrument Module (ISIM)are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirrorcenter of curvatureoptical tests, electrical and operational tests, acoustics and vibration testing at the Goddard SpaceFlight Center beforebeing shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparationfor the cryogenicoptical testing, the JWST project has built a Pathfinder telescope and has completed two OpticalGround SystemEquipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize opticaltest results todate and status the final Pathfinder test and the OTIS integration and environmental test preparations

  2. James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) Status

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee; Voyton, Mark; Lander, Juli; Keski-Kuha, Ritva; Matthews, Gary

    2016-01-01

    The James Webb Space Telescope Optical Telescope Element (OTE) and Integrated Science Instrument Module (ISIM) are integrated together to form the OTIS. Once integrated, the OTIS undergoes primary mirror center of curvature optical tests, electrical and operational tests, acoustics and vibration testing at the Goddard Space Flight Center before being shipped to the Johnson Space Center for cryogenic optical testing of the OTIS. In preparation for the cryogenic optical testing, the JWST project has built a Pathfinder telescope and has completed two Optical Ground System Equipment (OGSE) cryogenic optical tests with the Pathfinder. In this paper, we will summarize optical test results to date and status the final Pathfinder test and the OTIS integration and environmental test preparations

  3. The antioxidant status and oxidative stability of muscle from lambs receiving oral administration of Artemisia herba alba and Rosmarinus officinalis essential oils.

    PubMed

    Aouadi, Dorra; Luciano, Giuseppe; Vasta, Valentina; Nasri, Saida; Brogna, Daniela M R; Abidi, Sourour; Priolo, Alessandro; Salem, Hichem Ben

    2014-06-01

    The effect of the dietary supplementation to lambs of essential oils (EOs) from rosemary (Rosmarinus officinalis) and artemisia (Artemisia herba alba) on the antioxidant status of muscle and on meat oxidative stability was studied. Eighteen Barbarine lambs were divided into 3 groups and for 95days received oat hay and concentrates. One group (C) was not supplemented, while the other two groups received 400mg/kg of EOs from rosemary (R400) or artemisia (A400). Both EOs possessed antioxidant properties and their oral administration improved the reducing and radical scavenging capacity of the muscle compared to the C treatment (P<0.01). Nevertheless, supplementing EOs did not exert protection against lipid oxidation and did not affect the colour stability in meat over 7days of aerobic storage. PMID:24583334

  4. Muscle metaboreceptors modulate postexercise sweating, but not cutaneous blood flow, independent of baroreceptor loading status.

    PubMed

    Paull, Gabrielle; Dervis, Sheila; McGinn, Ryan; Haqani, Baies; Flouris, Andreas D; Kondo, Narihiko; Kenny, Glen P

    2015-12-01

    We examined whether sustained changes in baroreceptor loading status during prolonged postexercise recovery can alter the metaboreceptors' influence on heat loss. Thirteen young males performed a 1-min isometric handgrip exercise (IHG) at 60% maximal voluntary contraction followed by 2 min of forearm ischemia (to activate metaboreceptors) before and 15, 30, 45, and 60 min after a 15-min intense treadmill running exercise (>90% maximal heart rate) in the heat (35°C). This was repeated on three separate days with continuous lower body positive (LBPP, +40 mmHg), negative (LBNP, -20 mmHg), or no pressure (Control) from 13- to 65-min postexercise. Sweat rate (ventilated capsule; forearm, chest, upper back) and cutaneous vascular conductance (CVC; forearm, upper back) were measured. Relative to pre-IHG levels, sweating at all sites increased during IHG and remained elevated during ischemia at baseline and similarly at 30, 45, and 60 min postexercise (site average sweat rate increase during ischemia: Control, 0.13 ± 0.02; LBPP, 0.12 ± 0.02; LBNP, 0.15 ± 0.02 mg·min(-1)·cm(-2); all P < 0.01), but not at 15 min (all P > 0.10). LBPP and LBNP did not modulate the pattern of sweating to IHG and ischemia (all P > 0.05). At 15-min postexercise, forearm CVC was reduced from pre-IHG levels during both IHG and ischemia under LBNP only (ischemia: 3.9 ± 0.8% CVCmax; P < 0.02). Therefore, we show metaboreceptors increase postexercise sweating in the middle to late stages of recovery (30-60 min), independent of baroreceptor loading status and similarly between skin sites. In contrast, metaboreflex modulation of forearm but not upper back CVC occurs only in the early stages of recovery (15 min) and is dependent upon baroreceptor unloading. PMID:26377560

  5. TH-A-BRE-01: The Status of Intensity Modulated Proton and Ion Therapy

    SciTech Connect

    Dong, L; Zhu, X; Unkelbach, J; Schulte, R

    2014-06-15

    IMRT with photons has become a radiation therapy standard of care for many cancer treatment sites. The situation is quite different with intensity modulated particle (protons and ion) radiation therapy (IMPT). With the rapid development of beam scanning techniques and many of the newer proton facilities exclusively offering active beam scanning as their radiation delivery technique, it is timely to give an update on the status and challenges of IMPT. The leading principle in IMPT is to aim at the target from several, not necessarily coplanar, directions with multiple pencil beams that are modulated in their intensity and adjusted in their energy such that a desired dose distribution or, more generally, a desired bio-effective dose distribution is achieved. Different from low-LET photons, the varying relative biological effectiveness (RBE) along the beam path adds an additional dimension to the treatment planning process and will require biophysical modeling at least for carbon ion therapy. IMPT involves computationally challenging tasks, yet it needs to be very fast in order to be clinically relevant. To make IMPT computationally tractable, robust and efficient optimization methods are required. Lastly, IMPT planning is very sensitive to accurate knowledge of relative stopping and scattering powers of the intervening tissues as well as intra- and inter-fraction motion. Robust planning methods are being developed in order to obtain IMPT plans that are less sensitive against such uncertainties. This therapy symposium will present an update on the current status and emerging developments of IMPT from the medical physics perspective. Learning Objectives: Become familiar with current delivery techniques for IMPT and their limitations. Understand the basics of dose calculational algorithms and commissioning of IMPT. Learn how to assess the accuracy of planning and delivery of IMPT treatments. Get an overview of currently used and emerging optimization techniques. Learn

  6. Protective effect of ellagic acid against TCDD-induced renal oxidative stress: modulation of CYP1A1 activity and antioxidant defense mechanisms.

    PubMed

    Vijaya Padma, Viswanadha; Kalai Selvi, Palaniswamy; Sravani, Samadi

    2014-07-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) belongs to toxicologically important class of poly halogenated aromatic hydrocarbons and produce wide variety of adverse effects in humans. The present study investigated the protective effect of ellagic acid, a natural polyphenolic compound against TCDD-induced nephrotoxicity in Wistar rats. TCDD-induced nephrotoxicity was reflected in marked changes in the histology of kidney, increase in levels of kidney markers (serum urea, serum creatinine) and lipid peroxides. A significant increase in activity of phase I enzyme CYP1A1 with concomitant decline in the activities of phase II enzymes [non-enzymic antioxidant and various enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase] was also observed. In addition, TCDD treated rats showed alterations in ATPase enzyme activities such as Na(+) K(+)-ATPase, Mg(2+) ATPase and Ca(2+) ATPase. Oral pre-treatment with ellagic acid prevented TCDD-induced alterations in levels of kidney markers. Ellagic acid pre-treatment significantly counteracted TCDD-induced oxidative stress by decreasing CYP1A1 activity and enhancing the antioxidant status. Furthermore, ellagic acid restored TCDD-induced histopathological changes and alterations in ATPase enzyme activities. The results of the present study show that significant protective effect rendered by ellagic acid against TCDD-induced nephrotoxicity might be attributed to its antioxidant potential. PMID:24566691

  7. Biochemical assessments of retinol, alpha-tocopherol, pyridoxal--5-phosphate oxidative stress index and total antioxidant status in adolescent professional basketball players and sedentary controls.

    PubMed

    Yilmaz, Necat; Erel, Ozcan; Hazer, Muhsin; Bağci, Cahit; Namiduru, Emine; Gül, Ece

    2007-01-01

    Physical training is known to increase the antioxidant defence system and reduce exercise-induced oxidative stress. However, intense physical aerobic and anaerobic training with competition, such as those imposed on young professional basketball players can induce an increase of oxidative stress, which can be implicated with overtraining. The aim of this study was to test the effect of training and competition load on oxidative stress, antioxidant status, and vitamin levels in basketball players. Oxidative Stres Index (OSI 1), Total Peroxide (TPx) antioxidant (vitamin E, A and The total antioxidant status (TAC 1)), biochemical lipid parameters, as well as training results were measured. Results showed that all plasma vitamin levels were significantly higher in basketball players (vitamin A: 1.61 +/- 0.05 mmol/l, vitamin E: 26.45 +/- 0.72 mmol/l, vitamin B6: 10.58 +/- 0.7 mgr/l) than sedentary controls (vitamin A: 1.22 +/- 0.04 mmol /l, vitamin E: 19.24 +/- 0.73 mmol/l, vitamin B6: 6.0 +/- 0.35 mgr/l) (p < 0.01). In addition TAC 1 was 2.06 +/- 0.02 and 1.89 +/- 0.01 mmol Trolox eq/L in basketball players and controls, respectively (p < 0.01). Conversely OSI was 0.89 +/- 0.09 arbitrary unit and 0.88 +/- 0.071 arbitrary unit in basketball players and controls, respectively (p > 0.05). However, total plasma peroxide level (TPx) of basketball players and controls was not statistically different (18.55 +/- 2.07 and 17.18 +/- 1.61 micromol H2O2/L, respectively; p > 0.05). We conclude that physical exercise increase antioxidant levels and cause balance of the homeostasis. Training can not have positive or negative effects on oxidative stress depending on training load. The results suggested that oxidative stress and antioxidant measurement are significant in the biological follow-up of young basketball players. PMID:17593769

  8. Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry.

    PubMed

    Fontagné-Dicharry, Stéphanie; Godin, Simon; Liu, Haokun; Antony Jesu Prabhu, Philip; Bouyssière, Brice; Bueno, Maïté; Tacon, Philippe; Médale, Françoise; Kaushik, Sadasivam J

    2015-06-28

    Se is an essential micronutrient required for normal growth, development and antioxidant defence. The objective of the present study was to assess the impact of dietary Se sources and levels on the antioxidant status of rainbow trout (Oncorhynchus mykiss) fry. First-feeding fry (initial body weight: 91 mg) were fed either a plant- or fishmeal-based diet containing 0·5 or 1·2 mg Se/kg diet supplemented or not with 0·3 mg Se/kg diet supplied as Se-enriched yeast or sodium selenite for 12 weeks at 17°C. Growth and survival of rainbow trout fry were not significantly affected by dietary Se sources and levels. Whole-body Se was raised by both Se sources and to a greater extent by Se-yeast. The reduced:oxidised glutathione ratio was raised by Se-yeast, whereas other lipid peroxidation markers were not affected by dietary Se. Whole-body Se-dependent glutathione peroxidase (GPX) activity was enhanced in fish fed Se-yeast compared to fish fed sodium selenite or non-supplemented diets. Activity and gene expression of this enzyme as well as gene expression of selenoprotein P (SelP) were reduced in fish fed the non-supplemented plant-based diet. Catalase, glutamate-cysteine ligase and nuclear factor-erythroid 2-related factor 2 (Nrf2) gene expressions were reduced by Se-yeast. These results suggest the necessity to supplement plant-based diets with Se for rainbow trout fry, and highlight the superiority of organic form of Se to fulfil the dietary Se requirement and sustain the antioxidant status of fish. GPX and SelP expression proved to be good markers of Se status in fish. PMID:25990817

  9. Modulation of antioxidant potential in liver of mice by kernel oil of cashew nut (Anacardium occidentale) and its lack of tumour promoting ability in DMBA induced skin papillomagenesis.

    PubMed

    Singh, Bimala; Kale, R K; Rao, A R

    2004-04-01

    Cashew nut shell oil has been reported to possess tumour promoting property. Therefore an attempt has been made to study the modulatory effect of cashew nut (Anlacardium occidentale) kernel oil on antioxidant potential in liver of Swiss albino mice and also to see whether it has tumour promoting ability like the shell oil. The animals were treated orally with two doses (50 and 100 microl/animal/day) of kernel oil of cashew nut for 10 days. The kernel oil was found to enhance the specific activities of SOD, catalase, GST, methylglyoxalase I and levels of GSH. These results suggested that cashew nut kernel oil had an ability to increase the antioxidant status of animals. The decreased level of lipid peroxidation supported this possibility. The tumour promoting property of the kernel oil was also examined and found that cashew nut kernel oil did not exhibit any solitary carcinogenic activity. PMID:15088687

  10. Saffron supplements modulate serum pro-oxidant-antioxidant balance in patients with metabolic syndrome: A randomized, placebo-controlled clinical trial

    PubMed Central

    Kermani, Tayyebeh; Mousavi, Seyyed Hadi; Shemshian, Maryam; Norouzy, Abdolreza; Mazidi, Mohsen; Moezzi, Atefeh; Moghiman, Toktam; Ghayour-Mobarhan, Majid; A. Ferns, Gordon

    2015-01-01

    Objectives: We have investigated the effect of a saffron supplement, given at a dose of 100 mg/kg, on prooxidant-antioxidant balance (PAB) in individuals with metabolic syndrome. Materials and Methods: A randomized, placebo-controlled trial design was used in 75 subjects with metabolic syndrome who were randomly allocated to one of two study groups: (1) the case group received 100mg/kg saffron and (2) the placebo control group received placebo for 12 weeks. The serum PAB assay was applied to all subjects before (week 0) and after (weeks 6 and 12) the intervention. Results: There was a significant (p=0.035) reduction in serum PAB between week 0 to week 6 and also from week 0 to week 12. Conclusion: Saffron supplements can modulate serum PAB in subjects with metabolic syndrome, implying an improvement in some aspects of oxidative stress or antioxidant protection. PMID:26468462

  11. Prospective Associations between Plasma Saturated, Monounsaturated and Polyunsaturated Fatty Acids and Overall and Breast Cancer Risk – Modulation by Antioxidants: A Nested Case-Control Study

    PubMed Central

    Pouchieu, Camille; Chajès, Véronique; Laporte, François; Kesse-Guyot, Emmanuelle; Galan, Pilar; Hercberg, Serge; Latino-Martel, Paule; Touvier, Mathilde

    2014-01-01

    Background Mechanistic data suggest that different types of fatty acids play a role in carcinogenesis and that antioxidants may modulate this relationship but epidemiologic evidence is lacking. Our aim was to investigate the association between plasma saturated, monounsaturated and polyunsaturated fatty acids (SFAs, MUFAs and PUFAs) and overall and breast cancer risk and to evaluate the potential modulatory effect of an antioxidant supplementation on these relationships. Methods A nested case-control study included all first incident cancer cases diagnosed in the SU.VI.MAX study between 1994 and 2002 (n = 250 cases, one matched control/case). Participants to the SU.VI.MAX randomized controlled trial received either vitamin/mineral antioxidants or placebo during this intervention period. Baseline fatty acid composition of plasma total lipids was measured by gas chromatography. Conditional logistic regression was performed overall and stratified by intervention group. Results Dihomo-γ-linolenic acid (Ptrend = 0.002), the dihomo-γ-linolenic/linoleic acids ratio (Ptrend = 0.001), mead acid (Ptrend = 0.0004), and palmitoleic acid (Ptrend = 0.02) were inversely associated with overall cancer risk. The arachidonic/dihomo-γ-linolenic acids ratio (Ptrend = 0.02) and linoleic acid (Ptrend = 0.02) were directly associated with overall cancer risk. Similar results were observed for breast cancer specifically. In stratified analyses, associations were only observed in the placebo group. Notably, total PUFAs were directly associated with overall (Ptrend = 0.02) and breast cancer risk in the placebo group only. Conclusion Specific SFAs, MUFAs and PUFAs were prospectively differentially associated with cancer risk. In addition, this study suggests that antioxidants may modulate these associations by counteracting the potential effects of these fatty acids on carcinogenesis. PMID:24587366

  12. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants

    PubMed Central

    Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A.; Abd_Allah, Elsayed F.; Alqarawi, A. A.; Alyemeni, Mohammed N.; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462

  13. Mitigation of NaCl Stress by Arbuscular Mycorrhizal Fungi through the Modulation of Osmolytes, Antioxidants and Secondary Metabolites in Mustard (Brassica juncea L.) Plants.

    PubMed

    Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A; Abd Allah, Elsayed F; Alqarawi, A A; Alyemeni, Mohammed N; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462

  14. Antioxidant enzyme activity and malondialdehyde levels can be modulated by Piper betle, tocotrienol rich fraction and Chlorella vulgaris in aging C57BL/6 mice

    PubMed Central

    Aliahmat, Nor Syahida; Noor, Mohd Razman Mohd; Yusof, Wan Junizam Wan; Makpol, Suzana; Ngah, Wan Zurinah Wan; Yusof, Yasmin Anum Mohd

    2012-01-01

    OBJECTIVE: The aim of this study was to determine the erythrocyte antioxidant enzyme activity and the superoxide dismutase, catalase, glutathione peroxidase, and plasma malondialdehyde levels in aging mice and to evaluate how these measures are modulated by potential antioxidants, including the tocotrienol-rich fraction, Piper betle, and Chlorella vulgaris. METHOD: One hundred and twenty male C57BL/6 inbred mice were divided into three age groups: young (6 months old), middle-aged (12 months old), and old (18 months old). Each age group consisted of two control groups (distilled water and olive oil) and three treatment groups: Piper betle (50 mg/kg body weight), tocotrienol-rich fraction (30 mg/kg), and Chlorella vulgaris (50 mg/kg). The duration of treatment for all three age groups was two months. Blood was withdrawn from the orbital sinus to determine the antioxidant enzyme activity and the malondialdehyde level. RESULTS: Piper betle increased the activities of catalase, glutathione peroxidase, and superoxide dismutase in the young, middle, and old age groups, respectively, when compared to control. The tocotrienol-rich fraction decreased the superoxide dismutase activity in the middle and the old age groups but had no effect on catalase or glutathione peroxidase activity for all age groups. Chlorella vulgaris had no effect on superoxide dismutase activity for all age groups but increased glutathione peroxidase and decreased catalase activity in the middle and the young age groups, respectively. Chlorella vulgaris reduced lipid peroxidation (malondialdehyde levels) in all age groups, but no significant changes were observed with the tocotrienol-rich fraction and the Piper betle treatments. CONCLUSION: We found equivocal age-related changes in erythrocyte antioxidant enzyme activity when mice were treated with Piper betle, the tocotrienol-rich fraction, and Chlorella vulgaris. However, Piper betle treatment showed increased antioxidant enzymes activity during

  15. Changes in antioxidant status and cardiovascular risk factors of overweight young men after six weeks supplementation of whey protein isolate and resistance training.

    PubMed

    Sheikholeslami Vatani, Dariush; Ahmadi Kani Golzar, Farhad

    2012-12-01

    The study's purpose was to examine the effects of whey protein supplementation and resistance training on antioxidant status and cardiovascular risk factors in overweight young men. Thirty healthy male subjects (age, 23.4±3.6years; body mass index, 25-30kg/m(2)) were randomly divided into three groups of 10 persons including; Experimental group 1: resistance training+whey supplement (RW); Experimental group 2: resistance training+placebo (RP), and Control group (C). Subjects in intervention groups underwent 3 resistance training sessions per week, each session with 60-70% 1RM, for 6weeks. No significant changes in fibrinogen level, fasting blood glucose, resting systolic and diastolic blood pressures, waist to hip ratio (WHR), and body mass index were observed in any of the groups. Total antioxidant capacity (TAC), cholesterol and HDL varied significantly in the RW group compared with the pre-test. We found significant changes in both RW and RP groups for glutathione, vitamin C, LDL, and triglyceride levels. In addition, in the post-test, TAC, glutathione, and HDL levels were higher in the RW in comparison to C group. Research findings showed that although exercise can lead to antioxidant system improvement and reduce some cardiovascular risk factors among overweight subjects, the combination of resistance training and whey consumption is more effective. PMID:22889987

  16. Effect of dill tablet (Anethum graveolens L) on antioxidant status and biochemical factors on carbon tetrachloride-induced liver damage on rat

    PubMed Central

    Oshaghi, Ebrahim Abbasi; Khodadadi, Iraj; Tavilani, Heidar; Goodarzi, Mohammad Taghi

    2016-01-01

    Background: Liver damage induced by carbon tetrachloride (CCl4) has been presented as an experimental model for research in hepatoprotective effects of natural product. A commercial medicine prepared from Anethum graveolens L (dill) is being used as dill tablet (DT) as a hypolipidemic agent. This experiment aimed to investigate the protective effect of DT against hepatic damage. Materials and Methods: Male Wistar rats were randomly divided into four groups (n = 6) as following for a 10 days experiments. (1) Normal animals; (2) normal animals +CCl4 1 ml/kg (1:1 of CCl4 in olive oil, by gastric tube); (3) CCl4 treated animals +100 mg DT/kg; (4) CCl4 treated animals +300 mg DT/kg. After 10 days of treatment, biochemical factors were measured; also antioxidant tests such as thiol group, malondialdehyde (MDA), total antioxidant capacity (TAC), and catalase (CAT) activity in the liver samples were carried out. Results: In dill treated animals, a significant decrease in liver enzymes lactate dehydrogenase, alkaline phosphatase, aspartate transaminase, alanine transaminase, γ-glutamyl transferase, total bilirubin, direct bilirubin, as well as triglyceride, total cholesterol (P < 0.05) were observed. Total protein and albumin concentrations were significantly increased in dill treated groups (P < 0.05). Furthermore, treatment with dill declined liver cholesterol, triglyceride, MDA, and increased TAC and CAT activity compared with untreated group (P < 0.05). Conclusion: Dill displayed a potential hepatoprotective effect against CCl4-induced liver damage based on both biochemical markers and antioxidant status. PMID:27127740

  17. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    PubMed

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (P<0.05), whereas concentrations of interleukin (IL)-2, IL-4, IL-6 and tumor necrosis factor-α (TNF-α) decreased linearly (P<0.05). The activities of superoxide dismutase (SOD), glutathione-peroxidase (GSH-PX) and total antioxidant capacity (T-AOC) increased linearly (P<0.05), whereas malondialdehyde (MDA) content decreased linearly (P<0.05) with increasing GABA. These results indicate that rumen-protected GABA supplementation to heat-stressed dairy cows can improve their immune function and antioxidant activity. PMID:27503722

  18. Extruded whole grain diets based on brown, soaked and germinated rice. Effects on the lipid profile and antioxidant status of growing Wistar rats. Part II.

    PubMed

    Albarracín, Micaela; Weisstaub, Adriana R; Zuleta, Angela; Drago, Silvina R

    2016-06-15

    The influence of whole grain (WG) rice based diets on the lipid profile and antioxidant status was evaluated. Thirty-two male Wistar rats were fed with Control (C), extruded Brown rice (B), extruded Soaked whole rice (S) and extruded Germinated whole rice (G) diets for 60 days. Triacylglycerols (TAGs), cholesterol and malondialdehyde equivalent (MDA eq.) in serum and liver were determined. Catalase (CAT), Glutathione Reductase (GR) and Glutathione Peroxidase (GPx) enzyme activities and Glutathione Reduced (GSH) and Oxidized (GSSG) in the liver were analyzed. Animals consuming B and S diets presented lower body weight gain. All WG diets reduced TAGs in serum and MDA eq. content in liver in comparison with the C diet. WG rice diets improved the redox status in animals mainly fed G due to their higher GR activity and GSH/GSSG ratio. PMID:27213275

  19. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte

    PubMed Central

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M. Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  20. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte.

    PubMed

    Hameed, Abdul; Gulzar, Salman; Aziz, Irfan; Hussain, Tabassum; Gul, Bilquees; Khan, M Ajmal

    2015-01-01

    Salinity causes oxidative stress in plants by enhancing production of reactive oxygen species, so that an efficient antioxidant system, of which ascorbic acid (AsA) is a key component, is an essential requirement of tolerance. However, antioxidant responses of plants to salinity vary considerably among species. Limonium stocksii is a sub-tropical halophyte found in the coastal marshes from Gujarat (India) to Karachi (Pakistan) but little information exists on its salt resistance. In order to investigate the role of AsA in tolerance, 2-month-old plants were treated with 0 (control), 300 (moderate) and 600 (high) mM NaCl for 30 days with or without exogenous application of AsA (20 mM) or distilled water. Shoot growth of unsprayed plants at moderate salinity was similar to that of controls while at high salinity growth was inhibited substantially. Sap osmolality, AsA concentrations and activities of AsA-dependant antioxidant enzymes increased with increasing salinity. Water spray resulted in some improvement in growth, indicating that the growth promotion by exogenous treatments could partly be attributed to water. However, exogenous application of AsA on plants grown under saline conditions improved growth and AsA dependent antioxidant enzymes more than the water control treatment. Our data show that AsA-dependent antioxidant enzymes play an important role in salinity tolerance of L. stocksii. PMID:25603966

  1. Effect of Momordica dioica fruit extract on antioxidant status in liver, kidney, pancreas, and serum of diabetic rats

    PubMed Central

    Sharma, Poonam; Singh, Rambir

    2014-01-01

    Background: Fruits, leaves, and tuberous roots of Momordica dioica are used as a folk remedy for diabetes mellitus (DM) in India. The aqueous extract of Momordica dioica fruit possesses very good anti-diabetic activity and is having high margin of safety. Objectives: The aim of the present study was to investigate the antioxidative effect of Momordica dioica fruits in alloxan-induced diabetic Wistar rats. Materials and Methods: Effect of aqueous extract of Momordica dioica (AEMD) on thiobarbituric acid reactive substances (TBARS), hydroperoxide (HP), non-enzymatic and enzymatic antioxidants in liver, kidney, pancreas, and serum was evaluated in diabetic rats after 21 days treatment. Results: Increase in the levels of TBARS, HP and decrease in the levels of non-enzymatic antioxidants and activity of enzymatic antioxidants was observed in liver, kidney, pancreas, and serum of diabetic rats when compared with normal healthy rats. TBARS and HP levels were reduced while non-enzymatic and enzymatic antioxidant enzymes activity was increased in AEMD and glibenclamide-treated rats. Furthermore, histological examination of liver, kidney, and pancreas of diabetic rats showed degenerative changes. AEMD treatment for 21 days rejuvenated liver, kidney, and pancreas histoarchitecture. Conclusion: In conclusion, the present results showed the protective role of AEMD on liver, kidney, and pancreas in severe diabetic rats justifying support for its anti-diabetic use in folk medicine. PMID:24497747

  2. Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant-antioxidant status in hamsters infected with Opisthorchis viverrini.

    PubMed

    Pinlaor, Somchai; Yongvanit, Puangrat; Prakobwong, Suksanti; Kaewsamut, Butsara; Khoontawad, Jarinya; Pinlaor, Porntip; Hiraku, Yusuke

    2009-10-01

    Opisthorchis viverrini (OV) infection is endemic in northeastern Thailand. We have previously reported that OV infection induces oxidative and nitrative DNA damage via chronic inflammation, which contributes to the disease and cholangiocarcinogenesis. Here, we examined the effect of curcumin, an antioxidant, on pathogenesis in OV-infected hamsters. DNA lesions were detected by double immunofluorescence and the hepatic expression of oxidant-generating and antioxidant genes was assessed by quantitative RT-PCR analysis. Dietary 1.0% curcumin significantly decreased OV-induced accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an oxidative DNA lesion, and 8-nitroguanine, a nitrative DNA lesion, in the nucleus of bile duct epithelial and inflammatory cells. Expression of oxidant-generating genes (inducible nitric oxide synthase; iNOS, its nuclear transcriptional factor, NF-kappaB, and cyclooxygenase-2), and plasma levels of nitrate, malondialdehyde, and alanine aminotransferase, were also decreased in curcumin-treated group. In contrast, curcumin increased the mRNA expression of antioxidant enzymes (Mn-superoxide dismutase and catalase), and ferric-reducing anti-oxidant power in the plasma. In conclusion, curcumin reduced oxidative and nitrative DNA damage by suppression of oxidant-generating genes and enhancement of antioxidant genes, leading to inhibition of oxidative and nitrative stress. Therefore, curcumin may be used as a chemopreventive agent to reduce the severity of OV-associated diseases and the risk of cholangiocarcinoma (CCA). PMID:19753608

  3. Effect of onion peel extract supplementation on the lipid profile and antioxidative status of healthy young women: a randomized, placebo-controlled, double-blind, crossover trial

    PubMed Central

    Kim, Jungmi; Cha, Yong-Jun; Lee, Kyung-Hea

    2013-01-01

    The consumption of fruits and vegetables that have high polyphenol content has been previously associated with a reduced risk for cardiovascular disease. We investigated the effects of onion peel extract on plasma total antioxidant capacity, lipid peroxidation, and leukocyte DNA damage. This study was a randomized, double-blind, placebo-controlled, crossover trial. Healthy female subjects received either onion peel extract or placebo (dextrin) for two weeks, underwent a 1-week washout period, and then received the other treatment for an additional two weeks. After two weeks of onion peel extract supplementation, the total cholesterol level, low-density lipoprotein cholesterol level, and atherogenic index significantly decreased (P < 0.05). No changes were observed in activities of erythrocyte antioxidant enzymes or levels of lipid peroxidation markers following onion peel extract supplementation. Additionally, no significant difference was found in plasma antioxidant vitamin (retinol, tocopherols, carotenoids, and coenzyme Q10) levels or ex vivo H2O2-provoked oxidative DNA damage after onion peel extract supplementation. The present interventional study provides evidence of the health benefits of onion peel extract and demonstrates its effects in modulating lipid profiles in healthy young Korean women. PMID:24133616

  4. Effect of spa therapy with saline balneotherapy on oxidant/antioxidant status in patients with rheumatoid arthritis: a single-blind randomized controlled trial

    NASA Astrophysics Data System (ADS)

    Karagülle, Mine; Kardeş, Sinan; Karagülle, Oğuz; Dişçi, Rian; Avcı, Aslıhan; Durak, İlker; Karagülle, Müfit Zeki

    2016-06-01

    Oxidative stress has been shown to play a contributory role in the pathogenesis of rheumatoid arthritis (RA). Recent studies have provided evidence for antioxidant properties of spa therapy. The purpose of this study is to investigate whether spa therapy with saline balneotherapy has any influence on the oxidant/antioxidant status in patients with RA and to assess clinical effects of spa therapy. In this investigator-blind randomized controlled trial, we randomly assigned 50 patients in a 1:1 ratio to spa therapy plus standard drug treatment (spa group) or standard drug treatment alone (control group). Spa group followed a 2-week course of spa therapy regimen consisting of a total of 12 balneotherapy sessions in a thermal mineral water pool at 36-37 °C for 20 min every day except Sunday. All clinical and biochemical parameters were assessed at baseline and after spa therapy (2 weeks). The clinical parameters were pain intensity, patient global assessment, physician global assessment, Health Assessment Questionnaire disability index (HAQ-DI), Disease Activity Score for 28-joints based on erythrocyte sedimentation rate (DAS28-4[ESR]). Oxidative status parameters were malondialdehyde (MDA), nonenzymatic superoxide radical scavenger activity (NSSA), antioxidant potential (AOP), and superoxide dismutase (SOD). The NSSA levels were increased significantly in the spa group (p = 0.003) but not in the control group (p = 0.509); and there was a trend in favor of spa therapy for improvements in NSSA levels compared to control (p = 0.091). Significant clinical improvement was found in the spa group compared to the control in terms of patient global assessment (p = 0.011), physician global assessment (p = 0.043), function (HAQ-DI) (p = 0.037), disease activity (DAS28-4[ESR]) (0.044) and swollen joint count (0.009), and a trend toward improvement in pain scores (0.057). Spa therapy with saline balneotherapy exerts antioxidant effect in patients with RA as reflected by the

  5. Early habituation of maize (Zea mays) suspension-cultured cells to 2,6-dichlorobenzonitrile is associated with the enhancement of antioxidant status.

    PubMed

    Largo-Gosens, Asier; Encina, Antonio; de Castro, María; Mélida, Hugo; Acebes, José L; García-Angulo, Penélope; Álvarez, Jesús M

    2016-06-01

    The cellulose biosynthesis inhibitor 2,6-dichlorobenzonitrile (DCB) has been widely used to gain insights into cell wall composition and architecture. Studies of changes during early habituation to DCB can provide information on mechanisms that allow tolerance/habituation to DCB. In this context, maize-cultured cells with a reduced amount of cellulose (∼20%) were obtained by stepwise habituation to low DCB concentrations. The results reported here attempt to elucidate the putative role of an antioxidant strategy during incipient habituation. The short-term exposure to DCB of non-habituated maize-cultured cells induced a substantial increase in oxidative damage. Concomitantly, short-term treated cells presented an increase in class III peroxidase and glutathione S-transferase activities and total glutathione content. Maize cells habituated to 0.3-1 µM DCB (incipient habituation) were characterized by a reduction in the relative cell growth rate, an enhancement of ascorbate peroxidase and class III peroxidase activities, and a net increment in total glutathione content. Moreover, these cell lines showed increased levels of glutathione S-transferase activity. Changes in antioxidant/conjugation status enabled 0.3 and 0.5 µM DCB-habituated cells to control lipid peroxidation levels, but this was not the case of maize cells habituated to 1 μM DCB, which despite showing an increased antioxidant capacity were not capable of reducing the oxidative damage to control levels. The results reported here confirm that exposure and incipient habituation of maize cells to DCB are associated with an enhancement in antioxidant/conjugation activities which could play a role in incipient DCB habituation of maize-cultured cells. PMID:26612685

  6. Effect of supplementation with vitamins E, C and β-carotene on antioxidative/oxidative status parameters in sows during the postpartum period.

    PubMed

    Szczubiał, M

    2015-01-01

    The effect of vitamins E, C and β-carotene supplementation in sows on the parameters of antioxidative/oxidative status during the postpartum period was investigated. Twenty four primiparous sows, divided into two groups (experimental and control), were included in the study. After the half-way point of pregnancy until farrowing, each experimental sow received feed supplemented twice a week with 200 mg of vitamin E and 1000 mg of vitamin C, and additionally, 70 mg of β-carotene were administered via intramuscular injection, on day 14 and day 7 before farrowing. The control group was not supplemented. Blood samples were collected before supplementation (gestational day 57-58), 48 hours and 7 days after parturition. The following antioxidative and oxidative parameters were measured using spectrophotometric methods: glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalase (CAT), vitamin C, vitamin E, thiobarbituric acid reactive substances (TBARS), and sulfhydryl groups (SH groups). In supplemented sows the erythrocyte activity of GSH-Px and CAT was found to be significantly higher on day 7 after farrowing and the activity of SOD was significantly higher at 48 hours postpartum, compared to the control group. The concentration of vitamins C and E in plasma of the supplemented group was found to be significantly higher and the content of TBARS was found significantly lower at both postpartum measurement points, compared to the control group. The content of SH groups was significantly higher on day 7 postpartum, compared to the control group. The study findings indicate that supplementation of pregnant sows with vitamins E, C and β-carotene in the second half of pregnancy has beneficial effects on the antioxidative/oxidative balance in the postpartum period by increasing the antioxidative potential and reducing lipid and protein peroxidation. PMID:26172179

  7. Status of antioxidant enzyme: glutathione peroxidase and total polyphenol level in plasma of Tunisian patients suffering from colorectal and gastric cancer: interaction with clinical outcome.

    PubMed

    Baroudi, Olfa; Younes, Sonia Ben; Mézlini, Amel; Bignon, Yves Jean; Medimeg, Imen; Uhrhammer, Nancy; Gaiied, Amel Ben Ammar E L; Ellouz, Soufia Chabchoub

    2013-12-01

    In our case-control study, we measure the antioxidant status by dosing enzymes involved in oxidant stress in plasma of patients with colorectal and gastric cancer, and in the second step, we investigate the impact of chemotherapy before and after surgery on plasma antioxidant status and polyphenols in patients. Blood serum was collected from patients with stomach and colorectal cancer before conventional treatment, and glutathione peroxidase (GSHPX) enzyme activities and total polyphenols were determined by spectrophotometric methods. In our study, we found a significant decrease in glutathione peroxidase activity in plasma of patients compared with controls (P = 0.02), although we did not find a significant association between total polyphenols and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) or ABTS in plasma of colorectal and stomach cancer compared with control; furthermore, we observed no significant difference in the average plasma polyphenols in patients treated with chemotherapy before and after surgery. We have shown the decrease in GSHPX activity in plasma of cases with colorectal and gastric cancer, and this decrease reflects that the oxidative stress is associated with tumor tract and related to oxidative metabolism; however, no association was found between total polyphenols and ABTS in our study. PMID:24072511

  8. Exogenous proline mediates alleviation of cadmium stress by promoting photosynthetic activity, water status and antioxidative enzymes activities of young date palm (Phoenix dactylifera L.).

    PubMed

    Zouari, M; Ben Ahmed, Ch; Zorrig, W; Elloumi, N; Rabhi, M; Delmail, D; Ben Rouina, B; Labrousse, P; Ben Abdallah, F

    2016-06-01

    The ability of exogenous compatible solutes, such as proline, to counteract cadmium (Cd) inhibitory effects in young date palm plants (Phoenix dactylifera L. cv Deglet Nour) was investigated. Two-year-old date palm plants were subjected for five months at different Cd stress levels (0, 10 and 30 mg CdCl2 kg(-1) soil) whether supplied or not with exogenous proline (20mM) added through the irrigation water. Different levels of Cd stress altered plant growth, gas exchanges and chlorophyll content as well as water status, but at different extent among them. In contrast, an increase of antioxidant enzymes activities of Cd-treated plants in association with high amounts of proline content, hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS) and electrolyte leakage (EL) were observed. Interestingly, exogenous proline mitigated the adverse effects of Cd on young date palm. Indeed, it alleviated the oxidative damage induced by Cd accumulation and established better levels of plant growth, water status and photosynthetic activity. Moreover, proline-treated plants showed high antioxidant enzymes activities (superoxide dismutase, catalase and glutathione peroxydase) in roots and leaves as compared to Cd-treated plants. PMID:26901506

  9. Effects of the Dietary Addition of Amaranth (Amaranthus mantegazzianus) Protein Isolate on Antioxidant Status, Lipid Profiles and Blood Pressure of Rats.

    PubMed

    Lado, María B; Burini, Julieta; Rinaldi, Gustavo; Añón, María C; Tironi, Valeria A

    2015-12-01

    The effects of the dietary addition of 2.5% (w/w) Amaranthus mantegazzianus protein isolate (AI) on blood pressure, lipid profiles and antioxidative status of Wistar rats were evaluated. Six diets were used to feed animals during 28 days: (base (AIN93G), Chol (cholesterol 1%, w/w), CE (α-tocopherol 0.005%, w/w), CholE (cholesterol 1% (w/w) + α-tocopherol 0.005%, w/w), CAI (AI 2.5% w/w), CholAI (cholesterol 1% (w/w) + AI 2.5%, w/w). Lipid profiles of plasma and liver and faecal cholesterol content were analyzed. Antioxidant status was evaluated by the ferric reducing activity of plasma (FRAP), the 2-thiobarbituric acid (TBA) assay and superoxide dismutase (SOD) activity in plasma and liver. Blood pressure was measured in the tail artery of rats. CholA group presented a significant (α < 0.05) reduction (16%) in the plasma total cholesterol. In liver, the intake of cholesterol (Chol group) induced a significant increment in cholesterol and triglycerides (2.5 and 2.3 times, respectively), which could be decreased (18% and 47%, respectively) by the addition of AI (CholA group). This last group also showed an increased faecal cholesterol excretion (20%). Increment (50%) in FRAP values, diminution of TBA value in plasma and liver (70% and 38%, respectively) and diminution of SOD activity (20%) in plasma of CholA group suggest an antioxidant effect because of the intake of AI. In addition, CA and CholA groups presented a diminution (18%) of blood pressure after 28 days. PMID:26497504

  10. In Vivo Antioxidant Assays.

    PubMed

    2016-01-01

    Oxidative stress and antioxidant deficiency have been implicated in the pathophysiology of a wide range of diseases and conditions. Consequently, over recent years many different supplementation trials have been implemented, aimed at improving clinical outcomes by boosting antioxidant levels. These trials included supplementation with individual antioxidants, antioxidant combinations, and antioxidant-rich foods such as fruit and vegetable juices and other plant extracts. To ensure that data from these trials are interpreted correctly, it is essential that suitable biomarkers are used to assess changes in in vivo antioxidant activity resulting from supplementation. Therefore, the measurement of antioxidant systems, such as superoxide dismutase, catalase, glutathione reductase, and status of other molecules in biological fluids with their quantification methods are simplified in this chapter. PMID:26939271

  11. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats.

    PubMed

    Singh, Jyotsna; Kakkar, Poonam

    2013-12-01

    A decoction of stem bark of Oroxylum indicum Vent. (OI) is taken (2-3 times/day) by the tribal people of Sikkim, India to treat diabetes but scientific validation of its overall potential is lacking. Present study was aimed to assess in vitro antihyperglycemic activity of standardized OI extract using inhibition of α-glucosidase, BSA glycation and enhancement of insulin sensitivity. Antidiabetic and antioxidant modulatory effects of OI extract along with the blood biomarkers of toxic response were studied in streptozotocin (STZ) induced diabetic rats. In vitro analysis showed strong antioxidant capacity of OI -and potential to inhibit BSA glycation and α-glucosidase activity which was comparable to standard counterparts. Extract also improved insulin sensitivity in mature 3T3-L1 adipocytes. In vivo effects of OI extract (oral 250 mg/kg b.wt.) on STZ induced type II diabetic rats normalized the antioxidant status (p≤0.01). Analysis of blood biomarkers of toxic response indicated its safety. Lowering of total cholesterol and HDL levels (p≤0.05) and restoration of glycated Hb (p≤0.01) were also found in OI treated diabetic rats. HOMA-IR, QUICKI analysis along with area under the curve analysis showed the capacity of OI extract to enhance the insulin sensitivity significantly (p≤0.01) which was confirmed by increased GLUT-4 translocation in skeletal muscles. PMID:24140466

  12. Prevalence of sensory modulation disorder among Puerto Rican preschoolers: an analysis focused on socioeconomic status variables.

    PubMed

    Román-Oyola, Rosa; Reynolds, Stacey

    2013-09-01

    The purposes of this study were to determine the prevalence of sensory modulation disorder (SMD) in a sample of Puerto Rican preschoolers and to examine differences in the prevalence of SMD based on socioeconomic status (SES) variables. Caregivers of children from Head Start programs and private preschools were recruited from three regions in Puerto Rico (PR) to participate in the study. Each caregiver completed a Short Sensory Profile (SSP) and a demographic data sheet. Total scores on the SSP were used to establish diagnosis of SMD. The total sample included 141 participants (response rate of 64%). Prevalence of SMD among the total PR sample (19.9%) was higher than previously reported estimates on the US mainland (5-16%). Statistical results indicated no difference in the overall prevalence of SMD based on SES. However, significant differences in scores based on caregivers' educational degree were found on the SSP sub-domain of Movement sensitivity and Under-responsive/seeks sensation; differences in scores based on caregiver household income were also found for the SSP sub-domain of Under-responsive/seeks. Although SMD appears to be prevalent in preschoolers in PR, variables associated with SES do not appear to contribute to an overall SMD diagnosis. However, additional research linking specific sub-domains of SMD to SES variables may be warranted. PMID:23696328

  13. Photo-protective effect of sargachromenol against UVB radiation-induced damage through modulating cellular antioxidant systems and apoptosis in human keratinocytes.

    PubMed

    Fernando, Pattage Madushan Dilhara Jayatissa; Piao, Mei Jing; Hewage, Susara Ruwan Kumara Madduma; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Ko, Mi Hee; Ko, Chang Sik; Byeon, Sang Hee; Mun, Seung Ri; Lee, Nam Ho; Hyun, Jin Won

    2016-04-01

    The aim of this study was to evaluate the photo-preventive effects of sargachromenol (SC) against ultraviolet B (UVB)-induced oxidative stress in human keratinocytes via assessing the antioxidant properties and underlying molecular mechanisms. SC exhibited a significant scavenging effect on UVB-induced intracellular reactive oxygen species (ROS). SC attenuated UVB-induced oxidative macromolecular damage, including the protein carbonyl content, DNA strand break, and 8-isoprostane level. Furthermore, SC decreased UVB-induced Bax, cleaved caspase-9, and cleaved caspase-3 protein levels, but increased that of Bcl-2, which are well-known key mediators of apoptosis. Moreover, SC increased superoxide dismutase, catalase, and heme oxygenase-1 protein expression. Pre-treatment with SC upregulated the main transcription factor of antioxidant enzymes, erythroid 2-related factor 2 level, which was reduced by UVB irradiation. Extracellular signal-regulated kinase (ERK) and Jun N-terminal kinases (JNK) are involved in the regulation of many cellular events, including apoptosis. SC treatment reversed ERK and JNK activation induced by UVB. Collectively, these data indicate that SC can provide remarkable cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and suggest the potential of developing a medical agent for ROS-induced skin diseases. PMID:26991844

  14. Effects of concord grape juice on appetite, diet, body weight, lipid profile, and antioxidant status of adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concord grape juice (CGJ) is a rich source of phenolic antioxidants with a range of putative health benefits. However, high beverage energy and fructose intake may lead to weight gain and insulin resistance, respectively. This study assessed the effects of CGJ consumption for 12-wk on appetite, di...

  15. Chicory (Cichorium intybus L.) Root Extract Regulates the Oxidative Status and Antioxidant Gene Transcripts in CCl4-Induced Hepatotoxicity

    PubMed Central

    El-Sayed, Yasser S.; Lebda, Mohamed A.; Hassinin, Mohammed; Neoman, Saad A.

    2015-01-01

    The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes. PMID:25807561

  16. Chicory (Cichorium intybus L.) root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity.

    PubMed

    El-Sayed, Yasser S; Lebda, Mohamed A; Hassinin, Mohammed; Neoman, Saad A

    2015-01-01

    The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes. PMID:25807561

  17. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    PubMed

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. PMID:25342669

  18. Oxidant/antioxidant status, paraoxonase activity, and lipid profile in plasma of ovariectomized rats under the influence of estrogen, estrogen combined with progesterone, and genistein

    PubMed Central

    Agacayak, Elif; Basaranoglu, Serdar; Tunc, Senem Yaman; Icen, Mehmet Sait; Findik, Fatih Mehmet; Kaplan, Ibrahim; Evliyaoglu, Osman; Gul, Talip

    2015-01-01

    Introduction The aim of this study was to investigate whether estradiol (E2), E2 combined with progesterone (Prog) (E2/Prog), and genistein (Gen) treatment had antioxidative and anti-hyperlipidemic effects in the plasma of ovariectomized (OVX) rats. Materials and methods Adult female Sprague–Dawley rats were divided into five groups. Rats in all groups, except for those in a sham group, underwent bilateral ovariectomy under general anesthesia. The groups were as follows: sham group; control OVX group; group treated with estrogen (0.014 mg/kg 17-β E2); group treated with a combination of E2 and Prog (0.014 mg/kg 17-β E2 plus 0.028 mg/kg drospirenone), and group treated with Gen (10 mg/kg/day). Plasma of rats of each treatment group was analyzed to determine the total antioxidant status, total oxidant status, paraoxonase activity, lipid profile, high-density lipoprotein (HDL-chol), low-density lipoprotein (LDL-chol), total cholesterol (Total-C), triacylglycerols, lipoprotein (a), and oxidative stress index. Results Plasma Total-C levels and body weight increased in all the OVX groups compared with the sham group (P<0.005). The group treated with E2 had significantly elevated total oxidant status, oxidative stress index, LDL-chol, and Total-C compared with the control group (P<0.005). Gen treatment might lead to lower LDL-chol and Total-C levels compared with E2 treatment. Conclusions Gen treatment might be preferred to E2 treatment for treatment of menopausal symptoms in patients at risk for cardiovascular diseases. However, considering the small sample size of this study, larger studies are needed in this area. PMID:26089646

  19. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System

    PubMed Central

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  20. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System.

    PubMed

    Nabavi, Seyed Fazel; Habtemariam, Solomon; Di Lorenzo, Arianna; Sureda, Antoni; Khanjani, Sedigheh; Nabavi, Seyed Mohammad; Daglia, Maria

    2016-01-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a plant secondary metabolite, which shows antioxidant activity and is commonly found in many plant-based foods and beverages. Recent evidence suggests that oxidative stress contributes to the development of many human chronic diseases, including cardiovascular and neurodegenerative pathologies, metabolic syndrome, type 2 diabetes and cancer. GA and its derivative, methyl-3-O-methyl gallate (M3OMG), possess physiological and pharmacological activities closely related to their antioxidant properties. This paper describes the antidepressive-like effects of intraperitoneal administration of GA and two synthetic analogues, M3OMG and P3OMG (propyl-3-O-methylgallate), in balb/c mice with post-stroke depression, a secondary form of depression that could be due to oxidative stress occurring during cerebral ischemia and the following reperfusion. Moreover, this study determined the in vivo antioxidant activity of these compounds through the evaluation of superoxide dismutase (SOD) and catalase (Cat) activity, thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) levels in mouse brain. GA and its synthetic analogues were found to be active (at doses of 25 and 50 mg/kg) in the modulation of depressive symptoms and the reduction of oxidative stress, restoring normal behavior and, at least in part, antioxidant endogenous defenses, with M3OMG being the most active of these compounds. SOD, TBARS, and GSH all showed strong correlation with behavioral parameters, suggesting that oxidative stress is tightly linked to the pathological processes involved in stroke and PSD. As a whole, the obtained results show that the administration of GA, M3OMG and P3OMG induce a reduction in depressive symptoms and oxidative stress. PMID:27136579

  1. WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco.

    PubMed

    Pandey, Vibha; Niranjan, Abhishek; Atri, Neelam; Chandrashekhar, K; Mishra, Manoj K; Trivedi, Prabodh K; Misra, Pratibha

    2014-06-01

    Glycosylation of sterols, catalysed by sterol glycosyltransferases (SGTs), improves the sterol solubility, chemical stability and compartmentalization, and helps plants to adapt to environmental changes. The SGTs in medicinal plants are of particular interest for their role in the biosynthesis of pharmacologically active substances. WsSGTL1, a SGT isolated from Withania somnifera, was expressed and functionally characterized in transgenic tobacco plants. Transgenic WsSGTL1-Nt lines showed an adaptive mechanism through demonstrating late germination, stunted growth, yellowish-green leaves and enhanced antioxidant system. The reduced chlorophyll content and chlorophyll fluorescence with decreased photosynthetic parameters were observed in WsSGTL1-Nt plants. These changes could be due to the enhanced glycosylation by WsSGTL1, as no modulation in chlorophyll biogenesis-related genes was observed in transgenic lines as compared to wildtype (WT) plants. Enhanced accumulation of main sterols like, campesterol, stigmasterol and sitosterol in glycosylated form was observed in WsSGTL1-Nt plants. Apart from these, other secondary metabolites related to plant's antioxidant system along with activities of antioxidant enzymes (SOD, CAT; two to fourfold) were enhanced in WsSGTL1-Nt as compared to WT. WsSGTL1-Nt plants showed significant resistance towards Spodoptera litura (biotic stress) with up to 27 % reduced larval weight as well as salt stress (abiotic stress) with improved survival capacity of leaf discs. The present study demonstrates that higher glycosylation of sterols and enhanced antioxidant system caused by expression of WsSGTL1 gene confers specific functions in plants to adapt under different environmental challenges. PMID:24610300

  2. Nutrition and health aspects of free radicals and antioxidants.

    PubMed

    Aruoma, O I

    1994-07-01

    Although the role of free radicals has continued to capture the imagination of scientists, the interest in nutritional aspects of free radicals is relatively recent. Oxidative stress, which often arises as a result of the imbalance in the human antioxidant status, has been implicated in ageing and in a number of human diseases such as cancer, atherosclerosis, malaria and in rheumatoid arthritis. This review discusses the current status of free radicals in nutrition and dietary antioxidants and considers the possibility that use of a range of antioxidants, which have been carefully evaluated, combined with methods for measuring oxidant generation, would help to delineate the contribution of nutrients to the modulation of the consequences of free radicals in the human body. PMID:8045480

  3. Effect of different concentrations of ginger root powder and its essential oil on growth performance, serum metabolites and antioxidant status in broiler chicks under heat stress.

    PubMed

    Habibi, R; Sadeghi, Gh; Karimi, A

    2014-01-01

    1. This study was carried out to evaluate the impact of ginger (Zingiber officinale) feed supplementation on growth performance, antioxidant status, carcass characteristics and blood parameters in broiler chicks under conditions of heat stress (32 ± 2ºC for 8 h per d). 2. A total of 336 d-old male broiler chicks (Cobb-500) were randomly assigned to one of 6 dietary groups representing: basal diet with no supplement as control, basal diet containing 100 mg/kg vitamin E as positive control, basal diets containing either 7.5 or 15 g/kg of ginger root powder, and diets containing 75 or 150 mg/kg of ginger essential oil. 3. The results indicated that at 22 d of age, the group receiving 7.5 g/kg of ginger root powder experienced significantly increased body weight (BW) and body weight gain (BWG) compared to the control group. There were no significant difference among the diet groups regarding BW, BWG, feed intake (FI) or feed conversion ratio (FCR) at 42 and 49 d of age. 4. The inclusion of powder and essential oil of ginger in broiler diets did not affect carcass characteristics and blood parameters of the chickens. However, in the group receiving 150 mg/kg ginger essential oil, the total superoxide dismutase (TSOD) activity in liver increased compared to the control group. Malondialdehyde (MDA) concentrations in liver also decreased in the groups receiving ginger powder and essential oil compared to that in the control group. There were no significant difference between experimental groups regarding glutathione peroxidise (Gpx), TSOD and catalase (CAT) enzymes in red blood cells. All dietary groups increased total antioxidant capacity (TAC) and decreased MDA concentration in serum compared to the control group. 5. The results of this study suggest that ginger powder and essential oils may be a suitable replacement for synthetic antioxidants in broiler diets. Results also suggest that ginger powder might be better than extracted essential oil for improving

  4. Long Term Effect of Curcumin in Restoration of Tumour Suppressor p53 and Phase-II Antioxidant Enzymes via Activation of Nrf2 Signalling and Modulation of Inflammation in Prevention of Cancer

    PubMed Central

    Das, Laxmidhar; Vinayak, Manjula

    2015-01-01

    Inhibition of carcinogenesis may be a consequence of attenuation of oxidative stress via activation of antioxidant defence system, restoration and stabilization of tumour suppressor proteins along with modulation of inflammatory mediators. Previously we have delineated significant role of curcumin during its long term effect in regulation of glycolytic pathway and angiogenesis, which in turn results in prevention of cancer via modulation of stress activated genes. Present study was designed to investigate long term effect of curcumin in regulation of Nrf2 mediated phase-II antioxidant enzymes, tumour suppressor p53 and inflammation under oxidative tumour microenvironment in liver of T-cell lymphoma bearing mice. Inhibition of Nrf2 signalling observed during lymphoma progression, resulted in down regulation of phase II antioxidant enzymes, p53 as well as activation of inflammatory signals. Curcumin potentiated significant increase in Nrf2 activation. It restored activity of phase-II antioxidant enzymes like GST, GR, NQO1, and tumour suppressor p53 level. In addition, curcumin modulated inflammation via upregulation of TGF-β and reciprocal regulation of iNOS and COX2. The study suggests that during long term effect, curcumin leads to prevention of cancer by inducing phase-II antioxidant enzymes via activation of Nrf2 signalling, restoration of tumour suppressor p53 and modulation of inflammatory mediators like iNOS and COX2 in liver of lymphoma bearing mice. PMID:25860911

  5. Extracellular micronutrient levels and pro-/antioxidant status in trauma patients with wound healing disorders: results of a cross-sectional study

    PubMed Central

    2013-01-01

    Background Disorders in wound healing (DWH) are common in trauma patients, the reasons being not completely understood. Inadequate nutritional status may favor DWH, partly by means of oxidative stress. Reliable data, however, are lacking. This study should investigate the status of extracellular micronutrients in patients with DWH within routine setting. Methods Within a cross-sectional study, the plasma/serum status of several micronutrients (retinol, ascorbic acid, 25-hydroxycholecalciferol, α-tocopherol, β-carotene, selenium, and zinc) were determined in 44 trauma patients with DWH in addition to selected proteins (albumin, prealbumin, and C-reactive protein; CRP) and markers of pro-/antioxidant balance (antioxidant capacity, peroxides, and malondialdehyde). Values were compared to reference values to calculate the prevalence for biochemical deficiency. Correlations between CRP, albumin and prealbumin, and selected micronutrients were analyzed by Pearson’s test. Statistical significance was set at P < 0.05. Results Mean concentrations of ascorbic acid (23.1 ± 15.9 μmol/L), 25-hydroxycholecalciferol (46.2±30.6 nmol/L), β-carotene (0.6 ± 0.4 μmol/L), selenium (0.79±0.19 μmol/L), and prealbumin (24.8 ± 8.2 mg/dL) were relatively low. Most patients showed levels of ascorbic acid (<28 μmol/L; 64%), 25-hydroxycholecalciferol (<50 μmol/L; 59%), selenium (≤ 94 μmol/L; 71%) and β-carotene (<0.9 μmol/L; 86%) below the reference range. Albumin and prealbumin were in the lower normal range and CRP was mostly above the reference range. Plasma antioxidant capacity was decreased, whereas peroxides and malondialdehyde were increased compared to normal values. Inverse correlations were found between CRP and albumin (P < 0.05) and between CRP and prealbumin (P < 0.01). Retinol (P < 0.001), ascorbic acid (P < 0.01), zinc (P < 0.001), and selenium (P < 0.001) were negatively correlated with CRP. Conclusions Trauma

  6. Modulation of the antioxidant activity of HO* scavengers by albumin binding: a 19F-NMR study.

    PubMed

    Aime, Silvio; Digilio, Giuseppe; Bruno, Erik; Mainero, Valentina; Baroni, Simona; Fasano, Mauro

    2003-08-01

    The interaction between different HO(z.rad;) radical scavengers in a three-component antioxidant system has been investigated by means of 19F-NMR spectroscopy. This system is composed of bovine serum albumin (BSA), trolox, and N-(4-hydroxyphenyl)-trifluoroacetamide (CF(3)PAF). The antioxidant capacity of BSA and trolox has been assessed by measuring the amount of trifluoroacetamide (TFAM) arising from the radical mediated decomposition of CF(3)PAF. When assayed separately, both trolox and BSA behaved as antioxidants, as they were effective to protect CF(3)PAF from HO* radical-mediated decomposition. By contrast, trolox enhanced the production of TFAM in the presence of BSA, thus behaving as a pro-oxidant. Urate, carnosine, glucose, and propylgallate showed antioxidant properties both with or without BSA. CF(3)PAF and trolox were found to bind to BSA with association constants in the order of 5 x 10(3)M(-1) and to compete for the same binding sites. These results have been discussed in terms of BSA-catalysed cross-reactions between trolox-derived secondary radicals and CF(3)PAF. PMID:12878205

  7. Chromium III histidinate exposure modulates antioxidant gene expression in HaCaT human keratinocytes exposed to oxidative stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While the toxicity of hexavalent chromium is well established, trivalent Cr (Cr(III)) is an essential nutrient involved in insulin and glucose homeostasis. Recently, antioxidant effects of chromium (III) histidinate (Cr(III)His) were reported in HaCaT human keratinocytes exposed to oxidative stress...

  8. Changes in oxidant and antioxidant status of females with experimental gestosis under the effect of GABA derivatives.

    PubMed

    Tyurenkov, I N; Perfilova, V N; Popova, T A; Ivanova, L B; Prokofiev, I I; Gulyaeva, O V; Stepa, L I

    2013-07-01

    Experimental gestosis, modeled by replacement of drinking water with 1.8% NaCl solution, induced oxidative stress, which was seen from accumulation of MDA (secondary LPO product) and inhibition of SOD and glutathione peroxidase in the brain, liver, and uterus of animals with gestosis. Citrocard and saliphene (GABA derivatives) inhibited LPO (reduced MDA concentrations in the studied organs) and activated antioxidant enzymes in experimental gestosis. PMID:24137604

  9. Influence of copper status on antioxidant defense and lipid peroxidation following chronic ethanol feeding in the rat

    SciTech Connect

    Greco, D.J.; Zidenberg-Cherr, S.; Han, B.; Rosenbaum, J.; Keen, C.L. )

    1991-03-11

    The effects of chronic ethanol (Et) consumption on liver antioxidant defense and lipid peroxidation were assessed in Cu sufficient (+Cu) and deficient ({minus}Cu) rats fed liquid diets with Et or dextrose (C) at 36% of kcals for 2 mo. Rats in the Et groups consumed less calories than those in the non-Et groups, thus a restricted intake group (RI) was included to account for any effects due to caloric restriction. Et feeding resulted in lower Cu and Zn and higher Mn concentrations in +Cu and {minus}Cu rats relative to C rats. Both Cu intake and Et resulted in lower CuZn superoxide dismutase (CuSOD) and glutathione peroxidase activities relative to C rats. CuZnSOD and GPx activities were lowest in {minus}CuEt rats; values were 50% of C values. In contrast, Et feeding resulted in higher MnSOD activity in +Cu and {minus}Cu rats. Despite a limited antioxidant defense system in the {minus}Cu rats, Et had no effect on mitochondrial lipid peroxidation as assessed by thiobarbituric acid reacting substances (TBARS). In contrast, microsomal TBRS production was lower in the Et fed groups; the lowest values occurring in the {minus}CuEt rats. These results suggest that in the Cu deficient animal, despite reductions in some components of the antioxidant defense system, compensatory mechanisms can arise which result in a reduction in peroxidation targets and/or an increase in alternate free radical quenching factors.

  10. Effect of aerial exposure on the antioxidant status in the subantarctic stone crab Paralomis granulosa (Decapoda: Anomura).

    PubMed

    Romero, M Carolina; Ansaldo, Martín; Lovrich, Gustavo A

    2007-01-01

    In Tierra del Fuego (Southern South America), the stone or false king crab, Paralomis granulosa represents one of the most important crab fisheries. After capture, animals are kept in baskets and exposed to dryness for several hours, when the water flow through the gills is interrupted. As a consequence a concomitant increase of reactive oxygen species begins, triggering oxidative stress. The aim of this study was to determine oxidative stress and antioxidant enzyme activities due to air exposure in different tissues of P. granulosa. Fifty crabs (carapace length >82 mm) were captured in Beagle Channel (54 degrees 50'S, 68 degrees 20'W) during winter 2004. Five groups of 10 crabs each were exposed to dryness at 6 degrees C for 0, 3, 6, 12 or 24 h, respectively. Activity of superoxide dismutase (SOD), catalase (CAT), glutathione S transferase (GST) protein and lipid oxidation were measured in gills, muscle, hepatopancreas and haemolymph samples. Almost all analyzed tissues showed antioxidant enzymes activity, which varied with time of air exposure. The maximum enzyme activity was measured after 6 h of air exposure. Protein oxidation levels varied significantly in gills. Lipid peroxidation levels increased significantly in muscle and hepatopancreas. The critical time of air exposure probably occurs at 6 h. Thereafter animals were unable to induce the synthesis of antioxidant enzymes or proteins. This should be taken into account to minimize the stress generated by the commercial capture process. PMID:16890496

  11. [The role of oxidative protein modification and the gluthatione system in modulation of the redox status of breast epithelial cells].

    PubMed

    Stepovaya, E A; Shakhristova, E V; Ryazantseva, N V; Nosareva, O L; Yakushina, V D; Nosova, A I; Gulaya, V S; Stepanova, E A; Chil'chigashev, R I; Novitsky, V V

    2016-01-01

    The effects of the SH-group blocker N-ethylmaleimide (NEM) and thiol group protector 1,4-dithioerythritol (DTE) on the redox status of cells HBL-100 cells, oxidative modification of their proteins and the state of glutathione and thioredoxin systems have been investigated. Breast epithelial cells cultivated in the presence of NEM were characterized by decreased redox status, increased glutathione reductase activity, and increased concentrations of products of irreversible oxidative modification of protein and amino acids. Cultivation of HBL-100 cells in the presence of DTE resulted in a shift of the redox status towards reduction processes and increased reversible protein modification by glutathionylation. The proposed model of intracellular redox modulation may be used in the development of new therapeutic approaches to treat diseases accompanied by impaired redox homeostasis (e.g. oncologic, inflammatory, cardiovascular and neurodegenerative disease). PMID:26973189

  12. Anti-Oxidative Defences Are Modulated Differentially in Three Freshwater Teleosts in Response to Ammonia-Induced Oxidative Stress

    PubMed Central

    Giblen, Terri; Zinta, Gaurav; De Rop, Michelle; Asard, Han; Blust, Ronny; De Boeck, Gudrun

    2014-01-01

    Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant

  13. Lipid Peroxidation and the Total Antioxidant Status in the Pathogenesis of Age Related and Diabetic Cataracts: A Study on the Lens and Blood

    PubMed Central

    Katta, Ashok V.; Katkam, R.V.; Geetha, H.

    2013-01-01

    Background: Cataract is one of the major causes of a visual impairment, which eventually leads to blindness. An oxidative damage to the lens proteins is a major factor which leads to cataract formation. Therefore, we intended to study the relationship between the biochemical markers of oxidative stress and various forms of cataracts. Methods: We examined the lenses and the sera of 120 subjects who were aged 50 to 80 years, who were distributed in two groups, viz. the study group (90 patients) and the control group (30 subjects). The oxidative stress was assessed by estimating the lipid peroxidation product in the form of thiobarbituric acid reactive substances (TBARS), the antioxidant status by measuring the levels of vitamin E and the total antioxidant capacity (TAC). The study group patients were further divided into those with nuclear cataracts (30 patients), cortical cataracts (30 patients), and diabetic cataracts (30 patients). Results: In this study, it was found that the levels of TBARS in the study group were significantly high (p<0.001), whereas the TAC (p<0.001) and the vitamin E (p<0.001) levels were significantly low, both in the lenses and the blood of the study group as compared to those of the control group. Conclusion: Thus, the present study suggests that an imbalance between the oxygen free radicals and the antioxidants may lead to lipid peroxidation in the lens. Also, the elevated levels of glucose in the diabetic cataracts lead to the auto-oxidation of glucose and a non-enzymatic glycation of the lens protein. Thereby, the high molecular weight proteins aggregate in the cataract. PMID:23905084

  14. Changes in barrier health status of the gill for grass carp (Ctenopharyngodon idella) during valine deficiency: Regulation of tight junction protein transcript, antioxidant status and apoptosis-related gene expression.

    PubMed

    Feng, Lin; Luo, Jian-Bo; Jiang, Wei-Dan; Liu, Yang; Wu, Pei; Jiang, Jun; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu

    2015-08-01

    This study investigated the effects of dietary valine on tight junction protein transcription, antioxidant status and apoptosis on grass carp gills (Ctenopharyngodon idella). Fish were fed six different experimental diets containing graded levels of valine (4.3, 8.0, 10.6, 13.1, 16.7, 19.1 g/kg). The results indicated that valine deficiency decreased Claudin b, Claudin 3, Occludin and ZO-1 transcription and increased Claudin 15 expression in the fish gill (P < 0.05). These effects were partly due to the down-regulation of interleukin 10 (IL-10), transforming growth factor β1 (TGF-β1) and IκB α and the up-regulation of relative mRNA expression of interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-α (TNF-α) and nuclear factor κB P65 (NF-κB P65) (P < 0.05). However, valine deficiency and valine supplementation did not have a significant effect on Claudin c and Claudin 12 expression in grass carp gills (P > 0.05). Valine deficiency also disrupted antioxidant status in the gill by decreasing anti-superoxide radicals and hydroxyl radical capacity, glutathione contents and the activities and mRNA levels of Cu/Zn superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST) (P < 0.05). These results may be ascribed to the down-regulation of NF-E2-related factor 2 (Nrf2), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1) and the up-regulation of Kelch-like-ECH-associated protein 1 (Keap1) (P < 0.05). Additionally, valine deficiency induced DNA fragmentation via the up-regulation of Caspase 3, Caspase 8 and Caspase 9 expressions (P < 0.05). These results may be ascribed to the improvement in ROS levels in the fish gill (P < 0.05). Taken together, the results showed that valine deficiency impaired the structural integrity of fish gill by disrupted fish antioxidant defenses and regulating the expression of tight junction protein, cytokines, antioxidant

  15. Biomarkers of Antioxidant Status, Inflammation, and Cartilage Metabolism Are Affected by Acute Intense Exercise but Not Superoxide Dismutase Supplementation in Horses

    PubMed Central

    Lamprecht, Emily D.; Williams, Carey A.

    2012-01-01

    Objectives were to evaluate effects of (1) repetitive arthrocentesis on biomarkers of inflammation (prostaglandin E2, PGE2) and aggrecan synthesis (chondroitin sulfate-846; CS) in synovial fluid (SF); (2) exercise and superoxide dismutase (SOD) supplementation on biomarkers of inflammation, antioxidant status, and aggrecan synthesis, in horses. Preliminary trial. Standardbreds underwent four arthrocentesis procedures within 48 h and exhibited elevated CS and no changes in PGE2. Exercise trial. this randomized crossover design used twelve Standardbred mares which received either treatment (3000 IU d−1 oral SOD powder) or placebo (cellulose powder) for 6 wks which culminated with them running a repeated sprint exercise test (RSET). Samples were collected before (PRE), during (PEAK), and following exercise (POST). Exercise resulted in increased (P < 0.05) antioxidant defenses including erythrocyte SOD, total glutathione, glutathione peroxidase, gene transcripts for interferon-gamma, interleukin-10, and interleukin-1β in blood, and decreased plasma nitric oxide. Exercise increased (P < 0.05) SF CS and adjusted-PGE2, and higher (P < 0.05) CS and PGE2 were found in hock versus carpus joints. No treatment effects were detected. Results suggest normal adaptive responses likely due to exercise-induced tissue microdamage and oxidative stress. Additional research is needed to identify benefit(s) of SOD supplementation in horses. PMID:22919442

  16. Intake of Gnetum Africanum and Dacryodes Edulis, Imbalance of Oxidant/Antioxidant Status and Prevalence of Diabetic Retinopathy in Central Africans

    PubMed Central

    Moise, Mvitu-Muaka; Benjamin, Longo-Mbenza; Etienne, Mokondjimobe; Thierry, Gombet; Ndembe Dalida, Kibokela; Doris, Tulomba Mona; Samy, Wayiza Masamba

    2012-01-01

    Objective To estimate the prevalence of DR and to correlate cardiometabolic, sociodemographic, and oxidant/antioxidant imbalance data to the prevalence of DR. Design This case-control study included type 2 DM (T2 DM) patients with DR (n = 66), T2 DM patients without DR (N = 84), and healthy controls (n = 45) without DR, in Kinshasa town. Diet, albuminemia, serum vitamins, and 8-isoprostane were examined. Results No intake of safou (OR = 2.7 95% CI 1.2–5.8; P = 0.014), low serum albumin <4.5 g/dL (OR-2.9 95% CI 1.4–5.9; P = 0.003), no intake of fumbwa (OR = 2.8 95% CI 1.2–6.5; P = 0.014), high 8-isoprostane (OR = 14.3 95% CI 4.5–46; P<0.0001), DM duration ≥5 years (OR = 3.8 95% CI 1.6–9.1; P = 0.003), and low serum vitamin C (OR = 4.5 95% CI 1.3–15.5; P = 0.016) were identified as the significant independent determinants of DR. Conclusion The important role of oxidant/antioxidant status imbalance and diet is demonstrated in DR. PMID:23226496

  17. Antioxidant status, lipid and color stability of aged beef from grazing steers supplemented with corn grain and increasing levels of flaxseed.

    PubMed

    Pouzo, L B; Descalzo, A M; Zaritzky, N E; Rossetti, L; Pavan, E

    2016-01-01

    Angus steers were grazed on unsupplemented pasture (CNTRL), pasture supplemented with 0.7% BW cracked corn (FLAX-0), FLAX-0 with 0.125% and 0.250% BW of whole flaxseed (FLAX-1 and FLAX-2). Six steers were grazed per treatment for 70 days, with start and finish weights of 458 and 508 kg. At 24 h post slaughter, longissimus thoracis were harvested, and steaks assigned to treatments of postmortem aging time under vacuum (PM; 3, 14 and 56 days) with or without five days of aerobic exposure (AE). Meat antioxidant status was higher (P<0.05) when feeding CNTRL and FLAX-1 than FLAX-0 and FLAX-2. Under AE, lipid oxidation was highest for FLAX-2 (P<0.05), and lowest for FLAX-1. Greatest TBARs and lowest antioxidant capacity and redness values were obtained with AE and the longer PM (P<0.05). Beef oxidative stability through AE improved by adding a low flaxseed level to supplemented corn grain, but deteriorated by adding a high flaxseed level or by extending PM. PMID:26318758

  18. Novel mechanism of modulating natural antioxidants in functional foods: involvement of plant growth promoting Rhizobacteria NRRL B-30488.

    PubMed

    Nautiyal, Chandra Shekhar; Govindarajan, Raghavan; Lavania, Meeta; Pushpangadan, Palpu

    2008-06-25

    The significance of plant growth-promoting rhizobacteria (PGPR) mediated increase in antioxidant potential in vegetables is yet unknown. The plant growth-promoting bacterium Bacillus lentimorbus NRRL B-30488 (B-30488) mediated induction of dietary antioxidant in vegetables ( Trigonella foenum-graecum, Lactuca sativa, Spinacia oleracea, and Daucus carota) and fruit ( Citrus sinensis) after minimal processing (fresh, boiled, and frozen) was tested by estimating the total phenol content, level of antioxidant enzymes, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide scavenging activities along with integral radical scavenging capacity by photochemiluminescence assay and inhibition of lipid peroxidation. Minimal processing of vegetables showed that T. foenum-graecum had the highest phenol content in B-30488-treated plants followed by L. sativa, D. carota, and S. oleracea. Thermally treated vegetables T. foenum-graecum (26-114.5 GAE microg mg (-1)) had an exceptionally high total phenolic content, followed by D. carota (25.27-101.32 GAE microg mg (-1)), L. sativa (23.22-101.10 GAE microg mg (-1)), and S. oleracea (21.87-87.57 GAE microg mg (-1)). Among the vegetables and fruit used in this study for enzymatic estimation, induction of antioxidant enzymes, namely, polyphenol oxidase (PPO), ascorbate peroxidase (APX), catalase (CAT), and superoxidase dismutase (SOD), was observed in edible parts of T. foenum-graecum, L. sativa, S. oleracea, and D. carota, after inoculation with B-30488. The scavenging capacity of the vegetables treated with B-30488 against DPPH and superoxide anion radical activity was found to be significantly high as compared to nontreated control. Mild food processing had no adverse effect on radical scavenging capacity. Photochemiluminescence also ascertains the above findings. The ability of the plant extracts to protect against lipid peroxidation and its ability to prevent oxidation of reduced glutathione (GSH) was measured in rat liver

  19. Folic acid supplemented goat milk has beneficial effects on hepatic physiology, haematological status and antioxidant defence during chronic Fe repletion.

    PubMed

    Alférez, María J M; Rivas, Emilio; Díaz-Castro, Javier; Hijano, Silvia; Nestares, Teresa; Moreno, Miguel; Campos, Margarita S; Serrano-Reina, Jose A; López-Aliaga, Inmaculada

    2015-02-01

    The aim of the current study was to asses the effect of goat or cow milk-based diets, either normal or Fe-overloaded and folic acid supplement on some aspects of hepatic physiology, enzymatic antioxidant defence and lipid peroxidation in liver, brain and erythrocyte of control and anaemic rats after chronic Fe repletion. 160 male Wistar rats were placed on 40 d in two groups, a control group receiving normal-Fe diet and the Fe-deficient group receiving low Fe diet. Lately, the rats were fed with goat and cow milk-based diets during 30 d, with normal-Fe content or Fe-overload and either with normal folic or folic acid supplemented. Fe-overload increased plasma alanine transaminase and aspartate transaminase levels when cow milk was supplied. Dietary folate supplementation reduced plasma transaminases levels in animals fed goat milk with chronic Fe overload. A remarkable increase in the superoxide dismutase activity was observed in the animals fed cow milk. Dietary folate supplement lead to a decrease on the activity of this enzyme in all the tissues studied with both milk-based diets. A concomitant increment in catalase was also observed. The increase in lipid peroxidation products levels in rats fed cow milk with Fe-overload, suggest an imbalance in the functioning of the enzymatic antioxidant defence. In conclusion, dietary folate-supplemented goat milk reduces both plasma transaminases levels, suggesting a hepatoprotective effect and has beneficial effects in situation of Fe-overload, improving the antioxidant enzymes activities and reducing lipid peroxidation. PMID:25394837

  20. Mercury Accumulation, Structural Damages, and Antioxidant and Immune Status Changes in the Gilthead Seabream (Sparus aurata L.) Exposed to Methylmercury.

    PubMed

    Guardiola, F A; Chaves-Pozo, E; Espinosa, C; Romero, D; Meseguer, J; Cuesta, A; Esteban, M A

    2016-05-01

    In aquatic systems, mercury (Hg) is an environmental contaminant that causes acute and chronic damage to multiple organs. In fish, practically all of the organic Hg found is in the form of methylmercury (MeHg), which has been associated with animal and human health problems. This study evaluates the impact of waterborne-exposure to sublethal concentrations of MeHg (10 μg L(-1)) in gilthead seabream (Sparus aurata). Hg was seen to accumulate in liver and muscle, and histopathological damage to skin and liver was detected. Fish exposed to MeHg showed a decreased biological antioxidant potential and increased levels of the reactive oxygen molecules compared with the values found in control fish (nonexposed). Increased liver antioxidant enzyme activities (superoxide dismutase and catalase) were detected in 2 day-exposed fish with respect to the values of control fish. However, fish exposed to MeHg for 10 days showed liver antioxidant enzyme levels similar to those of the control fish but had increased hepato-somatic index and histopathological alterations in liver and skin. Serum complement levels were higher in fish exposed to MeHg for 30 days than in control fish. Moreover, head-kidney leukocyte activities increased, although only phagocytosis and peroxidase activities showed a significant increase after 10 and 30 days, respectively. The data show that 30 days of exposure to waterborne MeHg provokes more significant changes in fish than a short-term exposure of 2 or 10 days. PMID:26906265

  1. Exercise in a hot environment influences plasma anti-inflammatory and antioxidant status in well-trained athletes.

    PubMed

    Sureda, Antoni; Mestre-Alfaro, Antonia; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Camps, Jordi; Joven, Jorge; Tur, Josep A; Pons, Antoni

    2015-01-01

    Exercise in thermally stressful environmental conditions can enhance oxidative stress. We sought to measure the plasma antioxidant defenses and cytokine response together with oxidative damage post-exercise in a temperate versus a hot environment. The plasma concentrations of vasoactive endothelin-1 and vascular angiogenic growth factor were also evaluated. Male athletes (n=9) volunteered to participate. The athletes randomly performed two bouts of treadmill exercise of 45min at 75-80% of maximal oxygen uptake in a climatic-controlled chamber under two different conditions: temperate environment (10-12°C, 40-55% humidity) and hot, humid environment (30-32°C, 75-78% humidity). Venous blood samples were obtained immediately pre- and post-bout and on recovery after 2h. Serum glucose, malondialdehyde and lactate concentrations were significantly increased post-exercise in hot but maintained in the temperate environment; these post-exercise values were significantly higher after exercise in hot than in temperate. Urinary 8-hydroxy-2'-deoxyguanosine concentration, plasma phosphocreatine kinase and catalase activities, creatinine and monocyte chemoattractant protein-1, and interleukin-6 significantly increased post-exercise in hot but maintained in temperate environment. The post-exercise circulating values of antioxidant enzyme paraoxonase-1 and endothelin were significantly higher in the hot than in temperate environment. Exercise in a hot and humid environment resulted in mild hyperthermia with elevated perceived exertion and thermal stress. Hyperthermic environment induced hyperglycemia, lactatecidemia and more cellular and oxidative damage than exercise in a temperate environment but also induced a post-exercise antioxidant and anti-inflammatory response in plasma. These results suggest that environmental temperature needs to be taken into account when evaluating exercise-related oxidative stress and inflammation. PMID:25526659

  2. Annatto extract and β-carotene enhances antioxidant status and regulate gene expression in neutrophils of diabetic rats.

    PubMed

    Rossoni Júnior, Joamyr Victor; Araújo, Glaucy Rodrigues; Pádua, Bruno Da Cruz; Magalhães, Cíntia Lopes de Brito; Chaves, Míriam Martins; Pedrosa, Maria Lúcia; Silva, Marcelo Eustáquio; Costa, Daniela Caldeira

    2012-03-01

    Annatto (Bixa orellana L.) contains a mixture of orange-yellowish pigments due to the presence of various carotenoids that have antioxidant effect. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen and nitrogen species (ROS and RNS) as part of the body's defence mechanisms to destroy invading pathogens. It is well known that the function of neutrophils is altered in diabetes; one of the major functional changes in neutrophils in diabetes is the increased generation of extracellular superoxide via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system. The purpose of this study is to evaluate the production of ROS and nitric oxide (NO) as well as the expression of NADPH oxidase subunits, inducible nitric oxide (iNOS), superoxide dismutase (SOD) and catalase (CAT) in neutrophils from diabetic rats treated with annatto extract and β-carotene. Forty-eight female Fisher rats were distributed into six groups according to the treatment received. All animals were sacrificed 7 days after treatment, and the neutrophils were isolated using two gradients of different densities. The ROS and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Analyses of gene expression were performed using quantitative real time polymerase chain reaction (qRT-PCR). The results show that treatment with annatto extract and β-carotene was able to decrease ROS production and the mRNA levels of p22(phox) and p47(phox) and increase the mRNA levels of SOD and CAT in neutrophils from diabetic rats. These data suggest that annatto extract and β-carotene exerts antioxidant effect via inhibition of expression of the NADPH oxidase subunits and increase expression/activity of antioxidant enzymes. PMID:22239725

  3. Antioxidative Dietary Compounds Modulate Gene Expression Associated with Apoptosis, DNA Repair, Inhibition of Cell Proliferation and Migration

    PubMed Central

    Wang, Likui; Gao, Shijuan; Jiang, Wei; Luo, Cheng; Xu, Maonian; Bohlin, Lars; Rosendahl, Markus; Huang, Wenlin

    2014-01-01

    Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair. PMID:25226533

  4. Nephroprotective effects of b-carotene on ACE gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity in rats.

    PubMed

    Fazal, Yumna; Fatima, Syeda Nuzhat; Shahid, Syed Muhammad; Mahboob, Tabassum

    2016-07-01

    β -carotene is one of carotenoid natural pigments, which are produced by plants and are accountable for the bright colors of various fruits and vegetables. These pigments have been widely studied for their ability to prevent chronic diseases and toxicities. This study was designed to evaluate the effects of β-carotene on angiotensin converting enzyme (ACE) gene expression, oxidative stress and antioxidant status in thioacetamide induced renal toxicity. Total 24 albino wistar rats of male sex (200-250gm) were divided into 6 groups as Group-1: The control remained untreated; Group-2: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks; Group-3: Received β-carotene orally (200mg/kg b.w), for 24 weeks; and Group-4: Received thioacetamide (200mg/kg b.w; i.p) for 12 weeks + received β-carotene orally (200mg/kg b.w), for further 12 weeks. The expression of ACE gene in thioacetamide induced renal toxicity in rats as well as supplemented with β-carotene was investigated and compared their level with control groups by using the quantitative RT-PCR method. The ACE gene expression was significantly increase in TAA rats as compare to control rats specifies that TAA induced changes in ACE gene of kidney, elevated renal ACE has been correlated with increase hypertensive end organ renal damage. The quantity of ACE gene were diminish in our rats who received β-Carotene after TAA is administered, for this reason they seemed to be defended against increased ACE levels in kidney bought by TAA. In pre- and post-treatment groups, we studied the role of β-Carotene against thioacetamide in the kidney of Wistar rats. Experimental confirmation from our study illustrates that β-Carotene can certainly work as a successful radical-trapping antioxidant our results proved that TAA injury increased lipid peroxidation and diminish antioxidant GSH, SOD and CAT in renal tissue. Since β-Carotene administration recover renal lipid peroxidation and antioxidants, it give the impression that

  5. Determination of potential role of antioxidative status and circulating biochemical markers in the pathogenesis of ethambutol induced toxic optic neuropathy among diabetic and non-diabetic patients.

    PubMed

    Rasool, Mahmood; Malik, Arif; Manan, Abdul; Aziz, Khuram; Mahmood, Amna; Zaheer, Saima; Shuja, Naveed; Qazi, Mahmood Husain; Kamal, Mohammad Amjad; Karim, Sajjad

    2015-11-01

    The present study was designed to explore the antioxidative status and circulating biochemical markers having a potential role in the pathogenesis of ethambutol (EMB) induced toxic optic neuropathy (TON) among diabetic and non-diabetic patients. Fifty patients under complete therapy of EMB for tuberculosis were included in the present study. Inclusion criteria for patients were to receive EMB everyday during treatment, a dose of 25 mg/kg for initial 2 months and 15 mg/kg during the rest of therapy period. We conducted color vision and visual acuity test for all patients. Fifteen out of fifty EMB induced TON patients, were found to be diabetic. Color vision and visual acuity test results were evaluated for diabetic and non-diabetic as well as twenty age matched controls. The results demonstrated a significant pattern of circulating biochemical markers between the studied groups. Data regarding hematological (RBC, p value = 0.02; Hemoglobin, p value = 0.02), hepatic (total bilirubin, p value = 0.01), renal (urea, p value = 0.03; creatinine, p value = 0.007), lipid (total cholesterol, p value = 0.01; total triglycerides, p value = 0.03) and antioxidative (superoxide dismutase, p value = 0.005; glutathione, p value = 0.02; catalase, p value = 0.02) profile showed a highly significant difference among the studied groups specially patients with diabetes. Malondialdehyde (MDA) level had gone significantly up in diabetic TON patients (p value = 0.02), in comparison to other antioxidants and vitamins (Vit). Vit-A, E, B1, B12 and Zinc seem to be playing a major role in the pathogenesis of TON, specially Vit-E and B1 surpassed all the antioxidants as having highly significant inverse relationships with MDA (MDA vs Vit-E, r = -0.676(**) and MDA vs Vit-B1, r = -0.724(**) respectively). We conclude that during the ethambutol therapy the decreased levels of Vit-E and Vit-B1 possibly play a role in the development of TON and may be used as therapeutic

  6. Leaf Mitochondria Modulate Whole Cell Redox Homeostasis, Set Antioxidant Capacity, and Determine Stress Resistance through Altered Signaling and Diurnal Regulation

    PubMed Central

    Dutilleul, Christelle; Garmier, Marie; Noctor, Graham; Mathieu, Chantal; Chétrit, Philippe; Foyer, Christine H.; de Paepe, Rosine

    2003-01-01

    To explore the role of plant mitochondria in the regulation of cellular redox homeostasis and stress resistance, we exploited a Nicotiana sylvestris mitochondrial mutant. The cytoplasmic male-sterile mutant (CMSII) is impaired in complex I function and displays enhanced nonphosphorylating rotenone-insensitive [NAD(P)H dehydrogenases] and cyanide-insensitive (alternative oxidase) respiration. Loss of complex I function is not associated with increased oxidative stress, as shown by decreased leaf H2O2 and the maintenance of glutathione and ascorbate content and redox state. However, the expression and activity of several antioxidant enzymes are modified in CMSII. In particular, diurnal patterns of alternative oxidase expression are lost, the relative importance of the different catalase isoforms is modified, and the transcripts, protein, and activity of cytosolic ascorbate peroxidase are enhanced markedly. Thus, loss of complex I function reveals effective antioxidant crosstalk and acclimation between the mitochondria and other organelles to maintain whole cell redox balance. This reorchestration of the cellular antioxidative system is associated with higher tolerance to ozone and Tobacco mosaic virus. PMID:12724545

  7. Humulus japonicus extract exhibits antioxidative and anti-aging effects via modulation of the AMPK-SIRT1 pathway

    PubMed Central

    SUNG, BOKYUNG; CHUNG, JI WON; BAE, HA RAM; CHOI, JAE SUE; KIM, CHEOL MIN; KIM, NAM DEUK

    2015-01-01

    The perennial herb, Humulus japonicus, has been previously described as possessing potential antituberculosis and anti-inflammatory properties. In the present study, the anti-aging activity of ethanol extracts from the leaves of H. japonicus (HJE) was evaluated in yeast and human fibroblast cells. In addition, the antioxidant activity of HJE was analyzed using free radical scavenging assays. Furthermore, the mechanism underlying the hypothesized HJE-associated extension of lifespan was investigated, and the results indicated that HJE was able to extend the lifespan of yeast cells. Further experiments demonstrated that HJE upregulated the longevity-associated proteins, sirtuin 1 and AMP-activated protein kinase, and effectively inhibited the generation of reactive oxygen species (ROS). In addition, the antioxidative potential of the active constituents of HJE, including luteolin, luteolin 7-glycoside, quercetin and quercitrin, was evaluated and the results demonstrated that these flavonoids were able to scavenge ROS in cell-free and intracellular systems. In summary, the results revealed that HJE possessed the potential for antioxidative activity; however, further in vivo investigations are required with the aim of developing safe, high-efficacy anti-aging agents. PMID:26136899

  8. The effect of supplementation of clove and agrimony or clove and lemon balm on growth performance, antioxidant status and selected indices of lipid profile of broiler chickens.

    PubMed

    Petrovic, V; Marcincak, S; Popelka, P; Simkova, J; Martonova, M; Buleca, J; Marcincakova, D; Tuckova, M; Molnar, L; Kovac, G

    2012-12-01

    The study investigated the effects of diet supplementation with 1% clove flower buds powder combined with either 0.2% lemon balm extract or 0.2% agrimony extract (each of the two pulverized extracts supplied through drinking water) on body weight of broilers, total feed intake, feed conversion ratio and the carcass yield, activity of superoxide dismutase (SOD, EC 1.15.1.1) and glutathione peroxidase (GSH-Px, EC 1.11.1.9) in blood, concentration of sulfhydryl (-SH) groups, malondialdehyde (MDA), vitamin A and E, low-density lipoproteins in the blood plasma, serum cholesterol, total lipids, triglycerides and high-density lipoproteins in broiler chickens at 42 days of age. On the day of hatching, 120 male and female broilers of Cobb 500 were randomly divided into three groups. The control group (1st group) of broilers received a basal diet (BD) without any feed and water additive. Both experimental groups of chicks were fed BD enriched with clove (Syzygium aromaticum L.) powder at a dose of 10 g/kg DM for 42 days. Moreover, either lemon balm (Mellisa officinalis L.) extract or agrimony (Agrimonia eupatoria L.) extract diluted with drinking water (2:1000) was given to broilers in the 2nd and 3rd group respectively. The results indicated that feeding the diets enriched with selected herbal supplements failed to affect the growth performance of broiler chickens at 42 days of age. In addition, this supplementation had no influence on the activities of SOD and GSH-Px, concentration of vitamin A and selected lipid metabolism indices. On the other hand, we observed beneficial effects on some indices of the antioxidant status (increased concentration of -SH groups and vitamin E, decreased concentration of MDA) in the blood of broilers in both experimental groups in comparison with the control group of chickens (p < 0.05). Furthermore, a slightly better antioxidant capacity was found in the blood of broilers supplied the combination of clove and lemon balm compared

  9. Replacement of inorganic zinc with lower levels of organic zinc (zinc nicotinate) on performance, hematological and serum biochemical constituents, antioxidants status, and immune responses in rats

    PubMed Central

    Nagalakshmi, D.; Sridhar, K.; Parashuramulu, S.

    2015-01-01

    .05) in rats supplemented with 12 ppm Zn-nic, followed by 9 ppm. Comparable immune response (humoral and cell-mediated) was observed between 12 ppm inorganic Zn and 9 ppm organic Zn and higher (p<0.05) immune response was noticed at 12 ppm Zn-nic supplementation. Conclusion: Based on the results, it is concluded that dietary Zn concentration can be reduced by 50% (6 ppm) as Zn nicotinate without affecting growth performance, hemato-biochemical constituents, antioxidant status, and immunity. In addition, replacement of 12 ppm inorganic Zn with 12 ppm organic Zn significantly improved antioxidant status and immune response. PMID:27047213

  10. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats.

    PubMed

    Rincón-Cervera, Miguel Ángel; Valenzuela, Rodrigo; Hernandez-Rodas, María Catalina; Barrera, Cynthia; Espinosa, Alejandra; Marambio, Macarena; Valenzuela, Alfonso

    2016-08-01

    Alpha-linolenic acid (C18:3 n-3, ALA) is an essential fatty acid and the metabolic precursor of long-chain polyunsaturated fatty acids (LCPUFA) from the n-3 family with relevant physiological and metabolic roles: eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA). Western diet lacks of suitable intake of n-3 LCPUFA and there are recommendations to increase the dietary supply of such nutrients. Seed oils rich in ALA such as those from rosa mosqueta (Rosa rubiginosa), sacha inchi (Plukenetia volubis) and chia (Salvia hispanica) may constitute an alternative that merits research. This study evaluated hepatic and epididymal accretion and biosynthesis of n-3 LCPUFA, the activity and expression of Δ-5 and Δ-6 desaturase enzymes, the expression and DNA-binding activity of PPAR-α and SREBP-1c, oxidative stress parameters and the activity of antioxidative enzymes in rats fed sunflower oil (SFO, 1% ALA) as control group, canola oil (CO, 10% ALA), rosa mosqueta oil (RMO, 33% ALA), sacha inchi oil (SIO, 49% ALA) and chia oil (ChO, 64% ALA) as single lipid source. A larger supply of ALA increased the accretion of n-3 LCPUFA, the activity and expression of desaturases, the antioxidative status, the expression and DNA-binding of PPAR-α, the oxidation of fatty acids and the activity of antioxidant enzymes, whereas the expression and DNA-binding activity of SREBP-1c transcription factor and the biosynthetic activity of fatty acids declined. Results showed that oils rich in ALA such as SIO and ChO may trigger metabolic responses in rats such as those produced by n-3 PUFA. PMID:26995676

  11. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity; a novel candidate for HIV-neuroprotection1

    PubMed Central

    Cross, Stephanie A.; Cook, Denise R.; Chi, Anthony W.S.; Vance, Patricia J.; Kolson, Lorraine L.; Wong, Bethany J.; Jordan-Sciutto, Kelly L.; Kolson, Dennis L.

    2011-01-01

    Despite antiretroviral therapy (ART), HIV infection promotes cognitive dysfunction and neurodegeneration through persistent inflammation and neurotoxin release from infected and/or activated macrophages/microglia. Furthermore, inflammation and immune activation within both the central nervous system (CNS) and periphery correlate with disease progression and morbidity in ART-treated individuals. Accordingly, drugs targeting these pathological processes in the CNS and systemic compartments are needed for effective, adjunctive therapy. Using our in vitro model of HIV-mediated neurotoxicity, in which HIV infected monocyte-derived macrophages (MDM) release excitatory neurotoxins, we show that HIV infection dysregulates the macrophage antioxidant response and reduces levels of heme oxygenase-1 (HO-1). Furthermore, restoration of HO-1 expression in HIV-infected MDM reduces neurotoxin release without altering HIV replication. Given these novel observations, we have identified dimethyl fumarate (DMF), used to treat psoriasis and showing promising results in clinical trials for multiple sclerosis, as a potential neuroprotectant and HIV disease-modifying agent. DMF, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and neurotoxin release. Two distinct mechanisms are proposed; inhibition of NF-κB nuclear translocation and signaling, which could contribute to the suppression of HIV replication, and induction of HO-1, which is associated with decreased neurotoxin release. Finally, we found that DMF attenuates CCL2-induced monocyte chemotaxis, suggesting that DMF could decrease recruitment of activated monocytes to the CNS in response to inflammatory mediators. We propose that dysregulation of the antioxidant response during HIV infection drives macrophage-mediated neurotoxicity and that DMF could serve as an adjunctive neuroprotectant and HIV disease modifier in ART-treated individuals. PMID:21976775

  12. Protective effects of the flavonoid chrysin against methylmercury-induced genotoxicity and alterations of antioxidant status, in vivo.

    PubMed

    Manzolli, Eduardo Scandinari; Serpeloni, Juliana Mara; Grotto, Denise; Bastos, Jairo Kennup; Antunes, Lusânia Maria Greggi; Barbosa Junior, Fernando; Barcelos, Gustavo Rafael Mazzaron

    2015-01-01

    The use of phytochemicals has been widely used as inexpensive approach for prevention of diseases related to oxidative damage due to its antioxidant properties. One of dietary flavonoids is chrysin (CR), found mainly in passion fruit, honey, and propolis. Methylmercury (MeHg) is a toxic metal whose main toxic mechanism is oxidative damage. Thus, the study aimed to evaluate the antioxidant effects of CR against oxidative damage induced by MeHg in Wistar rats. Animals were treated with MeHg (30 µg/kg/bw) in presence and absence of CR (0.10, 1.0, and 10 mg/kg/bw) by gavage for 45 days. Glutathione (GSH) in blood was quantified spectrophotometrically and for monitoring of DNA damage, comet assay was used in leukocytes and hepatocytes. MeHg led to a significant increase in the formation of comets; when the animals were exposed to the metal in the presence of CR, higher concentrations of CR showed protective effects. Moreover, exposure to MeHg decreased the levels of GSH and GSH levels were restored in the animals that received CR plus MeHg. Taken together the findings of the present work indicate that consumption of flavonoids such as CR may protect humans against the adverse health effects caused by MeHg. PMID:25810809

  13. Quercetin ameliorates glucose and lipid metabolism and improves antioxidant status in postnatally monosodium glutamate-induced metabolic alterations.

    PubMed

    Seiva, Fábio R F; Chuffa, Luiz Gustavo A; Braga, Camila Pereira; Amorim, João Paulo A; Fernandes, Ana Angélica H

    2012-10-01

    We reported the effects of quercetin on metabolic and hormonal profile as well as serum antioxidant activities in a model of MSG (monosodium glutamate)-induced obesity. Rats were divided into 4 groups: MSG group, submitted to neonatal treatment with high doses of MSG, administrated subcutaneously during 10 days, from 2 day-old; control groups, which received the same volume of saline. After completing 30 day-old, these groups were subdivided into 4 groups: control and MSG groups treated and non-treated with quercetin at doses of 75 mg/kg body weight (i.p.) over 42 days. BW gain and food consumption were higher in MSG treated rats and quercetin significantly reduced BW by 25%. While MSG increased triacylglycerol, total cholesterol and fractions, and reduced HDL concentrations, administration of quercetin normalized HDL-cholesterol and reduced others lipids. Insulin, leptin, glucose and creatinine levels were raised in MSG-treated rats and reduced after quercetin treatment. Alanine transaminase, aspartate transaminase, lactate dehydrogenase and alkaline phosphatase activities were lower after MSG-quercetin combination compared to rats given only MSG. MSG-quercetin combination augmented total protein and urea levels as well as glutathione peroxidase and superoxide dismutase activities in contrast to MSG-treated animals. Quercetin normalized serum lipid and glucose profile and minimized the MSG-related toxic effects, which was associated to its antioxidant properties. PMID:22809473

  14. Effect of Piper betle on plasma antioxidant status and lipid profile against D-galactosamine-induced hepatitis in rats.

    PubMed

    Pushpavalli, Ganesan; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan

    2009-01-01

    Betle leaf chewing is an old traditional practice in India and other countries of East Asia. We have investigated the antioxidant and antihyperlipidaemic potential of an alcoholic leaf-extract of Piper betle against D-galactosamine (D-GalN; 400 mg/kg body weight, i.p. single dose) intoxication in male albino Wistar rats. Rats were treated with leaf-extract (200 mg/kg body weight) by intragastric intubations daily for 20 days. The animals were divided randomly into five groups of six animals each as control, control plus extract, D-GalN control, D-GalN-rats on treatment with extract or silymarin, a standard drug. We observed an increase in the plasma levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, and a decrease in vitamin C, vitamin E and reduced glutathione concentrations. Very low density lipoprotein cholesterol and low density lipoprotein cholesterol increased significantly while high density lipoprotein cholesterol decreased. Further, increase in the levels of total cholesterol, phospholipids, triglycerides, free fatty acids in the plasma and tissues of liver and kidney were observed in D-GalN-treated rats. Administration of P. betle leaf-extract prevented the increase or decrease of these parameters and brought towards normality. These results suggest that P. betle could afford a significant antioxidant and antihyperlipidaemic effect against D-GalN-intoxication. PMID:19161673

  15. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch

    PubMed Central

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2016-01-01

    Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L−1 6-benzyladenine (BA) in a combination with 2 mg·L−1 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures. PMID:26999126

  16. Mixture of Peanut Skin Extract and Fish Oil Improves Memory in Mice via Modulation of Anti-Oxidative Stress and Regulation of BDNF/ERK/CREB Signaling Pathways.

    PubMed

    Xiang, Lan; Cao, Xue-Li; Xing, Tian-Yan; Mori, Daisuke; Tang, Rui-Qi; Li, Jing; Gao, Li-Juan; Qi, Jian-Hua

    2016-01-01

    Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer's disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways. PMID:27136583

  17. Mixture of Peanut Skin Extract and Fish Oil Improves Memory in Mice via Modulation of Anti-Oxidative Stress and Regulation of BDNF/ERK/CREB Signaling Pathways

    PubMed Central

    Xiang, Lan; Cao, Xue-Li; Xing, Tian-Yan; Mori, Daisuke; Tang, Rui-Qi; Li, Jing; Gao, Li-Juan; Qi, Jian-Hua

    2016-01-01

    Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer’s disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways. PMID:27136583

  18. Chemical Elicitor-Induced Modulation of Antioxidant Metabolism and Enhancement of Secondary Metabolite Accumulation in Cell Suspension Cultures of Scrophularia kakudensis Franch.

    PubMed

    Manivannan, Abinaya; Soundararajan, Prabhakaran; Park, Yoo Gyeong; Jeong, Byoung Ryong

    2016-01-01

    Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing 3.0 mg·L(-1) 6-benzyladenine (BA) in a combination with 2 mg·L(-1) 2,4-dichlorophenoxy acetic acid (2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and antioxidant properties was demonstrated. Among the elicitors, the MeJa elicited the accumulation of total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values. Similarly, the higher concentrations of the MeJa significantly modulated the activities of antioxidant enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall, the outcomes of this study can be utilized for the large scale production of pharmaceutically important secondary metabolites from S. kakudensis through cell suspension cultures. PMID:26999126

  19. Effects of dietary supplementation with sage (Salvia officinalis L.) essential oil on antioxidant status and duodenal wall integrity of laying strain growers.

    PubMed

    Placha, I; Ryzner, M; Cobanova, K; Faixova, Z; Faix, S

    2015-01-01

    The objective of this study was to compare the influence of four different concentrations of Salvia officinalis essential oil (EO) on animal health. A total of 50 laying strain chicks were randomly divided at the day of hatching into five dietary-treatment groups. Control group was given the basal diet (BD), the other four experimental groups contained BD supplemented with 0.1, 0.25, 0.5, 1.0 g S. officinalis EO/kg diet, respectively. 0.1 g/kg EO increased glutathion peroxidase activity (GPx) in duodenal mucosa, liver and kidney, phagocytic activity in blood (PA), transepithelial electrical resistance (TEER) in duodenal tissue and decreased malondialdehyde (MDA) concentration in plasma and liver. 0.25 g/kg EO increased GPx in liver, total antioxidant status (TAS) in plasma, PA in blood and TEER in duodenal tissue. Our results demonstrate that lower concentrations of EO improve animals' health status, and that it is necessary keep in mind the selection of sufficient concentration of EO used as animal feed additive. PMID:26812815

  20. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax).

    PubMed

    Guardiola, F A; Porcino, C; Cerezuela, R; Cuesta, A; Faggio, C; Esteban, M A

    2016-05-01

    The application of additives in the diet as plants or extracts of plants as natural and innocuous compounds has potential in aquaculture as an alternative to antibiotics and immunoprophylactics. The aim of the current study was to evaluate the potential effects of dietary supplementation of date palm fruit extracts alone or in combination with Pdp11 probiotic on serum antioxidant status, on the humoral and cellular innate immune status, as well as, on the expression levels of some immune-related genes in head-kidney and gut of European sea bass (Dicentrarchus labrax) after 2 and 4 weeks of administration. This study showed for the first time in European sea bass an immunostimulation in several of the parameters evaluated in fish fed with date palm fruits extracts enriched diet or fed with this substance in combination with Pdp 11 probiotic, mainly after 4 weeks of treatment. In the same way, dietary supplementation of mixture diet has positive effects on the expression levels of immune-related genes, chiefly in head-kidney of Dicentrarchus labrax. Therefore, the combination of both could be considered of great interest as potential additives for farmed fish. PMID:27033470

  1. Lycopene modulates initiation of N-nitrosodiethylamine induced hepatocarcinogenesis: studies on chromosomal abnormalities, membrane fluidity and antioxidant defense system.

    PubMed

    Gupta, Prachi; Bansal, Mohinder Pal; Koul, Ashwani

    2013-11-25

    Oxidative damage due to free radicals generated during nitrosamine metabolism has been suggested as one of the major cause for the initiation of hepatocarcinogenesis. Lycopene, is a well known antioxidant and have promising preventive potentials, however the mechanism of action remain hypothetical and unclear. To investigate the involvement of lycopene extracted from tomatoes (LycT) against oxidative stress induced deleterious effect of N-nitrosodiethylamine (NDEA) on cellular macromolecules, female Balb/c mice were divided in four groups: Control, NDEA (cumulative dose of 200mg NDEA/kg body weight injected intraperitoneally in 8 weeks), LycT (5mg/kg body weight given orally on alternate days, throughout the study) and LycT+NDEA (co-administration of LycT and NDEA). NDEA treatment commenced after 2 weeks of LycT administration. At the end of NDEA exposure i.e., at 10th week, enhanced activities of hepatic phase I enzymes, levels of reactive oxygen species (ROS), lipid peroxidation (LPO) was observed in NDEA group which may have contributed in chromosomal aberrations, enhanced micronucleated cell score, membrane fluidity and serum liver marker enzymes. A significant decrease in enzymatic and non-enzymatic antioxidant system could delineate the mechanism behind such NDEA insults. LycT pre-treatment to NDEA challenged group showed lower chromosomal abnormalities, micronucleated cells score, ROS, LPO levels and liver enzymes. Lycopene aids in normalizing the membrane fluidity and enhancing the activity of antioxidant enzymes and reduced glutathione which could account for the reduced oxidative damage in LycT+NDEA group. It seemed that lycopene supplementation target multiple dys-regulated pathways during initiation of carcinogenesis. Thus, dietary supplementation with lycopene can serve as an alternate measure to intervene the initiation of carcinogenesis. PMID:24144777

  2. The Sasa quelpaertensis Leaf Extract Inhibits the Dextran Sulfate Sodium-induced Mouse Colitis Through Modulation of Antioxidant Enzyme Expression

    PubMed Central

    Yeom, Yiseul; Kim, Yuri

    2015-01-01

    Background: Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease. The objective of this study is to investigate the protective effect of Sasa quelpaertensis leaf extract (SQE) against oxidative stress in mice with dextran sulfate sodium (DSS)-induced colitis. Methods: Mice were treated with SQE (100 mg/kg or 300 mg/kg body weight) by gavage in advance two weeks before inflammation was induced. Then, the mice were administered with 2.5% DSS in drinking water for 7 days and normal drinking water for 7 days between two DSS treatment. Disease activity index values, gut motility, and severity of the resulting oxidative DNA damage were analyzed. The antioxidant effect of SQE was evaluated by measuring malondialdehyde (MDA) and superoxide dismutase (SOD) activity in plasma samples. Catalase activity and expressions levels of glutathione peroxidase 1 (Gpx1), SOD1, and SOD2 were also detected in colon tissues. Results: Administration of SQE significantly reduced the severity of DSS-induced colitis compared to the control (Ctrl) group. Levels of 8-oxo-dG, an oxidative DNA damage marker, were significantly lower in the SQE group compared to the untreated DSS Ctrl group. In the SQE (300 mg/kg) group, MDA levels were significantly lower, while SOD and catalase activity levels in the plasma samples were significantly higher compared with the DSS Ctrl group. The expression levels of the antioxidant enzymes, SOD2 and Gpx1, were significantly higher, while the levels of SOD 1 expression were lower, in the colon tissues of the DSS Ctrl group compared with those of the Ctrl group. In contrast, administration of SQE significantly down-regulated SOD2 and Gpx1 expressions and up-regulated SOD1 expression. Conclusions: These results indicate that SQE efficiently suppresses oxidative stress in DSS-induced colitis in mice, and its action is associated with the regulation of antioxidant enzymes. PMID:26151047

  3. l-Glutathione enhances antioxidant capacity of hyaluronic acid and modulates expression of pro-inflammatory cytokines in human fibroblast-like synoviocytes.

    PubMed

    Yang, Kai-Chiang; Wu, Chang-Chin; Chen, Wei-Yu; Sumi, Shoichiro; Huang, Teng-Le

    2016-08-01

    Intra-articular injection of hyaluronic acid (HA) has been widely accepted for the treatment of osteoarthritis (OA) in early stage. l-Glutathione (GSH), an antioxidant, has an anti-inflammatory effect on protecting cells from reactive oxygen species and reactive nitrogen species (ROS/RNS). In this study, the therapeutic effects of HA (0.1%) supplemented with GSH (0, 5, 10, and 20% in weight ratios to HA) on human fibroblast-like synoviocytes (FLSs) were evaluated. The results showed that cell morphology and glycosaminoglycan production of FLSs were not changed under treatments. However, the addition of HA + 20% GSH significantly decreased cell survival (p < 0.001) relative to other groups. Relative to un-stimulated FLSs, interleukin-1 beta (IL-1β) stimulation significantly decreased the total antioxidant capacity (p < 0.001) of cells. The antioxidant capacity was restored and the intracellular ROS/RNS was decreased in HA or HA + GSH-treated FLSs. Real-time PCR analysis revealed the mRNA levels of IL-1β, tumor necrosis factor-alpha, and matrix metalloproteinase-3 were down-regulated significantly (all p < 0.05) when FLSs cultured in HA or HA + GSH. IL-6 mRNA expressions were down-regulated significantly in HA and HA + 5% GSH groups (both p < 0.05) but up-regulated when HA supplemented with 10% and 20% GSH (both p < 0.01). In addition, the protein levels of IL-1β were further decreased with significant differences (both p < 0.05) in the HA + 10% GSH and HA + 20% GSH groups when compared to FLSs cultured in normal medium. In conclusion, HA supplemented with GSH improves antioxidant capacity and modulates pro-inflammatory cytokines expressions in FLSs. GSH has the potential to augment the effect of viscosupplementation using HA on OA patients. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2071-2079, 2016. PMID:27027581

  4. Protective effect of ellagic acid on oxidative stress and antioxidant status in Cyprinus carpio during malathion exposure.

    PubMed

    Ural, M Ş; Yonar, M E; Mişe Yonar, S

    2015-01-01

    This study aims to determine protective efficiency of ellagic acid (EA) on malathion toxicity in carp. The fish were exposed to two sublethal concentrations of malathion (0.5 and 1 mg/L), and EA (100 mg per kg of fish weight) was simultaneously administered for 14 days. Malondialdehyde (MDA) level and superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH—Px), and glutathione—S—transferase (GST) activities were evaluated in liver, kidney and gills, which were collected at the end of the experiment. In conclusion, the findings of this study demonstrated that malathion caused oxidative stress and negative alterations on the antioxidant enzyme activities of the fish. However, this toxic effect was neutralised by the administration of EA. Thus, the present results suggest that simultaneous treatment with EA (100 mg per kg of fish weight) may alleviate malathion—induced oxidative stress. PMID:26516111

  5. Regular Physical Exercise as a Strategy to Improve Antioxidant and Anti-Inflammatory Status: Benefits in Type 2 Diabetes Mellitus

    PubMed Central

    Teixeira de Lemos, Edite; Oliveira, Jorge; Páscoa Pinheiro, João; Reis, Flávio

    2012-01-01

    Over the last 30 years the combination of both a sedentary lifestyle and excessive food availability has led to a significant increase in the prevalence of obesity and aggravation of rates of metabolic syndrome and type 2 diabetes mellitus (T2DM). Several lines of scientific evidence have been demonstrating that a low level of physical activity and decreased daily energy expenditure leads to the accumulation of visceral fat and, consequently, the activation of the oxidative stress/inflammation cascade, which underlies the development of insulin resistant T2DM and evolution of micro, and macrovascular complications. This paper focuses on the pathophysiological pathways associated with the involvement of oxidative stress and inflammation in the development of T2DM and the impact of regular physical exercise (training) as a natural antioxidant and anti-inflammatory strategy to prevent evolution of T2DM and its serious complications. PMID:22928086

  6. Effect of chronic airway inflammation and exercise on pulmonary and systemic antioxidant status of healthy and heaves-affected horses.

    PubMed

    Kirschvink, N; Smith, N; Fiévez, L; Bougnet, V; Art, T; Degand, G; Marlin, D; Roberts, C; Génicot, B; Lindsey, P; Lekeux, P

    2002-09-01

    In heaves-affected horses the relation between oxidant status, airway inflammation (AI) and pulmonary function (PF) is unknown. The oxidant status of blood and pulmonary epithelial lining fluid (PELF) of healthy (H, n = 6) and heaves-affected horses in clinical remission (REM, n = 6) and in crisis (CR, n = 7) was assessed at rest, during and after standardised exercise test by measurement of reduced and oxidised glutathione, glutathione redox ratio [GRR%]; uric acid and 8-epi-PGF2alpha. Oxidant status was related to PF parameters (mechanics of breathing and arterial blood gas tension) and Al parameters (bronchoalveolar lavage [BAL] neutrophil % and AI score). Haemolysate glutathione was significantly different between groups and was correlated with PF and AI parameters; GRR in PELF was increased during CR and was correlated with PF and AI parameters. Exercise induced an increase of plasma uric acid that was significantly higher both in REM and CR. PELF 8-epi-PGF2alpha was significantly increased in CR and correlated with PF and AI parameters. These results suggest that oxidative stress occurring in heaves is correlated with PF and AI and may be locally assessed by PELF glutathione status, uric acid and 8-epi-PGF2alpha. Systemic repercussions are reflected by assay of GSH in resting horses and by uric acid in exercising horses. PMID:12357995

  7. Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia

    PubMed Central

    Park, Seung Min; Park, Chan Woo; Lee, Tae-Kyeong; Cho, Jeong Hwi; Park, Joon Ha; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Ohk, Taek Geun; Cho, Jun Hwi; Won, Moo-Ho; Choi, Soo Young; Kim, In Hye

    2016-01-01

    Ischemic preconditioning (IPC) is a condition of sublethal transient global ischemia and exhibits neuroprotective effects against subsequent lethal ischemic insult. We, in this study, examined the neuroprotective effects of IPC and its effects on immunoreactive changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Pyramidal neurons of the stratum pyramidale (SP) in the hippocampal CA1 region of animals died 5 days after lethal transient ischemia without IPC (8.6% (ratio of remanent neurons) of the sham-operated group); however, IPC prevented the pyramidal neurons from subsequent lethal ischemic injury (92.3% (ratio of remanent neurons) of the sham-operated group). SOD1, SOD2, CAT and GPX immunoreactivities in the sham-operated animals were easily detected in pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region, while all of these immunoreactivities were rarely detected in the stratum pyramidale at 5 days after lethal transient ischemia without IPC. Meanwhile, their immunoreactivities in the sham-operated animals with IPC were similar to (SOD1, SOD2 and CAT) or higher (GPX) than those in the sham-operated animals without IPC. Furthermore, their immunoreactivities in the stratum pyramidale of the ischemia-operated animals with IPC were steadily maintained after lethal ischemia/reperfusion. Results of western blot analysis for SOD1, SOD2, CAT and GPX were similar to immunohistochemical data. In conclusion, IPC maintained or increased the expression of antioxidant enzymes in the stratum pyramidale of the hippocampal CA1 region after subsequent lethal transient forebrain ischemia and IPC exhibited neuroprotective effects in the hippocampal CA1 region against transient forebrain ischemia.

  8. Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat.

    PubMed

    Sepand, Mohammad Reza; Razavi-Azarkhiavi, Kamal; Omidi, Ameneh; Zirak, Mohammad Reza; Sabzevari, Samin; Kazemi, Ali Reza; Sabzevari, Omid

    2016-05-01

    Arsenic (As) is a widespread environmental contaminant present around the world in both organic and inorganic forms. Oxidative stress is postulated as the main mechanism for As-induced toxicity. This study was planned to examine the protective effect of acetyl-L-carnitine (ALC) on As-induced oxidative damage in male rats. Animals were randomly divided into four groups of control (saline), sodium arsenite (NaAsO2, 20 mg/kg), ALC (300 mg/kg), and NaAsO2 plus ALC. Animals were dosed orally for 28 successive days. Blood and tissue samples including kidney, brain, liver, heart, and lung were collected on the 28th day and evaluated for oxidative damage and histological changes. NaAsO2 exposure caused a significant lipid peroxidation as evidenced by elevation in thiobarbituric acid-reactive substances (TBARS). The activity of antioxidant enzymes such as glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), as well as sulfhydryl group content (SH group) was significantly suppressed in various organs following NaAsO2 treatment (P < 0.05). Furthermore, NaAsO2 administration increased serum values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and bilirubin. Our findings revealed that co-administration of ALC and NaAsO2 significantly suppressed the oxidative damage induced by NaAsO2. Tissue histological studies have confirmed the biochemical findings and provided evidence for the beneficial role of ALC. The results concluded that ALC attenuated NaAsO2-induced toxicity, and this protective effect may result from the ability of ALC in maintaining oxidant-antioxidant balance. PMID:26349760

  9. Cattle experimentally infected by Anaplasma marginale: Influence of splenectomy on disease pathogenesis, oxidative profile, and antioxidant status.

    PubMed

    Doyle, Rovaina L; França, Raqueli T; Oliveira, Camila B; Rezer, João F P; Klafke, Guilherme M; Martins, João R; Santos, Andrea P; do Nascimento, Naíla C; Mesick, Joanne B; Lopes, Sonia T A; Leal, Daniela B R; Da Silva, Aleksandro S; Andrade, Cinthia M

    2016-06-01

    Bovine anaplasmosis is caused by the obligate intraerythrocytic bacteria Anaplasma marginale. These bacteria are transmitted by tick species such as Rhipicephalus (Boophilus) microplus, blood-sucking insects, and fomites (needles, clippers, and other blood contaminated equipment). During the acute phase of infection, animals may develop fever, anemia, jaundice, and hepatosplenomegaly. The aims of this study are to quantify the bacteremia by quantitative PCR in eight naïve calves experimentally infected by A. marginale [splenectomized (n = 4), and intact/non-splenectomized (n = 4)], and to correlate these findings with markers of oxidative stress on days 0, 8, 15, 21 and 23 post-infection. Complete blood counts (CBC) were performed in both groups. Lipid peroxidation was estimated by quantifying thiobarbituric acid reactive substances (TBARS); and non-enzymatic antioxidants were assessed by erythrocyte content of non-protein thiols (NPSH). There were no significant differences in complete blood counts (CBC) between the two groups. However, both groups had a slight decrease on packet cell volume (PCV), erythrocytes and hemoglobin concentration, as well as an increase in total leukocyte counts due to elevated lymphocytes when comparing pre and post-infection with A. marginale. Progressive increase on TBARS levels and concomitant decrease on NPSH content were observed in all animals, without significant differences between splenectomized and intact animals. A positive correlation between bacteremia and TBARS, and a negative correlation between bacteremia and NPSH were observed in both groups with higher correlation for NPSH in splenectomized animals. A negative correlation between TBARS and NPSH levels was observed in both groups indicating lipid peroxidation without a non-enzymatic antioxidant response. The results of experimental infection by A. marginale in cattle showed that bacteremia has an impact on lipid peroxidation regardless of the splenectomy. PMID

  10. Ferritic-Martensitic steel Test Blanket Modules: Status and future needs for design criteria requirements and fabrication validation

    NASA Astrophysics Data System (ADS)

    Salavy, J.-F.; Aiello, G.; Aubert, P.; Boccaccini, L. V.; Daichendt, M.; De Dinechin, G.; Diegele, E.; Giancarli, L. M.; Lässer, R.; Neuberger, H.; Poitevin, Y.; Stephan, Y.; Rampal, G.; Rigal, E.

    2009-04-01

    The Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble Bed are the two breeding blankets concepts for the DEMO reactor which have been selected by EU to be tested in ITER in the framework of the Test Blanket Module projects. They both use a 9%CrWVTa Reduced Activation Ferritic-Martensitic steel, called EUROFER, as structural material and helium as coolant. This paper gives an overview of the status of the EUROFER qualification program and discusses the future needs for design criteria requirements and fabrication validation.

  11. NAP (davunetide) protects primary hippocampus culture by modulating expression profile of antioxidant genes during limiting oxygen conditions.

    PubMed

    Arya, A; Meena, R; Sethy, N K; Das, M; Sharma, M; Bhargava, K

    2015-04-01

    Hypoxia is a well-known threat to neuronal cells and triggers the pathophysiological syndromes in extreme environments such as high altitudes and traumatic conditions such as stroke. Among several prophylactic molecules proven suitable for ameliorating free radical damage, NAP (an octapeptide with initial amino acids: asparagine/N, alanine/A, and proline/P) can be considered superlative, primarily due to its high permeability into brain through blood-brain barrier and observed activity at femtomolar concentrations. Several mechanisms of action of NAP have been hypothesized for its protective role during hypoxia, yet any distinct mechanism is unknown. Oxidative stress is advocated as the leading event in hypoxia; we, therefore, investigated the regulation of key antioxidant genes to understand the regulatory role of NAP in providing neuroprotection. Primary neuronal culture of rat was subjected to cellular hypoxia by limiting the oxygen concentration to 0.5% for 72 h and observing the prophylactic efficacies of 15fM NAP by conventional cell death assays using flow cytometry. We performed real-time quantitative polymerase chain reaction to comprehend the regulatory mechanism. Further, we validated the significantly regulated candidates by enzyme assays and immunoblotting. In the present study, we report that NAP regulates a major clad of cellular antioxidants and there is an involvement of more than one route of action in neuroprotection during hypoxia. PMID:25727410

  12. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis.

    PubMed

    Pekovic-Vaughan, Vanja; Gibbs, Julie; Yoshitane, Hikari; Yang, Nan; Pathiranage, Dharshika; Guo, Baoqiang; Sagami, Aya; Taguchi, Keiko; Bechtold, David; Loudon, Andrew; Yamamoto, Masayuki; Chan, Jefferson; van der Horst, Gijsbertus T J; Fukada, Yoshitaka; Meng, Qing-Jun

    2014-03-15

    The disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely investigated, little is known about the endogenous signals that regulate the NRF2 pathway in lung physiology and pathology. Here we show that an E-box-mediated circadian rhythm of NRF2 protein is essential in regulating the rhythmic expression of antioxidant genes involved in glutathione redox homeostasis in the mouse lung. Using an in vivo bleomycin-induced lung fibrosis model, we reveal a clock "gated" pulmonary response to oxidative injury, with a more severe fibrotic effect when bleomycin was applied at a circadian nadir in NRF2 levels. Timed administration of sulforaphane, an NRF2 activator, significantly blocked this phenotype. Moreover, in the lungs of the arrhythmic Clock(Δ19) mice, the levels of NRF2 and the reduced glutathione are constitutively low, associated with increased protein oxidative damage and a spontaneous fibrotic-like pulmonary phenotype. Our findings reveal a pivotal role for the circadian control of the NRF2/glutathione pathway in combating oxidative/fibrotic lung damage, which might prompt new chronotherapeutic strategies for the treatment of human lung diseases, including idiopathic pulmonary fibrosis. PMID:24637114

  13. The circadian clock regulates rhythmic activation of the NRF2/glutathione-mediated antioxidant defense pathway to modulate pulmonary fibrosis

    PubMed Central

    Pekovic-Vaughan, Vanja; Gibbs, Julie; Yoshitane, Hikari; Yang, Nan; Pathiranage, Dharshika; Guo, Baoqiang; Sagami, Aya; Taguchi, Keiko; Bechtold, David; Loudon, Andrew; Yamamoto, Masayuki; Chan, Jefferson; van der Horst, Gijsbertus T.J.; Fukada, Yoshitaka; Meng, Qing-Jun

    2014-01-01

    The disruption of the NRF2 (nuclear factor erythroid-derived 2-like 2)/glutathione-mediated antioxidant defense pathway is a critical step in the pathogenesis of several chronic pulmonary diseases and cancer. While the mechanism of NRF2 activation upon oxidative stress has been widely investigated, little is known about the endogenous signals that regulate the NRF2 pathway in lung physiology and pathology. Here we show that an E-box-mediated circadian rhythm of NRF2 protein is essential in regulating the rhythmic expression of antioxidant genes involved in glutathione redox homeostasis in the mouse lung. Using an in vivo bleomycin-induced lung fibrosis model, we reveal a clock “gated” pulmonary response to oxidative injury, with a more severe fibrotic effect when bleomycin was applied at a circadian nadir in NRF2 levels. Timed administration of sulforaphane, an NRF2 activator, significantly blocked this phenotype. Moreover, in the lungs of the arrhythmic ClockΔ19 mice, the levels of NRF2 and the reduced glutathione are constitutively low, associated with increased protein oxidative damage and a spontaneous fibrotic-like pulmonary phenotype. Our findings reveal a pivotal role for the circadian control of the NRF2/glutathione pathway in combating oxidative/fibrotic lung damage, which might prompt new chronotherapeutic strategies for the treatment of human lung diseases, including idiopathic pulmonary fibrosis. PMID:24637114

  14. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L.

    PubMed

    Hasan, Md Kamrul; Ahammed, Golam Jalal; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie

    2015-01-01

    Melatonin is a ubiquitous signal molecule, playing crucial roles in plant growth and stress tolerance. Recently, toxic metal cadmium (Cd) has been reported to regulate melatonin content in rice; however, the function of melatonin under Cd stress, particularly in higher plants, still remains elusive. Here, we show that optimal dose of melatonin could effectively ameliorate Cd-induced phytotoxicity in tomato. The contents of Cd and melatonin were gradually increased over time under Cd stress. However, such increase in endogenous melatonin was incapable to reverse detrimental effects of Cd. Meanwhile, supplementation with melatonin conferred Cd tolerance as evident by plant biomass and photosynthesis. In addition to notable increase in antioxidant enzymes activity, melatonin-induced Cd stress mitigation was closely associated with enhanced H(+)-ATPase activity and the contents of glutathione and phytochelatins. Although exogenous melatonin had no effect on root Cd content, it significantly reduced leaf Cd content, indicating its role in Cd transport. Analysis of Cd in different subcellular compartments revealed that melatonin increased cell wall and vacuolar fractions of Cd. Our results suggest that melatonin-induced enhancements in antioxidant potential, phytochelatins biosynthesis and subsequent Cd sequestration might play a critical role in plant tolerance to Cd. Such a mechanism may have potential implication in safe food production. PMID:26322055

  15. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L

    PubMed Central

    Hasan, Md. Kamrul; Ahammed, Golam Jalal; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie

    2015-01-01

    Melatonin is a ubiquitous signal molecule, playing crucial roles in plant growth and stress tolerance. Recently, toxic metal cadmium (Cd) has been reported to regulate melatonin content in rice; however, the function of melatonin under Cd stress, particularly in higher plants, still remains elusive. Here, we show that optimal dose of melatonin could effectively ameliorate Cd-induced phytotoxicity in tomato. The contents of Cd and melatonin were gradually increased over time under Cd stress. However, such increase in endogenous melatonin was incapable to reverse detrimental effects of Cd. Meanwhile, supplementation with melatonin conferred Cd tolerance as evident by plant biomass and photosynthesis. In addition to notable increase in antioxidant enzymes activity, melatonin-induced Cd stress mitigation was closely associated with enhanced H+-ATPase activity and the contents of glutathione and phytochelatins. Although exogenous melatonin had no effect on root Cd content, it significantly reduced leaf Cd content, indicating its role in Cd transport. Analysis of Cd in different subcellular compartments revealed that melatonin increased cell wall and vacuolar fractions of Cd. Our results suggest that melatonin-induced enhancements in antioxidant potential, phytochelatins biosynthesis and subsequent Cd sequestration might play a critical role in plant tolerance to Cd. Such a mechanism may have potential implication in safe food production. PMID:26322055

  16. The effects of the aqueous extract and residue of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet.

    PubMed

    Xu, Ping; Ying, Le; Hong, Gaojie; Wang, Yuefei

    2016-01-01

    Matcha is a kind of powdered green tea produced by grinding with a stone mill. In the present study, the preventive effects of the aqueous extract (water-soluble) and residue (water-insoluble) of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet were investigated. Mice were fed seven different experimental diets for 4 weeks: a normal diet control (NC), a high-fat diet (HF), a high-fat diet with 0.025% Matcha (MLD), a high-fat diet with 0.05% Matcha (MMD), a high-fat diet with 0.075% Matcha (MHD), a high-fat diet with 0.05% Matcha aqueous extracts (ME), and a high-fat diet with 0.05% Matcha residues (MR). It was found that serum total cholesterol (TC) and triglyceride (TG) levels of the MHD group were significantly decreased compared to those of the HF group. Furthermore, in the MHD group, the level of high-density lipoprotein-cholesterol (HDL-C) was elevated, on the contrary the level of low-density lipoprotein-cholesterol (LDL-C) was suppressed. Moreover, Matcha could significantly lower the blood glucose levels, and improve the superoxide dismutase (SOD) activity and malondialdehyde (MAD) contents both in serum and liver; besides, the serum GSH-Px activity indicated that the oxidative stress caused by HF could be reversed by administration of Matcha. These findings suggest that Matcha has beneficial effects through the suppression of the blood glucose (BG) accumulation and promotion of the lipid metabolism and antioxidant activities. Moreover, the water-insoluble part of Matcha is suggested to play an important role in the suppression of diet-induced high levels of lipid and glucose. PMID:26448271

  17. Oxidative stress status, antioxidant metabolism and polypeptide patterns in Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon (Portugal).

    PubMed

    Anjum, Naser A; Duarte, Armando C; Pereira, Eduarda; Ahmad, Iqbal

    2014-05-01

    This study assessed the oxidative stress status, antioxidant metabolism and polypeptide patterns in salt marsh macrophyte Juncus maritimus shoots exhibiting differential mercury burdens in Ria de Aveiro coastal lagoon at reference and the sites with highest, moderate and the lowest mercury contamination. In order to achieve these goals, shoot-mercury burden and the responses of representative oxidative stress indices, and the components of both non-glutathione- and glutathione-based H2O2-metabolizing systems were analyzed and cross-talked with shoot-polypeptide patterns. Compared to the reference site, significant elevations in J. maritimus shoot mercury and the oxidative stress indices such as H2O2, lipid peroxidation, electrolyte leakage and reactive carbonyls were maximum at the site with highest followed by moderate and the lowest mercury contamination. Significantly elevated activity of non-glutathione-based H2O2-metabolizing enzymes such as ascorbate peroxidase and catalase accompanied the studied damage-endpoint responses, whereas the activity of glutathione-based H2O2-scavenging enzymes glutathione peroxidase and glutathione sulfo-transferase was inhibited. Concomitantly, significantly enhanced glutathione reductase activity and the contents of both reduced and oxidized glutathione were perceptible in high mercury-exhibiting shoots. It is inferred that high mercury-accrued elevations in oxidative stress indices were obvious, where non-glutathione-based H2O2-decomposing enzyme system was dominant over the glutathione-based H2O2-scavenging enzyme system. In particular, the glutathione-based H2O2-scavenging system failed to coordinate with elevated glutathione reductase which in turn resulted into increased pool of oxidized glutathione and the ratio of oxidized glutathione-to-reduced glutathione. The substantiation of the studied oxidative stress indices and antioxidant metabolism with approximately 53-kDa polypeptide warrants further studies. PMID:24488555

  18. Impact of Adjunctive Therapy with Chlorellav ulgaris Extract on Antioxidant Status, Pulmonary Function, and Clinical Symptoms of Patients with Obstructive Pulmonary Diseases.

    PubMed

    Panahi, Yunes; Tavana, Sasan; Sahebkar, Amirhossein; Masoudi, Homeira; Madanchi, Nima

    2012-09-01

    This present trial investigated the efficacy of supplementation with Chlorella vulgaris, a bioactive microalga rich in macro- and micronutrients, in the improvement of biochemical and clinical symptoms in patients with obstructive pulmonary disorders. Ninety-seven patients with chronic obstructive pulmonary disease (COPD) or asthma who were under conventional treatment regimens were randomly assigned to C. vulgaris extract (CVE) (n=48; 2700 mg/day) or no adjunctive therapy (n=49) for eight weeks. Serum levels of antioxidants along with spirometric parameters and clinical symptoms were evaluated pre- and post-trial. The magnitude of increases in the concentrations of glutathione, vitamin E, and vitamin C, and activities of glutathione peroxidase, catalase, and superoxide dismutase enzymes were all significantly greater in the CVE vs. control group (p<0.05). In spite of increases, none of the assessed spirometric parameters (FVC, FEV1, FEV1/FVC, and FEF(25-75%)) did significantly differ by the end of the trial in the study groups, apart from a significant elevation of FEV1 in the control group (p=0.03). The frequency of coughing, shortness of breath, wheezing, and sputum brought up were all significantly reduced in both CVE and control groups (p<0.05). The rate of improvement for sputum brought up and wheezing were significantly greater in the CVE group compared to the control group (p<0.05). Although CVE was found to ameliorate serum antioxidant status, its supplementation was not associated with any bronchodilatory activity. The results of the present trial do not support any clinical efficacy for CVE in patients with obstructive pulmonary disorders. PMID:23008817

  19. Effect of tea polyphenols on production performance, egg quality, and hepatic antioxidant status of laying hens in vanadium-containing diets.

    PubMed

    Yuan, Z H; Zhang, K Y; Ding, X M; Luo, Y H; Bai, S P; Zeng, Q F; Wang, J P

    2016-07-01

    This study was conducted to determine the effect of tea polyphenols (TP) on production performance, egg quality, and hepatic-antioxidant status of laying hens in vanadium-containing diets. A total of 300 Lohman laying hens (67 wk old) were used in a 1 plus 3 × 3 experiment design in which hens were given either a diet without vanadium and TP supplementation (control) or diets supplemented with 5, 10, or 15 mg V/kg and TP (0, 600, 1,000 mg/kg) diets for 8 wk, which included 2 phases: a 5-wk accumulation phase and a 3-wk depletion phase. During the accumulation phase, dietary vanadium addition decreased (linear, P < 0.01) albumen height and Haugh unit (HU), and TP supplementation mitigated (linear effect, P < 0.01) this reduction effect induced by vanadium. Eggshell thickness (linear, P < 0.01), redness (linear and quadratic, P < 0.05), and yellowness (linear and quadratic, P < 0.05) were decreased by vanadium and increased by the effect of TP when a vanadium-containing diet was fed. In the depletion phase, the bleaching effect on eggshells induced by vanadium disappeared one wk after vanadium withdrawal. Eggshell thickness, eggshell strength, albumen height, and HU were lower (P < 0.05) in the 15 mg/kg vanadium group compared with the control diet until 2 wk post vanadium challenge, but hens fed 15 mg/kg vanadium and 600 mg/kg TP showed no difference from the control diet only after 1 wk withdrawal. In the liver, the activity of glutathione S-transferases and glutathione peroxidase was increased (linear, P < 0.01) with the TP addition at 5 wk in the accumulation phase in the vanadium-containing diet; the malondialdehyde content increased (linear effect, P = 0.02) with the addition of vanadium. The results indicate that supplementation of 10 and 15 mg/kg vanadium resulted in reduced albumen quality, bleaching effect on eggshell color, and antioxidant stress in the liver. The effect of TP addition can prevent laying hens from the adverse effect of vanadium on egg

  20. Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress.

    PubMed

    Pandey, Chandana; Khan, Ehasanullah; Panthri, Medha; Tripathi, Rudra Deo; Gupta, Meetu

    2016-07-01

    Arsenic (As) is an emerging pollutant causing inhibition in growth and development of plants resulting into phytotoxicity. On the other hand, silicon (Si) has been suggested as a modulator in abiotic and biotic stresses that, enhances plant's physiological adaptations in response to several stresses including heavy metal stress. In this study, we used roots of hydroponically grown 14 day old seedlings of Brassica juncea var. Varuna treated with 150 μM As, 1.5 mM Si and both in combination for 96 h duration. Application of Si modulated the effect of As by improving morphological traits of root along with the development of both primary and lateral roots. Changes observed in root traits showed positive correlation with As induced cell death, accumulation of reactive oxygen species (ROS), nitric oxide (NO) and intracellular superoxide radicals (O2(-)). Addition of 1.5 mM Si during As stress increased accumulation of As in roots. Mineral nutrient analysis was done using energy-dispersive X-ray fluorescence (EDXRF) technique and positively correlated with increased cysteine, proline, MDA, H2O2 and activity of antioxidant enzymes (SOD, CAT and APX). The results obtained from the above biochemical approaches support the protective and active role of Si in the regulation of As stress through the changes in root developmental process. PMID:27038600

  1. Differential Modulation of Lipopolysaccharide-Induced Inflammatory Cytokine Production by and Antioxidant Activity of Fomentariol in RAW264.7 Cells

    PubMed Central

    Seo, Dong-Won; Yi, Young-Joo; Lee, Myeong-Seok

    2015-01-01

    Medicinal mushrooms have been used worldwide to treat cancer and modulate the immune system. Over the last several years, there has been increasing interest in isolating bioactive compounds from medicinal mushrooms and evaluating their health beneficial effects. Fomes fomentarius is used in traditional oriental medicine and is known to possess antioxidant, anti-inflammatory, antidiabetic, and antitumor effects. In the present study, we isolated fomentariol from Fomes fomentarius and investigated its anti-inflammatory effect in murine macrophages (RAW264.7 cells) stimulated with lipopolysaccharides. Fomentariol inhibited the production of nitric oxide and intracellular reactive oxygen species triggered by lipopolysaccharides. Interestingly, fomentariol differentially regulated cytokine production triggered by lipopolysaccharides. Fomentariol effectively suppressed the production of interleukin-1β and interleukin-6 but not tumor necrosis factor-α. The inhibitory effect of fomentariol against nitric oxide, interleukin-1β, and interleukin-6 production was possibly mediated by downregulation of the extracellular signal-regulated kinase signaling pathway. Taken together, our results suggest that fomentariol differentially modulated inflammatory responses triggered by lipopolysaccharides in macrophages and is one of the bioactive compounds that mediate the physiological effects of Fomes fomentarius. PMID:26839505

  2. Probiotic Strain Bifidobacterium animalis subsp. lactis CECT 8145 Reduces Fat Content and Modulates Lipid Metabolism and Antioxidant Response in Caenorhabditis elegans.

    PubMed

    Martorell, Patricia; Llopis, Silvia; González, Nuria; Chenoll, Empar; López-Carreras, Noemi; Aleixandre, Amaya; Chen, Yang; Karoly, Edwuard D; Ramón, Daniel; Genovés, Salvador

    2016-05-01

    Recently, microbial changes in the human gut have been proposed as a possible cause of obesity. Therefore, modulation of microbiota through probiotic supplements is of great interest to support obesity therapeutics. The present study examines the functional effect and metabolic targets of a bacterial strain, Bifidobacterium animalis subsp. lactis CECT 8145, selected from a screening in Caenorhabditis elegans. This strain significantly reduced total lipids (40.5% ± 2.4) and triglycerides (27.6% ± 0.5), exerting antioxidant effects in the nematode (30% ± 2.8 increase in survival vs control); activities were also preserved in a final food matrix (milk). Furthermore, transcriptomic and metabolomic analyses in nematodes fed with strain CECT 8145 revealed modulation of the energy and lipid metabolism, as well as the tryptophan metabolism (satiety), as the main metabolic targets of the probiotic. In conclusion, our study describes for the first time a new B. animalis subsp. lactis strain, CECT 8145, as a promising probiotic for obesity disorders. Furthermore, the data support future studies in obesity murine models. PMID:27054371

  3. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity

    PubMed Central

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  4. Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max under Nickel Toxicity.

    PubMed

    Sirhindi, Geetika; Mir, Mudaser Ahmad; Abd-Allah, Elsayed Fathi; Ahmad, Parvaiz; Gucel, Salih

    2016-01-01

    In present study, we evaluated the effects of Jasmonic acid (JA) on physio-biochemical attributes, antioxidant enzyme activity, and gene expression in soybean (Glycine max L.) plants subjected to nickel (Ni) stress. Ni stress decreases the shoot and root length and chlorophyll content by 37.23, 38.31, and 39.21%, respectively, over the control. However, application of JA was found to improve the chlorophyll content and length of shoot and root of Ni-fed seedlings. Plants supplemented with JA restores the chlorophyll fluorescence, which was disturbed by Ni stress. The present study demonstrated increase in proline, glycinebetaine, total protein, and total soluble sugar (TSS) by 33.09, 51.26, 22.58, and 49.15%, respectively, under Ni toxicity over the control. Addition of JA to Ni stressed plants further enhanced the above parameters. Ni stress increases hydrogen peroxide (H2O2) by 68.49%, lipid peroxidation (MDA) by 50.57% and NADPH oxidase by 50.92% over the control. Supplementation of JA minimizes the accumulation of H2O2, MDA, and NADPH oxidase, which helps in stabilization of biomolecules. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) increases by 40.04, 28.22, 48.53, and 56.79%, respectively, over the control in Ni treated seedlings and further enhancement in the antioxidant activity was observed by the application of JA. Ni treated soybean seedlings showed increase in expression of Fe-SOD by 77.62, CAT by 15.25, POD by 58.33, and APX by 80.58% over the control. Nevertheless, application of JA further enhanced the expression of the above genes in the present study. Our results signified that Ni stress caused negative impacts on soybean seedlings, but, co-application of JA facilitate the seedlings to combat the detrimental effects of Ni through enhanced osmolytes, activity of antioxidant enzymes and gene expression. PMID:27242811

  5. Oxidative Stress and Antioxidant Activity in Hypothermia and Rewarming: Can RONS Modulate the Beneficial Effects of Therapeutic Hypothermia?

    PubMed Central

    Alva, Norma; Palomeque, Jesús

    2013-01-01

    Hypothermia is a condition in which core temperature drops below the level necessary to maintain bodily functions. The decrease in temperature may disrupt some physiological systems of the body, including alterations in microcirculation and reduction of oxygen supply to tissues. The lack of oxygen can induce the generation of reactive oxygen and nitrogen free radicals (RONS), followed by oxidative stress, and finally, apoptosis and/or necrosis. Furthermore, since the hypothermia is inevitably followed by a rewarming process, we should also consider its effects. Despite hypothermia and rewarming inducing injury, many benefits of hypothermia have been demonstrated when used to preserve brain, cardiac, hepatic, and intestinal function against ischemic injury. This review gives an overview of the effects of hypothermia and rewarming on the oxidant/antioxidant balance and provides hypothesis for the role of reactive oxygen species in therapeutic hypothermia. PMID:24363826

  6. Effects of Selenium-Enriched Probiotics on Lipid Metabolism, Antioxidative Status, Histopathological Lesions, and Related Gene Expression in Mice Fed a High-Fat Diet.

    PubMed

    Nido, Sonia Agostinho; Shituleni, Shituleni Andreas; Mengistu, Berhe Mekonnen; Liu, Yunhuan; Khan, Alam Zeb; Gan, Fang; Kumbhar, Shahnawaz; Huang, Kehe

    2016-06-01

    A total of 80 female albino mice were randomly allotted into five groups (n = 16) as follows: (A) normal control, (B) high-fat diet (HFD),; (C) HFD + probiotics (P), (D) HFD + sodium selenite (SS), and (E) HFD + selenium-enriched probiotics (SP). The selenium content of diets in groups A, B, C, D, and E was 0.05, 0.05, 0.05, 0.3, and 0.3 μg/g, respectively. The amount of probiotics contained in groups C and E was similar (Lactobacillus acidophilus 0.25 × 10(11)/mL and Saccharomyces cerevisiae 0.25 × 10(9)/mL colony-forming units (CFU)). The high-fat diet was composed of 15 % lard, 1 % cholesterol, 0.3 % cholic acid, and 83.7 % basal diet. At the end of the 4-week experiment, blood and liver samples were collected for the measurements of lipid metabolism, antioxidative status, histopathological lesions, and related gene expressions. The result shows that HFD significantly increased the body weights and liver damages compared to control, while P, SS, or SP supplementation attenuated the body weights and liver damages in mice. P, SS, or SP supplementation also significantly reversed the changes of alanine aminotransferase (AST), aspartate aminotransferase (ALT), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), total protein (TP), high-density lipoprotein (HDL), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), catalasa (CAT), and malondialdehyde (MDA) levels induced by HFD. Generally, adding P, SS, or SP up-regulated mRNA expression of carnitine palmitoyltransferase-I (CPT1), carnitine palmitoyltransferase II (CPT2), acetyl-CoA acetyltransferase II (ACAT2), acyl-coenzyme A oxidase (ACOX2), and peroxisome proliferator-activated receptor alpha (PPARα) and down-regulated mRNA expression of fatty acid synthase (FAS), lipoprotein lipase (LPL), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol regulatory element-binding protein-1 (SREBP1) involved in lipid metabolism. Among the group

  7. Plant water status, ethylene evolution, N(2)-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization.

    PubMed

    Nandwal, Ajit Singh; Kukreja, Sarvjeet; Kumar, Neeraj; Sharma, Praveen Kumar; Jain, Monika; Mann, Anita; Singh, Sunder

    2007-09-01

    Salinity induced changes in ethylene evolution, antioxidant defense system, N(2)-fixing efficiency and membrane integrity in relation to water and mineral status in chickpea (Cicer arietinum L.) nodules were studied under screen house conditions. At vegetative stage (55-65 DAS) plants were exposed to single saline irrigation (Cl(-) dominated) of levels 0, 2.5, 5.0 and 10.0dSm(-1) and sampled after 3d. The other set of treated plants was desalinized by flooding and the plants were sampled after further 3d. Water potential (Psiw) of leaf and osmotic potential (Psis) of leaf and nodules significantly decreased from -0.44 to -0.56MPa and from -0.65 to -1.15MPa and from -0.75 to -1.77MPa, respectively upon salinization. RWC of leaf and nodules also reduced from 86.05% to 73.30% and 94.70% to 89.98%, respectively. The decline in Psis of nodules was due to accumulation of proline and total soluble sugar. In comparison to control, the increase in ethylene (C(2)H(4)) production was 35-108% higher and correspondingly increase in 1-aminocycloprane-1-carboxylic acid (ACC) content (37-126%) and ACC oxidase activity (31-118%) was also noticed. Similarly, marked increase in H(2)O(2) (25-139%) and thiobarbituric acid substances (TBRAS, 11-133%) contents was seen. N(2)-fixing efficiency i.e. N(2)-ase activity, leghemoglobin and N contents of nodules declined significantly after saline irrigation. The induction in specific activity of antioxidant enzymes was confirmed by the increase in activity of superoxide dismutase, peroxidase, ascorbate peroxidase, glutathione reductase and glutathione transferase, whereas reverse was true for catalase. These activated enzymes could not overcome the accumulation of H(2)O(2) in nodules. Ascorbic acid content also declined from 20 to 38%, whereas Na(+)/K(+) ratio and Cl(-) content were significantly enhanced. Upon desalinization, a partial recovery in all above metabolic processes and water relations parameters was noticed. It is suggested that

  8. Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: results from an intervention study.

    PubMed

    Bakuradze, Tamara; Boehm, Nadine; Janzowski, Christine; Lang, Roman; Hofmann, Thomas; Stockis, Jean-Pierre; Albert, Franz W; Stiebitz, Herbert; Bytof, Gerhard; Lantz, Ingo; Baum, Matthias; Eisenbrand, Gerhard

    2011-05-01

    Epidemiological and experimental evidence increasingly suggests coffee consumption to be correlated to prevention or delay of degenerative diseases connected with oxidative cellular stress. In an intervention study comprising 33 healthy volunteers, we examined DNA-protective and antioxidative effects exerted in vivo by daily ingestion of 750 mL of freshly brewed coffee rich in both green coffee bean constituents as well as roast products. The study design encompassed an initial 4 wk of wash-out, followed by 4 wk of coffee intake and 4 wk of second wash-out. At the start and after each study phase blood samples were taken to monitor biomarkers of oxidative stress response. In addition, body weight/composition and intake of energy/nutrients were recorded. In the coffee ingestion period, the primary endpoint, oxidative DNA damage as measured by the Comet assay (± FPG), was markedly reduced (p<0.001). Glutathione level (p<0.05) and GSR-activity (p<0.01) were elevated. Body weight (p<0.01)/body fat (p<0.05) and energy (p<0.001)/nutrient (p<0.001-0.05) intake were reduced. Our results allow to conclude that daily consumption of 3-4 cups of brew from a special Arabica coffee exerts health beneficial effects, as evidenced by reduced oxidative damage, body fat mass and energy/nutrient uptake. PMID:21462335

  9. Effect of Butachlor on Antioxidant Enzyme Status and Lipid Peroxidation in Fresh Water African Catfish, (Clarias gariepinus)

    PubMed Central

    Farombi, E. O.; Ajimoko, Y. R.; Adelowo, O. A.

    2008-01-01

    The present study was undertaken to evaluate the influence of butachlor, a widely used herbicide, on antioxidant enzyme system and lipid peroxidation formation in African cat fish (Clarias gariepinus). Fish were exposed to sub-lethal concentrations of butachlor 1, 2, 2.5 ppm and sacrificed 24hrs after treatment. A significant increase in malondialdehyde formation was observed in the liver, kidney, gills and heart of the fish following exposure to different concentrations of butachlor. Superoxide dismutase and catalase activities increased in the liver and kidney but decreased in the gills and heart in a concentration-dependent pattern. Glutathione level and glutathione-S-transferase activities increased (P<0.05) in the liver but decreased in the kidneys, gills and heart when fishes were exposed to the three concentrations of butachlor. The results suggest that butachlor induced oxidative stress in the various tissues of the fish particularly in the kidney and as such the organ may be subjected to severe oxidative toxicity due to depressed glutathione detoxification system. PMID:19151438

  10. Protective Nature of Mangiferin on Oxidative Stress and Antioxidant Status in Tissues of Streptozotocin-Induced Diabetic Rats

    PubMed Central

    Sellamuthu, Periyar Selvam; Arulselvan, Palanisamy; Kamalraj, Subban; Fakurazi, Sharida; Kandasamy, Murugesan

    2013-01-01

    Oxidative stress plays an important role in the progression of diabetes complications. The aim of the present study was to investigate the beneficial effect of oral administration of mangiferin in streptozotocin (STZ)-induced diabetic rats by measuring the oxidative indicators in liver and kidney as well as the ameliorative properties. Administration of mangiferin to diabetic rats significantly decreased blood glucose and increased plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and level of reduced glutathione (GSH) were significantly (P < 0.05) decreased while increases in the levels of lipidperoxidation (LPO) markers were observed in liver and kidney tissues of diabetic control rats as compared to normal control rats. Oral treatment with mangiferin (40 mg/kg b.wt/day) for a period of 30 days showed significant ameliorative effects on all the biochemical and oxidative parameters studied. Diabetic rats treated with mangiferin restored almost normal architecture of liver and kidney tissues, which was confirmed by histopathological examination. These results indicated that mangiferin has potential ameliorative effects in addition to its antidiabetic effect in experimentally induced diabetic rats. PMID:24167738

  11. Status and Power Do Not Modulate Automatic Imitation of Intransitive Hand Movements

    PubMed Central

    Farmer, Harry; Carr, Evan W.; Svartdal, Marita; Winkielman, Piotr; Hamilton, Antonia F. de C.

    2016-01-01

    The tendency to mimic the behaviour of others is affected by a variety of social factors, and it has been argued that such “mirroring” is often unconsciously deployed as a means of increasing affiliation during interpersonal interactions. However, the relationship between automatic motor imitation and status/power is currently unclear. This paper reports five experiments that investigated whether social status (Experiments 1, 2, and 3) or power (Experiments 4 and 5) had a moderating effect on automatic imitation (AI) in finger-movement tasks, using a series of different manipulations. Experiments 1 and 2 manipulated the social status of the observed person using an associative learning task. Experiment 3 manipulated social status via perceived competence at a simple computer game. Experiment 4 manipulated participants’ power (relative to the actors) in a card-choosing task. Finally, Experiment 5 primed participants using a writing task, to induce the sense of being powerful or powerless. No significant interactions were found between congruency and social status/power in any of the studies. Additionally, Bayesian hypothesis testing indicated that the null hypothesis should be favoured over the experimental hypothesis in all five studies. These findings are discussed in terms of their implications for AI tasks, social effects on mimicry, and the hypothesis of mimicry as a strategic mechanism to promote affiliation. PMID:27096167

  12. Status and Power Do Not Modulate Automatic Imitation of Intransitive Hand Movements.

    PubMed

    Farmer, Harry; Carr, Evan W; Svartdal, Marita; Winkielman, Piotr; Hamilton, Antonia F de C

    2016-01-01

    The tendency to mimic the behaviour of others is affected by a variety of social factors, and it has been argued that such "mirroring" is often unconsciously deployed as a means of increasing affiliation during interpersonal interactions. However, the relationship between automatic motor imitation and status/power is currently unclear. This paper reports five experiments that investigated whether social status (Experiments 1, 2, and 3) or power (Experiments 4 and 5) had a moderating effect on automatic imitation (AI) in finger-movement tasks, using a series of different manipulations. Experiments 1 and 2 manipulated the social status of the observed person using an associative learning task. Experiment 3 manipulated social status via perceived competence at a simple computer game. Experiment 4 manipulated participants' power (relative to the actors) in a card-choosing task. Finally, Experiment 5 primed participants using a writing task, to induce the sense of being powerful or powerless. No significant interactions were found between congruency and social status/power in any of the studies. Additionally, Bayesian hypothesis testing indicated that the null hypothesis should be favoured over the experimental hypothesis in all five studies. These findings are discussed in terms of their implications for AI tasks, social effects on mimicry, and the hypothesis of mimicry as a strategic mechanism to promote affiliation. PMID:27096167

  13. Modulation of the antioxidant nuclear factor (erythroid 2-derived)-like 2 pathway by antidepressants in rats.

    PubMed

    Martín-Hernández, David; Bris, Álvaro G; MacDowell, Karina S; García-Bueno, Borja; Madrigal, José L M; Leza, Juan C; Caso, Javier R

    2016-04-01

    Patients with major depression who are otherwise medically healthy have activated inflammatory pathways in their organism. It has been described that depression is not only escorted by inflammation but also by induction of multiple oxidative/nitrosative stress pathways. Nevertheless, there are finely regulated mechanisms involved in preserving cells from damage, such as the antioxidant nuclear transcription factor Nrf2. We aim to explore in a depression-like model the Nrf2 pathway in the prefrontal cortex (PFC) and the hippocampus of rats and to analyze whether antidepressants affect the antioxidant activity of the Nrf2 pathway. Male Wistar rats were exposed to chronic mild stress (CMS) and some of them were treated with desipramine, escitalopram or duloxetine. We studied the expression of upstream and downstream elements of the Nrf2 pathway and the oxidative damage induced by the CMS. After CMS, there is an inhibition of upstream and downstream elements of the Nrf2 pathway in the PFC (e.g. PI3K/Akt, GPx…). Moreover, antidepressant treatments, particularly desipramine and duloxetine, are able to recover some of these elements and to reduce the oxidative damage induced by the CMS. However, in the hippocampus, Nrf2 pathways are not that affected and antidepressants do not have many actions. In conclusion, Nrf2 pathway is differentially regulated by antidepressants in the PFC and hippocampus. The Nrf2 pathway is involved in the oxidative/nitrosative damage detected in the PFC and antidepressants have a therapeutic action through this pathway. However, it seems that Nrf2 is not involved in the effects caused by CMS in the hippocampus. PMID:26686388

  14. 8-Hydroxyquinoline Schiff-base compounds as antioxidants and modulators of copper-mediated Aβ peptide aggregation.

    PubMed

    Gomes, Luiza M F; Vieira, Rafael P; Jones, Michael R; Wang, Michael C P; Dyrager, Christine; Souza-Fagundes, Elaine M; Da Silva, Jeferson G; Storr, Tim; Beraldo, Heloisa

    2014-10-01

    One of the hallmarks of Alzheimer's disease (AD) in the brain are amyloid-β (Aβ) plaques, and metal ions such as copper(II) and zinc(II) have been shown to play a role in the aggregation and toxicity of the Aβ peptide, the major constituent of these extracellular aggregates. Metal binding agents can promote the disaggregation of Aβ plaques, and have shown promise as AD therapeutics. Herein, we describe the syntheses and characterization of an acetohydrazone (8-H2QH), a thiosemicarbazone (8-H2QT), and a semicarbazone (8-H2QS) derived from 8-hydroxyquinoline. The three compounds are shown to be neutral at pH7.4, and are potent antioxidants as measured by a Trolox Equivalent Antioxidant Capacity (TEAC) assay. The ligands form complexes with Cu(II), 8-H2QT in a 1:1 metal:ligand ratio, and 8-H2QH and 8-H2QS in a 1:2 metal:ligand ratio. A preliminary aggregation inhibition assay using the Aβ1-40 peptide showed that 8-H2QS and 8-H2QH inhibit peptide aggregation in the presence of Cu(II). Native gel electrophoresis/Western blot and TEM images were obtained to give a more detailed picture of the extent and pathways of Aβ aggregation using the more neurotoxic Aβ1-42 in the presence and absence of Cu(II), 8-H2QH, 8-H2QS and the drug candidate PBT2. An increase in the formation of oligomeric species is evident in the presence of Cu(II). However, in the presence of ligands and Cu(II), the results match those for the peptide alone, suggesting that the ligands function by sequestering Cu(II) and limiting oligomer formation in this assay. PMID:25019963

  15. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats.

    PubMed

    Akinrinde, A S; Oyagbemi, A A; Omobowale, T O; Asenuga, E R; Ajibade, T O

    2016-07-01

    The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (p<0.05) in oxidative stress parameters (hydrogen peroxide, H2O2 and malondialdehyde, MDA) and increased expression of the apoptotic initiator caspase 8 in the heart and kidneys. There was significant reduction (p<0.05) in reduced glutathione (GSH) in cardiac and renal tissues; reduction in superoxide dismutase (SOD) activity in the kidneys and adaptive increases in Glutathione S-transferase (GST) and catalase (CAT). CoCl2 also produced significant reduction (p<0.05) in systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressures. Oral COG and gallic acid treatment significantly reduced (p<0.05) the levels of H2O2 and MDA; with reduced expression of caspase 8 and restoration of GSH levels, GPx, SOD and CAT activities, howbeit, to varying degrees in the heart and kidneys. COG (200mg/kg) was most effective in restoring the blood pressures in the rats to near control levels. CoCl2-induced histopathological lesions including myocardial infarction and inflammation and renal tubular necrosis and inflammation were effectively ameliorated by the treatments administered. This study provides evidence for the protective roles of O. gratissimum and gallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats. PMID:27259349

  16. Angiomodulatory properties of Rhodiola spp. and other natural antioxidants.

    PubMed

    Radomska-Leśniewska, Dorota M; Skopiński, Piotr; Bałan, Barbara J; Białoszewska, Agata; Jóźwiak, Jarosław; Rokicki, Dariusz; Skopińska-Różewska, Ewa; Borecka, Anna; Hevelke, Agata

    2015-01-01

    Disturbances of angiogenesis and oxidative stress can lead to many serious diseases such as cancer, diabetes or ischemic heart disease. Substances neutralizing oxidative stress are known as antioxidants. They can affect angiogenesis process also, and thus, they modulate therapy results. Antioxidants become more and more frequently used in order to maintain homeostasis of the organism and diminish the risk of disease. Herein, we introduce some antioxidant preparations of natural plant origin (Rhodiola, Aloe vera, Resveratrol, Echinacea, Plumbagin) and antioxidant supplements (Padma 28, Reumaherb, Resvega). Analyses of their angiogenic properties, their multidirectional molecular effect on angiogenesis as well as medical application are within the scope of this review. Most of presented preparations down regulate neovascularization. They can be safely administered to patients with abnormally high angiogenesis. Rhodiola modulates, and Echinacea, Aloe vera and Plumbagin inhibit tumour-related angiogenesis in vitro and in vivo (animal models). Resveratrol and Resvega reduce neovascularization in the eye and may be applicable in eye disorders. Padma 28 preparation exhibits angioregulatory activity, decreasing high angiogenesis of cancer cells and increasing physiological angiogenesis, therefore can be used in therapy of patients with various disturbances of angiogenesis. Antioxidant application in the case of angiogenesis-related diseases should take into consideration angiogenic status of the patient. PMID:26557041

  17. Angiomodulatory properties of Rhodiola spp. and other natural antioxidants

    PubMed Central

    Radomska-Leśniewska, Dorota M.; Skopiński, Piotr; Bałan, Barbara J.; Białoszewska, Agata; Jóźwiak, Jarosław; Rokicki, Dariusz; Borecka, Anna; Hevelke, Agata

    2015-01-01

    Disturbances of angiogenesis and oxidative stress can lead to many serious diseases such as cancer, diabetes or ischemic heart disease. Substances neutralizing oxidative stress are known as antioxidants. They can affect angiogenesis process also, and thus, they modulate therapy results. Antioxidants become more and more frequently used in order to maintain homeostasis of the organism and diminish the risk of disease. Herein, we introduce some antioxidant preparations of natural plant origin (Rhodiola, Aloe vera, Resveratrol, Echinacea, Plumbagin) and antioxidant supplements (Padma 28, Reumaherb, Resvega). Analyses of their angiogenic properties, their multidirectional molecular effect on angiogenesis as well as medical application are within the scope of this review. Most of presented preparations down regulate neovascularization. They can be safely administered to patients with abnormally high angiogenesis. Rhodiola modulates, and Echinacea, Aloe vera and Plumbagin inhibit tumour-related angiogenesis in vitro and in vivo (animal models). Resveratrol and Resvega reduce neovascularization in the eye and may be applicable in eye disorders. Padma 28 preparation exhibits angioregulatory activity, decreasing high angiogenesis of cancer cells and increasing physiological angiogenesis, therefore can be used in therapy of patients with various disturbances of angiogenesis. Antioxidant application in the case of angiogenesis-related diseases should take into consideration angiogenic status of the patient. PMID:26557041

  18. Light-trapped, interconnected, Silicon-Film{trademark} modules. Final technical status report

    SciTech Connect

    Hall, R.B.; Rand, J.A.; Ford, D.H.; Ingram, A.E.

    1998-04-01

    AstroPower has continued its development of an advanced thin-silicon-based photovoltaic module product. This module combines the performance advantages of thin light-trapped silicon layers with the capability of integration into a low-cost, monolithically interconnected module. This report summarized work carried out over a 3-year, cost-shared contract. Key results accomplished during this phase include an NREL-verified conversion efficiency of 12.5% on a 0.47-cm{sup 2} device. The device structure used an insulating substrate and an active layer less than 100 {micro}m thick. A new metalization scheme was designed using insulating crossovers. This technology was demonstrated on a 36-segment, 321-cm{sup 2}, interconnected module. That module was tested at NREL with an efficiency of 9.79%. Further advances in metalization have led to an advanced single back-contact design that will offer low cost through ease of processing and higher performance through reduced shading.

  19. RF status of superconducting module development suitable for CW operation: ELBE cryostats

    NASA Astrophysics Data System (ADS)

    Teichert, J.; Büchner, A.; Büttig, H.; Gabriel, F.; Michel, P.; Möller, K.; Lehnert, U.; Schneider, Ch.; Stephan, J.; Winter, A.

    2006-02-01

    For the ELBE electron linear accelerator a superconducting accelerating module was developed and is now in routine operation. The cryostat contains two TESLA cavities (1.3 GHz) and is designed for continuous-wave (CW) operation with an accelerating gradient of 10 MV/m and a maximum average beam current of 1 mA. For the RF power two 10 kW klystrons are used. Special tuners, power couplers, low-level RF control, cryogenic control systems and safety systems were developed. Engineering design, operation parameters and experience with the module are discussed.

  20. Status of FEP encapsulated solar cell modules used in terrestrial applications

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Forestieri, A. F.

    1974-01-01

    The Lewis Research Center has been engaged in transferring the FEP encapsulated solar cell technology developed for the space program to terrestrial applications. FEP encapsulated solar cell modules and arrays were designed and built expressly for terrestrial applications. Solar cell power systems were installed at three different land sites, while individual modules are undergoing marine environment tests. Four additional power systems are being completed for installation during the summer of 1974. These tests have revealed some minor problems which have been corrected. The results confirm the inherent utility of FEP encapsulated terrestrial solar cell systems.

  1. Pro/antioxidant status in murine skin following topical exposure to cumene hydroperoxide throughout the ontogeny of skin cancer.

    PubMed

    Shvedova, A A; Kisin, E R; Murray, A; Kommineni, C; Vallyathan, V; Castranova, V

    2004-01-01

    Organic peroxides used in the chemical and pharmaceutical industries have a reputation for being potent skin tumor promoters and inducers of epidermal hyperplasia. Their ability to trigger free radical generation is critical for their carcinogenic properties. Short-term in vivo exposure of mouse skin to cumene hydroperoxide (Cum-OOH) causes severe oxidative stress and formation of spin-trapped radical adducts. The present study was designed to determine the effectiveness of Cum-OOH compared to 12-O-tetradecanoylphorbol-13-acetate (TPA) in the induction of tumor promotion in the mouse skin, to identify the involvement of cyclooxygenase-2 (COX-2) in oxidative metabolism of Cum-OOH in keratinocytes, and to evaluate morphological changes and outcomes of oxidative stress in skin of SENCAR mice throughout a two-stage carcinogenesis protocol. Dimethyl-benz[a]anthracene (DMBA)-initiated mice were treated with Cum-OOH (32.8 micro mol) or TPA (8.5 nmol) twice weekly for 20 weeks to promote papilloma formation. Skin carcinoma formed only in DMBA/Cum-OOH-exposed mice. Higher levels of oxidative stress and inflammation (as indicated by the accumulation of peroxidative products, antioxidant depletion, and edema formation) were evident in the DMBA/Cum-OOH group compared to DMBA/TPA treated mice. Exposure of keratinocytes (HaCaT) to Cum-OOH for 18 h resulted in expression of COX-2 and increased levels of PGE(2). Inhibitors of COX-2 efficiently suppressed oxidative stress and enzyme expression in the cells treated with Cum-OOH. These results suggest that COX-2-dependent oxidative metabolism is at least partially involved in Cum-OOH-induced inflammatory responses and thus tumor promotion. PMID:14972014

  2. Cholesterol Status Modulates mRNA and Protein Levels of Genes Associated with Cholesterol Metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary saturated (S), monounsaturated (MU) and polyunsaturated (PU) fatty acids (FA) and cholesterol have been shown to be major determinants of plasma lipoprotein profiles. The objective was to determine the effect of whole body cholesterol status and dietary fatty acid saturation on genes associ...

  3. Estrogenic status modulates aryl hydrocarbon receptor - mediated hepatic gene expression and carcinogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status is thought to influence the cancer risk in women and has been reported to affect toxicity of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in animals. The objective of this study was to examine the influence of estradiol (E2) on hepatic gene expression changes mediated by 7,...

  4. Environmental heat stress modulates thyroid status and its response to repeated endotoxin (LPS) challenge in steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thyroid hormones are important in the adaptation to heat stress, allowing the adjustment of metabolic rates in favor of decreased energy utilization and heat production. Thyroid status is compromised in a variety of acute and chronic infections and toxin-mediated disease states. Our objective was to...

  5. ESTROGENIC STATUS MODULATES DMBA-MEDIATED HEPATIC GENE EXPRESSION: MICROARRAY-BASED ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogenic status in women influences the metabolism and toxicity of polycyclic aromatic hydrocarbons (PAH). The objective of this study was to examine the influence of estradiol (E2) on 7,12 dimethylbenz(a)anthracene (DMBA), a ligand for aryl hydrocarbon receptor, mediated changes on gene expressio...

  6. Variations in Hormones and Antioxidant Status in Relation to Flowering in Early, Mid, and Late Varieties of Date Palm (Phoenix dactylifera) of United Arab Emirates

    PubMed Central

    Cheruth, Abdul J.; Kurup, Shyam S.; Subramaniam, Sreeramanan

    2015-01-01

    The present study was carried out to assess the status of various hormones responsible for the flower induction of Nagal, Lulu, and Khalas date palm varieties in UAE. The nonenzymatic antioxidant compounds and the antioxidant enzymatic activities at preflowering, flowering, and postflowering stages of the date palm varieties were quantified. The ABA and zeatin concentrations were found to be significantly higher during the preflowering stage but gradually decreased during the flowering period and then increased after the flowering stage. Gibberellic acid (GA) concentrations were significantly higher in the early flowering varieties and higher levels of ABA may contribute to the delayed flowering in mid and late varieties. The results on hormone profiling displayed a significant variation between seasons (preflowering, flowering, and postflowering) and also between the three date palms (early, mid, and late flowering varieties). Ascorbic acid (AA) concentration was low at the preflowering stage in the early flowering Nagal (0.694 mg/g dw), which is similar with the late flowering Lulu variety (0.862 mg/g dw). However, Khalas variety showed significantly higher amount of AA content (7.494 mg/g dw) at the preflowering stage when compared to other varieties. In flowering stage, Nagal (0.814 mg/g dw) and Lulu (0.963 mg/g dw) were similar with respect to the production of AA, while the mid flowering variety showed significantly higher amount of AA (9.358 mg/g dw). The Khalas variety produced the highest tocopherol at 4.78 mg/g dw compared to Nagal and Lulu, at 1.997 and 1.908 mg/g dw, respectively, during the preflowering stage. In Nagal variety, the content of reduced glutathione (GSH) at the preflowering stage was 0.507 mg/g dw, which was not significantly different from the flowering and postflowering stages at 0.4 and 0.45 mg/g dw, respectively. The GSH was significantly higher in Khalas compared to Nagal and Lulu varieties, at

  7. Status report of a new recovery parachute system for the F111 aircraft crew escape module

    SciTech Connect

    Johnson, D.W.

    1986-01-01

    A new recovery parachute system for the F111 aircraft crew escape module has been designed. Six proof-of-design tests were conducted to determine if it is feasible to meet the requirements for a replacement recovery parachute system. The design of the proposed system is presented and the results of the tests discussed.

  8. Effects of glucomannan-enriched, aronia juice-based supplement on cellular antioxidant enzymes and membrane lipid status in subjects with abdominal obesity.

    PubMed

    Kardum, Nevena; Petrović-Oggiano, Gordana; Takic, Marija; Glibetić, Natalija; Zec, Manja; Debeljak-Martacic, Jasmina; Konić-Ristić, Aleksandra

    2014-01-01

    The aim of this study was to analyze