Science.gov

Sample records for modulation doped heterostructures

  1. Analysis of energy states in modulation doped multiquantum well heterostructures

    NASA Technical Reports Server (NTRS)

    Ji, G.; Henderson, T.; Peng, C. K.; Huang, D.; Morkoc, H.

    1990-01-01

    A precise and effective numerical procedure to model the band diagram of modulation doped multiquantum well heterostructures is presented. This method is based on a self-consistent iterative solution of the Schroedinger equation and the Poisson equation. It can be used rather easily in any arbitrary modulation-doped structure. In addition to confined energy subbands, the unconfined states can be calculated as well. Examples on realistic device structures are given to demonstrate capabilities of this procedure. The numerical results are in good agreement with experiments. With the aid of this method the transitions involving both the confined and unconfined conduction subbands in a modulation doped AlGaAs/GaAs superlattice, and in a strained layer InGaAs/GaAs superlattice are identified. These results represent the first observation of unconfined transitions in modulation doped multiquantum well structures.

  2. Effect of scattering by native defects on electron mobility in modulation-doped heterostructures

    SciTech Connect

    Walukiewicz, W.; Haller, E.E. )

    1991-04-15

    The effect of scattering by native defects on carrier mobility in modulation-doped heterostructures is calculated. The concentration of the defects is determined using the amphoteric native defect model. It is shown that the Fermi level induced reduction of the defect formation energy leads to an increased incorporation of native defects and reduced mobility in AlGaAs/GaAs inverted modulation-doped heterostructures. This new mechanism explains the experimentally observed difference in the values of electron mobilities in normal and inverted modulation-doped heterostructures. The effects of native defects on the carrier mobilities in heterostructures based on other semiconductor systems are also discussed.

  3. Photo-induced Modulation Doping in Graphene/Boron nitride Heterostructures

    NASA Astrophysics Data System (ADS)

    Velasco, Jairo, Jr.; Ju, Long; Hwang, Edwin; Kahn, Salman; Nosiglia, Casey; Tsai, Hsin-Zon; Yang, Wei; Zhang, Guangyu; Taniguchi, Takashi; Watanabe, Kenji; Zhang, Yuanbo; Crommie, Michael; Zettl, Alex; Wang, Feng

    2014-03-01

    Van der Waals heterostructures (VDH) provide an exciting new platform for materials engineering, where a variety of layered materials with different electrical, optical and mechanical responses can be stacked together to enable new physics and novel functionalities. We report an emerging optoelectronic phenomenon (i.e. photo-induced modulation doping) in the graphene-boron nitride VDH (G/BN heterostructure). We find it enables flexible and repeatable writing and erasing of charge doping in graphene with optical light. We show that the photo-induced modulation doping maintains the remarkable carrier mobility of the G/BN heterostructure, and it can be used to generate spatially varying doping profiles like pn junctions. Our work contributes towards understanding light matter interactions in VDHs, and introduces a simple technique for creating inhomogeneous doping in high mobility graphene devices. J. Velasco Jr. acknowledges support from UC President's Postdoctoral Fellowship.

  4. Investigating the thermal stability of electron transport properties in modulation-doped semiconductor heterostructure systems

    NASA Astrophysics Data System (ADS)

    Pilgrim, Ian; Scannell, Billy; See, Andrew; Montgomery, Rick; Morse, Peter; Fairbanks, Matt; Marlow, Colleen; Linke, Heiner; Farrer, Ian; Ritchie, David; Hamilton, Alex; Micolich, Adam; Eaves, Laurence; Taylor, Richard

    2013-03-01

    Since the 1950s, materials scientists have pursued the fabrication of solid-state heterostructure (HS) devices of sufficient purity to replicate electron interference effects originally observed in vacuum. The ultimate goal of HS engineering is to create a semiconductor ``billiard table'' in which electrons travel ballistically in a 2-D plane--that is, with scattering events minimized such that the electron's mean free path exceeds the device size. For the past two decades, the modulation-doped (MD) HS architecture has yielded devices supporting very high electron mobilities. In this architecture, ionized dopants are spatially removed from the plane of the electrons, such that their influence on electron trajectories is felt through presumably negligible small-angle scattering events. However, we observe that thermally induced charge redistribution in the doped layers of AlGaAs/GaAs and GaInAs/InP MD heterostructures significantly alters electron transport dynamics as measured by magnetoconductance fluctuations. This result demonstrates that small-angle scattering plays a far larger role than expected in influencing conduction properties. Funded by the Office of Naval Research, US Air Force, Australian Research Council, and Research Corporation for Science Advancement

  5. MBE growth and characterization of (100) and (631)-oriented modulation doped AlGaAs/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Mendez-Garcia, V. H.; González-Fernández, J. V.; Espinosa-Vega, L. I.; Díaz, T.; Romano, R.; Rosendo, E.; Gallardo, S.; Vázquez-Cortes, D.; Shimomura, S.

    2013-09-01

    In this work, the optical and electrical properties of simultaneously grown modulation-doped heterostructures (MDH) on (100)- and (631)-oriented GaAs substrates are investigated. Due to the amphoteric behavior of Si in AlGaAs doped films two dimensional electron (2DEG) and hole gas (2DHG) structures for the growth on (100) and (631) planes, respectively are obtained. Atomic force microscopy (AFM) revealed atomically flat surface for the (100)-MDH sample. On the contrary, (631)-MDH sustained uniform corrugation along [1¯13] after the growth of the GaAs films, which provoked anisotropic mobility of the carriers at 77 K as confirmed by the Hall effect in a double arm bar. By photoluminescence spectroscopy (PL) the band to band transition, carbon and Si-related lines were identified. The concentration of the ternary alloy and impurities were evaluated by secondary ion mass spectrometry.

  6. Controllable GMR device in a δ-doped, magnetically and electrically modulated, GaAs /Alx Ga1-x As heterostructure

    NASA Astrophysics Data System (ADS)

    Shen, Li-Hua; Zhang, Gui-Lian; Yang, Duan-Chui

    2016-09-01

    We report on a theoretical study of giant magnetoresistance (GMR) effect in a δ-doped GaAs /Alx Ga1-x As heterostructure modulated by two stripes of ferromagnetic metal and a stripe of Schottky metal in parallel configuration. The δ-doping dependent transmission and conductance of the device are calculated. It is shown that a considerable giant magnetoresistance (GMR) effect exists in this structure. It is also shown that the magnetoresistance ratio (MR) can be switched by the δ-doping. The underlying physical mechanism of the results is analysed in light of δ-doping-dependent tunneling process in the device.

  7. Modulation-Doped SrTiO3/SrTi1-xZrxO3 Heterostructures

    NASA Astrophysics Data System (ADS)

    Kajdos, Adam Paul

    surface reconstruction from (1x1) to (2x1) to c(4x4) is correlated with a change from mixed SrO/TiO2 to pure TiO2 surface termination. It is argued that optimal cation stoichiometry is achieved for growth conditions within the XRD-defined growth window that result in a c(4x4) surface lattice. The development of a doped perovskite oxide semiconductor with a suitable conduction band offset is then discussed as the next necessary step towards realizing modulation-doped heterostructures. The SrTixZr1-x O3 solid solution is investigated for this purpose, with a focus on optimizing cation stoichiometry to allow for controlled doping. In particular, the hybrid MBE growth of SrTixZr1-xO3 thin films is explored using a metal-organic precursor for Zr, zirconium tert-butoxide (ZTB). The successful generation of 2DEGs by modulation doping of SrTiO3 is then demonstrated in SrTiO3/La:SrTi0.95Zr0.05O 3 heterostructures, and the electronic structure is studied by Shubnikov-de Haas analysis using multiple-subband models.

  8. Optical investigation of InAs quantum dots inserted in AlGaAs/GaAs modulation doped heterostructure

    SciTech Connect

    Khmissi, H.; Baira, M.; Bouzaieene, L.; Saidi, F.; Maaref, H.; Sfaxi, L.; Bru-Chevallier, C.

    2011-03-01

    Optical properties of InAs quantum dots (QDs) inserted in AlGaAs/GaAs modulation doped heterostructure are investigated. To study the effect of carrier transfer behavior on the luminescence of self-assembled quantum dots, a series of sample has been prepared using molecular beam epitaxy (Riber 32 system) in which we have varied the thickness separating the delta dopage and the InAs quantum dots layer. Photoluminescence spectra show the existence of two peaks that can be attributed to transition energies from the ground state (E{sub 1}-HH{sub 1}) and the first excited state (E{sub 2}-HH{sub 2}). Two antagonist effects have been observed, a blue shift of the emission energies result from electron transferred from the AlGaAs/GaAs heterojunction to the InAs quantum dots and a red shift caused by the quantum confined Stark effect due to the internal electric field existing In the AlGaAs/GaAs heterojunction.

  9. High-field transport properties of InAs(x)P(1-x)/InP (x = 0.3-1.0) modulation doped heterostructures at 300 and 77 K

    NASA Technical Reports Server (NTRS)

    Yang, D.; Bhattacharya, P. K.; Hong, W. P.; Bhat, R.; Hayes, J. R.

    1992-01-01

    Detailed measurements at 300 and 77 K have been made of the high-field transport properties of pseudomorphic InAsP/InP modulation-doped heterostructures grown by low-pressure organometallic CVD. The high-field channel velocities are comparable to or better than that of InGaAs/InAlAs heterostructures, and the transport properties of InAs/InP heterostucture suggest that carriers remain confined in the channel even at high fields.

  10. Growth and characterization of metamorphic InxGa1-xAs/InAlAs (x >= 0.8) modulation doped heterostructures on GaAs using a linearly graded In(AlGa)as buffer layer

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Karlsson, C.; Rorsman, N.; Bergh, M.; Olsson, E.; Andersson, T. G.

    1997-01-01

    Metamorphic InxGa1-xAs/InAlAs (x >= 0.8) modulation doped heterostructures have been grown on GaAs using a linearly graded In(AlGa)As buffer layer, and their structural and electric properties have been investigated. Surface morphology was found to depend on growth temperature and graded buffer thickness. Low growth temperature resulted in a relatively smooth surface with a minimum root-mean-square roughness value of 4-7 nm. The In(AlGa)As graded buffer effectively prevented dislocations from threading into the top layers. The epilayer grown on the graded buffer was tilted and not fully relaxed. High electron mobility and sheet density were achieved. The highest mobility value was 13740 cm2/Vs with a carrier density of 1.9 · 1012 cm-2 at 300 K. These values are comparable with InP-based InGaAs/InAlAs modulation doped heterostructures.

  11. Correlation between sheet carrier density-mobility product and persistent photoconductivity in AlGaN/GaN modulation doped heterostructures

    SciTech Connect

    Li, J.Z.; Li, J.; Lin, J.Y.; Jiang, H.X.

    2000-07-01

    High quality Al{sub 0.25}Ga{sub 0.75}N/GaN modulation-doped heterojunction field-effect transistor (MOD-HFET) structures grown on sapphire substrates with high sheet carrier density and mobility products (n{sub s}{mu} > 10{sup 16}/Vs at room temperature) have been grown by metal organic chemical vapor deposition (MOCVD). The optimized structures were achieved by varying structural parameters, including the AlGaN spacer layer thickness, the Si-doped AlGaN barrier layer thickness, the Si-doping concentration, and the growth pressure. In these structures, the persistent photoconductivity (PPC) effect associated with the two-dimensional electron gas (2DEG) system was invariantly observed. As a consequence, the characteristic parameters of the 2DEG were sensitive to light and the sensitivity was associated with permanent photoinduced increases in the 2DEG carrier mobility (mu) and sheet carrier density (n{sub s}). However, the authors observed that the magnitude of the PPC and hence the photoinduced instability associated with these heterostructures were a strong function of only one parameter, the product of n{sub s} and {mu}, which is the most important parameter for the HFET device design. For a fixed excitation photon dose, the ratio of the low temperature PPC to the dark conductivity level was observed to decrease from 200% to 3% as the n{sub s}{mu} (300 K) product was increased from 0.048 x 10{sup 16}/Vs to 1.4 x 10{sup 16}/Vs. Based on their studies, the authors suggest that the magnitude of the low temperature PPC can be used as a sensitive probe for monitoring the electronic quality of the AlGaN/GaN HFET structures.

  12. Molecular-beam epitaxial growth and characterization of modulation-doped field-effect transistor heterostructures using InAs/GaAs superlattice channels

    SciTech Connect

    Baeta Moreira, M.V.; Py, M.A.; Ilegems, M.

    1993-05-01

    The molecular-beam epitaxial growth conditions of (N + 1)(InAs){sub m}/N(GaAsw){sub n} short period superlattices (SPSs) on GaAs substrates have been optimized. Hall electrical properties measured by the van der Pauw method were compared to low-temperature photoluminescence (77 K PL) spectra of GaAs/SPS/AlGaAs modulation-doped field-effect transistor-type heterostructures. By using these two characterization methods, the influences of the growth temperature T{sub s}, of the SPS channel thickness d{sub ch} and of its average indium composition y{sub m} were studied. Interesting correlations were established between their optical and their transport properties measured at 77 K either in the dark or under white-light illumination. The thickness m of the InAs layers was varied in the range 0.57 to 1.7 and sharp optimum properties were obtained slightly above m=1 monolayer.

  13. Direct evidence of the fermi-energy-dependent formation of Mn interstitials in modulation doped Ga1-yAlyAs/Ga1-xMnxAs/Ga1-yAlyAs heterostructures

    SciTech Connect

    Yu, K.M.; Walukiewicz, W.; Wojtowicz, T.; Lim, W.L.; Liu, X.; Dobrowolska, M.; Furdyna, J.K.

    2004-01-30

    Using ion channeling techniques, we investigate the lattice locations of Mn in Ga{sub 1-x}Mn{sub x}As quantum wells between Be-doped Ga{sub 1-y}Al{sub y}As barriers. The earlier results showed that the Curie temperature T{sub C} depends on the growth sequence of the epitaxial layers. A lower T{sub C} was found in heterostructures in which the Ga{sub 1-x}Mn{sub x}As layer is grown after the modulation-doped barrier. Here we provide direct evidence that this reduction in T{sub C} is directly correlated with an increased formation of magnetically inactive Mn interstitials. The formation of interstitials is induced by a shift of the Fermi energy as a result of the transfer of holes from the barrier to the quantum well during the growth.

  14. Negative terahertz conductivity in remotely doped graphene bilayer heterostructures

    SciTech Connect

    Ryzhii, V.; Ryzhii, M.; Mitin, V.; Shur, M. S.; Otsuji, T.

    2015-11-14

    Injection or optical generation of electrons and holes in graphene bilayers (GBLs) can result in the interband population inversion enabling the terahertz (THz) radiation lasing. The intraband radiative processes compete with the interband transitions. We demonstrate that remote doping enhances the indirect interband generation of photons in the proposed GBL heterostructures. Therefore, such remote doping helps to surpass the intraband (Drude) absorption, and results in large absolute values of the negative dynamic THz conductivity in a wide range of frequencies at elevated (including room) temperatures. The remotely doped GBL heterostructure THz lasers are expected to achieve higher THz gain compared with previously proposed GBL-based THz lasers.

  15. Nitrogen-related effects on low-temperature electronic properties of two-dimensional electron gas in very dilute nitride GaNxAs1-x/AlGaAs (x = 0 and 0.08%) modulation-doped heterostructures

    NASA Astrophysics Data System (ADS)

    Mootabian, Mahnaz; Eshghi, Hosein

    2013-07-01

    The low-temperature (4 K) two-dimensional (2D) electron gas mobility data versus carrier concentration in the modulation-doped dilute nitride GaAs1-xNx/Al0.3Ga0.7As (x = 0 and 0.08%) heterostructures are analyzed. Theoretical analysis is based on Fermi-Dirac statistics for the occupation of the quantum confined electronic states in the triangular quantum wells and the width of the quantum well versus 2D concentration. In addition, the mobility analysis is based on Matthiessen's rule for various scattering mechanisms. We found that the N-related neutral cluster alloy scattering together with crystal dislocations created at the interface strongly affects the electrons' mobility in the N-contained channel sample. We also found that as the electron concentration in the well increases from ˜1 × 1011 to 3.5 × 1011 cm-2 the carriers mainly occupy the first subband, tending to remain closer and closer to the hetero-interface.

  16. Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs /AlGaAs Heterostructure

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2016-04-01

    We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs /AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.

  17. Effect of an in-plane magnetic field and a δ-doping on the electron transport in a nonmagnetic heterostructure

    NASA Astrophysics Data System (ADS)

    Lu, Jian-Duo; Li, Yun-Bao; Peng, Shun-Jin; Liu, Hong-Yu; Wang, Yu-Hua; Chen, Hong

    2016-04-01

    The electron tunneling through a nonmagnetic heterostructure modulated by both the in-plane magnetic field and the δ-doping has been investigated in detail using the transfer-matrix method. The numerical results indicate that, in such a nonmagnetic device, one can obtain the considerable spin polarization which is dependent on the in-plane magnetic field and the δ-doping as well as the wave vector in the plane of the barrier. Thus, we can design the spintronic devices based on nonmagnetic heterostructures controlled by the in-plane magnetic field and the δ-doping as well as the wave vector.

  18. Modulated Binary-Ternary Dual Semiconductor Heterostructures.

    PubMed

    Prusty, Gyanaranjan; Guria, Amit K; Mondal, Indranil; Dutta, Anirban; Pal, Ujjwal; Pradhan, Narayan

    2016-02-18

    A generic modular synthetic strategy for the fabrication of a series of binary-ternary group II-VI and group I-III-VI coupled semiconductor nano-heterostructures is reported. Using Ag2 Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe-AgInSe2 , CdSe-AgGaSe2 , ZnSe-AgInSe2 , and ZnSe-AgGaSe2 . Among these, dispersive type-II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi-conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated. PMID:26800297

  19. Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Hu, Zhongqiang; Li, Qian; Li, Meiya; Wang, Qiangwen; Zhu, Yongdan; Liu, Xiaolian; Zhao, Xingzhong; Liu, Yun; Dong, Shuxiang

    2013-03-01

    We report a continuously tunable resistive switching behavior in Pt/BiFeO3/Nb-doped SrTiO3 heterostructure for ferroelectric memristor application. The resistance of this memristor can be tuned up to 5 × 105% by applying voltage pulses at room temperature, which exhibits excellent retention and anti-fatigue characteristics. The observed memristive behavior is attributed to the modulation effect of the ferroelectric polarization reversal on the width of depletion region and the height of potential barrier of the p-n junction formed at the BiFeO3/Nb-doped SrTiO3 interface.

  20. Electronic properties of embedded graphene: doped amorphous silicon/CVD graphene heterostructures.

    PubMed

    Arezki, Hakim; Boutchich, Mohamed; Alamarguy, David; Madouri, Ali; Alvarez, José; Cabarrocas, Pere Roca I; Kleider, Jean-Paul; Yao, Fei; Hee Lee, Young

    2016-10-12

    Large-area graphene film is of great interest for a wide spectrum of electronic applications, such as field effect devices, displays, and solar cells, among many others. Here, we fabricated heterostructures composed of graphene (Gr) grown by chemical vapor deposition (CVD) on copper substrate and transferred to SiO2/Si substrates, capped by n‑ or p-type doped amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition. Using Raman scattering we show that despite the mechanical strain induced by the a-Si:H deposition, the structural integrity of the graphene is preserved. Moreover, Hall effect measurements directly on the embedded graphene show that the electronic properties of CVD graphene can be modulated according to the doping type of the a-Si:H as well as its phase i.e. amorphous or nanocrystalline. The sheet resistance varies from 360 Ω sq(-1) to 1260 Ω sq(-1) for the (p)-a-Si:H/Gr (n)-a-Si:H/Gr, respectively. We observed a temperature independent hole mobility of up to 1400 cm(2) V(-1) s(-1) indicating that charge impurity is the principal mechanism limiting the transport in this heterostructure. We have demonstrated that embedding CVD graphene under a-Si:H is a viable route for large scale graphene based solar cells or display applications. PMID:27506254

  1. Radial modulation doping in core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Dillen, David C.; Kim, Kyounghwan; Liu, En-Shao; Tutuc, Emanuel

    2014-02-01

    Semiconductor nanowires are potential candidates for applications in quantum information processing, Josephson junctions and field-effect transistors and provide a unique test bed for low-dimensional physical phenomena. The ability to fabricate nanowire heterostructures with atomically flat, defect-free interfaces enables energy band engineering in both axial and radial directions. The design of radial, or core-shell, nanowire heterostructures relies on energy band offsets that confine charge carriers into the core region, potentially reducing scattering from charged impurities on the nanowire surface. Key to the design of such nanoscale heterostructures is a fundamental understanding of the heterointerface properties, particularly energy band offsets and strain. The charge-transfer and confinement mechanism can be used to achieve modulation doping in core-shell structures. By selectively doping the shell, which has a larger bandgap, charge carriers are donated and confined in the core, generating a quasi-one-dimensional electron system with higher mobility. Here, we demonstrate radial modulation doping in coherently strained Ge-SixGe1-x core-shell nanowires and a technique to directly measure their valence band offset. Radial modulation doping is achieved by incorporating a B-doped layer during epitaxial shell growth. In contrast to previous work showing site-selective doping in Ge-Si core-shell nanowires, we find both an enhancement in peak hole mobility compared with undoped nanowires and observe a decoupling of electron transport in the core and shell regions. This decoupling stems from the higher carrier mobility in the core than in the shell and allows a direct measurement of the valence band offset for nanowires of various shell compositions.

  2. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping

    SciTech Connect

    Lin, Shisheng Chen, Hongsheng; Li, Xiaoqiang; Zhang, Shengjiao; Wang, Peng; Xu, Zhijuan; Zhong, Huikai; Wu, Zhiqian

    2015-11-09

    We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.

  3. Graphene/CdTe heterostructure solar cell and its enhancement with photo-induced doping

    NASA Astrophysics Data System (ADS)

    Lin, Shisheng; Li, Xiaoqiang; Zhang, Shengjiao; Wang, Peng; Xu, Zhijuan; Zhong, Huikai; Wu, Zhiqian; Chen, Hongsheng

    2015-11-01

    We report a type of solar cell based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.10%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by field effect transport, Raman, photoluminescence, and quantum efficiency measurements. This work demonstrates a feasible way of improving the performance of graphene/semiconductor heterostructure solar cells by combining one dimensional with two dimensional materials.

  4. Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Mohan Kumar, G.; Ilanchezhiyan, P.; Madhan Kumar, A.; Yuldashev, Sh. U.; Kang, T. W.

    2016-04-01

    A hybrid structure based on p-type polypyrolle (PPy) and n-type aluminum (Al) doped ZnO nanorods was successfully constructed. The effect of Al doping on material properties of wurtzite structured ZnO were studied using several analytical techniques. To establish the desired hybrid structure, pyrrole monomers were polymerized on hydrothermally grown Al doped ZnO nanorods by chemical polymerization. The current-voltage characteristics on the fabricated PPy/Al doped ZnO heterostructures were found to exhibit excellent rectifying characteristics under dark and illumination conditions. The obtained results augment the prescribed architecture to be highly suitable for high-sensitivity optoelectronic applications.

  5. Indirect doping effects from impurities in MoS2/h-BN heterostructures

    NASA Astrophysics Data System (ADS)

    Gillen, Roland; Robertson, John; Maultzsch, Janina

    2014-08-01

    We performed density functional theory calculations on heterostructures of single layers of hexagonal BN and MoS2 to assess the effect of doping in the BN sheet and of interstitial Na atoms on the electronic properties of the adjacent MoS2 layer. Our calculations predict that n doping of the boron nitride subsystem by oxygen, carbon, and sulfur impurities causes noticeable charge transfer into the conduction band of the MoS2 sheet, while p doping by beryllium and carbon leaves the molybdenum disulphide layer largely unaffected. Intercalated sodium atoms lead to a significant increase of the interlayer distance in the heterostructure and to a metallic ground state of the MoS2 subsystem. The presence of such n dopants leads to a distinct change of valence-band and conduction-band offsets, suggesting that doped h-BN remains a suitable substrate and gate material for applications of n-type MoS2.

  6. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    NASA Astrophysics Data System (ADS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-05-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov-de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov-de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of negatively

  7. Analysis of optical gain threshold in n-doped and tensile-strained germanium heterostructure diodes

    NASA Astrophysics Data System (ADS)

    Prost, M.; El Kurdi, M.; Aniel, F.; Zerounian, N.; Sauvage, S.; Checoury, X.; BÅ`uf, F.; Boucaud, P.

    2015-09-01

    The optical emission of germanium-based luminescent and/or laser devices can be enhanced by tensile strain and n-type doping. In this work, we study by simulation the interplay between electrical transport and optical gain in highly n-doped and intrinsic germanium p-n heterostructure diodes under tensile strain. The effects of strain and doping on carrier mobilities and energy distribution are taken into account. Whereas the n-doping of Ge enhances the filling of the indirect L and Brillouin zone-center conduction band states, the n-doping also reduces the carrier injection efficiency, which is detrimental for the achievement of optical gain at reduced current densities. For applied biaxial strains larger than 1.25%, i.e., far before reaching the cross-over from indirect to direct band gap regime, undoped germanium exhibits a lower optical gain threshold as compared to doped germanium. We also show that the threshold current needed to reach transparency in germanium heterostructures has been significantly underestimated in the previous works.

  8. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    PubMed Central

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  9. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures.

    PubMed

    Veal, Boyd W; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M; Eastman, Jeffrey A

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  10. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-06-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.

  11. Charge carrier transport and separation in pristine and nitrogen-doped graphene nanowiggle heterostructures

    DOE PAGESBeta

    Lherbier, Aurélien; Liang, Liangbo; Charlier, Jean -Christophe; Meunier, Vincent

    2015-09-03

    Electronic structure methods are combined into a multiscale framework to investigate the electronic transport properties of recently synthesized pristine and nitrogen-doped graphene nanowiggles and their heterojunctions deposited on a substrate. The real-space Kubo-Greenwood transport calculations reveal that charge carrier mobilities reach values up to 1,000 cm2 V–1 s–1 as long as the amount of substrate impurities is sufficiently low. Owing to their type-II band alignment, atomically precise heterostructures between pristine and N-doped graphene nanowiggles are predicted to be excellent candidates for charge carrier separation devices with potential in photoelectric and photocatalytic water splitting applications.

  12. Modulation of over 10{sup 14} cm{sup −2} electrons in SrTiO{sub 3}/GdTiO{sub 3} heterostructures

    SciTech Connect

    Boucherit, M.; Shoron, O.; Polchinski, C.; Jackson, C. A.; Cain, T. A.; Buffon, M. L. C.; Stemmer, S.; Rajan, S.

    2014-05-05

    We demonstrate charge modulation of over 10{sup 14} cm{sup −2} electrons in a two-dimensional electron gas formed in SrTiO{sub 3}/GdTiO{sub 3} inverted heterostructure field-effect transistors. Increased charge modulation was achieved by reducing the effect of interfacial region capacitances through thick SrTiO{sub 3} cap layers. Transport and device characteristics of the heterostructure field-effect transistors were found to match a long channel field effect transistor model. SrTiO{sub 3} impurity doped metal–semiconductor field effect transistors were also demonstrated with excellent pinch-off and current density exceeding prior reports. The work reported here provides a path towards oxide-based electronics with extreme charge modulation exceeding 10{sup 14} cm{sup −2}.

  13. Doping Graphene Transistors Using Vertical Stacked Monolayer WS2 Heterostructures Grown by Chemical Vapor Deposition.

    PubMed

    Tan, Haijie; Fan, Ye; Rong, Youmin; Porter, Ben; Lau, Chit Siong; Zhou, Yingqiu; He, Zhengyu; Wang, Shanshan; Bhaskaran, Harish; Warner, Jamie H

    2016-01-27

    We study the interactions in graphene/WS2 two-dimensional (2D) layered vertical heterostructures with variations in the areal coverage of graphene by the WS2. All 2D materials were grown by chemical vapor deposition and transferred layer by layer. Photoluminescence (PL) spectroscopy of WS2 on graphene showed PL quenching along with an increase in the ratio of exciton/trion emission, relative to WS2 on SiO2 surface, indicating a reduction in the n-type doping levels of WS2 as well as reduced radiative recombination quantum yield. Electrical measurements of a total of 220 graphene field effect transistors with different WS2 coverage showed double-Dirac points in the field effect measurements, where one is shifted closer toward the 0 V gate neutrality position due to the WS2 coverage. Photoirradiation of the WS2 on graphene region caused further Dirac point shifts, indicative of a reduction in the p-type doping levels of graphene, revealing that the photogenerated excitons in WS2 are split across the heterostructure by electron transfer from WS2 to graphene. Kelvin probe microscopy showed that regions of graphene covered with WS2 had a smaller work function and supports the model of electron transfer from WS2 to graphene. Our results demonstrate the formation of junctions within a graphene transistor through the spatial tuning of the work function of graphene using these 2D vertical heterostructures. PMID:26756350

  14. Intrinsic Spin-Orbit Coupling in Superconducting Delta-Doped SrTiO3 Heterostructures

    SciTech Connect

    Bell, Christopher

    2011-08-19

    We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO{sub 3} heterostructures. Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting upper critical field, exceeding the Pauli limit by a factor of 4. Transport scattering times several orders of magnitude higher than for conventional thin film superconductors enables a new regime to be entered, where spin-orbit coupling effects arise non-perturbatively.

  15. Electronic properties of C-doped (100) AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Grbić, B.; Ellenberger, C.; Ihn, T.; Ensslin, K.; Reuter, D.; Wieck, A. D.

    2005-06-01

    Carbon doped p-type AlGaAs heterostructures are investigated by low-temperature magnetotransport measurements. High quality of such two dimensional hole gases is demonstrated by observing sharp integer plateaus in Hall resistance as well as features of fractional quantum Hall effect at filling factors 4/3 and 5/3. The observed beating pattern of low-field Shubnikov-de Haas oscillations represents clear evidence for the existence of the two spin-split subbands which arise from strong spin-orbit coupling in hole systems.

  16. Intraband absorption in self-assembled Ge-doped GaN/AlN nanowire heterostructures.

    PubMed

    Beeler, M; Hille, P; Schörmann, J; Teubert, J; de la Mata, M; Arbiol, J; Eickhoff, M; Monroy, E

    2014-03-12

    We report the observation of transverse-magnetic-polarized infrared absorption assigned to the s-p(z) intraband transition in Ge-doped GaN/AlN nanodisks (NDs) in self-assembled GaN nanowires (NWs). The s-p(z) absorption line experiences a blue shift with increasing ND Ge concentration and a red shift with increasing ND thickness. The experimental results in terms of interband and intraband spectroscopy are compared to theoretical calculations of the band diagram and electronic structure of GaN/AlN heterostructured NWs, accounting for their three-dimensional strain distribution and the presence of surface states. From the theoretical analysis, we conclude that the formation of an AlN shell during the heterostructure growth applies a uniaxial compressive strain which blue shifts the interband optical transitions but has little influence on the intraband transitions. The presence of surface states with density levels expected for m-GaN plane charge-deplete the base of the NWs but is insufficient to screen the polarization-induced internal electric field in the heterostructures. Simulations show that the free-carrier screening of the polarization-induced internal electric field in the NDs is critical to predicting the photoluminescence behavior. The intraband transitions, on the other hand, are blue-shifted due to many-body effects, namely, the exchange interaction and depolarization shift, which exceed the red shift induced by carrier screening. PMID:24502703

  17. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure

    NASA Astrophysics Data System (ADS)

    Fan, Yabin; Upadhyaya, Pramey; Kou, Xufeng; Lang, Murong; Takei, So; Wang, Zhenxing; Tang, Jianshi; He, Liang; Chang, Li-Te; Montazeri, Mohammad; Yu, Guoqiang; Jiang, Wanjun; Nie, Tianxiao; Schwartz, Robert N.; Tserkovnyak, Yaroslav; Wang, Kang L.

    2014-07-01

    Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures (HMFHs) have drawn great attention to spin torques arising from large spin-orbit coupling (SOC). Given the intrinsic strong SOC, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics. Here we demonstrate experimentally the magnetization switching through giant SOT induced by an in-plane current in a chromium-doped TI bilayer heterostructure. The critical current density required for switching is below 8.9 × 104 A cm-2 at 1.9 K. Moreover, the SOT is calibrated by measuring the effective spin-orbit field using second-harmonic methods. The effective field to current ratio and the spin-Hall angle tangent are almost three orders of magnitude larger than those reported for HMFHs. The giant SOT and efficient current-induced magnetization switching exhibited by the bilayer heterostructure may lead to innovative spintronics applications such as ultralow power dissipation memory and logic devices.

  18. Nanoscale Control of Rewriteable Doping Patterns in Pristine Graphene/Boron Nitride Heterostructures.

    PubMed

    Velasco, Jairo; Ju, Long; Wong, Dillon; Kahn, Salman; Lee, Juwon; Tsai, Hsin-Zon; Germany, Chad; Wickenburg, Sebastian; Lu, Jiong; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael F

    2016-03-01

    Nanoscale control of charge doping in two-dimensional (2D) materials permits the realization of electronic analogs of optical phenomena, relativistic physics at low energies, and technologically promising nanoelectronics. Electrostatic gating and chemical doping are the two most common methods to achieve local control of such doping. However, these approaches suffer from complicated fabrication processes that introduce contamination, change material properties irreversibly, and lack flexible pattern control. Here we demonstrate a clean, simple, and reversible technique that permits writing, reading, and erasing of doping patterns for 2D materials at the nanometer scale. We accomplish this by employing a graphene/boron nitride heterostructure that is equipped with a bottom gate electrode. By using electron transport and scanning tunneling microscopy (STM), we demonstrate that spatial control of charge doping can be realized with the application of either light or STM tip voltage excitations in conjunction with a gate electric field. Our straightforward and novel technique provides a new path toward on-demand graphene p-n junctions and ultrathin memory devices. PMID:26852622

  19. Manipulable GMR Effect in a δ-Doped Magnetically Confined Semiconductor Heterostructure

    NASA Astrophysics Data System (ADS)

    Jiang, Ya-Qing; Lu, Mao-Wang; Huang, Xin-Hong; Yang, Shi-Peng; Tang, Qiang

    2016-06-01

    A giant magnetoresistance (GMR) device formed by depositing two parallel nanosized ferromagnetic strips on top of a semiconductor heterostructure has been proposed theoretically (Zhai et al. in Phys Rev B 66:125305, 2002). For the sake of manipulating its performance, we introduce a tunable δ-potential into this device with the help of atomic-layer doping techniques such as molecular beam epitaxy (MBE) or metal-organic chemical-vapor deposition. We investigate theoretically the impact of such δ-doping on the magnetoresistance ratio (MR) of the GMR device. We find that, although the δ-doping is embedded in the device, a considerable GMR effect still exists due to the significant difference in electronic transmission between parallel (P) and antiparallel (AP) configurations. Moreover, the calculated results show that the MR of the GMR device varies sensitively with the weight and/or position of the δ-doping. Thus, the GMR device can be controlled by changing the δ-doping to obtain an adjustable GMR device for magnetoelectronics applications.

  20. Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Fan, Fei; Chen, Meng; Chen, Sai; Chang, Sheng-Jiang

    2016-07-01

    An optically pumped terahertz (THz) modulator based on a MoS2-Si heterostructure metasurface are fabricated and investigated in this paper. The THz wave modulation in MoS2 metasurface has been demonstrated by THz time domain spectroscopy experiment and numerical simulation, which can reach over 90% under the continuous wave laser pumping of 4W/cm2 power density. Importantly, the catalysis of photocarrier generation in MoS2-Si heterostructure has been proved by the comparsion between the modulation depth of metasurface with and without MoS2 nanosheet under the same pumping power, and we found that the strcuture of metasurface and polariztion direction can also influence the photocarrier density in MoS2 metasurface. This novel THz modulator based on 2D material has a high effective modulation on THz waves under a low pumping power, which has a bright potential in THz applications.

  1. Charge carrier transport and separation in pristine and nitrogen-doped graphene nanowiggle heterostructures

    SciTech Connect

    Lherbier, Aurélien; Liang, Liangbo; Charlier, Jean -Christophe; Meunier, Vincent

    2015-09-03

    Electronic structure methods are combined into a multiscale framework to investigate the electronic transport properties of recently synthesized pristine and nitrogen-doped graphene nanowiggles and their heterojunctions deposited on a substrate. The real-space Kubo-Greenwood transport calculations reveal that charge carrier mobilities reach values up to 1,000 cm2 V–1 s–1 as long as the amount of substrate impurities is sufficiently low. Owing to their type-II band alignment, atomically precise heterostructures between pristine and N-doped graphene nanowiggles are predicted to be excellent candidates for charge carrier separation devices with potential in photoelectric and photocatalytic water splitting applications.

  2. Photoluminescence lineshape features of carbon δ-doped GaAs heterostructures.

    PubMed

    Schuster, J; Kim, T Y; Batke, E; Reuter, D; Wieck, A D

    2012-04-25

    Photoluminescence lineshape properties of quasi-two-dimensional electron systems in setback δ-doped GaAs heterostructures are studied at liquid helium temperature. Contributions from the ground and the first excited two-dimensional subband are clearly observed. A simple fit to the lineshape including broadening demonstrates that there is an exponential low-energy tail associated with the ground subband. No such tail is observed for the first excited subband. The fit precisely reveals the subband bottom energies, the Fermi energy, the electron temperature and the recombination intensities. A self-consistent calculation of subband properties including the potential contribution of the setback δ-doping reproduces well the subband properties and the recombination intensities. PMID:22446024

  3. Field-effect-induced two-dimensional electron gas utilizing modulation doping for improved ohmic contacts

    NASA Astrophysics Data System (ADS)

    Mondal, Sumit; Gardner, Geoff; Watson, John; Manfra, Micheal J.

    2014-03-01

    Recently there has been a significant interest in the use of GaAs-based quantum dots for spin qubits. Progress is hindered by the presence of charge noise in modulation doped heterostructures where fluctuations occurring in the remote ionized dopant layer couple to the qubit. In this work we demonstrate the experimental realization of a new field effect transistor (FET) device where the active channel region is locally devoid of the silicon doping layer and hence precludes the possibility of charge fluctuations on ionized dopants causing instability. The underlying heterostructure was grown by molecular beam epitaxy and is designed with an etch-stop between the silicon delta-doping layer and single interface GaAs/AlGaAs heterojunction that facilitates removal of the modulation doping at precise locations defined by lithography. The resulting 2DEG is induced by a field-effect and the density is tunable in a wide range of 6X1010 cm-2 to 2.7X1011 cm-2. The design, fabrication, and operation of these devices along with low temperature (T = 0.3K) transport data is presented.

  4. Investigation of As-doped ZnO films synthesized via thermal annealing of ZnSe/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, O.; Liu, B. Z.

    2008-06-01

    We synthesized ZnO films via oxidative annealing of ZnSe/GaAs heterostructures and investigated their structural and optical properties. Films were polycrystalline, c-axis oriented and exhibited superior optical properties. In addition, we detected nanometer-size As clusters into the ZnO film and a Ga xO y layer at the ZnO/GaAs interface. Formation of an interfacial layer can prevent use of this technique for p-type doping and complicates identification of the origin of p-type response in the annealed ZnO/GaAs heterostructures.

  5. Electron scattering by native defects in uniformly and modulation doped semiconductor structures

    SciTech Connect

    Walukiewicz, W.

    1989-11-01

    Formation of native defects in GaAs is described in terms of the amphoteric native defect model. It is shown that Fermi energy induced formation of gallium vacancies is responsible for the limitations of maximum free electron concentration in GaAs. The effect of the defects on electron mobility in heavily doped n-GaAs is quantitatively evaluated. Defect scattering explains the abrupt reduction of electron mobility at high doping levels. Also, it is demonstrated that native defects are responsible for the mobility reduction in inverted modulation doped GaAs/AlGaAs heterostructures. The amphoteric defect model also explains a distinct asymmetry in defect formation in n- and p-GaAs. In p-GaAs the Fermi level induced reduction of the defect formation energy is much smaller, and therefore the concentration of the native defects is negligible compared with the hole concentration. 43 refs., 5 figs.

  6. Highly Luminescent Heterostructured Copper-Doped Zinc Sulfide Nanocrystals for Application in Cancer Cell Labeling.

    PubMed

    Ang, Huixiang; Bosman, Michel; Thamankar, Ramesh; Zulkifli, Muhammad Faizal B; Yen, Swee Kuan; Hariharan, Anushya; Sudhaharan, Thankiah; Selvan, Subramanian Tamil

    2016-08-18

    The structural characteristics of the seed-mediated synthesis of heterostructured CuS-ZnS nanocrystals (NCs) and Cu-doped ZnS (ZnS:Cu) NCs synthesized by two different protocols are compared and analyzed. At high Cu dopant concentrations, segregated subclusters of ZnS and CuS are observed. The photoluminescence quantum yield of ZnS:Cu NCs is about 50-80 %; a value much higher than that of ZnS NCs (6 %). Finally, these NCs are coated with a thin silica shell by using (3-mercaptopropyl)triethoxysilane in a reverse microemulsion to make them water soluble. Cytotoxicity experiments show that these silica-coated NCs have greatly reduced toxicity on both cancerous HeLa and noncancerous Chinese hamster ovary cells. The labeling of cancerous HeLa cells is also demonstrated. PMID:27146419

  7. Field-effect-induced two-dimensional electron gas utilizing modulation-doped ohmic contacts

    NASA Astrophysics Data System (ADS)

    Mondal, Sumit; Gardner, Geoffrey C.; Watson, John D.; Fallahi, Saeed; Yacoby, Amir; Manfra, Michael J.

    2014-11-01

    Modulation-doped AlGaAs/GaAs heterostructures are utilized extensively in the study of quantum transport in nanostructures, but charge fluctuations associated with remote ionized dopants often produce deleterious effects. Electric field-induced carrier systems offer an attractive alternative if certain challenges can be overcome. We demonstrate a field-effect transistor in which the active channel is locally devoid of modulation-doping, but silicon dopant atoms are retained in the ohmic contact region to facilitate reliable low-resistance contacts. A high quality two-dimensional electron gas is induced by a field-effect and is tunable over a wide range of density. Device design, fabrication, and low temperature (T=0.3 K) transport data are reported.

  8. Electric-field-modulated nonvolatile resistance switching in VO₂/PMN-PT(111) heterostructures.

    PubMed

    Zhi, Bowen; Gao, Guanyin; Xu, Haoran; Chen, Feng; Tan, Xuelian; Chen, Pingfan; Wang, Lingfei; Wu, Wenbin

    2014-04-01

    The electric-field-modulated resistance switching in VO2 thin films grown on piezoelectric (111)-0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 (PMN-PT) substrates has been investigated. Large relative change in resistance (10.7%) was observed in VO2/PMN-PT(111) hererostructures at room temperature. For a substrate with a given polarization direction, stable resistive states of VO2 films can be realized even when the applied electric fields are removed from the heterostructures. By sweeping electric fields across the heterostructure appropriately, multiple resistive states can be achieved. These stable resistive states result from the different stable remnant strain states of substrate, which is related to the rearrangements of ferroelectric domain structures in PMN-PT(111) substrate. The resistance switching tuned by electric field in our work may have potential applications for novel electronic devices. PMID:24634978

  9. Film size-dependent voltage-modulated magnetism in multiferroic heterostructures

    PubMed Central

    Hu, J.-M.; Shu, L.; Li, Z.; Gao, Y.; Shen, Y.; Lin, Y. H.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    The electric-voltage-modulated magnetism in multiferroic heterostructures, also known as the converse magnetoelectric (ME) coupling, has drawn increasing research interest recently owing to its great potential applications in future low-power, high-speed electronic and/or spintronic devices, such as magnetic memory and computer logic. In this article, based on combined theoretical analysis and experimental demonstration, we investigate the film size dependence of such converse ME coupling in multiferroic magnetic/ferroelectric heterostructures, as well as exploring the interaction between two relating coupling mechanisms that are the interfacial strain and possibly the charge effects. We also briefly discuss some issues for the next step and describe new device prototypes that can be enabled by this technology. PMID:24421375

  10. Manipulating surface-related ferromagnetism in modulation-doped topological insulators.

    PubMed

    Kou, Xufeng; He, Liang; Lang, Murong; Fan, Yabin; Wong, Kin; Jiang, Ying; Nie, Tianxiao; Jiang, Wanjun; Upadhyaya, Pramey; Xing, Zhikun; Wang, Yong; Xiu, Faxian; Schwartz, Robert N; Wang, Kang L

    2013-10-01

    A new class of devices based on topological insulators (TI) can be achieved by the direct engineering of the time-reversal-symmetry (TRS) protected surface states. In the meantime, a variety of interesting phenomena are also expected when additional ferromagnetism is introduced to the original topological order. In this Letter, we report the magnetic responses from the magnetically modulation-doped (Bi(z)Sb(1-z))2Te3/Cr(x)(Bi(y)Sb(1-y))2Te3 bilayer films. By electrically tuning the Fermi level across the Dirac point, we show that the top TI surface carriers can effectively mediate the magnetic impurities and generate robust ferromagnetic order. More importantly, such surface magneto-electric effects can be either enhanced or suppressed, depending on the magnetic interaction range inside the TI heterostructures. The manipulation of surface-related ferromagnetism realized in our modulation-doped TI device is important for the realization of TRS-breaking topological physics, and it may also lead to new applications of TI-based multifunctional heterostructures. PMID:24020459

  11. An analysis of doping modulated superlattice structures

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.

    1985-01-01

    A new method of growing doping modulated superlattice structures is discussed. This method uses organo-metallic chemical vapor deposition (MO-CVD) with the added feature of controlled plasma in the growth regions. The main objective was to study how the growth environment affected the electronic and optical properties of the superlattice structures. Because a serious safety hazard was discovered in the growth process, no superlattice structures were fabricated and the research on this material had to be terminated. The hazard had to do with the lack of adequate means for the disposal of toxic elemental beryllium.

  12. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    SciTech Connect

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; Ren, Yuan; Vasudevan, Rama K.; Okatan, Mahmut Baris; Jesse, Stephen; Aoki, Toshihiro; McCartney, Martha; Smith, David J.; Kalinin, Sergei V.; Lai, Keji; Demkov, Alexander A.

    2015-01-14

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-loss spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.

  13. A structurally-controllable spin filter in a δ-doped magnetically modulated semiconductor nanostructure with zero average magnetic field

    NASA Astrophysics Data System (ADS)

    Shen, Li-Hua; Ma, Wen-Yue; Zhang, Gui-Lian; Yang, Shi-Peng

    2015-07-01

    We report on a theoretical investigation of spin-polarized transport in a δ-doped magnetically modulated semiconductor nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe on the top of a semiconductor heterostructure and by using the atomic layer doping technique such as molecular beam epitaxy (MBE). It is shown that although such a nanostructure has a zero average magnetic filed, a sizable spin polarization exists due to the Zeeman splitting mechanism. It is also shown that the degree of spin polarization varies sensitively with the weight and/or position of the δ-doping. Therefore, one can conveniently tailor the behaviour of the spin-polarized electron by tuning the δ -doping, and such a device can be employed as a controllable spin filter for spintronics.

  14. Fabrication and characterization of a-oriented TbFeO3/Nb-doped SrTiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Li, P. G.; Li, W. L.; Zhang, M.; An, Y. H.; Guo, D. Y.; Wu, Z. P.; Lei, M.; Wang, S. L.; Shen, J. Q.; Xiao, J. H.; Tang, W. H.

    2015-01-01

    The a-axis oriented TbFeO3, (TFO) thin film was epitaxially grown on (001) Nb-1 wt.%-doped SrTiO3 (Nb-STO) single crystal substrate to construct a heterostructure. The heterostructure exhibited a good rectifying behavior over the temperature range of 25-300 K, and the rectification ratio was continuously enhanced with increasing temperature. In positive bias direction, transport mechanism of the heterostructure showed a crossover from the Schottky-emission-like to a space-charge-limited type at 120 K, the temperature at which the TFO shows a magnetic ordering, while in the negative bias direction it was solely dominated by the space-charge-limited mechanism. The result indicates that coupling between electrical and magnetic orders can influence the rectifying behavior of the heterostructure. The observation hints the possibility to tune rectifying properties of a heterostructure via influencing magnetic properties of the magnetic layer.

  15. Carrier Density Modulation in Ge Heterostructure by Ferroelectric Switching

    DOE PAGESBeta

    Ponath, Patrick; Fredrickson, Kurt; Posadas, Agham B.; Ren, Yuan; Vasudevan, Rama K.; Okatan, Mahmut Baris; Jesse, Stephen; Aoki, Toshihiro; McCartney, Martha; Smith, David J.; et al

    2015-01-14

    The development of nonvolatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching, and measurable semiconductor modulation. Here we report a true ferroelectric field effect carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in the epitaxial c-axis-oriented BaTiO3 (BTO) grown by molecular beam epitaxy (MBE) on Ge. Using density functional theory, we demonstrate that switching of BTO polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms the interface sharpness, and BTO tetragonality. Electron-energy-lossmore » spectroscopy (EELS) indicates the absence of any low permittivity interlayer at the interface with Ge. Using piezoelectric force microscopy (PFM), we confirm the presence of fully switchable, stable ferroelectric polarization in BTO that appears to be single domain. Using microwave impedance microscopy (MIM), we clearly demonstrate a ferroelectric field effect.« less

  16. Doping modulated carbon nanotube synapstors for a spike neuromorphic module.

    PubMed

    Shen, Alex Ming; Kim, Kyunghyun; Tudor, Andrew; Lee, Dongwon; Chen, Yong

    2015-04-01

    A doping-modulated carbon nanotube (CNT) electronic device, called a "synapstor," emulates the function of a biological synapse. The CNT synapstor has a field-effect transistor structure with a random CNT network as its channel. An aluminium oxide (Al2 O3 ) film is deposited over half of the CNT channel in the synapstor, converting the covered part of the CNT from p-type to n-type, forming a p-n junction in the CNT channel and increasing the Schottky barrier between the n-type CNT and its metal contact. This scheme significantly improves the postsynaptic current (PSC) from the synapstor, extends the tuning range of the plasticity, and reduces the power consumption of the CNT synapstor. A spike neuromorphic module is fabricated by integrating the CNT synapstors with a Si-based "soma" circuit. Spike parallel processing, memory, and plasticity functions of the module are demonstrated. The module could potentially be integrated and scaled up to emulate a biological neural network with parallel high-speed signal processing, low power consumption, memory, and learning capabilities. PMID:25423906

  17. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation.

    PubMed

    Shih, Chih-Jen; Wang, Qing Hua; Son, Youngwoo; Jin, Zhong; Blankschtein, Daniel; Strano, Michael S

    2014-06-24

    Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics. PMID:24824139

  18. Simulation of the effective concentration profiles in InGaAs/GaAs heterostructures containing δ-doped layers

    SciTech Connect

    Khazanova, S. V. Degtyarev, V. E.; Tikhov, S. V.; Baidus, N. V.

    2015-01-15

    InGaAs/GaAs heterostructures containing quantum wells and δ-doped layers are studied theoretically and experimentally. On the basis of the procedure of self-consistently solving the Schrödinger equation and Poisson equation, the differential capacitance and the apparent electron concentration profiles are numerically calculated for structures with different mutual arrangements of the quantum well and the δ layer. The results of the calculations are compared with the result of analyzing the experimental capacitance-voltage characteristics of the structures. The systematic features of the behavior of the apparent concentration profiles and capacitance-voltage characteristics in relation to the geometric properties of the structure, the temperature, and the doping level are established.

  19. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  20. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    PubMed Central

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  1. Scalable digital spatial light modulator-micromesh heterostructures for real time wave optical applications.

    PubMed

    Jeong, Hoon; Choi, Jaewu

    2014-09-22

    For large-scale real time wave optical applications, we propose and demonstrate scalable simple digital spatial light modulator (SLM)-micromesh (μM) heterostructures, which fully harness ubiquitous well developed consumer information displays for real time large-scale SLMs and advanced patterning technologies for promoting the wave optical properties of SLMs of any size. Weakly diffractive projection mode large-scale SLMs with poor demultiplexity are transformed to highly diffractive mode heterostructures with fine patterned micromeshes as efficient demultiplexers or wave optical promoters. As a result, diffraction efficiency, diffraction angle, demultiplexity, multiplexity, reconstructed image quality and numbers of visibly reconstructed images largely increase even though the pixel pitches of the employed SLMs are many orders of magnitude larger than the wavelength of the illuminating light. The approach shown in this study can be applicable even for any sized weakly diffractive SLMs, and can simultaneously increase the effective spatial bandwidth and the physical dimension required for their wave optical applications. This can't be achieved by presently available SLMs alone. PMID:25321757

  2. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures.

    PubMed

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-01-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices. PMID:26954833

  3. High-performance modulation-doped AlGaAs/InGaAs thermopiles for uncooled infrared FPA application

    NASA Astrophysics Data System (ADS)

    Abe, M.; Abe, Y.; Kogushi, N.; Ang, K. S.; Hofstetter, R.; Wang, H.; Ng, G. I.

    2013-07-01

    Novel thermopile based on modulation doped AlGaAs/InGaAs heterostructures is proposed and developed for the first time, for uncooled infrared FPA (Focal Plane Array) image sensor application. The high responsivity with the high speed response time are designed to be 4900 V/W with 110 μs under the 2 μm design rule. Based on integrated HEMT-MEMS technology, the 32 × 32 matrix FPA is fabricated to demonstrate its enhanced performances by black body measurement. The technology presented here demonstrates the potential of this approach for low-cost uncooled infrared FPA image sensor application.

  4. Manipulating Surface-induced Ferromagnetism in Modulation-doped Topological Insulators

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng; He, Liang; Lang, Murong; Fan, Yabin; Jiang, Ying; Wang, Yong; Xiu, Faxian; Wang, Kang; Device Research Laboratory Team; CenterElectron Microscopy; State Key Laboratory of Silicon Materials Collaboration; ECE Department Collaboration

    2013-03-01

    The manipulation of topological surface states is a key to realize applicable devices of topological insulators. In addition to the direct engineering of time-reversal-symmetry protected surface states, recent work suggests that various physical responses can be obtained from surface helical states by integrating additional ferromagnetism or superconductivity to the original topological order. Here, we report the coexistence and tunability of bulk carrier density-independent and surface-mediated electrically controllable ferromagnetisms in modulation-doped Crx(BiySb1-y)2Te3 epitaxial thin films. We demonstrate for the first time a dramatic enhancement of surface-induced magnetization on TI / Cr-TI bilayer devices. The surface magneto-electric effects can be either enhanced significantly or completely switched-off, by tuning the separation of the surface from the magnetic impurities. The electric-field-modulated ferromagnetism in our modulation-doped TI hetero-structures is fundamentally important for the realization of the quantum anomalous Hall Effect as well as the axion electromagnetic dynamics, and thus provides a new approach for spintronics applications. The authors would also like to acknowledge helpful discussions with Dr. Alexei Fedorov and Dr. Mathew Marcus from the Advanced Light Source at Berkeley.

  5. Charge movement in a GaN-based hetero-structure field effect transistor structure with carbon doped buffer under applied substrate bias

    SciTech Connect

    Pooth, Alexander; Uren, Michael J.; Cäsar, Markus; Kuball, Martin; Martin, Trevor

    2015-12-07

    Charge trapping and transport in the carbon doped GaN buffer of a GaN-based hetero-structure field effect transistor (HFET) has been investigated under both positive and negative substrate bias. Clear evidence of redistribution of charges in the carbon doped region by thermally generated holes is seen, with electron injection and capture observed during positive bias. Excellent agreement is found with simulations. It is shown that these effects are intrinsic to the carbon doped GaN and need to be controlled to provide reliable and efficient GaN-based power HFETs.

  6. Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers

    SciTech Connect

    Gulyaev, D. V. Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.

    2015-02-15

    The photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic high-electron mobility transistor heterostructures with donor-acceptor-doped AlGaAs barriers is studied. It is found that the introduction of additional p{sup +}-doped AlGaAs layers into the design brings about the appearance of new bands in the photoluminescence spectra. These bands are identified as resulting from transitions (i) in donor-acceptor pairs in doped AlGaAs layers and (ii) between the conduction subband and acceptor levels in the undoped InGaAs quantum well.

  7. Room-temperature light emission from an airbridge double-heterostructure microcavity of Er-doped Si photonic crystal

    NASA Astrophysics Data System (ADS)

    Wang, Yue; An, Jun-ming; Wu, Yuan-da; Hu, Xiong-wei

    2016-01-01

    We experimentally demonstrate an efficient enhancement of luminescence from two-dimensional (2D) hexagonal photonic crystal (PC) airbridge double-heterostructure microcavity with Er-doped silicon (Si) as light emitters on siliconon-insulator (SOI) wafer at room temperature. A single sharp resonant peak at 1 529.6 nm dominates the photoluminescence (PL) spectrum with the pumping power of 12.5 mW. The obvious red shift and the degraded quality factor (Q-factor) of resonant peak appear with the pumping power increasing, and the maximum measured Q-factor of 4 905 is achieved at the pumping power of 1.5 mW. The resonant peak is observed to shift depending on the structural parameters of PC, which indicates a possible method to control the wavelength of enhanced luminescence for Si-based light emitters based on PC microcavity.

  8. The electric transport properties of Al-doped ZnO/BiFeO3/ITO glass heterostructure

    NASA Astrophysics Data System (ADS)

    Fan, Fei; Chen, Changle; Luo, Bingcheng; Jin, Kexin

    2011-04-01

    BiFeO3 (BFO) and 4 wt. % Al-doped ZnO (ZAO) layers were grown on indium tin oxide (ITO) glass substrate using a pulsed laser deposition (PLD) method. I-V curves of the ZAO/BFO/ITO glass structure were investigated over the temperature range from 60 to 240 K. Analysis of the leakage current demonstrates that Poole-Frenkel emission is the dominant mechanism in our sample. The relations between resistance and temperature at positive and negative bias voltages are different, and the difference arises from the ferroelectric switching in BFO and the interfacial depletion layer between the semiconducting and the ferroelectric layers. Magnetoresistance (MR) effect is observed and the negative MR is related to the electron spin-dependent scattering and the interface resistance of the heterostructure.

  9. Transport in two-dimensional modulation-doped semiconductor structures

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Hwang, E. H.; Kodiyalam, S.; Pfeiffer, L. N.; West, K. W.

    2015-05-01

    We develop a theory for the maximum achievable mobility in modulation-doped 2D GaAs-AlGaAs semiconductor structures by considering the momentum scattering of the 2D carriers by the remote ionized dopants, which must invariably be present in order to create the 2D electron gas at the GaAs-AlGaAs interface. The minimal model, assuming first-order Born scattering by random quenched remote dopant ions as the only scattering mechanism, gives a mobility much lower (by a factor of 3 or more) than that observed experimentally in many ultrahigh-mobility modulation-doped 2D systems, establishing convincingly that the model of uncorrelated scattering by independent random remote quenched dopant ions is often unable to describe the physical system quantitively. We theoretically establish that the consideration of spatial correlations in the remote dopant distribution can enhance the mobility by (up to) several orders of magnitudes in experimental samples. The precise calculation of the carrier mobility in ultrapure modulation-doped 2D semiconductor structures thus depends crucially on the unknown spatial correlations among the dopant ions in the doping layer which may manifest sample to sample variations even for nominally identical sample parameters (i.e., density, well width, etc.), depending on the details of the modulation-doping growth conditions.

  10. La-doped BaTiO{sub 3} heterostructures: Compensating the polarization discontinuity

    SciTech Connect

    Kumah, D. P.; Clarke, R.; Yacoby, Y.; Pauli, S. A.; Willmott, P. R.

    2013-12-01

    We demonstrate a route to manipulate the polarization and internal electric field of a complex oxide heterostructure using a layering sequence based on the LaAlO{sub 3}-SrTiO{sub 3} interface. By combining sensitive atomic-level mapping of the structure using direct x-ray phase-retrieval methods with theoretical modeling of the electrostatic charge and polarization, we have devised a novel single-domain polar heterostructure. We find that ionic rearrangement results in strain and free energy minimization, and eliminates the polarization discontinuity leading to a two-fold increase of the spontaneous polarization towards the surface of an ultra-thin single-domain BaTiO{sub 3} film.

  11. Control of Rewriteable Doping Patterns in Graphene/Boron Nitride Heterostructures

    NASA Astrophysics Data System (ADS)

    Kahn, Salman; Velasco, Jairo, Jr.; Wong, Dillon; Lee, Juwon; Tsai, Hsin Zon; Ju, Long; Jiang, Lili; Shi, Zhiwen; Ashby, Paul; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael

    Spatial control of charge doping in 2D materials is a promising technique for designing future electronic devices and understanding novel physics. Electrostatic gating and chemical doping are common methods to achieve control of charge doping in 2D materials. However, these approaches suffer from complicated fabrication processes that introduce impurities, change material properties irreversibly, and lack flexibility. Here, we introduce a new method for patterning rewriteable doping profiles with local interface charge transfer from defects in a tunable BN substrate into an adjacent layer of graphene. We characterize these spatial doping patterns through local probe and transport techniques. This technique enables many novel device designs for 2D materials, including atomically thin p-n junctions and rewriteable memory devices.

  12. Bolometric detection of magnetoplasma resonances in microwave absorption by two-dimensional electron systems based on doping layer conductivity measurements in GaAs/AlGaAs heterostructures

    SciTech Connect

    Dorozhkin, S. I. Sychev, D. V.; Kapustin, A. A.

    2014-11-28

    We have implemented a new bolometric method to detect resonances in magneto-absorption of microwave radiation by two-dimensional electron systems (2DES) in selectively doped GaAs/AlGaAs heterostructures. Radiation is absorbed by the 2DES and the thermally activated conductivity of the doping layer supplying electrons to the 2DES serves as a thermometer. The resonant absorption brought about by excitation of the confined magnetoplasma modes appears as peaks in the magnetic field dependence of the low-frequency impedance measured between the Schottky gate and 2DES.

  13. Control of Rewriteable Doping Patterns in Graphene/Boron Nitride Heterostructures

    NASA Astrophysics Data System (ADS)

    Kahn, Salman; Velasco, Jairo, Jr.; Wong, Dillon; Lee, Juwon; Tsai, Hsin Zon; Ju, Long; Jiang, Lili; Shi, Zhiwen; Ashby, Paul; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael

    Spatial control of charge doping in 2D materials is a prerequisite for designing future electronic devices and understanding novel physics. Electrostatic gating and chemical doping are two of the most common methods to achieve this. However, these approaches suffer from complicated fabrication processes that introduce impurities, change material properties irreversibly, and lack flexibility. Here we introduce a new method for patterning rewriteable doping profiles using an STM tip by way of local tip-voltage-induced ionization of defects in a BN substrate. We characterize these spatial doping patterns through local probe and transport techniques. This technique enables many novel device designs for 2D materials, including atomically thin p-n junctions and rewriteable memory devices.

  14. The modulation of grain boundary barrier in ZnMgO/ZnO heterostructure by surface polar liquid

    PubMed Central

    Ji, Xu; Zhu, Yuan; Chen, Mingming; Su, Longxing; Chen, Anqi; Gui, Xuchun; Xiang, Rong; Tang, Zikang

    2014-01-01

    Modulation of grain boundary barrier in ZnO layer by polar liquid, was investigated in ZnMgO/ZnO heterostructures grown by plasma-assisted molecular beam epitaxy. Traditionally, surface adsorbates can only affect the surface atoms or surface electronic states. However, it was found that the electronic conduction property of ZnO far from the surface could be tailored obviously by the polar liquid adsorbed on the ZnMgO surface. Physically, this phenomenon is supposed to be caused by the electrostatical couple between the liquid polarity and the grain boundary barrier in the ZnO layer through crystal polarization field. PMID:24566523

  15. Doping modulation in GaN imaged by cross-sectional scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Eisele, H.; Ivanova, L.; Borisova, S.; Dähne, M.; Winkelnkemper, M.; Ebert, Ph.

    2009-04-01

    We investigated the imaging mechanisms of a Si doping modulation in GaN by cross-sectional scanning tunneling microscopy (STM). The Si doping modulation gives rise to a voltage and tip dependent height modulation of at least 0.4 Å. The origin of the height modulation in constant-current STM images is traced to two mechanisms. A doping-induced modu-lation of the band edge energies yields a voltage dependent electronic contrast and an additional mechanical relaxation of the doping-induced strain at the cleavage surface is respon-sible for a voltage independent modulation of 0.35 Å.

  16. Stable growth of ruthenium doped InP at the current blocking layer for buried-heterostructure lasers

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Harunaka; Nagira, Takashi; Kawazu, Zempei; Sakaino, Go; Nishida, Takehiro; Takemi, Masayoshi

    2015-03-01

    We report on the stable growth of ruthenium doped InP (Ru-InP) and its application in optical communication devices, grown by metal-organic vapor phase epitaxy. Ru-InP has semi-insulating characteristics for both n- and p-InP. The resistivity of the p/Ru/p-InP structure was 2×107 Ω cm for a Ru concentration of 5×1017 cm-3 in Ru-InP with a Ru-InP thickness greater than 1.0 μm. However, the resistivity was very low when the Ru-InP thickness was less than 1.0 μm. We investigated the Zn diffusion from p-InP to Ru-InP and found two Zn diffusion fronts in Ru-InP. Each diffusion front had a correlation with the Ru and Zn concentrations. By optimizing the current blocking layers in the Ru-InP and Zn-InP layers in buried-heterostructure lasers (BH-lasers), an output power over 10 mW was realized for laser diodes, even when they were operated at 95 °C.

  17. Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures.

    PubMed

    Myoung, Nojoon; Seo, Kyungchul; Lee, Seung Joo; Ihm, G

    2013-08-27

    Vertical graphene heterostructures have been introduced as an alternative architecture for electronic devices by using quantum tunneling. Here, we present that the current on/off ratio of vertical graphene field-effect transistors is enhanced by using an armchair graphene nanoribbon as an electrode. Moreover, we report spin-dependent tunneling current of the graphene/MoS2 heterostructures. When an atomically thin MoS2 layer sandwiched between graphene electrodes becomes magnetic, Dirac fermions with different spins feel different heights of the tunnel barrier, leading to spin-dependent tunneling. Our finding will develop the present graphene heterostructures for electronic devices by improving the device performance and by adding the possibility of spintronics based on graphene. PMID:23886348

  18. Study of resistive switching and magnetism modulation in the Pt/CoFe2O4/Nb:SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Qiangwen; Zhu, Yongdan; Liu, Xiaolian; Zhao, Meng; Wei, Maocai; Zhang, Feng; Zhang, Yuan; Sun, Beilei; Li, Meiya

    2015-08-01

    CoFe2O4 (CFO) thin films are epitaxially grown on Nb doped (001) SrTiO3 (NSTO) single-crystal substrates by pulsed laser deposition to form Pt/CFO/NSTO heterostructures. These heterostructures exhibit typical bipolar resistive switching effect with maximum switching ratio of 5 × 104, multi-level resistance states, excellent retention, and anti-fatigue properties. When the resistance states of the heterostructures are switched between low resistance state and high resistance state upon applying bias voltages, the saturation magnetization of the CFO films shows corresponding changes associated with the resistive switching. These close correlations between the resistive switching and the magnetization can be attributed to the electrons filling into and releasing from the defect energy levels introduced by oxygen vacancies in the CFO film. These results show potential application in the multi-functional magnetoelectric sensor and non-volatile multi-level resistive switching memory.

  19. Mixed Carrier Conduction in Modulation-doped Field Effect Transistors

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Haugland, E. J.; Mena, R. A.; Alterovitz, S. A.

    1995-01-01

    The contribution of more than one carrier to the conductivity in modulation-doped field effect transistors (MODFET) affects the resultant mobility and complicates the characterization of these devices. Mixed conduction arises from the population of several subbands in the two-dimensional electron gas (2DEG), as well as the presence of a parallel path outside the 2DEG. We characterized GaAs/AlGaAs MODFET structures with both delta and continuous doping in the barrier. Based on simultaneous Hall and conductivity analysis we conclude that the parallel conduction is taking place in the AlGaAs barrier, as indicated by the carrier freezeout and activation energy. Thus, simple Hall analysis of these structures may lead to erroneous conclusions, particularly for real-life device structures. The distribution of the 2D electrons between the various confined subbands depends on the doping profile. While for a continuously doped barrier the Shubnikov-de Haas analysis shows superposition of two frequencies for concentrations below 10(exp 12) cm(exp -2), for a delta doped structure the superposition is absent even at 50% larger concentrations. This result is confirmed by self-consistent analysis, which indicates that the concentration of the second subband hardly increases.

  20. Photovoltaic response in pristine WSe{sub 2} layers modulated by metal-induced surface-charge-transfer doping

    SciTech Connect

    Wi, Sungjin; Chen, Mikai; Li, Da; Nam, Hongsuk; Meyhofer, Edgar; Liang, Xiaogan

    2015-08-10

    We obtained photovoltaic response in pristine multilayer WSe{sub 2} by sandwiching WSe{sub 2} between top and bottom metals. In this structure, the work-function difference between the top metal and WSe{sub 2} plays a critical role in generating built-in potentials and photovoltaic responses. Our devices with Zn as top metal exhibit photo-conversion efficiencies up to 6.7% under 532 nm illumination and external quantum efficiencies in the range of 40%–83% for visible light. This work provides a method for generating photovoltaic responses in layered semiconductors without detrimental doping or exquisite heterostructures, and also advances the physics for modulating the band structures of such emerging semiconductors.

  1. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity.

    PubMed

    Gao, Yuanda; Shiue, Ren-Jye; Gan, Xuetao; Li, Luozhou; Peng, Cheng; Meric, Inanc; Wang, Lei; Szep, Attila; Walker, Dennis; Hone, James; Englund, Dirk

    2015-03-11

    Nanoscale and power-efficient electro-optic (EO) modulators are essential components for optical interconnects that are beginning to replace electrical wiring for intra- and interchip communications.1-4 Silicon-based EO modulators show sufficient figures of merits regarding device footprint, speed, power consumption, and modulation depth.5-11 However, the weak electro-optic effect of silicon still sets a technical bottleneck for these devices, motivating the development of modulators based on new materials. Graphene, a two-dimensional carbon allotrope, has emerged as an alternative active material for optoelectronic applications owing to its exceptional optical and electronic properties.12-14 Here, we demonstrate a high-speed graphene electro-optic modulator based on a graphene-boron nitride (BN) heterostructure integrated with a silicon photonic crystal nanocavity. Strongly enhanced light-matter interaction of graphene in a submicron cavity enables efficient electrical tuning of the cavity reflection. We observe a modulation depth of 3.2 dB and a cutoff frequency of 1.2 GHz. PMID:25700231

  2. Vortex lattices in the superconducting phases of doped topological insulators and heterostructures

    NASA Astrophysics Data System (ADS)

    Hung, Hsiang-Hsuan; Ghaemi, Pouyan; Hughes, Taylor L.; Gilbert, Matthew J.

    2013-01-01

    Majorana fermions are predicted to play a crucial role in condensed matter realizations of topological quantum computation. These heretofore undiscovered quasiparticles have been predicted to exist at the cores of vortex excitations in topological superconductors and in heterostructures of superconductors and materials with strong spin-orbit coupling. In this work, we examine topological insulators with bulk s-wave superconductivity in the presence of a vortex lattice generated by a perpendicular magnetic field. Using self-consistent Bogoliubov-de Gennes calculations, we confirm that beyond the semiclassical, weak-pairing limit the Majorana vortex states appear as the chemical potential is tuned from either side of the band edge so long as the density of states is sufficient for superconductivity to form. Further, we demonstrate that the previously predicted vortex phase transition survives beyond the semiclassical limit. At chemical potential values smaller than the critical chemical potential, the vortex lattice modes hybridize within the top and bottom surfaces, giving rise to a dispersive low-energy mid-gap band. As the chemical potential is increased, the Majorana states become more localized within a single surface but spread into the bulk toward the opposite surface. Eventually, when the chemical potential is sufficiently high in the bulk bands, the Majorana modes can tunnel between surfaces and eventually a critical point is reached at which modes on opposite surfaces can freely tunnel and annihilate leading to the topological phase transition previously studied in the work of Hosur [Phys. Rev. Lett.10.1103/PhysRevLett.107.097001 107, 097001 (2011)].

  3. Selectively doped GaAs/N-Al(0.3)Ga(0.7)As heterostructures grown by gas-source MBE

    NASA Astrophysics Data System (ADS)

    Ando, Hideyasu; Kondo, Kazuhiro; Ishikawa, Hideaki; Sasa, Shigehiko; Inata, Tsuguo

    1988-05-01

    Selectively doped GaAs/N-Al(0.3)Ga(0.7)As heterostructures with a 6 nm spacer layer have been grown for the first time by gas-source MBE using triethylgallium and triethylaluminum as group III sources, and metallic arsenic. A reasonably high two-dimensional electron gas (2DEG) mobility of 48,000 sq cm / Vs (77 K) with a sheet electron concentration of 6.8 x 10 to the 11th/sq cm was obtained at a substrate temperature of 580 C and an arsenic pressure of 0.00011.

  4. Influence of the additional p+ doped layers on the properties of AlGaAs/InGaAs/AlGaAs heterostructures for high power SHF transistors

    NASA Astrophysics Data System (ADS)

    Gulyaev, D. V.; Zhuravlev, K. S.; Bakarov, A. K.; Toropov, A. I.; Protasov, D. Yu; Gutakovskii, A. K.; Ber, B. Ya; Kazantsev, D. Yu

    2016-03-01

    The peculiarities of a new type of pseudomorphic AlGaAs/InGaAs/AlGaAs heterostructures with the additional acceptor doping of barriers used for the creation of the power SHF pseudomorphic high electron mobility transistor (pHEMT) have been studied. A comparison of the transport characteristic of the new and typical pHEMT heterostructures was carried out. The influence of the doped acceptor impurities in the AlGaAs barriers of the new pHEMT heterostructure on the transport properties was studied. It was shown that the application of the additional p+ doped barrier layers allows the achievement of a double multiplex increase in the two-dimensional electron gas (2DEG) concentration in the InGaAs quantum well with no parasite parallel conductivity in the AlGaAs barrier layers. An estimation of the concentration of the doped donors and acceptors penetrating into the deliberately undoped InGaAs quantum well from the AlGaAs barriers was performed by second ion mass spectrometry and photoluminescence spectrometry methods. Taking into account the electron scattering by the ionized impurity atoms, calculation of the electron mobility in the InGaAs channel showed that some reduction of the electron mobility results from scattering by the ionized Si donor due to an increase in the Si concentration and, therefore, is not caused by the application of additional p+ doped layers in the construction of pHEMT heterostructures.

  5. Spatial phase modulation from permanent memory in doped glass.

    PubMed

    Myint, Thandar; Alfano, R R

    2010-04-15

    Diffraction rings are observed from photoinduced permanent memory of doped glass. The permanent memory is created by the high-intensity picosecond laser beam. A 1 mm spot size of laser beam creates spatially variable refractive index memory, which appears as a void located inside the glass. When a probe laser beam passes through the memory region, the diffraction rings arisen from spatial phase modulation of the transverse phase of the input beam are created. Agreement between the observed and calculated beam pattern using Kirchhoff's diffraction integral is satisfactory. PMID:20410991

  6. Modulation of thermoelectric power factor via radial dopant inhomogeneity in B-doped Si nanowires.

    PubMed

    Zhuge, Fuwei; Yanagida, Takeshi; Fukata, Naoki; Uchida, Ken; Kanai, Masaki; Nagashima, Kazuki; Meng, Gang; He, Yong; Rahong, Sakon; Li, Xiaomin; Kawai, Tomoji

    2014-10-01

    We demonstrate a modulation of thermoelectric power factor via a radial dopant inhomogeneity in B-doped Si nanowires. These nanowires grown via vapor-liquid-solid (VLS) method were naturally composed of a heavily doped outer shell layer and a lightly doped inner core. The thermopower measurements for a single nanowire demonstrated that the power factor values were higher than those of homogeneously B-doped Si nanowires. The field effect measurements revealed the enhancement of hole mobility for these VLS grown B-doped Si nanowires due to the modulation doping effect. This mobility enhancement increases overall electrical conductivity of nanowires without decreasing the Seebeck coefficient value, resulting in the increase of thermoelectric power factor. In addition, we found that tailoring the surface dopant distribution by introducing surface δ-doping can further increase the power factor value. Thus, intentionally tailoring radial dopant inhomogeneity promises a way to modulate the thermoelectric power factor of semiconductor nanowires. PMID:25229842

  7. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect

    Verma, Jai Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep

    2014-01-13

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365 nm (3.4 eV, the bulk bandgap) to below 240 nm (>5.2 eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  8. Effect of Doping Profile and Concentration on the Near-Infrared Optical Properties of AlGaN/GaN and AlInN/GaN Heterostructures

    NASA Astrophysics Data System (ADS)

    Cervantes, Mayra; Edmunds, Colin; Li, Donghui; Tang, Liang; Shao, Jiayi; Gardner, Geoff; Manfra, Michael; Malis, Oana

    2012-02-01

    Intersubband (ISB) devices utilizing III-nitrides have recently attracted attention for near- and far- infrared optoelectronic applications. In order to achieve efficient ISB transitions, large doping densities are typically required (>1E18 cm-3). The large impurity density has significant effects on the band structure and material quality, effects that are reflected in important device parameters such as transition energies and linewidths. To determine the optimal doping concentration and profile for III-N intersubband devices, we carried out a systematic study of optical and structural properties of strained AlGaN/GaN and lattice-matched AlInN/GaN heterostructures grown by MBE on quasi-bulk GaN substrates. The lattice-matched AlInN/GaN system is targeted because it allows growth of thick strain-free materials. However, it also presents some considerable growth challenges due to the vastly different optimal growth conditions for Al and In containing nitrides. The transition energy and line profile were determined by direct and photoinduced absorption measurements, while the material quality was assessed using TEM and high resolution x-ray diffraction. The FWHM of the ISB transition at 1.9 μm was found to vary up to 60% with the position of delta doping in the quantum well.

  9. Si and Mg pair-doped interlayers for improving performance of AlGaN/GaN heterostructure field effect transistors grown on Si substrate

    NASA Astrophysics Data System (ADS)

    Ni, Yi-Qiang; He, Zhi-Yuan; Yao, Yao; Yang, Fan; Zhou, De-Qiu; Zhou, Gui-Lin; Shen, Zhen; Zhong, Jian; Zheng, Yue; Zhang, Bai-Jun; Liu, Yang

    2015-05-01

    We report a novel structure of AlGaN/GaN heterostructure field effect transistors (HFETs) with a Si and Mg pair-doped interlayer grown on Si substrate. By optimizing the doping concentrations of the pair-doped interlayers, the mobility of 2DEG increases by twice for the conventional structure under 5 K due to the improved crystalline quality of the conduction channel. The proposed HFET shows a four orders lower off-state leakage current, resulting in a much higher on/off ratio (˜ 109). Further temperature-dependent performance of Schottky diodes revealed that the inhibition of shallow surface traps in proposed HFETs should be the main reason for the suppression of leakage current. Project supported by the National Natural Science Foundation of China (Grant Nos. 51177175 and 61274039), the National Basic Research Project of China (Grant Nos. 2010CB923200 and 2011CB301903), the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Sci. & Tech. Collaboration Program of China (Grant No. 2012DFG52260), the National High-tech R&D Program of China (Grant No. 2014AA032606), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17).

  10. Maximum drift velocity of electrons in selectively doped InAlAs/InGaAs/InAlAs heterostructures with InAs inserts

    SciTech Connect

    Silenas, A.; Pozela, Yu. Pozela, K.; Juciene, V.; Vasil'evskii, I. S.; Galiev, G. B.; Pushkarev, S. S.; Klimov, E. A.

    2013-03-15

    The dependence of the electron mobility and drift velocity on the growth conditions, thickness, and doping of an InAs insert placed at the center of the quantum well in a selectively doped InAlAs/InGaAs/InAlAs heterostructure has been investigated. Record enhancement of the maximum drift velocity to (2-4) Multiplication-Sign 10{sup 7} cm/s in an electric field of 5 Multiplication-Sign 10{sup 3} V/cm has been obtained in a 17-nm-wide quantum well with an undoped 4-nm-thick InAs insert. In the structures with additional doping of the InAs insert, which facilitates an increase in the density of electrons in the quantum well to 4.0 Multiplication-Sign 10{sup 12} cm{sup -2}, the maximum drift velocity is as high as 2 Multiplication-Sign 10{sup 7} cm/s in an electric field of 7 Multiplication-Sign 10{sup 3} V/cm.

  11. Near-infrared electroluminescence from light-emitting devices based on Nd-doped TiO2/p+-Si heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Lv, Chunyan; Zhu, Chen; Li, Si; Ma, Xiangyang; Yang, Deren

    2014-05-01

    We report on near-infrared (NIR) electroluminescence (EL) from the light-emitting devices based on Nd-doped TiO2/p+-Si heterostructures. NIR emissions peaking at ˜910, 1090, and 1370 nm, originated from intra-4f transitions in Nd3+ ions, can be activated by a forward bias voltage as low as ˜5 V. Such NIR EL is triggered by the energy transferred from TiO2 host to Nd3+ ions. It is found that the coexistence of anatase and rutile phases in the TiO2 host enables the device to exhibit pronounced Nd-related EL without concurrent emission from the TiO2 host itself, quite other than the case of existing only anatase phase in TiO2 host. We tentatively suggest that the anatase/rutile interface states play important role in the energy transfer from TiO2 host to Nd3+ ions.

  12. Study of resistive switching and magnetism modulation in the Pt/CoFe{sub 2}O{sub 4}/Nb:SrTiO{sub 3} heterostructures

    SciTech Connect

    Wang, Qiangwen; Zhao, Meng; Wei, Maocai; Zhang, Feng; Zhang, Yuan; Sun, Beilei; Li, Meiya E-mail: myli@whu.edu.cn; Liu, Xiaolian

    2015-08-10

    CoFe{sub 2}O{sub 4} (CFO) thin films are epitaxially grown on Nb doped (001) SrTiO{sub 3} (NSTO) single-crystal substrates by pulsed laser deposition to form Pt/CFO/NSTO heterostructures. These heterostructures exhibit typical bipolar resistive switching effect with maximum switching ratio of 5 × 10{sup 4}, multi-level resistance states, excellent retention, and anti-fatigue properties. When the resistance states of the heterostructures are switched between low resistance state and high resistance state upon applying bias voltages, the saturation magnetization of the CFO films shows corresponding changes associated with the resistive switching. These close correlations between the resistive switching and the magnetization can be attributed to the electrons filling into and releasing from the defect energy levels introduced by oxygen vacancies in the CFO film. These results show potential application in the multi-functional magnetoelectric sensor and non-volatile multi-level resistive switching memory.

  13. Axial Ge/Si nanowire heterostructure tunnel FETs

    SciTech Connect

    Picraux, Sanuel T; Daych, Shadi A

    2010-01-01

    The vapor-liquid-solid (VLS) growth of semiconductor nanowires allows doping and composition modulation along their axis and the realization of axial 1 D heterostructures. This provides additional flexibility in energy band-edge engineering along the transport direction which is difficult to attain by planar materials growth and processing techniques. We report here on the design, growth, fabrication, and characterization of asymmetric heterostructure tunnel field-effect transistors (HTFETs) based on 100% compositionally modulated Si/Ge axial NWs for high on-current operation and low ambipolar transport behavior. We discuss the optimization of band-offsets and Schottky barrier heights for high performance HTFETs and issues surrounding their experimental realization. Our HTFET devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a measured current drive exceeding 100 {mu}A/{mu}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios.

  14. Heterostructure quantum confined Stark effect electrooptic modulators operating at 938 nm

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Krol, Mark F.; Boncek, Raymond K.

    1993-12-01

    Electro-optics modulators are a necessary component of emerging optical fiber based local area interconnects. One type of modulator, suitable for use in optical interconnects, is an asymmetric Fabry-Perot reflection modulator (ARM). This type of an intensity modulator uses an electro-optic material as the spacer material to balance the normally unequal front and back mirror reflectances. The quantum confined Franz-Keldysh and Stark effects shift the absorption edge of semiconductor multiple quantum well (MQW) materials to longer wavelengths in the presence of an external electric field applied perpendicular to the MQW layers, thereby changing the reflectance of the etalon. The combined coherence effects of the etalon coupled with the quantum effects of the MQW materials result in a large modulation depth and a low insertion loss. P-I-N diode structures using an In Ha As/GaAs MQW structure as the intrinsic region were fabricated for the purpose of characterizing the electro-absorption associated with different applied electric fields. Quantum confined Franz-Keldysh and Stark shifts were observed for applied electric fields as large as 6.58 x 10000 V/cm. The resulting change in the absorption coefficient was found to be -3.7 x 1000 cm to the minus 1st power which is sufficient to design a high-speed ARM with a large modulation depth and a low insertion loss.

  15. Ultralow equivalent magnetic noise in a magnetoelectric Metglas/Mn-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Gao, Junqi; Li, Menghui; Hasanyan, D.; Shen, Ying; Li, Jiefang; Viehland, D.; Luo, Haosu

    2012-07-01

    An ultralow equivalent magnetic noise of 6.2 pT/√Hz at 1 Hz was obtained in a bimorph heterostructure sensor unit consisting of longitudinal-magnetized Metglas layers and a transverse-poled 1 mol. % Mn-doped Pb(Mg1/3Nb2/3)O3-29PbTiO3 (PMN-PT) single crystal. Furthermore, the equivalent magnetic noise was ≤1 pT/√Hz at 10 Hz. Compared with previously reported multi-push-pull configuration Metglas/PMN-PT sensor units, the current heterostructure exhibits a higher magnetoelectric coefficient of 61.5 V/(cm × Oe), a similar equivalent magnetic noise at 1 Hz and a lower noise floor at several hertz range. The ultralow equivalent magnetic noise in this sensor unit is due to the low tangent loss and ultrahigh piezoelectric properties of Mn-doped PMN-PT single crystals.

  16. Electrical properties of modulation-doped HgTe-CdTe superlattices

    NASA Astrophysics Data System (ADS)

    Hwang, S.; Lansari, Y.; Yang, Z.; Cook, J. W.; Schetzina, J. F.

    1991-10-01

    Growth of modulation-doped HgTe-CdTe superlattices (SLs) at very low temperatures (140 °C) by photoassisted molecular beam epitaxy is reported. SL layer thicknesses were intentionally chosen such that most of the SLs studied are inverted-band semimetals or inverted-band semiconductors. Both p- and n-type samples were successsfully prepared and studied. The doped superlattices exhibit excellent electrical properties. Lack of carrier freeze-out at low temperatures provides convincing evidence that modulation-doping has been achieved.

  17. Heterodimensional Schottky contacts to modulation-doped heterojunction with application to photodetection

    NASA Astrophysics Data System (ADS)

    Seddik, Amro Anwar

    The growing technological demand for high speed and compact integrated electronics and Optics is a pressing challenge. Speed and compactness necessitate low power consumption semiconductors with high transport mobility carriers, with potential of ultra large-scale integration of electronic and Optoelectronics circuitry. One avenue to fulfill these requirements is to utilize reduced dimensionality where carriers are spatially confined to less than three-dimensions, causing their energy levels to become quantized and their transport favorably affected. With recent progress in semiconductor growth and processing technologies low dimensionality has become practically realizable, this makes the study of contact properties to these systems increasingly important. In this work we study the contact between a low- dimensional semiconductor structure and a three- dimensional metal and the application of such a contact in photodetection. We theoretically derive the thermionic emission current for Schottky contact to two-dimensional and one-dimensional structures. The derivation underscores the discrete nature of low-dimensional structures and shows that the thermionic emission current is reduced by a factor exponentially proportional to the first quantized energy level. We also propose and formulate, for the first time, a physical phenomenon in two-dimensional structures created by modulation doping of a heterojunction, which is the effect of the cloud of electrons in the small bandgap material on the thermionic emission current. We have named this the electron- electron cloud effect; we show that this interaction increases the effective Schottky barrier height in a fashion counter to the image force lowering mechanism. In order to realize Schottky contact to low-dimensional structures, we have fabricated a novel Heterojunction Metal-Semiconductor-Metal (HMSM) photodetector. Experimental characterization and the general trends of the behavior of the HMSM devices are presented

  18. Modulation of electronic properties of silicon carbide nanotubes via sulphur-doping: An ab initio study

    NASA Astrophysics Data System (ADS)

    Singh, Ram Sevak; Solanki, Ankit

    2016-03-01

    Silicon carbide nanotubes (SiCNTs) have received a great deal of scientific and commercial interest due to their intriguing properties that include high temperature stability and electronic properties. For their efficient and widespread applications, tuning of electronic properties of SiCNTs is an attractive study. In this article, electronic properties of sulphur doped (S-doped) zigzag (9 , 0) SiCNT is investigated by ab initio calculations based on density functional theory (DFT). Energy band structures and density of states of fully optimized undoped and doped structures with varying dopant concentration are calculated. S-doped on C-site of the nanotube exhibits a monotonic reduction of energy gap with increase in dopant concentration, and the nanotube transforms from semiconductor to metal at high dopant concentration. In case of S-doped on Si-site doping has less influence on modulating electronic structures, which results in reduction of energy gap up to a moderate doping concentration. Importantly, S preferential substitutes of Si-sites and the nanotube with S-doped on Si-site are energetically more stable as compared to the nanotube with S-doped on C-site. The study of tunable electronic properties in S-doped SiCNT may have potential in fabricating nanoelectronic devices, hydrogen storage and gas sensing applications.

  19. Amphoteric doping of Si in InAlAs/InGaAs/InP(311)A heterostructures grown by molecular-beam epitaxy

    SciTech Connect

    Li, X.; Wang, W.I.; Cho, A.Y.

    1993-05-01

    High-quality InAlAs/InGaAs/InP modulation-doped field effect transistor (MODFET) structures were grown using silicon as an n-type dopant on the (311)A orientation for the first time by the planar-doping technique in molecular-beam epitaxy. An electron mobility as high as 50 000 cm{sup 2}/V s with a sheet carrier concentration of 1.9x10{sup 12}/cm{sup 2} at 77 K is achieved. MODFETs with 1.2 {mu}m gate length exhibit an extrinsic transconductance of 400 mS/mm and a maximum drain current of 485 mA/mm. The results are comparable to that of MODFETs grown on (100) InP substrates. Our results point to the new possibility of making p-n multilayer structures with all-silicon doping. 11 refs., 5 figs.

  20. Double-doped double-strained modulation-doped field effect transistor: 3D-SMODFET

    NASA Astrophysics Data System (ADS)

    Martin, Glenn Harvey

    This dissertation reviews the operation of MODFETs and the current status they have achieved as the world's fastest transistor. The utilization of AlGaAs/InGaAs heterostructures in the MODFET has resulted in the wide spread use of PHEMTs in the microwave industry today. This structure's increasing popularity is mainly due to the improvement in the quality and price of GaAs substrates over the past ten years. As the cost of good semi-insulating GaAs substrates has dropped, economic forces and the industries' need for microwave applications (wireless market) have driven the PHEMT into the production line of many companies world wide. The cost advantages of monolithic integration has results in the wide spread applications of monolithic microwave integrated circuits (MMIC). The advantages of the AlInAs/InGaAs heterostructure are numerous and will be discussed in detail within this dissertation. The simple fact of this is the continued research in using the AlInAs/InGaAs heterostructure on GaAs substrates with the inherent problems of the large lattice mismatch. In this dissertation the careful optimization of the AlInAs/InGaAs heterostructure for use in MODFET structures is done. In reviewing epitaxial designs for AlInAs/InGaAs heterostructures it became clear that the common InP-based MODFET was not optimized. This conclusion is based on the fact when comparing the AlInAs/InGaAs MODFET to the AlGaAs/InGaAs PHEMT they received a lot of bang for the buck. The large conduction band discontinuity (Delta Esb{C}) of the AlInAs/InGaAs heterostructure allowed for simple quick designs to easily out perform the AlGaAs/InGaAs PHEMTs. Results of this careful optimization of the AlInAs/InGaAs MODFET on InP substrates are an exceptional industry record high 2DEG sheet charge of 8.4× 10sp{12} cmsp{-2} with a corresponding current of 1,850 mA/mm. This record high performance was been achieved through (i) the careful optimization of MBE growth of pseudomorphic heterojunctions, (ii

  1. A review of nano-optics in metamaterial hybrid heterostructures

    SciTech Connect

    Singh, Mahi R.

    2014-03-31

    We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.

  2. A review of nano-optics in metamaterial hybrid heterostructures

    NASA Astrophysics Data System (ADS)

    Singh, Mahi R.

    2014-03-01

    We present a review for the nonlinear nano-optics in quantum dots doped in a metamaterial heterostructure. The heterostructure is formed by depositing a metamaterial on a dielectric substrate and ensemble of noninteracting quantum dots are doped near the heterostructure interface. It is shown that there is enhancement of the second harmonic generation due to the surface plasmon polaritons field present at the interface.

  3. Scattering analysis of 2DEG mobility in undoped and doped AlGaN/AlN/GaN heterostructures with an in situ Si3N4 passivation layer

    NASA Astrophysics Data System (ADS)

    Atmaca, G.; Ardali, S.; Tiras, E.; Malin, T.; Mansurov, V. G.; Zhuravlev, K. S.; Lisesivdin, S. B.

    2016-04-01

    The scattering mechanisms limiting mobility for low-dimensional charge carriers in a two-dimensional electron gas (2DEG) in undoped and doped AlGaN/AlN/GaN heterostructures with and without Si3N4 passivation are investigated. Hall effect measurements were carried out at temperatures from 1.8 K to 262 K and at a fixed magnetic field of 1 T. A good consistency was found between the calculated and the experimental results. The effects of in situ Si3N4 passivation on the 2DEG mobility are also discussed with majority scattering mechanisms. Interface-related parameters including quantum well width, deformation potential constant and correlation length of interface roughness were obtained from the fits of the analytical expressions of scattering mechanisms and compared for each heterostructure. After in situ Si3N4 passivation, we found that the effect of the interface roughness scattering, which was the dominant scattering mechanism at low temperatures, on the 2DEG mobility was more effective in undoped and doped AlGaN/GaN heterostructures.

  4. Systematic study on the spacer-dependent magnetic properties of Mn δ-doped GaAs/(Ga, Mn)As ferromagnetic heterostructures: from first principles

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofang; Chen, Xiaoshuang; Zhou, Xiaohao; Lu, Wei

    2009-01-01

    First-principles calculations based on density-functional theory have been performed on the spacer-dependent magnetic properties of δ-doped GaAs/(Ga, Mn)As ferromagnetic heterostructures (DFH). It is found that all the structures show ferromagnetic (FM) alignment as the favoured configuration. Their electronic structures are half-metallic independent of the spacer thickness d. The interlayer exchange coupling (IEC) between two magnetic layers decreases sharply at first with increasing d, then reaches a stationary value at d = 4a0 (a0 is the lattice constant of GaAs), where the FM and antiferromagnetic states become energetically degenerate. The charge density and the strong spin-polarized holes are concentrated mostly in the vicinity of MnAs magnetic layers for all the structures. After the injection of free holes into the system, we confirm the free-hole mediated mechanism for the intralayer exchange coupling and IEC. Furthermore, the injection of holes enhances the intralayer exchange coupling much more than the IEC. From these results, it is definitely shown that the magnetic coupling of DFH can get across a nonmagnetic spacer. It is closely related to the spacer thickness d, and the redistribution of injection holes plays a key role when d is small.

  5. Single charge sensing and transport in double quantum dots fabricated from commercially grown Si/SiGe heterostructures

    NASA Astrophysics Data System (ADS)

    Payette, C.; Wang, K.; Koppinen, P. J.; Dovzhenko, Y.; Sturm, J. C.; Petta, J. R.

    2012-01-01

    We perform quantum Hall measurements on three types of commercially available modulation-doped Si/SiGe heterostructures to determine their suitability for depletion gate defined quantum dot devices. By adjusting the growth parameters, we are able to achieve electron gases with charge densities 1-3 × 1011/cm2 and mobilities in excess of 100 000 cm2/Vs. Double quantum dot devices fabricated on these heterostructures show clear evidence of single charge transitions as measured in dc transport and charge sensing and exhibit electron temperatures of 100 mK in the single quantum dot regime.

  6. Modulating TiO2 photocatalyst by Al doping: Density functional theory approach

    NASA Astrophysics Data System (ADS)

    Zhao, Ya Fei; Li, Can; Lu, Song; Gong, Yin Yan; Niu, Leng Yuan; Liu, Xin Juan

    2016-06-01

    In this work, systematic study of the thermal stability, crystal structure and electronic properties of Al doped TiO2 were studied by the first principles calculations. The results showed that Al atoms preferentially occupying the interstitial site under Ti-rich condition, but substituting the Ti atom under O-rich condition. In contrast to pure TiO2, the values of VBM and CBM are reduced for Al substituting Ti doped mode, but increased for Al interstitial atom doped mode. Thus, we can modulate the preparation condition and dosage concentration for preparing the optimal photocatalyst.

  7. Modulation doping of double-exchange ferromagnetism in an antiferromagnetic manganite: Theory and Synthesis

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anand; Santos, T. S.; Kirby, B. J.; Kumar, Sanjeev; May, S. J.; Borchers, J. A.; Maranville, B. B.; Zarestky, J.; Te Velthuis, S. G. E.; van den Brink, Jeroen

    2011-03-01

    In this talk we shall discuss the concepts that underlie modulation doping in the context of manganites, particularly the high bandwidth La 1-x Sr x Mn O3 , and how modulation doped structures are realized using oxide-MBE based techniques. The transport and magnetic properties of modulation doped antiferromagnetic digital superlattices of (LaMn O3)1 /(SrMn O3)1 will be discussed in the context of theoretical ideas about exchange interactions in these materials going back to the seminal work of de Gennes, and compared to similar structures in other parts of the La 1-x Sr x Mn O3 phase diagram. U. S. Department of Energy, BES, Contract No. DE-AC02-06CH11357; NIST, U.S. Department of Commerce.

  8. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

    PubMed

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2016-06-22

    Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character. PMID:27282959

  9. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    NASA Technical Reports Server (NTRS)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  10. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Mogi, M.; Yoshimi, R.; Tsukazaki, A.; Yasuda, K.; Kozuka, Y.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y.

    2015-11-01

    Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb)2Te3. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb)2Te3 films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb)2Te3 films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction.

  11. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect

    SciTech Connect

    Mogi, M. Yoshimi, R.; Yasuda, K.; Kozuka, Y.; Tsukazaki, A.; Takahashi, K. S.; Kawasaki, M.; Tokura, Y.

    2015-11-02

    Quantum anomalous Hall effect (QAHE), which generates dissipation-less edge current without external magnetic field, is observed in magnetic-ion doped topological insulators (TIs) such as Cr- and V-doped (Bi,Sb){sub 2}Te{sub 3}. The QAHE emerges when the Fermi level is inside the magnetically induced gap around the original Dirac point of the TI surface state. Although the size of gap is reported to be about 50 meV, the observable temperature of QAHE has been limited below 300 mK. We attempt magnetic-Cr modulation doping into topological insulator (Bi,Sb){sub 2}Te{sub 3} films to increase the observable temperature of QAHE. By introducing the rich-Cr-doped thin (1 nm) layers at the vicinity of both the surfaces based on non-Cr-doped (Bi,Sb){sub 2}Te{sub 3} films, we have succeeded in observing the QAHE up to 2 K. The improvement in the observable temperature achieved by this modulation-doping appears to be originating from the suppression of the disorder in the surface state interacting with the rich magnetic moments. Such a superlattice designing of the stabilized QAHE may pave a way to dissipation-less electronics based on the higher-temperature and zero magnetic-field quantum conduction.

  12. Chemical doping modulation of nonlinear photoluminescence properties in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Mouri, Shinichiro; Miyauchi, Yuhei; Matsuda, Kazunari

    2016-05-01

    We demonstrate a simple modulation technique of nonlinear optical properties in monolayer (1L) MoS2 via chemical doping. The strong nonlinear behavior of the exciton photoluminescence (PL) intensity is observed with increasing excitation power density for low-electron-density 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ)-doped 1L-MoS2, whereas the exciton PL intensity of as-prepared, heavily electron-doped 1L-MoS2 exhibits weak sublinear behavior. These results are attributable to an enhanced exciton–exciton annihilation rate for the excitons in F4TCNQ-doped 1L-MoS2 as the dominant decay pathway under strong optical excitation conditions.

  13. Gating versus doping: Quality parameters of two-dimensional electron systems in undoped and doped GaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Peters, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.

    2016-07-01

    We present an experimental study of the scattering mechanisms in a two-dimensional electron system which is either fully induced by the field effect or resulting from remote doping. The quality criteria—the electron mobility, the quantum scattering time, and the number and development of certain fractional quantum Hall states—are analyzed and compared. By eliminating the scattering off remote ionized impurities (RI) in undoped systems, we can identify the density regimes most susceptible to RI scattering and their impact on the formation of fractional quantum Hall states.

  14. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    PubMed

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation. PMID:23736401

  15. Gate-tunable high mobility remote-doped InSb/In1-xAlxSb quantum well heterostructures

    NASA Astrophysics Data System (ADS)

    Yi, Wei; Kiselev, Andrey A.; Thorp, Jacob; Noah, Ramsey; Nguyen, Binh-Minh; Bui, Steven; Rajavel, Rajesh D.; Hussain, Tahir; Gyure, Mark F.; Kratz, Philip; Qian, Qi; Manfra, Michael J.; Pribiag, Vlad S.; Kouwenhoven, Leo P.; Marcus, Charles M.; Sokolich, Marko

    2015-04-01

    Gate-tunable high-mobility InSb/In1-xAlxSb quantum wells (QWs) grown on GaAs substrates are reported. The QW two-dimensional electron gas (2DEG) channel mobility in excess of 200 000 cm2/V s is measured at T = 1.8 K. In asymmetrically remote-doped samples with an HfO2 gate dielectric formed by atomic layer deposition, parallel conduction is eliminated and complete 2DEG channel depletion is reached with minimal hysteresis in gate bias response of the 2DEG electron density. The integer quantum Hall effect with Landau level filling factor down to 1 is observed. A high-transparency non-alloyed Ohmic contact to the 2DEG with contact resistance below 1 Ω.mm is achieved at 1.8 K.

  16. Quantum Heterostructures

    NASA Astrophysics Data System (ADS)

    Mitin, Vladimir; Kochelap, Viacheslav; Stroscio, Michael A.

    1999-07-01

    Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.

  17. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    NASA Astrophysics Data System (ADS)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  18. Tailoring the core electron density in modulation-doped core‑multi-shell nanowires

    NASA Astrophysics Data System (ADS)

    Buscemi, Fabrizio; Royo, Miquel; Goldoni, Guido; Bertoni, Andrea

    2016-05-01

    We show how a proper radial modulation of the composition of core-multi-shell nanowires (NWs) critically enhances the control of the free-carrier density in the high-mobility core with respect to core‑single-shell structures, thus overcoming the technological difficulty of fine tuning the remote doping density. We calculate the electron population of the different NW layers as a function of the doping density and of several geometrical parameters by means of a self-consistent Schrödinger–Poisson approach: free carriers tend to localize in the outer shell and screen the core from the electric field of the dopants.

  19. Resonant tunneling modulation in quasi-2D Cu2O/SnO2 p-n horizontal-multi-layer heterostructure for room temperature H2S sensor application

    PubMed Central

    Cui, Guangliang; Zhang, Mingzhe; Zou, Guangtian

    2013-01-01

    Heterostructure material that acts as resonant tunneling system is a major scientific challenge in applied physics. Herein, we report a resonant tunneling system, quasi-2D Cu2O/SnO2 p-n heterostructure multi-layer film, prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. By applying a special half-sine deposition potential across the electrodes, Cu2O and SnO2 selectively and periodically deposited according to their reduction potentials. The as-prepared heterostructure film displays excellent sensitivity to H2S at room temperature due to the resonant tunneling modulation. Furthermore, it is found that the laser illumination could enhance the gas response, and the mechanism with laser illumination is discussed. It is the first report on gas sensing application of resonant tunneling modulation. Hence, heterostructure material act as resonant tunneling system is believed to be an ideal candidate for further improvement of room temperature gas sensing. PMID:23409241

  20. Electron mobilities and quantum Hall effect in modulation-doped HgTe-CdTe superlattices

    NASA Astrophysics Data System (ADS)

    Hoffman, C. A.; Meyer, J. R.; Bartoli, F. J.; Lansari, Y.; Cook, J. W., Jr.; Schetzina, J. F.

    1991-10-01

    Photoassisted molecular-beam epitaxy and controlled modulation doping have been used to grow HgTe-CdTe superlattices with n-type carrier concentrations of up to 3×1017 cm-3. It is found that in contrast to Hg1-xCdxTe alloys where the electron mobility decreases strongly with donor concentration, μn in the modulation-doped superlattices is nearly independent of ND at large ND. We also discuss an observation of the quantum Hall effect associated with carriers distributed throughout the interior of a HgTe-CdTe superlattice. Whereas previous reports of quantized steps in the Hall conductivity have involved a small number of conduction channels (hence a small fraction of the superlattice periods), we observe plateaus at multiples of ~=200e2/h in a number of 200-period superlattices with high doping levels. This indicates participation by nearly all wells in the superlattice, and implies that the controlled doping is extremely uniform.

  1. Efficient and Hysteresis-Free Field Effect Modulation of Ambipolarly Doped Vanadium Dioxide Nanowires

    NASA Astrophysics Data System (ADS)

    Peng, Xingyue; Yang, Yiming; Hou, Yasen; Travaglini, Henry C.; Hellwig, Luke; Hihath, Sahar; van Benthem, Klaus; Lee, Kathleen; Liu, Weifeng; Yu, Dong

    2016-05-01

    The subpicosecond metal-insulator phase transition in vanadium dioxide (VO2 ) has attracted extensive attention with potential applications in ultrafast Mott transistors, which are based on electric-field-induced phase transition. However, the development of VO2 -based transistors lags behind, owing to inefficient and hysteretic gate modulation. Here we report ambipolar doping and strong field effects free of hysteresis in single-crystal VO2 nanowires synthesized via catalyst-free chemical vapor deposition. The ambipolarly doped VO2 nanowires are achieved by controlling the oxygen vacancy density during the synthesis and show strong gate effects because of their relatively low doping level. Both the doping type of the nanowires and the band-bending direction at the metal-insulator domain walls are reversibly switched by electrochemical gating, as revealed by scanning photocurrent microscopy. Furthermore, we eliminate the hysteresis in gate sweep via a hybrid gating method, which combines the merits of liquid-ionic and solid gating. The capability of efficient field effect modulation of ambipolar conduction and band alignment offers opportunities on understanding the phase transition mechanism and enables electronic applications based on VO2 .

  2. Impact of the modulation doping layer on the ν = 5/2 anisotropy

    DOE PAGESBeta

    Shi, X.; Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-30

    We have carried out a systematic study of the tilted magnetic field induced anisotropy at the Landau level filling factor ν = 5/2 in a series of high quality GaAs quantum wells, where the setback distance (d) between the modulation doping layer and the GaAs quantum well is varied from 33 to 164 nm. We have observed that in the sample of the smallest d, electronic transport is anisotropic when the in-plane magnetic field (Bip) is parallel to the [1–10] crystallographic direction, but remains more or less isotropic when Bip // [110]. In contrast, in the sample of largest d,more » electronic transport is anisotropic in both crystallographic directions. Lastly, our results clearly show that the modulation doping layer plays an important role in the tilted field induced ν = 5/2 anisotropy.« less

  3. Impact of the modulation doping layer on the ν = 5/2 anisotropy

    SciTech Connect

    Shi, X.; Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-03-30

    We have carried out a systematic study of the tilted magnetic field induced anisotropy at the Landau level filling factor ν = 5/2 in a series of high quality GaAs quantum wells, where the setback distance (d) between the modulation doping layer and the GaAs quantum well is varied from 33 to 164 nm. We have observed that in the sample of the smallest d, electronic transport is anisotropic when the in-plane magnetic field (Bip) is parallel to the [1–10] crystallographic direction, but remains more or less isotropic when Bip // [110]. In contrast, in the sample of largest d, electronic transport is anisotropic in both crystallographic directions. Lastly, our results clearly show that the modulation doping layer plays an important role in the tilted field induced ν = 5/2 anisotropy.

  4. Ferroelectric gate effect in modulation doped CdTe/CdMgTe quantum wells

    SciTech Connect

    Kolkovsky, V.; Wojciechowski, T.; Zaleszczyk, W.; Wiater, M.; Wojtowicz, T.; Karczewski, G.

    2010-01-04

    We show an effective control of the carrier concentration confined in a modulation doped CdTe quantum well caped by a ferroelectric CdZnTe gate. The 2DEG concentration can by permanently changed by changing the direction of the build-in electric field of the ferroelectric CdZnTe gate. The concentration of the 2DEG changes by 30% upon a poling of the gate. The effect is reproducible. It can be employed in non-volatile memories.

  5. Electro-optic modulation in hybrid solgel doped with Disperse Red chromophore.

    PubMed

    Lu, Dong; Zhang, Hongxi; Fallahi, Mahmoud

    2005-02-01

    An electro-optically active hybrid solgel doped with Disperse Red 13 has been developed by use of a simple solvent-assisted method. It permits a high loading concentration and has low optical loss at 1550 nm. A channel waveguide amplitude modulator has been fabricated by use of active and passive hybrid solgel materials. The device shows an electro-optic coefficient of 14 pm/V at 1550 nm and stable operation. PMID:15751884

  6. Electro-optic modulation in hybrid solgel doped with Disperse Red chromophore

    NASA Astrophysics Data System (ADS)

    Lu, Dong; Zhang, Hongxi; Fallahi, Mahmoud

    2005-02-01

    An electro-optically active hybrid solgel doped with Disperse Red 13 has been developed by use of a simple solvent-assisted method. It permits a high loading concentration and has low optical loss at 1550 nm. A channel waveguide amplitude modulator has been fabricated by use of active and passive hybrid solgel materials. The device shows an electro-optic coefficient of 14 pm/V at 1550 nm and stable operation.

  7. Experimental Performance of a Single-Mode Ytterbium-doped Fiber Ring Laser with Intracavity Modulator

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We have developed a linearly polarized Ytterbium-doped fiber ring laser with a single longitudinal mode output at 1064 run. A fiber-coupled intracavity phase modulator ensured mode-hop free operation and allowed fast frequency tuning. The fiber laser was locked with high stability to an iodine-stabilized laser, showing a frequency noise suppression of a factor approx 10 (exp 5) at 1 mHz

  8. The design of Cu-doped ZnO thermoelectric module (simulation study)

    NASA Astrophysics Data System (ADS)

    Hadi, Syamsul; Suratwan, Agus; Kurniawan, Agus; Budiana, Eko Prasetya; Suyitno

    2016-03-01

    The p-type semiconductor of Cu-doped ZnO-based thermoelectric material has already been synthesized and studied as an energy harvester. The next challenge is manufacturing the thermoelectric module in the development of thermoelectric as an eco-friendly material in the future. This research aims to investigate the effect of thermoelectric geometric design on the electrical output power and voltage and to recommend the most appropriate thermoelectric geometric design. The design of thermoelectric generator (TEG) includes the determinations of dimension (width, length, and height), number of modules, and semiconductor materials. The simulation used the coupled-field analysis of ANSYS APDL 14.5 in the steady state condition. The p- and n- type thermoelectric material used Cu-doped ZnO and Al-doped ZnO, respectively. The width of element and the number of thermoelectric module were varied to obtain a thermoelectric design, which produces the largest current, power, and voltage. The result of research shows that the t hermoelectric generator with the element widths of 0.94 mm, 1.125 mm, 1.05 mm, and 1.2 mm generates the largest power output and voltage, namely: 0.32 W and 0.89 V, 0.38 W and 0.98 V, 0.45 W and 1.06 V, and 0.52 W and 1.13 V, respectively.

  9. Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films

    SciTech Connect

    Yang, Chan Ho; Seidel, Jan; Kim, S. Y.; Rossen, P. B.; Yu, Pu; Gajek, Martin; Chu, Ying-Hao; Martin, Lane W; Holcromb, M. B.; He, Q; Maksymovych, Petro; Balke, Nina; Kalinin, Sergei V; Baddorf, Arthur P; Basu, S. R.; Scullin, M. L.; Ramesh, R.

    2009-01-01

    Many interesting materials phenomena such as the emergence of high-T{sub c} superconductivity in the cuprates and colossal magnetoresistance in the manganites arise out of a doping-driven competition between energetically similar ground states. Doped multiferroics present a tantalizing evolution of this generic concept of phase competition. Here, we present the observation of an electronic conductor-insulator transition by control of band-filling in the model antiferromagnetic ferroelectric BiFeO{sub 3} through Ca doping. Application of electric field enables us to control and manipulate this electronic transition to the extent that a p-n junction can be created, erased and inverted in this material. A 'dome-like' feature in the doping dependence of the ferroelectric transition is observed around a Ca concentration of {approx} 1/8, where a new pseudo-tetragonal phase appears and the electric modulation of conduction is optimized. Possible mechanisms for the observed effects are discussed on the basis of the interplay of ionic and electronic conduction. This observation opens the door to merging magnetoelectrics and magnetoelectronics at room temperature by combining electronic conduction with electric and magnetic degrees of freedom already present in the multiferroic BiFeO{sub 3}.

  10. Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries.

    PubMed

    Zhao, Chenyang; Wang, Xu; Kong, Junhua; Ang, Jia Ming; Lee, Pooi See; Liu, Zhaolin; Lu, Xuehong

    2016-01-27

    In this article, a simple self-assembly strategy for fabricating van der Waals heterostructures from isolated two-dimensional atomic crystals is presented. Specifically, dopamine (DOPA), an excellent self-assembly agent and carbon precursor, was adsorbed on exfoliated MoS2 monolayers through electrostatic interaction, and the surface-modified monolayers self-assembled spontaneously into DOPA-intercalated MoS2. The subsequent in situ conversion of DOPA to highly conductive nitrogen-doped graphene (NDG) in the interlayer space of MoS2 led to the formation of a novel NDG/MoS2 nanocomposite with well-defined alternating structure. The NDG/MoS2 was then studied as an anode for lithium-ion batteries (LIBs). The results show that alternating arrangement of NDG and MoS2 triggers synergistic effect between the two components. The kinetics and cycle life of the anode are greatly improved due to the enhanced electron and Li(+) transport as well as the effective immobilization of soluble polysulfide by NDG. A reversible capacity of more than 460 mAh/g could be delivered even at 5 A/g. Moreover, the abundant voids created at the MoS2-NDG interface also accommodate the volume change during cycling and provide additional active sites for Li(+) storage. These endow the NDG/MoS2 heterostructure with low charge-transfer resistance, high sulfur reservation, and structural robustness, rendering it an advanced anode material for LIBs. PMID:26745784

  11. Axial Ge/Si nanowire heterostructure tunnel FETs.

    SciTech Connect

    Dayeh, Shadi A.; Gin, Aaron V.; Huang, Jian Yu; Picraux, Samuel Thomas

    2010-03-01

    Axial Ge/Si heterostructure nanowires (NWs) allow energy band-edge engineering along the axis of the NW, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two significant advances in the area of heterostructure NWs and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure NWs with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these NWs for high-on currents and suppressed ambipolar behavior. Initial prototype devices with 10 nm PECVD SiN{sub x} gate dielectric resulted in a very high current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios. Prior work on the synthesis of Ge/Si axial NW heterostructures through the VLS mechanism have resulted in axial Si/Si{sub 1-x}Ge{sub x} NW heterostructures with x{sub max} {approx} 0.3, and more recently 100% composition modulation was achieved with a solid growth catalyst. In this latter case, the thickness of the heterostructure cannot exceed few atomic layers due to the slow axial growth rate and concurrent radial deposition on the NW sidewalls leading to a mixture of axial and radial deposition, which imposes a big challenge for fabricating useful devices form these NWs in the near future. Here, we report the VLS growth of 100% doping and composition modulated axial Ge/Si heterostructure NWs with lengths appropriate for device fabrication by devising a growth procedure that eliminates Au diffusion on the NW sidewalls and minimizes random kinking in the heterostructure NWs as deduced from detailed microscopy analysis. Fig. 1 a shows a cross-sectional SEM image of epitaxial Ge/Si axial NW heterostructures grown on a Ge(111) surface. The interface abruptness in these Ge/Si heterostructure NWs is of the order of the NW diameter. Some of these NWs develop a crystallographic kink that is {approx

  12. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis.

    PubMed

    Nazir, Safdar; Behtash, Maziar; Cheng, Jianli; Luo, Jian; Yang, Kesong

    2016-01-28

    The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may

  13. Extension of long wavelength response by modulation doping in extrinsic germanium infrared detectors

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Farhoomand, J.; Beichman, C. A.; Watson, D. M.; Jack, M. D.

    1985-01-01

    A new concept for infrared detectors based on multilayer epitaxy and modulation doping has been investigated. This permits a high doping concentration and lower excitation energy in the photodetecting layer as is necessary for longer wavelength response, without incurring the detrimental effects of increased dark current and noise as would be the case with conventional detector designs. Germanium photodetectors using conventional materials and designs have a long wavelength cutoff in the infrared at 138 microns, which can only be extended through the inconvenient application of mechanical stress or magnetic fields. As a result of this approach which was arrived at from theoretical considerations and subsequently demonstrated experimentally, the long wavelength cutoff for germanium extrinsic detectors was extended beyond 200 microns, as determined by direct infrared optical measurements.

  14. Fabrication and measurement of quantum dots in double gated, dopantless Si/SiGe heterostructures

    NASA Astrophysics Data System (ADS)

    Ward, Daniel; Mohr, Robert; Prance, Jonathan; Gamble, John; Savage, Don; Lagally, Max; Coppersmith, Susan; Eriksson, Mark

    2012-02-01

    Significant progress has been made towards quantum dot spin qubits in Si/SiGe single and double quantum dots. In the past, these structures have been created by depleting a modulation-doped 2DEG that forms at the Si/SiGe interface. The modulation doping in such devices is believed to be a source of charge noise. Recently, undoped structures have been explored for the formation of both 2DEGs and quantum dots in Si/SiGe. Here we discuss measurements on double gated, dopantless quantum dots in Si/SiGe heterostructures. The devices are based on a new ``island mesa'' design incorporating micro-ohmic contacts. We present transport measurements on a double quantum dot showing a smooth transition from single dot to double dot behavior.

  15. Surface plasmons on a doped graphene sheet with periodically modulated conductivity

    NASA Astrophysics Data System (ADS)

    Ben Rhouma, M.; Oueslati, M.; Guizal, B.

    2016-08-01

    We propose a model taking into account the periodic spatial modulation of a doped graphene sheet conductivity when it is placed in the vicinity of a dielectric grating. We then compute the absorption and study the excitation of surface plasmons on such a structure. We show that it is possible to excite surface modes leading to very high absorption. Our findings could be of interest in the design of graphene-based plasmonic devices and sensors working in the infra-red and the terahertz regions of the electromagnetic spectrum.

  16. Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy

    SciTech Connect

    Xiao, Yang; Zhai, Zhao-Hui; Zhu, Li-Guo E-mail: huangwanxia@scu.edu.cn; Li, Jun; Peng, Qi-Xian; Li, Ze-Ren; Shi, Qi-Wu; Huang, Wan-Xia E-mail: huangwanxia@scu.edu.cn; Yue, Fang; Hu, Yan-Yan

    2015-07-20

    The ultrafast terahertz (THz) modulation characteristic during photo-induced insulator-to-metal transition (IMT) of undoped and tungsten (W)-doped VO{sub 2} film was investigated at picoseconds time scale using time-resolved THz spectroscopy. W-doping slows down the photo-induced IMT dynamic processes (both the fast non-thermal process and the slow metallic phase propagation process) in VO{sub 2} film and also reduces the pump fluence threshold of photo-induced IMT in VO{sub 2} film. Along with the observed broadening of phase transition temperature window of IMT in W-doped VO{sub 2}, we conclude that W-doping prevents metallic phase domains from percolation. By further extracting carrier properties from photo-induced THz conductivity at several phase transition times, we found that the electron-electron correlation during IMT is enhanced in W-doped VO{sub 2}.

  17. Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Zhai, Zhao-Hui; Shi, Qi-Wu; Zhu, Li-Guo; Li, Jun; Huang, Wan-Xia; Yue, Fang; Hu, Yan-Yan; Peng, Qi-Xian; Li, Ze-Ren

    2015-07-01

    The ultrafast terahertz (THz) modulation characteristic during photo-induced insulator-to-metal transition (IMT) of undoped and tungsten (W)-doped VO2 film was investigated at picoseconds time scale using time-resolved THz spectroscopy. W-doping slows down the photo-induced IMT dynamic processes (both the fast non-thermal process and the slow metallic phase propagation process) in VO2 film and also reduces the pump fluence threshold of photo-induced IMT in VO2 film. Along with the observed broadening of phase transition temperature window of IMT in W-doped VO2, we conclude that W-doping prevents metallic phase domains from percolation. By further extracting carrier properties from photo-induced THz conductivity at several phase transition times, we found that the electron-electron correlation during IMT is enhanced in W-doped VO2.

  18. Modulation doping of double-exchange ferromagnetism in an antiferromagnetic manganite: Magnetic Structure

    NASA Astrophysics Data System (ADS)

    Santos, T. S.; Bhattacharya, A.; Te Velthuis, S. G. E.; Kirby, B. J.; Borchers, J. A.; Maranville, B. B.; May, S. J.; Kumar, S.; van den Brink, J.; Zarestky, J.

    2011-03-01

    In his pioneering work, de Gennes described a canted antiferromagnetic (AF) state that arises when mobile carriers are added to an insulating AF manganite. However, attempts to realize this canted AF state have been impeded by phase segregation into mixed F and AF phases for x=0.1-0.2. Using a digital synthesis technique to carry out modulation doping of charge carriers into an AF host near x=0.5, we exploit the competing double-exchange and superexchange interactions to realize the canted AF state predicted by de Gennes. We observed the canted AF state using polarized neutron reflectometry and neutron diffraction using polarized neutrons and polarization analysis. Theoretical consideration using the two-orbital model shows that these additional carriers cause a local enhancement of F double-exchange with respect to AF superexchange, resulting in local canting of the AF spins, where the canting angle depends on the doping level. We observe that the canting angle varies with the spreading of charge near the delta-doped layer. Funded by DOE-BES: Scientific User Facilities Div. & Div. of Materials Science & Engineering, and US Dept. of Commerce

  19. Metalorganic chemical vapor phase epitaxy of narrow-band distributed Bragg reflectors realized by GaN:Ge modulation doping

    NASA Astrophysics Data System (ADS)

    Berger, Christoph; Lesnik, Andreas; Zettler, Thomas; Schmidt, Gordon; Veit, Peter; Dadgar, Armin; Bläsing, Jürgen; Christen, Jürgen; Strittmatter, André

    2016-04-01

    We report on metalorganic vapor phase epitaxy (MOVPE) of distributed Bragg reflectors (DBR) applying a periodic modulation of the GaN doping concentration only. The doping modulation changes the refractive index of GaN via the Burstein-Moss-effect. MOVPE growth of highly doped GaN:Ge and modulation of the dopant concentration by at least two orders of magnitude within few nanometers is required to achieve a refractive index contrast of 2-3%. Such modulation characteristic is achieved despite the presence of Ge memory effects and incorporation delay. We realized DBRs with up to 100 layer pairs by combining GaN:Ge with a nominal doping concentration of 1.6×1020 cm-3 as low-refractive index material with unintentionally doped GaN as high-refractive index layer. Scanning transmission electron microscope images reveal DBR structures with abrupt interfaces and homogenous layer thicknesses in lateral and vertical direction. Reflectance measurements of DBRs designed for the blue and near UV-spectral region show a narrow stopband with a maximum reflectivity of 85% at 418 nm and even 95% at 370 nm. InGaN/GaN multi-quantum well structures grown on top of such DBRs exhibit narrow emission spectra with linewidths below 3 nm and significantly increased emission intensity.

  20. Different pulse pattern generation by frequency detuning in pulse modulated actively mode-locked ytterbium doped fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, He; Chen, Sheng-Ping; Si, Lei; Zhang, Bin; Jiang, Zong-Fu

    2015-10-01

    We report the results of our recent experimental investigation of the modulation frequency detuning effect on the output pulse dynamics in a pulse modulated actively mode-locked ytterbium doped fiber laser. The experimental study shows the existence of five different mode-locking states that mainly depend on the modulation frequency detuning, which are: (a) amplitude-even harmonic/fundamental mode-locking, (b) Q-switched harmonic/fundamental mode-locking, (c) sinusoidal wave modulation mode, (d) pulses bundle state, and (e) noise-like state. A detailed experimental characterization of the output pulses dynamics in each operating mode is presented.

  1. FAST TRACK COMMUNICATION: Electronic structure of a graphene/hexagonal-BN heterostructure grown on Ru(0001) by chemical vapor deposition and atomic layer deposition: extrinsically doped graphene

    NASA Astrophysics Data System (ADS)

    Bjelkevig, Cameron; Mi, Zhou; Xiao, Jie; Dowben, P. A.; Wang, Lu; Mei, Wai-Ning; Kelber, Jeffry A.

    2010-08-01

    A significant BN-to-graphene charge donation is evident in the electronic structure of a graphene/h-BN(0001) heterojunction grown by chemical vapor deposition and atomic layer deposition directly on Ru(0001), consistent with density functional theory. This filling of the lowest unoccupied state near the Brillouin zone center has been characterized by combined photoemission/k vector resolved inverse photoemission spectroscopies, and Raman and scanning tunneling microscopy/spectroscopy. The unoccupied σ*(Γ1 +) band dispersion yields an effective mass of 0.05 me for graphene in the graphene/h-BN(0001) heterostructure, in spite of strong perturbations to the graphene conduction band edge placement.

  2. Characterization of Si (sub X)Ge (sub 1-x)/Si Heterostructures for Device Applications Using Spectroscopic Ellipsometry

    NASA Technical Reports Server (NTRS)

    Sieg, R. M.; Alterovitz, S. A.; Croke, E. T.; Harrell, M. J.; Tanner, M.; Wang, K. L.; Mena, R. A.; Young, P. G.

    1993-01-01

    Spectroscopic ellipsometry (SE) characterization of several complex Si (sub X)Ge (sub 1-x)/Si heterostructures prepared for device fabrication, including structures for heterojunction bipolar transistors (HBT), p-type and n-type heterostructure modulation doped field effect transistors, has been performed. We have shown that SE can simultaneously determine all active layer thicknesses, Si (sub X)Ge (sub 1-x) compositions, and the oxide overlayer thickness, with only a general knowledge of the structure topology needed a priori. The characterization of HBT material included the SE analysis of a Si (sub X)Ge (sub 1-x) layer deeply buried (600 nanometers) under the silicon emitter and cap layers. In the SE analysis of n-type heterostructures, we examined for the first time a silicon layer under tensile strain. We found that an excellent fit can be obtained using optical constants of unstrained silicon to represent the strained silicon conduction layer. We also used SE to measure lateral sample homogeneity, providing quantitative identification of the inhomogeneous layer. Surface overlayers resulting from prior sample processing were also detected and measured quantitatively. These results should allow SE to be used extensively as a non-destructive means of characterizing Si (sub X)Ge (sub 1-x)/Si heterostructures prior to device fabrication and testing.

  3. Single charge sensing and transport in double quantum dots fabricated from commercially grown Si/SiGe heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, K.; Payette, C.; Dovzhenko, Y.; Koppinen, P.; Petta, J. R.

    2012-02-01

    We perform quantum Hall measurements on three types of commercially available modulation doped Si/SiGe heterostructures [1] to determine their suitability for depletion gate defined quantum dot devices. By adjusting the growth parameters, we are able to achieve two dimensional electron gases with low charge densities and high mobilities. We extract an electron temperature of 100 mK in the single quantum dot regime. Double quantum dots fabricated on these heterostructures show clear evidence of single charge transitions [2] as measured in dc transport and charge sensing. [4pt] [1] C. B. Simmons et al, Phys. Rev. Lett. 106, 156804 (2011).[0pt] [2] R. Hanson et al, Rev. Mod. Phys. 79, 1217 (2007).

  4. Periodic Modulation of the Doping Level in Striped MoS2 Superstructures.

    PubMed

    Zhou, Xiebo; Shi, Jianping; Qi, Yue; Liu, Mengxi; Ma, Donglin; Zhang, Yu; Ji, Qingqing; Zhang, Zhepeng; Li, Cong; Liu, Zhongfan; Zhang, Yanfeng

    2016-03-22

    Although the recently discovered monolayer transition metal dichalcogenides exhibit novel electronic and optical properties, fundamental physical issues such as the quasiparticle bandgap tunability and the substrate effects remain undefined. Herein, we present the report of a quasi-one-dimensional periodically striped superstructure for monolayer MoS2 on Au(100). The formation of the unique striped superstructure is found to be mainly modulated by the symmetry difference between MoS2 and Au(100) and their lattice mismatch. More intriguingly, we find that the monolayer MoS2 is heavily n-doped on the Au(100) facet with a bandgap of 1.3 eV, and the Fermi level is upshifted by ∼0.10 eV on the ridge (∼0.2 eV below the conduction band) in contrast to the valley regions (∼0.3 eV below the conduction band) of the striped patterns after high-temperature sample annealing process. This tunable doping effect is considered to be caused by the different defect densities over the ridge/valley regions of the superstructure. Additionally, an obvious bandgap reduction is observed in the vicinity of the domain boundary for monolayer MoS2 on Au(100). This work should therefore inspire intensive explorations of adlayer-substrate interactions, the defects, and their effects on band-structure engineering of monolayer MoS2. PMID:26913990

  5. Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.

    PubMed

    Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom

    2016-07-13

    Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices. PMID:27254592

  6. Quantum transport in neutron-irradiated modulation-doped heterojunctions. I. Fast neutrons

    SciTech Connect

    Jin, W.; Zhou, J.; Huang, Y.; Cai, L.

    1988-12-15

    We have investigated the characteristics of low-temperature quantum transport in Al/sub x/Ga/sub 1-//sub x/As/GaAs modulation-doped heterojunctions irradiated by fast neutrons of about 14 MeV energy. The concentration and the mobility of the two-dimensional electron gas (2D EG) under low magnetic fields decrease with increase in the concentrations of scatterers, such as ionized impurities, lattice defects, and interface roughness. On the other hand, under strong magnetic fields, the Hall plateau broadening associated with the Landau localized states, and the Shubnikov--de Hass (SdH) oscillation enhancement associated with the Landau extended states, increase markedly after fast-neutron irradiation.

  7. Magnetic field induced indirect gap in a modulation doped quantum well

    NASA Astrophysics Data System (ADS)

    Whittaker, D. M.; Fisher, T. A.; Simmonds, P. E.; Skolnick, M. S.; Smith, R. S.; Taylor, L. L.; Bass, S. J.

    1992-02-01

    We report the first experimental evidence for the indirect fundamental band-gap developed when an in-plane magnetic field is applied to a wide, modulation-doped quantum well. In such structures, band bending may cause the lowest energy electron and hole states to be spatially separated, which leads to an induced indirect gap proportional to the field. The corresponding photoluminescence peak undergoes a large, roughly quadratic shift with field, a consequence of the behaviour of the allowed transitions involving thermalised holes and electrons with finite k. This characteristic strong diamagnetic shift is observed in spectra from both asymmetric AlGaAs/InGaAs/GaAs strained layer structures and a very wide symmetric InGaAs/InP lattice matched well. The experimental results are shown to be in good agreement with realistic self consistent calculations of the band-structure.

  8. Quantum transport in neutron-irradiated modulation-doped heterojunctions. II. Thermal neutrons

    SciTech Connect

    Jin, W.; Zhou, J.; Huang, Y.; Cai, L.

    1988-12-15

    We have investigated the characteristics of the low-temperature quantum transport Al/sub x/Ga/sub 1-//sub x/As/GaAs modulation-doped heterojunctions irradiated by thermal neutrons of about 0.025 eV energy. Time-dependent effects related to nuclear radiation such as ..beta../sup -/ decay and ..gamma.. radiation are discussed in detail. The concentration and the mobility of the two-dimensional electron gas (2D EG) under low magnetic fields, the Hall plateau broadening, and the Shubnikov--de Haas (SdH) oscillation enhancement under strong magnetic fields all increase immediately after the irradiation, and then relax for long times. Above all, parallel conduction without illumination is first observed by us with a higher flux of thermal neutrons.

  9. Inversion of spin dependent photocurrent at Fe3O4/modulation doped GaAs heterointerfaces

    NASA Astrophysics Data System (ADS)

    Shirahata, Y.; Wada, E.; Itoh, M.; Taniyama, T.

    2011-04-01

    We demonstrate inversion of the spin dependent photocurrent across an Fe3O4/modulation doped GaAs interface under optical spin orientation condition. The spin dependent photocurrent for fully epitaxial Fe3O4/GaAs and Fe/GaAs interfaces clearly show the opposite magnetic field dependence, where the spin filtering efficiency for the Fe3O4/GaAs decreases with increasing magnetic field. The results clearly indicate that the spin polarization of the Fe3O4 layer has the opposite sign to that of Fe at the Fermi energy, consistent with theoretical predictions, and the result is a consequence of the atomically flat Fe3O4/GaAs interface we obtained.

  10. Effect of doping on the far-infrared intersubband transitions in nonpolar m-plane GaN/AlGaN heterostructures.

    PubMed

    Lim, C B; Ajay, A; Bougerol, C; Lähnemann, J; Donatini, F; Schörmann, J; Bellet-Amalric, E; Browne, D A; Jiménez-Rodríguez, M; Monroy, E

    2016-04-01

    This paper assesses the effects of Si doping on the properties of nonpolar m-plane GaN/AlGaN quantum wells (QWs) designed for intersubband (ISB) absorption in the far-infrared spectral range. For doping levels up to 3 × 10(12) cm(-2), structural analysis reveals uniform QWs with abrupt interfaces and no epitaxially induced defects. Cathodoluminescence spectroscopy confirms the homogeneity of the multiple QWs along the growth direction. Increasing the doping density in the QWs from 1 × 10(11) cm(-2) to 3 × 10(12) cm(-2) induces a broadening of the photoluminescence as well as a reduction of the exciton localization energy in the alloy. Also, enhancement of the ISB absorption is observed, along with a blue shift and widening of the absorption peak. The magnitude of the ISB absorption saturates for doping levels around 1 × 10(12) cm(-2), and the blue shift and broadening increase less than theoretically predicted for the samples with higher doping levels. This is explained by the presence of free carriers in the excited electron level due to the increase of the Fermi level energy. PMID:26902654

  11. Effect of doping on the far-infrared intersubband transitions in nonpolar m-plane GaN/AlGaN heterostructures

    NASA Astrophysics Data System (ADS)

    Lim, C. B.; Ajay, A.; Bougerol, C.; Lähnemann, J.; Donatini, F.; Schörmann, J.; Bellet-Amalric, E.; Browne, D. A.; Jiménez-Rodríguez, M.; Monroy, E.

    2016-04-01

    This paper assesses the effects of Si doping on the properties of nonpolar m-plane GaN/AlGaN quantum wells (QWs) designed for intersubband (ISB) absorption in the far-infrared spectral range. For doping levels up to 3 × 1012 cm-2, structural analysis reveals uniform QWs with abrupt interfaces and no epitaxially induced defects. Cathodoluminescence spectroscopy confirms the homogeneity of the multiple QWs along the growth direction. Increasing the doping density in the QWs from 1 × 1011 cm-2 to 3 × 1012 cm-2 induces a broadening of the photoluminescence as well as a reduction of the exciton localization energy in the alloy. Also, enhancement of the ISB absorption is observed, along with a blue shift and widening of the absorption peak. The magnitude of the ISB absorption saturates for doping levels around 1 × 1012 cm-2, and the blue shift and broadening increase less than theoretically predicted for the samples with higher doping levels. This is explained by the presence of free carriers in the excited electron level due to the increase of the Fermi level energy.

  12. Atomic Scale Chemical and Structural Characterization of Ceramic Oxide Heterostructure Interfaces

    SciTech Connect

    Singh, R. K.

    2003-04-16

    The research plan was divided into three tasks: (a) growth of oxide heterostructures for interface engineering using standard thin film deposition techniques, (b) atomic level characterization of oxide heterostructure using such techniques as STEM-2 combined with AFM/STM and conventional high-resolution microscopy (HRTEM), and (c) property measurements of aspects important to oxide heterostructures using standard characterization methods, including dielectric properties and dynamic cathodoluminescence measurements. Each of these topics were further classified on the basis of type of oxide heterostructure. Type I oxide heterostructures consisted of active dielectric layers, including the materials Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST), Y{sub 2}O{sub 3} and ZrO{sub 2}. Type II heterostructures consisted of ferroelectric active layers such as lanthanum manganate and Type III heterostructures consist of phosphor oxide active layers such as Eu-doped Y{sub 2}O{sub 3}.

  13. Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity.

    PubMed

    Chen, Wei; Liu, Tian-Yu; Huang, Ting; Liu, Xiao-Heng; Yang, Xu-Jie

    2016-02-14

    In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and separation of charge carrier pairs. More importantly, these P-C3N4/ZnIn2S4 heterostructures have been proven to be highly efficient visible light responsive photocatalysts for photo-reduction, and meanwhile exhibit excellent photo-stability during recycling runs. The sufficient evidence reveals that the significantly improved photocatalytic performance is mainly attributed to the more efficient charge carrier separation based on the construction of a close heterogeneous interface. This work may provide new insights into the utilization of P-C3N4/ZnIn2S4 nanocomposites as visible light driven photocatalysts for comprehensive organic transformations in the field of fine chemical engineering. PMID:26815611

  14. - and Photo-Modulation Studies of Semiconductors: I. Diluted Magnetic Semiconductors. I. Gallium-Arsenide - - Arsenide, Zinc-Selenide and Cadmium - Manganese - Telluride Heterostructures.

    NASA Astrophysics Data System (ADS)

    Lee, Yung-Rai

    1987-09-01

    The reflectivity and transmission spectra of the diluted magnetic semiconductors (DMS) were investigated using piezo- and photo-modulation techniques. The spectra for Cd_{rm 1-x}Mn _{rm x}Te and Zn _{rm 1-x}Mn _{rm x}Te show a characteristic exciton A of the zinc blende DMS. The energy E _{A}, linear in x, is given by 1.595 + 1.592x (eV) for Cd_{rm 1-x}Mn_{rm x} Te and 2.376 + 0.820x (eV) for Zn_ {rm 1-x}Mn_{ rm x}Te at liquid helium temperature, yielding E _{A} = 3.187(3.196) eV for the "hypothetical" zinc blende MnTe. For the wurtizite DMS's, such as Cd_{rm 1-x} Mn_{rm x}Se, signatures characteristic of the crystal field split valence band--the A and the B exciton--are observed for electric vector {rm (vec{E}) } perpendicular and parallel to the c -axis, respectively. For x <=q 0.35, Zn _{rm 1-x}Mn _{rm x}Se has the zinc blende structure; correspondingly only one exciton feature appears in the spectrum. For x > 0.35, two exciton features are observed consistent with the wurtzite structure of Zn_{rm 1-x}Mn _{rm x}Se for higher x. A signature with a sign opposite to that of free exciton is observed at ~ 2.2 eV for Cd _{rm 1-x}Mn _{rm x}Te and Cd _{rm 1-x}Mn_ {rm x}Se for x > 0.4 and for all x in Zn_{rm 1 -x}Mn_{rm x} Te and Zn_{rm 1-x} Mn_{rm x}Se. The feature, identified with a Mn^{2+} internal transition, shows no x dependence. In addition, we have observed signatures associated with imperfections in the crystals. In the magnetoreflectivity measurements, the Mn^{2+} transition fails to show any observable Zeeman shift or splitting when examined in magnetic fields up to 15.58 T. In contrast, the free exciton exhibits huge Zeeman splittings, a consequence of the large Mn^{2+}-band electron exchange interaction. These observations favor the assignment of ^6 A_1(^6 S) to ^4 T _1(^4 G) to the 2.2 eV Mn ^{2+} transition where the levels are associated with the crystal-field-split 3 d ^5 manifold of Mn^{2+ }. We have also applied the piezo- and photo-modulation

  15. Nonlinear dynamics of Ytterbium-doped fiber laser Q-switched using acousto-optical modulator

    NASA Astrophysics Data System (ADS)

    Barmenkov, Y. O.; Kir'yanov, A. V.; Andres, M. V.

    2014-12-01

    A comprehensive experimental analysis of the dynamics of an ytterbium-doped fiber laser actively Q-switched (QS) using an intracavity acousto-optical modulator (AOM) is presented. It is shown that type of QS pulsing strongly depends on AOM repetition rate and pump power. In particular, at low repetition rates, including zero-rate, and at relatively high pump powers peculiar QS pulsing, switched by stimulated Brillouin scattering (SBS), is established in the laser. The cause of such kind of pulsing is the SBS-process boosted by spurious narrow-line CW lasing that arises in auxiliary low-Q cavity formed by an output coupler (in our experiments - fiber Bragg gratings) and weak reflections from blocked AOM. The parameters' area where this regime occurs is limited by certain values of pump power and AOM repetition rate. At increasing AOM repetition rate or decreasing pump power spurious CW lasing is not attained in the system; consequently, the SBS type of QS fades, while "conventional" QS (CQS) lasing is established in the system and remains. However CQS pulsing strongly suffers the nonlinear-dynamics effects: depending on AOM repetition rate and pump power the laser switches to common P1, P2, or P3 attractors, when QS pulses arise at sub-harmonics of AOM repetition rate, or to the specific transient regimes between them, or to chaotic operation. These and other sides (e.g. pulse jittering) of operation of the QS ytterbium-doped fiber laser with AOM are under scope of the present review as they have big interest for practical applications.

  16. Effect of interaction between periodic δ-doping in both well and barrier layers on modulation of superlattice band structure

    NASA Astrophysics Data System (ADS)

    Xu, Huaizhe; Yan, Qiqi; Wang, Tianmin

    2007-08-01

    The modulation of superlattice band structure via periodic δ-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the δ-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic δ-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two δ-doping's positions and heights.

  17. Multifunctional Oxide Heterostructures

    SciTech Connect

    Tsymbal, E Y; Dagotto, Elbio R; Eom, Professor Chang-Beom; Ramesh, Ramamoorthy

    2012-01-01

    This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts.

  18. Spatial modulation spectroscopy for imaging and quantitative analysis of single dye-doped organic nanoparticles inside cells

    NASA Astrophysics Data System (ADS)

    Devadas, Mary Sajini; Devkota, Tuphan; Guha, Samit; Shaw, Scott K.; Smith, Bradley D.; Hartland, Gregory V.

    2015-05-01

    Imaging of non-fluorescent nanoparticles in complex biological environments, such as the cell cytosol, is a challenging problem. For metal nanoparticles, Rayleigh scattering methods can be used, but for organic nanoparticles, such as dye-doped polymer beads or lipid nanoparticles, light scattering does not provide good contrast. In this paper, spatial modulation spectroscopy (SMS) is used to image single organic nanoparticles doped with non-fluorescent, near-IR croconaine dye. SMS is a quantitative imaging technique that yields the absolute extinction cross-section of the nanoparticles, which can be used to determine the number of dye molecules per particle. SMS images were recorded for particles within EMT-6 breast cancer cells. The measurements allowed mapping of the nanoparticle location and the amount of dye in a single cell. The results demonstrate how SMS can facilitate efforts to optimize dye-doped nanoparticles for effective photothermal therapy of cancer.Imaging of non-fluorescent nanoparticles in complex biological environments, such as the cell cytosol, is a challenging problem. For metal nanoparticles, Rayleigh scattering methods can be used, but for organic nanoparticles, such as dye-doped polymer beads or lipid nanoparticles, light scattering does not provide good contrast. In this paper, spatial modulation spectroscopy (SMS) is used to image single organic nanoparticles doped with non-fluorescent, near-IR croconaine dye. SMS is a quantitative imaging technique that yields the absolute extinction cross-section of the nanoparticles, which can be used to determine the number of dye molecules per particle. SMS images were recorded for particles within EMT-6 breast cancer cells. The measurements allowed mapping of the nanoparticle location and the amount of dye in a single cell. The results demonstrate how SMS can facilitate efforts to optimize dye-doped nanoparticles for effective photothermal therapy of cancer. Electronic supplementary information (ESI

  19. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation

    NASA Astrophysics Data System (ADS)

    Yan, Kai; Wu, Di; Peng, Hailin; Jin, Li; Fu, Qiang; Bao, Xinhe; Liu, Zhongfan

    2012-12-01

    Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers with spatially modulated, stable and uniform doping, and shows considerably high room temperature carrier mobility of ~5,000 cm2 V-1 s-1 in intrinsic portion and ~2,500 cm2 V-1 s-1 in nitrogen-doped portion. The unchanged crystalline registry during modulation doping indicates the single-crystalline nature of p-n junctions. Efficient hot carrier-assisted photocurrent was generated by laser excitation at the junction under ambient conditions. This study provides a facile avenue for large-scale synthesis of single-crystalline graphene p-n junctions, allowing for batch fabrication and integration of high-efficiency optoelectronic and electronic devices within the atomically thin film.

  20. Modulation-doped growth of mosaic graphene with single-crystalline p-n junctions for efficient photocurrent generation.

    PubMed

    Yan, Kai; Wu, Di; Peng, Hailin; Jin, Li; Fu, Qiang; Bao, Xinhe; Liu, Zhongfan

    2012-01-01

    Device applications of graphene such as ultrafast transistors and photodetectors benefit from the combination of both high-quality p- and n-doped components prepared in a large-scale manner with spatial control and seamless connection. Here we develop a well-controlled chemical vapour deposition process for direct growth of mosaic graphene. Mosaic graphene is produced in large-area monolayers with spatially modulated, stable and uniform doping, and shows considerably high room temperature carrier mobility of ~5,000 cm(2) V(-1) s(-1) in intrinsic portion and ~2,500 cm(2) V(-1) s(-1) in nitrogen-doped portion. The unchanged crystalline registry during modulation doping indicates the single-crystalline nature of p-n junctions. Efficient hot carrier-assisted photocurrent was generated by laser excitation at the junction under ambient conditions. This study provides a facile avenue for large-scale synthesis of single-crystalline graphene p-n junctions, allowing for batch fabrication and integration of high-efficiency optoelectronic and electronic devices within the atomically thin film. PMID:23232410

  1. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-01-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories. PMID:25909177

  2. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  3. The effects of the porous buffer layer and doping with dysprosium on internal stresses in the GaInP:Dy/por-GaAs/GaAs(100) heterostructures

    SciTech Connect

    Seredin, P. V.; Gordienko, N. N.; Glotov, A. V.; Zhurbina, I. A.; Domashevskaya, E. P.; Arsent'ev, I. N. Shishkov, M. V.

    2009-08-15

    In structures with a porous buffer layer, residual internal stresses caused by a mismatch between the crystal-lattice parameters of the epitaxial GaInP alloy and the GaAs substrate are redistributed to the porous layer that acts as a buffer and is conducive to disappearance of internal stresses. Doping of the epitaxial layer with dysprosium exerts a similar effect on the internal stresses in the film-substrate structure.

  4. Charge modulation of magnetization in X-doped MgO nanotube clusters (X=C, N)

    NASA Astrophysics Data System (ADS)

    Wang, Su-Fang; Chen, Li-Yong; Zhang, Tao; Xie, You

    2016-02-01

    First-principles calculations based on density functional theory are performed to study the magnetic and electronic properties of X-doped 8×7 MgO nanotube clusters (X=C, N). The N dopant easily occupies the O-site at the edge of MgO nanotube, embracing neutral or charged defect state, and induces notable magnetization in N-doped MgO tubular cluster. More important, this p-electron magnetization can be significantly modulated as the charged state of the defect changes. Regarding C doping, impurity atom readily substitute the Mg atom located at the edge of MgO nanotube to form neutral defect, and net magnetization is found to be zero. The calculated electron densities of states show that the O-site N doping at the edge greatly narrows or even destroys band-gap, while it enlarges somewhat for the Mg-site C doping at the edge. The results are likely to stimulate a promising class of materials for various applications ranging from spintronics to magneto-optics.

  5. Photodetectors based on heterostructures for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Nabet, Bahram; Cola, Adriano; Cataldo, Andrea; Chen, Xiying; Quaranta, Fabio

    2002-09-01

    In this work we describe a family of optical devices based on heterojunction and heterodimensional structures and we investigate their static and dynamic properties. Such devices are good candidates, due to their high performance, for utilization as the sensing element for the realization of sensors in the fields of telecommunications, remote sensing, LIDAR and medical imaging. First, we present a Heterostructure Metal-Semiconductor-Metal (HMSM) photodetectors that employ a uniformly doped GaAs/AlGaAs heterojunction for the dual purpose of barrier height enhancement and creating an internal electric field that aids in the transport and collection of the photogenerated electrons. In this first family of devices, two doping levels are compared showing the direct effect of the aiding field due to modulation doping. Subsequently, we analyze a novel Resonant-Cavity-Enhanced (RCE) HMSM photodetector in which a Distributed Bragg Reflector (DBR) is employed in order to reduce the thickness of the absorption layer thus achieving good responsivity and high speed as well as wavelength selectivity. Current-voltage, current-temperature, photocurrent spectra, high-speed time response, and on-wafer frequency domain measurements point out the better performance of this last family of detectors, as they can operate in tens of Giga-Hertz range with low dark current and high responsivity. Particularly, the I-V curves show a very low dark current (around 10 picoamps at operative biases); C-V measurements highlight the low geometrical capacitance values; the photocurrent spectrum shows a clear peak at 850 nm wavelength, while time response measurements give a 3 dB bandwidth of about 30 GHz. Small signal model based on frequency domain data is also extracted in order to facilitate future photoreceiver design. Furthermore, two-dimensional numerical simulations have been carried out in order to predict the electrical properties of these detectors. Combination of very low dark current and

  6. Si-doped AlGaAs/GaAs(6 3 1)A heterostructures grown by MBE as a function of the As-pressure

    NASA Astrophysics Data System (ADS)

    Méndez-García, Víctor-Hugo; Shimomura, S.; Gorbatchev, A. Yu.; Cruz-Hernández, E.; Vázquez-Cortés, D.

    2015-09-01

    The effects of doping with silicon (Si) AlGaAs layers grown by molecular beam epitaxy on GaAs (6 3 1)-oriented substrates as a function of the arsenic pressure (PAs) is presented and compared with layers grown on (1 0 0) oriented substrates. The surface texture of the AlGaAs (6 3 1) films is composed by nanogrooves, whose dimensions depend on PAs. On the contrary, the MBE growth on the (1 0 0) plane resulted on rough surfaces, without evidence of formation of terraces. Mobility and carrier density of AlGaAs:Si layers grown on substrates (6 3 1) were studied as a function of PAs. The doping type conversion from p-type to n-type as a function of the As pressure is corroborated for high index samples. All the films grown on (1 0 0) exhibited silicon n-type doping. These observations were related with the amphotericity of Si, where it acts as a donor impurity occupying Al or Ga-sites or as an acceptor when it takes an As-site, depending on the competition that the Si atoms encounters with As for any of these sites. The acceptor and donor lines close to the AlGaAs transition observed by photoluminescence spectroscopy (PL) were affected by the incorporation of Si. When increasing PAs the energy of the main PL peak is redshifted for n-type AlGaAs layers, but it is shifted back towards high energy once the conduction type conversion takes place. X-ray diffraction patterns revealed high crystalline quality for samples grown at the highest PAs.

  7. Rapid thermal annealing and modulation-doping effects on InAs/GaAs quantum dots photoluminescence dependence on excitation power

    NASA Astrophysics Data System (ADS)

    Chaâbani, W.; Melliti, A.; Maaref, M. A.; Testelin, C.; Lemaître, A.

    2016-07-01

    The optical properties of p-doped and annealed InAs/GaAs quantum dots (QDs) was investigated by photoluminescence (PL) as a function of temperature and excitation power density (Pexc). At low-T, PL spectra of rapid thermal annealing (RTA) and p-modulation doped QDs show an energy blueshift and redshift, respectively. A superlinear dependence of integrated PL intensity on Pexc at high-T was found only for undoped QD. The superlinearity was suppressed by modulation-doping and RTA effects. A linear dependence of IPL at all temperatures and a decrease of the carrier-carrier Coulomb interaction at high-T was found after RTA.

  8. Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Liu, Tian-Yu; Huang, Ting; Liu, Xiao-Heng; Yang, Xu-Jie

    2016-02-01

    In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and separation of charge carrier pairs. More importantly, these P-C3N4/ZnIn2S4 heterostructures have been proven to be highly efficient visible light responsive photocatalysts for photo-reduction, and meanwhile exhibit excellent photo-stability during recycling runs. The sufficient evidence reveals that the significantly improved photocatalytic performance is mainly attributed to the more efficient charge carrier separation based on the construction of a close heterogeneous interface. This work may provide new insights into the utilization of P-C3N4/ZnIn2S4 nanocomposites as visible light driven photocatalysts for comprehensive organic transformations in the field of fine chemical engineering.In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and

  9. Gate-tunable high mobility remote-doped InSb/In{sub 1−x}Al{sub x}Sb quantum well heterostructures

    SciTech Connect

    Yi, Wei E-mail: MSokolich@hrl.com; Kiselev, Andrey A.; Thorp, Jacob; Noah, Ramsey; Nguyen, Binh-Minh; Bui, Steven; Rajavel, Rajesh D.; Hussain, Tahir; Gyure, Mark F.; Sokolich, Marko E-mail: MSokolich@hrl.com; Kratz, Philip; Qian, Qi; Manfra, Michael J.; Pribiag, Vlad S.; Kouwenhoven, Leo P.; Marcus, Charles M.

    2015-04-06

    Gate-tunable high-mobility InSb/In{sub 1−x}Al{sub x}Sb quantum wells (QWs) grown on GaAs substrates are reported. The QW two-dimensional electron gas (2DEG) channel mobility in excess of 200 000 cm{sup 2}/V s is measured at T = 1.8 K. In asymmetrically remote-doped samples with an HfO{sub 2} gate dielectric formed by atomic layer deposition, parallel conduction is eliminated and complete 2DEG channel depletion is reached with minimal hysteresis in gate bias response of the 2DEG electron density. The integer quantum Hall effect with Landau level filling factor down to 1 is observed. A high-transparency non-alloyed Ohmic contact to the 2DEG with contact resistance below 1 Ω·mm is achieved at 1.8 K.

  10. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition.

    PubMed

    Kim, S; Russell, M; Henry, M; Kim, S S; Naik, R R; Voevodin, A A; Jang, S S; Tsukruk, V V; Fedorov, A G

    2015-09-28

    We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an "n-p-n" junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 10(18) e(-) per cm(2)). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 10(19) e(-) per cm(2) results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, "direct-write" functional patterning of graphene-based electronic devices with potential for on-demand re-configurability. PMID:26302897

  11. Electrical spin injection in modulation-doped GaAs from an in situ grown Fe/MgO layer

    SciTech Connect

    Shim, Seong Hoon; Kim, Hyung-jun; Koo, Hyun Cheol; Lee, Yun-Hi; Chang, Joonyeon

    2015-09-07

    We study spin accumulation in n-doped GaAs that were electrically injected from Fe via MgO using three-terminal Hanle measurement. The Fe/MgO/GaAs structures were prepared in a cluster molecular beam epitaxy that did not require the breaking of the vacuum. We found the crystal orientation relationship of epitaxial structures Fe[100]//MgO[110]//GaAs[110] without evident defects at the interface. Control of depletion width and interface resistance by means of modulation doping improves spin injection, leading to enhanced spin voltage (ΔV) of 6.3 mV at 10 K and 0.8 mV even at 400 K. The extracted spin lifetime and spin diffusion length of GaAs are 220 ps and 0.77 μm, respectively, at 200 K. MgO tunnel barrier grown in situ with modulation doping at the interface appears to be promising for spin injection into GaAs.

  12. Distortion of self-induced-transparency solitons as a result of self-phase modulation in ion-doped fibers

    NASA Astrophysics Data System (ADS)

    Kozlov, Victor V.; Fradkin, Évald E.

    1995-11-01

    The temporal envelope profile and the phase of a steady-state pulse propagating through a resonant medium in the presence of nonresonant nonlinearity are derived. The formation of solitonlike pulses takes place as a result of the balance of the self-phase modulation generated by nonresonant nonlinearity and the nonlinear resonant group-velocity dispersion induced by the self-induced-transparency effect in a resonant medium. Self-phase-modulation action leads to distortion of the pulse when its power and inverse duration exceed the critical values Pcr and tau -1cr . We show the destructive role of self-phase modulation in the case of self-induced-transparency pulse generation in a laser with erbium-doped fiber as an intracavity coherent absorber.

  13. Single electron charging at temperatures above 4 K in ultrasmall lateral quantum dots patterned on shallow GaAs/AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Borsosfoldi, Z.; Rahman, M.; Larkin, I. A.; Long, A. R.; Davies, J. H.; Weaver, J. M. R.; Holland, M. C.; Williamson, J. G.

    1995-06-01

    We demonstrate single electron charging in fully controllable nanoscale quantum devices at temperatures above 4 K. Hitherto, single electron devices operating at ``high'' temperatures have been two-terminal, having no control electrode, whereas fully tunable structures such as quantum dots have only shown charging effects at temperatures of 4 K or less. We have fabricated ultrasmall quantum dots on modulation doped heterostructures where the two-dimensional electron gas is less than 30 nm from the surface. Dots with lithographic diameter 150 nm show Coulomb oscillations up to temperatures of 7 K. Higher temperature operation allows potential applications to be considered without the need, for example, of a dilution fridge.

  14. Quantitative characterization of modulation-doped strained quantum wells through line-shape analysis of room-temperature photoluminescence spectra

    NASA Astrophysics Data System (ADS)

    Brierley, Steven K.

    1993-08-01

    Room-temperature photoluminescence (PL) was presented as a nondestructive characterization method for modulation-doped strained quantum well epitaxial structures suited for pseudomorphic high electron mobility transistors (pHEMTs). Though the spectra showed broad peaks, in contrast to the sharp, well-defined peaks in low-temperature PL spectra, quantitative energy data was obtained through fitting a phenomenological line-shape model to the spectra. This model included the four transitions linking the first two electron subbands and the first two heavy-hole subbands, which can take credit for all of the peaks noted in pHEMT epitaxial configurations at realistic doping levels. The obtained results revealed that by using a simple line-shape model to the room-temperature PL spectrum of a pHEMT, a substantial amount of detailed structural and electronic data can be acquired regarding the quantum well.

  15. Bandgap modulation and hydrogen storage with Cr-doped BN sheets

    NASA Astrophysics Data System (ADS)

    Ma, Shengqian

    2015-08-01

    The theoretical calculations indicate that the metal-doped boron nitride (BN) sheets are potential materials to store the hydrogen and tune the bandgap. It is all known that the BN sheet is a nonmagnetic wide-bandgap semiconductor. Using density function theory (DFT), the lattice parameters of Cr-doped BN sheets are optimized, which are still kept on two-dimensional (2D) planar geometry, and the bandgap and H2 storage are studied. The simulation results show that the H2 molecule can be easily absorbed by Cr-doped N in BN sheet. As the adsorption energy was greatly decreasing with the increasing number of Cr-doped N, B had an affinity for adsorption of H2. With the increase of Cr doping, the bandgap of Cr-doped BN sheet is decreasing. The bandgap decreases from 4.705 eV to 0.08 eV. So Cr-doped BN sheet is a promising material in storing H2 and tuning the bandgap.

  16. Trion and exciton dephasing measurements in modulation-doped quantum wells: A probe for trion and carrier localization

    NASA Astrophysics Data System (ADS)

    Brinkmann, D.; Kudrna, J.; Gilliot, P.; Hönerlage, B.; Arnoult, A.; Cibert, J.; Tatarenko, S.

    1999-08-01

    To investigate the properties of a two-dimensional carrier gas at intermediate densities, we perform picosecond transient four-wave mixing experiments on trions (charged excitons) and neutral excitons in modulation p-doped CdTe/Cd1-x-yMgxZnyTe quantum wells. The determination of trion and exciton dephasing rates reveals a localization of both trions and holes in potential fluctuations induced by the ionized remote acceptors. We demonstrate that trions can be efficiently used as a charged optical probe sensitive to electrostatic potential fluctuations which are imperceptible for neutral excitons.

  17. Modulation doping of GaAs/AlGaAs core-shell nanowires with effective defect passivation and high electron mobility.

    PubMed

    Boland, Jessica L; Conesa-Boj, Sonia; Parkinson, Patrick; Tütüncüoglu, Gözde; Matteini, Federico; Rüffer, Daniel; Casadei, Alberto; Amaduzzi, Francesca; Jabeen, Fauzia; Davies, Christopher L; Joyce, Hannah J; Herz, Laura M; Fontcuberta i Morral, Anna; Johnston, Michael B

    2015-02-11

    Reliable doping is required to realize many devices based on semiconductor nanowires. Group III-V nanowires show great promise as elements of high-speed optoelectronic devices, but for such applications it is important that the electron mobility is not compromised by the inclusion of dopants. Here we show that GaAs nanowires can be n-type doped with negligible loss of electron mobility. Molecular beam epitaxy was used to fabricate modulation-doped GaAs nanowires with Al0.33Ga0.67As shells that contained a layer of Si dopants. We identify the presence of the doped layer from a high-angle annular dark field scanning electron microscopy cross-section image. The doping density, carrier mobility, and charge carrier lifetimes of these n-type nanowires and nominally undoped reference samples were determined using the noncontact method of optical pump terahertz probe spectroscopy. An n-type extrinsic carrier concentration of 1.10 ± 0.06 × 10(16) cm(-3) was extracted, demonstrating the effectiveness of modulation doping in GaAs nanowires. The room-temperature electron mobility was also found to be high at 2200 ± 300 cm(2) V(-1) s(-1) and importantly minimal degradation was observed compared with undoped reference nanowires at similar electron densities. In addition, modulation doping significantly enhanced the room-temperature photoconductivity and photoluminescence lifetimes to 3.9 ± 0.3 and 2.4 ± 0.1 ns respectively, revealing that modulation doping can passivate interfacial trap states. PMID:25602841

  18. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Okamoto, Hajime; Watanabe, Takayuki; Ohta, Ryuichi; Onomitsu, Koji; Gotoh, Hideki; Sogawa, Tetsuomi; Yamaguchi, Hiroshi

    2015-10-01

    The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure-cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron-hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays.

  19. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.

    PubMed

    Okamoto, Hajime; Watanabe, Takayuki; Ohta, Ryuichi; Onomitsu, Koji; Gotoh, Hideki; Sogawa, Tetsuomi; Yamaguchi, Hiroshi

    2015-01-01

    The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure-cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron-hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays. PMID:26477487

  20. Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by in-situ fluorine doping of atomic layer deposition Al2O3 gate dielectrics

    NASA Astrophysics Data System (ADS)

    Roberts, J. W.; Chalker, P. R.; Lee, K. B.; Houston, P. A.; Cho, S. J.; Thayne, I. G.; Guiney, I.; Wallis, D.; Humphreys, C. J.

    2016-02-01

    We report the modification and control of threshold voltage in enhancement and depletion mode AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors through the use of in-situ fluorine doping of atomic layer deposition Al2O3. Uniform distribution of F ions throughout the oxide thickness are achievable, with a doping level of up to 5.5 × 1019 cm-3 as quantified by secondary ion mass spectrometry. This fluorine doping level reduces capacitive hysteretic effects when exploited in GaN metal-oxide-semiconductor capacitors. The fluorine doping and forming gas anneal also induces an average positive threshold voltage shift of between 0.75 and 1.36 V in both enhancement mode and depletion mode GaN-based transistors compared with the undoped gate oxide via a reduction of positive fixed charge in the gate oxide from +4.67 × 1012 cm-2 to -6.60 × 1012 cm-2. The application of this process in GaN based power transistors advances the realisation of normally off, high power, high speed devices.

  1. Spatial modulation of low-frequency spin fluctuations in hole-doped La{sub 2}CuO{sub 4}

    SciTech Connect

    Yamada, K.; Lee, C.H.; Wada, J.; Kurahashi, K.; Kimura, H.; Endoh, Y.; Hosoya, S.; Shirane, G.; Birgeneau, R.J.; Kastner, M.A.

    1996-12-01

    Systematic neutron scattering measurements have been performed on the Sr-doped La(2-x)Sr(x) CuO4 to study the doping dependence of spatially modulated dynamical spin correlations or so-called incommensurate spin fluctuations. The modulated spin correlations appears beyond x approx. 0.05 which is close to the lower boundary of the superconducting phase. First evidence was observed for the linear relation between the degree of spatial modulation or the incommensurability delta(x) and the maximum Tc at x. We present a universal curve for delta(x) by adding data from other La2CuO4 systems such as oxygen-doped superconductors, oxygen-reduced or Zn-substituted non-superconductors and La(1.6-x)Nd(0.4)Sr(x)CuO4.

  2. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition

    NASA Astrophysics Data System (ADS)

    Kim, S.; Russell, M.; Henry, M.; Kim, S. S.; Naik, R. R.; Voevodin, A. A.; Jang, S. S.; Tsukruk, V. V.; Fedorov, A. G.

    2015-09-01

    We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability.We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated

  3. Characterization of the transport properties of channel delta-doped structures by light-modulated Shubnikov-de Haas measurements

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.

    1995-01-01

    The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 K down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magneto-resistance used to characterize the two-dimensional electron gas (2DEG) by conventional SdH measurements. By light-modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 tesla, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.

  4. Ultraviolet-light-driven doping modulation in chemical vapor deposition grown graphene.

    PubMed

    Iqbal, M Z; Iqbal, M W; Khan, M F; Eom, Jonghwa

    2015-08-28

    The tuning of charge carrier density of graphene is an essential factor to achieve the integration of high-efficiency electronic and optoelectronic devices. We demonstrate the reversible doping in graphene using deep ultraviolet (UV) irradiation and treatment with O2 and N2 gases. The Dirac point shift towards a positive gate voltage of chemical vapor deposition grown graphene field-effect transistors confirms the p-type doping, which is observed under UV irradiation and treatment with O2 gas, while it restores its pristine state after treatment with N2 gas under UV irradiation. The emergence of an additional peak in the X-ray photoelectron spectra during UV irradiation and treatment with O2 gas represents the oxidation of graphene, and the elimination of this peak during UV irradiation and treatment with N2 gas reveals the restoration of graphene in its pristine state. The shift in the G and 2D bands in Raman spectra towards higher and then lower wavenumber also suggests p-type doping and then reversible doping in graphene. The controlled doping and its reversibility in large area grown graphene offer a new vision for electronic applications. PMID:26198203

  5. Enhancement of thermoelectric performance in composite materials through locally-modulated doping

    NASA Astrophysics Data System (ADS)

    Adams, Michael J.; Jin, Hyungyu; Heremans, Joseph P.

    2015-03-01

    Composites of organic or inorganic constituents are often considered as a way to yield high thermoelectric figure of merit. The limit of this approach is set by the effective medium theory, which demonstrates formally that a composite of two materials A and B cannot have higher figure of merit than the highest of either A or B, in the absence of interaction between A and B. In this work, we show that this limit can be lifted by introducing into a host material a second phase that behaves differently vis-a-vis electrons than vis-a-vis phonons. This phase consists of electrically and thermally insulating islands of material that locally dope the semiconducting host. Doped material near the islands provides electrically conductive volumes for charge carriers. Phonons, unaffected by local doping, are scattered by the islands. Thermopower is less affected by the doped regions than electrical conductivity, by an intrinsic mathematical property of the effective medium theory. We employ this concept in Bi1-xSbx alloys and in p-type (Bi1-xSbx)2 Te3 compounds, which are known as good thermoelectric materials at cryogenic and room temperatures, respectively. Experimental transport data and the local microscopic characterizations of the samples are presented. Supported by DOE US-China Clean Energy Research Center SubK 3002041929, and by AFOSR MURI FA9550-10-1-0533.

  6. Two Carrier Analysis of Persistent Photoconductivity in Modulation-Doped Structures

    NASA Technical Reports Server (NTRS)

    Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.

    1995-01-01

    A simultaneous fit of Hall and conductivity data gives quantitative results on the carrier concentration and mobility in both the quantum well and the parallel conduction channel. In this study this method was applied to reveal several new findings on the effect of persistent photoconductivity (PPC) on free-carrier concentrations and mobilities. The increase in the two-dimensional electron-gas (2DEG) concentration is significantly smaller than the apparent one derived from single carrier analysis of the Hall coefficient. In the two types of structures investigated, delta doped and continuously doped barrier, the apparent concentration almost doubles following illumination, while analysis reveals an increase of about 20% in the 2DEG. The effect of PPC on mobility depends on the structure. For the sample with a continuously doped barrier the mobility in the quantum well more than doubles. This increase is attributed to the effective screening of the ionized donors by the large electron concentration in the barrier. In the delta doped barrier sample the mobility is reduced by almost a factor of 2. This decrease is probably caused by strong coupling between the two wells, as is demonstrated by self-consistent analysis.

  7. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    NASA Astrophysics Data System (ADS)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  8. Ion-doping as a strategy to modulate hydroxyapatite nanoparticle internalization

    NASA Astrophysics Data System (ADS)

    Zhao, Z.; Espanol, M.; Guillem-Marti, J.; Kempf, D.; Diez-Escudero, A.; Ginebra, M.-P.

    2016-01-01

    Although it is widely acknowledged that ionic substitutions on bulk hydroxyapatite substrates have a strong impact on their biological performance, little is known of their effect on nanoparticles (NPs) especially when used for gene transfection or drug delivery. The fact that NPs would be internalized poses many questions but also opens up many new possibilities. The objective of the present work is to synthesize and assess the effect of a series of hydroxyapatite-like (HA) NPs doped with various ions on cell behavior, i.e. carbonate, magnesium and co-addition. We synthesized NPs under similar conditions to allow comparison of results and different aspects in addition to assessing the effect of the doping ion(s) were investigated: (1) the effect of performing the cell culture study on citrate-dispersed NPs and on agglomerated NPs, (2) the effect of adding/excluding 10% of foetal bovine serum (FBS) in the cell culture media and (3) the type of cell, i.e. MG-63 versus rat mesenchymal stem cells (rMSCs). The results clearly demonstrated that Mg-doping had a major effect on MG-63 cells with high cytotoxicity but not to rMSCs. This was a very important finding because it proved that doping could be a tool to modify NP internalization. The results also suggest that NP surface charge had a large impact on MG-63 cells and prevents their internalization if it is too negative--this effect was less critical for rMSCs.Although it is widely acknowledged that ionic substitutions on bulk hydroxyapatite substrates have a strong impact on their biological performance, little is known of their effect on nanoparticles (NPs) especially when used for gene transfection or drug delivery. The fact that NPs would be internalized poses many questions but also opens up many new possibilities. The objective of the present work is to synthesize and assess the effect of a series of hydroxyapatite-like (HA) NPs doped with various ions on cell behavior, i.e. carbonate, magnesium and co

  9. Spin and charge modulations in a single-hole-doped Hubbard ladder: Verification with optical lattice experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Weng, Zheng-Yu; Ho, Tin-Lun

    2016-03-01

    We show that pronounced modulations in spin and charge densities can be induced by the insertion of a single hole in an otherwise half-filled two-leg Hubbard ladder. Accompanied with these modulations is a loosely bound structure of the doped charge with a spin-1/2, in contrast to the tightly bound case where such modulations are absent. These behaviors are caused by the interference of the Berry phases associated with a string of flipped spins (or "phase strings") left behind as a hole travels through a spin bath with a short-range antiferromagnetic order. The key role of the phase strings is also reflected in how the system responds to increasing spin polarization and the on-site repulsion, addition of a second hole, and increasing asymmetry between intra- and interchain hopping. Remarkably, all these properties persist down to ladders as short as ˜10 sites, as the smoking gun of the phase-string effect. They can therefore be studied in cold-atom experiments using the recently developed fermion microscope.

  10. Stress-modulated composition in the vicinity of dislocations in nearly lattice matched AlxIn1-xN/GaN heterostructures: A possible explanation of defect insensitivity

    NASA Astrophysics Data System (ADS)

    Mouti, Anas; Rouvière, Jean-Luc; Cantoni, Marco; Carlin, Jean-Francois; Feltin, Eric; Grandjean, Nicolas; Stadelmann, Pierre

    2011-05-01

    Evidence of composition fluctuations around threading dislocations at scales ranging from atomic distances to tens of nanometers is provided by z-contrast imaging, strain measurement, and energy dispersive x-ray spectroscopy in AlxIn1-xN/GaN heterostructures. The atomic core rings of edge-type dislocations are shown to lie across highly antisymmetric elemental environments, and the indium-rich pit centers of mixed dislocation are found to lie on the tensile side of their atomic core ring. The observed composition fluctuations around pure-edge dislocations are compared with an elastostatic free energy model calculation and a good qualitative and quantitative agreement is obtained. Hydrostatic stress is shown to be their principal cause: Tensile stress regions are indium rich and compressive stress regions are aluminum rich. We show that the stress field of a mixed dislocation can impact the composition of the alloy more than a hundred nanometers away from its core. Indium core segregation on pure-screw threading dislocation is also evidenced and explained by the model, as shear stress is also expected to affect composition. Furthermore, threading dislocations are shown to bend less in the AlxIn1-xN alloy than in GaN, suggesting that they are “pinned” by stress-induced fluctuations. Such concentration modulations can have an important impact on optical and electrical properties of Group-III nitride devices that generally contain a high dislocation density (in the 108 to 1010 cm-2 range). We propose that stress-induced composition modulation could be the origin of defect insensitivity in indium-containing nitride ternary alloys.

  11. Modulation of the electron transport properties in graphene nanoribbons doped with BN chains

    SciTech Connect

    Liu, Wu; Zhang, Kaiwang Zhong, JianXin; Wang, Ru-Zhi; Liu, Li-Min

    2014-06-15

    Using density-functional theory and the non-equilibrium Green's function method, the electron transport properties of zigzag graphene nanoribbons (ZGNRs) doped with BN chains are studied by systematically calculating the energy band structure, density of states and the transmission spectra for the systems. The BN chains destroyed the electronic transport properties of the ZGNRs, and an energy gap appeared for the ZGNRs, and displayed variations from a metal to a wide-gap semiconductor. With an increase in the number of BN chains, the band gap increased gradually in the band structure and the transmission coefficient decreased near the Fermi surface. Additionally, the doping position had a significant effect on the electronic properties of the ZGNRs.

  12. Designing heterostructures with higher-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Le Hur, Karyn; Chung, Chung-Hou; Paul, I.

    2011-07-01

    We propose to increase the superconducting transition temperature Tc of strongly correlated materials by designing heterostructures which exhibit a high pairing energy as a result of magnetic fluctuations. More precisely, applying an effective theory of the doped Mott insulator, we envisage a bilayer Hubbard system where both layers exhibit intrinsic intralayer (intraband) d-wave superconducting correlations. Introducing a finite asymmetry between the hole densities of the two layers such that one layer becomes slightly more underdoped and the other more overdoped, we show a visible enhancement of Tc compared to the optimally doped isolated layer. Using the bonding and antibonding band basis, we show that the mechanism behind this enhancement of Tc is the interband pairing correlation mediated by the hole asymmetry which strives to decrease the paramagnetic nodal contribution to the superfluid stiffness. For two identical layers, Tc remains comparable to that of the isolated layer until moderate values of the interlayer single-particle tunneling term. These heterostructures shed new light on fundamental questions related to superconductivity.

  13. Field-Effect Modulation of Ambipolar Doping and Domain Wall Band Alignment in P-type Vanadium Dioxide Nanowires

    NASA Astrophysics Data System (ADS)

    Hou, Yasen; Peng, Xingyue; Yang, Yiming; Yu, Dong

    The sub-picosecond metal-insulator phase transition in vanadium dioxide (VO2) has attracted extensive attention with potential applications in ultrafast Mott transistors. However, the development of VO2-based transistors lags behind, owing to the lack of an efficient and hysteresis-free electrostatic doping control. Here we report the first synthesis of p-type single crystalline VO2nanowires via catalyst-free chemical vapor deposition. The p-type doping was unambiguously confirmed by both solid and electrochemical gating methods, and further evidenced by the scanning photocurrent microscopic measurements. Interestingly, we observed that the photocurrent spot polarity at the metal-insulator domain walls was reversibly switched by electrochemical gating, which indicates a band bending flipping. Furthermore, we eliminated the common hysteresis in gate sweep and greatly shortened the transistor response time via a hybrid gating method, which combines the merits of liquid ionic and solid gating. The capability of efficient field effect modulation of ambipolar conduction and band alignment offers new opportunities on understanding the phase transition mechanism and enables novel electronic applications based on VO2.

  14. Enhanced electrical transport by texture modulation and co-doping for Ca3Co4O9+δ materials

    NASA Astrophysics Data System (ADS)

    Liu, Z. Y.; Zhang, F. P.; Zhang, J. X.; Zhang, X.; Lu, Q. M.; Yang, X. Y.

    The powders as well as the texture modulated Ca2.8BaxPryCo4O9+δ (x, y = 0, 0.05, 0.1, 0.15 and 0.2) bulk materials are prepared via solid state reaction, sol-gel and spark plasma sintering method. The powder and bulk materials are analyzed with regard to their phase composition and microscopic character by X-ray diffraction (XRD) and scanning electron microscope (SEM). The thermoelectric transport properties of the bulk materials are measured and investigated. The results show that the plate-like powders with uniform particle size tend to align regularly rather than the powders with anomaly shape and particle size distribution by spark plasma sintering method. The bulk materials co-doped by elements with lower electronegativity tend to form better texture rather than that of the bulk materials co-doped by elements with higher electronegativity via spark plasma sintering method. The resistivities and Seebeck coefficients are in negative accordance to the bulk material texture as a whole, and the carrier transport mechanism is not influenced. The electrical performance is tuned with optimized power factor 462 μW m-1 K-2 at 973 K for Ca2.8BaxPryCo4O9+δ (x = y = 0.1) bulk materials.

  15. Co-propagation of two optical fields in a semiconductor doped dispersion decreasing fiber and modulational instability induced by cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Nithyanandan, K.; Porsezian, K.

    2016-01-01

    A theoretical study of cross phase modulation (XPM) induced modulational instability (MI) in a semiconductor doped dispersion decreasing fiber (SD-DDF) is presented. The equation is suitably modeled to account for the saturable nonlinearity and dispersion decreasing nature of the fiber. Using linear stability analysis, the exact dispersion relation is obtained and MI analysis is performed. We exclusively analyze the influence of the walk-off effect in the instability spectra of an SD-DDF and an optimum walk-off parameter is identified. The contrasting nature of action of decreasing dispersion and saturating nonlinearity is emphasized, such that the former enhances and the latter suppresses bandwidth. Thus, a suitable combination of the two physical effects can enable one to realize the desired bandwidth profile. MI analysis in the normal dispersion regime is compared with the anomalous counterpart as well as the conventional single pump case and the results are tabulated. Also, our analytical results are compared through direct numerical simulation and the results are documented. Thus, we present a comprehensive study of XPM-MI in an SD-DDF and the influence of various physical effects on the MI dynamics.

  16. Evaluation of modulating field of photoreflectance of surface-intrinsic-n+ type doped GaAs by using photoinduced voltage

    NASA Astrophysics Data System (ADS)

    Lee, W. Y.; Chien, J. Y.; Wang, D. P.; Huang, K. F.; Huang, T. C.

    2002-04-01

    Photoreflectance (PR) of surface-intrinsic-n+ type doped GaAs has been measured for various power densities of pump laser. The spectra exhibited many Franz-Keldysh oscillations, whereby the strength of electric field F in the undoped layer can be determined. The thus obtained Fs are subject to photovoltaic effect and are less than built-in field Fbi. In the previous work we have obtained the relation F≈Fbi-δF/2 when δF≪Fbi by using electroreflectance to simulate PR, where δF is the modulating field of the pump beam. In this work a method was devised to evaluate δF by using photoinduced voltages Vs and, hence, the relation can be verified by PR itself. The δFs obtained by Vs are also consistent with those of using imaginary part of fast Fourier transform of PR spectra.

  17. Study of InGaAs-based modulation doped field effect transistor structures using variable-angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.

  18. Interaction between excitons and 2DEG Landau levels in modulation doped GaAs/AlGaAs heterojunctions

    NASA Astrophysics Data System (ADS)

    Preezant, Yulia; Gabbay, A.; Eitan, A. A.; Ashkinadze, B. M.; Cohen, E.; Pfeiffer, L. N.

    2007-04-01

    The reflection and photoluminescence spectra of n-type, modulation-doped GaAs/AlxGa1-xAs wide quantum wells (QW) and heterojunctions (HJ) were studied at T = 2K and under a perpendicularly applied magnetic field. The spectra show two groups of very sharp lines that originate in two types of excitations: excitons, whose center of mass motion is quantized, and interband Landau transitions of the 2DEG, that is confined to the QW edges. Abrupt energy and intensity variations of both types of lines are observed at filling factors ν = 1,2 of the 2DEG. These variations are interpreted in terms of an interaction between excitations that are spatially confined in separate parts of the wide QW (or HJ). It leads to energy level splittings and increased exciton dissociation by the magnetized 2DEG layer.

  19. Study of InGaAs-based modulation doped field effect transistor structures using variable-angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1992-01-01

    Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10 percent of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical point of their dielectric function toward the InP lattice-matched concentration.

  20. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  1. Thermoelectric properties of IV–VI-based heterostructures and superlattices

    SciTech Connect

    Borges, P.D.; Petersen, J.E.; Scolfaro, L.; Leite Alves, H.W.; Myers, T.H.

    2015-07-15

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<10{sup 18} cm{sup −3}). A large value of ZT{sub ||} (parallel to the growth direction) of 3.0 is predicted for n=4.7×10{sup 18} cm{sup −3} and T=700 K, whereas ZT{sub p} (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×10{sup 17} cm{sup −3}. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed. - Graphical abstract: Figure of merit for PbTe/SnTe/PbTe heterostructure along the [0 0 1] direction, P.D. Borges, J.E. Petersen, L. Scolfaro, H.W. Leite Alves, T.H. Myers, Improved thermoelectric properties of IV–VI-based heterostructures and superlattices. - Highlights: • Thermoelectric properties of IV

  2. Heterostructure design and growth conditions necessary for electron mobility exceeding 30x106 cm2/Vs in GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Fallahi, Saeed; Gardner, Geoffrey; Watson, John; Manfra, Michael

    2015-03-01

    Ultra-high purity GaAs/AlGaAs heterostructures remain the preeminent semiconductor platform for the study of strong correlations in low dimensions. In particular, the study of fragile fractional quantum Hall states such as ν = 5/2 and ν = 12/5 in the 2nd Landau level requires low disorder samples. While low temperature mobility is often specified as a parameter quantifying sample quality, it does not encode all information necessary to quantify disorder relevant to the fractional quantum Hall effect. Here we describe the heterostructure design considerations and molecular-beam-epitaxy growth conditions needed to achieve an electron mobility >30x106cm2/Vs. In particular, we report on the impact of several modulation doping schemes on mobility and the quality of transport in the 2nd Landau level. We also detail constraints on starting source material purity for the achievement of high mobility. In our work high mobility has been achieved primarily through improvements in starting source materials and heterostructure design rather than improvements in vacuum quality.

  3. Photoresponsive memory device based on Graphene/Boron Nitride heterostructure

    NASA Astrophysics Data System (ADS)

    Kahn, Salman; Velasco, Jairo, Jr.; Ju, Long; Wong, Dillon; Lee, Juwon; Tsai, Hsin Zon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Crommie, Michael

    2015-03-01

    Recent technological advancements have allowed the stacking of two dimensional layered material in order to create van der Waals heterostructures (VDH), enabling the design of novel properties by exploiting the proximal interaction between layers with different electronic properties. We report the creation of an optoelectronic memory device using a Graphene/Boron Nitride (hBN) heterostructure. Using the photo-induced doping phenomenon, we are able to spatially ``write'' a doping profile on graphene and ``read'' the profile through electrical transport and local probe techniques. We then utilize defect engineering to enhance the optoelectronic response of graphene and explore the effect of defects in hBN. Our work introduces a simple device architecture to create an optoelectronic memory device and contributes towards understanding the proximal effects of hBN on Graphene.

  4. Heterostructures as a quantum optical klistron

    SciTech Connect

    Malov, Yu.A.

    1995-12-31

    THE beam of {open_quotes}hot{close_quotes} ballistic electrons which were first obtained experimentally in (1) is considered when passing through the heterostructures consisting of two potential barriers in barriers in the presence of FEL tuning in infra-red region. In the presence of the first barrier the electron beam in the FEL electromagnetic field can either absorb or emit the field quanta. The initial electron beam may split into states n=1 (absorption of one quantum), n=0 (the beam energy unchanged), and n=-1 (emission of one quantum). The interference of the states with n=0, n=1 and n=0, n=1 results in the initiation of two traveling modulation waves at electromagnetic frequency w. Beats between these waves in the region of the of their overlapping lead to a periodic dependence of the modulation from w. It has been found that the spontaneous coherent radiation (SCR) intensity oscillates with the period depending on FEL frequency w. It is possible to increase or to decrease the spectral intensity of SCR varying w. The suggested idea of modulation on the first barrier of heterostructures and the radiation of modulated electron beam on the second barrier is a scheme of an quantum optical klistron in infra-red region.

  5. Generation of self-induced-transparency gap solitons by modulational instability in uniformly doped fiber Bragg gratings

    SciTech Connect

    Kalithasan, B.; Porsezian, K.; Senthilnathan, K.; Tchofo Dinda, P.

    2010-05-15

    We consider the continuous-wave (cw) propagation through a fiber Bragg grating that is uniformly doped with two-level resonant atoms. Wave propagation is governed by a system of nonlinear coupled-mode Maxwell-Bloch (NLCM-MB) equations. We identify modulational instability (MI) conditions required for the generation of ultrashort pulses in both anomalous and normal dispersion regimes. From a detailed linear stability analysis, we find that the atomic detuning frequency has a strong influence on the MI. That is, the atomic detuning frequency induces nonconventional MI sidebands at the photonic band gap (PBG) edges and near the PBG edges. Especially in the normal dispersion regime, MI occurs without any threshold condition, which is in contrast with that of conventional fiber Bragg gratings. We also perform a numerical analysis to solve the NLCM-MB equations. The numerical results of the prediction of both the optimum modulation wave number and the optimum gain agree well with that of the linear stability analysis. Another main result of the present work is the prediction of the existence of both bright and dark self-induced transparency gap solitons at the PBG edges.

  6. Multifunctional tunable multiwavelength erbium-doped fiber laser based on tunable comb filter and intensity-dependent loss modulation

    NASA Astrophysics Data System (ADS)

    Quan, Mingran; Li, Yuan; Tian, Jiajun; Yao, Yong

    2015-04-01

    A multiwavelength erbium-doped fiber laser based on tunable comb spectral filter and intensity-dependent loss modulation is proposed and experimentally demonstrated. The laser allows fine and multifunctional tunable operations of channel-spacing, peak-location, spectral-range, and wavelength-number. More specifically, channel-spacing switch from 0.4 nm to 0.2 nm and peak-location adjustment within half of free spectrum range are obtained via controlling the tunable comb filter. The wavelength-number and the spectral-range of the lasing lines can be accurately controlled by intensity-dependent loss modulation in the laser cavity, enabled by a power-symmetric nonlinear optical loop mirror. In addition, fine control over the wavelength-number at fixed spectral-range is realized by simply adjusting the pump power. More important, the tunable operation process for every type of specific parameter is individual, without influences for other output parameters. Such features of this fiber laser make it useful and convenient for the practical application.

  7. 27Al fourier-transform electron-spin-echo modulation of Cu 2+-doped zeolites A and X

    NASA Astrophysics Data System (ADS)

    Goldfarb, Daniella; Kevan, Larry

    Cu 2+-doped NaA, CaA, and NaX zeolites were studied using the electron-spin-echo modulation (ESEM) method. In both hydrated and dehydrated samples 27Al modulation has been observed. The time-domain ESEM traces were Fourier transformed and analyzed in the frequency domain. All FT-ESEM spectra of the hydrated samples showed a single peak at the Larmor frequency of 27Ai, indicating that the zeeman interaction is dominant and that the 27Al quadrupole and hyperfine interactions are relatively small. Considerable changes in the spectrum appear upon dehydration. Several frequencies significantly different from the Larmor frequency appear and the spectrum depends on the major cocation present. The major features of the spectra of the dehydrated zeolites could be theoretically reproduced, using exact diagonalization of the nuclear Hamiltonian, with relatively large isotropic hyperfine and quadrupole coupling constants. For example, in CuCaA and CuNaA zeolites the isotropic hyperfine constant is in the range of 0.2-0.5 and 0.8-1.0 MHz, respectively, with the quadrupole coupling constant in the range of 6-10 MHz for both.

  8. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3

    PubMed Central

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-01-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications. PMID:27374782

  9. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3

    NASA Astrophysics Data System (ADS)

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-07-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications.

  10. Strain-modulated ferromagnetism and band gap of Mn doped Bi2Se3.

    PubMed

    Qi, Shifei; Yang, Hualing; Chen, Juan; Zhang, Xiaoyang; Yang, Yingping; Xu, Xiaohong

    2016-01-01

    The quantized anomalous Hall effect (QAHE) have been theoretically predicted and experimentally confirmed in magnetic topological insulators (TI), but dissipative channels resulted by small-size band gap and weak ferromagnetism make QAHE be measured only at extremely low temperature (<0.1 K). Through density functional theory calculations, we systemically study of the magnetic properties and electronic structures of Mn doped Bi2Se3 with in-plane and out-of-plane strains. It is found that out-of-plane tensile strain not only improve ferromagnetism, but also enlarge Dirac-mass gap (up to 65.6 meV under 6% strain, which is higher than the thermal motion energy at room temperature ~26 meV) in the Mn doped Bi2Se3. Furthermore, the underlying mechanisms of these tunable properties are also discussed. This work provides a new route to realize high-temperature QAHE and paves the way towards novel quantum electronic device applications. PMID:27374782

  11. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    PubMed Central

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  12. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures

    NASA Astrophysics Data System (ADS)

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-02-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut - (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices.

  13. Modulation of metal-insulator transitions by field-controlled strain in NdNiO3/SrTiO3/PMN-PT (001) heterostructures.

    PubMed

    Heo, Seungyang; Oh, Chadol; Eom, Man Jin; Kim, Jun Sung; Ryu, Jungho; Son, Junwoo; Jang, Hyun Myung

    2016-01-01

    The band width control through external stress has been demonstrated as a useful knob to modulate metal-insulator transition (MIT) in RNiO3 as a prototype correlated materials. In particular, lattice mismatch strain using different substrates have been widely utilized to investigate the effect of strain on transition temperature so far but the results were inconsistent in the previous literatures. Here, we demonstrate dynamic modulation of MIT based on electric field-controlled pure strain in high-quality NdNiO3 (NNO) thin films utilizing converse-piezoelectric effect of (001)-cut Pb(Mg(1/3)Nb(2/3)O3-(PbTiO3) (PMN-PT) single crystal substrates. Despite the difficulty in the NNO growth on rough PMN-PT substrates, the structural quality of NNO thin films has been significantly improved by inserting SrTiO3 (STO) buffer layers. Interestingly, the MIT temperature in NNO is downward shifted by ~3.3 K in response of 0.25% in-plane compressive strain, which indicates less effective TMI modulation of field-induced strain than substrate-induced strain. This study provides not only scientific insights on band-width control of correlated materials using pure strain but also potentials for energy-efficient electronic devices. PMID:26916618

  14. Anomalous Electronic Anisotropy Triggered by Ferroelastic Coupling in Multiferroic Heterostructures.

    PubMed

    Ju, Changcheng; Yang, Jan-Chi; Luo, Cheng; Shafer, Padraic; Liu, Heng-Jui; Huang, Yen-Lin; Kuo, Ho-Hung; Xue, Fei; Luo, Chih-Wei; He, Qing; Yu, Pu; Arenholz, Elke; Chen, Long-Qing; Zhu, Jinsong; Lu, Xiaomei; Chu, Ying-Hao

    2016-02-01

    The ferroelastic strain coupling in multiferroic heterostructures is explored aiming at novel physical effects and fascinating functionality. Ferroelastic domain walls in manganites induced by a stripe BiFeO3 template can modulate the electronic transfer and sufficiently block the magnetic ordering, creating a vast anisotropy. The findings suggest the great importance of ferroelastic strain engineering in material modifications. PMID:26640119

  15. Pseudo-random binary sequency phase modulation in high power Yb-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Robin, Craig; Dajani, Iyad; Zernigue, Clint; Flores, Angel; Pulford, Ben; Lanari, Ann; Naderi, Shadi

    2013-03-01

    We present experimental and theoretical studies on the stimulated Brillouin scattering (SBS) threshold in fiber amplifiers seeded with a spectrally broadened single-frequency laser source. An electro-optic phase modulator is driven with various pseudo-random binary sequence (PRBS) patterns to highlight the unique characteristics of this linewidth broadening technique and its facility in SBS mitigation. Theoretical predictions show a variation in SBS suppression based on PRBS pattern and modulation frequency. These predictions are experimentally investigated in a kilowatt level monolithic fiber amplifier operating with near diffraction-limited beam quality. We also show Rayleigh scattering and other sources of back reflected light in phase modulated signals can seed the SBS process and significantly reduce the nonlinear threshold.

  16. Npn double heterostructure bipolar transistor with ingaasn base region

    DOEpatents

    Chang, Ping-Chih; Baca, Albert G.; Li, Nein-Yi; Hou, Hong Q.; Ashby, Carol I. H.

    2004-07-20

    An NPN double heterostructure bipolar transistor (DHBT) is disclosed with a base region comprising a layer of p-type-doped indium gallium arsenide nitride (InGaAsN) sandwiched between n-type-doped collector and emitter regions. The use of InGaAsN for the base region lowers the transistor turn-on voltage, V.sub.on, thereby reducing power dissipation within the device. The NPN transistor, which has applications for forming low-power electronic circuitry, is formed on a gallium arsenide (GaAs) substrate and can be fabricated at commercial GaAs foundries. Methods for fabricating the NPN transistor are also disclosed.

  17. Persistent photoconductance in doping-modulated and compensated a -Si:H

    SciTech Connect

    Hamed, A.J. )

    1991-09-15

    We present experimental results and numerical calculations in support of the following model to explain the origin of the persistent-photoconductivity effect (PPC) in {ital p}-{ital n} multilayers of hydrogenated amorphous silicon ({ital a}-Si:H): Small light exposures create Staebler-Wronski defects in the {ital p}-type regions of the multilayer, making these regions more intrinsic. This brings the equilibrium Fermi level of the multilayer closer to the conduction band in the depletion zones of the {ital n}-type regions, causing an increase in the conductance of the layered structure when the conductance is electron dominated. At large light exposures, the Staebler-Wronski defects created in the {ital n}-type regions pull the Fermi level away from the conduction band, decreasing the conductance of the film. Our experimental results show that, for a given light intensity, the creation rate and annealing kinetics of the PPC in multilayers are correlated with the creation rate and annealing kinetics of the light-induced conductance changes in unlayered {ital p}-type and {ital n}-type {ital a}-Si:H films having the same dopings as the {ital p}-type and {ital n}-type regions in the multilayer. The PPC follows a stretched-exponential time relaxation with the same parameters describing the decays of other metastable conditions in {ital a}-Si:H. Our computer calculations can reproduce the dark conductivity and magnitude of the PPC in a multilayer (doped at 100 ppm) as a function of sublayer thickness {ital d}, except for {ital d}{lt}20 nm.

  18. Photoluminescence and hall characterization of pseudomorphic GaAs/InGaAs/AlGaAs heterostructures grown by molecular-beam epitaxy

    SciTech Connect

    Baeta Moreira, M.V.; Py, M.A.; Ilegems, M.

    1993-05-01

    Hall electrical properties measured by the van der Pauw method and low-temperature photoluminescence (77 K PL) spectra of pseudomorphic GaAs/In{sub y}Ga{sub l}-{sub y}As/AlGaAs modulation-doped field-effect transistor-type heterostructures grown by molecular-beam epitaxy were compared. By using these two characterization methods, the influences of the growth temperature T{sub s}, the InGaAs quantum-well channel thickness d{sub ch}, and its indium composition y were studied. interesting correlations were established between their 77 K PL spectra and their transport properties measured either in the dark or under while-light illumination. The PL spectra exhibit one or two bands which are attributed to transitions from electronic states belonging to the first or to the second subband formed in the conductions quantum well, the second transition at higher energy being observed only when the two-dimensional concentration exceeds a critical value n{sub c} which, in the dark, is {approximately} 2.4X10{sup 12} cm{sup {minus}2}(i.e., d{sub ch}{approx}108 {Angstrom}) for the homogeneously doped heterostructures with y=0.25. 27 refs., 10 figs.

  19. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure

    DOE PAGESBeta

    Laroche, D.; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.; Lu, T. M.

    2016-06-01

    We report the magneto-transport, scattering mechanisms, and e ective mass analysis of an ultralow density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si0:2Ge0:8 heterostructure. This fabrication technique allows hole densities as low as p 1:1 1010 cm² to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, / n , is found to be 0:29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migration modelmore » is used to explain the mobility decrease at the highest achievable densities. The hole e ective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p 1:0 1011cm², the e ective mass m is 0:105 m0, which is signi cantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.« less

  20. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure

    NASA Astrophysics Data System (ADS)

    Laroche, D.; Huang, S.-H.; Chuang, Y.; Li, J.-Y.; Liu, C. W.; Lu, T. M.

    2016-06-01

    We report the magneto-transport, scattering mechanisms, and effective mass analysis of an ultra-low density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si0.2Ge0.8 heterostructure. This fabrication technique allows hole densities as low as p ˜ 1.1 × 1010 cm-2 to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, μ ∝ nα, is found to be α ˜ 0.29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migration model is used to explain the mobility decrease at the highest achievable densities. The hole effective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p ˜ 1.0 × 1011 cm-2, the effective mass m* is ˜0.105 m0, which is significantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.

  1. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures.

    PubMed

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-01-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a 'giant' resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields. PMID:27126101

  2. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    NASA Astrophysics Data System (ADS)

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-04-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields.

  3. Gate-Tunable Spin Transport and Giant Electroresistance in Ferromagnetic Graphene Vertical Heterostructures

    PubMed Central

    Myoung, Nojoon; Park, Hee Chul; Lee, Seung Joo

    2016-01-01

    Controlling tunneling properties through graphene vertical heterostructures provides advantages in achieving large conductance modulation which has been known as limitation in lateral graphene device structures. Despite of intensive research on graphene vertical heterosturctures for recent years, the potential of spintronics based on graphene vertical heterostructures remains relatively unexplored. Here, we present an analytical device model for graphene-based spintronics by using ferromagnetic graphene in vertical heterostructures. We consider a normal or ferroelectric insulator as a tunneling layer. The device concept yields a way of controlling spin transport through the vertical heterostructures, resulting in gate-tunable spin-switching phenomena. Also, we revealed that a ‘giant’ resistance emerges through a ferroelectric insulating layer owing to the anti-parallel configuration of ferromagnetic graphene layers by means of electric fields via gate and bias voltages. Our findings discover the prospect of manipulating the spin transport properties in vertical heterostructures without use of magnetic fields. PMID:27126101

  4. Fermi-surface induced modulation in an optimally doped YBCO superconductor.

    SciTech Connect

    Liu, X.; Islam, Z.; Sinha, S. K.; Moss, S. C.; McQueeney, R. J.; Lang, J. C.; Welp, U.; Univ. of California at San Diego; Univ. of Houston; Iowa State Univ.

    2008-01-01

    We have observed a Fermi-surface (FS) induced lattice modulation in a YBa{sub 2}Cu{sub 3}O{sub 7-x} superconductor with a wave vector along CuO chains; i.e., q{sub 1} = (0,{delta},0). The value of {delta} {approx} 0.21 is twice the Fermi wave vector (2k{sub F}) along b* connecting nearly nested FS 'ridges'. The q{sub 1} modulation exists only within O-vacancy-ordered islands [characterized by q{sub 0} = (1/4,0,0)] and persists well above and below T{sub c}. Our results are consistent with the presence of a FS-induced charge-density wave.

  5. Preface: Heterostructure terahertz devices

    NASA Astrophysics Data System (ADS)

    Ryzhii, Victor

    2008-08-01

    The terahertz (THz) range of frequencies is borderline between microwave electronics and photonics. It corresponds to the frequency bands of molecular and lattice vibrations in gases, fluids, and solids. The importance of the THz range is in part due to numerous potential and emerging applications which include imaging and characterization, detection of hazardous substances, environmental monitoring, radio astronomy, covert inter-satellite communications, as well as biological and medical applications. During the last decades marked progress has been achieved in the development, fabrication, and practical implementation of THz devices and systems. This is primarily owing to the utilization of gaseous and free electron lasers and frequency converters using nonlinear optical phenomena as sources of THz radiation. However, such devices and hence the systems based on them are fairly cumbersome. This continuously stimulates an extensive search for new compact and efficient THz sources based on semiconductor heterostructures. Despite tremendous efforts lasting several decades, the so-called THz gap unbridged by semiconductor heterostructure electron and optoelectron devices still exists providing appropriate levels of power of the generated THz radiation. The invention and realization of quantum cascade lasers made of multiple quantum-well heterostructures already resulted in the partial solution of the problem in question, namely, in the successful coverage of the high-frequency portion of the THz gap (2-3 THz and higher). Further advancement to lower frequencies meets, perhaps, fundamental difficulties. All this necessitates further extensive theoretical and experimental studies of more or less traditional and novel semiconductor heterostructures as a basis for sources of THz radiation. This special issue includes 11 excellent original papers submitted by several research teams representing 14 institutions in Europe, America, and Asia. Several device concepts which

  6. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohua; Zhao, Tingbi; Nie, Zhou; Miao, Zhuang; Liu, Yang; Yao, Shouzhuo

    2016-01-01

    In this work, nitrogen-doped carbon nanoparticle (N-CNP) modulated turn-on fluorescent probes were developed for rapid and selective detection of histidine. The as synthesized N-CNPs exhibited high fluorescence quantum yield and excellent biocompatibility. The fluorescence of N-CNPs can be quenched selectively by Cu(ii) ions with high efficiency, and restored by the addition of histidine owing to the competitive binding of Cu(ii) ions and histidine that removes Cu(ii) ions from the surface of the N-CNPs. Under the optimal conditions, a linear relationship between the increased fluorescence intensity of N-CNP/Cu(ii) ion conjugates and the concentration of histidine was established in the range from 0.5 to 60 μM. The detection limit was as low as 150 nM (signal-to-noise ratio of 3). In addition, the as-prepared N-CNP/Cu(ii) ion nanoprobes showed excellent biocompatibility and were applied for a histidine imaging assay in living cells, which presented great potential in the bio-labeling assay and clinical diagnostic applications.In this work, nitrogen-doped carbon nanoparticle (N-CNP) modulated turn-on fluorescent probes were developed for rapid and selective detection of histidine. The as synthesized N-CNPs exhibited high fluorescence quantum yield and excellent biocompatibility. The fluorescence of N-CNPs can be quenched selectively by Cu(ii) ions with high efficiency, and restored by the addition of histidine owing to the competitive binding of Cu(ii) ions and histidine that removes Cu(ii) ions from the surface of the N-CNPs. Under the optimal conditions, a linear relationship between the increased fluorescence intensity of N-CNP/Cu(ii) ion conjugates and the concentration of histidine was established in the range from 0.5 to 60 μM. The detection limit was as low as 150 nM (signal-to-noise ratio of 3). In addition, the as-prepared N-CNP/Cu(ii) ion nanoprobes showed excellent biocompatibility and were applied for a histidine imaging assay in living cells, which

  7. Probing interlayer interactions in WS2 -graphene van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Chung, Ting Fung; Yuan, Long; Huang, Libai; Chen, Yong P.

    Two-dimensional crystals based van der Waals coupled heterostructures are of interest owing to their potential applications for flexible and transparent electronics and optoelectronics. The interaction between the 2D layered crystals at the interfaces of these heterostructures is crucial in determining the overall performance and is strongly affected by contamination and interfacial strain. We have fabricated heterostructures consisting of atomically thin exfoliated WS2 and chemical-vapor-deposited (CVD) graphene, and studied the interaction and coupling between the WS2 and graphene using atomic force microscopy (AFM), Raman spectroscopy and femtosecond transient absorption measurement (TAM). Information from Raman-active phonon modes allows us to estimate charge doping in graphene and interfacial strain on the crystals. Spatial imaging probed by TAM can be correlated to the heterostructure surface morphology measured by AFM and Raman maps of graphene and WS2, showing how the interlayer coupling alters exciton decay dynamics quantitatively.

  8. Heating of the magnetic-ion spin system in modulation doped ZnMnSe/ZnBeSe quantum wells by means of photoexcitation.

    SciTech Connect

    Keller, D.; Astakhov, G. V.; Yakovlev, D. R.; Barrick, T.; Crooker, S. A.; Hansen, L.; Ossau, W.; Molenkamp, L. W.

    2002-01-01

    Heating of the spin system of magnetic ions by means of photoexcited carriers has been studied in modulation-doped (Zn,Mn)Se/(Zn,Be)Se quantum well structures with different electron densities varying from about 10{sup 9} to 5.5 x 10{sup 11} cm{sup -2}. The elevated temperature of the magnetic ions manifests in a reduced Zeeman splitting of the carriers already for low excitation densities. The efficiency of the heating decreases with increasing electron concentration.

  9. Enhanced photo-assisted electrical gating in vanadium dioxide based on saturation-induced gain modulation of erbium-doped fiber amplifier.

    PubMed

    Lee, Yong Wook; Kim, Bong-Jun; Choi, Sungyoul; Lee, Yong Wan; Kim, Hyun-Tak

    2009-10-26

    By incorporating saturation-induced gain modulation of an erbium-doped fiber amplifier (EDFA), we have demonstrated a high-speed photo-assisted electrical gating with considerably enhanced switching characteristics in a two-terminal device fabricated by using vanadium dioxide thin film. The gating operation was performed by illuminating the output light of the EDFA, whose transient gain was modulated by adjusting the chopping frequency of the input light down to 1 kHz, onto the device. In the proposed gating scheme, gated signals with a temporal duration of approximately 40 micros were successively generated at a repetition rate of 1 kHz. PMID:19997180

  10. Photoresponse in Graphene Boron Nitride Vertical Heterostructures

    NASA Astrophysics Data System (ADS)

    Andersen, Trond; Ma, Qiong; Lui, Chun-Hung; Nair, Nityan; Gabor, Nathaniel; Young, Andrea; Fang, Wenjing; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Gedik, Nuh; Jarillo-Herrero, Pablo

    2015-03-01

    Combining two-dimensional materials into vertical heterostructures reveals diverse, intriguing phenomena and provides a novel way of engineering materials with desired electronic properties. Placing graphene on hexagonal boron nitride (hBN) has given particularly interesting results, including enhanced mobility, opening of a band gap, and highly controllable photo-induced doping. We explore the photoresponse of vertical graphene-hBN-graphene heterostructures in a high electronic temperature regime where thermionic emission dominates. Near the charge neutral point, we observe a pronounced conductance peak, which we attribute to a cooling bottleneck that appears at low carrier density, thus suggesting hot carrier enhanced thermionic emission. To further investigate the mechanism by which current is generated, we conduct two-pulse correlation measurements and study the temporal dynamics of the system. We observe a positive correlation, implying that the hot carriers thermalize before crossing the hBN barrier. Finally, we propose an advanced, modified two-temperature model, which allows for numerical simulations that are consistent with our measurements.

  11. Giant structural modulation & abnormal ferromagnetism in ferroelectric & ultrathin ferromagnetic digital superlattices

    NASA Astrophysics Data System (ADS)

    Guo, Hangwen; Wang, Zhen; Saghayezhian, Mohammad; Chen, Lina; Jin, Rongying; Plummer, Ward; Zhang, Jiandi; Dong, Shuai

    The nature of magnetoelectric coupling in oxide heterostructure remains interesting but illusive, largely because the complex nature of interface intermixing and diffusion. In this work, we present our ability to fabricate superlattices consist of ferroelectric BTO & ferromagnetic LSMO, with minimum interfacial intermixing confined within half a unit cell. Such high quality superlattices with sharp interfaces allow us to explore magnetoelectric coupling effect into ultrathin region (reduced dimensionality) and observe ferroelectric induced abnormal magnetic behavior. A detailed STEM study reveals that the traditional electron/hole carrier doping scenario does not play a major role. Instead, distinct modulation of lattice displacement and octahedron tilting is responsible for the coupling effect and abnormal magnetic behavior. Our study highlights the importance of structural-property relationship in oxide heterostructures. Supported by U.S. DOE under Grant No. DOE DE-SC0002136.

  12. Shubnikov-de Haas oscillations and quantum hall effect in modulation-doped HgTe-CdTe superlattices

    NASA Astrophysics Data System (ADS)

    Hoffman, C. A.; Meyer, J. R.; Arnold, D. J.; Bartoli, F. J.; Lansari, Y.; Cook, J. W.; Schetzina, J. F.

    1991-10-01

    We have investigated quantum oscillations in the magneto-transport properties of HgTe-CdTe superlattices grown by molecular-beam epitaxy. Modulation doping was achieved by incorporating either indium donors or arsenic acceptors into the CdTe barriers. In a p-type sample, quantized plateaus were observed in the Hall conductivity down to i=3 conduction channels. Since the structure contained 200 periods, this implies that the quantized holes populated only a small fraction of the total superlattice volume. A mixed conduction analysis of the nonoscillating component of magneto-transport data provided confirming evidence for the presence of a two-dimensional holes gas with the appropriate density in addition to the supperlattice holes. Previous reports of the quantum Hall effect in HgTe-CdTe also yielded i far less than the total number of superlattice wells. In contrast, an n-type sample from the present study displayed a single quantum Hall plateau at i≊140, indicating that in this case most of the 200 superlattice periods contributed to the conduction. We argue that this represents the first observation of the qunatum Hall effect associated with carriers distributed through the interior of a HgTe-CdTe superlattice.

  13. Coherent dynamics of Landau-Levels in modulation doped GaAs quantum wells at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Cunming; Paul, Jagannath; Reno, John; McGill, Stephen; Hilton, David; Karaiskaj, Denis

    By using two-dimensional Fourier transform spectroscopy, we investigate the dynamics of Landau-Levels formed in modulation doped GaAs/AlGaAs quantum wells of 18 nm thickness at high magnetic fields and low temperature. The measurements show interesting dephasing dynamics and linewidth dependency as a function of the magnetic field. The work at USF and UAB was supported by the National Science Foundation under grant number DMR-1409473. The work at NHMFL, FSU was supported by the National Science Foundation under grant numbers DMR-1157490 and DMR-1229217. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  14. Magnetooptical study of CdSe/ZnMnSe semimagnetic quantum-dot ensembles with n-type modulation doping

    SciTech Connect

    Reshina, I. I. Ivanov, S. V.

    2014-12-15

    Magnetic and polarization investigations of the photoluminescence and resonant electron spin-flip Raman scattering in ensembles of self-organized CdSe/ZnMnSe semimagnetic quantum dots with n-type modulation doping are carried out. It is demonstrated that exciton transitions contribute to the photoluminescence band intensity, along with the transitions of trions in the singlet state. In the Hanle-effect measurements, negative circular polarization in zero magnetic field is observed, which is related to the optical orientation of a trion heavy hole. The lifetime and spin-relaxation time of a heavy hole are estimated as ≤3 and ≤1 ps, respectively. Such short times are assumed to be due to Auger recombination with the excitation of an intrinsic transition in a Mn{sup 2+} ion. Investigations of the photoluminescence-maximum intensity and shift in a longitudinal magnetic field at the σ{sup −}σ{sup +} and σ{sup −}σ{sup −} polarizations reveal the pronounced spin polarization of electrons. Under resonant excitation conditions, a sharp increase in the photoluminescence-band maximum intensity at σ{sup −} excitation polarization over the σ{sup +} one is observed. The Raman scattering peak at the electron spin-flip transition is observed upon resonant excitation in a transverse magnetic field in crossed linear polarizations. This peak is shown to be a Brillouin function of a magnetic field.

  15. Interface modulated currents in periodically proton exchanged Mg doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Neumayer, Sabine M.; Manzo, Michele; Kholkin, Andrei L.; Gallo, Katia; Rodriguez, Brian J.

    2016-03-01

    Conductivity in Mg doped lithium niobate (Mg:LN) plays a key role in the reduction of photorefraction and is therefore widely exploited in optical devices. However, charge transport through Mg:LN and across interfaces such as electrodes also yields potential electronic applications in devices with switchable conductivity states. Furthermore, the introduction of proton exchanged (PE) phases in Mg:LN enhances ionic conductivity, thus providing tailorability of conduction mechanisms and functionality dependent on sample composition. To facilitate the construction and design of such multifunctional electronic devices based on periodically PE Mg:LN or similar ferroelectric semiconductors, fundamental understanding of charge transport in these materials, as well as the impact of internal and external interfaces, is essential. In order to gain insight into polarization and interface dependent conductivity due to band bending, UV illumination, and chemical reactivity, wedge shaped samples consisting of polar oriented Mg:LN and PE phases were investigated using conductive atomic force microscopy. In Mg:LN, three conductivity states (on/off/transient) were observed under UV illumination, controllable by the polarity of the sample and the externally applied electric field. Measurements of currents originating from electrochemical reactions at the metal electrode-PE phase interfaces demonstrate a memresistive and rectifying capability of the PE phase. Furthermore, internal interfaces such as domain walls and Mg:LN-PE phase boundaries were found to play a major role in the accumulation of charge carriers due to polarization gradients, which can lead to increased currents. The insight gained from these findings yield the potential for multifunctional applications such as switchable UV sensitive micro- and nanoelectronic devices and bistable memristors.

  16. Variable electronic properties of lateral phosphorene-graphene heterostructures.

    PubMed

    Tian, Xiaoqing; Liu, Lin; Du, Yu; Gu, Juan; Xu, Jian-Bin; Yakobson, Boris I

    2015-12-21

    Phosphorene and graphene have a tiny lattice mismatch along the armchair direction, which can result in an atomically sharp in-plane interface. The electronic properties of the lateral heterostructures of phosphorene/graphene are investigated by the first-principles method. Here, we demonstrate that the electronic properties of this type of heterostructure can be highly tunable by the quantum size effects and the externally applied electric field (Eext). At strong Eext, Dirac Fermions can be developed with Fermi velocities around one order smaller than that of graphene. Undoped and hydrogen doped configurations demonstrate three drastically different electronic phases, which reveal the strongly tunable potential of this type of heterostructure. Graphene is a naturally better electrode for phosphorene. The transport properties of two-probe devices of graphene/phosphorene/graphene exhibit tunnelling transport characteristics. Given these results, it is expected that in-plane heterostructures of phosphorene/graphene will present abundant opportunities for applications in optoelectronic and electronic devices. PMID:26554700

  17. Heterostructure terahertz devices.

    PubMed

    Ryzhii, Victor

    2008-08-19

    The terahertz (THz) range of frequencies is borderline between microwave electronics and photonics. It corresponds to the frequency bands of molecular and lattice vibrations in gases, fluids, and solids. The importance of the THz range is in part due to numerous potential and emerging applications which include imaging and characterization, detection of hazardous substances, environmental monitoring, radio astronomy, covert inter-satellite communications, as well as biological and medical applications. During the last decades marked progress has been achieved in the development, fabrication, and practical implementation of THz devices and systems. This is primarily owing to the utilization of gaseous and free electron lasers and frequency converters using nonlinear optical phenomena as sources of THz radiation. However, such devices and hence the systems based on them are fairly cumbersome. This continuously stimulates an extensive search for new compact and efficient THz sources based on semiconductor heterostructures. Despite tremendous efforts lasting several decades, the so-called THz gap unbridged by semiconductor heterostructure electron and optoelectron devices still exists providing appropriate levels of power of the generated THz radiation. The invention and realization of quantum cascade lasers made of multiple quantum-well heterostructures already resulted in the partial solution of the problem in question, namely, in the successful coverage of the high-frequency portion of the THz gap (2-3 THz and higher). Further advancement to lower frequencies meets, perhaps, fundamental difficulties. All this necessitates further extensive theoretical and experimental studies of more or less traditional and novel semiconductor heterostructures as a basis for sources of THz radiation. This special issue includes 11 excellent original papers submitted by several research teams representing 14 institutions in Europe, America, and Asia. Several device concepts which

  18. Analytical Model to Determine the Gate Leakage Current in In0.52Al0.48As/InxGa1-xAs Pseudomorphic Modulation Doped Field-Effect Transistors Caused by Thermionic Field Emission

    NASA Astrophysics Data System (ADS)

    Dickmann, Jürgen; Daembkes, Heinrich; Schildberg, Steffen; Fittng, Hans-Joachim; Ellrod, Peter; Tegude, Franz

    1994-04-01

    The gate leakage current of pulse doped In0.52Al0.48As/In xGa1- xAs pseudomorphic modulation doped field-effect transistors (MODFETs) is analysed by thermionic field emission theory. For the first time, a theoretically based investigation of the leakage current for this type of device is carried out. The influence of parameters of the layer structure design on the gate leakage current such as the thickness of the barrier layer or the doping concentration in the supply layer is predicted. The model adequately predicts the experimental decrease in leakage current with increased thickness of the barrier layer and reduced doping concentration.

  19. Photoluminescence properties of modulation-doped In{sub x}Al{sub 1–x}As/In{sub y}Ga{sub 1–y}As/In{sub x}Al{sub 1–x}As structures with strained inas and gaas nanoinserts in the quantum well

    SciTech Connect

    Galiev, G. B.; Vasil’evskii, I. S.; Klimov, E. A.; Klochkov, A. N.; Lavruhin, D. V.; Pushkarev, S. S.; Maltsev, P. P.

    2015-09-15

    The photoluminescence spectra of modulation-doped InAlAs/InGaAs/InAlAs heterostructures with quantum wells containing thin strained InAs and GaAs inserts are investigated. It is established that the insertion of pair InAs layers and/ or a GaAs transition barriers with a thickness of 1 nm into a quantum well leads to a change in the form and energy position of the photoluminescence spectra as compared with a uniform In{sub 0.53}Ga{sub 0.47}As quantum well. Simulation of the band structure shows that this change is caused by a variation in the energy and wave functions of holes. It is demonstrated that the use of InAs inserts leads to the localization of heavy holes near the InAs layers and reduces the energy of optical transitions, while the use of GaAs transition barriers can lead to inversion of the positions of the light- and heavy-hole subbands in the quantum well. A technique for separately controlling the light- and heavy-hole states by varying the thickness and position of the GaAs and InAs inserts in the quantum well is suggested.

  20. CBE growth of AlGaAs/GaAs heterostructures and their device applications

    NASA Astrophysics Data System (ADS)

    Houng, Yu-Min

    1990-10-01

    We demonstrate that the chemical beam epitaxial (CBE) technique is suitable for growing high quality AlGaAs/GaAs heterostructures for high-speed and photonic device applications. Substantial improvements in electrical and optical properties of Al xGa 1- xAs were achieved using triisobutylaluminum (TIBAl) instead of triethylaluminum source. Highly uniform Al xGa 1- xAs:Si and Al xGa 1- xAs:C films with very low surface defect density were grown. The electrical and optical properties of these materials are comparable to those of high quality organometallic vapor phase epitaxial (OMVPE) Al xGa 1- xAs. CBE grown 0.25 °m gate length modulation-doped field effect transistors (MODFET) have been fabricated. MODFETs having fT greater than 38 GHz and a 1.7 dB noise figure with 10 dB associated gain at 18 GHz are reported. Device quality AlGaAs/GaAs heterojunction bipolar transistor (HBT), electro-optic modulator and light emitter array structures grown by CBE technique were also demonstrated.

  1. Final Report for Award DE-SC0005403. Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping

    SciTech Connect

    Hertz, Joshua L.; Prasad, Ajay K.

    2015-09-06

    The enclosed document provides a final report to document the research performed at the University of Delaware under Grant DE-SC0005403: Improved Electrochemical Performance of Strained Lattice Electrolytes via Modulated Doping. The ultimate goal of this project was to learn how to systematically strain the inter-atomic distance in thin ceramic films and how to use this newfound control to improve the ease by which oxygen ions can conduct through the films. Increasing the ionic conductivity of ceramics holds the promise of drastic improvements in the performance of solid oxide fuel cells, chemical sensors, gas permeation membranes, and related devices. Before this work, the experimental evidence advocating for strain-based techniques was often controversial and poorly characterized. Enabling much of this work was a new method to quickly create a very wide range of ceramic nanostructures that was established during the first phase of the project. Following this initial phase, we created a variety of promising nanostructured epitaxial films and multilayers with systematic variations in lattice mismatch and dopant content. Over the course of the work, a positive effect of tensile atomic strain on the oxygen conductivity was conclusively found using a few different forms of samples and experimental techniques. The samples were built by sputtering, an industrially scalable technique, and thus the technological implementation of these results may be economically feasible. Still, two other results consistently achieved over multiple efforts in this work give pause. The first of these results was that very specific, pristine surfaces upon which to build the nanostructures were strictly required in order to achieve measurable results. The second of these results was that compressively strained films with concomitant reductions in oxygen conductivity are much easier to obtain relative to tensile-strained films with increased conductivity.

  2. Fermi-energy edge singularity and excitonic enhancement associated with the second subband in asymmetric modulation-doped quantum wells

    NASA Astrophysics Data System (ADS)

    Fisher, T. A.; Simmonds, P. E.; Skolnick, M. S.; Martin, A. D.; Smith, R. S.

    1993-11-01

    A study of the Fermi-energy edge singularity (FEES) in the second (n=2) subband of asymmetric modulation-doped (AlGa)As-(InGa)As-GaAs quantum wells (AMDQW's) is reported. In one of the AMDQW's a Schottky gate is employed to vary the electron density in the n=2 subband (ns,2) from 0 to 1×1011 cm-2. Temperature-dependent photoluminescence excitation (PLE) measurements clearly show that the n=2 PLE feature has FEES character for ns,2>~0.4×1011 cm-2. In contrast to PLE, photoluminescence (PL) intensity is not a true measure of oscillator strength, since PL intensity can be affected by competing recombination pathways. Temperature-dependent PL measurements have been performed on two types of AMDQW. One type has ns,2~0, with the Fermi energy close to the n=2 subband energy. The other type has ns,2=1×1011 cm-2 and a FEES associated with n=2 observed in PLE. We demonstrate that the very similar broadening and reduction in peak height of the n=2 PL peak with temperature for the two types of samples can be accounted for in terms of spreading of the electron or exciton populations near the n=2 subband edge. Therefore, we conclude that temperature-dependent PL does not provide unequivocal evidence for a many-body enhancement of the n=2 PL transition, in contrast to that reported by Chen et al. [Phys. Rev. Lett. 64, 2434 (1990)].

  3. Two-dimensional Shubnikov-de Haas oscillations in modulation-doped CdTe/CdMnTe quantum-well structures

    NASA Astrophysics Data System (ADS)

    Scholl, S.; Schäfer, H.; Waag, A.; Hommel, D.; von Schierstedt, K.; Kuhn-Heinrich, B.; Landwehr, G.

    1993-06-01

    For the first time clear evidence for two-dimensional Shubnikov-de Haas oscillations in modulation-doped CdTe/CdMnTe quantum-well structures is reported. The structures were grown by molecular-beam epitaxy using ZnBr2 as a novel source material for the n-type doping of II-VI epitaxial layers. From an analysis of the Shubnikov-de Haas oscillations a carrier density of 9×1011 cm-2 and an effective mass of 0.1 m0 could be deduced. Due to band filling the Fermi energy in the subbands is shifted above the conduction-band edge. This can be detected as a Stokes shift of absorption compared to photoluminescence recombination. From the Fermi energy shift the carrier concentration can be estimated, which agrees well with values determined by Hall-effect measurements.

  4. Strongly-correlated heterostructures

    SciTech Connect

    Okamoto, Satoshi

    2012-01-01

    Electronic phase behavior in correlated-electron systems is a fundamental problem of condensed matter physics. The change in the phase behavior near surfaces and interfaces, i.e., {\\em electronic reconstruction}, is therefore the fundamental issue of the correlated-electron surface or interface science. In addition to basic science, understanding of such a phase behavior is of crucial importance for potential devices exploiting the novel properties of the correlated systems. In this article, we present a general overview of the field, and then discuss the recent theoretical progress mainly focusing on the correlation effects. We illustrate the general concept of {\\em electronic reconstruction} by studying model heterostructures consisting of strongly-correlated systems. Future directions for research are also discussed.

  5. Anomalous Enhancement of the Superconducting Transition Temperature of Electron-doped La2-xCexCuO4 and Pr2-xCexCuO4 Cuprate Heterostructures

    SciTech Connect

    K Jin; P Vach; X Zhang; U Grupel; E Zohar; I Diamant; Y Dagan; S Smadici; P Abbamonte; R Greene

    2011-12-31

    The superconducting transition temperature T{sub c} of multilayers of electron-doped cuprates, composed of underdoped (or undoped) and overdoped La{sub 2-x}Ce{sub x}CuO{sub 4} (LCCO) and Pr{sub 2-x}Ce{sub x}CuO{sub 4} (PCCO) thin films, is found to increase significantly with respect to the T{sub c} of the corresponding single-phase films. By investigating the critical current density of superlattices with different doping levels and layer thicknesses, we find that the T{sub c} enhancement is caused by a redistribution of charge over an anomalously large distance.

  6. Thermal and Electrical Transport in Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth

    vacancies are employed to achieve band engineering. This method was used to obtain tunable transparent conducting properties and thermoelectric properties for heavily doped strontium titanate. The second aspect investigated is the use of strongly correlated materials for thermoelectricity. The cobaltates, specifically layered cobaltates, show large thermopower even at very large carrier densities. The coupling of thermopower and electrical conductivity is shown to be weaker for a strongly correlated material such as cobaltate, which opens up possibilities of complete decoupling of all three thermoelectric coefficients. Finally, the thermal properties of complex oxides, specifically in perovskite titanates, is addressed in detail. Thermal conductivity is demonstrated to be a sensitive probe for defects in a system, where processing conditions play a significant role in modulating the crystallinity of the material. The perovskite titanate superlattice system of strontium titanate and calcium titanate is used beat alloy limit. It also shows interesting period thickness dependent thermal properties. The possible origin of this effect is briefly discussed and future directions for this research is also elaborated in detail.

  7. Strain mediated coupling in magnetron sputtered multiferroic PZT/Ni-Mn-In/Si thin film heterostructure

    SciTech Connect

    Singh, Kirandeep; Kaur, Davinder; Singh, Sushil Kumar

    2014-09-21

    The strain mediated electrical and magnetic properties were investigated in PZT/Ni-Mn-In heterostructure deposited on Si (100) by dc/rf magnetron sputtering. X-ray diffraction pattern revealed that (220) orientation of Ni-Mn-In facilitate the (110) oriented tertragonal phase growth of PZT layer in PZT/Ni-Mn-In heterostructure. A distinctive peak in dielectric constant versus temperature plots around martensitic phase transformation temperature of Ni-Mn-In showed a strain mediated coupling between Ni-Mn-In and PZT layers. The ferroelectric measurement taken at different temperatures exhibits a well saturated and temperature dependent P-E loops with a highest value of P{sub sat}~55 μC/cm² obtained during martensite-austenite transition temperature region of Ni-Mn-In. The stress induced by Ni-Mn-In layer on upper PZT film due to structural transformation from martensite to austenite resulted in temperature modulated Tunability of PZT/Ni-Mn-In heterostructure. A tunability of 42% was achieved at 290 K (structural transition region of Ni-Mn-In) in these heterostructures. I-V measurements taken at different temperatures indicated that ohmic conduction was the main conduction mechanism over a large electric field range in these heterostructures. Magnetic measurement revealed that heterostructure was ferromagnetic at room temperature with a saturation magnetization of ~123 emu/cm³. Such multiferroic heterostructures exhibits promising applications in various microelectromechanical systems.

  8. MBE HgCdTe heterostructure detectors

    NASA Technical Reports Server (NTRS)

    Schulman, Joel N.; Wu, Owen K.

    1990-01-01

    HgCdTe has been the mainstay for medium (3 to 5 micron) and long (10 to 14 micron) wavelength infrared detectors in recent years. Conventional growth and processing techniques are continuing to improve the material. However, the additional ability to tailor composition and placement of doped layers on the tens of angstroms scale using molecular beam epitaxy (MBE) provides the opportunity for new device physics and concepts to be utilized. MBE-based device structures to be discussed here can be grouped into two categories: tailored conventional structures and quantum structures. The tailored conventional structures are improvements on familiar devices, but make use of the ability to create layers of varying composition, and thus band gap, at will. The heterostructure junction can be positioned independently of doping p-n junctions. This allows the small band gap region in which the absorption occurs to be separated from a larger band gap region in which the electric field is large and where unwanted tunneling can occur. Data from hybrid MBE/liquid phase epitaxy (LPE)/bulk structures are given. Quantum structures include the HgTe-CdTe superlattice, in which the band gap and transport can be controlled by alternating thin layers (tens of angstroms thick) of HgTe and CdTe. The superlattice has been shown to exhibit behavior which is non-alloy like, including very high hole mobilities, two-dimensional structure in the absorption coefficient, resonant tunneling, and anisotropic transport.

  9. Electric-field induced strain modulation of magnetization in Fe-Ga/Pb(Mg{sub 1/3}Nb{sub 2/3})-PbTiO{sub 3} magnetoelectric heterostructures

    SciTech Connect

    Zhang, Yue Wang, Zhiguang; Wang, Yaojin; Luo, Chengtao; Li, Jiefang; Viehland, Dwight

    2014-02-28

    Magnetostrictive Fe-Ga thin layers were deposited on 〈110〉-oriented Pb(Mg{sub 1/3}Nb{sub 2/3})-30%PbTiO{sub 3} (PMN-30%PT) substrates by pulsed laser deposition. The as-prepared heterostructures showed columnar arrays aligned in the out-of-plane direction. Transmission electron microscopy revealed nanocrystalline regions within the columnar arrays of the Fe-Ga film. The heterostructure exhibited a strong converse magnetoelectric coupling effect of up to 4.55 × 10{sup −7} s m{sup −1}, as well as an electric field tunability of the in-plane magnetic anisotropy. Furthermore, the remanent magnetization states of the Fe-Ga films can be reversibly and irreversibly changed by external electric fields, suggesting a promising and robust application in magnetic random access memories and spintronics.

  10. Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang

    2016-04-01

    We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.

  11. Softening of the tunneling gap in modulation-doped GaAs/AlGaAs asymmetric coupled double quantum wells in magnetic fields

    NASA Astrophysics Data System (ADS)

    Shin, Y. H.; Park, Y. H.; Perry, C. H.; Simmons, J. A.; Takamasu, T.; Kim, Yongmin

    2009-08-01

    Magnetophotoluminescence emissions were measured from modulation doped GaAs/AlGaAs asymmetric double quantum wells, wherein a thin barrier (25 Å) was sandwiched between a single quantum well (SQW) and a single heterojuction (SHJ). In the SQW, Landau level mixing is observed at the quantum Hall states. At ν <2, the lowest Landau level transition undergoes an exciton transition. For the SHJ region, the free carrier transitions become excitonic at the crossing point of the GaAs free exciton and the tunneling band gap shows a marked softening. An exciton-exciton interaction is shown to be responsible for the behavior of the subband energy levels in magnetic fields.

  12. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror.

    PubMed

    Cabasse, A; Martel, G; Oudar, J L

    2009-06-01

    We report on a passively mode-locked erbium-doped fiber laser, using a high nonlinear modulation depth saturable absorber mirror, in a Fabry-Perot cavity. A segment of dispersion compensation fiber is added inside the cavity in order to build a high-positive dispersion regime. The setup produced highly chirped pulses with an energy of 1.8 nJ at a repetition rate of 33.5 MHz. Numerical simulations accurately reflect our experimental results and show that pulse-shaping in this laser could be interpreted as producing 'dissipative solitons'. PMID:19506601

  13. Engineering the Morphology and Configuration of Ternary Heterostructures for Improving Their Photocatalytic Activity.

    PubMed

    Li, Kui; Chen, Rong; Li, Shun-Li; Xie, Shuai-Lei; Cao, Xue-Li; Dong, Long-Zhang; Bao, Jian-Chun; Lan, Ya-Qian

    2016-02-01

    Heteronanomaterials composed of suitable semiconductors enable the direct conversion from solar power into clean and renewable energy. Ternary heterostructures with appropriate configuration and morphology possess rich and varied properties, especially for improving the photocatalytic activity and stability synchronously. However, suitable ternary heterostructure prototypes and facile while effective strategy for modulating their morphology and configuration are still scarce. Herein, various ternary ZnS-CdS-Zn(1-x)Cd(x)S heterostructures with tunable morphology (0 to 2 D) and semiconductor configurations (randomly distributed, interface mediated, and quantum dots sensitized core@shell heterostructures) were facilely synthesized via one-pot hydrothermal method resulting from the different molecular structures of the amine solvents. Semiconductor morphology, especially configuration of the ternary heterostructure, shows dramatic effect on their photocatalytic activity. The CdS sensitized porous Zn(1-x)CdxS@ZnS core@shell takes full advantage of ZnS, Zn(1-x)Cd(x)S and CdS and shows the maximal photocatalytic H2-production rate of 100.2 mmol/h/g and excellent stability over 30 h. This study provides some guidelines for the design and synthesis of high-performance ternary heterostructure via modulation of semiconductor configuration and morphology using one-pot method. PMID:26835705

  14. An Ebers-Moll model for the heterostructure bipolar transistor

    NASA Astrophysics Data System (ADS)

    Lundstrom, M. S.

    1986-11-01

    An Ebers-Moll model for the heterostructure bipolar transistor (HBT) is developed. The model describes both single and double heterojunction transistors with or without band spikes and applies to uniform or graded base HBTs. Model parameters are directly related to device parameters such as doping densities, dimensions and band spikes. Junction velocities are introduced to describe the transport of carriers across the junctions. Results demonstrate that even for compositionally graded junctions, transport across the junctions may limit HBT performance if the base is graded. Use of the model is illustrated by examining a recently proposed technique for extracting conduction band spikes by comparing forward and inverted I- V characteristics.

  15. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    SciTech Connect

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A. Somov, P. A.; Terukov, E. I.

    2015-10-15

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  16. Synthesis, fabrication and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

    SciTech Connect

    Picraux, Samuel T; Dayeh, Shadi A

    2010-01-01

    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and the realization of asymmetric devices for novel device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100% compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 {micro}A/{micro}m (I/{pi}D) and 10{sup 5} I{sub on}/I{sub off} ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and metal-semiconductor barrier heights) for low-power and high performance electronics.

  17. Diffusion-Mediated Synthesis of MoS2/WS2 Lateral Heterostructures.

    PubMed

    Bogaert, Kevin; Liu, Song; Chesin, Jordan; Titow, Denis; Gradečak, Silvija; Garaj, Slaven

    2016-08-10

    Controlled growth of two-dimensional transition metal dichalcogenide (TMD) lateral heterostructures would enable on-demand tuning of electronic and optoelectronic properties in this new class of materials. Prior to this work, compositional modulations in lateral TMD heterostructures have been considered to depend solely on the growth chronology. We show that in-plane diffusion can play a significant role in the chemical vapor deposition of MoS2/WS2 lateral heterostructures leading to a variety of nontrivial structures whose composition does not necessarily follow the growth order. Optical, structural, and compositional studies of TMD crystals captured at different growth temperatures and in different diffusion stages suggest that compositional mixing versus segregation are favored at high and low growth temperatures, respectively. The observed diffusion mechanism will expand the realm of possible lateral heterostructures, particularly ones that cannot be synthesized using traditional methods. PMID:27438807

  18. Thermoelectric properties of IV-VI-based heterostructures and superlattices

    NASA Astrophysics Data System (ADS)

    Borges, P. D.; Petersen, J. E.; Scolfaro, L.; Leite Alves, H. W.; Myers, T. H.

    2015-07-01

    Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<1018 cm-3). A large value of ZT|| (parallel to the growth direction) of 3.0 is predicted for n=4.7×1018 cm-3 and T=700 K, whereas ZTp (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×1017 cm-3. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed.

  19. The visible transmittance and solar modulation ability of VO2 flexible foils simultaneously improved by Ti doping: an optimization and first principle study.

    PubMed

    Chen, Shi; Dai, Lei; Liu, Jianjun; Gao, Yanfeng; Liu, Xinling; Chen, Zhang; Zhou, Jiadong; Cao, Chuanxiang; Han, Penggang; Luo, Hongjie; Kanahira, Minoru

    2013-10-28

    The Mott phase transition compound vanadium dioxide (VO2) shows promise as a thermochromic smart material for the improvement of energy efficiency and comfort in a number of applications. However, the use of VO2 has been restricted by its low visible transmittance (Tvis) and limited solar modulation ability (ΔTsol). Many efforts have been made to improve both of these limitations, but progress towards the optimization of one aspect has always come at the expense of the other. This paper reports that Ti doping results in the improvement of both the Tvis and ΔTsol of VO2-nanoparticle-derived flexible foils to the best levels yet reported. Compared with an undoped VO2 foil, a 15% increase (from 46.1% to 53%) in Tvis and a 28% increase (from 13.4% to 17.2%) in ΔTsol are achieved at a Ti doping level of 1.1%, representing the best performance reported for similar foils or films prepared using various methods. Only a defined doping level of less than 3% is beneficial for simultaneous improvement in Tvis and ΔTsol. First principle calculations suggest that an increase in the intrinsic band gap of VO2 (M) and the reduced electron density at Fermi level of VO2 (R) cooperate to result in the improvement of ΔTsol and that an enhancement in the optical band gap of VO2 (M) leads to the increase of Tvis. PMID:24030357

  20. Properties of N-polar AlGaN/GaN heterostructures and field effect transistors grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Keller, S.; Suh, C. S.; Chen, Z.; Chu, R.; Rajan, S.; Fichtenbaum, N. A.; Furukawa, M.; DenBaars, S. P.; Speck, J. S.; Mishra, U. K.

    2008-02-01

    Smooth N-polar GaN/AlxGa1-xN/GaN heterostructures with a different Al mole fraction were grown by metalorganic chemical vapor deposition on (0001) sapphire substrates with a misorientation angle of 4° toward the a-sapphire plane. The sheet electron density of the two-dimensional electron gas (2DEG), which formed at the upper GaN/AlxGa1-xN interface increased with an increasing Al-mole fraction in the AlxGa1-xN layer and increasing silicon modulation doping, similar to the observations for Ga-polar heterostructures. The transport properties of the 2DEG, however, were anisotropic. The growth on vicinal substrates led to the formation of well ordered multiatomic steps during AlxGa1-xN growth and the sheet resistance of the 2DEG parallel to the steps was about 25% lower than the resistance measured in the perpendicular direction. The fabricated devices exhibited a drain-source current, IDS, of 0.9 A/mm at a gate-source voltage +1 V. At a drain-source voltage of 10 V and IDS=300 mA/mm, current-gain and maximum oscillation frequencies of 15 and 38 GHz, respectively, were measured.

  1. Ultrafast Band Structure Control of a Two-Dimensional Heterostructure.

    PubMed

    Ulstrup, Søren; Čabo, Antonija Grubišić; Miwa, Jill A; Riley, Jonathon M; Grønborg, Signe S; Johannsen, Jens C; Cacho, Cephise; Alexander, Oliver; Chapman, Richard T; Springate, Emma; Bianchi, Marco; Dendzik, Maciej; Lauritsen, Jeppe V; King, Phil D C; Hofmann, Philip

    2016-06-28

    The electronic structure of two-dimensional (2D) semiconductors can be significantly altered by screening effects, either from free charge carriers in the material or by environmental screening from the surrounding medium. The physical properties of 2D semiconductors placed in a heterostructure with other 2D materials are therefore governed by a complex interplay of both intra- and interlayer interactions. Here, using time- and angle-resolved photoemission, we are able to isolate both the layer-resolved band structure and, more importantly, the transient band structure evolution of a model 2D heterostructure formed of a single layer of MoS2 on graphene. Our results reveal a pronounced renormalization of the quasiparticle gap of the MoS2 layer. Following optical excitation, the band gap is reduced by up to ∼400 meV on femtosecond time scales due to a persistence of strong electronic interactions despite the environmental screening by the n-doped graphene. This points to a large degree of tunability of both the electronic structure and the electron dynamics for 2D semiconductors embedded in a van der Waals-bonded heterostructure. PMID:27267820

  2. Direct observation of bulk charge modulations in optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ

    NASA Astrophysics Data System (ADS)

    Hashimoto, M.; Ghiringhelli, G.; Lee, W.-S.; Dellea, G.; Amorese, A.; Mazzoli, C.; Kummer, K.; Brookes, N. B.; Moritz, B.; Yoshida, Y.; Eisaki, H.; Hussain, Z.; Devereaux, T. P.; Shen, Z.-X.; Braicovich, L.

    2014-06-01

    Bulk charge density modulations, recently observed in high critical-temperature (Tc) cuprate superconductors, coexist with the so-called pseudogap and compete with superconductivity. However, its direct observation has been limited to a narrow doping region in the underdoped regime. Using energy-resolved resonant x-ray scattering we have found evidence for such bulk charge modulations, or soft collective charge modes (soft CCMs), in optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (Pb-Bi2212) around the summit of the superconducting dome with momentum transfer q∥˜0.28 reciprocal lattice units (r.l.u.) along the Cu-O bond direction. The signal is stronger at T ≃Tc than at lower temperatures, thereby confirming a competition between soft CCMs and superconductivity. These results demonstrate that soft CCMs are not constrained to the underdoped regime, suggesting that soft CCMs appear across a large part of the phase diagram of cuprates and are intimately entangled with high-Tc superconductivity.

  3. Characterization of equine urinary metabolites of selective androgen receptor modulators (SARMs) S1, S4 and S22 for doping control purposes.

    PubMed

    Hansson, Annelie; Knych, Heather; Stanley, Scott; Thevis, Mario; Bondesson, Ulf; Hedeland, Mikael

    2015-08-01

    Selective androgen receptor modulators, SARMs, constitute a class of compounds with anabolic properties but with few androgenic side-effects. This makes them possible substances of abuse and the World Anti-Doping Agency (WADA) has banned the entire class of substances. There have been several cases of illicit use of aryl propionamide SARMs in human sports and in 2013, 13 cases were reported. These substances have been found to be extensively metabolized in humans, making detection of metabolites necessary for doping control. SARMs are also of great interest to equine doping control, but the in vivo metabolite pattern and thus possible analytical targets have not been previously studied in this species. In this study, the urinary metabolites of the SARMs S1, S4, and S22 in horses were studied after intravenous injection, using ultra high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QToF-MS). Eight different metabolites were found for SARM S1, nine for SARM S4, and seven for SARM S22. The equine urinary metabolite profiles differed significantly from those of humans. The parent compounds were only detected for SARMs S4 and S22 and only at the first sampling time point at 3 h post administration, making them unsuitable as target compounds. For all three SARMs tested, the metabolite yielding the highest response had undergone amide hydrolysis, hydroxylation and sulfonation. The resulting phase II metabolites (4-nitro-3-trifluoro-methyl-phenylamine sulfate for SARMs S1 and S4 and 4-cyano-3-trifluoro-methyl-phenylamine sulfate for SARM S22) are proposed as analytical targets for use in equine doping control. PMID:25560998

  4. Identification of selected in vitro generated phase-I metabolites of the steroidal selective androgen receptor modulator MK-0773 for doping control purposes.

    PubMed

    Lagojda, Andreas; Kuehne, Dirk; Krug, Oliver; Thomas, Andreas; Wigger, Tina; Karst, Uwe; Schänzer, Wilhelm; Thevis, Mario

    2016-01-01

    Research into developing anabolic agents for various therapeutic purposes has been pursued for decades. As the clinical utility of anabolic-androgenic steroids has been found to be limited because of their lack of tissue selectivity and associated off-target effects, alternative drug entities have been designed and are commonly referred to as selective androgen receptor modulators (SARMs). While most of these SARMs are of nonsteroidal structure, the drug candidate MK-0773 comprises a 4-aza-steroidal nucleus. Besides the intended therapeutic use, SARMs have been found to be illicitly distributed and misused as doping agents in sport, necessitating frequently updated doping control analytical assays. As steroidal compounds reportedly undergo considerable metabolic transformations, the phase-I metabolism of MK-0773 was simulated using human liver microsomal (HLM) preparations and electrochemical conversion. Subsequently, major metabolic products were identified and characterized employing liquid chromatography-high-resolution/high- accuracy tandem mass spectrometry with electrospray (ESI) and atmospheric pressure chemical ionization (APCI) as well as nuclear magnetic resonance (NMR) spectroscopy. MK-0773 produced numerous phase-I metabolites under the chosen in vitro incubation reactions, mostly resulting from mono- and bisoxygenation of the steroid. HLM yielded at least 10 monooxygenated species, while electrochemistry-based experiments resulted predominantly in three monohydroxylated metabolites. Elemental composition data and product ion mass spectra were generated for these analytes, ESI/APCI measurements corroborated the formation of at least two N-oxygenated metabolites, and NMR data obtained from electrochemistry-derived products supported structures suggested for three monohydroxylated compounds. Hereby, the hydroxylation of the A-ring located N- bound methyl group was found to be of particular intensity. In the absence of controlled elimination studies, the

  5. Morphology-modulation of SnO2 Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications

    PubMed Central

    Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin

    2015-01-01

    The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively). PMID:25597269

  6. Novel Excitonic Solar Cells in Phosphorene-TiO2 Heterostructures with Extraordinary Charge Separation Efficiency.

    PubMed

    Zhou, Liujiang; Zhang, Jin; Zhuo, Zhiwen; Kou, Liangzhi; Ma, Wei; Shao, Bin; Du, Aijun; Meng, Sheng; Frauenheim, Thomas

    2016-05-19

    Constructing van der Waals heterostructures is an efficient approach to modulate the electronic structure, to advance the charge separation efficiency, and thus to optimize the optoelectronic property. Here, we theoretically investigated the phosphorene interfaced with TiO2(110) surface (1L-BP/TiO2) with a type-II band alignment, showing enhanced photoactivity. The 1L-BP/TiO2 excitonic solar cell (XSC) based on the 1L-BP/TiO2 exhibits large built-in potential and high power conversion efficiency (PCE), dozens of times higher than conventional solar cells, comparable to MoS2/WS2 XSC. The nonadiabatic molecular dynamics simulation shows the ultrafast electron transfer time of 6.1 fs, and slow electron-hole recombination of 0.58 ps, yielding >98% internal quantum efficiency for charge separation, further guaranteeing the practical PCE. Moreover, doping in phosphorene has a tunability on built-in potential, charge transfer, light absorbance, as well as electron dynamics, which greatly helps to optimize the optoelectronic efficiency of a XSC. PMID:27141996

  7. Superconducting junctions from doped nonsuperconducting CuO2 layers

    NASA Astrophysics Data System (ADS)

    Loktev, V. M.; Pogorelov, Yu. G.

    2011-04-01

    The theoretical approach proposed recently to describe the redistribution of electronic charge in multilayered selectively doped systems is modified for a system with a finite number of layers. Special attention is payed to the case of a finite heterostructure made of copper-oxide layers which are all nonsuperconducting (including nonconducting) because the doping levels in them are beyond the characteristic interval for superconductivity. Specific finite structures and doping configurations are proposed to obtain atomically thin superconducting heterojunctions of different compositions.

  8. Large anisotropic magnetoresistance across the Schottky interface in all oxide ferromagnet/semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Li, P.; Guo, B. L.; Bai, H. L.

    2011-06-01

    Over 80% fourfold symmetric anisotropic magnetoresistance (AMR) across the interface is observed in epitaxial Fe3O4 (001)/Nb:SrTiO3 (001) heterostructures, while the twofold symmetric AMR across the interface in epitaxial Fe3O4 (111)/ZnO (0001) heterostructures is rather small. The large AMR across the interface is considered to be induced by the assistance of magnetocrystalline anisotropic energy for the transport electrons while the applied voltage bias is near the height of Schottky barrier, which is further verified by the fact that a larger critical current is needed for the maximum AMR in the Fe3O4 (001)/Nb:SrTiO3 (001) heterostructures with heavier Nb-doping.

  9. Optimization of AlAs/AlGaAs quantum well heterostructures on on-axis and misoriented GaAs (111)B

    NASA Astrophysics Data System (ADS)

    Herzog, F.; Bichler, M.; Koblmüller, G.; Prabhu-Gaunkar, S.; Zhou, W.; Grayson, M.

    2012-05-01

    We report systematic growth optimization of high Al-content AlGaAs, AlAs, and associated modulation-doped quantum well (QW) heterostructures on on-axis and misoriented GaAs (111)B by molecular beam epitaxy. Growth temperatures TG > 690 °C and low As4 fluxes close to group III-rich growth significantly suppress twin defects in high-Al content AlGaAs on on-axis GaAs (111)B, as quantified by atomic force and transmission electron microscopy as well as x-ray diffraction. Mirror-smooth and defect-free AlAs with pronounced step-flow morphology was further achieved by growth on 2° misoriented GaAs (111)B toward [01¯1] and [21¯1¯] orientations. Successful fabrication of modulation-doped AlAs QW structures on these misoriented substrates yielded record electron mobilities (at 1.15 K) in excess of 13 000 cm2/Vs at sheet carrier densities of 5 × 1011 cm-2.

  10. Power factor improvement and thermal conductivity reduction---By band engineering and modulation-doping in nanocomposites

    NASA Astrophysics Data System (ADS)

    Yu, Bo

    of this thesis, I will talk about how I applied the same technique to the Thalllium (Tl) doped Lead Telluride (PbTe) which was reported for an improved Seebeck coefficient due to the creation of resonant states near the Fermi level, leading to a high ZT of about 1.5 at around 500 °C. I showed that comparing with conventional tedious, energy consuming melting method, our fabrication process could produce such material with competing thermoelectric performance, but much simpler and more energy effective. Potential problems and perspectives for the future study are also discussed. The 4th chapter of my thesis deals with the challenge that in addition to those nanostructuring routes that mainly reduce the thermal conductivity to improve the performance, strategies to enhance the power factor (enhancing sigma or S or both) are also essential for the next generation of thermoelectric materials. In this part, modulation-doping which has been widely used in thin film semiconductor industry was studied in 3-D bulk thermoelectric nanocomposites to enhance the carrier mobility and therefore the electrical conductivity sigma. We proved in our study that by proper materials design, an improved power factor and a reduced thermal conductivity could be simultaneously obtained in the n-type SiGe nanocomposite material, which in turn gives an about 30% enhancement in the final ZT value. In order to further improve the materials performance or even apply this strategy to other materials systems, I also provided discussions at the end of chapter. In the last chapter, the structural and transport properties of a new thermoelectric compound Cu2Se was studied which was originally regarded as a superionic conductor. The beta-phase of such material possesses a natural superlattice-like structure, therefore resulting in a low lattice thermal conductivity of 0.4--0.5 Wm-1K-1 and a high peak ZT value of ˜1.6 at around 700 °C. I also studied the phase transition behavior between the cubic

  11. Electro-optic phase modulation in light induced self-written waveguides propagated in a 5CB doped photopolymer.

    PubMed

    Jemal, Abdelmonem; Ben Belgacem, Mohamed; Kamoun, Saber; Gargouri, Mohamed; Honorat Dorkenoo, Kokou D; Barsella, Alberto; Mager, Loïc

    2013-01-28

    We present the inscription of a Light Induced Self-Written (LISW) waveguide in a 4-cyano-4'-pentylbipheny (5CB) doped photopolymer. The dynamic reorientation of the 5CB molecules in the material under applied electric field leads to birefringence in LISW waveguide and thus allows the control of the phase of the guided mode. PMID:23389136

  12. Assembly of quasicrystalline photonic heterostructures

    SciTech Connect

    Grier, David G.; Roichman, Yael; Man, Weining; Chaikin, Paul Michael; Steinhardt, Paul Joseph

    2013-03-12

    A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.

  13. Assembly of quasicrystalline photonic heterostructures

    DOEpatents

    Grier, David G.; Roichman, Yael; Man, Weining; Chaikin, Paul Michael; Steinhardt, Paul Joseph

    2011-07-19

    A method and system for assembling a quasicrystalline heterostructure. A plurality of particles is provided with desirable predetermined character. The particles are suspended in a medium, and holographic optical traps are used to position the particles in a way to achieve an arrangement which provides a desired property.

  14. In vitro metabolism studies on the selective androgen receptor modulator (SARM) LG121071 and its implementation into human doping controls using liquid chromatography-mass spectrometry.

    PubMed

    Knoop, Andre; Krug, Oliver; Vincenti, Marco; Schänzer, Wilhelm; Thevis, Mario

    2015-01-01

    LG121071 is a member of the tetrahydroquinolinone-based class of selective androgen receptor modulator (SARM) drug candidates. These nonsteroidal compounds are supposed to act as full anabolic agents with reduced androgenic properties. As SARMs provide an alternative to anabolic androgenic steroids, they represent an emerging class of potential doping substances abused by athletes for illicit performance enhancement. According to the World Anti-Doping Agency's regulations, SARMs are banned substances and part of the Prohibited List since 2008. In consideration of the increasing number of adverse analytical findings in doping controls caused by SARMs abuse, potential drug candidates such as LG121071 have been proactively investigated to enable a timely integration into routine testing procedures even though clinical trials are not yet complete. In the present approach, the collision-induced dissociation (CID) of LG121071 was characterized by means of electrospray ionization-high resolution/high accuracy mass spectrometry, MS(n), and isotope labeling experiments. Interestingly, the even-electron precursor ion [M + H](+) at m/z 297 was found to produce a radical cation at m/z 268 under CID conditions, violating the even-electron rule that commonly applies. For doping control purposes, metabolites were generated in vitro and a detection method for urine samples based on liquid chromatography-tandem mass spectrometry was established. The overall metabolic conversion of LG121071 was modest, yielding primarily mono-, bis- and trishydroxylated species. Notable, however, was the identification of a glucuronic acid conjugate of the intact drug, attributed to an N-glucuronide structure. The sample preparation procedure included the enzymatic hydrolysis of glucuronides prior to liquid-liquid extraction, allowing intact LG121071 to be measured, as well as the corresponding phase-I metabolites. The method was characterized concerning inter alia lower limit of detection (0

  15. Effect of strain on voltage-controlled magnetism in BiFeO3-based heterostructures

    PubMed Central

    Wang, J. J.; Hu, J. M.; Yang, T. N.; Feng, M.; Zhang, J. X.; Chen, L. Q.; Nan, C. W.

    2014-01-01

    Voltage-modulated magnetism in magnetic/BiFeO3 heterostructures can be driven by a combination of the intrinsic ferroelectric-antiferromagnetic coupling in BiFeO3 and the antiferromagnetic-ferromagnetic exchange interaction across the heterointerface. However, ferroelectric BiFeO3 film is also ferroelastic, thus it is possible to generate voltage-induced strain in BiFeO3 that could be applied onto the magnetic layer across the heterointerface and modulate magnetism through magnetoelastic coupling. Here, we investigated, using phase-field simulations, the role of strain in voltage-controlled magnetism for these BiFeO3-based heterostructures. It is predicted, under certain condition, coexistence of strain and exchange interaction will result in a pure voltage-driven 180° magnetization reversal in BiFeO3-based heterostructures. PMID:24686503

  16. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C. W.

    2015-12-01

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops.

  17. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures.

    PubMed

    Gao, Ya; Hu, Jia-Mian; Wu, Liang; Nan, C W

    2015-12-23

    Voltage control of magnetism in multiferroic heterostructures provides a promising solution to the excessive heating in spintronic devices. Direct observation of voltage-modulated magnetic domain evolution dynamics is desirable for studying the mechanism of the voltage control of magnetism at mesoscale, but has remained challenging. Here we explored a characterization method for the dynamic in situ evolution of pure voltage modulated magnetic domains in the heterostructures by employing the scanning Kerr microscopy function in the magneto optic Kerr effect system. The local magnetization reorientation of a Ni/PMN-PT heterostructure were characterized under sweeping applied voltage on the PMN-PT single crystal, and the results show that the magnetization rotation angle in the local regions is much greater than that obtained from macroscopic magnetization hysteresis loops. PMID:26613293

  18. Graphene/Si-nanowire heterostructure molecular sensors

    PubMed Central

    Kim, Jungkil; Oh, Si Duk; Kim, Ju Hwan; Shin, Dong Hee; Kim, Sung; Choi, Suk-Ho

    2014-01-01

    Wafer-scale graphene/Si-nanowire (Si-NW) array heterostructures for molecular sensing have been fabricated by vertically contacting single-layer graphene with high-density Si NWs. Graphene is grown in large scale by chemical vapour deposition and Si NWs are vertically aligned by metal-assisted chemical etching of Si wafer. Graphene plays a key role in preventing tips of vertical Si NWs from being bundled, thereby making Si NWs stand on Si wafer separately from each other under graphene, a critical structural feature for the uniform Schottky-type junction between Si NWs and graphene. The molecular sensors respond very sensitively to gas molecules by showing 37 and 1280% resistance changes within 3.5/0.15 and 12/0.15 s response/recovery times under O2 and H2 exposures in air, respectively, highest performances ever reported. These results together with the sensor responses in vacuum are discussed based on the surface-transfer doping mechanism. PMID:24947403

  19. LETTER TO THE EDITOR: Efficient photocarrier injection in a transition metal oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Muraoka, Y.; Yamauchi, T.; Ueda, Y.; Hiroi, Z.

    2002-12-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO2/TiO2:Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO2:Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO2.

  20. Blue light emission from the heterostructured ZnO/InGaN/GaN

    PubMed Central

    2013-01-01

    ZnO/InGaN/GaN heterostructured light-emitting diodes (LEDs) were fabricated by molecular beam epitaxy and atomic layer deposition. InGaN films consisted of an Mg-doped InGaN layer, an undoped InGaN layer, and a Si-doped InGaN layer. Current-voltage characteristic of the heterojunction indicated a diode-like rectification behavior. The electroluminescence spectra under forward biases presented a blue emission accompanied by a broad peak centered at 600 nm. With appropriate emission intensity ratio, the heterostructured LEDs had potential application in white LEDs. Moreover, a UV emission and an emission peak centered at 560 nm were observed under reverse bias. PMID:23433236

  1. Photocatalytic enhancement of TiO2 by B and Zr co-doping and modulation of microstructure

    NASA Astrophysics Data System (ADS)

    Fu, Chengxin; Gong, Yinyan; Wu, Yitao; Liu, Jiaqi; Zhang, Zhen; Li, Can; Niu, Lengyuan

    2016-08-01

    Visible-light photodegradation test revealed that B and Zr co-doping can raise the photocatalytic ability of the undoped TiO2 by a fold. XRD crystallography and Raman phonon spectroscopy measurements suggest that the Zr4+ ions replace the Ti4+ ions while the B3+ ions occupy the interstitial sites, expanding the unit-cell volume and reducing crystallite size. The incorporation of interstitial boron dopants creates oxygen vacancies (Ovrad rad) and reduce Ti4+ to Ti3+ to form [Ovrad rad -Ti3+]+, which traps the carriers and prolongs carrier lifetime. Moreover, Zr4+ ions replace Ti4+ ions and form impurity levels, which could improve visible light response. The co-doped samples are benefited from both B interstitials and Zr substitutes.

  2. Hybrid Modulation-Doping of Solution-Processed Ultrathin Layers of ZnO Using Molecular Dopants.

    PubMed

    Schießl, Stefan P; Faber, Hendrik; Lin, Yen-Hung; Rossbauer, Stephan; Wang, Qingxiao; Zhao, Kui; Amassian, Aram; Zaumseil, Jana; Anthopoulos, Thomas D

    2016-05-01

    An alternative doping approach that exploits the use of organic donor/acceptor molecules for the effective tuning of the free electron concentration in quasi-2D ZnO transistor channel layers is reported. The method relies on the deposition of molecular dopants/formulations directly onto the ultrathin ZnO channels. Through careful choice of materials combinations, electron transfer from the dopant molecule to ZnO and vice versa is demonstrated. PMID:26437002

  3. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    SciTech Connect

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN core of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.

  4. Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires

    DOE PAGESBeta

    Song, Erdong; Li, Qiming; Swartzentruber, Brian; Pan, Wei; Wang, George T.; Martinez, Julio A.

    2015-11-25

    The thermoelectric properties of unintentionally n-doped core GaN/AlGaN core/shell N-face nanowires are reported. We found that the temperature dependence of the electrical conductivity is consistent with thermally activated carriers with two distinctive donor energies. The Seebeck coefficient of GaN/AlGaN nanowires is more than twice as large as that for the GaN nanowires alone. However, an outer layer of GaN deposited onto the GaN/AlGaN core/shell nanowires decreases the Seebeck coefficient at room temperature, while the temperature dependence of the electrical conductivity remains the same. We attribute these observations to the formation of an electron gas channel within the heavily-doped GaN coremore » of the GaN/AlGaN nanowires. The room-temperature thermoelectric power factor for the GaN/AlGaN nanowires can be four times higher than the GaN nanowires. As a result, selective doping in bandgap engineered core/shell nanowires is proposed for enhancing the thermoelectric power.« less

  5. Magnetotransport study on as-grown and annealed n- and p-type modulation-doped GaInNAs/GaAs strained quantum well structures

    NASA Astrophysics Data System (ADS)

    Dönmez, Ömer; Sarcan, Fahrettin; Erol, Ayse; Gunes, Mustafa; Arikan, Mehmet Çetin; Puustinen, Janne; Guina, Mircea

    2014-03-01

    We report the observation of thermal annealing- and nitrogen-induced effects on electronic transport properties of as-grown and annealed n- and p-type modulation-doped Ga1 - x In x N y As1 - y ( x = 0.32, y = 0, 0.009, and 0.012) strained quantum well (QW) structures using magnetotransport measurements. Strong and well-resolved Shubnikov de Haas (SdH) oscillations are observed at magnetic fields as low as 3 T and persist to temperatures as high as 20 K, which are used to determine effective mass, 2D carrier density, and Fermi energy. The analysis of temperature dependence of SdH oscillations revealed that the electron mass enhances with increasing nitrogen content. Furthermore, even the current theory of dilute nitrides does not predict a change in hole effective mass; nitrogen dependency of hole effective mass is found and attributed to both strain- and confinement-induced effects on the valence band. Both electron and hole effective masses are changed after thermal annealing process. Although all samples were doped with the same density, the presence of nitrogen in n-type material gives rise to an enhancement in the 2D electron density compared to the 2D hole density as a result of enhanced effective mass due to the effect of nitrogen on conduction band. Our results reveal that effective mass and 2D carrier density can be tailored by nitrogen composition and thermal annealing-induced effects.

  6. Room-Temperature Phosphorescence Turn-on Detection of DNA Based on Riboflavin-Modulated Manganese Doped Zinc Sulfide Quantum Dots.

    PubMed

    Gong, Yan; Fan, Zhefeng

    2016-03-01

    A sensitive phosphorescent sensor based on riboflavin (RF)-modulated mercaptopropionic acid (MPA)-capped Mn-doped ZnS quantum dots (QDs) was developed and utilized as room-temperature phosphorescence (RTP) sensor for DNA detection. The RTP of the MPA-capped Mn-doped ZnS QDs was stored via photoinduced electron transfer by RF, and formed an electrochemically nonactive QDs/RF nanohybrids through electrostatic attraction. In the presence of DNA, RF could bind with DNA, which has a double helical structure, via electrostatic interaction and intercalation. RF can be removed from the surface of the QDs, thus releasing the RTP of the QDs. On the basis of this principle, an RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 15 μg mL(-1), the relative standard deviation was 1.9 %, and the method recovery ranged from 97 % to 103 %. The proposed method was applied to biological fluids, in which satisfactory results were obtained. PMID:26658940

  7. Magnetooptical study of Zeeman effect in Mn modulation-doped InAs/InGaAs/InAlAs quantum well structures

    SciTech Connect

    Terent'ev, Ya. V.; Danilov, S. N.; Plank, H.; Loher, J.; Schuh, D.; Bougeard, D.; Weiss, D.; Ganichev, S. D.; Durnev, M. V.; Ivanov, S. V.; Tarasenko, S. A.; Rozhansky, I. V.; Yakovlev, D. R.

    2015-09-21

    We report on a magneto-photoluminescence (PL) study of Zeeman effect in Mn modulation-doped InAs/InGaAs/InAlAs quantum wells (QW). Two PL lines corresponding to the radiative recombination of photoelectrons with free and bound-on-Mn holes have been observed. In the presence of a magnetic field applied in the Faraday geometry, both lines split into two circularly polarized components. While temperature and magnetic field dependence of the splitting are well described by the Brillouin function, providing an evidence for exchange interaction with spin polarized manganese ions, the value of the splitting exceeds by two orders of magnitude the value of the giant Zeeman splitting estimated for the average Mn density in QW obtained by the secondary ion mass spectroscopy.

  8. Photoluminescence study of {InxGa1-xAs}/{InyAl1-yAs} one-side-modulation-doped asymmetric step quantum wells

    NASA Astrophysics Data System (ADS)

    Li, Hanxuan; Wang, Zhanguo; Liang, Jiben; Xu, Bo; Jiang, Chao; Gong, Qian; Liu, Fengqi; Zhou, Wei

    1998-06-01

    Fourier transform photoluminescence measurements were carried out to investigate the optical transitions in {InxGa1-xAs}/{InyAl1-yAs} one-side-modulation-doped asymmetric step quantum wells. Samples with electron density ns between 0.8 and 5.3 × 10 12cm -2 are studied. Strong recombination involving one to three populated electron subbands with the first heavyhole subband is observed. Fermi edge singularity (FES) clearly can be observed for some samples. The electron subband energies in the {InGaAs}/{InAlAs} step quantum wells were calculated by a self-consistent method, taking into account strain and nonparabolicity effects and the comparison with the experimental data shows a good agreement. Our results can help improve understanding for the application of {InGaAs}/{InAlAs} step quantum wells in microelectronic and optoelectronic devices.

  9. Growth studies of pseudomorphic GaAs/InGaAs/AlGaAs modulation-doped field-effect transistor structures

    SciTech Connect

    Chan, K.T.; Lightner, M.J.; Patterson, G.A. ); Yu, K.M. )

    1990-05-14

    Strained GaAs/InGaAs/AlGaAs quantum well structures have been grown by molecular beam epitaxy at substrate temperatures from 375 to 510 {degree}C. The well layer thickness and In composition are analyzed by ion channeling and particle-induced x-ray emission as a function of growth temperature. Test structures for modulation-doped field-effect transistors grown at 375 and 510 {degree}C under two different As{sub 4} overpressures were also characterized by Van der Pauw measurements and low-temperature photoluminescence. The observed differences in film quality can be explained by the influence of substrate temperature and As{sub 4} flux on the cation surface mobility during growth of the InGaAs layer.

  10. Dielectric, multiferroic properties and resistance modulation of Ta-doped Bi0.97Ba0.03FeO3 ceramics

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wang, S. Y.; Liu, W. F.; Guo, F.; Xi, X. J.; Wang, H. J.; Li, D. J.

    2014-02-01

    Single phase Bi0.97Ba0.03Fe1-xTaxO3 ceramics with x = 0, 0.01, 0.03, 0.05 were synthesized by modified rapid sintering process method. The formation of rhombohedral perovskite-like structure was confirmed by X-ray diffraction investigation for all the samples. Dielectric and leakage current measurements indicated that the content of the oxygen vacancy in the samples decreased as a function of the substitution of Ta5+ ions. A distinct threshold switching behavior was observed in the leakage current density. The impedance measurements suggested that the grain effect made a major contribution to the resistance. The changes in dielectric, multiferroic properties and resistance modulation of the Ta5+ and Ba2+ co-doped BiFeO3 ceramics could have a huge potential for material application.

  11. Polaritons composed of 2DEG Fermi-edge transitions in a GaAs/AlGaAs modulation doped quantum well embedded in a microcavity

    NASA Astrophysics Data System (ADS)

    Gabbay, A.; Preezant, Yulia; Cohen, E.; Ashkinadze, B. M.; Pfeiffer, L. N.

    2007-04-01

    The reflection and photoluminescence spectra of a GaAs/Al0.1Ga0.9As structure consisting of a modulation doped quantum well embedded in a microcavity (MC) were studied under a perpendicularly applied magnetic field (B < 7T) and at T = 2K. The two dimensional electron gas (2DEG) density in the quantum well was 1.8 × 1011 cm-2. Sharp lines are observed, whose energy dependence on the energy of the MC-confined photon identifies them as cavity polaritons, similar to those observed in structures of an undoped quantum well embedded in a MC. We show that they arise from the strong coupling between the MC-confined photons and interband transitions above the Fermi edge or inter-Landau level transitions of the 2DEG.

  12. Spin tunneling and magnetotransport in GaMnAs-based heterostructures

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki

    2003-03-01

    In this talk, we present the spin-dependent tunneling (vertical transport) and in-plane magnetotransport properties of GaMnAs-based ferromagnetic heterostructures. First we describe tunneling magnetoresistance (TMR) in all-semiconductor GaMnAs/AlAs/GaMnAs magnetic tunnel junctions (MTJs) [1][2]. Very high TMR ratios (max. 75 were observed at 8 K for the junction with the AlAs barrier thickness d<1.6nm. For d>1.6nm, the TMR ratio was found to decrease with increasing d, which can be explained by theoretical calculations based on k_allel conservation of tunneling carriers. Unlike the conventional MTJs, the present MTJs are all-epitaxial monocrystalline semiconductor-based junctions, which have some advantages including good compatibility with semiconductor devices and more freedom in the design of structures [3]. Second, we show our magnetotransport study on ferromagnetic III-V semiconductor heterostructures with higher Curie temperature TC [4]. In selectively doped heterostructures (Mn delta-doped GaAs / Be-doped AlGaAs), in which holes are supplied from the Be-doped p-AlGaAs layer resembling an inverted high electron mobility transistor (I-HEMT) structure, ferromagnetic ordering was clearly observed. In the heterostructure prepared with proper conditions, its TC was as high as 172 K, far above the TC of InAs- or GaAs-based random-alloy magnetic semiconductors. [1] M. Tanaka and Y. Higo, Phys. Rev. Lett. 87 (2001) 026602; Physica E13 (2002) 495. [2] Y. Higo, H. Shimizu, and M. Tanaka, J. Appl. Phys. 89 (2001) 6745. [3] T. Hayashi, M. Tanaka, and Asamitsu, J. Appl. Phys. 87 (2000) 4673. [4] A. M. Nazmul, S. Sugahara, and M. Tanaka, Appl. Phys. Lett. 80 (2002) 3120; cond-mat/0208299 (2002).

  13. White electroluminescence of n-ZnO:Al/p-diamond heterostructure devices

    NASA Astrophysics Data System (ADS)

    Yang, Can; Wang, Xiao-Ping; Wang, Li-Jun; Pan, Xiu-Fang; Li, Song-Kun; Jing, Long-Wei

    2013-08-01

    An n-ZnO:Al/p-boron-doped diamond heterostructure electroluminescent device is produced, and a rectifying behavior can be observed. The electroluminescence spectrum at room temperature exhibits two visible bands centred at 450 nm-485 nm (blue emission) and 570 nm-640 nm (yellow emission). Light emission with a luminance of 15 cd/m2 is observed from the electroluminescent device at a forward applied voltage of 85 V, which is distinguished from white light by the naked eye.

  14. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect

    Tang, Linlong; Du, Jinglei; Shi, Haofei Wei, Dongshan; Du, Chunlei

    2014-10-15

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  15. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures.

    PubMed

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Purezky, Alexander A; Geohegan, David B; Kim, Ki Wook; Zhang, Yong; Cao, Linyou

    2015-01-14

    Semiconductor heterostructures provide a powerful platform to engineer the dynamics of excitons for fundamental and applied interests. However, the functionality of conventional semiconductor heterostructures is often limited by inefficient charge transfer across interfaces due to the interfacial imperfection caused by lattice mismatch. Here we demonstrate that MoS(2)/WS(2) heterostructures consisting of monolayer MoS(2) and WS(2) stacked in the vertical direction can enable equally efficient interlayer exciton relaxation regardless the epitaxy and orientation of the stacking. This is manifested by a similar 2 orders of magnitude decrease of photoluminescence intensity in both epitaxial and nonepitaxial MoS(2)/WS(2) heterostructures. Both heterostructures also show similarly improved absorption beyond the simple superimposition of the absorptions of monolayer MoS(2) and WS(2). Our result indicates that 2D heterostructures bear significant implications for the development of photonic devices, in particular those requesting efficient exciton separation and strong light absorption, such as solar cells, photodetectors, modulators, and photocatalysts. It also suggests that the simple stacking of dissimilar 2D materials with random orientations is a viable strategy to fabricate complex functional 2D heterostructures, which would show similar optical functionality as the counterpart with perfect epitaxy. PMID:25469768

  16. Spatially Correlated Disorder in Epitaxial van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Laanait, Nouamane; Zhang, Zhan; Schleputz, Christian; Liu, Ying; Wojcik, Michael; Myers-Ward, Rachael; Gaskill, D. Kurt; Fenter, Paul; Li, Lian

    The structural cohesion of van der Waals (vdW) heterostructures relies upon a cooperative balance between strong intra-layer bonded interactions and weak inter-layer coupling. The confinement of extended defects to within a single vdW layer and competing interactions introduced by epitaxial constraints could generate fundamentally new structural disorders. Here we report on the presence of spatially correlated and localized disorder states that coexist with the near perfect crystallographic order along the growth direction of epitaxial vdW heterostructure of Bi2Se3/graphene/SiC grown by molecular beam epitaxy. With the depth penetration of hard X-ray diffraction microscopy and high-resolution surface scattering, we imaged local structural configurations from the atomic to mesoscopic length scales, and found that these disorder states result as a confluence of atomic scale modulations in the strength of vdW layer-layer interactions and nanoscale boundary conditions imposed by the substrate. These findings reveal a vast landscape of novel disorder states that can be manifested in epitaxial vdW heterostructures. Supported by the Wigner Fellowship program at Oak Ridge Nat'l Lab.

  17. Carbon Nanotube-Nanocrystal Heterostructures

    SciTech Connect

    Peng, X.; Wong, S.

    2009-04-01

    The importance of generating carbon nanotube-nanoparticle heterostructures is that these composites ought to take advantage of and combine the unique physical and chemical properties of both carbon nanotubes and nanoparticles in one discrete structure. These materials have potential applicability in a range of diverse fields spanning heterogeneous catalysis to optoelectronic device development, of importance to chemists, physicists, materials scientists, and engineers. In this critical review, we present a host of diverse, complementary strategies for the reliable synthesis of carbon nanotube-nanoparticle heterostructures using both covalent as well as non-covalent protocols, incorporating not only single-walled and multi-walled carbon nanotubes but also diverse classes of metallic and semiconducting nanoparticles.

  18. Band-gap modulation via gallium substitution in cerium doped gadolinium aluminum garnet using a mixed fuel combustion approach

    SciTech Connect

    Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema

    2014-04-24

    Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.

  19. Study of energy band discontinuity in NiZnO/ZnO heterostructure using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Dewan, Sheetal; Tomar, Monika; Goyal, Anshu; Kapoor, A. K.; Tandon, R. P.; Gupta, Vinay

    2016-05-01

    A heterostructure based on ZnO and Ni doped ZnO (NiZnO) thin films has been prepared on c-plane sapphire substrate by pulsed laser deposition technique. X-ray photo electron spectroscopy has been utilized to study the energy band discontinuities, i.e., valence band offset ( Δ E v ) and conduction band offset ( Δ E c ) at the interface of NiZnO and ZnO thin films. A type-II band alignment is identified at the interface of prepared heterostructure from the computed data, which is attractive for the realization of efficient optoelectronic devices.

  20. Heterostructures of Topological Insulators and Superconductors

    NASA Astrophysics Data System (ADS)

    Lababidi, Mahmoud

    show that triplet pairing correlations are induced by spin-flip scattering at the interface. We verify that the interface spectrum at sub-gap energies is well described by the Fu-Kane model even for strongly coupled S and TI. These sub-gap modes are interface states with spectral weight penetrating well into the superconductor. We extract the phenomenological parameters of the phenomenological Fu-Kane model from our microscopic calculations, and find they are strongly renormalized from the bulk material parameters. Building upon such understanding of single TI-S interface, we move on to examine a TI surface in contact with two superconductors with a phase bias, namely a Josephson junction patterned on the TI surface and mediated by the helical metal. A short Josephson junction of this kind at a phase bias of pi is known to give rise to exotic quasiparticle excitations known as Majorana fermions with a linear dispersion, E ˜ k. Our self-consistent calculation of the Andreev bound states spectrum reveals, for the first time, a new regime with very different physics in these devices. We show that the subgap spectrum becomes nearly flat at zero energy when the chemical potential is sufficiently away from the Dirac point. The flat dispersion is well approximated by E ˜ k N, where N scales with the chemical potential. We find a similar linear-to-flat dispersion evolution also occurs for the subgap spectrum of a periodic superconducting proximity structure, such as a TI surface in contact with a striped superconductor. The systematic microscopic study of TI-S heterostructures helps interpret the data from ongoing experiments on these structures. The formalism developed also forms the basis for subsequent investigation of more complicated layered materials such as the periodic array of magnetically doped TI and S which is argued to give rise to an exotic topological superconductor known as Weyl superconductor.

  1. Silicon-based silicon–germanium–tin heterostructure photonics

    PubMed Central

    Soref, Richard

    2014-01-01

    The wavelength range that extends from 1550 to 5000 nm is a new regime of operation for Si-based photonic and opto-electronic integrated circuits. To actualize the new chips, heterostructure active devices employing the ternary SiGeSn alloy are proposed in this paper. Foundry-based monolithic integration is described. Opportunities and challenges abound in creating laser diodes, optical amplifiers, light-emitting diodes, photodetectors, modulators, switches and a host of high-performance passive infrared waveguided components. PMID:24567479

  2. Nanoscale Electrostructural Characterization of Compositionally Graded Al(x)Ga(1-x)N Heterostructures on GaN/Sapphire (0001) Substrate.

    PubMed

    Kuchuk, Andrian V; Lytvyn, Petro M; Li, Chen; Stanchu, Hryhorii V; Mazur, Yuriy I; Ware, Morgan E; Benamara, Mourad; Ratajczak, Renata; Dorogan, Vitaliy; Kladko, Vasyl P; Belyaev, Alexander E; Salamo, Gregory G

    2015-10-21

    We report on AlxGa1-xN heterostructures resulting from the coherent growth of a positive then a negative gradient of the Al concentration on a [0001]-oriented GaN substrate. These polarization-doped p-n junction structures were characterized at the nanoscale by a combination of averaging as well as depth-resolved experimental techniques including: cross-sectional transmission electron microscopy, high-resolution X-ray diffraction, Rutherford backscattering spectrometry, and scanning probe microscopy. We observed that a small miscut in the substrate orientation along with the accumulated strain during growth led to a change in the mosaic structure of the AlxGa1-xN film, resulting in the formation of macrosteps on the surface. Moreover, we found a lateral modulation of charge carriers on the surface which were directly correlated with these steps. Finally, using nanoscale probes of the charge density in cross sections of the samples, we have directly measured, semiquantitatively, both n- and p-type polarization doping resulting from the gradient concentration of the AlxGa1-xN layers. PMID:26431166

  3. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Piotrowski, A.; Madejczyk, P.; Gawron, W.; Kłos, K.; Pawluczyk, J.; Rutkowski, J.; Piotrowski, J.; Rogalski, A.

    2007-01-01

    This paper describes the significant progress in the development of metalorganic chemical vapour deposition of Hg 1- xCd xTe (HgCdTe) multilayer heterostructures on GaAs/CdTe substrates for uncooled infrared photodetectors. The paper focuses on the interdiffused multilayer process (IMP). The optimum conditions for the growth of single layers and complex multilayer heterostructures have been established. One of the crucial stages of HgCdTe epitaxy is CdTe nucleation on GaAs substrate. Successful composite substrates have been obtained with suitable substrate preparation, liner and susceptor treatment, proper control of background fluxes and appropriate nucleation conditions. Epiready (1 0 0) GaAs wafers with 2-4° disorientation towards <1 0 0> and <1 1 0> have been used. Due to the large mismatch between GaAs and CdTe, both (1 0 0) and (1 1 1) growth may occur. Generally, layers with orientation (1 0 0) show superior morphology compared to (1 1 1), but they are also characterized by hillocks. The benefits of the precursors, ethyl iodine (EI) and arsine (AsH 3), for controlled iodine donor doping and arsenic acceptor doping at dopant concentrations relevant for HgCdTe junction devices are summarized. In situ anneal seems to be sufficient for iodine doping at any required level. In contrast, efficient As doping with near 100% activation requires ex situ anneal at near saturated mercury vapours. Finally, the multilayer fully doped heterostructures for photovoltaic devices operated at room temperature have been fabricated. The special attention is focused on the improvement in multijunction LWIR photovoltaic detectors. The performance of photodiodes is also presented.

  4. Strongly coupled phase transition in ferroelectric/correlated electron oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Seok Choi, Woo; Jeen, Hyoungjeen; Egami, Takeshi; Nyung Lee, Ho

    2012-07-01

    We fabricated ultrathin ferroelectric/correlated electron oxide heterostructures composed of the ferroelectric Pb(Zr0.2Ti0.8)O3 and the correlated electron oxide (CEO) La0.8Sr0.2MnO3 on SrTiO3 substrates by pulsed laser epitaxy. The hole accumulation in the ultrathin CEO layer was substantially modified by heterostructuring with the ferroelectric layer, resulting in an insulator-metal transition. In particular, our thickness dependent study showed that drastic changes in transport and magnetic properties were strongly coupled to the modulation of charge carriers by ferroelectric field effect, which was confined to the vicinity of the interface. Thus, our results provide crucial evidence that strong ferroelectric field effect control can be achieved in ultrathin (10 nm) heterostructures, yielding at least a 100 000-fold change in resistivity.

  5. Modulation effect of interlayer spacing on the superconductivity of electron-doped FeSe-based intercalates.

    PubMed

    Hayashi, Fumitaka; Lei, Hechang; Guo, Jiangang; Hosono, Hideo

    2015-04-01

    FeSe-based intercalates are regarded as promising candidates for high-critical temperature (Tc) superconductors. Here we present new Na- and Sr-intercalated FeSe superconductors with embedded linear diamines (H2N)CnH2n(NH2) (abbreviated as DA; n = 0, 2, 3, or 6) prepared using a low-temperature ammonothermal method to investigate the effect of interlayer spacing on the superconductivity of electron-doped FeSes. The embedded DA formed a monolayer or bilayer in the interlayer of FeSe. The interlayer spacing between nearest FeSe layers could be tuned from 0.87 to 1.14 nm without significant change in the Na/Sr content or the ratio of Fe to Se. Importantly, bilayer phases Na/ethylenediamine- and Sr/hydrazine-FeSe show improved structural stability compared to that of Na/NH3-FeSe. The series of Na- and Sr-intercalated FeSe samples exhibited nearly the same high Tc values of 41-46 and 34-38 K, respectively, irrespective of rather different interlayer spacing d. The peculiar insensitivity for both series can be ascribed to the negligible dispersions of bands along the c axis; i.e., Fermi surfaces are nearly two-dimensional when d is larger than a certain threshold value (dsat) of ∼0.9 nm. The Fermi surface shape is already optimal for Tc, and a larger d will not enhance Tc further. On the other hand, the difference in Tc between two series may be explained by the higher carrier doping level in Na/DA-FeSes compared to that in Sr/DA-FeSes, resulting in the increased density of states at the Fermi level and superconducting pairing strength. PMID:25768303

  6. Modulation of microstructure and optical properties of Mo-doped ZnO thin films by substrate temperature

    SciTech Connect

    Zhang, J.W.; He, G.; Li, T.S.; Liu, M.; Chen, X.S.; Liu, Y.M.; Sun, Z.Q.

    2015-05-15

    Highlights: • Mo-doped ZnO films are obtained by sputtering at various substrate temperatures. • High-quality MZO thin films with good crystalline have been obtained at 200 °C. • Deposition temperature affects the amount of defects in the crystalline structure - Abstract: Mo-doped ZnO(MZO) films were deposited on Si (1 1 1) substrates by radio frequency sputtering at different substrate temperatures of 200, 300 and 400 °C. The effect of the substrate temperature on the structural and optical properties of the MZO films has been investigated. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (0 0 2) plane. The crystallinity and surface morphologies of the films are strongly dependent on the growth temperature, which in turn exerts a great effect on microstructural and optical properties of the MZO films. The optical absorption measurements show high ultraviolet (UV) absorbance property of MZO with sharp and intense absorption band in this region and the optical band gap (E{sub g}) are 3.18, 3.22, 3.25 and 3.21 eV for the films deposited at room temperature, 200, 300 and 400 °C. The photoluminescence (PL) intensity of a strong broad violet–blue emission from MZO nanostructures with increasing deposited temperature was also observed. X-ray photoelectron spectroscopy (XPS) was employed to investigate the surface chemical composition of growth products.

  7. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure.

    PubMed

    Kozuka, Y; Kim, M; Bell, C; Kim, B G; Hikita, Y; Hwang, H Y

    2009-11-26

    Semiconductor heterostructures provide an ideal platform for studying high-mobility, low-density electrons in reduced dimensions. The realization of superconductivity in heavily doped diamond, silicon, silicon carbide and germanium suggests that Cooper pairs eventually may be directly incorporated in semiconductor heterostructures, but these newly discovered superconductors are currently limited by their extremely large electronic disorder. Similarly, the electron mean free path in low-dimensional superconducting thin films is usually limited by interface scattering, in single-crystal or polycrystalline samples, or atomic-scale disorder, in amorphous materials, confining these examples to the extreme 'dirty limit'. Here we report the fabrication of a high-quality superconducting layer within a thin-film heterostructure based on SrTiO(3) (the first known superconducting semiconductor). By selectively doping a narrow region of SrTiO(3) with the electron-donor niobium, we form a superconductor that is two-dimensional, as probed by the anisotropy of the upper critical magnetic field. Unlike in previous examples, however, the electron mobility is high enough that the normal-state resistance exhibits Shubnikov-de Haas oscillations that scale with the perpendicular field, indicating two-dimensional states. These results suggest that delta-doped SrTiO(3) provides a model system in which to explore the quantum transport and interplay of both superconducting and normal electrons. They also demonstrate that high-quality complex oxide heterostructures can maintain electron coherence on the macroscopic scales probed by transport, as well as on the microscopic scales demonstrated previously. PMID:19940921

  8. Semiconductor-halfmetal-metal transition and magnetism of bilayer graphene nanoribbons/hexagonal boron nitride heterostructure

    NASA Astrophysics Data System (ADS)

    Ilyasov, V. V.; Meshi, B. C.; Nguyen, V. C.; Ershov, I. V.; Nguyen, D. C.

    2014-12-01

    The paper presents the results of ab initio study of electronic structure modulation and edge magnetism in the antiferromagnetic (AF) bilayer zigzag graphene nanoribbons (AF-BZGNR)/hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure induced with transverse external electric field (Eext) and nanomechanical compression (extension), performed within the framework of the density functional theory using Grimme's DFT(PBE)-D2 scheme. For the first time we established critical values of Eext and interlayer distance in the bilayer for the BZGNR/h-BN(0001) heterostructure providing for semiconductor-halfmetal-metal phase transition for one of the electron spin configurations. We discovered the effect of preserved local magnetic moment (0.3μB) of edge carbon atoms of the lower (buffer) graphene nanoribbon during nanomechanical uniaxial compression (or extension) of the BZGNR/h-BN(0001) semiconductor heterostructure. It has been demonstrated that magnetic properties of the AF-BZGNR/h-BN(0001) semiconductor heterostructure can be controlled using Eext. In particular, the local magnetic moment of edge carbon atoms decreases by 10% at a critical value of the positive potential. We have established that local magnetic moments and band gaps can be altered in a wide range using nanomechanical uniaxial compression and Eext, thus making the AF-BZGNR/h-BN(0001) semiconductor heterostructure potentially promising for nanosensors, spin filters, and spintronics applications.

  9. Quantum Mechanical Change Control and Time-Dependent Tunneling Phenomena in Heterostructures.

    NASA Astrophysics Data System (ADS)

    Saadat, Irfan Abdulqayyum

    1990-01-01

    Charge transfer and tunneling of electrons through heterostructures has been investigated using a self-consistent solution of Schrodinger and Poisson equations. The generalized solver developed can determine the charge distribution and the energy band edge for any number-of-heterojunctions and material compositions. The solver takes into consideration the position dependent effective mass and dielectric constant. The limitations and computational aspects of the solver are discussed. The solver is used to examine charge control in multi-channel modulation doped field effect transistors (MODFET's). Characteristics of fabricated multi-channel MODFET's have been analyzed. The deviation of the total sheet charge density in multi-channel MODFET's from the single-channel superposition value is explained. The influence of the gate potential to modulate the channel charge is examined. The role of the channel potential in creating parallel conduction is explored via a pseudo two-dimensional approach. Present methods for time dependent tunneling analysis are critically examined. A time dependent approach to solve the time-dependent Schrodinger equation is presented. It also examines the tunneling transient response. The formation of the initial wavefunction (superposition state) and the sensitivity of the time dependent solution to initial conditions has been explored. Two structures are proposed and analyzed based on the understanding acquired. The first one is a double quantum well tunneling resonator. The oscillation modes, tuning the frequency of oscillations, and potential applications have been analyzed in details. The conversion of this oscillator into a three terminal device and the effect of the third terminal are also examined using the time-dependent solver. The second device structure is a memory cell, where the charge is stored behind a tunnel barrier in the storage well. The device consists of two quantum wells separated by thin potential barrier. The upper well

  10. Anomalous Hall and spin Hall conductivities in three-dimensional ferromagnetic topological insulator/normal insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Men'shov, Vladimir N.; Tugushev, Victor V.; Chulkov, Evgueni V.

    2016-05-01

    In this letter we theoretically demonstrate how an interface perturbation and size effect can be used to manipulate the transport properties of semiconductor heterostructures composed of a thin film of a three-dimensional topological insulator (TI) doped with magnetic impurities and sandwiched between topologically normal insulators. In the framework of a continual scheme, we argue that electron states of the TI film are strongly dominated by its thickness and magnetization as well as by an interface potential whose variation can lead to the modification of topological properties of the heterostructure. This opens diverse possibilities to efficiently tune intrinsic Hall conductivity in the system. We calculate a phase diagram of the heterostructure, which demonstrates a series of quantum transitions between distinct regimes of conductivity. We derive the anomalous Hall conductivity and the spin Hall conductivity dependences on the chemical potential. Applicability conditions of the used approach are also discussed.

  11. 14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Summary of Discussion Sessions

    SciTech Connect

    Sopori, B.; Tan, T.; Sinton, R.; Swanson, D.

    2004-10-01

    The 14th Workshop discussion sessions addressed funding needs for Si research and for R&D to enhance U.S. PV manufacturing. The wrap-up session specifically addressed topics for the new university silicon program. The theme of the workshop, Crystalline Silicon Solar Cells: Leapfrogging the Barriers, was selected to reflect the astounding progress in Si PV technology during last three decades, despite a host of barriers and bottlenecks. A combination of oral, poster, and discussion sessions addressed recent advances in crystal growth technology, new cell structures and doping methods, silicon feedstock issues, hydrogen passivation and fire through metallization, and module issues/reliability. The following oral/discussion sessions were conducted: (1) Technology Update; (2) Defects and Impurities in Si/Discussion; (3) Rump Session; (4) Module Issues and Reliability/Discussion; (5) Silicon Feedstock/Discussion; (6) Novel Doping, Cells, and Hetero-Structure Designs/Discussion; (7) Metallization/Silicon Nitride Processing/Discussion; (8) Hydrogen Passivation/Discussion; (9) Characterization/Discussion; and (10) Wrap-Up. This year's workshop lasted three and a half days and, for the first time, included a session on Si modules. A rump session was held on the evening of August 8, which addressed efficiency expectations and challenges of c Si solar cells/modules. Richard King of DOE and Daren Dance of Wright Williams& Kelly (formerly of Sematech) spoke at two of the luncheon sessions. Eleven students received Graduate Student Awards from funds contributed by the PV industry.

  12. Ultimate photovoltage in perovskite oxide heterostructures with critical film thickness

    SciTech Connect

    Wang Cong; Jin Kuijuan; Zhao Ruiqiang; Lu Huibin; Guo Haizhong; Ge Chen; He Meng; Wang Can; Yang Guozhen

    2011-05-02

    One order larger photovoltage is obtained with critical thicknesses of La{sub 0.9}Sr{sub 0.1}MnO{sub 3} films in both kinds of heterostructures of La{sub 0.9}Sr{sub 0.1}MnO{sub 3}/SrTiO{sub 3} (0.8 wt % Nb-doped) and La{sub 0.9}Sr{sub 0.1}MnO{sub 3}/Si fabricated at various oxygen pressures. Our self-consistent calculation reveals that the critical thickness of the La{sub 0.9}Sr{sub 0.1}MnO{sub 3} film with the ultimate value of photovoltage is just the thickness of the depletion layer of La{sub 0.9}Sr{sub 0.1}MnO{sub 3} in both heterojunctions, respectively.

  13. OPENING ADDRESS: Heterostructures in Semiconductors

    NASA Astrophysics Data System (ADS)

    Grimmeiss, Hermann G.

    1996-01-01

    Good morning, Gentlemen! On behalf of the Nobel Foundation, I should like to welcome you to the Nobel Symposium on "Heterostructures in Semiconductors". It gives me great pleasure to see so many colleagues and old friends from all over the world in the audience and, in particular, to bid welcome to our Nobel laureates, Prof. Esaki and Prof. von Klitzing. In front of a different audience I would now commend the scientific and technological importance of heterostructures in semiconductors and emphatically emphasise that heterostructures, as an important contribution to microelectronics and, hence, information technology, have changed societies all over the world. I would also mention that information technology is one of the most important global key industries which covers a wide field of important areas each of which bears its own character. Ever since the invention of the transistor, we have witnessed a fantastic growth in semiconductor technology, leading to more complex functions and higher densities of devices. This development would hardly be possible without an increasing understanding of semiconductor materials and new concepts in material growth techniques which allow the fabrication of previously unknown semiconductor structures. But here and today I will not do it because it would mean to carry coals to Newcastle. I will therefore not remind you that heterostructures were already suggested and discussed in detail a long time before proper technologies were available for the fabrication of such structures. Now, heterostructures are a foundation in science and part of our everyday life. Though this is certainly true, it is nevertheless fair to say that not all properties of heterostructures are yet understood and that further technologies have to be developed before a still better understanding is obtained. The organisers therefore hope that this symposium will contribute not only to improving our understanding of heterostructures but also to opening new

  14. Electronic reconstruction of doped Mott insulator heterojunctions

    NASA Astrophysics Data System (ADS)

    Charlebois, M.; Hassan, S. R.; Karan, R.; Dion, M.; Senechal, D.; Tremblay, A.-M. S.

    2012-02-01

    Correlated electron heterostructures became a possible alternative when thin-film deposition techniques achieved structures with a sharp interface transition [1]. Soon thereafter, Okamoto & Millis introduced the concept of ``electronic reconstruction'' [2]. We study here the electronic reconstruction of doped Mott insulator heterostructures based on a Cluster Dynamical Mean Field Theory (CDMFT) calculations of the Hubbard model in the limit where electrostatic energy dominates over the kinetic energy associated with transport across layers. The grand potential of individual layers is first computed within CDMFT and then the electrostatic potential energy is taken into account in the Hartree approximation. The charge reconstruction in an ensemble of stacked planes of different nature can lead to a distribution of electron charge and to transport properties that are unique to doped-Mott insulators.[4pt] [1] J. Mannhart, D. G. Schlom, Science 327, 1607 (2010).[0pt] [2] S. Okamoto and A. J. Millis, Nature 428, 630 (2004).

  15. Aptameric Recognition-Modulated Electroactivity of Poly(4-Styrenesolfonic Acid)-Doped Polyaniline Films for Single-Shot Detection of Tetrodotoxin

    PubMed Central

    Fomo, Gertrude; Waryo, Tesfaye T.; Sunday, Christopher E.; Baleg, Abd A.; Baker, Priscilla G.; Iwuoha, Emmanuel I.

    2015-01-01

    The work being reported is the first electrochemical sensor for tetrodotoxin (TTX). It was developed on a glassy carbon electrodes (C) that was modified with poly(4-styrenesolfonic acid)-doped polyaniline film (PANI/PSSA). An amine-end functionalized TTX-binding aptamer, 5′-NH2-AAAAATTTCACACGGGTGCCTCGGCTGTCC-3′ (NH2-Apt), was grafted via covalent glutaraldehyde (glu) cross-linking. The resulting aptasensor (C//PANI+/PSSA-glu-NH2-Apt) was interrogated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in sodium acetate buffer (NaOAc, pH 4.8) before and after 30 min incubation in standard TTX solutions. Both CV and EIS results confirmed that the binding of the analyte to the immobilized aptamer modulated the electrochemical properties of the sensor: particularly the charge transfer resistance (Rct) of the PANI+/PSSA film, which served as a signal reporter. Based on the Rct calibration curve of the TTX aptasensor, the values of the dynamic linear range (DLR), sensitivity and limit of detection (LOD) of the sensor were determined to be 0.23–1.07 ng·mL−1 TTX, 134.88 ± 11.42 Ω·ng·mL−1 and 0.199 ng·mL−1, respectively. Further studies are being planned to improve the DLR as well as to evaluate selectivity and matrix effects in real samples. PMID:26370994

  16. The effects of the magnitude of the modulation field on electroreflectance spectroscopy of undoped-n+ type doped GaAs

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Huang, K. M.; Shen, T. L.; Huang, K. F.; Huang, T. C.

    1998-01-01

    The electroreflectance (ER) spectra of an undoped-n+ type doped GaAs has been measured at various amplitudes of modulating fields (δF). Many Franz-Keldysh oscillations were observed above the band gap energy, thus enabling the electric field (F) in the undoped layer to be determined. The F is obtained by applying fast Fourier transformation to the ER spectra. When δF is small, the power spectrum can be clearly resolved into two peaks, which corresponds to heavy- and light-hole transitions. When δF is less than ˜1/8 of the built-in field (Fbi˜77 420 V/cm), the F deduced from the ER is almost independent of δF. However, when larger than this, F is increased with δF. Also, when δF is increased to larger than ˜1/8 of Fbi, a shoulder appears on the right side of the heavy-hole peak of the power spectrum. The separation between the main peak and the shoulder of the heavy-hole peak becomes wider as δF becomes larger.

  17. Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy.

    PubMed

    Zhang, Qiwei; Sun, Haiqin; Wang, Xusheng; Hao, Xihong; An, Shengli

    2015-11-18

    Reversible luminescence photoswitching upon photochromic reactions with excellent reproducibility is achieved in a new inorganic luminescence material: Na(0.5)Bi(2.5)Nb2O9: Pr(3+) (NBN:Pr) ferroelectric oxides. Upon blue light (452 nm) or sunlight irradiation, the material exhibits a reversible photochromism (PC) performance between dark gray and green color by alternating visible light and thermal stimulus without inducing any structure changes and is accompanied by a red emission at 613 nm. The coloration and decoloration process can be quantitatively evaluated by in situ photoluminescence spectroscopy. Meanwhile, the luminescence emission intensity based on PC reactions is effectively tuned by changing irradiation time and excitation wavelength, and the degree of luminescence modulation has no significant degradation after several periods, showing very excellent reproducibility. On the basis of the luminescence modulation behavior, a double-exponential relaxation model is proposed, and a combined equation is adopted to well describe the luminescence response to light irradiation, being in agreement with the experimental data. PMID:26496504

  18. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    DOE PAGESBeta

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Puretzky, Alexander A.; Geohegan, David B.; Kim, Ki Wook; Zhang, Yong; et al

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of themore » two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.« less

  19. Efficient Interlayer Relaxation and Transition of Excitons in Epitaxial and Non-epitaxial MoS2/WS2 Heterostructures

    SciTech Connect

    Yu, Yifei; Hu, Shi; Su, Liqin; Huang, Lujun; Liu, Yi; Jin, Zhenghe; Puretzky, Alexander A.; Geohegan, David B.; Kim, Ki Wook; Zhang, Yong; Cao, Linyou

    2014-12-03

    Semiconductor heterostructurs provide a powerful platform for the engineering of excitons. Here we report on the excitonic properties of two-dimensional (2D) heterostructures that consist of monolayer MoS2 and WS2 stacked epitaxially or non-epitaxially in the vertical direction. We find similarly efficient interlayer relaxation and transition of excitons in both the epitaxial and non-epitaxial heterostructures. This is manifested by a two orders of magnitude decrease in the photoluminescence and an extra absorption peak at low energy region of both heterostructures. The MoS2/WS2 heterostructures show weak interlayer coupling and essentially act as an atomic-scale heterojunction with the intrinsic band structures of the two monolayers largely preserved. They are particularly promising for the applications that request efficient dissociation of excitons and strong light absorption, including photovoltaics, solar fuels, photodetectors, and optical modulators. Our results also indicate that 2D heterostructures promise to provide capabilities to engineer excitons from the atomic level without concerns of interfacial imperfection.

  20. Distributed Bragg reflector laser for frequency modulated communication systems

    SciTech Connect

    Chraplyvy, A.R.; Koch, T.L.; Tkach, R.W.

    1990-02-27

    This patent describes a lightwave transmitter. It includes a distributed Bragg reflector laser and means for frequency modulating said laser. The laser comprises first and second semiconductor heterostructure regions.

  1. Photodiode-Like Behavior and Excellent Photoresponse of Vertical Si/Monolayer MoS2 Heterostructures

    PubMed Central

    Li, Yang; Xu, Cheng-Yan; Wang, Jia-Ying; Zhen, Liang

    2014-01-01

    Monolayer transition metal dichalcogenides (TMDs) and their van der Waals heterostructures have been experimentally and theoretically demonstrated as potential candidates for photovoltaic and optoelectronic devices due to the suitable bandgap and excellent light absorption. In this work, we report the observation of photodiode behavior in (both n- and p- type) silicon/monolayer MoS2 vertical heterostructures. The photocurrent and photoresponsivity of heterostructures photodiodes were dependent both on the incident light wavelength and power density, and the highest photoresponsivity of 7.2 A/W was achieved in n-Si/monolayer MoS2 vertical heterostructures photodiodes. Compared with n-Si/MoS2 heterostructures, the photoresponsivity of p-Si/MoS2 heterostructure was much lower. Kelvin probe microscope (KFM) results demonstrated the more efficient separation of photogenerated excitons in n-Si/MoS2 than that in p-Si/MoS2. Coupling KFM results with band alignments of (p-, n-) Si/MoS2 heterostructures, the origins of photodiode-like phenomena of p-Si/MoS2 and n-Si/MoS2 have been unveiled, that is intrinsic built-in electric field in p-n junction, and modulated barrier height and width at the interface in n-n junction. Our work may benefit to the deep understanding of the integration of two-dimensional materials with more conventional three-dimensional semiconductors, and then contribute to the developments in the area of van der Waals heterostructures. PMID:25424301

  2. Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures.

    PubMed

    Li, Yang; Xu, Cheng-Yan; Wang, Jia-Ying; Zhen, Liang

    2014-01-01

    Monolayer transition metal dichalcogenides (TMDs) and their van der Waals heterostructures have been experimentally and theoretically demonstrated as potential candidates for photovoltaic and optoelectronic devices due to the suitable bandgap and excellent light absorption. In this work, we report the observation of photodiode behavior in (both n- and p- type) silicon/monolayer MoS2 vertical heterostructures. The photocurrent and photoresponsivity of heterostructures photodiodes were dependent both on the incident light wavelength and power density, and the highest photoresponsivity of 7.2 A/W was achieved in n-Si/monolayer MoS2 vertical heterostructures photodiodes. Compared with n-Si/MoS2 heterostructures, the photoresponsivity of p-Si/MoS2 heterostructure was much lower. Kelvin probe microscope (KFM) results demonstrated the more efficient separation of photogenerated excitons in n-Si/MoS2 than that in p-Si/MoS2. Coupling KFM results with band alignments of (p-, n-) Si/MoS2 heterostructures, the origins of photodiode-like phenomena of p-Si/MoS2 and n-Si/MoS2 have been unveiled, that is intrinsic built-in electric field in p-n junction, and modulated barrier height and width at the interface in n-n junction. Our work may benefit to the deep understanding of the integration of two-dimensional materials with more conventional three-dimensional semiconductors, and then contribute to the developments in the area of van der Waals heterostructures. PMID:25424301

  3. EDITORIAL: Focus on Advanced Semiconductor Heterostructures for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Amann, Markus C.; Capasso, Federico; Larsson, Anders; Pessa, Markus

    2009-12-01

    Semiconductor heterostructures are the basic materials underlying optoelectronic devices, particularly lasers and light-emitting diodes (LEDs). Made from various III-V-, II-VI-, SiGe- and other compound semiconductors, modern semiconductor devices are available for the generation, detection and modulation of light covering the entire ultra-violet to far-infrared spectral region. Recent approaches that introduced multilayer heterostructures tailored on the lower nanometre scale made possible artificial semiconductors with new properties, such as extended wavelength coverage, that enabled new applications. Together with ongoing progress on wide-gap semiconductors, the optical wavelengths accessible by semiconductor devices are steadily expanding towards the short-wavelength ultra-violet regime, as well as further into the far-infrared and terahertz spectral regions. It is the aim of this focus issue to present cutting-edge research topics on the most recent optoelectronic material and device developments in this field using advanced semiconductor heterostructures. Focus on Advanced Semiconductor Heterostructures for Optoelectronics Contents Theoretical and experimental investigations of the limits to the maximum output power of laser diodes H Wenzel, P Crump, A Pietrzak, X Wang, G Erbert and G Tränkle GaN/AlGaN intersubband optoelectronic devices H Machhadani, P Kandaswamy, S Sakr, A Vardi, A Wirtmüller, L Nevou, F Guillot, G Pozzovivo, M Tchernycheva, A Lupu, L Vivien, P Crozat, E Warde, C Bougerol, S Schacham, G Strasser, G Bahir, E Monroy and F H Julien Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage Maria I Amanti, Giacomo Scalari, Romain Terazzi, Milan Fischer, Mattias Beck, Jérôme Faist, Alok Rudra, Pascal Gallo and Eli Kapon Structural and optical characteristics of GaN/ZnO coaxial nanotube heterostructure arrays for light-emitting device applications Young Joon Hong, Jong-Myeong Jeon, Miyoung

  4. Current induced decomposition of Abrikosov vortices in p-n layered superconductors and heterostructures.

    PubMed

    Rakhmanov, A L; Savel'ev, Sergey; Kusmartsev, F V

    2008-11-01

    We describe the decomposition of Abrikosov vortices into decoupled pancake vortices in superconductors having both electron and hole charge carriers. We estimate the critical current of such a decomposition, at which a superconducting-normal state transition occurs, and find that it is very sensitive to the magnetic field and temperature. The effect can be observed in recently synthesized self-doped high-Tc layered superconductors with electrons and holes coexisting in different Cu-O planes and in artificial p-n superconductor heterostructures. The sensitivity of the critical current to a magnetic field may be used for sensors and detectors of a magnetic field, which can be built up from the superconductor heterostructures. PMID:19113298

  5. Mass spectrometric characterization of urinary metabolites of the selective androgen receptor modulator S-22 to identify potential targets for routine doping controls.

    PubMed

    Thevis, Mario; Thomas, Andreas; Möller, Ines; Geyer, Hans; Dalton, James T; Schänzer, Wilhelm

    2011-08-15

    Drugs that promote anabolic processes with limited undesirable effects are of considerable therapeutic interest; some notable examples include those for the treatment of cancer cachexia and muscle-wasting diseases. Anabolic properties are not only therapeutically beneficial to critically ill and debilitated patients, but are also desirable to athletes seeking artificial enhancements in endurance, strength and accelerated recovery. The use of anabolic agents in the clinical setting is being reconsidered with the emergence of a new class of drugs referred to as SARMs (selective androgen receptor modulators). SARMs have the potential to complement or even replace anabolic androgenic steroidal use with the benefit of a reduction of the undesirable side effects associated with steroid administration alone. Arylpropionamide-based SARMs such as andarine (S-4) and S-22 have shown promising therapeutic properties and have attracted the interest of elite and amateur athletes despite the absence of clinical approval, and evidence for trafficking and misuse in sport has been obtained by doping control authorities. In this communication, the elucidation of urinary metabolites of the SARM drug candidate S-22 is compared with earlier in vitro metabolism studies. Following oral administration of illicit S-22, urine samples were collected after 62 and 135 h and analyzed for the active drug and its major metabolic products. Liquid chromatography interfaced with high-resolution/high-accuracy (tandem) mass spectrometry was used to identify and/or confirm the predicted target analytes for sports drug testing purposes. S-22 was detected in both specimens accompanied by its glucuronic acid conjugate. This was the B-ring hydroxylated derivative of S-22 plus the corresponding glucuronide (with the phase-II metabolites being the more abundant analytes). In addition, the samples collected 62 h post-administration also contained the phase-I metabolite hydroxylated at the methyl residue (C-20

  6. Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Dhavale, Vishal M.; Singh, Santosh K.; Nadeema, Ayasha; Gaikwad, Sachin S.; Kurungot, Sreekumar

    2015-11-01

    The size-controlled growth of nanocrystalline Fe-Fe2O3 particles (2-3 nm) and their concomitant dispersion on N-doped graphene (Fe-Fe2O3/NGr) could be attained when the mutually assisted redox reaction between NGr and Fe3+ ions could be controlled within the aqueous droplets of a water-in-oil emulsion. The synergistic interaction existing between Fe-Fe2O3 and NGr helped the system to narrow down the overpotential for the oxygen reduction reaction (ORR) by bringing a significant positive shift to the reduction onset potential, which is just 15 mV higher than its Pt-counterpart. In addition, the half-wave potential (E1/2) of Fe-Fe2O3/NGr is found to be improved by a considerable amount of 135 mV in comparison to the system formed by dispersing Fe-Fe2O3 nanoparticles on reduced graphene oxide (Fe-Fe2O3/RGO), which indicates the presence of a higher number of active sites in Fe-Fe2O3/NGr. Despite this, the ORR kinetics of Fe-Fe2O3/NGr are found to be shifted significantly to the preferred 4-electron-transfer pathway compared to NGr and Fe-Fe2O3/RGO. Consequently, the H2O2% was found to be reduced by 78.3% for Fe-Fe2O3/NGr (13.0%) in comparison to Fe-Fe2O3/RGO (51.2%) and NGr (41.0%) at -0.30 V (vs. Hg/HgO). This difference in the yield of H2O2 formed between the systems along with the improvements observed in terms of the oxygen reduction onset and E1/2 in the case of Fe-Fe2O3/NGr reveals the activity modulation achieved for the latter is due to the coexistence of factors such as the presence of the mixed valancies of iron nanoparticles, small size and homogeneous distribution of Fe-Fe2O3 nanoparticles and the electronic modifications induced by the doped nitrogen in NGr. A controlled interplay of these factors looks like worked favorably in the case of Fe-Fe2O3/NGr. As a realistic system level validation, Fe-Fe2O3/NGr was employed as the cathode electrode of a single cell in a solid alkaline electrolyte membrane fuel cell (AEMFC). The system could display an open

  7. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    SciTech Connect

    Davis, Robert F.

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  8. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.

    PubMed

    Pierucci, Debora; Henck, Hugo; Avila, Jose; Balan, Adrian; Naylor, Carl H; Patriarche, Gilles; Dappe, Yannick J; Silly, Mathieu G; Sirotti, Fausto; Johnson, A T Charlie; Asensio, Maria C; Ouerghi, Abdelkarim

    2016-07-13

    Two-dimensional layered MoS2 shows great potential for nanoelectronic and optoelectronic devices due to its high photosensitivity, which is the result of its indirect to direct band gap transition when the bulk dimension is reduced to a single monolayer. Here, we present an exhaustive study of the band alignment and relativistic properties of a van der Waals heterostructure formed between single layers of MoS2 and graphene. A sharp, high-quality MoS2-graphene interface was obtained and characterized by micro-Raman spectroscopy, high-resolution X-ray photoemission spectroscopy (HRXPS), and scanning high-resolution transmission electron microscopy (STEM/HRTEM). Moreover, direct band structure determination of the MoS2/graphene van der Waals heterostructure monolayer was carried out using angle-resolved photoemission spectroscopy (ARPES), shedding light on essential features such as doping, Fermi velocity, hybridization, and band-offset of the low energy electronic dynamics found at the interface. We show that, close to the Fermi level, graphene exhibits a robust, almost perfect, gapless, and n-doped Dirac cone and no significant charge transfer doping is detected from MoS2 to graphene. However, modification of the graphene band structure occurs at rather larger binding energies, as the opening of several miniband-gaps is observed. These miniband-gaps resulting from the overlay of MoS2 and the graphene layer lattice impose a superperiodic potential. PMID:27281693

  9. From gene engineering to gene modulation and manipulation: can we prevent or detect gene doping in sports?

    PubMed

    Fischetto, Giuseppe; Bermon, Stéphane

    2013-10-01

    During the last 2 decades, progress in deciphering the human gene map as well as the discovery of specific defective genes encoding particular proteins in some serious human diseases have resulted in attempts to treat sick patients with gene therapy. There has been considerable focus on human recombinant proteins which were gene-engineered and produced in vitro (insulin, growth hormone, insulin-like growth factor-1, erythropoietin). Unfortunately, these substances and methods also became improper tools for unscrupulous athletes. Biomedical research has focused on the possible direct insertion of gene material into the body, in order to replace some defective genes in vivo and/or to promote long-lasting endogenous synthesis of deficient proteins. Theoretically, diabetes, anaemia, muscular dystrophies, immune deficiency, cardiovascular diseases and numerous other illnesses could benefit from such innovative biomedical research, though much work remains to be done. Considering recent findings linking specific genotypes and physical performance, it is tempting to submit the young athletic population to genetic screening or, alternatively, to artificial gene expression modulation. Much research is already being conducted in order to achieve a safe transfer of genetic material to humans. This is of critical importance since uncontrolled production of the specifically coded protein, with serious secondary adverse effects (polycythaemia, acute cardiovascular problems, cancer, etc.), could occur. Other unpredictable reactions (immunogenicity of vectors or DNA-vector complex, autoimmune anaemia, production of wild genetic material) also remain possible at the individual level. Some new substances (myostatin blockers or anti-myostatin antibodies), although not gene material, might represent a useful and well-tolerated treatment to prevent progression of muscular dystrophies. Similarly, other molecules, in the roles of gene or metabolic activators [5-aminoimidazole-4

  10. Device Concepts Based on Spin-dependent Transmission in Semiconductor Heterostructures

    NASA Technical Reports Server (NTRS)

    Ting, David Z. - Y.; Cartoixa, X.

    2004-01-01

    We examine zero-magnetic-field spin-dependent transmission in nonmagnetic semiconductor heterostructures with structural inversion asymmetry (SIA) and bulk inversion asymmetry (BIA), and report spin devices concepts that exploit their properties. Our modeling results show that several design strategies could be used to achieve high spin filtering efficiencies. The current spin polarization of these devices is electrically controllable, and potentially amenable to highspeed spin modulation, and could be integrated in optoelectronic devices for added functionality.

  11. Diagnostics of the fine spectrum of a quantum well in laser heterostructures using ultrasonic deformation

    SciTech Connect

    Kulakova, L A; Averkiev, Nikita S; Darinskii, A N; Yakhkind, E Z

    2013-05-31

    This paper describes a new acoustoelectronic effect in laser nanoheterostructures, which is caused by hole energy modulation and intermixing of hole wave functions in the quantum well of a laser structure in response to ultrasonic deformation. Experimental data are presented which indicate that the laser output intensity and polarisation direction vary periodically, with the acoustic wave period. Theoretical analysis of experimental data is used to assess parameters of the quantum well and the strain distribution in the heterostructure. (semiconductor lasers. physics and technology)

  12. Analysis of photonic crystal double heterostructure resonant cavities

    NASA Astrophysics Data System (ADS)

    Mock, Adam

    Two-dimensional photonic crystals represent a versatile technology platform for constructing photonic integrated circuits. Low-loss and small footprint waveguides and cavities can be combined to make delay lines, modulators, filters and lasers for efficient optical signal processing. However, this diverse functionality comes at the expense of higher complexity in both the fabrication and themodeling of these devices. This Thesis discusses the finite-difference time-domain numerical modeling of large quality factor photonic crystal cavities for chip-scale laser applications. In Chapter 2 the role of the quality factor in estimating laser threshold is derived starting from Maxwell's equations. Expressions for modal loss and gain are derived. Chapter 3 discusses methods for extracting the quality factor from finite-difference time-domain simulations. Even with large-scale parallel computing, only a short record of the time evolution of the fields can be recorded. To get around this issue, Pade functions are fitted to the available data in the frequency domain. Once the analysis tools have been described and demonstrated, they are applied to the photonic crystal double heterostructure cavity which has been shown to have quality factors in excess of one million and mode volumes on the order of a cubic wavelength. A detailed description of the spectral and modal properties of heterostructure cavities is presented, and a method for mode discrimination is discussed. The effect of heat sinking dielectric lower substrates on the optical loss of the heterostructure cavity is investigated, and it is seen that the quality factor is significantly reduced as the index of the lower substrate is increased. A modified heterostructure cavity with glide plane symmetry is shown to have significantly reduced out-of-plane leakage. An optimized design is proposed for continuous wave edge-emitting laser operation. Finally, a novel approach for laser simulation is introduced in which a

  13. Terahertz-range spontaneous emission under the optical excitation of donors in uniaxially stressed bulk silicon and SiGe/Si heterostructures

    SciTech Connect

    Zhukavin, R. Kh. Kovalevsky, K. A.; Orlov, M. L.; Tsyplenkov, V. V.; Bekin, N. A.; Yablonskiy, A. N.; Yunin, P. A.; Pavlov, S. G.; Abrosimov, N. V.; Hübers, H.-W.; Radamson, H. H.; Shastin, V. N.

    2015-01-15

    The results of measurements of the total terahertz-range photoluminescence of Group-V donors (phosphorus, antimony, bismuth, arsenic) in bulk silicon and SiGe/Si heterostructures depending on the excitation intensity are presented. The signal of bulk silicon was also measured as a function of uniaxial stress. The results of measurement of the dependence of the spontaneous emission intensity on the uniaxial stress is in rather good agreement with theoretical calculations of the relaxation times of excited states of donors in bulk silicon. Comparative measurements of the spontaneous emission from various strained heterostructures showed that the photoluminescence signal is caused by donor-doped silicon regions.

  14. Depletion of parallel conducting layers in high mobility In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As modulation doped field effect transistors

    SciTech Connect

    Skuras, E. Gavalas, A. Spathara, D. Makris, Th. Anagnostopoulos, D.; Stanley, C. R.; Long, A. R.

    2013-12-04

    Self-consistent calculations for solving the Poisson and Schrödinger equations were performed in order to study parallel conduction in the In{sub 0.52}Al{sub 0.48}As barrier layer in In{sub 0.53}Ga{sub 0.47}As/In{sub 0.52}Al{sub 0.48}As Modulation Doped Field Effect Transistors. It is shown that the parallel conducting layer occupied sub-bands can be entirely depleted by wet chemical etching of the upper part of the un-doped In{sub 0.52}Al{sub 0.48}As Schottky layer without affecting the total carrier concentration at the In{sub 0.53}Ga{sub 0.47}As quantum well.

  15. Methods for Doping Detection.

    PubMed

    Ponzetto, Federico; Giraud, Sylvain; Leuenberger, Nicolas; Boccard, Julien; Nicoli, Raul; Baume, Norbert; Rudaz, Serge; Saugy, Martial

    2016-01-01

    Over the past few years, the World Anti-Doping Agency (WADA) has focused its efforts on detecting not only small prohibited molecules, but also larger endogenous molecules such as hormones, in the view of implementing an endocrinological module in the Athlete Biological Passport (ABP). In this chapter, the detection of two major types of hormones used for doping, growth hormone (GH) and endogenous anabolic androgenic steroids (EAASs), will be discussed: a brief historical background followed by a description of state-of-the-art methods applied by accredited anti-doping laboratories will be provided and then current research trends outlined. In addition, microRNAs (miRNAs) will also be presented as a new class of biomarkers for doping detection. PMID:27348309

  16. Tunable electronic structure of black phosphorus/blue phosphorus van der Waals p-n heterostructure

    NASA Astrophysics Data System (ADS)

    Huang, Le; Li, Jingbo

    2016-02-01

    First principles calculations are used to explore the structural and electronic properties of black phosphorus/blue phosphorus (black-p/blue-p) van der Waals (vdW) p-n heterostructure. An intrinsic type-II band alignment with a direct band gap at Γ point is demonstrated. The spatial separation of the lowest energy electron-hole pairs can be realized and make black-p/blue-p heterostructure a good candidate for applications in optoelectronics. Black-p/blue-p heterostructure exhibits modulation of its band gap and band edges by applied perpendicular electric field ( E⊥ ). This system undergoes a transition from semiconductor to metal when subjected to a strong external E⊥ . The variation of band edges and quasi-Fermi level as a function of E⊥ provides further insight to the linear variation of the band gap. Our calculation results pave the way for experimental research and indicate the great application potential of black-p/blue-p vdW heterostructure in future optoelectronics.

  17. The effect of split gate dimensions on the electrostatic potential and 0.7 anomaly within one-dimensional quantum wires on a modulation doped GaAs/AlGaAs heterostructure

    NASA Astrophysics Data System (ADS)

    Smith, L. W.; Al-Taie, H.; Lesage, A. A. J.; Thomas, K. J.; Sfigakis, F.; See, P.; Griffiths, J. P.; Farrer, I.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    We use a multiplexing scheme to measure the conductance properties of 95 split gates of 7 different gate dimensions fabricated on a GaAs/AlGaAs chip, in a single cool down. The number of devices for which conductance is accurately quantized reduces as the gate length increases. However, even the devices for which conductance is accurately quantized in units of 2e2 / h show no correlation between the length of electrostatic potential barrier in the channel and the gate length, using a saddle point model to estimate the barrier length. Further, the strength of coupling between the gates and the 1D channel does not increase with gate length beyond 0.7 μm. The background electrostatic profile appears as significant as the gate dimension in determining device behavior. We find a clear correlation between the curvature of the electrostatic barrier along the channel and the strength of the ``0.7 anomaly'' which identifies the electrostatic length of the channel as the principal factor governing the conductance of the 0.7 anomaly. Present address: Wisconsin Institute for Quantum Information, University of Wisconsin-Madison, Madison, WI.

  18. Analysis of gate-induced drain leakage characteristics and threshold voltage modulation of plasma-doped FinFETs for low-power applications

    NASA Astrophysics Data System (ADS)

    Lee, Ji-myoung; Cho, Keun Hwi; Kim, Dong-won; Chung, Ilsub

    2016-04-01

    FinFET devices were fabricated using plasma doping both at the source and drain extensions and in the channel region. In an effort to overcome dopant loss after the strip process, oxide buffer layers were deposited prior to plasma doping. Owing to the oxide buffer, 76% of the dopants were retained after the strip process and even after ashing, thereby keeping a high doping concentration of over 1 × 1020 atoms/cm3 on the surface of the Si fin. The gate-induced drain leakage (GIDL) current was decreased by 2 orders of magnitude due to the shallow and abrupt plasma doping, compared to the performance with an ion implantation method. The threshold voltage (V th) was shifted by 250 mV through plasma doping of the channel. The doping conformality was evaluated using electrical measurements and a newly-proposed method based on the GIDL data with various fin widths. The conformal doping profile with a smaller dopant loss provides a smaller GIDL current.

  19. Enhanced Surface-and-Interface Coupling in Pd-Nanoparticle-coated LaAlO3/SrTiO3 Heterostructures: Strong Gas- and Photo-Induced Conductance Modulation

    PubMed Central

    Kim, Haeri; Chan, Ngai Yui; Dai, Ji-yan; Kim, Dong-Wook

    2015-01-01

    Pd nanoparticle (NP) coated LaAlO3/SrTiO3 (LAO/STO) heterointerface exhibits more notable conductance (G) change while varying the ambient gas (N2, H2/N2, and O2) and illuminating with UV light (wavelength: 365 nm) than a sample without the NPs. Simultaneous Kelvin probe force microscopy and transport measurements reveal close relationships between the surface work function (W) and G of the samples. Quantitative analyses suggest that a surface adsorption/desorption-mediated reaction and redox, resulting in a band-alignment modification and charge-transfer, could explain the gas- and photo-induced conductance modulation at the LAO/STO interface. Such surface-and-interface coupling enhanced by catalytic Pd NPs is a unique feature, quite distinct from conventional semiconductor hetero-junctions, which enables the significant conductance tunability at ultrathin oxide heterointerfaces by external stimuli. PMID:25704566

  20. Enhanced Surface-and-Interface Coupling in Pd-Nanoparticle-coated LaAlO3/SrTiO3 Heterostructures: Strong Gas- and Photo-Induced Conductance Modulation

    NASA Astrophysics Data System (ADS)

    Kim, Haeri; Chan, Ngai Yui; Dai, Ji-Yan; Kim, Dong-Wook

    2015-02-01

    Pd nanoparticle (NP) coated LaAlO3/SrTiO3 (LAO/STO) heterointerface exhibits more notable conductance (G) change while varying the ambient gas (N2, H2/N2, and O2) and illuminating with UV light (wavelength: 365 nm) than a sample without the NPs. Simultaneous Kelvin probe force microscopy and transport measurements reveal close relationships between the surface work function (W) and G of the samples. Quantitative analyses suggest that a surface adsorption/desorption-mediated reaction and redox, resulting in a band-alignment modification and charge-transfer, could explain the gas- and photo-induced conductance modulation at the LAO/STO interface. Such surface-and-interface coupling enhanced by catalytic Pd NPs is a unique feature, quite distinct from conventional semiconductor hetero-junctions, which enables the significant conductance tunability at ultrathin oxide heterointerfaces by external stimuli.

  1. Magnetoelectric Coupling in Composite Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason

    In this work, we demonstrate a large charge-mediated magnetoelectric coupling in a PbZr0.2Ti0.8O3 / La0.8 Sr0.2MnO3 (PZT/LSMO) composite structure resulting from direct control of magnetism via charge carrier density. This approach has the advantage that its physical mechanism is transparent and the size of the effect can be quantified and understood qualitatively within the double-exchange model. Direct quantification of the charge-driven magnetic changes based on electronic, magnetic, and spectroscopic measurements show that both the spin state and spin configuration of LSMO are modulated. Using a combination of advanced physical vapor deposition techniques, we have grown epitaxial PZT/LSMO bilayer heterostructures on (001) SrTiO 3 substrates with excellent crystallinity, atomically smooth surfaces, low leakage current density, and abrupt interfaces. Magneto-optic Kerr effect (MOKE) magnetometry was used to directly interrogate the local magnetic state of the LSMO as a function of the PZT polarization state. We show direct control of magnetism via applied electric fields, including modulation of the magnetotransport behavior and magnetic-ordering temperature, on/off switching of magnetism, and hysteretic magnetization versus electric field (M-E) characteristics. The magnetoelectric coupling strength, which relates the change in magnetization to the applied electric field, is found to vary strongly with temperature, reaching a low temperature saturation value of +6 Oe cm / kV, much larger than observed in single-phase magnetoelectrics and too large to be explained by a simple band-filling model. To clarify the origin of the magnetoelectric coupling, we carried out near edge x-ray absorption measurements that revealed a well defined change in the position of the Mn absorption edge with the ferroelectric polarization, giving a direct measure of the change in Mn valency in LSMO. We explain these results in terms of an interfacial magnetic reconstruction, whereby the

  2. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    , and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. Electronic supplementary information (ESI) available: XPS spectra, Raman spectra, sheet resistance and transmittance of graphene films with different numbers of layers and different ozone treatment times, doping effect of MoO3 on graphene and GO/G electrodes, performance of green OLEDs with different graphene anodes, a movie showing the flexibility of device. See DOI: 10.1039/c6nr01649a

  3. Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction.

    PubMed

    Dhavale, Vishal M; Singh, Santosh K; Nadeema, Ayasha; Gaikwad, Sachin S; Kurungot, Sreekumar

    2015-12-21

    The size-controlled growth of nanocrystalline Fe-Fe2O3 particles (2-3 nm) and their concomitant dispersion on N-doped graphene (Fe-Fe2O3/NGr) could be attained when the mutually assisted redox reaction between NGr and Fe(3+) ions could be controlled within the aqueous droplets of a water-in-oil emulsion. The synergistic interaction existing between Fe-Fe2O3 and NGr helped the system to narrow down the overpotential for the oxygen reduction reaction (ORR) by bringing a significant positive shift to the reduction onset potential, which is just 15 mV higher than its Pt-counterpart. In addition, the half-wave potential (E1/2) of Fe-Fe2O3/NGr is found to be improved by a considerable amount of 135 mV in comparison to the system formed by dispersing Fe-Fe2O3 nanoparticles on reduced graphene oxide (Fe-Fe2O3/RGO), which indicates the presence of a higher number of active sites in Fe-Fe2O3/NGr. Despite this, the ORR kinetics of Fe-Fe2O3/NGr are found to be shifted significantly to the preferred 4-electron-transfer pathway compared to NGr and Fe-Fe2O3/RGO. Consequently, the H2O2% was found to be reduced by 78.3% for Fe-Fe2O3/NGr (13.0%) in comparison to Fe-Fe2O3/RGO (51.2%) and NGr (41.0%) at -0.30 V (vs. Hg/HgO). This difference in the yield of H2O2 formed between the systems along with the improvements observed in terms of the oxygen reduction onset and E1/2 in the case of Fe-Fe2O3/NGr reveals the activity modulation achieved for the latter is due to the coexistence of factors such as the presence of the mixed valancies of iron nanoparticles, small size and homogeneous distribution of Fe-Fe2O3 nanoparticles and the electronic modifications induced by the doped nitrogen in NGr. A controlled interplay of these factors looks like worked favorably in the case of Fe-Fe2O3/NGr. As a realistic system level validation, Fe-Fe2O3/NGr was employed as the cathode electrode of a single cell in a solid alkaline electrolyte membrane fuel cell (AEMFC). The system could display an open

  4. Atomic thin titania nanosheet-coupled reduced graphene oxide 2D heterostructures for enhanced photocatalytic activity and fast lithium storage

    NASA Astrophysics Data System (ADS)

    Li, Dong Jun; Huang, Zhegang; Hwang, Tae Hoon; Narayan, Rekha; Choi, Jang Wook; Kim, Sang Ouk

    2016-03-01

    Realizing practical high performance materials and devices using the properties of 2D materials is of key research interest in the materials science field. In particular, building well-defined heterostructures using more than two different 2D components in a rational way is highly desirable. In this paper, a 2D heterostructure consisting of atomic thin titania nanosheets densely grown on reduced graphene oxide surface is successfully prepared through incorporating polymer functionalized graphene oxide into the novel TiO2 nanosheets synthesis scheme. As a result of the synergistic combination of a highly accessible surface area and abundant interface, which can modulate the physicochemical properties, the resultant heterostructure can be used in high efficiency visible light photocatalysis as well as fast energy storage with a long lifecycle. [Figure not available: see fulltext.

  5. Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures

    SciTech Connect

    Yin, Yao; Sun, Huabin; Chen, Peng; Sang, Liwen; Dierre, Benjamin; Sumiya, Masatomo; Sekiguchi, Takashi; Zheng, Youdou; Shi, Yi

    2015-05-15

    The spatial distribution of indium composition in InGaN/GaN heterostructure is a critical topic for modulating the wavelength of light emitting diodes. In this letter, semi-polar InGaN/GaN heterostructure stripes were fabricated on patterned GaN/Sapphire substrates by epitaxial lateral overgrowth (ELO), and the spatial distribution of indium composition in the InGaN layer was characterized by using cathodoluminescence. It is found that the indium composition is mainly controlled by the diffusion behaviors of metal atoms (In and Ga) on the surface. The diffusivity of metal atoms decreases sharply as migrating to the region with a high density of dislocations and other defects, which influences the distribution of indium composition evidently. Our work is beneficial for the understanding of ELO process and the further development of InGaN/GaN heterostructure based devices.

  6. A novel ultra steep dynamically reconfigurable electrostatically doped silicon nanowire Schottky Barrier FET

    NASA Astrophysics Data System (ADS)

    Singh, Sangeeta; Sinha, Ruchir; Kondekar, P. N.

    2016-05-01

    In this paper, an ultra steep, symmetric and dynamically configurable, electrostatically doped silicon nanowire Schottky FET (E-SiNW-SB-FET) based on dopant-free technology is investigated. It achieves the ultra steep sub-threshold slope (SS) due to the cumulative effect of weak impact-ionization induced positive feedback and electrostatic modulation of Schottky barrier heights at both source and drain terminals. It consists of axial nanowire heterostructure (silicide-intrinsic silicon-silicide) with three independent all-around gates, two gates are polarity control gates for dynamically reconfiguring the device polarity by modulating the effective Schottky barrier heights and a control gate switches the device ON and OFF. The most interesting features of the proposed structure are simplified fabrication process as the state-of-the-art for ion implantation and high thermal budget no more required for annealing. It is highly immune to process variations, doping control issues and random dopant fluctuations (RDF) and there are no mobility degradation issues related to high doping. A calibrated 3-D TCAD simulation results exhibit the SS of 2 mV/dec for n-type E-SiNW-SB-FET and 9 mV/dec for p-type E-SiNW-SB-FET for about five decades of current. Further, it resolves all the reliability related issues of IMOS as hot electron effects are no more limiting our device performance. It offers significant drive current of the order of 10-5-10-4 A and magnificently high ION/IOFF ratio of ∼108 along with the inherent advantages of symmetric device structure for its circuit realization.

  7. Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Dhavale, Vishal M.; Singh, Santosh K.; Nadeema, Ayasha; Gaikwad, Sachin S.; Kurungot, Sreekumar

    2015-11-01

    The size-controlled growth of nanocrystalline Fe-Fe2O3 particles (2-3 nm) and their concomitant dispersion on N-doped graphene (Fe-Fe2O3/NGr) could be attained when the mutually assisted redox reaction between NGr and Fe3+ ions could be controlled within the aqueous droplets of a water-in-oil emulsion. The synergistic interaction existing between Fe-Fe2O3 and NGr helped the system to narrow down the overpotential for the oxygen reduction reaction (ORR) by bringing a significant positive shift to the reduction onset potential, which is just 15 mV higher than its Pt-counterpart. In addition, the half-wave potential (E1/2) of Fe-Fe2O3/NGr is found to be improved by a considerable amount of 135 mV in comparison to the system formed by dispersing Fe-Fe2O3 nanoparticles on reduced graphene oxide (Fe-Fe2O3/RGO), which indicates the presence of a higher number of active sites in Fe-Fe2O3/NGr. Despite this, the ORR kinetics of Fe-Fe2O3/NGr are found to be shifted significantly to the preferred 4-electron-transfer pathway compared to NGr and Fe-Fe2O3/RGO. Consequently, the H2O2% was found to be reduced by 78.3% for Fe-Fe2O3/NGr (13.0%) in comparison to Fe-Fe2O3/RGO (51.2%) and NGr (41.0%) at -0.30 V (vs. Hg/HgO). This difference in the yield of H2O2 formed between the systems along with the improvements observed in terms of the oxygen reduction onset and E1/2 in the case of Fe-Fe2O3/NGr reveals the activity modulation achieved for the latter is due to the coexistence of factors such as the presence of the mixed valancies of iron nanoparticles, small size and homogeneous distribution of Fe-Fe2O3 nanoparticles and the electronic modifications induced by the doped nitrogen in NGr. A controlled interplay of these factors looks like worked favorably in the case of Fe-Fe2O3/NGr. As a realistic system level validation, Fe-Fe2O3/NGr was employed as the cathode electrode of a single cell in a solid alkaline electrolyte membrane fuel cell (AEMFC). The system could display an open

  8. Multilayer heterostructures and their manufacture

    SciTech Connect

    Hammond, Scott R; Reese, Matthew; Rupert, Benjamin; Miedaner, Alexander; Curtis, Clavin; Olson, Dana; Ginley, David S

    2015-11-04

    A method of synthesizing multilayer heterostructures including an inorganic oxide layer residing on a solid substrate is described. Exemplary embodiments include producing an inorganic oxide layer on a solid substrate by a liquid coating process under relatively mild conditions. The relatively mild conditions include temperatures below 225.degree. C. and pressures above 9.4 mb. In an exemplary embodiment, a solution of diethyl aluminum ethoxide in anhydrous diglyme is applied to a flexible solid substrate by slot-die coating at ambient atmospheric pressure, and the diglyme removed by evaporation. An AlO.sub.x layer is formed by subjecting material remaining on the solid substrate to a relatively mild oven temperature of approximately 150.degree. C. The resulting AlO.sub.x layer exhibits relatively high light transmittance and relatively low vapor transmission rates for water. An exemplary embodiment of a flexible solid substrate is polyethylene napthalate (PEN). The PEN is not substantially adversely affected by exposure to 150.degree. C

  9. Spin Transport in Semiconductor heterostructures

    SciTech Connect

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  10. Infrared photodetectors in heterostructure nanowires.

    PubMed

    Pettersson, H; Trägårdh, J; Persson, A I; Landin, L; Hessman, D; Samuelson, L

    2006-02-01

    We report on spectrally resolved photocurrent measurements on single self-assembled nanowire heterostructures. The wires, typically 3 microm long with an average diameter of 85 nm, consist of InAs with a 1 microm central part of InAsP. Two different sets of wires were prepared with phosphorus contents of 15+/-3% and 35+/-3%, respectively, as determined by energy-dispersive spectroscopy measurements made in transmission electron microscopy. Ohmic contacts are fabricated to the InAs ends of the wire using e-beam lithography. The conduction band offset between the InAs and InAsP regions virtually removes the dark current through the wires at low temperature. In the optical experiments, interband excitation in the phosphorus-rich part of the wires results in a photocurrent with threshold energies of about 0.65 and 0.82 eV, respectively, in qualitative agreement with the expected band gap of the two compositions. Furthermore, a strong polarization dependence is observed with an order of magnitude larger photocurrent for light polarized parallel to the wire than for light polarized perpendicular to the wire. We believe that these wires form promising candidates as nanoscale infrared polarization-sensitive photodetectors. PMID:16464040

  11. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Wang, Wenhui; Dong, Jingya; Ye, Xiaozhou; Li, Yang; Ma, Yurong; Qi, Limin

    2016-03-01

    Heterostructured TiO2 nanorod@nanobowl (NR@NB) arrays consisting of rutile TiO2 nanorods grown on the inner surface of arrayed anatase TiO2 nanobowls are designed and fabricated as a new type of photoanodes for photoelectrochemical (PEC) water splitting. The unique heterostructures with a hierarchical architecture are readily fabricated by interfacial nanosphere lithography followed by hydrothermal growth. Owing to the two-dimensionally arrayed structure of anatase nanobowls and the nearly radial alignment of rutile nanorods, the TiO2 NR@NB arrays provide multiple scattering centers and hence exhibit an enhanced light harvesting ability. Meanwhile, the large surface area of the NR@NB arrays enhances the contact with the electrolyte while the nanorods offer direct pathways for fast electron transfer. Moreover, the rutile/anatase phase junction in the NR@NB heterostructure improves charge separation because of the facilitated electron transfer. Accordingly, the PEC measurements of the TiO2 NR@NB arrays on the fluoride-doped tin oxide (FTO) substrate show significantly enhanced photocatalytic properties for water splitting. Under AM1.5G solar light irradiation, the unmodified TiO2 NR@NB array photoelectrode yields a photocurrent density of 1.24 mA cm(-2) at 1.23 V with respect to the reversible hydrogen electrode, which is almost two times higher than that of the TiO2 nanorods grown directly on the FTO substrate. PMID:26779803

  12. Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures.

    PubMed

    Gamucci, A; Spirito, D; Carrega, M; Karmakar, B; Lombardo, A; Bruna, M; Pfeiffer, L N; West, K W; Ferrari, A C; Polini, M; Pellegrini, V

    2014-01-01

    Vertical heterostructures combining different layered materials offer novel opportunities for applications and fundamental studies. Here we report a new class of heterostructures comprising a single-layer (or bilayer) graphene in close proximity to a quantum well created in GaAs and supporting a high-mobility two-dimensional electron gas. In our devices, graphene is naturally hole-doped, thereby allowing for the investigation of electron-hole interactions. We focus on the Coulomb drag transport measurements, which are sensitive to many-body effects, and find that the Coulomb drag resistivity significantly increases for temperatures <5-10 K. The low-temperature data follow a logarithmic law, therefore displaying a notable departure from the ordinary quadratic temperature dependence expected in a weakly correlated Fermi-liquid. This anomalous behaviour is consistent with the onset of strong interlayer correlations. Our heterostructures represent a new platform for the creation of coherent circuits and topologically protected quantum bits. PMID:25524426

  13. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure

    PubMed Central

    Sediri, Haikel; Pierucci, Debora; Hajlaoui, Mahdi; Henck, Hugo; Patriarche, Gilles; Dappe, Yannick J.; Yuan, Sheng; Toury, Bérangère; Belkhou, Rachid; Silly, Mathieu G.; Sirotti, Fausto; Boutchich, Mohamed; Ouerghi, Abdelkarim

    2015-01-01

    Stacking various two-dimensional atomic crystals is a feasible approach to creating unique multilayered van der Waals heterostructures with tailored properties. Herein for the first time, we present a controlled preparation of large-area h-BN/graphene heterostructures via a simple chemical deposition of h-BN layers on epitaxial graphene/SiC(0001). Van der Waals forces, which are responsible for the cohesion of the multilayer system, give rise to an abrupt interface without interdiffusion between graphene and h-BN, as shown by X-ray Photoemission Spectroscopy (XPS) and direct observation using scanning and High-Resolution Transmission Electron Microscopy (STEM/HRTEM). The electronic properties of graphene, such as the Dirac cone, remain intact and no significant charge transfer i.e. doping, is observed. These results are supported by Density Functional Theory (DFT) calculations. We demonstrate that the h-BN capped graphene allows the fabrication of vdW heterostructures without altering the electronic properties of graphene. PMID:26585245

  14. Layer Resolved Imaging of Magnetic Domain Motion in Epitaxial Heterostructures

    NASA Astrophysics Data System (ADS)

    Zohar, Sioan; Choi, Yongseong; Love, David; Mansell, Rhodri; Barnes, Crispin; Keavney, David; Rosenberg, Richard

    We use X-ray Excited Luminescence Microscopy (XELM) to image the elemental and layer resolved magnetic domain structure of an epitaxial Fe/Cr wedge/Co heterostructure in the presence of large magnetic fields. The observed magnetic domains exhibit several unique behaviors that depend on the Cr thickness (tCr) modulated interlayer exchange coupling (IEC) strength. For Cr thickness tCr??1.5?nm, strongly coupled parallel Co-Fe reversal and weakly coupled layer independent reversal are observed, respectively. The transition between these two reversal mechanisms for 0.34?

  15. Wafer bonded epitaxial templates for silicon heterostructures

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A., Jr. (Inventor); Zahler, James M. (Inventor); Morral, Anna Fontcubera I (Inventor)

    2008-01-01

    A heterostructure device layer is epitaxially grown on a virtual substrate, such as an InP/InGaAs/InP double heterostructure. A device substrate and a handle substrate form the virtual substrate. The device substrate is bonded to the handle substrate and is composed of a material suitable for fabrication of optoelectronic devices. The handle substrate is composed of a material suitable for providing mechanical support. The mechanical strength of the device and handle substrates is improved and the device substrate is thinned to leave a single-crystal film on the virtual substrate such as by exfoliation of a device film from the device substrate. An upper portion of the device film exfoliated from the device substrate is removed to provide a smoother and less defect prone surface for an optoelectronic device. A heterostructure is epitaxially grown on the smoothed surface in which an optoelectronic device may be fabricated.

  16. Ultrahigh efficiencies in vertical epitaxial heterostructure architectures

    NASA Astrophysics Data System (ADS)

    Fafard, S.; York, M. C. A.; Proulx, F.; Valdivia, C. E.; Wilkins, M. M.; Arès, R.; Aimez, V.; Hinzer, K.; Masson, D. P.

    2016-02-01

    Optical to electrical power converting semiconductor devices were achieved with breakthrough performance by designing a Vertical Epitaxial Heterostructure Architecture. The devices are featuring modeled and measured conversion efficiencies greater than 65%. The ultrahigh conversion efficiencies were obtained by monolithically integrating several thin GaAs photovoltaic junctions tailored with submicron absorption thicknesses and grown in a single crystal by epitaxy. The heterostructures that were engineered with a number N of such ultrathin junctions yielded an optimal external quantum efficiencies approaching 100%/N. The heterostructures are capable of output voltages that are multiple times larger than the corresponding photovoltage of the input light. The individual nanoscale junctions are each generating up to ˜1.2 V of output voltage when illuminated in the infrared. We compare the optoelectronic properties of phototransducers prepared with designs having 5 to 12 junctions and that are exhibiting voltage outputs between >5 V and >14 V.

  17. Quantum oscillations and interference effects in strained n- and p-type modulation doped GaInNAs/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Sarcan, F.; Nutku, F.; Donmez, O.; Kuruoglu, F.; Mutlu, S.; Erol, A.; Yildirim, S.; Arikan, M. C.

    2015-08-01

    We have performed magnetoresistance measurements on n- and p-type modulation doped GaInNAs/GaAs quantum well (QW) structures in both the weak (B  < 0.08 T) and the high magnetic field (up to 18 T) at 75 mK and 6 K. We observe that the quantum oscillations in {ρxx} and quantum Hall effect (QHE) plateaus in {ρxy} are affected from the presence of the nitrogen in the III-V lattice. The enhancement of N-related scatterings and electron effective mass with increasing nitrogen causes lower electron mobility and higher two-dimensional (2D) electron density, leading to suppressed QHE plateaus in {ρxy} up to 7 T at 6 K. The Shubnikov de Haas (SdH) oscillations develop at lower magnetic fields for higher mobility samples at 6 K and the amplitude of SdH oscillations decreases with increasing nitrogen composition. The well-pronounced QHE plateaus are observed at 75 mK and at higher magnetic fields up to 18 T, for the p-type sample. For n-type samples, the observed anomalies in the characteristic of QHE is attributed the nitrogen-related disorders and overlapping of fluctuating Landau levels. The low magnetic field measurements at 75 mK reveal that the n-type samples exhibit weak antilocalization, whereas weak localization is observed for the p-type sample. The observation of weak antilocalization is an indication of strong electron spin-orbit interactions. The low field magnetoresistance traces are used to extract the spin coherence, phase coherence and elastic scattering times as well Rashba parameters and spin-splitting energy. The calculated Rashba parameters for nitrogen containing samples reveal that the nitrogen composition is a significant parameter to determine the degree of the spin-orbit interactions. Consequently, GaInNAs-based QW structures with various nitrogen compositions can be beneficial to adjust the spin-orbit coupling strength and may be used as a candidate for spintronics applications.

  18. ARPES studies of van der Waals heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Eryin; Lu, Xiaobo; Chen, Guorui; Fedorov, Alexei V.; Zhang, Yuanbo; Zhang, Guangyu; Zhou, Shuyun

    Van der Waals heterostructures are a novel class of ``materials by design'' which are formed by stacking different two-dimensional crystals together via van der Waals interaction. The periodic potential by the Moir é superlattice can be used as a control knob for tuning the electronic properties of two dimensional materials and can induce various novel quantum phenomena. Here we report direct electronic structure studies the of a model van der Waals heterostructure using angle-resolved photoemission spectroscopy (ARPES). This work is supported by the National Natural Science Foundation of China and Ministry of Education of China.

  19. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  20. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  1. Ultrafast Strain Engineering in Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Caviglia, A. D.; Scherwitzl, R.; Popovich, P.; Hu, W.; Bromberger, H.; Singla, R.; Mitrano, M.; Hoffmann, M. C.; Kaiser, S.; Zubko, P.; Gariglio, S.; Triscone, J.-M.; Först, M.; Cavalleri, A.

    2012-03-01

    We report on ultrafast optical experiments in which femtosecond midinfrared radiation is used to excite the lattice of complex oxide heterostructures. By tuning the excitation energy to a vibrational mode of the substrate, a long-lived five-order-of-magnitude increase of the electrical conductivity of NdNiO3 epitaxial thin films is observed as a structural distortion propagates across the interface. Vibrational excitation, extended here to a wide class of heterostructures and interfaces, may be conducive to new strategies for electronic phase control at THz repetition rates.

  2. Ultrafast strain engineering in complex oxide heterostructures.

    PubMed

    Caviglia, A D; Scherwitzl, R; Popovich, P; Hu, W; Bromberger, H; Singla, R; Mitrano, M; Hoffmann, M C; Kaiser, S; Zubko, P; Gariglio, S; Triscone, J-M; Först, M; Cavalleri, A

    2012-03-30

    We report on ultrafast optical experiments in which femtosecond midinfrared radiation is used to excite the lattice of complex oxide heterostructures. By tuning the excitation energy to a vibrational mode of the substrate, a long-lived five-order-of-magnitude increase of the electrical conductivity of NdNiO(3) epitaxial thin films is observed as a structural distortion propagates across the interface. Vibrational excitation, extended here to a wide class of heterostructures and interfaces, may be conducive to new strategies for electronic phase control at THz repetition rates. PMID:22540718

  3. High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure

    SciTech Connect

    Hwan Lee, Seung; Lee, Jia; Ho Ra, Chang; Liu, Xiaochi; Hwang, Euyheon; Sup Choi, Min; Hee Choi, Jun; Zhong, Jianqiang; Chen, Wei; Jong Yoo, Won

    2014-02-03

    A tunneling rectifier prepared from vertically stacked two-dimensional (2D) materials composed of chemically doped graphene electrodes and hexagonal boron nitride (h-BN) tunneling barrier was demonstrated. The asymmetric chemical doping to graphene with linear dispersion property induces rectifying behavior effectively, by facilitating Fowler-Nordheim tunneling at high forward biases. It results in excellent diode performances of a hetero-structured graphene/h-BN/graphene tunneling diode, with an asymmetric factor exceeding 1000, a nonlinearity of ∼40, and a peak sensitivity of ∼12 V{sup −1}, which are superior to contending metal-insulator-metal diodes, showing great potential for future flexible and transparent electronic devices.

  4. Gallium self-diffusion in gallium arsenide: A study using isotope heterostructures

    SciTech Connect

    Wang, Lei; Hsu, L.; Haller, E.E. |; Erickson, J.W.; Fischer, A.; Eberl, K.; Cardona, M.

    1996-09-01

    Ga self-diffusion was studied with secondary-ion mass spectroscopy in {sup 69}GaAs/{sup 71}GaAs isotope heterostructures grown by molecular beam epitaxy on GaAs substrates. Results show that the Ga self- diffusion coefficient in intrinsic GaAs can be described accurately with D = (43{+-}25 cm{sup 2}s{sup -1})exp(-4.24{+-}0.06 eV/k{sub B}T) over 6 orders of magnitude between 800 and 1225 C under As-rich condition. Experimental results combined with theoretical calculations strongly suggest Ga vacancy being the dominant native defect controlling the diffusion. No significant doping effects were observed in samples where the substrates were doped with Te up to 4x10{sup 17}cm{sup -3} or Zn up to 1x10{sup 19}cm{sup -3}.

  5. Manipulable MR effect in a δ-doped magnetic nanostructure

    NASA Astrophysics Data System (ADS)

    Kong, Yong-Hong; Jiang, Ya-Qing; Fu, Xi; Li, Ai-Hua

    2016-05-01

    A magnetoresistance (MR) device was proposed by depositing two nanosized ferromagnetic strips on top and bottom of the semiconductor heterostructure. For the sake of manipulating its performance, we introduce a tunable δ-potential into this device with the help of the atomic-layer doping technique such as molecular beam epitaxy (MBE) or metal-organic chemical-vapor deposition (MOCVD). We investigate theoretically the impact of the δ-doping on the magnetoresistance ratio (MMRR) of the MR device. Although the δ-doping is embedded in the device, a considerable MR effect still exists due to different transmissions for the electron across parallel (P) and antiparallel (AP) configurations. Moreover, its MMRR varies sensitively with the magnitude and/or position of the δ-doping. Such an MR device can be controlled by changing the δ-doping, resulting in an adjustable MR device for magnetoelectronics applications.

  6. Metabolic modulators of the exercise response: doping control analysis of an agonist of the peroxisome proliferator-activated receptor δ (GW501516) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR).

    PubMed

    Pokrywka, A; Cholbinski, P; Kaliszewski, P; Kowalczyk, K; Konczak, D; Zembron-Lacny, A

    2014-08-01

    In 2008, the team of Ronald Evans, a professor at the Salk Institute Gene Expression Laboratory, published an article about the effects of two metabolic modulators branded as GW501516 and AICAR on physical endurance of laboratory animals. Both substances, also called 'exercise pills' or 'exercise mimetics', showed the ability to cause multidirectional changes in muscle metabolism. In particular, they stimulated fatty acid oxidation and promoted muscle remodelling. These compounds were regarded as very promising drug candidates for the treatment of diseases such as obesity and type 2 diabetes. GW501516 and AICAR have received considerable attention in doping control due to assumed performance-enhancing properties and recent confiscations of illicitly distributed drugs containing AICAR. Therefore, the World Anti-Doping Agency added GW501516 and AICAR to the Prohibited List in 2009. This review covers the cellular and systemic effects of the metabolic modulators' administration with special emphasis on their role in exercise metabolism. It also presents the advancements in development of methodologies for the detection of their abuse by athletes. PMID:25179079

  7. Electron and hole gas in modulation-doped GaAs/Al{sub 1-x}Ga{sub x}As radial heterojunctions

    SciTech Connect

    Bertoni, Andrea; Royo, Miquel; Mahawish, Farah; Goldoni, Guido

    2011-11-15

    We perform self-consistent Schroedinger-Poisson calculations with exchange and correlation corrections to determine the electron and hole gas in a radial heterojunction formed in a GaAs/AlGaAs core-multi-shell nanowire, which is either n- or p-doped. We show that the electron and hole gases can be tuned to different localizations and symmetries inside the core as a function of the doping density/gate potential. Contrary to planar heterojunctions, conduction electrons do not form a uniform 2D electron gas (2DEG) localized at the GaAs/AlGaAs interface, but rather show a transition between an isotropic, cylindrical distribution deep in the GaAs core (low doping) and a set of six tunnel-coupled quasi-1D channels at the edges of the interface (high doping). Holes, on the other hand, are much more localized at the GaAs/AlGaAs interface. At low doping, they present an additional localization pattern with six separated 2DEGs strips. The field generated by a back-gate may easily deform the electron or hole gas, breaking the sixfold symmetry. Single 2DEGs at one interface or multiple quasi-1D channels are shown to form as a function of voltage intensity, polarity, and carrier type.

  8. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure

    PubMed Central

    Huang, Le; Li, Yan; Wei, Zhongming; Li, Jingbo

    2015-01-01

    The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhibits modulation of its carrier effective mass and carrier concentration by the applied compressive strain, suggesting that mobility engineering and good piezoelectric effect can be realized in BP/MoS2 heterostructure. Because the type-II band alignment can facilitate the separation of photo-excited electrons and holes, and it can benefit from the great absorption coefficient in ultra-violet region, the BP/MoS2 shows great potential to be a very efficient ultra-violet photodetector. PMID:26553370

  9. Tunable photoelectrochemical performance of Au/BiFeO3 heterostructure.

    PubMed

    Huang, Yen-Lin; Chang, Wei Sea; Van, Chien Nguyen; Liu, Heng-Jui; Tsai, Kai-An; Chen, Jhih-Wei; Kuo, Ho-Hung; Tzeng, Wen-Yen; Chen, Yi-Chun; Wu, Chung-Lin; Luo, Chih-Wei; Hsu, Yung-Jung; Chu, Ying-Hao

    2016-08-25

    Ferroelectric photoelectrodes, other than conventional semiconductors, are alternative photo-absorbers in the process of water splitting. However, the capture of photons and efficient transfer of photo-excited carriers remain as two critical issues in ferroelectric photoelectrodes. In this work, we overcome the aforementioned issues by decorating the ferroelectric BiFeO3 (BFO) surface with Au nanocrystals, and thus improving the photoelectrochemical (PEC) performance of BFO film. We demonstrate that the internal field induced by the spontaneous polarization of BFO can (1) tune the efficiency of the photo-excited carriers' separation and charge transfer characteristics in bare BFO photoelectrodes, and (2) modulate an extra optical absorption within the visible light region, created by the surface plasmon resonance excitation of Au nanocrystals to capture more photons in the Au/BFO heterostructure. This study provides key insights for understanding the tunable features of PEC performance, composed of the heterostructure of noble metals and ferroelectric materials. PMID:27533610

  10. Strain induced piezoelectric effect in black phosphorus and MoS2 van der Waals heterostructure.

    PubMed

    Huang, Le; Li, Yan; Wei, Zhongming; Li, Jingbo

    2015-01-01

    The structural, electronic, transport and optical properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdw) heterostructure are investigated by using first principles calculations. The band gap of BP/MoS2 bilayer decreases with the applied normal compressive strain and a semiconductor-to-metal transition is observed when the applied strain is more than 0.85 Å. BP/MoS2 bilayer also exhibits modulation of its carrier effective mass and carrier concentration by the applied compressive strain, suggesting that mobility engineering and good piezoelectric effect can be realized in BP/MoS2 heterostructure. Because the type-II band alignment can facilitate the separation of photo-excited electrons and holes, and it can benefit from the great absorption coefficient in ultra-violet region, the BP/MoS2 shows great potential to be a very efficient ultra-violet photodetector. PMID:26553370

  11. Electric field modulation of ultra-high resonance frequency in obliquely deposited [Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32(011)/FeCoZr heterostructure for reconfigurable magnetoelectric microwave devices

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Ong, C. K.

    2014-07-01

    The multiferroic heterostructure of FeCoZr/[Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32(011) (PMN-PT) prepared by oblique sputtering deposition technique shows a large electrical tunability of ultra-high ferromagnetic resonance frequency from 7.4 GHz to 12.3 GHz. Moreover, we experimentally demonstrate the possibility of realizing electrically reconfigurable magnetoelectric microwave devices with ultra-low power consumption by employing the heterostructure under different resetting electric fields through a reconfiguration process. In particular, the tunability of the FeCoZr/PMN-PT heterostructure from 8.2 GHz to 11.6 GHz can retain in a remanent state after releasing the resetting electric field. This suggests that the tunable microwave devices based on such heterostructures are permanently reconfigurable by simply using a trigger electric field double-pulse which requires much less energy than that of the conventional ones wherein an electric field needs to be constantly applied during operation.

  12. Direct writing of in-plane-gated nanostructures by focused laser beam-induced doping

    NASA Astrophysics Data System (ADS)

    Baumgartner, P.; Wegscheider, W.; Bichler, M.; Groos, G.; Abstreiter, G.

    1998-07-01

    The fabrication technique of local doping with a focused laser beam is employed to fabricate electronic nanostructures. Zn-doped regions are used to fabricate in-plane electron channels in a high mobility GaAs/AlGaAs heterostructure. The operation of different devices, like quantum point contacts, single electron transistors or Aharonov-Bohm rings, is demonstrated. The coplanar gate geometry improves the performance of the devices in charge sensing applications.

  13. S-C-L Triple-Band Double-Pass Erbium-Doped Silica Fiber Amplifier With an Embedded DCF Module for CWDM Applications

    NASA Astrophysics Data System (ADS)

    Batista Rosolem, João; Amauri Juriollo, Antonio; Arradi, Roberto; Donizete Coral, Antonio; César Rodrigues Fernandes de Oliveira, Julio; Araujo Romero, Murilo

    2006-10-01

    In this paper, the authors present a double-pass triple-band doped fiber amplifier including an embedded dispersion-compensating fiber. The amplifier employs only silica-based erbium-doped fibers to achieve signal amplification over S-, C-, and L-bands. Experimental characterization is carried out in terms gain and noise figure over the coarse-wavelength-division-multiplexing (CWDM) wavelength grid. By providing optical gain to seven CWDM channels spectrally located between 1490 and 1610 nm, the amplifier can extend the reach of a CWDM optical bus well beyond the 100-km limit.

  14. Electric-field and strain-tunable electronic properties of MoS2/h-BN/graphene vertical heterostructures.

    PubMed

    Zan, Wenyan; Geng, Wei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-28

    Vertical heterostructures of MoS2/h-BN/graphene have been successfully fabricated in recent experiments. Using first-principles analysis, we show that the structural and electronic properties of such vertical heterostructures are sensitive to applied vertical electric fields and strain. The applied electric field not only enhances the interlayer coupling but also linearly controls the charge transfer between graphene and MoS2 layers, leading to a tunable doping in graphene and controllable Schottky barrier height. Applied biaxial strain could weaken the interlayer coupling and results in a slight shift of graphene's Dirac point with respect to the Fermi level. It is of practical importance that the tunable electronic properties by strain and electric fields are immune to the presence of sulfur vacancies, the most common defect in MoS2. PMID:26742838

  15. Quantum devices in silicon/silicon germanium heterostructures

    NASA Astrophysics Data System (ADS)

    Slinker, Keith A.

    This thesis presents the fabrication and characterization of silicon/silicon-germanium quantum wells, quantum dots, and quantum point contacts. These systems are promising for quantum computing applications due to the long predicted spin lifetimes. In addition, the valley states in Si/SiGe two-dimensional electron gases (2DEGs) are a novel phenomenon in regards to nanostructures, and characterizing these states is also necessary for potential computing applications. However, working with these heterostructures---especially in regards to metal Schottky gating---has proved historically challenging such that single electron transistors had not been achieved at the onset of this research. The first quantum dots in Si/SiGe are presented, defined completely by CF4 reactive ion etch without the use of metal gates. Etch-defined 2DEG side gates are used to modulate the potential of the quantum dot. Results for various metal gating schemes are also presented, culminating in the first Schottky-gated quantum dots in Si/SiGe. Differing from the etch-defined dots, the tunnel junctions of the metal-etch hybrid dot are fully tunable by the voltage applied to the top gates. Hall measurements of multiple heterostructures are presented, providing evidence that many of the challenges associated with gating Si/SiGe can be attributed to undepleted dopants in the supply layer. These dopants screen the top gates but can be detected as a parallel conduction channel in Hall measurements taken at a 2 K. A fully top-gate defined quantum dot was fabricated on an optimized Si/SiGe heterostructure, and the single particle excited states were resolved for the first time in Si/SiGe. Finally, quantum point contacts were defined by metal top gates, and the conduction was mapped out over a large range of magnetic field and voltages on the gates. The positions of the conductance steps are used to extract the valley splitting---a quantity that had been measured in a bulk 2DEG but not in a nanostructure

  16. Tunneling through localized barrier states in superconducting heterostructures

    NASA Astrophysics Data System (ADS)

    Shaternik, V. E.; Shapovalov, A. P.; Suvorov, A. V.; Skoryk, N. A.; Belogolovskii, M. A.

    2016-05-01

    Thin film heterostructures composed of superconducting electrodes (molybdenum rhenium alloy) and a nanoscale silicon layer doped with tungsten, have been designed and experimentally studied. The current-voltage characteristics of junctions exhibiting local maxima of the current against the background of abrupt current increases for the first time, were measured in the voltage range of -800 to 800 mV, at temperatures of 4.2-8 K. The positions of these singularities, which are symmetrical with respect to zero voltage, varied from sample to sample within the range of 40-300 mV. With increasing temperature, they became blurred and completely vanished with the disappearance of superconductivity in the electrodes. The nature of the observed singularities is associated with the properties of electron tunneling through the impurity states localized in the semiconducting barrier. The use of a superconducting electrode enhances the interaction of the localized electron with the conduction electrons thanks to the root divergence in the density of electron states of a superconductor.

  17. Mesoporous Phosphate Heterostructures: Synthesis and Application on Adsorption and Catalysis

    NASA Astrophysics Data System (ADS)

    Moreno-Tost, Ramón; Jiménez-Jiménez, José; Infantes-Molina, Antonia; Cavalcante, Celio L.; Azevedo, Diana C. S.; Soriano, María Dolores; López Nieto, José Manuel; Jiménez-López, Antonio; Rodríguez-Castellón, Enrique

    Porous phosphate heterostructures (PPHs) are solids formed by a layered metal(IV) phosphate expanded with silica galleries obtained by combining the two main strategies for obtaining mesoporous materials [pillared layered structures (PLS') and MCM-41]. The different synthetic pathways for obtaining mesoporous phosphate structures with silica galleries with Zr- or Ti-doped silica, the study of their structural, textural and acid properties, its functionalisation with different organic substances such as propionitrile, 3-aminopropyl triethoxysilane, (3-mercaptopropyl)trimethoxysilane, vinyltrimethoxysilane, phenyltriethoxysilane and 3-(triethoxysilyl)propionitrile are discussed. The preparation of metal-supported catalysts and their application in gas separation, adsorption and catalysis are reviewed. Specifically, the use of Cu- and Fe-exchanged PPH for the adsorption of benzothiophene and the separation of propane/propene is the main application as adsorbent. The hydrotreating of aromatic hydrocarbons using ruthenium-impregnated catalysts via hydrogenation and hydrogenolysis/hydrocracking for the production of clean diesel fuels, the selective catalytic reduction of NO from stationary and mobile sources by using Cu-PPH with 1, 3 and 7 wt% of Cu and the selective oxidation of hydrogen sulphide to sulphur with vanadium-containing PPH are the three catalytic reactions of environmental interest studied.

  18. Spin-torque generation in topological insulator based heterostructures

    NASA Astrophysics Data System (ADS)

    Fischer, Mark H.; Vaezi, Abolhassan; Manchon, Aurelien; Kim, Eun-Ah

    2016-03-01

    Heterostructures utilizing topological insulators exhibit a remarkable spin-torque efficiency. However, the exact origin of the strong torque, in particular whether it stems from the spin-momentum locking of the topological surface states or rather from spin-Hall physics of the topological-insulator bulk, remains unclear. Here, we explore a mechanism of spin-torque generation purely based on the topological surface states. We consider topological-insulator-based bilayers involving ferromagnetic metal (TI/FM) and magnetically doped topological insulators (TI/mdTI), respectively. By ascribing the key theoretical differences between the two setups to location and number of active surface states, we describe both setups within the same framework of spin diffusion of the nonequilibrium spin density of the topological surface states. For the TI/FM bilayer, we find large spin-torque efficiencies of roughly equal magnitude for both in-plane and out-of-plane spin torques. For the TI/mdTI bilayer, we elucidate the dominance of the spin-transfer-like torque. However, we cannot explain the orders of magnitude enhancement reported. Nevertheless, our model gives an intuitive picture of spin-torque generation in topological-insulator-based bilayers and provides theoretical constraints on spin-torque generation due to topological surface states.

  19. What Makes Effective Gating Possible in Two-Dimensional Heterostructures?

    NASA Astrophysics Data System (ADS)

    Zutic, Igor; Lazic, Predrag; Belashchenko, Kirill D.

    Electrostatic gating provides a way to obtain key functionalities in modern electronic devices and to qualitatively alter materials properties. While electrostatic description of such gating gives guidance for related doping effects, inherent quantum properties of gating provide opportunities for intriguing modification of materials and unexplored devices. Using first-principles calculations for Co/bilayer graphene, Co/BN, and Co/benzene, as well as a simple physical model, we show that magnetic heterostructures with two-dimensional layered materials can manifest tunable magnetic proximity effects. van der Waals bonding is identified as a requirement for large electronic structure changes by gating. In particular, the magnitude and sign of spin polarization in physisorbed graphene can be controlled by gating, which is important for spintronic devices. Supported by U.S. ONR Grant N000141310754, U.S. DOE-BES Award DE-SC0004890, NSF DMR-1124601, the Center for NanoFerroic Devices, the Nanoelectronics Research Initiative, and NSF DMR-1308751.

  20. Self-selection effects and modulation of TaOx resistive switching random access memory with bottom electrode of highly doped Si

    NASA Astrophysics Data System (ADS)

    Yu, Muxi; Fang, Yichen; Wang, Zongwei; Pan, Yue; Li, Ming; Cai, Yimao; Huang, Ru

    2016-05-01

    In this paper, we propose a TaOx resistive switching random access memory (RRAM) device with operation-polarity-dependent self-selection effect by introducing highly doped silicon (Si) electrode, which is promising for large-scale integration. It is observed that with highly doped Si as the bottom electrode (BE), the RRAM devices show non-linear (>103) I-V characteristic during negative Forming/Set operation and linear behavior during positive Forming/Set operation. The underling mechanisms for the linear and non-linear behaviors at low resistance states of the proposed device are extensively investigated by varying operation modes, different metal electrodes, and Si doping type. Experimental data and theoretical analysis demonstrate that the operation-polarity-dependent self-selection effect in our devices originates from the Schottky barrier between the TaOx layer and the interfacial SiOx formed by reaction between highly doped Si BE and immigrated oxygen ions in the conductive filament area.

  1. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO3 phosphors

    NASA Astrophysics Data System (ADS)

    Lewis, Crystal S.; Liu, Haiqing; Han, Jinkyu; Wang, Lei; Yue, Shiyu; Brennan, Nicholas A.; Wong, Stanislaus S.

    2016-01-01

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reaction temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO3 and SrTiO3 motifs, but CaTiO3 still performed as the most effective host material amongst the three perovskite systems tested. Moreover, the ligand-capped CdSe QD-doped CaTiO3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite

  2. Formation of core@multi-shell CdSe@CdZnS-ZnS quantum dot heterostructure films by pulse electrophoresis deposition

    NASA Astrophysics Data System (ADS)

    Raj, Sudarsan; Yun, Jin Hyeon; Adilbish, Ganpurev; Ch, Rama Krishna; Lee, In Hwan; Lee, Min Sang; Yu, Yeon-Tae

    2015-07-01

    CdSe@CdZnS-ZnS core@multi-shell quantum dot (QD) heterostructures were deposited on fluorine doped tinoxide (FTO) glass substrate by pulse electrophoresis deposition (EPD). Field emissions scanning electron microscopy (FESEM) images reveal that the number of QDs deposited on the substrate increased with prolonged deposition time. Ethanol is the better solution medium as compared to 2-propanol for pulse electrophoresis deposition. For longer deposition time the intensity of photo luminescence (PL) peak increased.

  3. Properties of ferroelectric/ferromagnetic thin film heterostructures

    SciTech Connect

    Chen, Daming; Harward, Ian; Linderman, Katie; Economou, Evangelos; Celinski, Zbigniew; Nie, Yan

    2014-05-07

    Ferroelectric/ferromagnetic thin film heterostructures, SrBi{sub 2}Ta{sub 2}O{sub 9}/BaFe{sub 12}O{sub 19} (SBT/BaM), were grown on platinum-coated Si substrates using metal-organic decomposition. X-ray diffraction patterns confirmed that the heterostructures contain only SBT and BaM phases. The microwave properties of these heterostructures were studied using a broadband ferromagnetic resonance (FMR) spectrometer from 35 to 60 GHz, which allowed us to determine gyromagnetic ratio and effective anisotropy field. The FMR linewidth is as low as140 Oe at 58 GHz. In addition, measurements of the effective permittivity of the heterostructures were carried out as a function of bias electric field. All heterostructures exhibit hysteretic behavior of the effective permittivity. These properties indicate that such heterostructures have potential for application in dual electric and magnetic field tunable resonators, filters, and phase shifters.

  4. Heterostructures based on inorganic and organic van der Waals systems

    SciTech Connect

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-09-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS{sub 2} heterostructures for memory devices; graphene/MoS{sub 2}/WSe{sub 2}/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  5. Properties of ferroelectric/ferromagnetic thin film heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Daming; Harward, Ian; Linderman, Katie; Economou, Evangelos; Nie, Yan; Celinski, Zbigniew

    2014-05-01

    Ferroelectric/ferromagnetic thin film heterostructures, SrBi2Ta2O9/BaFe12O19 (SBT/BaM), were grown on platinum-coated Si substrates using metal-organic decomposition. X-ray diffraction patterns confirmed that the heterostructures contain only SBT and BaM phases. The microwave properties of these heterostructures were studied using a broadband ferromagnetic resonance (FMR) spectrometer from 35 to 60 GHz, which allowed us to determine gyromagnetic ratio and effective anisotropy field. The FMR linewidth is as low as140 Oe at 58 GHz. In addition, measurements of the effective permittivity of the heterostructures were carried out as a function of bias electric field. All heterostructures exhibit hysteretic behavior of the effective permittivity. These properties indicate that such heterostructures have potential for application in dual electric and magnetic field tunable resonators, filters, and phase shifters.

  6. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO3 phosphors

    DOE PAGESBeta

    Crystal S. Lewis; Wong, Stanislaus S.; Liu, Haiqing; Han, Jinkyu; Wang, Lei; Yue, Shiyu; Brennan, Nicholas A.

    2016-01-04

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reaction temperature,more » and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO3 and SrTiO3 motifs, but CaTiO3 still performed as the most effective host material amongst the three perovskite systems tested. Furthermore, the ligand-capped CdSe QD-doped CaTiO3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals.« less

  7. Probing charge transfer in a novel class of luminescent perovskite-based heterostructures composed of quantum dots bound to RE-activated CaTiO3 phosphors.

    PubMed

    Lewis, Crystal S; Liu, Haiqing; Han, Jinkyu; Wang, Lei; Yue, Shiyu; Brennan, Nicholas A; Wong, Stanislaus S

    2016-01-28

    We report on the synthesis and structural characterization of novel semiconducting heterostructures composed of cadmium selenide (CdSe) quantum dots (QDs) attached onto the surfaces of novel high-surface area, porous rare-earth-ion doped alkaline earth titanate micron-scale spherical motifs, i.e. both Eu-doped and Pr-doped CaTiO3, composed of constituent, component nanoparticles. These unique metal oxide perovskite building blocks were created by a multi-pronged synthetic strategy involving molten salt and hydrothermal protocols. Subsequently, optical characterization of these heterostructures indicated a clear behavioral dependence of charge transfer in these systems upon a number of parameters such as the nature of the dopant, the reaction temperature, and particle size. Specifically, 2.7 nm diameter ligand-functionalized CdSe QDs were anchored onto sub-micron sized CaTiO3-based spherical assemblies, prepared by molten salt protocols. We found that both the Pr- and Eu-doped CaTiO3 displayed pronounced PL emissions, with maximum intensities observed using optimized lanthanide concentrations of 0.2 mol% and 6 mol%, respectively. Analogous experiments were performed on Eu-doped BaTiO3 and SrTiO3 motifs, but CaTiO3 still performed as the most effective host material amongst the three perovskite systems tested. Moreover, the ligand-capped CdSe QD-doped CaTiO3 heterostructures exhibited effective charge transfer between the two individual constituent nanoscale components, an assertion corroborated by the corresponding quenching of their measured PL signals. PMID:26725486

  8. Airplane dopes and doping

    NASA Technical Reports Server (NTRS)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  9. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics.

    PubMed

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K W

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr(3+), owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  10. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    PubMed Central

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-01-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process. PMID:27339815

  11. In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics

    NASA Astrophysics Data System (ADS)

    Sun, Hai Ling; Wu, Xiao; Chung, Tat Hang; Kwok, K. W.

    2016-06-01

    Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr3+, owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process.

  12. In situ electrodeposition of a Cu2O/SnO2 periodical heterostructure film for photosensor applications.

    PubMed

    Cui, Guangliang; Xiao, Chuanhai; Zhang, Pinhua; Zhang, Mingzhe

    2016-04-20

    Heterostructure materials with a strictly periodic arrangement in hundreds of microns based on tunneling modulation are ideal candidates for micro-nanodevice applications. In this paper, we propose a Cu2O/SnO2 periodical heterostructure film, which is prepared by electrochemical deposition in a quasi-2D ultra-thin liquid layer. The surface morphology and the component of the film were analyzed by scanning electron microscopy (SEM), scanning probe microscopy (SPM) and transmission electron microscopy (TEM). The influences of frequency and amplitude of periodic deposition potential on the morphology and regular distribution of the interface were studied. The photoresponsivity of this material was researched, and the response behaviors for different illumination conditions were recorded carefully. Based on the tunneling modulation mechanism, it exhibits reasonable photoresponsivity to UV light. PMID:27040464

  13. Metal-insulator transition in AlxGa1-xAs/GaAs heterostructures with large spacer width

    NASA Astrophysics Data System (ADS)

    Gold, A.

    1991-10-01

    Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure with a thick spacer layer α. Due to multiple-scattering effects a metal-insulator transition occurs at a critical electron density Nc=N1/2i/(4π1/2α) (Ni is the impurity density). The transport mean free path l(t) (calculated in Born approximation) at the metal-insulator transition is l(t)c=2α. A localization criterion in terms of the renormalized single-particle mean free path l(sr) is presented: kFcl(sr)c=(1/2)1/2 (kFc is the Fermi wave number at the critical density). I compare the theoretical results with recent experimental results found in AlxGa1-xAs/GaAs heterostructures with large spacer width: 1200<α<2800 Å. Remote impurity doping and homogeneous background doping are considered. The only fitting parameter used for the theoretical results is the background doping density NB=6×1013 cm-3. My theory is in fair agreement with the experimental results.

  14. Liquid chromatography-high resolution/ high accuracy (tandem) mass spectrometry-based identification of in vivo generated metabolites of the selective androgen receptor modulator ACP-105 for doping control purposes.

    PubMed

    Thevis, Mario; Thomas, Andreas; Piper, Thomas; Krug, Oliver; Delahaut, Philippe; Schänzer, Wilhelm

    2014-01-01

    Selective androgen receptor modulators (SARMs) represent an emerging class of therapeutics which have been prohibited in sport as anabolic agents according to the regulations of the World Anti-Doping Agency (WADA) since 2008. Within the past three years, numerous adverse analytical findings with SARMs in routine doping control samples have been reported despite missing clinical approval of these substances. Hence, preventive doping research concerning the metabolism and elimination of new therapeutic entities of the class of SARMs are vital for efficient and timely sports drug testing programs as banned compounds are most efficiently screened when viable targets (for example, characteristic metabolites) are identified. In the present study, the metabolism of ACP-105, a novel SARM drug candidate, was studied in vivo in rats. Following oral administration, urine samples were collected over a period of seven days and analyzed for metabolic products by Liquid chromatography-high resolution/high accuracy (tandem) mass spectrometry. Samples were subjected to enzymatic hydrolysis prior to liquid-liquid extraction and a total of seven major phase-I metabolites were detected, three of which were attributed to monohydroxylated and four to bishydroxylated ACP-105. The hydroxylation sites were assigned by means of diagnostic product ions and respective dissociation pathways of the analytes following positive or negative ionization and collisional activation as well as selective chemical derivatization. The identified metabolites were used as target compounds to investigate their traceability in a rat elimination urine samples study and monohydroxylated and bishydroxylated species were detectable for up to four and six days post-administration, respectively. PMID:24881457

  15. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials

    PubMed Central

    Yu, Woo Jong; Liu, Yuan; Zhou, Hailong; Yin, Anxiang; Li, Zheng; Huang, Yu

    2014-01-01

    Layered materials of graphene and MoS2, for example, have recently emerged as an exciting material system for future electronics and optoelectronics. Vertical integration of layered materials can enable the design of novel electronic and photonic devices. Here, we report highly efficient photocurrent generation from vertical heterostructures of layered materials. We show that vertically stacked graphene–MoS2–graphene and graphene–MoS2–metal junctions can be created with a broad junction area for efficient photon harvesting. The weak electrostatic screening effect of graphene allows the integration of single or dual gates under and/or above the vertical heterostructure to tune the band slope and photocurrent generation. We demonstrate that the amplitude and polarity of the photocurrent in the gated vertical heterostructures can be readily modulated by the electric field of an external gate to achieve a maximum external quantum efficiency of 55% and internal quantum efficiency up to 85%. Our study establishes a method to control photocarrier generation, separation and transport processes using an external electric field. PMID:24162001

  16. Low energy consumption spintronics using multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Trassin, Morgan

    2016-01-01

    We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.

  17. Superconducting cuprate heterostructures for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  18. Designing heterostructures -- a route towards new superconductors

    NASA Astrophysics Data System (ADS)

    Kopp, Thilo

    2013-03-01

    By now it has become technologically feasible to grow controllably transition metal oxides layer by layer. In effect, the achieved progress allows to design heterostructures with optimized electronic properties. The talk will specifically address scenarios for interface superconductivity and the possibility to raise the transition temperature of bulk superconductors by layer design. Heterostructures offer a complexity beyond that of bulk materials. The nature of the superconducting states formed in layered materials and at interfaces is a fascinating topic of recent research which will be in the focus of this presentation. This work was supported by the DFG (TRR 80). I thankfully acknowledge the collaboration with Natalia Pavlenko, Peter Hirschfeld, Cyril Stephanos, Florian Loder, Arno Kampf, and Jochen Mannhart.

  19. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-25

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2−x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI{sup 3}, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e−ph}≈1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  20. Radiation effects on III-V heterostructure devices

    NASA Astrophysics Data System (ADS)

    Jun, Bongim

    The neutron and electron radiation effects in III-V compound semiconductor heterostructure devices are studied in this thesis. Three types of devices investigated are AlGaAs/GaAs high electron mobility transistors (HEMTs), AlGaAs/InGaAs/GaAs heterostructure insulated gate field effect transistors (HIGFETs), and InP/InGaAs/InGaAs single heterojunction bipolar transistors (SHBTs). HEMTs and HIGFETs are primarily investigated for neutron irradiation effects. Detailed optimized processing of HEMT devices is introduced. Numerical as well as analytical models that incorporate radiation-induced degradation effects in HEMTs and HIGFETs are developed. The most prominent radiation effects appearing on both HEMT and HIGFET devices are increase of threshold voltage (VT) and decrease of transconductance (gm) as radiation dose increases. These effects are responsible for drain current degradation under given bias conditions after irradiation. From our experimental neutron irradiation study and our theoretical models, we concluded that threshold voltage increase is due to the radiation-induced acceptor-like (negatively charged) traps in the GaAs channel region removing carriers. The mobility degradation in the channel is responsible for gm decrease. Series resistance increase is also related to carrier removal and mobility degradation. Traps introduced in the GaAs region affect the device performance more than the traps in the AlGaAs doped region. V T and gm of HIGFET devices are less affected by neutron radiation than they are in HEMTs. This difference is attributed to different shapes of the quantum well in the two devices. The main effects of electron and neutron irradiation of SHBTs are decrease of collector current (IC), decrease of common-emitter DC gain, increase of the collector output conductance (DeltaI C/DeltaVCE), and increase of collector-collector offset voltage. The decrease of breakdown voltage of reverse biased base-emitter junction diode is responsible for

  1. Mechanical strain and degradation of laser heterostructures

    NASA Astrophysics Data System (ADS)

    Ptashchenko, Alexander A.; Ptashchenko, Fedor A.; Maslejeva, Natalia V.; Sadova, Galina V.

    2001-02-01

    The effect of mechanical strain on degradation processes in GaAs-AlGaAs laser heterostructures (LHS) with stripe geometry and in light emitting diodes (LED) was experimentally studied. The strain was produced either by axial pressure or by indentation with a Wickers pyramid. We show that degradation affects the degree of polarization and the far-field distribution of laser emission. The effect of strain on the degradation intensity is estimated.

  2. Growth and electrical characterization of Al0.24Ga0.76As/AlxGa1-xAs/Al0.24Ga0.76As modulation-doped quantum wells with extremely low x

    NASA Astrophysics Data System (ADS)

    Gardner, Geoffrey C.; Watson, John D.; Mondal, Sumit; Deng, Nianpei; Csáthy, Gabor A.; Manfra, Michael J.

    2013-06-01

    We report on the growth and electrical characterization of modulation-doped Al0.24Ga0.76As/AlxGa1-xAs/Al0.24Ga0.76As quantum wells with mole fractions as low as x = 0.00057. Such structures will permit detailed studies of the impact of alloy disorder in the fractional quantum Hall regime. At zero magnetic field, we extract an alloy scattering rate of 24 ns-1 per%Al. Additionally, we find that for x as low as 0.00057 in the quantum well, alloy scattering becomes the dominant mobility-limiting scattering mechanism in ultra-high purity two-dimensional electron gases typically used to study the fragile ν = 5/2 and ν = 12/5 fractional quantum Hall states.

  3. Real-time polarization mode dispersion monitoring system for a multiple-erbium-doped fiber amplifier, dense wavelength division multiplexing optical fiber transmission by amplified spontaneous emission modulation and acousto-optic tunable fiber scanning techniques.

    PubMed

    Tseng, Bao-Jang; Tarn, Chen-Wen

    2009-03-01

    Without interruption or affecting the transmission of ordinary payload channels, we propose a real time polarization mode dispersion (PMD) monitoring system for long-haul, multiple erbium-doped fiber amplifier (EDFA), dense wavelength division multiplexing (DWDM) optical fiber transmission using modulated amplified spontaneous emission (ASE) of one of the EDFAs as the supervisory (SV) signal source. An acousto-optic tunable filter (AOTF) at the receiver side is adopted to scan the spectrum of the transmitted ASE SV signal. Using the fixed-analyzer method, PMDs of different wavelength bands that range from 1545 to 1580 nm of a DWDM fiber-optic communication system can be found by adaptively changing the radio frequency of the AOTF. The resolution and the measuring range of the proposed monitoring system can be significantly improved by cascading the AOTFs at the receiver side. PMID:19252622

  4. Diode multipliers for submillimeter-wave InAlAs/InGaAs heterostructure monolithic integrated circuits

    NASA Technical Reports Server (NTRS)

    Kwon, Y.; Pavlidis, D.

    1991-01-01

    InAlAs/InGaAs heterostructures are studied as multiplier elements for submillimeter-wave monolithic integrated circuits. The designs considered for this purpose are based on the principle of conventional HEMT, HEMT with n+ bottom layer, and a new proposed scheme of quantum-confined modulated charge (QCMC). The QCMC diode is analyzed theoretically and experimentally showing its potential operation capability at 1.5 THz.

  5. Graphene diamond-like carbon films heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ˜25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  6. Picosecond photoresponse in van der Waals heterostructures.

    PubMed

    Massicotte, M; Schmidt, P; Vialla, F; Schädler, K G; Reserbat-Plantey, A; Watanabe, K; Taniguchi, T; Tielrooij, K J; Koppens, F H L

    2016-01-01

    Two-dimensional crystals such as graphene and transition-metal dichalcogenides demonstrate a range of unique and complementary optoelectronic properties. Assembling different two-dimensional materials in vertical heterostructures enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides with a picosecond photoresponse comparable to that of graphene, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices. PMID:26436565

  7. Correlated Heterostructures for Efficient Solar Cells

    NASA Astrophysics Data System (ADS)

    Assmann, Elias; Aichhorn, Markus; Sangiovanni, Giorgio; Okamoto, Satoshi; Blaha, Peter; Bhandary, Sumanta; Held, Karsten

    Polar |non-polar oxide heterostructures such as LaAlO3 | SrTiO3 have become well-known for the many intriguing phenomena occurring at the interface, especially the internal potential gradient and the resulting 2d electron gas. We propose to make use of these unique systems as absorbing materials for high-efficiency solar cells. In particular, LaVO3 | SrTiO3 (i) has a direct band gap ~1.1 eV, nearly optimal for a solar cell; (ii) the internal potential gradient serves to efficiently separate the photo-generated electron-hole pairs and reduce recombination losses; (iii) the conducting interface offers a natural contact for charge-carrier extraction. Furthermore, (iv) oxide heterostructures afford the flexibility to combine layers with different gaps, e.g. LaVO3 with LaFeO3, in order to achieve even higher efficiencies with band-gap graded solar cells. We use density-functional theory and dynamical mean-field theory to study this strongly correlated heterostructure.

  8. Picosecond photoresponse in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L.

    2016-01-01

    Two-dimensional crystals such as graphene and transition-metal dichalcogenides demonstrate a range of unique and complementary optoelectronic properties. Assembling different two-dimensional materials in vertical heterostructures enables the combination of these properties in one device, thus creating multifunctional optoelectronic systems with superior performance. Here, we demonstrate that graphene/WSe2/graphene heterostructures ally the high photodetection efficiency of transition-metal dichalcogenides with a picosecond photoresponse comparable to that of graphene, thereby optimizing both speed and efficiency in a single photodetector. We follow the extraction of photoexcited carriers in these devices using time-resolved photocurrent measurements and demonstrate a photoresponse time as short as 5.5 ps, which we tune by applying a bias and by varying the transition-metal dichalcogenide layer thickness. Our study provides direct insight into the physical processes governing the detection speed and quantum efficiency of these van der Waals heterostuctures, such as out-of-plane carrier drift and recombination. The observation and understanding of ultrafast and efficient photodetection demonstrate the potential of hybrid transition-metal dichalcogenide-based heterostructures as a platform for future optoelectronic devices.

  9. Voltage control of magnetism in multiferroic heterostructures

    PubMed Central

    Liu, Ming; Sun, Nian X.

    2014-01-01

    Electrical tuning of magnetism is of great fundamental and technical importance for fast, compact and ultra-low power electronic devices. Multiferroics, simultaneously exhibiting ferroelectricity and ferromagnetism, have attracted much interest owing to the capability of controlling magnetism by an electric field through magnetoelectric (ME) coupling. In particular, strong strain-mediated ME interaction observed in layered multiferroic heterostructures makes it practically possible for realizing electrically reconfigurable microwave devices, ultra-low power electronics and magnetoelectric random access memories (MERAMs). In this review, we demonstrate this remarkable E-field manipulation of magnetism in various multiferroic composite systems, aiming at the creation of novel compact, lightweight, energy-efficient and tunable electronic and microwave devices. First of all, tunable microwave devices are demonstrated based on ferrite/ferroelectric and magnetic-metal/ferroelectric composites, showing giant ferromagnetic resonance (FMR) tunability with narrow FMR linewidth. Then, E-field manipulation of magnetoresistance in multiferroic anisotropic magnetoresistance and giant magnetoresistance devices for achieving low-power electronic devices is discussed. Finally, E-field control of exchange-bias and deterministic magnetization switching is demonstrated in exchange-coupled antiferromagnetic/ferromagnetic/ferroelectric multiferroic hetero-structures at room temperature, indicating an important step towards MERAMs. In addition, recent progress in electrically non-volatile tuning of magnetic states is also presented. These tunable multiferroic heterostructures and devices provide great opportunities for next-generation reconfigurable radio frequency/microwave communication systems and radars, spintronics, sensors and memories. PMID:24421373

  10. Graphene diamond-like carbon films heterostructure

    SciTech Connect

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-03-09

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications.

  11. Magnetoelectric Heterostructures for Spintronics and Magnetic Sensing

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang

    Magnetoelectric heterostructures with coupled magnetization and electric polarization across their interfaces enable significantly improvement of performance of many devices such as magnetic sensors, microwave magnetic devices, and spintronics. I will first show that by utilizing a unique ferroelastic polarization switching pathway, one can achieve non-volatile electric-field-switching of magnetism in multiferroic heterostructures with different ferroelectric single crystals through a strain-mediated magnetoelectric coupling. In the same system, with atomically-thin ferromagnets, the interfacial charge-mediated should also be taken into account. The charge- and strain-mediated coupling mechanisms are demonstrated and precisely quantified by the electric-field-tuning of ferromagnetic resonance. With the same technique, magnetic relaxation including intrinsic and extrinsic damping has also been shown to be strongly correlated to the strain, which is attributed to the electric-field-modification of spin-orbit coupling. Moreover, I will also show the tuning of spin-orbit torques from the spin-Hall effect with applied voltage probed with spin-torque ferromagnetic resonance and show the possible application on voltage tunable spin-Hall nano-oscillators. In the second part of my thesis, I will show an ultra-miniaturized magnetoelectric nano-electromechanical system (NEMS) resonator based on an AlN/FeGaB magnetoelectric heterostructure for detecting wide band magnetic fields. With the high Quality factor and the ultra-high resonance frequency, a low DC magnetic field detection limit of 300 pT has been demonstrated.

  12. Blue Phosphorene/MS2 (M = Nb, Ta) Heterostructures As Promising Flexible Anodes for Lithium-Ion Batteries.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-06-01

    The idea of forming van der Waals (vdW) heterostructures by integrating various two-dimensional materials breaks the limitation of the restricted properties of single material systems. In this work, the electronic structure modulation, stability, entire stress response and the Li adsorption properties of heterostructures by combining blue phosphorene (BlueP) and MS2 (M = Nb, Ta) together were systematically investigated using first-principles calculations based on vdW corrected density functional theory. We revealed that BlueP/MS2 vdW heterostructures possess good structural stability with negative formation energy, enhanced electrical conductivity, improved mechanical flexibility (ultimate strain >17%) and high-capacity (528.257 mAhg(-1) for BlueP/NbS2). The results suggest that BlueP/NbS2 and BlueP/TaS2 heterostructures are ideal candidates used as promising flexible electrode for high recycling rate and portable lithium-ion batteries, which satisfy the requirement of next-generation flexible energy storage and conversion devices. PMID:27165567

  13. Tunable Interface Non-linear Electron Transport in Semiconductor Nanowire Heterostructure and Its Application in Optoelectronics

    NASA Astrophysics Data System (ADS)

    Chen, Guannan

    Understanding the effects of finite size and dimensionality on the interaction of light with nanoscale semiconductor heterostructure is central to identifying and exploiting novel modes in optoelectronic devices. In type-I heterostructured core-shell GaAs/AlxGa1-xAs nanowires, the real space transfer (RST) of photogenerated hot electrons across the interface from the GaAs core to the AlxGa1-xAs shell forms the basis of a new family of optoelectronic devices by a carefully designed and optimized nanofabrication process. Due to the large mobility difference, we observed negative differential resistance (NDR) on single nanowire devices. External modulation of the transfer rates, manifested as a large tunability of the voltage onset of NDR, is achieved using three different modes: electrostatic gating, incident photon flux, and photon energy. In this dissertation, the physics of coupling of external control to transfer rate was investigated. The combined influences of geometric confinement, heterojunction shape and carrier scattering on hot-electron transfer is discussed. Temperature-dependent transport study under monochromatic tunable laser illumination reveals an ultrafast carrier dynamics related to RST of excess carriers, which provides an insight into hot carrier cooling. Device element showing adjustable phase shift and frequency doubling of ac modulation is demonstrated. For a full understanding, Carrier transport properties are probed through electron beam induced current, which is capable of imaging sub-surface feature in excess carrier transport. Along with simulation of injected electron trajectories, selective probing of core and shell by tuning electron beam energies reveals axial and bias dependent transport along parallel channels. The drift and diffusion component of the excess carrier current is deconvoluted from a coupled decay length, from which lower than bulk shell electron mobility is extracted. A precise knowledge of band edge discontinuities at

  14. General Considerations of the Electrostatic Boundary Conditions in Oxide Heterostructures

    SciTech Connect

    Higuchi, Takuya

    2011-08-19

    different families creates a host of electrostatic issues. They can be somewhat avoided if, as in many semiconductor heterostructures, only one family is used, with small perturbations (such as n-type or p-type doping) around them. However, for most transition metal oxides, this is greatly restrictive. For example, LaMnO{sub 3} and SrMnO{sub 3} are both insulators in part due to strong electron correlations, and only in their solid solution does 'colossal magnetoresistance' emerge in bulk. Similarly, the metallic superlattice shown in Fig. 1(c) can be considered a nanoscale deconstruction of (La,Sr)TiO{sub 3} to the insulating parent compounds. Therefore the aspiration to arbitrarily mix and match perovskite components requires a basic understanding of, and ultimately control over, these issues. In this context, here we present basic electrostatic features that arise in oxide heterostructures which vary the ionic charge stacking sequence. In close relation to the analysis of the stability of polar surfaces and semiconductor heterointerfaces, the variation of the dipole moment across a heterointerface plays a key role in determining its stability. Different self-consistent assignments of the unit cell are presented, allowing the polar discontinuity picture to be recast in terms of an equivalent local charge neutrality picture. The latter is helpful in providing a common framework with which to discuss electronic reconstructions, local-bonding considerations, crystalline defects, and lattice polarization on an equal footing, all of which are the subject of extensive current investigation.

  15. Theory of resonant tunneling in bilayer-graphene/hexagonal-boron-nitride heterostructures

    SciTech Connect

    Barrera, Sergio C. de la; Feenstra, Randall M.

    2015-03-02

    A theory is developed for calculating vertical tunneling current between two sheets of bilayer graphene separated by a thin, insulating layer of hexagonal boron nitride, neglecting many-body effects. Results are presented using physical parameters that enable comparison of the theory with recently reported experimental results. Observed resonant tunneling and negative differential resistance in the current–voltage characteristics are explained in terms of the electrostatically-induced band gap, gate voltage modulation, density of states near the band edge, and resonances with the upper sub-band. These observations are compared to ones from similar heterostructures formed with monolayer graphene.

  16. Self-acousto-optic modulation and orthogonality violation in the transverse modes of a broad-area Nd-doped yttrium-aluminum-garnet single-shot laser

    SciTech Connect

    Soler Rus, M. Odin; Cabrera-Granado, E.; Guerra Perez, J. M.

    2011-05-15

    Self-acousto-optic Raman-Nath modulation and nonorthogonal transversal modes are found in a broad-area Nd:YAG single-shot laser. The device is free from the thermal-induced effects previously related to orthogonality violation and the acousto-optic modulation comes from a shock wave produced by the discharge of the flash lamps that optically pump the laser. The experimental findings are reproduced by a general model of a class B laser.

  17. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-12-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.

  18. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices

    NASA Astrophysics Data System (ADS)

    Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2014-10-01

    We investigate the intrinsic performance of vertical and lateral graphene-based heterostructure field-effect transistors, currently considered the most promising options to exploit graphene properties in post-CMOS electronics. We focus on three recently proposed graphene-based transistors, that in experiments have exhibited large current modulation. Our analysis is based on device simulations including the self-consistent solution of the electrostatic and transport equations within the Non-Equilibrium Green's Function formalism. We show that the lateral heterostructure transistor has the potential to outperform CMOS technology and to meet the requirements of the International Technology Roadmap for Semiconductors for the next generation of semiconductor integrated circuits. On the other hand, we find that vertical heterostructure transistors miss these performance targets by several orders of magnitude, both in terms of switching frequency and delay time, due to large intrinsic capacitances, and unavoidable current/capacitance tradeoffs.

  19. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices

    PubMed Central

    Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2014-01-01

    We investigate the intrinsic performance of vertical and lateral graphene-based heterostructure field-effect transistors, currently considered the most promising options to exploit graphene properties in post-CMOS electronics. We focus on three recently proposed graphene-based transistors, that in experiments have exhibited large current modulation. Our analysis is based on device simulations including the self-consistent solution of the electrostatic and transport equations within the Non-Equilibrium Green's Function formalism. We show that the lateral heterostructure transistor has the potential to outperform CMOS technology and to meet the requirements of the International Technology Roadmap for Semiconductors for the next generation of semiconductor integrated circuits. On the other hand, we find that vertical heterostructure transistors miss these performance targets by several orders of magnitude, both in terms of switching frequency and delay time, due to large intrinsic capacitances, and unavoidable current/capacitance tradeoffs. PMID:25328156

  20. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices.

    PubMed

    Logoteta, Demetrio; Fiori, Gianluca; Iannaccone, Giuseppe

    2014-01-01

    We investigate the intrinsic performance of vertical and lateral graphene-based heterostructure field-effect transistors, currently considered the most promising options to exploit graphene properties in post-CMOS electronics. We focus on three recently proposed graphene-based transistors, that in experiments have exhibited large current modulation. Our analysis is based on device simulations including the self-consistent solution of the electrostatic and transport equations within the Non-Equilibrium Green's Function formalism. We show that the lateral heterostructure transistor has the potential to outperform CMOS technology and to meet the requirements of the International Technology Roadmap for Semiconductors for the next generation of semiconductor integrated circuits. On the other hand, we find that vertical heterostructure transistors miss these performance targets by several orders of magnitude, both in terms of switching frequency and delay time, due to large intrinsic capacitances, and unavoidable current/capacitance tradeoffs. PMID:25328156

  1. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Luo, Jikui; Yu, Bin

    2014-09-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics.

  2. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures.

    PubMed

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Luo, Jikui; Yu, Bin

    2014-09-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H2O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics. PMID:25116064

  3. Effect of heterostructure design on carrier injection and emission characteristics of 295 nm light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Stellmach, Joachim; Rothe, Mark-Antonius; Reich, Christoph; Ledentsov, Nikolay; Pristovsek, Markus; Wernicke, Tim; Kolbe, Tim; Lobo-Ploch, Neysha; Rass, Jens; Kneissl, Michael

    2015-05-21

    The effects of the heterostructure design on the injection efficiency and external quantum efficiency of ultraviolet (UV)-B light emitting diodes (LEDs) have been investigated. It was found that the functionality of the Al{sub x}Ga{sub 1−x}N:Mg electron blocking layer is strongly influenced by its aluminum mole fraction x and its magnesium doping profile. By comparing LED electroluminescence, quantum well photoluminescence, and simulations of LED heterostructure, we were able to differentiate the contributions of injection efficiency and internal quantum efficiency to the external quantum efficiency of UV LEDs. For the optimized heterostructure using an Al{sub 0.7}Ga{sub 0.3}N:Mg electron blocking layer with a Mg to group III ratio of 4% in the gas phase the electron leakage currents are suppressed without blocking the injection of holes into the multiple quantum well active region. Flip chip mounted LED chips have been processed achieving a maximum output power of 3.5 mW at 290 mA and a peak external quantum efficiency of 0.54% at 30 mA.

  4. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures.

    PubMed

    Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Addou, Rafik; Asensio, Maria C; Batzill, Matthias

    2015-02-11

    Artificial heterostructures assembled from van der Waals materials promise to combine materials without the traditional restrictions in heterostructure-growth such as lattice matching conditions and atom interdiffusion. Simple stacking of van der Waals materials with diverse properties would thus enable the fabrication of novel materials or device structures with atomically precise interfaces. Because covalent bonding in these layered materials is limited to molecular planes and the interaction between planes are very weak, only small changes in the electronic structure are expected by stacking these materials on top of each other. Here we prepare interfaces between CVD-grown graphene and MoS2 and report the direct measurement of the electronic structure of such a van der Waals heterostructure by angle-resolved photoemission spectroscopy. While the Dirac cone of graphene remains intact and no significant charge transfer doping is detected, we observe formation of band gaps in the π-band of graphene, away from the Fermi-level, due to hybridization with states from the MoS2 substrate. PMID:25629211

  5. Transparent conducting oxides: A -doped superlattice approach

    SciTech Connect

    Cooper, Valentino R; Seo, Sung Seok A.; Lee, Suyoun; Kim, Jun Sung; Choi, Woo Seok; Okamoto, Satoshi; Lee, Ho Nyung

    2014-01-01

    Two-dimensional electron gases (2DEGs) at the interface of oxide heterostructures have been the subject of recent experiment and theory, due to the intriguing phenomena that occur in confined electronic states. However, while much has been done to understand the origin of 2DEGs and related phenomena, very little has been explored with regards to the control of conduction pathways and the distribution of charge carriers. Using first principles simulations and experimental thin film synthesis methods, we examine the effect of dimensionality on carrier transport in La delta-doped SrTiO3 (STO) superlattices, as a function of the thickness of the insulating STO spacer. Our computed Fermi surfaces and layer-resolved carrier density proles demonstrate that there is a critical thickness of the STO spacer, below which carrier transport is dominated by three-dimensional conduction of interface charges arising from appreciable overlap of the quantum mechanical wavefunctions between neighboring delta-doped layers. We observe that, experimentally, these superlattices remain highly transparent to visible light. Band structure calculations indicate that this is a result of the appropriately large gap between the O 2p and Ti d states. The tunability of the quantum mechanical wavefunctions and the optical transparency highlight the potential for using oxide heterostructures in novel opto-electronic devices; thus providing a route to the creation of novel transparent conducting oxides.

  6. Detecting spin accumulation in FM/ n-GaAs heterostructures using ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Liu, Changjiang; Geppert, Chad; Christie, Kevin; Stecklein, Gordon; Patel, Sahil; Palmstrøm, Chris; Crowell, Paul

    2015-03-01

    A distinguishing feature of spin accumulation in ferromagnet (FM)/semiconductor heterostructures is precession. This is the basis for detection techniques such as the Hanle effect, but these approaches become less effective as the spin lifetime in the semiconductor decreases. We report here on a technique in which the source magnetization is forced to precess at the ferromagnetic resonance frequency, allowing for the detection of spin accumulation even when the spin lifetime is short (less than 100 psec). The samples used in the experiments are MBE-grown FM/(001) n-GaAs heterostructures, in which the FM are the Heusler alloys Co2MnSi and Co2FeSi. These samples show non-local spin valve and Hanle signals in conventional electrical spin injection/detection measurements at low temperatures. Using the FMR technique, we detect the spin accumulation from 30 K to room temperature as a sharp resonance peak. The frequency dependence of the magnitude of the resonance peak allows for a measurement of the spin lifetime. Spin lifetimes as short as 40 psec are measured at room temperature in channels doped at 3x1016cm-3. This work was supported by the NSF under DMR-1104951, the NSF MRSEC program and C-SPIN, a SRC STARNET center sponsored by MARCO and DARPA.

  7. Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion

    NASA Astrophysics Data System (ADS)

    Sung Park, Pil; Reddy, Kongara M.; Nath, Digbijoy N.; Yang, Zhichao; Padture, Nitin P.; Rajan, Siddharth

    2013-04-01

    A simple method for the creation of Ohmic contact to 2D electron gas in AlGaN/GaN high electron-mobility transistors using Cr/graphene layer is demonstrated. A weak temperature dependence of this Ohmic contact observed in the range 77 to 300 K precludes thermionic emission or trap-assisted hopping as possible carrier-transport mechanisms. It is suggested that the Cr/graphene combination acts akin to a doped n-type semiconductor in contact with AlGaN/GaN heterostructure, and promotes carrier transport along percolating Al-lean paths through the AlGaN layer. This use of graphene offers a simple method for making Ohmic contacts to AlGaN/GaN heterostructures, circumventing complex additional processing steps involving high temperatures. These results could have important implications for the fabrication and manufacturing of AlGaN/GaN-based microelectronic and optoelectronic devices/sensors of the future.

  8. The 5th Engineering Foundation Conference: Advanced Heterostructure Transistors

    NASA Astrophysics Data System (ADS)

    1992-12-01

    The session on Heterostructure FET's concentrated on power devices. L. Eastman of Cornell University reported 5 W at 4 GHz with 70% efficiency and 15 dB of gain from a GE device, and 1 W at 4 GHz with 80% efficiency from Raytheon. J. Wolter described avalanche breakdown via DX centers in AlGaAs, and theoretical optimization of deep submicron HFET's for power handling was reported by M. Das. Silicon-germanium HBT's have made several improvements. K. Ismail of Cairo University and IBM showed how the Si/SiGe band lineup can be changed by strain relief, producing barriers to electrons as well as holes. Very high mobilities were reported, and the claim was made that SiGe devices at 77 K may be operationally equivalent to III-V devices at room temperature. This would clearly be important given the fabrication advantages of silicon-based technologies. Silicon-germanium HBT technology seemed to be too complex to insert into digital processes, but SiGe FET's may not be. Resonant-tunneling diodes (RTD's) have been combined into potentially multigigahertz shift-register circuits by G. Sollner at MIT Lincoln Laboratory. R. Behringer of AT&T reported experiments in optically controlled patterned growth of Na gratings using a technique that may be applicable to imaging In or Ga atoms during MBE growth. The consequences of optical phonon propagation in AlGaAs structures were discussed experimentally by G. Maracas of Motorola and L. Eastman of Cornell, and theoretically by K. W. Kim of the University of North Carolina. Interesting effects occur because optical phonons in GaAs cannot propagate in AlAs and conversely. HBT papers from III-V materials dwelt on materials issues nad centered on carbon doping and its associated strain and activation.

  9. High pressure optical studies of semiconductors and heterostructures. Final report

    SciTech Connect

    Chandrasekhar, H.R.

    1995-02-01

    The authors have studied the effects of hydrostatic pressure on the confined transitions in quantum well heterostructures, using lattice matched GaAs/Al{sub x}GaAs{sub 1{minus}x}As, strained layer narrow band gap GaSb/AlSb and In{sub x}Ga{sub 1{minus}x}As/GaAs, and strained layer wide gap Zn{sub 1{minus}x}Cd{sub x}Se/ZnSe as examples. Precise values of the energies, pressure coefficients and band alignments are determined. In strained epilayers the interfacial strains, deformation potential constants and compressibilities are deduced. Strain compensation, structural stability and phase transitions are probed. The authors have observed a novel type of Fano resonance of excitons in GaAs associated with the {Gamma} conduction band as they hybridize with the X and L continua via electron-phonon coupling. This effect is used to extract the intervalley electron-phonon deformation potential D{sub {Gamma}X} to be 10.7 {+-} 0.7 eV/{angstrom}. They have observed a new electron trap state in Al{sub 0.3}Ga{sub 0.7}As doped with silicon at pressure of 60 kbar. They postulate that this new trap state has a large lattice relaxation with the trap energy well above the X CB. These trap states may be present in all Al{sub x}Ga{sub x}As materials and may be dominant at large x values (0.7 < x < 1).

  10. van der Waals Heterostructures Grown by MBE

    NASA Astrophysics Data System (ADS)

    Hinkle, Christopher

    In this work, we demonstrate the high-quality MBE heterostructure growth of various layered 2D materials by van der Waals epitaxy (VDWE). The coupling of different types of van der Waals materials including transition metal dichalcogenide thin films (e.g., WSe2, WTe2, HfSe2) , insulating hexagonal boron nitride (h-BN), and topological insulators (e.g., Bi2Se3) allows for the fabrication of novel electronic devices that take advantage of unique quantum confinement and spin-based characteristics. The relaxed lattice-matching criteria of van der Waals epitaxy has allowed for high-quality heterostructure growth with atomically abrupt interfaces, allowing us to couple these materials based primarily on their band alignment and electronic properties. We will discuss the impact of sample preparation, surface reactivity, and lattice mismatch of various substrates (sapphire, graphene, TMDs, Bi2Se3) on the growth mode and quality of the films and will discuss our studies of substrate temperature and flux rates on the resultant growth and grain size. Structural and chemical characterization was conducted via reflection high energy electron diffraction (RHEED, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning tunneling microscopy/spectroscopy (STM/S), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Experimentally determined band alignments have been determined and compared with first-principles calculations allowing the design of novel low-power logic and magnetic memory devices. Initial results from the electrical characterization of these grown thin films and some simple devices will also be presented. These VDWE grown layered 2D materials show significant potential for fabricating novel heterostructures with tunable band alignments and magnetic properties for a variety of nanoelectronic and optoelectronic applications.

  11. Imaging and Spectroscopy of Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Leroy, Brian

    2014-03-01

    Graphene on hexagonal boron nitride (hBN) is an example of a van der Waals heterostructure where the electronic properties of the composite material can be different from either individual material. The lattice mismatch and twist angle between graphene and hBN produces a moiré pattern in STM topographic images. For all angles, we have observed that the surface roughness of the graphene is reduced by at least an order of magnitude as compared to graphene on silicon oxide devices. Near the charge neutrality point, graphene breaks up into a series of electron and hole puddles due to potential fluctuations. Using scanning tunneling spectroscopy, we have shown that at large twist angles the potential fluctuations are reduced by an order of magnitude by the presence of the hBN. Using heterostructures with graphite gates underneath the hBN, we have observed even further reduction in the potential fluctuations. At small twist angles, the hBN substrate produces a weak periodic potential which can have a wavelength of up to 14 nm. This periodic potential creates a new set of superlattice Dirac points at the wavevector of the potential. As the relative rotation angle between the graphene and hBN changes, the energy of this superlattice Dirac point changes. These new superlattice Dirac points have a reduced and anisotropic Fermi velocity. Using gate voltage dependent scanning tunneling spectroscopy, we have observed the effect of the new Dirac points on the local density of states in graphene. Our latest results on other graphene heterostructures will also be discussed.

  12. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    DOE PAGESBeta

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Los Alamos National Lab.; Smith, Darryl L.; Los Alamos National Lab.

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solutionmore » using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.« less

  13. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    SciTech Connect

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.

  14. Graphene-Boron Nitride Heterostructure Based Optoelectronic Devices for On-Chip Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Gao, Yuanda

    Graphene has emerged as an appealing material for a variety of optoelectronic applications due to its unique electrical and optical characteristics. In this thesis, I will present recent advances in integrating graphene and graphene-boron nitride (BN) heterostructures with confined optical architectures, e.g. planar photonic crystal (PPC) nanocavities and silicon channel waveguides, to make this otherwise weakly absorbing material optically opaque. Based on these integrations, I will further demonstrate the resulting chip-integrated optoelectronic devices for optical interconnects. After transferring a layer of graphene onto PPC nanocavities, spectral selectivity at the resonance frequency and orders-of-magnitude enhancement of optical coupling with graphene have been observed in infrared spectrum. By applying electrostatic potential to graphene, electro-optic modulation of the cavity reflection is possible with contrast in excess of 10 dB. And furthermore, a novel and complex modulator device structure based on the cavity-coupled and BN-encapsulated dual-layer graphene capacitor is demonstrated to operate at a speed of 1.2 GHz. On the other hand, an enhanced broad-spectrum light-graphene interaction coupled with silicon channel waveguides is also demonstrated with ?0.1 dB/?m transmission attenuation due to graphene absorption. A waveguide-integrated graphene photodetector is fabricated and shown 0.1 A/W photoresponsivity and 20 GHz operation speed. An improved version of a similar photodetector using graphene-BN heterostructure exhibits 0.36 A/W photoresponsivity and 42 GHz response speed. The integration of graphene and graphene-BN heterostructures with nanophotonic architectures promises a new generation of compact, energy-efficient, high-speed optoelectronic device concepts for on-chip optical communications that are not yet feasible or very difficult to realize using traditional bulk semiconductors.

  15. Impact ionization across the conduction-band-edge discontinuity of quantum-well heterostructures

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.

    1986-01-01

    Impact ionization across the band-edge discontinuity of quantum-well heterostructures is studied theoretically. A heterolayer structure of alternating Al(x)Ga(1-x)As and GaAs layers is considered where the GaAs layers are heavily doped with donors. Thus a large number of electrons is confined to the quantum-well region. Incident electrons are heated up by applied electric fields and collide with the electrons confined in the well regions. Both the ionization rate as a function of the incident energy, and average ionization rates are computed. Device applications of such multiple quantum-well structures and the possibility of a complete analog to the conventional photomultiplier are discussed.

  16. Evidence of impurity assisted tunneling in SiGe/Si heterostructures

    SciTech Connect

    Zhukavin, R. Kh.; Bekin, N. A.; Lobanov, D. N.; Drozdov, M. N.; Drozdov, Yu. N.; Kozlov, D. V.; Pryakhin, D. A.; Shastin, V. N.; Shengurov, V. G.

    2013-12-04

    The investigation of vertical transport in delta-doped SiGe/Si heterostructures has been presented. The asymmetrical triple barrier structure was grown by MBE technique. The delta layer of boron impurity was placed into the center of narrower quantum well. The growth procedure was followed by conventional processing including photolithography and plasma etching and magnetron sputtering. SIMS and X-rays diagnostics have been used to control the desired structure. The conductance of the structure has been measured at liquid helium temperature and analyzed. All pronounced resonances have been identified. The resonant feature near 60 mV has to be attributed to impurity-assisted tunneling that is supported by calculation of binding energy of the acceptor in the narrower quantum well.

  17. Enhancing the thermoelectric figure of merit through the reduction of bipolar thermal conductivity with heterostructure barriers

    SciTech Connect

    Bahk, Je-Hyeong Shakouri, Ali

    2014-08-04

    In this paper, we present theoretically that the thermoelectric figure of merit for a semiconductor material with a small band gap can be significantly enhanced near the intrinsic doping regime at high temperatures via the suppression of bipolar thermal conductivity when the minority carriers are selectively blocked by heterostructure barriers. This scheme is particularly effective in nanostructured materials where the lattice thermal conductivity is lowered by increased phonon scatterings at the boundaries, so that the electronic thermal conductivity including the bipolar term is limiting the figure of merit zT. We show that zT can be enhanced to above 3 for p-type PbTe, and above 2 for n-type PbTe at 900 K with minority carrier blocking, when the lattice thermal conductivity is as low as 0.3 W/m K.

  18. Room-temperature semiconductor heterostructure refrigeration

    NASA Astrophysics Data System (ADS)

    Chao, K. A.; Larsson, Magnus; Mal'shukov, A. G.

    2005-07-01

    With the proper design of semiconductor tunneling barrier structures, we can inject low-energy electrons via resonant tunneling, and take out high-energy electrons via a thermionic process. This is the operation principle of our semiconductor heterostructure refrigerator (SHR) without the need of applying a temperature gradient across the device. Even for the bad thermoelectric material AlGaAs, our calculation shows that at room temperature, the SHR can easily lower the temperature by 5-7K. Such devices can be fabricated with the present semiconductor technology. Besides its use as a kitchen refrigerator, the SHR can efficiently cool microelectronic devices.

  19. Photoluminescence method of testing double heterostructure wafers

    SciTech Connect

    Besomi, P.R.; Wilt, D.P.

    1984-04-10

    Under photoluminescence (PL) excitation, the lateral spreading of photo-excited carriers can suppress the photoluminescence signal from double heterostructure (DH) wafers containing a p-n junction. In any DH with a p-n junction in the active layer, PL is suppressed if the power of the excitation source does not exceed a threshold value. This effect can be advantageously used for a nondestructive optical determination of the top cladding layer sheet conductance as well as p-n junction misplacement, important parameters for injection lasers and LEDs.

  20. Pseudomorphic GeSn/Ge (001) heterostructures

    SciTech Connect

    Tonkikh, A. A.; Talalaev, V. G.; Werner, P.

    2013-11-15

    The synthesis of pseudomorphic GeSn heterostructures on a Ge (001) substrate by molecular-beam epitaxy is described. Investigations by transmission electron microscopy show that the GeSn layers are defect free and possess cubic diamondlike structure. Photoluminescence spectroscopy reveals interband radiative recombination in the GeSn quantum wells, which is identified as indirect transitions between the subbands of heavy electrons and heavy holes. On the basis of experimental data and modeling of the band structure of pseudomorphic GeSn compounds, the lower boundary of the bowing parameter for the indirect band gap is estimated as b{sub L} {>=} 1.47 eV.

  1. Challenges and opportunities of ZnO-related single crystalline heterostructures

    SciTech Connect

    Kozuka, Y.; Tsukazaki, A.; Kawasaki, M.

    2014-03-15

    Recent technological advancement in ZnO heterostructures has expanded the possibility of device functionalities to various kinds of applications. In order to extract novel device functionalities in the heterostructures, one needs to fabricate high quality films and interfaces with minimal impurities, defects, and disorder. With employing molecular-beam epitaxy and single crystal ZnO substrates, the density of residual impurities and defects can be drastically reduced and the optical and electrical properties have been dramatically improved for the ZnO films and heterostructures with Mg{sub x}Zn{sub 1-x}O. Here, we overview such recent technological advancement from various aspects of application. Towards optoelectronic devices such as a light emitter and a photodetector in an ultraviolet region, the development of p-type ZnO and the fabrication of excellent Schottky contact, respectively, have been subjected to intensive studies for years. For the former, the fine tuning of the growth conditions to make Mg{sub x}Zn{sub 1-x}O as intrinsic as possible has opened the possibilities of making p-type Mg{sub x}Zn{sub 1-x}O through NH{sub 3} doping method. For the latter, conducting and transparent polymer films spin-coated on Mg{sub x}Zn{sub 1-x}O was shown to give almost ideal Schottky junctions. The wavelength-selective detection can be realized with varying the Mg content. From the viewpoint of electronic devices, two-dimensional electrons confined at the Mg{sub x}Zn{sub 1-x}O/ZnO interfaces are promising candidate for quantum devices because of high electron mobility and strong electron-electron correlation effect. These wonderful features and tremendous opportunities in ZnO-based heterostructures make this system unique and promising in oxide electronics and will lead to new quantum functionalities in optoelectronic devices and electronic applications with lower energy consumption and high performance.

  2. Enhanced magnetization in ultrathin manganite layers via structural ``delta-doping'' of octahedral rotations

    NASA Astrophysics Data System (ADS)

    Moon, Eun Ju; Kirby, Brian J.; May, Steven J.

    The design of rotations and distortions of the corner-shared BO6 octahedra has emerged as an exciting platform to control electronic or magnetic behavior in ABO3 perovskite heterostructures. Recent work has shown that purely structural effects can be used to spatially confined magnetism in oxide heterostructures and point to the design of rotational gradients as routes to realize novel electronic or ferroic states in oxide superlattices [Nat. Comm. 5, 5710 (2014)]. Here, we demonstrate a structural ``delta doping'' approach for controlling magnetism in ultrathin layers within isovalent manganite superlattices. Polarized neutron reflectivity and temperature dependent magnetization measurements are used to correlate enhanced magnetization with local regions of suppressed octahedral rotations in the heterostructures. This work was supported by the U. S. Army Research Office under Grant No. W911NF-15-1-0133.

  3. Tuning Light Emission of a Pressure-Sensitive Silicon/ZnO Nanowires Heterostructure Matrix through Piezo-phototronic Effects.

    PubMed

    Chen, Mengxiao; Pan, Caofeng; Zhang, Taiping; Li, Xiaoyi; Liang, Renrong; Wang, Zhong Lin

    2016-06-28

    Based on white light emission at silicon (Si)/ZnO hetrerojunction, a pressure-sensitive Si/ZnO nanowires heterostructure matrix light emitting diode (LED) array is developed. The light emission intensity of a single heterostructure LED is tuned by external strain: when the applied stress keeps increasing, the emission intensity first increases and then decreases with a maximum value at a compressive strain of 0.15-0.2%. This result is attributed to the piezo-phototronic effect, which can efficiently modulate the LED emission intensity by utilizing the strain-induced piezo-polarization charges. It could tune the energy band diagrams at the junction area and regulate the optoelectronic processes such as charge carriers generation, separation, recombination, and transport. This study achieves tuning silicon based devices through piezo-phototronic effect. PMID:27276167

  4. In Situ TEM Study of Reversible and Irreversible Electroforming in Pt/Ti:NiO/Pt Heterostructures

    SciTech Connect

    D'Aquila, Kenneth; Liu, Yuzi; Iddir, Hakim; Petford-Long, Amanda K.

    2015-05-01

    Experimental verification of the microscopic origin of resistance switching in metal/oxide/metal heterostructures is needed for applications in non-volatile memory and neuromorphic computing. Numerous reports suggest that resistance switching in NiO is caused by local reduction of the oxide layer into nanoscale conducting filaments, but few reports have shown experimental evidence correlating electroforming with site-specific changes in composition. We have investigated the mechanisms of reversible and irreversible electroforming in 250–500 nm wide pillars patterned from a single Ta/Ti/Pt/Ti-doped NiO/Pt/Ta heterostructure and have shown that these can coexist within a single sample. We performed in situ transmission electron microscopy (TEM) electroform- ing and switching on each pillar to correlate the local electron transport behavior with microstructure and composition in each pillar. DFT calculations fitted to electron energy loss spectroscopy data showed that the Ti-doped NiO layer is partially reduced after reversible electroforming, with the formation of oxygen vacancies ordered into lines in the <110> direction. However, under the same probing conditions, adjacent pillars show irreversible electroforming caused by electromigration of metallic Ta to form a single bridge across the oxide layer. We propose that the different electroforming behaviors are related to microstructural variations across the sample and may lead to switching variability.

  5. Interface Electron Traps as a Source of Anomalous Capacitance in AlGaN/GaN Heterostructures

    NASA Astrophysics Data System (ADS)

    Osvald, J.

    2013-06-01

    We studied by modeling and simulation how deep traps at the AlGaN/GaN heterostructure interface influence the shape of capacitance-voltage ( C- V) curves of the heterostructure. Assuming donor and acceptor type of traps, we found differences in the C- V curves for sharp energy interface states or continuously distributed states with the same total concentration for the acceptor-type interface states. The background doping concentration of GaN had only a marginal influence on the shape of the C- V curves. We observed that an anomalous capacitance peak occurred for the continuous distribution of traps in the bandgap; a similar peak had been observed in experiment. We also saw that the capacitance curves shifted slightly to the right or to the left depending on the GaN doping concentration. A remarkable difference was found between the capacitance curves for the structures with the sharp acceptor trap level and continuous distribution of traps. For donor-type interface states, we found practically no influence on C- V curves since they remain populated and charge neutral during the measurement.

  6. Magnetocaloric Properties of Thin Film Heterostructures

    NASA Astrophysics Data System (ADS)

    Kirby, H.; Bauer, C.; Kirby, B. J.; Lau, J.; Miller, C. W.

    2011-03-01

    In an effort to understand the impact of nanostructuring on the magnetocaloric (MC) effect, we have studied gadolinium in MgO/W(50 Å)/[Gd(400 Å)/W(50 Å)]8 heterostructures [Miller et al., J. Appl. Phys. 107, 09A903 (2010)]. The entropy change peaks at a temperature of 284 K with a value of 3.4 J/kg K for a 0--30 kOe field change. Polarized neutron reflectometry was used to determine the depth profile of the magnetic moment per Gd atom, m Gd in a Gd/W multilayer. Our results suggest that creating materials with Gd-ferromagnet interfaces may increase the m Gd , leading to enhanced MC properties. Therefore SiOx/Fe(50 Å)/Gd(300 Å)/Fe(50 Å) heterostructures have been investigated. This work was supported by AFOSR-YIP. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, O?ce of Science, O?ce of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  7. Dielectric Genome of van der Waals Heterostructures.

    PubMed

    Andersen, Kirsten; Latini, Simone; Thygesen, Kristian S

    2015-07-01

    Vertical stacking of two-dimensional (2D) crystals, such as graphene and hexagonal boron nitride, has recently lead to a new class of materials known as van der Waals heterostructures (vdWHs) with unique and highly tunable electronic properties. Ab initio calculations should in principle provide a powerful tool for modeling and guiding the design of vdWHs, but in their traditional form such calculations are only feasible for commensurable structures with a few layers. Here we show that the dielectric properties of realistic, incommensurable vdWHs comprising hundreds of layers can be efficiently calculated using a multiscale approach where the dielectric functions of the individual layers (the dielectric building blocks) are computed ab initio and coupled together via the long-range Coulomb interaction. We use the method to illustrate the 2D-3D transition of the dielectric function of multilayer MoS2 crystals, the hybridization of quantum plasmons in thick graphene/hBN heterostructures, and to demonstrate the intricate effect of substrate screening on the non-Rydberg exciton series in supported WS2. The dielectric building blocks for a variety of 2D crystals are available in an open database together with the software for solving the coupled electrodynamic equations. PMID:26047386

  8. Electric-Field Tunable Band Offsets in Black Phosphorus and MoS2 van der Waals p-n Heterostructure.

    PubMed

    Huang, Le; Huo, Nengjie; Li, Yan; Chen, Hui; Yang, Juehan; Wei, Zhongming; Li, Jingbo; Li, Shu-Shen

    2015-07-01

    The structural and electronic properties of black phosphorus/MoS2 (BP/MoS2) van der Waals (vdW) heterostructure are investigated by first-principles calculations. It is demonstrated that the BP/MoS2 bilayer is a type-II p-n vdW heterostructure, and thus the lowest energy electron-hole pairs are spatially separated. The band gap of BP/MoS2 can be significantly modulated by external electric field, and a transition from semiconductor to metal is observed. It gets further support from the band edges of BP and MoS2 in BP/MoS2 bilayer, which show linear variations with E⊥. BP/MoS2 bilayer also exhibits modulation of its band offsets and band alignment by E⊥, resulting in different spatial distribution of the lowest energy electron-hole pairs. Our theoretical results may inspire much interest in experimental research of BP/MoS2 vdW heterostructures and would open a new avenue for application of the heterostructures in future nano- and optoelectronics. PMID:26266723

  9. Fabrication and characterization of low dimensional narrow energy gap semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Kang, Hyoung Ho

    In last decades, there has been a tremendous interest and a challenge to fabricate and characterize materials of nanoscale dimensions. Strong carrier confinement occurs in low dimensional systems showing different quantization regimes. These properties are being exploited for the fabrication of novel semiconductor devices. In this work, the fabrication and characterization of low dimensional narrow gap semiconductor heterostructures of 2-D InP/InAs quantum well/InP, 1-D Bi nanowires/mica and 0-D PbSe/PbEuTe quantum dot superlattice structures are presented. Stacking faults that are deleterious for the optical properties of heterostructures were observed in InP/InAs Q.W./InP (001) grown by ALE. A model for the formation of the stacking faults in InAs/InP heterostructures is proposed based on a transmission electron microscopy study. These faults were identified as Frank type faults and are believed to be responsible for the formation of tetrahedra or elongated hexahedra stacking faults. The density of stacking faults decreased as the InP cap layer thickness increased. Our investigation showed that the increase in stacking fault energy gives rise to annihilation of the faults as the cap layer thickness increases. Arrays of bismuth nanowires with diameter as small as 60 A on mica templates for the fabrication of thermoelectric devices were synthesized by a three-step process consisting of positive-ion irradiation, chemical etching and electrodeposition processes. The diameter and shape of the nanowires were controlled by the etching time. A single crystalline Bi wire with (012) in-plane orientation was observed by high resolution TEM and electron diffraction. The efficiency of electrodeposition of Bi wires was about 80%. N-doping of Bi wires by Te using electrodeposition was also demonstrated. The Te concentration was about 13 times higher than the concentration of Te in the solution. Ohmic behavior was observed across the doped Bi wires. The dot stacking arrangement

  10. Spatial Control of Laser-Induced Doping Profiles in Graphene on Hexagonal Boron Nitride.

    PubMed

    Neumann, Christoph; Rizzi, Leo; Reichardt, Sven; Terrés, Bernat; Khodkov, Timofiy; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2016-04-13

    We present a method to create and erase spatially resolved doping profiles in graphene-hexagonal boron nitride heterostructures. The technique is based on photoinduced doping by a focused laser beam and does neither require masks nor photoresists. This makes our technique interesting for rapid prototyping of unconventional electronic device schemes, where the spatial resolution of the rewritable, long-term stable doping profiles is limited by only the laser spot size (≈600 nm) and the accuracy of sample positioning. Our optical doping method offers a way to implement and to test different, complex doping patterns in one and the very same graphene device, which is not achievable with conventional gating techniques. PMID:26986938

  11. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis.

    PubMed

    Zhu, Xiaohua; Zhao, Tingbi; Nie, Zhou; Liu, Yang; Yao, Shouzhuo

    2015-08-18

    Highly photoluminescent nitrogen-doped carbon nanoparticles (N-CNPs) were prepared by a simple and green route employing sodium alginate as a carbon source and tryptophan as both a nitrogen source and a functional monomer. The as-synthesized N-CNPs exhibited excellent water solubility and biocompatibility with a fluorescence quantum yield of 47.9%. The fluorescence of the N-CNPs was intensively suppressed by the addition of ascorbic acid (AA). The mechanism of the fluorescence suppression of the N-CNPs was investigated, and the synergistic action of the inner filter effect (IFE) and the static quenching effect (SQE) contributed to the intensive fluorescence suppression, which was different from those reported for the traditional redox-based fluorescent probes. Owing to the spatial effect and hydrogen bond between the AA and the groups on the N-CNP surface, excellent sensitivity and selectivity for AA detecting was obtained in a wide linear relationship from 0.2 μM to 150 μM. The detection limit was as low as 50 nM (signal-to-noise ratio of 3). The proposed sensing systems also represented excellent sensitivity and selectivity for AA analysis in human biological fluids, providing a valuable platform for AA sensing in clinic diagnostic and drug screening. PMID:26202861

  12. Linear photon upconversion of 400 meV in an AlGaInP/GaInP quantum well heterostructure to visible light at room temperature

    NASA Astrophysics Data System (ADS)

    Olson, M. R.; Russell, K. J.; Narayanamurti, V.; Olson, J. M.; Appelbaum, Ian

    2006-04-01

    We linearly up convert photons from 820to650nm, an energy change of ˜400meV, using a AlGaInP /GaInP quantum well heterostructure. Current and luminescence-voltage measurements are presented at temperatures from 6to300K. Photoexcited electrons are injected into the semiconductor from the Au Schottky and a forward bias across the p+-i-n heterostructure drifts electrons into the GaInP quantum well. Holes diffuse from the heavily doped substrate and radiatively recombine, emitting ˜650nm light. Linear upconversion is verified by injecting hot electrons with a solid-state tunnel junction. This device encourages other technologies, including night-vision aids and thermal energy converters.

  13. Mn as Surfactant for the Self-Assembling of AlxGa1–xN/GaN Layered Heterostructures

    PubMed Central

    2015-01-01

    The structural analysis of GaN and AlxGa1–xN/GaN heterostructures grown by metalorganic vapor phase epitaxy in the presence of Mn reveals how Mn affects the growth process and in particular, the incorporation of Al, the morphology of the surface, and the plastic relaxation of AlxGa1–xN on GaN. Moreover, the doping with Mn promotes the formation of layered AlxGa1–xN/GaN superlattice-like heterostructures, which opens wide perspectives for controlling the segregation of ternary alloys during the crystal growth and for fostering the self-assembling of functional layered structures. PMID:25674041

  14. Raman Characterization of Graphene and 2D TMD Heterostructures

    NASA Astrophysics Data System (ADS)

    Derby, Benjamin; Hight Walker, Angela

    2015-03-01

    We report efforts to produce and characterize graphene and two-dimensional transition-metal dichalcogenides (TMD) heterostructures. Using PDMS stamps, exfoliation of graphene, MoS2, h-BN, and TaS2 precedes the stacking of these mono- and few layers into heterostructures. The goal is to engineer mis-orientation to enhanced Raman signatures of various layers within the heterostructures. Previous studies have reported a Raman signal strength that is angle dependent between bi-layers. Using resonant Raman spectroscopy, we probe the quality of these constructed heterostructures. Ultimately, we plan to combine our optical measurements with an applied magnetic field to probe the complex magneto-Raman interaction. Previous studies show a magneto-phonon resonance at specific field strengths and laser excitations. Our results to date will be summarized.

  15. Equivalent Circuit of a Heterostructure with Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Davydov, V. N.; Novikov, D. A.

    2015-11-01

    Based on the consideration of physical processes in a heterostructure with quantum wells (QW), its equivalent circuit is constructed including a barrier capacitance and a differential resistance of the p-n junction, capacitance and resistance of charge relaxation in QW, and resistance of free charge carrier delivery to QW. Analytical expressions for the equivalent capacity and equivalent resistance of the heterostructure for a serial substitution circuit are derived, and behavior of the equivalent parameters attendant to changes of the test signal frequency is analyzed. Results of experimental investigation of the capacitive and resistive properties of the heterostructures with QW based on the InGaN/GaN barriers confirm the calculated dependences of their equivalent parameters and demonstrate their dependence on the special features of the kinetic properties of the heterostructures.

  16. 2D materials and van der Waals heterostructures.

    PubMed

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306

  17. Doping-Induced Interband Gain in InAs/AlSb Quantum Wells

    NASA Technical Reports Server (NTRS)

    Kolokolov, K. I.; Ning, C. Z.

    2005-01-01

    A paper describes a computational study of effects of doping in a quantum well (QW) comprising a 10-nm-thick layer of InAs sandwiched between two 21-nm-thick AlSb layers. Heretofore, InAs/AlSb QWs have not been useful as interband gain devices because they have type-II energy-band-edge alignment, which causes spatial separation of electrons and holes, thereby leading to weak interband dipole matrix elements. In the doping schemes studied, an interior sublayer of each AlSb layer was doped at various total areal densities up to 5 X 10(exp 12) / square cm. It was found that (1) proper doping converts the InAs layer from a barrier to a well for holes, thereby converting the heterostructure from type II to type I; (2) the resultant dipole matrix elements and interband gains are comparable to those of typical type-I heterostructures; and (3) dipole moments and optical gain increase with the doping level. Optical gains in the transverse magnetic mode can be almost ten times those of other semiconductor material systems in devices used to generate medium-wavelength infrared (MWIR) radiation. Hence, doped InAs/AlSb QWs could be the basis of an alternative material system for devices to generate MWIR radiation.

  18. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  19. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  20. Vertical Transport in Ferroelectric/Superconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Begon-Lours, Laura; Trastoy, Juan; Bernard, Rozenn; Jacquet, Eric; Carretero, Cecile; Bouzehouane, Karim; Fusil, Stephane; Garcia, Vincent; Xavier, Stephane; Girod, Stephanie; Deranlot, Cyrile; Bibes, Manuel; Barthelemy, Agnes; Villegas, Javier E.

    2015-03-01

    We study electric field-effects in superconducting films by measuring vertical transport in ferroelectric/superconductor heterostructures. These are based on ultrathin (4 to 8 nm thick) BiFeO3-Mn grown on YBa2Cu3O7 by pulsed laser deposition. Nanoscale contacts are defined on the BiFeO3 via a series of nanofabrication steps which include e-beam lithography, metal deposition (Nb or Co capped with Pt) and lift-off. Conductive-tip atomic force microscopy and piezoresponse force microscopy are used to characterize the transport across the ferroelectric barrier as a function of its polarization (up/down). The observed electro-resistance, measured at various temperatures, allows studying the different electric-field screening in the normal and superconducting states. Work supported by DIM Oxymore.

  1. Wide-gap II-VI heterostructures

    NASA Astrophysics Data System (ADS)

    Gunshor, R. L.; Kolodziejski, L. A.; Kobayashi, M.; Otsuka, N.; Nurmikko, A. V.

    1990-04-01

    Recent advances in the growth of II-VI/II-VI and II-VI/III-V heterostructures based on the widegap II-VI semiconductors CdTe and ZnTe are discussed. The potentially important pseudomorphic epilayer/epilayer heterojunction consisting of ZnTe on AlSb has been grown by MBE and characterized. Both microstructural and optical evaluation indicate a high degree of structural quality and the potential for future development of novel light-emitting device structures. Metastable zincblende MnTe, for which TEM and X-ray evaluation reveal the presence of only zincblende phases, has been grown by MBE. Single quantum well structures using zincblende MnTe for the barrier layers have been fabricated and found to show strong carrier confinement, further confirming the predicted zincblende MnTe bandgap at 3.2 eV.

  2. Giant switchable Rashba effect in oxide heterostructures

    SciTech Connect

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; Yin, Wei-Guo; Yunoki, Seiji; Held, Karsten

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, induces a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.

  3. Tunnelling in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mishchenko, Artem; Novoselov, Kostya; Geim, Andre; Eaves, Laurence; Falko, Vladimir

    When graphene and other conductive two-dimensional (2D) materials are separated by an atomically thin insulating 2D crystal, quantum mechanical tunnelling leads to appreciable current between two 2D conductors due to the overlap of their wavefunctions. These tunnel devices demonstrate interesting physics and potential for applications: such effects as resonant tunnelling, negative differential conductance, light emission and detection have already been demonstrated. In this presentation we will outline the current status and perspectives of tunnelling transistors based on 2D materials assembled into van der Waals heterostructures. Particularly, we will present results on mono- and bilayer graphene tunnelling, tunnelling in 2D crystal-based quantum wells, and tunnelling in superconducting 2D materials. Such effects as momentum and chirality conservation, phonon- and impurity-assisted tunnelling will also be discussed. Finally, we will ponder the implications of discovered effects for practical applications.

  4. Tunable hyperbolic metamaterials utilizing phase change heterostructures

    SciTech Connect

    Krishnamoorthy, Harish N. S.; Menon, Vinod M.; Zhou, You; Ramanathan, Shriram; Narimanov, Evgenii

    2014-03-24

    We present a metal-free tunable anisotropic metamaterial where the iso-frequency surface is tuned from elliptical to hyperbolic dispersion by exploiting the metal-insulator phase transition in the correlated material vanadium dioxide (VO{sub 2}). Using VO{sub 2}-TiO{sub 2} heterostructures, we demonstrate the transition in the effective dielectric constant parallel to the layers to undergo a sign change from positive to negative as the VO{sub 2} undergoes the phase transition. The possibility to tune the iso-frequency surface in real time using external perturbations such as temperature, voltage, or optical pulses creates new avenues for controlling light-matter interaction.

  5. Giant switchable Rashba effect in oxide heterostructures

    DOE PAGESBeta

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; Yin, Wei-Guo; Yunoki, Seiji; Held, Karsten

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, inducesmore » a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.« less

  6. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark

  7. Magnetoelectric imaging of multiferroic heterostructures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ghidini, Massimo; Lesaine, Arnaud; Zhu, Bonan; Moya, Xavier; Yan, Wenjing; Crossley, Sam; Nair, Bhasi; Mansell, Rhodri; Cowburn, Russell P.; Barnes, Crispin H. W.; Kronast, Florian; Valencia, Sergio; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Mathur, Neil

    2015-09-01

    Electrical control of magnetism has been demonstrated in multiferroic compounds and ferromagnetic semiconductors, but electrical switching of a substantial net magnetization at room temperature has not been demonstrated in these materials. This goal has instead been achieved in heterostructures comprising ferromagnetic films in which electrically driven magnetic changes arise due to strain or exchange bias from ferroic substrates, or due to charge effects induced by a gate. However, previous work focused on electrical switching of an in-plane magnetization or involved the assistance of applied magnetic fields. In heterostructures made of juxtaposed ferroelectric and ferromagnetic layers, we have shown electrical control with no applied magnetic field of the perpendicular magnetization of small features [1] and of magnetic stripe domains patterns [2]. Here we investigate Ni81Fe19 films on ferroelectric substrates with and without buffer layers of Cu, whose presence precludes charge-mediated coupling. Ni81Fe19 has virtually zero magnetostriction, but sufficiently thin films show large magnetostriction, and thus, on increasing film thickness through the threshold for zero magnetostriction, we have seeked the crossover from charge- to strain-mediated coupling. We will then show that strain associated with the motion of 90°- ferroelectric domain walls in a BaTiO3 substrate, can switch the magnetization of an array of overlying single-domain Ni dots. [1] M. Ghidini, R. Pellicelli, J. L. Prieto, X. Moya, J. Soussi, J. Briscoe, S. Dunn and N. D. Mathur, Nature Communications 4 (2013) 1453. [2] M. Ghidini, F.Maccherozzi, X. Moya, L. C. Phillips, W.Yan, J. Soussi, N. Métallier, M.Vickers, , N. -J.Steinke, R. Mansell, C. H. W. Barnes, S. S. Dhesi, and N. D. Mathur, Adv. Mater.doi: 10.1002/adma.201404799 (2015).

  8. Noncontacting laser photocarrier radiometric depth profilometry of harmonically modulated band bending in the space-charge layer at doped SiO{sub 2}-Si interfaces

    SciTech Connect

    Mandelis, Andreas; Batista, Jerias; Gibkes, Juergen; Pawlak, Michael; Pelzl, Josef

    2005-04-15

    Laser infrared photocarrier radiometry (PCR) was used with a harmonically modulated low-power laser pump and a superposed dc superband-gap optical bias (a secondary laser beam) to control and monitor the space-charge-layer (SCL) width in oxidized p-Si-SiO{sub 2} and n-Si-SiO{sub 2} interfaces (wafers) exhibiting charged interface-state related band bending. Applying the theory of PCR-SCL dynamics [A. Mandelis, J. Appl. Phys. 97, 083508 (2005)] to the experiments yielded various transport parameters of the samples as well as depth profiles of the SCL exhibiting complete ( p-type Si) or partial (n-type Si) band flattening, to a degree controlled by widely different minority-carrier capture cross section at each interface. The uncompensated charge density at the interface was also calculated from the theory.

  9. Dopant and self-diffusion in extrinsic n-type silicon isotopically controlled heterostructures

    SciTech Connect

    Silvestri, Hughes H.; Sharp, Ian D.; Bracht, Hartmut A.; Nicols, Sam P.; Beeman, Jeff W.; Hansen, John; Nylandsted-Larsen, Arme; Haller, Eugene E.

    2002-04-01

    We present experimental results of dopant- and self-diffusion in extrinsic silicon doped with As. Multilayers of isotopically controlled {sup 28}Si and natural silicon enable simultaneous analysis of {sup 30}Si diffusion into the {sup 28}Si enriched layers and dopant diffusion throughout the multilayer structure. In order to suppress transient enhanced self- and dopant diffusion caused by ion implantation, we adopted a special approach to dopant introduction. First, an amorphous 250-nm thick Si layer was deposited on top of the Si isotope heterostructure. Then the dopant ions were implanted to a depth such that all the radiation damage resided inside this amorphous cap layer. These samples were annealed for various times and temperatures to study the impact of As diffusion and doping on Si self-diffusion. The Si self-diffusion coefficient and the dopant diffusivity for various extrinsic n-type conditions were determined over a wide temperature range. We observed increased diffusivities that we attribute to the increase in the concentration of the native defect promoting the diffusion.

  10. A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.

    1990-01-01

    The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.

  11. Carrier and photon dynamics in a topological insulator Bi2Te3/GaN type II staggered heterostructure

    NASA Astrophysics Data System (ADS)

    Chaturvedi, P.; Chouksey, S.; Banerjee, D.; Ganguly, S.; Saha, D.

    2015-11-01

    We have demonstrated a type-II band-aligned heterostructure between pulsed laser deposited topological insulator bismuth telluride and metal organic-chemical-vapour deposited GaN on a sapphire substrate. The heterostructure shows a large valence band-offset of 3.27 eV as determined from x-ray photoelectron spectroscopy, which is close to the bandgap of GaN (3.4 eV). Further investigation using x-ray diffraction, Raman spectroscopy, and energy-dispersive x-ray spectrum reveals the stoichiometric and material properties of bismuth telluride on GaN. Steady state photon emission from GaN is found to be modulated by the charge transfer process due to diffusion across the junction. The time constant involved with the charge transfer process is found to be 0.6 ns by transient absorption spectroscopy. The heterostructure can be used for designing devices with different functionalities and improving the performance of the existing devices on GaN.

  12. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    PubMed

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures. PMID:27124772

  13. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  14. Carrier diffusion and recombination in highly excited InGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jarainas, K.; Aleksiejnas, R.; Malinauskas, T.; Sdius, M.; Miasojedovas, S.; Jurnas, S.; Ukauskas, A.; Gaska, R.; Zhang, J.; Shur, M. S.; Yang, J. W.; Kuoktis, E.; Khan, M. A.

    2005-04-01

    Time-resolved four-wave mixing and photoluminescence techniques have been combined for studies of MOCVD-grown InxGa1-xN/GaN/sapphire heterostructures with different indium content (0.08 < x < 0.15). In-plane diffusion and recombination of spatially-modulated carriers, confined in the front layer of 50-nm-thick InGaN, were monitored by a probe beam diffraction and provided an average value of a bipolar diffusion coefficient D 1-1.5 cm2/s and its dependence on the In content. A complete saturation of four-wave mixing (FWM) efficiency vs excitation energy was found prominent in a layer with 10% of In. The latter effect of saturation correlated well with the dependence of quantum efficiency of stimulated emission on In content in heterostructures. Short decay times of stimulated emission (10 ps) measured by time-resolved PL in highly excited structure allowed us to attribute the FWM saturation effect to the threshold of stimulated recombination.

  15. Negative differential resistance in boron nitride graphene heterostructures: physical mechanisms and size scaling analysis.

    PubMed

    Zhao, Y; Wan, Z; Xu, X; Patil, S R; Hetmaniuk, U; Anantram, M P

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  16. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    NASA Astrophysics Data System (ADS)

    Cui, B. S.; Guo, X. B.; Wu, K.; Li, D.; Zuo, Y. L.; Xi, L.

    2016-03-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe65Co35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (~4 GPa for PI as compared to ~180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work.

  17. Negative Differential Resistance in Boron Nitride Graphene Heterostructures: Physical Mechanisms and Size Scaling Analysis

    PubMed Central

    Zhao, Y.; Wan, Z.; Xu, X.; Patil, S. R.; Hetmaniuk, U.; Anantram, M. P.

    2015-01-01

    Hexagonal boron nitride (hBN) is drawing increasing attention as an insulator and substrate material to develop next generation graphene-based electronic devices. In this paper, we investigate the quantum transport in heterostructures consisting of a few atomic layers thick hBN film sandwiched between graphene nanoribbon electrodes. We show a gate-controllable vertical transistor exhibiting strong negative differential resistance (NDR) effect with multiple resonant peaks, which stay pronounced for various device dimensions. We find two distinct mechanisms that are responsible for NDR, depending on the gate and applied biases, in the same device. The origin of first mechanism is a Fabry-Pérot like interference and that of the second mechanism is an in-plane wave vector matching when the Dirac points of the electrodes align. The hBN layers can induce an asymmetry in the current-voltage characteristics which can be further modulated by an applied bias. We find that the electron-phonon scattering suppresses the first mechanism whereas the second mechanism remains relatively unaffected. We also show that the NDR features are tunable by varying device dimensions. The NDR feature with multiple resonant peaks, combined with ultrafast tunneling speed provides prospect for the graphene-hBN-graphene heterostructure in the high-performance electronics. PMID:25991076

  18. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide

  19. Si-doped GaAs/AlGaAs TJS laser by MBE

    SciTech Connect

    Mitsunaga, K.; Fujiwara, K.; Nunoshita, M.; Nakayama, T.

    1984-04-01

    The effect of high temperature annealing on the properties of silicon-doped GaAs/AlGaAs double heterostructure (DH) grown by molecular beam expitaxy (MBE)= and its application to the fabrication of transverse junction stripe (TJS) lasers are reported. In spite of the amphoteric nature of Si, it was found that the high temperature annealing gave little influence on the electrical and optical quality of the n-type DH wafer. The TJS laser using Si-doped GaAs/AlGaAs wafer has been oscillated cw at room temperature and exhibited low threshold current of 30 mA and high quantum efficiency of 60%.

  20. Luminescence spectra, efficiency, and color characteristics of white-light-emitting diodes based on p-n InGaN/GaN heterostructures with phosphor coatings

    SciTech Connect

    Badgutdinov, M. L.; Korobov, E. V.; Luk'yanov, F. A.; Yunovich, A. E. Kogan, L. M.; Gal'china, N. A.; Rassokhin, I. T.; Soshchin, N. P.

    2006-06-15

    The luminescence spectra, efficiency, and color characteristics of white-light-emitting diodes fabricated from p-n InGaN/AlGaN/GaN blue-light-emitting heterostructures grown on SiC substrates and coated with yellow-green phosphors based on the rare-earth-doped yttrium-aluminum garnets were studied. The efficiency of blue-emitting diodes is as high as 22% at a current of 350 mA and a voltage of 3.3 V. The white-emitting diodes have luminous efficiency as high as 40 lm/W and luminous flux up to 50 lm at 350 mA.

  1. Optical modulators with 2D layered materials

    NASA Astrophysics Data System (ADS)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  2. Epitaxial piezoelectric thick film heterostructures on silicon

    NASA Astrophysics Data System (ADS)

    Kim, Dong Min

    The significantly higher dielectric permittivity, piezoelectric coefficients and electromechanical coupling coefficients of single crystal relaxor ferroelectrics make them very attractive for medical ultrasound transducers and microelectromechanical systems (MEMS) applications. The potential impact of thin-film relaxor ferroelectrics in integrated actuators and sensor on silicon has stimulated research on the growth and characterization of epitaxial piezoelectric thin films. We have fabricated heterostructures by (1) synthesizing optimally-oriented, epitaxial thin films of Pb(Mg1/3Nb2/3)O3-PbTiO 3 (PMN-PT) on miscut (001) Si wafers with epitaxial (001) SrTiO 3 template layers, where the single crystal form is known to have the giant piezoelectric response, and (2) nano-structuring to reduce the constraint imposed by the underlying silicon substrate. Up to now, the longitudinal piezoelectric coefficient (d33) values of PMN and PMN-PT thin films range from 50 to 200 pC/N have been reported, which are far inferior to the properties of bulk single crystals value (d33 ˜ 2000 pC/N). These might be attributed to substrate constraints, pyrochlore phases and other effects. Here, we have realized the giant d33 values by fabricating epitaxial PMN-PT thick films on silicon. When the PMN-PT film was subdivided into ˜1 mum2 capacitors by focused ion beam processing, a 4 mum thick film shows a low-field d33 of 800 pm/V that increases to over 1200 pm/V under bias, which is the highest d33 value ever realized on silicon substrates. These high piezo-reponse PMN-PT epitaxial heterostructures can be used for multilayered MEMS devices which function with low driving voltage, high frequency ultrasound transducer arrays for medical imaging, and capacitors for charge and energy storage. Since these PMN-PT films are epitaxially integrated with the silicon, they can make use of the well-developed fabrication process for patterning and micromachining of this large-area, cost

  3. Growth of Novel Semiconducting Nano and Heterostructures

    NASA Astrophysics Data System (ADS)

    Rathi, Somilkumar J.

    This dissertation presents research findings on the three materials systems: lateral Si nanowires (SiNW), In2Se3/Bi 2Se3 heterostructures and graphene. The first part of the thesis was focused on the growth and characterization of lateral SiNW. Lateral here refers to wires growing along the plane of substrate; vertical NW on the other hand grow out of the plane of substrate. It was found, using the Au-seeded vapor -- liquid -- solid technique, that epitaxial single-crystal SiNW can be grown laterally along Si(111) substrates that have been miscut toward [11- 2]. The ratio of lateral-to-vertical NW was found to increase as the miscut angle increased and as disilane pressure and substrate temperature decreased. Based on this observation, growth parameters were identified whereby all of the deposited Au seeds formed lateral NW. Furthermore, the nanofaceted substrate guided the growth via a mechanism that involved pinning of the trijunction at the liquid/solid interface of the growing nanowire. Next, the growth of selenide heterostructures was explored. Specifically, molecular beam epitaxy was utilized to grow In2Se3 and Bi2Se3 films on h-BN, highly oriented pyrolytic graphite and Si(111) substrates. Growth optimizations of In2Se3 and Bi2Se3 films were carried out by systematically varying the growth parameters. While the growth of these films was demonstrated on h-BN and HOPG surface, the majority of the effort was focused on growth on Si(111). Atomically flat terraces that extended laterally for several hundred nm, which were separated by single quintuple layer high steps characterized surface of the best In2Se3 films grown on Si(111). These In2Se3 films were suitable for subsequent high quality epitaxy of Bi2Se3 . The last part of this dissertation was focused on a recently initiated and ongoing study of graphene growth on liquid metal surfaces. The initial part of the study comprised a successful modification of an existing growth system to accommodate graphene

  4. Photovoltaic Properties of TiO2/Cu2O Heterostructure

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Chang, Pai-Chun; Chu, Sheng; Chien, C. J.; Lu, Jia G.

    2010-03-01

    TiO2 is an n-type semiconductor with a wide band gap energy of 3.2 eV. It has been known for its photo catalytic effect and widely used in commercial products. Particularly in the growing photovoltaic industry, dye-sensitized solar cells (DSC) made by TiO2 nanotube electrode have demonstrated to have conversion efficiency up to 6.9 %. However, the TiO2 nanotube based DSC is humbled by the nature of its electrolyte environment. Hence, an all solid-state core shell p-n junction utilizing the TiO2 nanostructure solar cell is of great potential to provide another solution for the rising photovoltaic industry. In order to fabricate heterostructures, cuprous oxide (Cu2O), a p-type semiconductor with a direct band gap of 2.0 eV, is a promising candidate to form p-n heterojunction with TiO2. Here we present a method to achieve Cu2O/TiO2 p-n junction through electrochemical approaches. A self-doping method is addressed on crystallized TiO2 nanotubes to further improve the contact and device performance. The photovoltaic property of Cu2O/TiO2 hetero-structure is measured, giving an open circuit voltage ˜0.25 V, a short circuit current ˜0.33mA/cm^2, and filling factor ˜27%. Although the efficiency is still low, it demonstrates promising potential to achieve low cost flexible photovoltaic device.

  5. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; van Bael, Marlies K.; D’ Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I.-Nan; Haenen, Ken

    2016-07-01

    Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.

  6. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures

    PubMed Central

    Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; Van Bael, Marlies K.; D’ Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I-Nan; Haenen, Ken

    2016-01-01

    Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm2 and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm2 FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission. PMID:27404130

  7. Experimental investigation of boron diffusion in silicon/silicon germanium heterostructures

    NASA Astrophysics Data System (ADS)

    Kuo, Paohua

    Silicon (Si) is the most widely used semiconductor material in the electronics industry today. Incorporating germanium (Ge) into silicon adds bandgap engineering capability to the advanced technology base and manufacturing economies of silicon. Many researchers have recently demonstrated the potential of Si 1-xGex alloys for extending the performance limits of silicon-based devices including bipolar transistors as well as field-effect transistors. One of the most studied devices is the n-Si/p-Si1-x Gex/n-Si heterojunction bipolar transistor which includes a boron-doped Si1-xGex base layer. For optimal device and fabrication process design, it is important to have an understanding of boron diffusion in the Si/Si1-xGex heterostructure. The objectives of this work are the experimental characterization and modeling of boron diffusion in Si/Si1-xGex heterostructures. Boron diffusion in Si/Si1-xGex was characterized as a function of various processing parameters (anneal temperature, time, and ambient) and materials parameters (germanium content x, boron concentration, and macroscopic strain). Boron diffusivity in strained Si1-xGe x was observed, in general, to decrease with increasing germanium content for all annealing conditions and over large ranges of boron concentration investigated. Furthermore, boron diffusion was shown to depend primarily on germanium content rather than macroscopic strain. The segregation phenomenon across a Si/Si1-xGex heterointerface was also characterized and models for boron diffusion in Si1-x Gex are proposed.

  8. The Quantum Hall Liquid to Insulator Transition in InP/InGaAs Heterostructures

    NASA Astrophysics Data System (ADS)

    Pan, Wei; Shahar, D.; Tsui, D. C.; Razeghi, M.

    1996-03-01

    We study the magnetic field driven ν=1 quantum Hall (QH) liquid to insulator transition in a two dimensional electron system buried in InP/InGaAs heterostructure. Since the host lattice, InGaAs, is a random alloy, short-range impurities are the dominant scattering mechanism, in contrast to the long-range scattering in remotely doped GaAs/Al_xGa_1-xAs heterostructures. Despite this qualitative difference in the nature of the scattering potential between these two kinds of materials, we find that at the transition point, the value of the critical diagonal resistivity, ρ_xxc, is similar to that obtained by Shahar et al.(D. Shahar et al., Phys. Rev. Lett. 74), 4511 (1995). in a recent study of the QH liquid to insulator transition in GaAs/Al_xGa_1-xAs samples. Also, scaling analysis of the temperature dependence of ρ_xx near the transition shows that the scaling exponent 1/ν z=0.45± 0.05. In InP/InGaAs samples, which are similar to those used by Wei et al(H. P. Wei et al., Phys. Rev. B 45), 3926 (1992). to study the QH plateau to plateau transitions, the short-range scattering gives us the added advantage that scaling behavior is observable up to 800 mK, which is much higher than the temperature needed to observe scaling in GaAs/Al_xGa_1-xAs samples. We will discuss, in addition, the current and density dependence of the transition.

  9. Enhanced optoelectronic performances of vertically aligned hexagonal boron nitride nanowalls-nanocrystalline diamond heterostructures.

    PubMed

    Sankaran, Kamatchi Jothiramalingam; Hoang, Duc Quang; Kunuku, Srinivasu; Korneychuk, Svetlana; Turner, Stuart; Pobedinskas, Paulius; Drijkoningen, Sien; Van Bael, Marlies K; D' Haen, Jan; Verbeeck, Johan; Leou, Keh-Chyang; Lin, I-Nan; Haenen, Ken

    2016-01-01

    Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/μm, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/μm with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission. PMID:27404130

  10. Synthesis and Investigation of van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    McCreary, Kathleen; Hanbicki, Aubrey; Culbertson, James; Currie, Marc; Jonker, Berend

    2015-03-01

    The recent isolation of single layers of transition metal dichalcogenides (TMD) has demonstrated that reducing dimensionality can alter the material properties. In particular, MoS2, MoSe2, WS2, and WSe2 exhibit an abrupt transition from indirect to direct bandgap semiconductors at monolayer thickness. Monolayer TMDs are promising materials for electronic components due to their high mobility, high on/off ratio, and low standby power dissipation. Additionally, selective layer-by-layer stacking to form van der Waals (vdW) heterostructures may provide the ability to controllably engineer electronic, optic, and spintronic properties. Recently, several methods were investigated to achieve vdW heterostructures including sequential exfoliation, stacking of chemical vapor deposition (CVD) grown monolayers, and epitaxial growth of bilayers. We detail our CVD synthesis of the monolayer TMDs (MoS2, MoSe2, WS2 and WSe2) and the subsequent fabrication and characterization of vdW heterostructures. In our heterostructures, we observe a dramatic decrease in PL intensity compared to the monolayer constituents. The Raman spectra exhibit clear and distinct differences from a superposition of monolayer spectra, demonstrating that interactions across the van der Waals interface in these heterostructures may significantly modify the net electronic properties. We find the observed behaviors are influenced by many factors, including charge transfer, substrate effects, stacking sequence, as well as intra- and inter-layer exciton formation, which will be discussed here.

  11. Lateral and Vertical Two-Dimensional Layered Topological Insulator Heterostructures.

    PubMed

    Li, Yanbin; Zhang, Jinsong; Zheng, Guangyuan; Sun, Yongming; Hong, Seung Sae; Xiong, Feng; Wang, Shuang; Lee, Hye Ryoung; Cui, Yi

    2015-11-24

    The heterostructured configuration between two-dimensional (2D) semiconductor materials has enabled the engineering of the band gap and the design of novel devices. So far, the synthesis of single-component topological insulator (TI) 2D materials such as Bi2Se3, Bi2Te3, and Sb2Te3 has been achieved through vapor phase growth and molecular beam epitaxy; however, the spatial controlled fabrication of 2D lateral heterostructures in these systems has not been demonstrated yet. Here, we report an in situ two-step synthesis process to form TI lateral heterostructures. Scanning transmission electron microscopy and energy-dispersive X-ray mapping results show the successful spatial control of chemical composition in these as-prepared heterostructures. The edge-induced growth mechanism is revealed by the ex situ atomic force microscope measurements. Electrical transport studies demonstrate the existence of p-n junctions in Bi2Te3/Sb2Te3 heterostructures. PMID:26468661

  12. 1. 55-. mu. m InGaAsP distributed feedback vapor phase transported buried heterostructure lasers

    SciTech Connect

    Koch, T.L.; Bridges, T.J.; Burkhardt, E.G.; Corvini, P.J.; Coldren, L.A.; Linke, R.A.; Tsang, W.T.; Logan, R.A.; Johnson, L.F.; Kazarinov, R.F.; Yen, R.; Wilt, D.P.

    1985-07-01

    1.55-..mu..m single longitudinal mode InGaAsP distributed feedback (DFB) lasers have been fabricated using a vapor phase transported (VPT) buried heterostructure geometry on a liquid phase epitaxially grown broad area DFB base. Lasing thresholds in the 35--65-mA range were obtained, with side mode suppression ratios as high as 39 dB under modulation. The VPT DFB laser has both a good high-speed modulation capability and low wavelength chirping under high-speed modulation, making it an attractive candidate for high bit rate, long-haul optical fiber systems applications, with demonstrated record system performance at both 2 and 4 Gbit/s.

  13. Spin filtering in a δ-doped magnetic-electric-barrier nanostructure

    SciTech Connect

    Li, Shuai; Lu, Mao-Wang Jiang, Ya-Qing; Chen, Sai-Yan

    2014-09-15

    We report a theoretical study on spin-polarized transport in a δ-doped magnetic-electric-barrier nanostructure, which can be realized in experiments by depositing two ferromagnetic stripes on top and bottom of a semiconductor heterostructure under an applied voltage and by using atomic layer doping technique. The spin-polarized behavior of the electron in this device is found to be quite sensitive to the δ-doping. One can conveniently tune the degree of the electron spin polarization by adjusting the weight and/or position of the δ-doping. Thus, the involved nansosystem can be employed as a controllable spin filter, which may be helpful for exploiting new spin-polarized source for spintronics applications.

  14. Spin filtering in a δ-doped magnetic-electric-barrier nanostructure

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Lu, Mao-Wang; Jiang, Ya-Qing; Chen, Sai-Yan

    2014-09-01

    We report a theoretical study on spin-polarized transport in a δ-doped magnetic-electric-barrier nanostructure, which can be realized in experiments by depositing two ferromagnetic stripes on top and bottom of a semiconductor heterostructure under an applied voltage and by using atomic layer doping technique. The spin-polarized behavior of the electron in this device is found to be quite sensitive to the δ-doping. One can conveniently tune the degree of the electron spin polarization by adjusting the weight and/or position of the δ-doping. Thus, the involved nansosystem can be employed as a controllable spin filter, which may be helpful for exploiting new spin-polarized source for spintronics applications.

  15. Spin-Dependent Transport Phenomena in Ferromagnet/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Geppert, Chad Christopher

    This dissertation examines several aspects of spin-dependent transport phenomena in epitaxially grown ferromagnet/n-GaAs heterostructures. Further maturation of the field of semiconductor-based spintronics is hindered by difficulties in evaluating device performance across materials systems. Using Fe/n-GaAs and Co2MnSi/n-GaAs heterostructures as a test case, the main goal of this work is to demonstrate how such difficulties may be overcome by (1) specifying a more quantitative framework for evaluating transport parameters and (2) the introduction of a new spin-to-charge conversion phenomenon which may be parameterized by bulk semiconductor parameters. In the introductory chapter, this work is placed in the broader context of developing improved methods for the generation, modulation, and detection of spins. The lateral spin-valve geometry is presented as a concrete example of the typical measurement procedures employed. Chapter 2 presents the charge-based transport properties of these samples and establishes the notation and calculation techniques to be employed in subsequent chapters. In particular, we examine in detail the calculation of the electrochemical potential for a given carrier concentration. Chapter 3 provides a full derivation of the equations governing spin-dependent transport in the large polarization regime. This is applied to the case of extracting spin lifetimes and diffusion rates, demonstrating how quantitative agreement with theoretical predictions may be obtained upon properly accounting for both device geometry and material parameters. Further examination of the boundary conditions applicable to the heterojunctions of these samples demonstrates to what extent device performance may be parameterized across materials systems. Chapter 4 presents experimental observations of a new spin-to-charge conversion phenomenon using a non-magnetic probe. In the presence of a large non-equilibrium spin accumulation, the combination of a non-constant density

  16. Doping-Induced Tunable Wettability and Adhesion of Graphene.

    PubMed

    Ashraf, Ali; Wu, Yanbin; Wang, Michael Cai; Yong, Keong; Sun, Tao; Jing, Yuhang; Haasch, Richard T; Aluru, Narayana R; Nam, SungWoo

    2016-07-13

    We report that substrate doping-induced charge carrier density modulation leads to the tunable wettability and adhesion of graphene. Graphene's water contact angle changes by as much as 13° as a result of a 300 meV change in doping level. Upon either n- or p-type doping with subsurface polyelectrolytes, graphene exhibits increased hydrophilicity. Adhesion force measurements using a hydrophobic self-assembled monolayer-coated atomic force microscopy probe reveal enhanced attraction toward undoped graphene, consistent with wettability modulation. This doping-induced wettability modulation is also achieved via a lateral metal-graphene heterojunction or subsurface metal doping. Combined first-principles and atomistic calculations show that doping modulates the binding energy between water and graphene and thus increases its hydrophilicity. Our study suggests for the first time that the doping-induced modulation of the charge carrier density in graphene influences its wettability and adhesion. This opens up unique and new opportunities for the tunable wettability and adhesion of graphene for advanced coating materials and transducers. PMID:27351580

  17. Vortex jump behavior in coupled nanomagnetic heterostructures

    SciTech Connect

    Zhang, S.; Phatak, C.; Petford-Long, A. K.; Heinonen, O.

    2014-11-24

    The spin configuration and magnetic behavior in patterned nanostructures can be controlled by manipulating the interplay between the competing energy terms. This in turn requires fundamental knowledge of the magnetic interactions at the local nanometer scale. Here, we report on the spin structure and magnetization behavior of patterned discs containing exchange coupled ferromagnetic layers with additional exchange bias to an antiferromagnetic layer. The magnetization reversal was explored by direct local visualization of the domain behavior using in-situ Lorentz transmission electron microscopy, from which quantitative magnetic induction maps were reconstructed. The roles of the main competing energy terms were elucidated and the reversal mechanism was identified as a coupled phenomenon of incoherent rotation in the exchange-biased layer and localized vortex nucleation and discontinuous propagation in the free layer, including an anomalous jump in the trajectory. The observations were supported by micromagnetic simulations and modeled phase shift simulations. The work presented here provides fundamental insights into opportunities for macroscopic control of the energy landscape of magnetic heterostructures for functional applications.

  18. Geometric Hall effects in topological insulator heterostructures

    NASA Astrophysics Data System (ADS)

    Yasuda, K.; Wakatsuki, R.; Morimoto, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Ezawa, M.; Kawasaki, M.; Nagaosa, N.; Tokura, Y.

    2016-06-01

    Geometry, both in momentum and in real space, plays an important role in the electronic dynamics of condensed matter systems. Among them, the Berry phase associated with nontrivial geometry can be an origin of the transverse motion of electrons, giving rise to various geometric effects such as the anomalous, spin and topological Hall effects. Here, we report two unconventional manifestations of Hall physics: a sign-reversal of the anomalous Hall effect, and the emergence of a topological Hall effect in magnetic/non-magnetic topological insulator heterostructures, Crx(Bi1-ySby)2-xTe3/(Bi1-ySby)2Te3. The sign-reversal in the anomalous Hall effect is driven by a Rashba splitting at the bulk bands, which is caused by the broken spatial inversion symmetry. Instead, the topological Hall effect arises in a wide temperature range below the Curie temperature, in a region where the magnetic-field dependence of the Hall resistance largely deviates from the magnetization. Its origin is assigned to the formation of a Néel-type skyrmion induced by the Dzyaloshinskii-Moriya interaction.

  19. Heterostructure optimization for increasing LED efficiency

    NASA Astrophysics Data System (ADS)

    Rabinovich, Oleg; Legotin, Sergey; Didenko, Sergey; Yakimov, Evgeniy; Osipov, Yuriy; Fedorchenko, Irina

    2016-05-01

    Computer simulations were performed to increase the quantum efficiency of LED by optimizing the nanoheterostructure (NH). Furthermore, the InGaN and AlGaP NHs for LEDs were optimized. On the basis of the optimum NH, ways to further increase the efficiency and the influence of impurities and indium atoms doped into barriers between quantum wells were investigated. The optimum impurity and indium atom concentrations to achieve higher flux were determined.

  20. Photoconductivity of Graphene in Proximity to La AlO3 /Sr TiO3 Heterostructures: Phenomenon and Photosensor Applications

    NASA Astrophysics Data System (ADS)

    Cheng, Long; Fan, Xiaodong; Wei, Laiming; Lu, Juanjuan; Liang, Haixing; Qi, Ji; Zeng, Changgan

    2016-07-01

    The proximal coupling between graphene and transition-metal-oxide heterostructures may integrate their unique features and further generate emergent states. Using the photoconductivity of graphene as an effective probe, we demonstrate the existence of a built-in polar field within the La AlO3 layer of the La AlO3 /Sr TiO3 heterostructures for both conducting and insulating La AlO3 /Sr TiO3 interfaces. Such a polar field is a prerequisite for the validity of the electronic reconstruction mechanism for the interfacial conductivity. The built-in polar field is reflected by the hole doping in the graphene in proximity to the La AlO3 /Sr TiO3 induced by pulsed deep-ultraviolet illumination regardless of the graphene's carrier type. These photoresponse characteristics also render the graphene /La AlO3 /Sr TiO3 hybrid system a convenient deep-ultraviolet sensor. Moreover, we design an efficient broad-spectrum photodetector benefiting from the large in-plane electric field in graphene across the boundary between the graphene/La AlO3 /Sr TiO3 and graphene/Sr TiO3 . Our findings may provide clues to the design of photosensors based on the hybrid structures of graphene and oxide heterostructures.