Science.gov

Sample records for molding lithographic applications

  1. Contamination of PDMS microchannels by lithographic molds.

    PubMed

    Bubendorfer, Andrea J; Ingham, Bridget; Kennedy, John V; Arnold, W Mike

    2013-11-21

    By use of synchrotron X-ray fluorescence and Rutherford backscattering spectrometry, we show the SU-8 soft lithographic process contaminates PDMS. Residues of the antimony containing photoinitiator are transferred from the master mold to the surface of PDMS, uncontrollably intensifying the surface potential, leading to electroosmotic flow variability in PDMS microfluidic devices. PMID:24080639

  2. Plasma fluorination of carbon-based materials for imprint and molding lithographic applications

    PubMed Central

    Schvartzman, M.; Mathur, A.; Hone, J.; Jahnes, C.; Wind, S. J.

    2008-01-01

    Diamondlike carbon nanoimprint templates are modified by exposure to a fluorocarbon-based plasma, yielding an ultrathin layer of a fluorocarbon material on the surface which has a very low surface energy with excellent antiwear properties. We demonstrate the use of these plasma fluorinated templates to pattern features with dimensions ∼20 nm and below. Furthermore, we show that this process is extendable to other carbon-based materials. Plasma fluorination can be applied directly to nanoimprint resists as well as to molds used to form elastomer stamps for microcontact printing and other applications requiring easy mold release. PMID:19529791

  3. On the thickness uniformity of micropatterns of hyaluronic acid in a soft lithographic molding method

    NASA Astrophysics Data System (ADS)

    Jeong, Hoon Eui; Suh, Kahp Y.

    2005-06-01

    A soft lithographic molding is a simple and yet robust method for fabricating well-defined microstructures of a hydrophilic biopolymer such as polyethylene glycol and polysaccharide over a large area. The method consists of three steps: placing a polydimethylsiloxane mold with a bas-relief pattern onto a drop-dispensed polymer solution typically dissolved in water, letting the mold and the solution undisturbed in contact until solvent evaporates completely, and leaving behind a polymer replica after mold removal. In such a molding process, water can only evaporate from the edges of the mold due to impermeable nature of polydimethylsiloxane to water, resulting in a nonuniform distribution of film thickness or pattern height. Here we examine systematically how the evaporation rate affects the thickness distribution of the resulting microstructures by evaporating the solution of hyaluronic acid in various conditions. To compare with a theory, we also present a simple theoretical model based on one-dimensional conservation equation for a liquid film, which is in good agreement with the experimental data.

  4. Thermophilic molds: Biology and applications.

    PubMed

    Singh, Bijender; Poças-Fonseca, Marcio J; Johri, B N; Satyanarayana, Tulasi

    2016-11-01

    Thermophilic molds thrive in a variety of natural habitats including soils, composts, wood chip piles, nesting materials of birds and other animals, municipal refuse and others, and ubiquitous in their distribution. These molds grow in simple media containing carbon and nitrogen sources and mineral salts. Polyamines are synthesized in these molds and the composition of lipids varies considerably, predominantly containing palmitic, oleic and linoleic acids with low levels of lauric, palmiotoleic and stearic acids. Thermophilic molds are capable of efficiently degrading organic materials by secreting thermostable enzymes, which are useful in the bioremediation of industrial wastes and effluents that are rich in oil, heavy metals, anti-nutritional factors such as phytic acid and polysaccharides. Thermophilic molds synthesize several antimicrobial substances and biotechnologically useful miscellaneous enzymes. The analysis of genomes of thermophilic molds reveals high G:C contents, shorter introns and intergenic regions with lesser repetitive sequences, and further confirms their ability to degrade agro-residues efficiently. Genetic engineering has aided in ameliorating the characteristics of the enzymes of thermophilic molds. This review is aimed at focusing on the biology of thermophilic molds with emphasis on recent developments in the analysis of genomes, genetic engineering and potential applications. PMID:26777293

  5. Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.

    PubMed

    Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun

    2016-07-01

    Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications. PMID:27259060

  6. Micromolding of a Highly Fluorescent Reticular Coordination Polymer: Solvent-Mediated Reconfigurable Polymerization in a Soft Lithographic Mold

    SciTech Connect

    Y You; H Yang; J Chung; J Kim; Y Jung; S Park

    2011-12-31

    Coordination polymerization of pyridine-based ligands and zinc or silver ions was controlled by soft lithographic micromolding in capillaries. The polymer patterns that are produced are highly fluorescent and supramolecularly structured.

  7. High-throughput three-dimensional (3D) lithographic microfabrication in biomedical applications

    NASA Astrophysics Data System (ADS)

    Kim, Daekeun; So, Peter T. C.

    2010-02-01

    Two-photon excitation microfabrication has been shown to be useful in the field of photonics and biomedicine. It generates 3D microstructures and provides sub-diffraction fabrication resolution. Nevertheless, laser direct writing, the most popular two-photon fabrication technique, has slow fabrication speed, and its applications are limited to prototyping. In this proceeding, we propose high-throughput 3D lithographic microfabrication system based on depthresolved wide-field illumination and build several 3D microstructures with SU-8. Through these fabrications, 3D lithographic microfabrication has scalable function and high-throughput capability. It also has the potential for fabricating 3D microstructure in biomedical applications, such as intertwining channels in 3D microfluidic devices for biomedical analysis and 3D cell patterning in the tissue scaffolds.

  8. Molds

    MedlinePlus

    ... touching mold or mold spores may cause allergic reactions or asthma attacks in sensitive people. Molds can cause fungal infections. In addition, mold exposure may irritate your eyes, skin, nose, ...

  9. Molds

    MedlinePlus

    Molds are fungi that can be found both outdoors and indoors. They grow best in warm, damp and humid conditions. If ... spots in your house, you will probably get mold. Molds can cause health problems. Inhaling or touching ...

  10. Flow Controlled Solvent Vapor Annealing of Block Copolymers for Lithographic Applications

    NASA Astrophysics Data System (ADS)

    Gotrik, Kevin Willy

    Self-assembly of block copolymer thin-films may provide an inexpensive alternative to patterning lithographic features below the resolution limits of traditional optical methods. Block copolymers (BCPs) are polymers made of two or more distinct monomer /block units that are covalently bonded. Due to their differences in surface energy, the different blocks tend to phase segregate like oil and water; but because of the covalent linkage, this segregation is practically limited to size scales ranging from only a few nm to ≈ 100 nm. A thin film of a BCP can be used in much the same way as a photoresist in the lithographic process, whereas a desired pattern morphology can be obtained by etching one block away and leaving behind a self-assembled hard mask for the underlying substrate. After a thin film of BCP is coated onto a given substrate, the BCP must be given an annealing step, where the disordered entangled polymer networks can be allowed to diffuse and equilibrate into lower free energy configurations which result in periodic patterns of micelles with different morphologies such as spheres, in/out of plane cylinders, etc. This work explored the technique of solvent vapor annealing, where organic solvents were allowed to interact with BCP thin films to facilitate annealing and act as surrogates for the different BCP polymer blocks. This allowed for a wide range of control over the BCP self-assembly (morphology, periodicity, etc.) for a given molecular weight BCP. Additionally, by adding heat at critical times during the self-assembly, time scales for solvent vapor enhanced self-assembly could be reduced from hours to seconds making the prospects for this technology to become industrially applicable more promising. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  11. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOEpatents

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  12. High aspect ratio PS-b-PMMA block copolymer masks for lithographic applications.

    PubMed

    Ferrarese Lupi, F; Giammaria, T J; Volpe, F G; Lotto, F; Seguini, G; Pivac, B; Laus, M; Perego, M

    2014-12-10

    The control of the self-assembly (SA) process and nanostructure orientation in diblock copolymer (DBC) thick films is a crucial technological issue. Perpendicular orientation of the nanostructures in symmetric and asymmetric poly(styrene)-b-poly(methyl methacrylate) (PS-b-PMMA) block copolymer films obtained by means of simple thermal treatments was demonstrated to occur in well-defined thickness windows featuring modest maximum values, thus resulting in low aspect ratio (h/d < 2) of the final lithographic mask. In this manuscript, the thickness window corresponding to the perpendicular orientation of the cylindrical structures in asymmetric DBC is investigated at high temperatures (190 °C ≤ T ≤ 310 °C) using a rapid thermal processing machine. A systematic study of the annealing conditions (temperature and time) of asymmetric PS-b-PMMA (Mn = 67.1, polydispersity index = 1.09) films, with thicknesses ranging from 10 to 400 nm, allowed ordered patterns, with a maximum value of orientational correlation length of 350 nm, to be obtained for film thicknesses up to 200 nm. The complete propagation of the cylindrical structures through the whole film thickness in a high aspect ratio PS template (h/d ≈ 7) is probed by lift-off process. Si nanopillars are obtained having the same lateral ordering and characteristic dimensions of the DBC lithographic mask as further confirmed by grazing-incidence small-angle X-ray scattering experiments. PMID:25387131

  13. An efficient lithographic hotspot severity analysis methodology using Calibre PATTERN MATCHING and DRC application

    NASA Astrophysics Data System (ADS)

    Deng, ZeXi; Du, ChunShan; Hong, Lin; Zhang, LiGuo; Wang, JinYan

    2015-03-01

    As the IC industry moves forward to advanced nodes, especially under 28nm technology, the printability issue is becoming more and more challenging because layouts are more congested with a smaller critical feature size and the manufacturing process window is tighter. Consequently, design-process co-optimization plays an important role in achieving a higher yield in a shorter tape-out time. A great effort has to be made to analyze the process defects and build checking kits to deliver the manufacturing information, by utilizing EDA software, to designers to dig out the potential manufacturing issues and quickly identify hotspots and prioritize how to fix them according to the severity levels. This paper presents a unique hotspot pattern analysis flow that SMIC has built for advanced technology to analyze the potential yield detractor patterns in millions of patterns from real designs and rank them with severity levels related to real fab process. The flow uses Mentor Graphics Calibre® PM (Calibre® Pattern Matching) technology for pattern library creation and pattern clustering; meanwhile it incorporates Calibre® LFD (Calibre® Litho-Friendly Design) technology for accurate simulation-based lithographic hotspot checking. Pattern building, clustering, scoring, ranking and fixing are introduced in detail in this paper.

  14. Applications of thin carbon coatings and films in injection molding

    NASA Astrophysics Data System (ADS)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (<0.5 mm thickness) with lower pressures by promoting wall slip. The second application consists of a new approach to provide electromagnetic interference (EMI) shielding for plastic parts using in mold coated nanoparticle thin films or nanopapers to create a conductive top layer. During this research, the technical feasibility of a new approach was proven which provides injection molding of ultra-thin parts at lower pressures, without the need of fast heating/fast cooling or other expensive mold modification. An in-house developed procedure by other members of our group, was employed for coating the mold surface using chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of

  15. Lithographically patterned nanowire electrodeposition.

    PubMed

    Menke, E J; Thompson, M A; Xiang, C; Yang, L C; Penner, R M

    2006-11-01

    Nanowire fabrication methods can be classified either as 'top down', involving photo- or electron-beam lithography, or 'bottom up', involving the synthesis of nanowires from molecular precursors. Lithographically patterned nanowire electrodeposition (LPNE) combines attributes of photolithography with the versatility of bottom-up electrochemical synthesis. Photolithography defines the position of a sacrificial nickel nanoband electrode, which is recessed into a horizontal trench. This trench acts as a 'nanoform' to define the thickness of an incipient nanowire during its electrodeposition. The electrodeposition duration determines the width of the nanowire. Removal of the photoresist and nickel exposes a polycrystalline nanowire--composed of gold, platinum or palladium--characterized by thickness and width that can be independently controlled down to 18 and 40 nm, respectively. Metal nanowires prepared by LPNE may have applications in chemical sensing and optical signal processing, and as interconnects in nanoelectronic devices. PMID:17057701

  16. Lithographically defined microporous carbon structures

    DOEpatents

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  17. Lithographic microfabrication of biocompatible polymers for tissue engineering and lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Balciunas, Evaldas; Jonusauskas, Linas; Valuckas, Vytautas; Baltriukiene, Daiva; Bukelskiene, Virginija; Gadonas, Roaldas; Malinauskas, Mangirdas

    2012-06-01

    In this work, a combination of Direct Laser Writing (DLW), PoliDiMethylSiloxane (PDMS) soft lithography and UV lithography was used to create cm- scale microstructured polymer scaolds for cell culture experiments out of dierent biocompatible materials: novel hybrid organic-inorganic SZ2080, PDMS elastomer, biodegradable PEG- DA-258 and SU-8. Rabbit muscle-derived stem cells were seeded on the fabricated dierent periodicity scaolds to evaluate if the relief surface had any eect on cell proliferation. An array of microlenses was fabricated using DLW out of SZ2080 and replicated in PDMS and PEG-DA-258, showing good potential applicability of the used techniques in many other elds like micro- and nano- uidics, photonics, and MicroElectroMechanical Systems (MEMS). The synergetic employment of three dierent fabrication techniques allowed to produce desired objects with low cost, high throughput and precision as well as use materials that are dicult to process by other means (PDMS and PEG-DA-258). DLW is a relatively slow fabrication method, since the object has to be written point-by-point. By applying PDMS soft lithography, we were enabled to replicate laser-fabricated scaolds for stem cell growth and micro-optical elements for lab-on-a-chip applications with high speed, low cost and good reproducible quality.

  18. Buckling assisted and lithographically micropatterned fully flexible sensors for conformal integration applications

    NASA Astrophysics Data System (ADS)

    Maji, Debashis; Das, Debanjan; Wala, Jyoti; Das, Soumen

    2015-12-01

    Development of flexible sensors/electronics over substrates thicker than 100 μm is of immense importance for its practical feasibility. However, unlike over ultrathin films, large bending stress hinders its flexibility. Here we have employed a novel technique of fabricating sensors over a non-planar ridge topology under pre-stretched condition which not only helps in spontaneous generation of large and uniform parallel buckles upon release, but also acts as stress reduction zones thereby preventing Poisson’s ratio induced lateral cracking. Further, we propose a complete lithography compatible process to realize flexible sensors over pre-stretched substrates thicker than 100 μm that are released through dissolution of a water soluble sacrificial layer of polyvinyl alcohol. These buckling assisted flexible sensors demonstrated superior performance along different flexible modalities. Based on the above concept, we also realized a micro thermal flow sensor, conformally wrapped around angiographic catheters to detect flow abnormalities for potential applications in interventional catheterization process.

  19. Nanoscale electrode arrays produced with microscale lithographic techniques for use in biomedical sensing applications.

    PubMed

    Terry, Jonathan G; Schmüser, Ilka; Underwood, Ian; Corrigan, Damion K; Freeman, Neville J; Bunting, Andrew S; Mount, Andrew R; Walton, Anthony J

    2013-12-01

    A novel technique for the production of nanoscale electrode arrays that uses standard microfabrication processes and micron-scale photolithography is reported here in detail. These microsquare nanoband edge electrode (MNEE) arrays have been fabricated with highly reproducible control of the key array dimensions, including the size and pitch of the individual elements and, most importantly, the width of the nanoband electrodes. The definition of lateral features to nanoscale dimensions typically requires expensive patterning techniques that are complex and low-throughput. However, the fabrication methodology used here relies on the fact that vertical dimensions (i.e. layer thicknesses) have long been manufacturable at the nanoscale using thin film deposition techniques that are well established in mainstream microelectronics. The authors report for the first time two aspects that highlight the particular suitability of these MNEE array systems for probe monolayer biosensing. The first is simulation, which shows the enhanced sensitivity to the redox reaction of the solution redox couple. The second is the enhancement of probe film functionalisation observed for the probe film model molecule, 6-mercapto-1-hexanol compared with microsquare electrodes. Such surface modification for specific probe layer biosensing and detection is of significance for a wide range of biomedical and other sensing and analytical applications. PMID:24206769

  20. Buckling assisted and lithographically micropatterned fully flexible sensors for conformal integration applications

    PubMed Central

    Maji, Debashis; Das, Debanjan; Wala, Jyoti; Das, Soumen

    2015-01-01

    Development of flexible sensors/electronics over substrates thicker than 100 μm is of immense importance for its practical feasibility. However, unlike over ultrathin films, large bending stress hinders its flexibility. Here we have employed a novel technique of fabricating sensors over a non-planar ridge topology under pre-stretched condition which not only helps in spontaneous generation of large and uniform parallel buckles upon release, but also acts as stress reduction zones thereby preventing Poisson’s ratio induced lateral cracking. Further, we propose a complete lithography compatible process to realize flexible sensors over pre-stretched substrates thicker than 100 μm that are released through dissolution of a water soluble sacrificial layer of polyvinyl alcohol. These buckling assisted flexible sensors demonstrated superior performance along different flexible modalities. Based on the above concept, we also realized a micro thermal flow sensor, conformally wrapped around angiographic catheters to detect flow abnormalities for potential applications in interventional catheterization process. PMID:26640124

  1. Injection molded high precision freeform optics for high volume applications

    NASA Astrophysics Data System (ADS)

    Dick, Lars; Risse, Stefan; Tünnermann, Andreas

    2012-03-01

    Injection molding offers a cost-efficient method for manufacturing high precision plastic optics for high-volume applications. Optical surfaces such as flats, spheres and also aspheres are meanwhile state-of-the-art in the field of plastic optics. The demand for surfaces without symmetric properties, commonly referred to as freeform surfaces, continues to rise. Currently, new mathematical approaches are under consideration which allow for new complex optical designs. Such novel optical designs strongly encourage development of new manufacturing methods. Specifically, new surface descriptions without an axis of symmetry, new ultra precision machining methods and non-symmetrical shrinkage compensation strategies have to be developed to produce freeform optical surfaces with high precision for high-volume applications. This paper will illustrate a deterministic and efficient way for the manufacturing of ultra precision injection molding tool inserts with submicron precision and show the manufacturing of replicated freeform surfaces with micrometer range shape accuracy at diameters up to 40 mm with a surface roughness of approximately 2 nm.

  2. Development of Nanosphere Lithography Technique with Enhanced Lithographical Accuracy on Periodic Si Nanostructure for Thin Si Solar Cell Application

    NASA Astrophysics Data System (ADS)

    Choi, Jeayoung

    In this thesis, a novel silica nanosphere (SNS) lithography technique has been developed to offer a fast, cost-effective, and large area applicable nano-lithography approach. The SNS can be easily deposited with a simple spin-coating process after introducing a N,N-dimethyl-formamide (DMF) solvent which can produce a highly close packed SNS monolayer over large silicon (Si) surface area, since DMF offers greatly improved wetting, capillary and convective forces in addition to slow solvent evaporation rate. Since the period and dimension of the surface pattern can be conveniently changed and controlled by introducing a desired size of SNS, and additional SNS size reduction with dry etching process, using SNS for lithography provides a highly effective nano-lithography approach for periodically arrayed nano-/micro-scale surface patterns with a desired dimension and period. Various Si nanostructures ( i.e., nanopillar, nanotip, inverted pyramid, nanohole) are successfully fabricated with the SNS nano-lithography technique by using different etching technique like anisotropic alkaline solution (i.e., KOH) etching, reactive-ion etching (RIE), and metal-assisted chemical etching (MaCE). In this research, computational optical modeling is also introduced to design the Si nanostructure, specifically nanopillars (NPs) with a desired period and dimension. The optical properties of Si NP are calculated with two different optical modeling techniques, which are the rigorous coupled wave analysis (RCWA) and finite-difference time-domain (FDTD) methods. By using these two different optical modeling techniques, the optical properties of Si NPs with different periods and dimensions have been investigated to design ideal Si NP which can be potentially used for thin c-Si solar cell applications. From the results of the computational and experimental work, it was observed that low aspect ratio Si NPs fabricated in a periodic hexagonal array can provide highly enhanced light absorption

  3. Chemorheology of in-mold coating for compression molded SMC applications

    NASA Astrophysics Data System (ADS)

    Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.

    2015-05-01

    In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.

  4. Resin transfer molding of textile preforms for aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.

    1992-01-01

    The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.

  5. Lithographic fabrication of nanoapertures

    DOEpatents

    Fleming, James G.

    2003-01-01

    A new class of silicon-based lithographically defined nanoapertures and processes for their fabrication using conventional silicon microprocessing technology have been invented. The new ability to create and control such structures should significantly extend our ability to design and implement chemically selective devices and processes.

  6. Crack-resistant siloxane molding compounds. [Patent application

    DOEpatents

    McFarland, J.W.; Swearngin, C.B.

    1980-11-03

    The crack resistance of phenyl silicone molding resins containing siliceous fillers is improved by incorporating therein about 0.5 to 5.5% by weight of ..beta..-eucryptite, a lithium aluminum silicate having a negative thermal expansion coefficient. These molding resins are particularly suitable for encapsulating electronic devices such as diodes, coils, resistors, and the like.

  7. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    EPA Science Inventory

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  8. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  9. 40 CFR 428.50 - Applicability; description of the small-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... small-sized general molded, extruded, and fabricated rubber plants subcategory. 428.50 Section 428.50... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Small-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.50 Applicability; description of the small-sized general molded,...

  10. 40 CFR 428.50 - Applicability; description of the small-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... small-sized general molded, extruded, and fabricated rubber plants subcategory. 428.50 Section 428.50... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Small-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.50 Applicability; description of the small-sized general molded,...

  11. 40 CFR 428.70 - Applicability; description of the large-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... large-sized general molded, extruded, and fabricated rubber plants subcategory. 428.70 Section 428.70... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Large-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.70 Applicability; description of the large-sized general molded,...

  12. 40 CFR 428.50 - Applicability; description of the small-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... small-sized general molded, extruded, and fabricated rubber plants subcategory. 428.50 Section 428.50... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Small-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.50 Applicability; description of the small-sized general molded,...

  13. 40 CFR 428.70 - Applicability; description of the large-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... large-sized general molded, extruded, and fabricated rubber plants subcategory. 428.70 Section 428.70... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Large-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.70 Applicability; description of the large-sized general molded,...

  14. 40 CFR 428.70 - Applicability; description of the large-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... large-sized general molded, extruded, and fabricated rubber plants subcategory. 428.70 Section 428.70... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Large-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.70 Applicability; description of the large-sized general molded,...

  15. Lithographically Defined Three-dimensional Pore-patterned Carbon with Nitrogen Doping for High-Performance Ultrathin Supercapacitor Applications

    PubMed Central

    Kang, Da-Young; Moon, Jun Hyuk

    2014-01-01

    Supercapacitors that exhibit long cycle lives and fast charge/discharge rates are a promising energy-storage technology for next-generation mobile or wearable electronic systems. A great challenge facing the fabrication of ultrathin supercapacitor components, specifically their porous electrodes, is whether such components can be integrated with the fabrication of electronic devices, i.e., semiconductor fabrication processes. Here, we introduce the lithographic fabrication of micrometre-thick, submicrometre-pore-patterned carbon for supercapacitor electrodes. The pore patterns designed by multi-beam interference lithography and direct carbonisation of the photoresist pattern produced pore-patterned carbon films. A facile doping process was subsequently employed to introduce nitrogen atoms into the carbon, which was intended to further enhance the carbon's capacitive properties. Specifically, during these fabrication steps, we developed an approach that uses a supporting shell on the surface of the pore patterns to maintain their structural integrity. The nitrogen-doped, pore-patterned carbon electrodes exhibited an areal specific capacitance of 32.7 mF/cm2 at 0.5 mA/cm2 when used as supercapacitor electrodes, which is approximately 20 times greater than that of commercially available MWCNT films measured under the same conditions. PMID:24953307

  16. Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency

    SciTech Connect

    John G. Cowie; Edwin F. Brush, Jr.; Dale T. Peters; Stephen P. Midson; Darryl J. Van Son

    2003-05-01

    The objective of the study, Application of High-Temperature Mold Materials to Die Cast Copper Motor Rotor for Improved Efficiency, was to support the Copper Development Association (CDA) in its effort to design, fabricate and demonstrate mold technologies designed to withstand the copper motor rotor die casting environment for an economically acceptable life. The anticipated result from the compiled data and tests were to: (1) identify materials suitable for die casting copper, (2) fabricate motor rotor molds and (3) supply copper rotor motors for testing in actual compressor systems. Compressor manufacturers can apply the results to assess the technical and economical viability of copper rotor motors.

  17. Mold Allergy

    MedlinePlus

    ... navigation Home ▸ Conditions & Treatments ▸ Allergies ▸ Mold Allergy Share | Mold Allergy Overview Symptoms & Diagnosis Treatment & Management Mold Allergy Overview Molds are tiny fungi whose spores ...

  18. Use of directly molded poly(methyl methacrylate) channels for microfluidic applications.

    PubMed

    Lee, Sung Hoon; Kang, Do Hyun; Kim, Hong Nam; Suh, Kahp Y

    2010-12-01

    A direct molding method for creating a homogeneous, polymer microfluidic channel is presented. By utilizing capillary rise and subsequent absorption of poly(methyl methacrylate) (PMMA) solution into a solvent-permeable poly(dimethyl siloxane) (PDMS) mold, various circular or elliptic polymer microchannels were fabricated without channel bonding and additional surface modification processes. In addition, the channel diameter was tunable from several micrometres to several hundreds of micrometres by controlling concentration and initial amount of polymer solution for a given PDMS mold geometry. The molded PMMA channels were used for two applications: blocking absorption of Rhodamine B dye and constructing artificial endothelial cell-cultured capillaries. It was observed that the molded PMMA channels effectively prevented absorption and diffusion of Rhodamine molecules over 5 h time span, demonstrating approximately 40 times higher blocking efficiency as compared to porous PDMS channels. Also, calf pulmonary artery endothelial cells (CPAEs) adhered, spread, and proliferated uniformly within the molded microchannels to form near confluency within 3 days and remained viable at day 6 without notable cell death, suggesting high biocompatibility and possibility for emulating in vivo-like three-dimensional architecture of blood vessels. PMID:20938498

  19. Holistic, model-based optimization of edge leveling as an enabler for lithographic focus control: application to a memory use case

    NASA Astrophysics Data System (ADS)

    Hasan, T.; Kang, Y.-S.; Kim, Y.-J.; Park, S.-J.; Jang, S.-Y.; Hu, K.-Y.; Koop, E. J.; Hinnen, P. C.; Voncken, M. M. A. J.

    2016-03-01

    Advancement of the next generation technology nodes and emerging memory devices demand tighter lithographic focus control. Although the leveling performance of the latest-generation scanners is state of the art, challenges remain at the wafer edge due to large process variations. There are several customer configurable leveling control options available in ASML scanners, some of which are application specific in their scope of leveling improvement. In this paper, we assess the usability of leveling non-correctable error models to identify yield limiting edge dies. We introduce a novel dies-inspec based holistic methodology for leveling optimization to guide tool users in selecting an optimal configuration of leveling options. Significant focus gain, and consequently yield gain, can be achieved with this integrated approach. The Samsung site in Hwaseong observed an improved edge focus performance in a production of a mid-end memory product layer running on an ASML NXT 1960 system. 50% improvement in focus and a 1.5%p gain in edge yield were measured with the optimized configurations.

  20. Lithographically patterned nanowire electrodeposition

    NASA Astrophysics Data System (ADS)

    Xiang, Chengxiang

    Lithographically patterned nanowire electrodeposition (LPNE) is a new method for fabricating polycrystalline metal nanowires using electrodeposition. In LPNE, a sacrificial metal (M1 = silver or nickel) layer, 5 - 100 nm in thickness, is first vapor deposited onto a glass, oxidized silicon, or Kapton polymer film. A photoresist (PR) layer is then deposited, photopatterned, and the exposed Ag or Ni is removed by wet etching. The etching duration is adjusted to produce an undercut ≈300 nm in width at the edges of the exposed PR. This undercut produces a horizontal trench with a precisely defined height equal to the thickness of theM1 layer. Within this trench, a nanowire of metal M2 is electrodeposited (M2 = gold, platinum, palladium, or bismuth). Finally the PR layer and M1 layer are removed. The nanowire height and width can be independently controlled down to minimum dimensions of 5 nm (h) and 11 nm (w), for example, in the case of platinum. These nanowires can be 1 cm in total length. We measure the temperature-dependent resistance of 100 um sections of Au and Pd wires in order to estimate an electrical grain size for comparison with measurements by X-ray diffraction and transmission electron microscopy. Nanowire arrays can be postpatterned to produce two-dimensional arrays of nanorods. Nanowire patterns can also be overlaid one on top of another by repeating the LPNE process twice in succession to produce, for example, arrays of low-impedance, nanowirenanowire junctions. The resistance, R, of single gold nanowires was measured in situ during electrooxidation in aqueous 0.10 M sulfuric acid. Electrooxidation caused the formation of a gold oxide that is approximately 0.8 monolayers (ML) in thickness at +1.1 V vs saturated mercurous sulfate reference electrode (MSE) based upon coulometry and ex situ X-ray photoelectron spectroscopic analysis. As the gold nanowires were electrooxidized, R increased by an amount that depended on the wire thickness, ranging from

  1. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber... fabricated rubber plants subcategory. The following provisions of this subpart are applicable to...

  2. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general...

  3. 40 CFR 428.70 - Applicability; description of the large-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... large-sized general molded, extruded, and fabricated rubber plants subcategory. 428.70 Section 428.70... RUBBER MANUFACTURING POINT SOURCE CATEGORY Large-Sized General Molded, Extruded, and Fabricated Rubber... fabricated rubber plants subcategory. The following provisions of this subpart are applicable to...

  4. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber... fabricated rubber plants subcategory. The following provisions of this subpart are applicable to...

  5. 40 CFR 428.50 - Applicability; description of the small-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... small-sized general molded, extruded, and fabricated rubber plants subcategory. 428.50 Section 428.50... RUBBER MANUFACTURING POINT SOURCE CATEGORY Small-Sized General Molded, Extruded, and Fabricated Rubber... fabricated rubber plants subcategory. The following provisions of this subpart are applicable to...

  6. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general...

  7. 40 CFR 428.50 - Applicability; description of the small-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... small-sized general molded, extruded, and fabricated rubber plants subcategory. 428.50 Section 428.50... RUBBER MANUFACTURING POINT SOURCE CATEGORY Small-Sized General Molded, Extruded, and Fabricated Rubber... fabricated rubber plants subcategory. The following provisions of this subpart are applicable to...

  8. 40 CFR 428.70 - Applicability; description of the large-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... large-sized general molded, extruded, and fabricated rubber plants subcategory. 428.70 Section 428.70... RUBBER MANUFACTURING POINT SOURCE CATEGORY Large-Sized General Molded, Extruded, and Fabricated Rubber... fabricated rubber plants subcategory. The following provisions of this subpart are applicable to...

  9. 40 CFR 428.60 - Applicability; description of the medium-sized general molded, extruded, and fabricated rubber...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... medium-sized general molded, extruded, and fabricated rubber plants subcategory. 428.60 Section 428.60... (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Medium-Sized General Molded, Extruded, and Fabricated Rubber Plants Subcategory § 428.60 Applicability; description of the medium-sized general...

  10. Mold Allergy

    MedlinePlus

    ... the Allergist Health Professionals Partners Media Donate Allergies Mold Allergy What Is a Mold Allergy? If you have an allergy that occurs ... or basement. What Are the Symptoms of a Mold Allergy? The symptoms of mold allergy are very ...

  11. Application of statistical methods for analyzing the relationship between casting distortion, mold filling, and interfacial heat transfer in sand molds

    SciTech Connect

    Y. A. Owusu

    1999-03-31

    This report presents a statistical method of evaluating geometric tolerances of casting products using point cloud data generated by coordinate measuring machine (CMM) process. The focus of this report is to present a statistical-based approach to evaluate the differences in dimensional and form variations or tolerances of casting products as affected by casting gating system, molding material, casting thickness, and casting orientation at the mold-metal interface. Form parameters such as flatness, parallelism, and other geometric profiles such as angularity, casting length, and height of casting products were obtained and analyzed from CMM point cloud data. In order to relate the dimensional and form errors to the factors under consideration such as flatness and parallelism, a factorial analysis of variance and statistical test means methods were performed to identify the factors that contributed to the casting distortion at the mold-metal interface.

  12. Molded GASIR ® infrared optics for automotive applications

    NASA Astrophysics Data System (ADS)

    Guimond, Y.; Bellec, Y.

    2006-05-01

    Umicore IR Glass has developed an industrial process to manufacture low cost chalcogenide glasses. These materials called GASIR® are transparent in the 3-5 and 8-12 μm atmospheric windows which allows to use them in all the sensing and thermal imaging applications where Germanium and ZnSe usually stands. During the past 5 years, Umicore has developed and produced with and for its customers various GASIR ® optics in low and medium volume for military and civilian applications. But from the beginning of last year, the company is also very active in the automotive market. For that reason, a huge work of development on optics quality has been done to comply with automotive requests. Umicore's GASIR ® optics are used for instance in the night vision system that BMW launched in September 2005 on its 7-series. This system which will be described in this paper was developed by Umicore's customer, automotive TIER1 producer Autoliv.

  13. Modeling and control of flow during impregnation of heterogeneous porous media, with application to composite mold-filling processes

    NASA Astrophysics Data System (ADS)

    Bickerton, Simon

    Liquid Composite Molding (LCM) encompasses a growing list of composite material manufacturing techniques. These processes have provided the promise for complex fiber reinforced plastics parts, manufactured from a single molding step. In recent years a significant research effort has been invested in development of process simulations, providing tools that have advanced current LCM technology and broadened the range of applications. The requirement for manufacture of larger, more complex parts has motivated investigation of active control of LCM processes. Due to the unlimited variety of part geometries that can be produced, finite element based process simulations will be used to some extent in design of actively controlled processes. Ongoing efforts are being made to improve material parameter specification for process simulations, increasing their value as design tools. Several phenomena occurring during mold filling have been addressed through flow visualization experimentation and analysis of manufactured composite parts. The influence of well defined air channels within a mold cavity is investigated, incorporating their effects within existing filling simulations. Three different flow configurations have been addressed, testing the application of 'equivalent permeabilities', effectively approximating air channels as representative porous media. LCM parts having doubly curved regions require preform fabrics to undergo significant, and varying deformation throughout a mold cavity. Existing methods for predicting preform deformation, and the resulting permeability distribution have been applied to a conical mold geometry. Comparisons between experiment and simulation are promising, while the geometry studied has required large deformation over much of the part, shearing the preform fabric beyond the scope of the models applied. An investigational study was performed to determine the magnitude of effect, if any, on mold filling caused by corners within LCM mold

  14. Design of new block copolymer systems to achieve thick films with defect-free structures for applications of DSA into lithographic large nodes

    NASA Astrophysics Data System (ADS)

    Chevalier, X.; Coupillaud, P.; Lombard, G.; Nicolet, C.; Beausoleil, J.; Fleury, G.; Zelsmann, M.; Bezard, P.; Cunge, G.; Berron, J.; Sakavuyi, K.; Gharbi, A.; Tiron, R.; Hadziioannou, G.; Navarro, C.; Cayrefourcq, I.

    2016-03-01

    Properties of new block copolymers systems, specifically designed to reach large periods for the features, are compared to the ones exhibited by classical PS-b-PMMA materials of same dimensions. Conducted studies, like free-surface defects analysis, mild-plasma tomography experiments, graphoepitaxy-guided structures, etch-transfer… indicate much better performances, in terms of achievable film-thicknesses with perpendicular features, defects levels, and dimensional uniformities, for the new system than for the classical PS-b-PMMA. These results clearly highlight unique and original solutions toward an early introduction of DSA technology into large lithographic nodes.

  15. MOLDING APPARATUS

    DOEpatents

    Fleming, P.G.

    1963-10-01

    Molding apparatus capable of coating multiple elements each molding cycle is described. The apparatus comprises a centrally disposed reservoir penetrated by a plurality of circumferentially arranged and radially extending passageways. These passageways, in turn, communicate with passages in a separable annular member that retains selectively configured molds and mold seating arrangements. Each mold, which is readily removable from its respective seat, is adapted to retain an element therein in spaced relation to the interior of the mold by utilizing element positioning means within the mold seat and the mold so that coating material may flow about the entire outer surface of the element. (AEC)

  16. Protection of lithographic components from particle contamination

    DOEpatents

    Klebanoff, Leonard E.; Rader, Daniel J.

    2000-01-01

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  17. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning...

  18. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... closed, and the mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not...

  19. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... closed, and the mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not...

  20. 40 CFR Table 3 to Subpart Wwww of... - Organic HAP Emissions Limits for Existing Open Molding Sources, New Open Molding Sources Emitting...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mold is vented during spinning and cureb. resin application with the mold closed, and the mold is not vented during spinning and cure c. resin application with the mold open, and the mold is vented during spinning and cure d. resin application with the mold open, and the mold is not vented during spinning...

  1. The evaluation of vacuum venting and variotherm process for improving the replication by injection molding of high aspect ratio micro features for biomedical application

    NASA Astrophysics Data System (ADS)

    Sorgato, Marco; Lucchetta, Giovanni

    2015-05-01

    The aspect ratio achievable in replicating micro features is one of the most important process characteristics and it is a major manufacturing constraint in applying injection molding in a range of micro engineering applications. Vacuum venting has been reported to be an effective technique in replicating micro features by microinjection molding. High surface-to-volume ratio and reduced dimensions of micro parts promote the instantaneous drop of melt temperature and consequently lead to incomplete filling. This study aims to investigate the effects of variotherm process, cavity evacuation and their interaction on the production of a micro fluidic filter for biomedical applications. A low-viscosity polystyrene and a cyclic olefin copolymer were molded applying a combination of mold evacuation and a rapid mold temperature variation that keeps the cavity temperature above the glass transition temperature during the injection phase. The research revealed the importance of these molding technologies in enhancing part filling and the replication quality for high aspect ratio micro features.

  2. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    SciTech Connect

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  3. Application of Anisotropic Conductive Film to Fabrication of Molybdenum Field Emitter Arrays Using Transfer Mold Technique

    NASA Astrophysics Data System (ADS)

    Cho, Eou Sik; Ahn, Min Hyung; Kwon, Sang Jik

    2008-08-01

    In the fabrication of molybdenum field emitter arrays (Mo FEA) by the transfer mold technique, anisotropic conductive film (ACF) was applied to the bond between the inverted mold structure and the transferred glass substrate. Without any electrical treatment of electrostatic bonding, the inverted mold was successfully bonded to an indium tin oxide (ITO) glass substrate under optimized thermal and pressure conditions. No additional conductive layers were used in the bonding process, and the bonded ACF was not chemically affected in the wet-etch process of the silicon inverted mold structure. The fabricated Mo FEA was structurally and electrically investigated and an anode current of 10 nA per emitter was obtained at a gate bias of 94 V. The results demonstrate the possibility of selective conduction in the fabrication of transfer mold FEA using ACF bonding.

  4. Phenolic Molding Compounds

    NASA Astrophysics Data System (ADS)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  5. Application of Non-Arrhenius Models to the Viscosity of Mold Flux

    NASA Astrophysics Data System (ADS)

    Zhou, Lejun; Wang, Wanlin

    2016-06-01

    The mold flux in continuous casting mold experiences a significant temperature gradient ranging from more than 1773 K (1500 °C) to room temperature, and the viscosity of the mold flux would therefore have a non-Arrhenius temperature dependency in such a wide temperature region. Three non-Arrhenius models, including Vogel-Fulcher-Tammann (VFT), Adam and Gibbs (AG), and Avramov (AV), were conducted to describe the relationship between the viscosity and temperature of mold flux in the temperature gradient existing in the casting mold. It found that the results predicted by the VFT and AG models are closer to the measured ones than those by the AV model and that they are much better than the Arrhenius model in characterizing the variation of viscosity of mold flux vs temperature. In addition, the VFT temperature and AG temperature can be considered to be key benchmarks in characterizing the lubrication ability of mold flux beyond the break temperature and glass transition temperature.

  6. A wide variety of injection molding technologies is now applicable to small series and mass production

    NASA Astrophysics Data System (ADS)

    Bloß, P.; Jüttner, G.; Jacob, S.; Löser, C.; Michaelis, J.; Krajewsky, P.

    2014-05-01

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process "all" thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  7. A wide variety of injection molding technologies is now applicable to small series and mass production

    SciTech Connect

    Bloß, P. E-mail: juettner@kuz-leipzig.de E-mail: loeser@kuz-leipzig.de E-mail: krajewsky@kuz-leipzig.de; Jüttner, G. E-mail: juettner@kuz-leipzig.de E-mail: loeser@kuz-leipzig.de E-mail: krajewsky@kuz-leipzig.de; Jacob, S. E-mail: juettner@kuz-leipzig.de E-mail: loeser@kuz-leipzig.de E-mail: krajewsky@kuz-leipzig.de; Löser, C. E-mail: juettner@kuz-leipzig.de E-mail: loeser@kuz-leipzig.de E-mail: krajewsky@kuz-leipzig.de; Michaelis, J. E-mail: juettner@kuz-leipzig.de E-mail: loeser@kuz-leipzig.de E-mail: krajewsky@kuz-leipzig.de; Krajewsky, P. E-mail: juettner@kuz-leipzig.de E-mail: loeser@kuz-leipzig.de E-mail: krajewsky@kuz-leipzig.de

    2014-05-15

    Micro plastic parts open new fields for application, e. g., to electronics, sensor technologies, optics, and medical engineering. Before micro parts can go to mass production, there is a strong need of having the possibility for testing different designs and materials including material combinations. Hence, flexible individual technical and technological solutions for processing are necessary. To manufacture high quality micro parts, a micro injection moulding machine named formicaPlast based on a two-step plunger injection technology was developed. Resulting from its design, the residence time and the accuracy problems for managing small shot volumes with reproducible high accuracy are uncompromisingly solved. Due to their simple geometry possessing smooth transitions and non adherent inner surfaces, the plunger units allow to process 'all' thermoplastics from polyolefines to high performance polymers, optical clear polymers, thermally sensitive bioresorbables, highly filled systems (the so-called powder injection molding PIM), and liquid silicon rubber (LSR, here with a special kit). The applied platform strategy in the 1K and 2K version allows integrating automation for assembling, handling and packaging. A perpendicular arrangement allows encapsulation of inserts, also partially, and integration of this machine into process chains. Considering a wide variety of different parts consisting of different materials, the high potential of the technology is demonstrated. Based on challenging industrial parts from electronic applications (2K micro MID and bump mat, where both are highly structured parts), the technological solutions are presented in more detail.

  8. Processing study of injection molding of silicon nitride for engine applications

    NASA Technical Reports Server (NTRS)

    Rorabaugh, M. E.; Yeh, H. C.

    1985-01-01

    The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.

  9. Influence of Mold Surface Treatments on Flow of Polymer in Injection Moulding. Application to Weldlines

    NASA Astrophysics Data System (ADS)

    Chailly, M.; Charmeau, J.-Y.; Bereaux, Y.; Monasse, B.

    2007-04-01

    Due to increasing expectations from the market, the aspect of molded parts has to be improved constantly. Some of the defects observed on these parts such as weldlines are related to the filling stage. To limit this, we investigated the influence on weldlines using various surface deposits on the mold surface, mainly PVD and PACVD deposits : Chromium nitride (CrN), Titanium nitride (TiN), Diamond like Carbon (DLC), Chromium and polished steel (PG) on an instrumented plate mold. Injection campaign was led on three polymers which differ in terms of nature (amorphous, semi-crystalline, copolymers). We studied the evolution of the dimensions of weldlines appearing on the plate using the same injection parameters for a given polymer, but with various deposits and thicknesses. Another aspect that had been investigated is the morphology of the weldline through the thickness of the part, depending on polymer nature. Adhesion of polymer at the flow front with the mold surface proved to change. The modification of the initial contact in the filling stage and thus the thermal resistance at the mold implied a change in the process, increasing or reducing the pressure loss in the flow and differential shrinkage in the final part. The induced impact on dimensions of the weldlines allowed to distinguish which surface treatments were able to reduce the defect. A complementary study was led on both polymers in molten state and deposits in terms of wetting using a sessile drop method to confirm the adhesion at the polymer/mold interface. This study proved the influence of the use of surface treatments has clearly an impact on the filling stage of the injection molding process, and it is necessary to get a better knowledge of the interactions between physical adhesion, tribology of polymer/mold contact, and thermal properties of the coatings and their impact on solidification of the polymer.

  10. Mold Charlatans.

    ERIC Educational Resources Information Center

    Woody, Daniel

    2002-01-01

    Offers a primer on toxic mold and its removal, warning against ignorant or unethical mold remediation companies and offering five considerations (checking references, considering the big picture, sampling more than the air, considering release, and considering the source) when hiring such services. (EV)

  11. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  12. 3. Photocopy of ca. 1885 lithograph, VIEW OF CHURCH (note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of ca. 1885 lithograph, VIEW OF CHURCH (note presence of spire). Lithograph at American Catholic Historical Society, Philadelphia, Pa. - St. Agatha's Roman Catholic Church, 3801 Spring Garden Street, Philadelphia, Philadelphia County, PA

  13. Molded, wafer level optics for long wave infra-red applications

    NASA Astrophysics Data System (ADS)

    Franks, John

    2016-05-01

    For many years, the Thermal Imaging market has been driven by the high volume consumer market. The first signs of this came with the launch of night vision systems for cars, first by Cadillac and Honda and then, more successfully by BMW, Daimler and Audi. For the first time, simple thermal imaging systems were being manufactured at the rate of more than 10,000 units a year. This step change in volumes enabled a step change in system costs, with thermal imaging moving into the consumer's price range. Today we see that the consumer awareness and the consumer market continues to increase with the launch of a number of consumer focused smart phone add-ons. This has brought a further step change in system costs, with the possibility to turn your mobile phone into a thermal imager for under $250. As the detector technology has matured, the pixel pitches have dropped from 50μm in 2002 to 12 μm or even 10μm in today's detectors. This dramatic shrinkage in size has had an equally dramatic effect on the optics required to produce the image on the detector. A moderate field of view that would have required a focal length of 40mm in 2002 now requires a focal length of 8mm. For wide field of view applications and small detector formats, focal lengths in the range 1mm to 5mm are becoming common. For lenses, the quantity manufactured, quality and costs will require a new approach to high volume Infra-Red (IR) manufacturing to meet customer expectations. This, taken with the SwaP-C requirements and the emerging requirement for very small lenses driven by the new detectors, suggests that wafer scale optics are part of the solution. Umicore can now present initial results from an intensive research and development program to mold and coat wafer level optics, using its chalcogenide glass, GASIR®.

  14. Spray-formed tooling for injection molding and die casting applications

    SciTech Connect

    K. M. McHugh; B. R. Wickham

    2000-06-26

    Rapid Solidification Process (RSP) Tooling{trademark} is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  15. Spray-formed Tooling for Injection Molding and Die Casting Applications

    SciTech Connect

    Mc Hugh, Kevin Matthew

    2000-06-01

    Rapid Solidification Process (RSP) ToolingTM is a spray forming technology tailored for producing molds and dies. The approach combines rapid solidification processing and net-shape materials processing in a single step. The ability of the sprayed deposit to capture features of the tool pattern eliminates costly machining operations in conventional mold making and reduces turnaround time. Moreover, rapid solidification suppresses carbide precipitation and growth, allowing many ferritic tool steels to be artificially aged, an alternative to conventional heat treatment that offers unique benefits. Material properties and microstructure transformation during heat treatment of spray-formed H13 tool steel are described.

  16. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins.

    PubMed

    Jeong, Rae-Dong; Chu, Eun-Hee; Lee, Gun Woong; Cho, Chuloh; Park, Hae-Jun

    2016-10-01

    Gamma irradiation has been shown to be effective for the control of postharvest fungi in vitro, but little is known regarding antifungal action, responses to gamma irradiation, and its application to fresh produce. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against Penicillium digitatum on Satsuma mandarin fruits. Green mold was inhibited in a dose-dependent manner. Gamma irradiation showed a complete inhibition of spore germination, germ tube elongation, and mycelial growth of P. digitatum, particularly at 1.0kGy. To further investigate the mechanisms by which gamma irradiation inhibits fungal growth, the membrane integrity and cellular leakage of conidia were tested, indicating that gamma irradiation results in the loss of plasma membrane integrity, causing the release of intracellular contents such as soluble proteins. In vivo assays demonstrated that established doses can completely inhibit the growth of fungal pathogens, but such high doses cause severe fruit damage. Thus, to eliminate the negative impact on fruit quality, gamma irradiation at lower doses was evaluated for inhibition of P. digitatum, in combination with a chlorine donor, sodium dichloro-s-triazinetrione (NaDCC). Interestingly, only a combined treatment with 0.4kGy of gamma irradiation and 10ppm of NaDCC exhibited significant synergistic antifungal activity against green mold decay. The mechanisms by which the combined treatment decreased the green mold decay of mandarin fruits can be directly associated with the disruption of cell membrane of the fungal pathogen, which resulted in a loss of cytoplasmic material from the hyphae. These findings suggest that a synergistic effect of combining treatment with gamma irradiation with NaDCC has potential as an antifungal approach to reduce the severity of green mold in mandarin fruits. PMID:27356109

  17. An application of CO{sub 2} laser interference heating for polymer injection molding process

    SciTech Connect

    Saito, Takushi; Satoh, Isao; Kurosaki, Yasuo

    1999-07-01

    In this paper, the authors studied the small scale (less than 1 mm) local heat transfer control of injection molded polymer products by using CO{sub 2} laser interferometry. This technique could provide precise local temperature control of the product surface during the process. Residual birefringence of the irradiated surface was successfully distributed according to the interference pattern. This scale of heat transfer control has not been realized through common conductive heat transfer methods. To establish the laser interference heating, a CO{sub 2} laser, a set of optical equipment, and a transparent window of Zinc-selenide were used. To control the heat transfer on the molded polymer surface, the interfered laser beam was introduced through the window. Polystyrene resin was used to investigate the feasibility of this method. In the experiment, the control ability of the property distribution on a molded polymer surface was studied under various conditions. To confirm the viability of this technique, optical strain frozen in the molded polymer surface was measured with a polarizing microscope as birefringence. As the result, it was clearly shown that the residual birefringence had an equal spaced distribution. Also, the contrast between the irradiated and un-irradiated portions was obvious regardless of the polymer melt velocity and radiation intensity. This method may be applied to the production of diffraction gratings which have geometrically smooth surfaces.

  18. NON-POLLUTING COMPOSITES REPAIR AND REMANUFACTURING FOR MILITARY APPLICATIONS: CO-INJECTION RESIN TRANSFER MOLDING

    EPA Science Inventory

    Vacuum-assisted resin transfer molding (VARTM) processes have been proven to be cost-effective manufacturing techniques for large composite structures. However, their use has been limited to single resin systems. A large variety of composite structures requires multiple resins to...

  19. REAL TIME PCR ANALYSIS OF INDOOR MOLDS: PRINCIPLES, PROCEDURES AND APPLICATIONS

    EPA Science Inventory

    This presentation will endeavor to present an overview of the real time polymerase chain reaction method developed for indoor mold detection and quantification by the EPA. It will begin with a brief discussion of the PCR technology that provides the basis for this method and how ...

  20. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    NASA Astrophysics Data System (ADS)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The

  1. Preparation of Microstructure Molds of Montmorillonite/Polyethylene Glycol Diacrylate and Multi-Walled Carbon Nanotube/Polyethylene Glycol Diacrylate Nanocomposites for Miniaturized Device Applications.

    PubMed

    Kim, Young Ho; Sohn, Jeong-Woo; Woo, Youngjae; Hong, Joo-Hyun; Kim, Gyu Man; Kang, Bong Keun; Park, Juyoung

    2015-10-01

    Environmentally friendly microstructure molds with montmorillonite (MMT) or multi-walled carbon nanotube (MWCNT) reinforced polyethylene glycol diacrylate (PEGDA) nanocomposites have been prepared for miniaturized device applications. The micropatterning of MMT/PEGDA and MWCNT/PEGDA with 0.5 to 2.0 wt% of MMTs and MWCNTs was achieved through a UV curing process with micro-patterned masks. Hexagonal dot arrays and complex patterns for microstructures of the nanocomposites were produced and characterized with an optical microscope; their thermal properties were studied by thermogravimetric analysis (TGA). The TGA results showed that these nanocomposites were thermally stable up to 350 °C. Polydimethylsiloxane thin replicas with different microstructures were prepared by a casting method using the microstructured nanocomposites as molds. It is considered that these microstructure molds of the nanocomposites can be used as microchip molds to fabricate nanobio-chips and medical diagnostic chip devices. PMID:26726429

  2. Foil assisted replica molding for fabrication of microfluidic devices and their application in vitro.

    PubMed

    Micheal, Issac J; Vidyasagar, Aditya J; Bokara, Kiran Kumar; Mekala, Naveen Kumar; Asthana, Amit; Rao, Ch Mohan

    2014-10-01

    We present a simple, rapid, benchtop, Foil Assisted Rapid Molding (FARM) method for the fabrication of microfluidic devices. This novel technique involves the use of aluminium foil, pen and an X-Y plotter to create semi-circular or plano-concave, shallow microchannels. It is an easy do-it-yourself (DIY) technique for creating a microfluidic device in three simple steps: (1) create a channel design using the CAD software, (2) plot the patterns on aluminium foil and (3) use the reverse of the engraved foil as a mold to create microfluidic devices. In this report, we present a detailed study of the proposed method by varying a range of parameters such as foil thickness, tip material, and tip sizes and by investigating their effect on the creation of channels with varying geometry. Furthermore, we demonstrated the cytocompatibility of these devices in vitro. PMID:25102283

  3. Thermal stresses in chemically hardening elastic media with application to the molding process

    NASA Technical Reports Server (NTRS)

    Levitsky, M.; Shaffer, B. W.

    1974-01-01

    A method has been formulated for the determination of thermal stresses in materials which harden in the presence of an exothermic chemical reaction. Hardening is described by the transformation of the material from an inviscid liquid-like state into an elastic solid, where intermediate states consist of a mixture of the two, in a ratio which is determined by the degree of chemical reaction. The method is illustrated in terms of an infinite slab cast between two rigid mold surfaces. It is found that the stress component normal to the slab surfaces vanishes in the residual state, so that removal of the slab from the mold leaves the remaining residual stress unchanged. On the other hand, the residual stress component parallel to the slab surfaces does not vanish. Its distribution is described as a function of the parameters of the hardening process.

  4. One-step substrate nanofabrication and patterning of nanoparticles by lithographically controlled etching

    NASA Astrophysics Data System (ADS)

    Bianchi, M.; Limones Herrero, D.; Valle, F.; Greco, P.; Ingo, G. M.; Kaciulis, S.; Biscarini, F.; Cavallini, M.

    2011-09-01

    We propose an integrated top-down and bottom-up approach to single-step nanofabrication of complex nanostructures made of different materials. The process, termed lithographically controlled etching (LCE), starts with a drop of an etching solution cast on the surface to be patterned. By placing a polymeric mold on the substrate, the stamp protrusions come into contact with the surface, thus protecting it, whereas the surface beneath the mold recesses is exposed to a thin layer of etching solution, allowing the surface to be etched. By dispersing nanoparticles into the etching solution, these can be deposited and self-organize in the recesses on the substrate as these are excavated. We demonstrate here the fabrication of complex structures and nanowires 30 nm wide. Moreover, by exploiting capillary forces, it is possible to deposit nanoparticles at precise positions with respect to optically addressable microstructures, thus realizing a multiscale functional pattern.

  5. Inspection of lithographic mask blanks for defects

    DOEpatents

    Sommargren, Gary E.

    2001-01-01

    A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.

  6. Silicon micro-mold and method for fabrication

    DOEpatents

    Morales, Alfredo M.

    2005-01-11

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  7. Allergies, asthma, and molds

    MedlinePlus

    Allergic rhinitis - mold ... make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are said to have a mold allergy. ...

  8. Low-pressure injection molding

    SciTech Connect

    Mangels, J.A. )

    1994-05-01

    Ceramic injection molding experienced a revival in the 1970s and 1980s with the application of ceramics for gas turbine components. Concurrently, techniques were being developed for the injection molding of powdered metal compositions into complex shaped articles. The impetus for the development of injection molding as a ceramic fabrication process lay in the potential to produce complex-shaped components to near-net shape. In the ceramic injection molding process, ceramic powders are processed to obtain the desired particle size, distribution and morphology and blended to obtain a homogeneous distribution. These powders are then mixed with the organic binders, generally in a heated, highshear mixer at temperatures above the melting point of the organic binders. The injection molding mix is pelletized, cooled and fed into an injection molding machine. The molding mix is reheated to a fluid state and injected under high pressure (7--70 MPa) into a die cavity. The molded part is removed from the tooling after the molding mix has solidified in the die. The organic binders are then removed from the component at temperatures up to 400 C, generally by some combination of wicking and thermal decomposition. Finally, the component is sintered to obtain its final ceramic properties, using conventional ceramic processes.

  9. Mold-Based Application of Laser-Induced Periodic Surface Structures (LIPSS) on Biomaterials for Nanoscale Patterning.

    PubMed

    Hendrikson, Wim; Masman-Bakker, Wendy; van Bochove, Bas; Skolski, Johann; Eichstädt, Justus; Koopman, Bart; van Blitterswijk, Clemens; Grijpma, Dirk; Römer, Gert-Willem; Moroni, Lorenzo; Rouwkema, Jeroen

    2016-01-01

    Laser-induced periodic surface structures (LIPSS) are highly regular, but at the same time contain a certain level of disorder. The application of LIPSS is a promising method to functionalize biomaterials. However, the absorption of laser energy of most polymer biomaterials is insufficient for the direct application of LIPSS. Here, we report the application of LIPSS to relevant biomaterials using a two-step approach. First, LIPSS are fabricated on a stainless steel surface. Then, the structures are replicated onto biomaterials using the steel as a mold. Results show that LIPSS can be transferred successfully using this approach, and that human mesenchymal stromal cells respond to the transferred structures. With this approach, the range of biomaterials that can be supplied with LIPSS increases dramatically. PMID:26335444

  10. Fabrication of a roller type PDMS stamp using SU-8 concave molds and its application for roll contact printing

    NASA Astrophysics Data System (ADS)

    Park, Jongho; Kim, Beomjoon

    2016-03-01

    Continuous fabrication of micropatterns at low-cost is attracting attention in various applications within industrial fields. To meet such demands, we have demonstrated a roll contact printing technique, using roller type polydimethylsiloxane (PDMS) stamps with roll-to-flat and roll-to-roll stages. Roller type PDMS stamps for roll contact printing were fabricated using a custom-made metal support and SU-8 microstructures fabricated on concave substrates as a mold. The molding/casting method which we developed here provided faster and easier fabrication than conventional methods for roller type stamps. Next, roll contact printing was performed using fabricated roller type PDMS stamps with roll-to-flat and roll-to-roll stages. Patterns with minimum widths of 3 μm and 2.1 μm were continuously fabricated for each stage, respectively. In addition, the relationship between applied pressures and dimensional changes of roll contact printed patterns was investigated. Finally, we confirmed that roll contact printing and the new fabrication method for roller stamps presented in this study demonstrated the feasibility for industrial applications.

  11. A process for co-molding a visible-wavelength photonic crystal and microfluidic channel for biosensing applications

    NASA Astrophysics Data System (ADS)

    Srungarapu, Maurya; Snyder, Chloe E.; Kadiyala, Anand; Hamza, Bashar; Liu, Yuxin; Dawson, Jeremy M.

    2013-05-01

    Rapid DNA analysis systems show promise for reduced DNA analysis times and can be used by untrained operators in point-of-use applications. Throughput improvements can be gained by reducing the polymerase chain reaction (PCR) cycle count, which is used in conventional DNA processing to amplify the DNA to an easily measurable amount. A Photonic Crystal (PhC) can be integrated within a microfluidic channel to enhance fluorescence emission, enabling a reduction in PCR cycling. Most PhCs are fabricated using serial top-down fabrication techniques, resulting in a structure that is challenging to integrate with microfluidic system components. Here, we present a co-integration process for fabricating a Silicon master mold consisting of a visible range PhC lattice and a microfluidic channel. This process can be used to co-fabricate microscale channel and nanoscale lattice structures in polymer or thermoplastic materials. Two dimensional visible range PhCs are fabricated by patterning electron beam resist via E-Beam Lithography (EBL). The patterned features (100-300nm features with 200-450nm pitch) are cured to a glass-like material that is used as a direct etch mask for Reactive Ion Etching. A 200μm wide and 25μm high ridge "strip" is fabricated around the PhC region using Photolithography and Deep RIE etching to form the completed channel and lattice mold. Results indicating the quality of nanoscale features resulting from the molding process in Polydimethylsiloxane (PDMS) will be discussed.

  12. High-speed nonsilver lithographic system for laser direct imaging

    NASA Astrophysics Data System (ADS)

    DoMinh, Thap

    1991-08-01

    A high-speed nonsilver lithographic system has been demonstrated for direct laser imaging. The system is negative working and is based on a photoinsolubilization of a polymer coating by redox amplification. The essential components consist of a cobalt(III)amine (Coen), a redox transfer ligand (PAN), a light-sensitive quinone (Q), and a polysulfonamide binder (A6). On exposure, the quinone photogenerates a hydroquinone reducing agent. On heating, the hydroquinone reduces Coen to produce Co(II). PAN then complexes this Co(II) to form CO(II) PAN which, in turn, reduces more Coen. This resulting reaction produces Co(III)PAN and more Co(II) centers, which in the presence of excess PAN and Coen continues the cycle, giving photographically useful amplification. Polysulfonamide (A6) is an excellent medium with optimal acidity and thermomechanical properties to promote this chemistry. It provides toughness required for a dry-film photoresist, ink receptivity for lithographic plate, and aqueous development for both applications. Exposure to an Argon ion laser (4881514nm) at dose O.5-lmj/cm2 followed by heating (5 sec/120 C hot plate) produced high-density images that were insolubilized in an aqueous alkaline developer to give final nonswell images of excellent quality.

  13. Blow molding of melt processible rubber

    SciTech Connect

    Abell, W.R.; Stuart, R.E.; Myrick, R.E.

    1991-07-01

    This article discusses the advantages of making hollow rubber parts by blow molding thermoplastic elastomers (TPEs) versus conventional rubber processing. It describes the various types of blow molding processes and it provides some insight into the rheological properties of melt processible rubber (MPR) and how MPR should be molded by each of these processes. A number of blow molded applications for MPR are also discussed.

  14. INGOT MOLD

    DOEpatents

    Mangold, A.J. Jr.; MaHaffey, J.W.; Reese, S.L.

    1958-04-29

    An improved ingot-mold assembly is described, consisting of a body having a cavity and a recess extending through to the bottom of the body from the cavity, and the bottom of the cavity having an internal shoulder extending downward and a plug having an external shoulder. The plug extends above the shoulders and below the bottom of the body.

  15. Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wolff, M.; Schaper, J. G.; Suckert, M. R.; Dahms, M.; Ebel, T.; Willumeit-Römer, R.; Klassen, T.

    2016-04-01

    Metal injection molding (MIM) has a high potential for the economic near-net-shape mass production of small-sized and complex-shaped parts. The motivation for launching Mg into the MIM processing chain for manufacturing biodegradable medical implants is related to its compatibility with human bone and its degradation in a non-toxic matter. It has been recognized that the load-bearing capacity of MIM Mg parts is superior to that of biodegradable polymeric components. However, the choice of appropriate polymeric binder components and alloying elements enabling defect-free injection molding and sintering is a major challenge for the use of MIM Mg parts. This study considered the full processing chain for MIM of Mg-Ca alloys to achieve ultimate tensile strength of up to 141 MPa with tensile yield strength of 73 MPa, elongation at fracture Af of 7% and a Young's modulus of 38 GPa. To achieve these mechanical properties, a thermal debinding study was performed to determine optimal furnace and atmosphere conditions, sintering temperature, heating rates, sintering time and pressure.

  16. Application of Molded Interconnect Device technology to the realization of a self-biased circulator

    NASA Astrophysics Data System (ADS)

    Laur, Vincent; Mattei, Jean-Luc; Vérissimo, Grégory; Queffelec, Patrick; Lebourgeois, Richard; Ganne, Jean-Pierre

    2016-04-01

    This paper describes the first electromagnetic characterization of a self-biased circulator in molded interconnect device (MID) technology. The circulator was designed using a 3D full-wave commercial simulator. It consists of microstrip access lines connected to a Y-junction in Substrate Integrated Waveguide (SIW) technology. Unlike classical technologies, the SIW Y-junction was not fabricated using metallic vias but by a Laser Direct Structuring (LDS) technique. A molded Cyclo-Olefin Polymer (COP) was used as a substrate and 3D metallized. The microwave properties of LDS-compatible COP are not well known so we investigated them through the use of cavity-perturbation and rectangular waveguide characterization methods. The device was then machined to insert a pre-oriented strontium hexaferrite puck doped with cobalt and lanthanum (Sr0,7La0,3Fe11,7Co0,3O19). The characteristics of the MID circulator were assessed between 28 and 32 GHz. Without magnets, insertion losses of 3.32 dB were measured at 30.7 GHz. At the same frequency, an isolation level of 13.89 dB and return losses of 19.89 dB were observed. These measurements demonstrate for the first time the high potential of MID technology for the realization of low-cost non-reciprocal devices.

  17. Advanced manufacturing methods for chalcogenide molded optics

    NASA Astrophysics Data System (ADS)

    Cogburn, Gabriel

    2011-06-01

    As Chalcogenide glass and Precision Molded Optics (PMO) have developed and matured to a point of being accepted as replacements for Germanium Single Point Diamond Turned (SPDT) optics; technological research is being dedicated to developing infrared PMO that can be used in a broader application base. These include laser arrays, large aperture molded chalcogenide optics, and molded in mount infrared optics. This paper presents applications for infrared laser arrays and the corresponding optics that must be closely mechanically mounted to avoid clipping the beams. Different molding and mounting techniques will be discussed to solve this issue which include; dicing chalcogenide optic lenses, molded in mount chalcogenide optics and stepped optic shape molding for mounting purposes. Accompanying the research and discussion of these techniques will be experiments and molded chalcogenide glass lenses showing the results and application for each lens type.

  18. More than monitoring: advanced lithographic process tuning

    NASA Astrophysics Data System (ADS)

    Cantrell, G. R.; Dumaya, Jo Alvin; Bürgel, Christian; Feicke, Axel; Häcker, Martin; Utzny, Clemens

    2011-11-01

    Critical dimensions (CD) measured in resist are key to understanding the CD distribution on photomasks. Vital to this understanding is the separation of spatially random and systematic contributions to the CD distribution. Random contributions will not appear in post etch CD measurements (final) whereas systematic contributions will strongly impact final CDs. Resist CD signatures and their variations drive final CD distributions, thus an understanding of the mechanisms influencing the resist CD signature and its variation play a pivotal role in CD distribution improvements. Current technological demands require strict control of reticle critical dimension uniformity (CDU) and the Advanced Mask Technology Center (AMTC) has found significant reductions in reticle CDU are enabled through the statistical analysis of large data sets. To this end, we employ Principle Component Analysis (PCA) - a methodology well established at the AMTC1- to show how different portions of the lithographic process contribute to CD variations. These portions include photomask blank preparation as well as a correction parameter in the front end process. CD variations were markedly changed by modulating these two lithographic portions, leading to improved final CDU on test reticles in two different chemically amplified resist (CAR) processes.

  19. High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

    NASA Astrophysics Data System (ADS)

    Albert, Benedikt; Völkl, Rainer; Glatzel, Uwe

    2014-09-01

    For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

  20. Processing studies in sheet molding compound compression molding

    NASA Astrophysics Data System (ADS)

    Abrams, Lisa Marie

    Due to its high strength to weight ratio, corrosion resistance, and low cost. Sheet Molding Compound (SMC) production offers great potential for growth in the automotive and trucking industry. Much attention is now being given to improving the economy of SMC compression molding by reducing the cycle time required to produce acceptable parts in steady production. One of the fastest growing applications of Sheet Molding Compound (SMC) compression molding panels is the manufacture of truck body panels. Due to their large size, the molding forces developed are substantial and have a major influence in the molding cycle. The relevant process models for SMC flow are reviewed and a procedure is developed that can be used to obtain the closing force and calculate the needed material parameters. Experiments were done using commercially made SMC varying quantities of glass, filler, and thickener to verify the validity of this model and the compression force was predicted for commercially made automotive hoods. It was found that glass and filler had a significant impact on the material parameters. When the amount of glass was increased, both material parameters m/deltan and eta increased. Similar trends were seen when increasing the amount of filler. For the thickener used in this research (magnesium oxide), it was found that it had minimal effect on the material parameters. Molding conditions and initial SMC charge configurations were also varied to see their effects on molding force and material parameters. Initial charge dimensions and volume as well as mold closing speed showed no effect on material parameters, while molding temperature showed a minimal effect. Material parameters were calculated for each SMC composition. These parameters were used to predict the compression force for the Corvette hood and Fiero hood. These predictions were compared with actual Corvette and Fiero hoods manufactured in industry. They predicted the commercially made parts quite well.

  1. Dosimetric characterization of a novel intracavitary mold applicator for 192Ir high dose rate endorectal brachytherapy treatment.

    PubMed

    Poon, Emily; Reniers, Brigitte; Devic, Slobodan; Vuong, Té; Verhaegen, Frank

    2006-12-01

    The dosimetric properties of a novel intracavitary mold applicator for 192Ir high dose rate (HDR) endorectal cancer treatment have been investigated using Monte Carlo (MC) simulations and experimental methods. The 28 cm long applicator has a flexible structure made of silicone rubber for easy passage into cavities with deep-seated tumors. It consists of eight source catheters arranged around a central cavity for shielding insertion, and is compatible for use with an endocavitary balloon. A phase space model of the HDR source has been validated for dose calculations using the GEANT4 MC code. GAFCHROMIC EBT model film was used to measure dose distributions in water around shielded and unshielded applicators with two loading configurations, and to quantify the shielding effect of a balloon injected with an iodine solution (300 mg I/mL). The film calibration procedure was performed in water using an 192Ir HDR source. Ionization chamber measurements in a Lucite phantom show that placing a tungsten rod in the applicator attenuates the dose in the shielded region by up to 85%. Inserting the shielded applicator into a water-filled balloon pushes the neighboring tissues away from the radiation source, and the resulting geometric displacement reduces the dose by up to 53%; another 8% dose reduction can be achieved when the balloon is injected with an iodine solution. All experimental results agree with the GEANT4 calculations within measurement uncertainties. PMID:17278803

  2. Dosimetric characterization of a novel intracavitary mold applicator for {sup 192}Ir high dose rate endorectal brachytherapy treatment

    SciTech Connect

    Poon, Emily; Reniers, Brigitte; Devic, Slobodan; Vuong, Te; Verhaegen, Frank

    2006-12-15

    The dosimetric properties of a novel intracavitary mold applicator for {sup 192}Ir high dose rate (HDR) endorectal cancer treatment have been investigated using Monte Carlo (MC) simulations and experimental methods. The 28 cm long applicator has a flexible structure made of silicone rubber for easy passage into cavities with deep-seated tumors. It consists of eight source catheters arranged around a central cavity for shielding insertion, and is compatible for use with an endocavitary balloon. A phase space model of the HDR source has been validated for dose calculations using the GEANT4 MC code. GAFCHROMIC trade mark sign EBT model film was used to measure dose distributions in water around shielded and unshielded applicators with two loading configurations, and to quantify the shielding effect of a balloon injected with an iodine solution (300 mg I/mL). The film calibration procedure was performed in water using an {sup 192}Ir HDR source. Ionization chamber measurements in a Lucite phantom show that placing a tungsten rod in the applicator attenuates the dose in the shielded region by up to 85%. Inserting the shielded applicator into a water-filled balloon pushes the neighboring tissues away from the radiation source, and the resulting geometric displacement reduces the dose by up to 53%; another 8% dose reduction can be achieved when the balloon is injected with an iodine solution. All experimental results agree with the GEANT4 calculations within measurement uncertainties.

  3. Lithographically-directed self-assembly of nanostructures

    SciTech Connect

    Liddle, J. Alexander; Cui, Yi; Alivisatos, Paul

    2004-09-21

    The combination of lithography and self-assembly provides apowerful means of organizing solution-synthesized nanostructures for awide variety of applications. We have developed a fluidic assembly methodthat relies on the local pinning of a moving liquid contact line bylithographically produced topographic features to concentratenanoparticles at those features. The final stages of the assembly processare controlled first by long-range immersion capillary forces and then bythe short-range electrostatic and Van der Waal's interactions. We havesuccessfully assembled nanoparticles from 50 nm to 2 nm in size usingthis technique and have also demonstrated the controlled positioning ofmore complex nanotetrapod structures. We have used this process toassemble Au nanoparticles into pre-patterned electrode structures andhave performed preliminary electrical characterization of the devices soformed. The fluidic assembly method is capable of very high yield, interms of positioning nanostructures at each lithographically-definedlocation, and of excellent specificity, with essentially no particledeposition between features.

  4. Soft-Lithographical Fabrication of Three-dimensional Photonic Crystals in the Optical Regime

    SciTech Connect

    Jae-Hwang Lee

    2006-08-09

    This dissertation describes several projects to realize low-cost and high-quality three-dimensional (3D) microfabrication using non-photolithographic techniques for layer-by-layer photonic crystals. Low-cost, efficient 3D microfabrication is a demanding technique not only for 3D photonic crystals but also for all other scientific areas, since it may create new functionalities beyond the limit of planar structures. However, a novel 3D microfabrication technique for photonic crystals implies the development of a complete set of sub-techniques for basic layer-by-layer stacking, inter-layer alignment, and material conversion. One of the conventional soft lithographic techniques, called microtransfer molding ({mu}TM), was developed by the Whitesides group in 1996. Although {mu}TM technique potentially has a number of advantages to overcome the limit of conventional photolithographic techniques in building up 3D microstructures, it has not been studied intensively after its demonstration. This is mainly because of technical challenges in the nature of layer-by-layer fabrication, such as the demand of very high yield in fabrication. After two years of study on conventional {mu}TM, We have developed an advanced microtransfer molding technique, called two-polymer microtransfer molding (2P-{mu}TM) that shows an extremely high yield in layer-by-layer microfabrication sufficient to produce highly layered microstructures. The use of two different photo-curable prepolymers, a filler and an adhesive, allows for fabrication of layered microstructures without thin films between layers. The capabilities of 2P-{mu}TM are demonstrated by the fabrication of a wide-area 12-layer microstructure with high structural fidelity. Second, we also had to develop an alignment technique. We studied the 1st-order diffracted moire fringes of transparent multilayered structures comprised of irregularly deformed periodic patterns. By a comparison study of the diffracted moire fringe pattern and

  5. Improved compression molding process

    NASA Technical Reports Server (NTRS)

    Heier, W. C.

    1967-01-01

    Modified compression molding process produces plastic molding compounds that are strong, homogeneous, free of residual stresses, and have improved ablative characteristics. The conventional method is modified by applying a vacuum to the mold during the molding cycle, using a volatile sink, and exercising precise control of the mold closure limits.

  6. Solar system lithograph set for earth and space science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A color lithographs of many of the celestial bodies within our solar system are contained in this educational set of materials. Printed on the back of each lithograph is information regarding the particular celestial body. A sheet with information listing NASA resources and electronic resources for education is included.

  7. Method for protection of lithographic components from particle contamination

    DOEpatents

    Klebanoff, Leonard E.; Rader, Daniel J.

    2001-07-03

    A system that employs thermophoresis to protect lithographic surfaces from particle deposition and operates in an environment where the pressure is substantially constant and can be sub-atmospheric. The system (thermophoretic pellicle) comprises an enclosure that surrounds a lithographic component whose surface is being protected from particle deposition. The enclosure is provided with means for introducing a flow of gas into the chamber and at least one aperture that provides for access to the lithographic surface for the entry and exit of a beam of radiation, for example, and further controls gas flow into a surrounding low pressure environment such that a higher pressure is maintained within the enclosure and over the surface being protected. The lithographic component can be heated or, alternatively the walls of the enclosure can be cooled to establish a temperature gradient between the surface of the lithographic component and the walls of the enclosure, thereby enabling the thermophoretic force that resists particle deposition.

  8. Removal of organic contaminants from lithographic materials

    NASA Astrophysics Data System (ADS)

    Lytle, Wayne M.

    One of the critical issues still facing the implementation of extreme ultraviolet lithography (EUVL) into mainstream manufacturing for integrated circuit (IC) production is cleanliness. EUV photons at 13.5 nm are easily absorbed by many species, including dust, thin-film layers, and other debris present in the path of the photons. Carrying out EUVL inside a vacuum helps reduce the amount of photon loss for illumination, however contamination in the sys- tem is unavoidable, especially due to carbon growth on the multilayer mirror collectors and to soft defects in the form of organic contamination on the mask. Traditional cleaning methods employ the use of wet chemicals to etch contamination off of a surface, however this is limited in the sub-micron range of contaminant particles due to lack of transport of sufficient liquid chemical to the surface in order to achieve satisfactory particle removal. According to the International Technology Roadmap for Semiconductors (ITRS), the photomask must be particle free at inspection below 30 nm. However, when analyzing the ability of traditional methods to meet the cleaning needs set forth by the ITRS, these methods fall short and often add more contamination to the surface targeted for cleaning. With that in mind, a new cleaning method is being developed to supplant these traditional methods. Preliminary research into a plasma-based method to clean organic contaminants from lithographic materials constructed an experimental device that demonstrated the removal of both polystyrene latex nanoparticles (representing hydrocarbon contamination) in the range of 30 nm to 500 nm, as well as the removal of 30 nm carbon film layers on silicon wafers. This research, called the Plasma-Assisted Cleaning by Metastable Atomic Neutralization (PACMAN) process is being developed with semiconductor manufacturing cleaning in mind. A model of the helium metastable density within the processing chamber has been developed in addition to

  9. Results on powder injection molding of Ni{sub 3}Al and application to other intermetallic compositions

    SciTech Connect

    Cooper, R.M.

    1992-12-31

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni{sub 3}Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  10. Results on powder injection molding of Ni[sub 3]Al and application to other intermetallic compositions

    SciTech Connect

    Cooper, R.M.

    1992-01-01

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni[sub 3]Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  11. 30. Photocopy of lithograph showing Empire Stores at corner (Baker, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Photocopy of lithograph showing Empire Stores at corner (Baker, Ostheimer and Co.) from Everts, Ensign & Everts, Combination Atlas Map of Erie County, 1876 - Empire Stores, 501-505 State Street, Erie, Erie County, PA

  12. 4. Photocopy of lithograph, ca. 1880 (courtesy of American Catholic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of lithograph, ca. 1880 (courtesy of American Catholic Historical Society) ALTAR AND PEWS - Holy Trinity Roman Catholic Church (German), 601-609 Spruce Street, Philadelphia, Philadelphia County, PA

  13. 1. Photocopy of lithograph, ca. 1880 (in possession American Catholic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of lithograph, ca. 1880 (in possession American Catholic Historical Society) FRONT AND SIDE ELEVATIONS - St. Francis Xavier's Roman Catholic Church, 2321 Green Street, Philadelphia, Philadelphia County, PA

  14. 3. Photocopy of lithograph, VIEW OF CHURCH, ca. 1885. In ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of lithograph, VIEW OF CHURCH, ca. 1885. In the collection of the American Catholic Historical Society, Philadelphia, Pa. - St. Charles Borromeo Roman Catholic Church, 900 South Twentieth Street, Philadelphia, Philadelphia County, PA

  15. 2. Photocopy of lithograph, ca. 1880 (in possession of American ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Photocopy of lithograph, ca. 1880 (in possession of American Catholic Historical Society) INTERIOR, GENERAL VIEW OF ALTAR, BALCONIES, PEWS - St. Mary's Roman Catholic Church, 244 South Fourth Street, Philadelphia, Philadelphia County, PA

  16. 1. Photocopy of lithograph, ca. 1880 (in possession of American ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of lithograph, ca. 1880 (in possession of American Catholic Historical Society) FRONT AND SIDE ELEVATIONS - St. Elizabeth Roman Catholic Church, 1845 North Twenty-third Street, Philadelphia, Philadelphia County, PA

  17. 10. Photocopy of lithograph (from Mrs. D. Hanson Grubb, San ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of lithograph (from Mrs. D. Hanson Grubb, San Francisco) 'Moss Eng. Co., N.Y.' Date unknown 'THE CATHEDRAL OF ST. PAUL, BENICIA, CAL.' WEST SIDE - St. Paul's Episcopal Church, 120 East J Street, Benicia, Solano County, CA

  18. 1. Photocopy of lithograph (from Annual Report of the Supervising ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of lithograph (from Annual Report of the Supervising Architect to the Secretary for the Calendar Year Ending December 31, 1888) GENERAL VIEW, SOUTH (FRONT) ELEVATION - Old U.S. Mint, Chestnut & Juniper Streets, Philadelphia, Philadelphia County, PA

  19. 3. Photocopy of lithograph by Edward A. Wilson, owned by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of lithograph by Edward A. Wilson, owned by Mrs. Arthur Williams, owner of the house in 1960. JOSHUA DYER HOUSE FROM THE REAR - Joshua Dyer House, North Pamet Road, Truro, Barnstable County, MA

  20. Lithographic antennas for enhancement of solar cell efficiency

    SciTech Connect

    Kotter, D.K.; Boreman, G.

    1998-04-01

    This report documents proof-of-concept demonstration of the use of lithographic antennas for enhancement of solar-cell efficiency. A micro-sized lithographic antenna array was theoretically modeled, designed and fabricated. Experimental research was performed to validate the ability of the antenna array to concentrate infrared and visible energy onto photovoltaic (PV) materials. The research will serve as the basis for the design of a miniature power source for remote sensors.

  1. Hybrid Direct Write Lithographic Strategies for Complex Hierarchical Structures

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan P.

    With the number of alternative lithographic techniques for high resolution and 3D patterning rapidly increasing, there is a need to identify a set of scalable techniques which balances the ability to arbitrarily control every detail of a target pattern and to produce these complex patterns at a high rate. It is in this way that metamaterial devices put forward on a lab scale for applications such as phononics, photonics, and plasmonics can be realized in the industrial scale. This thesis, in approaching this challenge, utilizes combinations of patterning techniques, leveraging the ability for "large" scale alternative lithographic techniques, such as interference lithography or self-assembly, to create the same nanostructured morphology over a large area combined with laser direct write. The process of drawing a single line or isolated voxel can result in a hierarchical pattern defined by the latent motif of the larger-scale technique. The net resuh is to shift the burden of high resolution patterning from the direct write to the large scale technique, effectively decoupling the correlation between the level of detail and the patterning speed and control. More specifically, the following combinations with laser direct writing were investigated: (1) proximity field nanopatterning for the predefinition of diffraction-order-defined 3D resonators which were applied as "stand-up" plasmodic microresonators, (2) dewetting to conduct development-free 2D patterning of isolated sub-micron lines, and, via overlap effects, nanoscale ( <1 00 nm) gratings, (3) block copolymer self-assembly to initiate the simultaneous annealing and alignment of near-equilibrium microdomains from a metastable starting morphology, and (4) interference lithography to fabricate 3D sub-micron periodic and quasiperiodic hierarchical structures with controllable positioning and tunable fill fraction that has potential for applications to microphotonics. In conjunction with the experimental components

  2. Patterned Taping: A High-Efficiency Soft Lithographic Method for Universal Thin Film Patterning.

    PubMed

    Oh, Sangyoon; Park, Sang Kyu; Kim, Jin Hong; Cho, Illhun; Kim, Hyeong-Ju; Park, Soo Young

    2016-03-22

    As a universal lithographic technique for microscale/nanoscale film patterns, we develop a strategy for the use of soft lithographically patterned pressure-sensitive tape (patterned tape) as a pattern-transporting stamp material. Patterning was successfully implemented through the selective detachment and/or attachment of various thin films, including organic and metallic layers demanding no subsequent physical, thermal, or chemical treatment, as this incurs the risk of the deformation of the thin film and the deterioration of its functionalities. Its features of universal adhesion and flexibility enable pressure-sensitive tapes to form patterns on a variety of surfaces: organic, polymeric, and inorganic surfaces as well as flat, curved, uneven, and flexible substrates. Moreover, the proposed technique boasts the unique and distinct advantages of short operation time, supreme patterning yield, and multilayer stacking capability, which suggest considerable potential for their application to advanced optoelectronic device fabrication. PMID:26863506

  3. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    SciTech Connect

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.; Kunc, Vlastimil; Norris, Robert E.; Phelps, Jay; Tucker III, Charles L.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understanding of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.

  4. Field application of safe chemical elicitors induced the expression of some resistance genes against grey mold and cottony rot diseases during snap bean pods storage.

    PubMed

    El-Garhy, Hoda A S; Rashid, Ismail A S; Abou-Ali, Rania M; Moustafa, Mahmoud M A

    2016-01-15

    Phaseolus vulgaris is subjected to serious post-harvest diseases such as grey mold and cottony rot diseases caused by Botrytis cinerea and Pythium aphanidermatum, respectively. In current study, potassium silicate (KSi), potassium thiosulfate (KTS) and potassium sulfate (KS) suppressed moderately the growth of B. cinerea and P. aphanidermatum in vitro. The applied treatments significantly suppressed grey mold and cottony rot of Xera and Valentino snap beans varieties' pods stored at 7 ± 1°C and 90-95% RH for 20 days. Ethylene responsive factor (ERF), polygalacturonase inhibitor protein (PGIP), phosphatase associated to defense (PA) and pathogenesis-related protein (PR1) defense genes were over-expressed in leaves tissue of both bean varieties responding positively to potassium salts field application. The expression of these genes was influenced by plant genotype and environment as it varied by snap bean varieties. Accumulation of ERF, GIP, PA and PR1 genes transcript under KTS at 4000 ppm treatment were the highest in Xera tissues (3.5-, 4.8-, 4- and 4.8-fold, respectively). In conclusion, pre-harvest potassium salt in vivo application could be used as effective safe alternatives to fungicides against grey mold and cottony rot diseases of snap beans during storage for up to 20 days at 7 ± 1°C. PMID:26526133

  5. Simple and cost-effective fabrication of microvalve arrays in PDMS using laser cut molds with application to C. elegans manipulation in microfluidics

    NASA Astrophysics Data System (ADS)

    Samuel, R.; Thacker, C. M.; Maricq, A. V.; Gale, B. K.

    2014-09-01

    We present a new fabrication protocol for fabricating pneumatically controlled microvalve arrays (consisting of 100 s of microvalves) in PDMS substrates. The protocol utilizes rapid and cost-effective fabrication of molds using laser cutting of adhesive vinyl tapes and replica molding of PDMS. Hence the protocol is fast, simple and avoids cleanroom use. The results show that effective doormat-style microvalves can be easily fabricated in arrays by manipulating the stiffness of the actuating membrane through varying the valve-chamber area/shape. Three frequently used valve-chamber shapes (circle, square and capsule) were tested and all showed advantages in different situations. Circular valve chambers were best for small valves, square valves were best for medium-sized valves, and the capsule valves were best for larger valves. An application of this protocol has been demonstrated in the fabrication of a microfluidic 32-well plate for high-throughput manipulation of C. elegans for biomedical research.

  6. Thermoset matched die molding

    NASA Astrophysics Data System (ADS)

    Young, P. R.

    Reinforced molding compounds, mat molding, preform molding, cold press molding, and various other molding processes are discussed. Particular attention is given to the bulk molding compound (BMC) and the sheet molding compound (SMC) (both of which are reinforced molding compounds) as there is an increasing use of these compounds. SMC can employ a wider range of fiber lengths and fiber content than BMC, while preserving strength. The dimensional stability of BMC and SMC is unexcelled, and their corrosion resistance is generally excellent. Both compounds are composed of resins (10-2500 poises), reinforcements (BMC-glass, asbestos, sisal; SMC-soluble binder chopped strand mat), and fillers from four chemical groups (silica and silicates, carbonates, sulfates, and oxides). Molding press designs are included.

  7. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Stevenson, Paige; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers advantages of low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semi-rigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers.

  8. Rotationally Molded Liquid Crystalline Polymers

    NASA Technical Reports Server (NTRS)

    Rogers, Martin; Scribben, Eric; Baird, Donald; Hulcher, Bruce

    2002-01-01

    Rotational molding is a unique process for producing hollow plastic parts. Rotational molding offers low cost tooling and can produce very large parts with complicated shapes. Products made by rotational molding include water tanks with capacities up to 20,000 gallons, truck bed liners, playground equipment, air ducts, Nylon fuel tanks, pipes, toys, stretchers, kayaks, pallets, and many others. Thermotropic liquid crystalline polymers are an important class of engineering resins employed in a wide variety of applications. Thermotropic liquid crystalline polymers resins are composed of semirigid, nearly linear polymeric chains resulting in an ordered mesomorphic phase between the crystalline solid and the isotropic liquid. Ordering of the rigid rod-like polymers in the melt phase yields microfibrous, self-reinforcing polymer structures with outstanding mechanical and thermal properties. Rotational molding of liquid crystalline polymer resins results in high strength and high temperature hollow structures useful in a variety of applications. Various fillers and reinforcements can potentially be added to improve properties of the hollow structures. This paper focuses on the process and properties of rotationally molded liquid crystalline polymers. This paper will also highlight the interactions between academia and small businesses in developing new products and processes.

  9. Molds in the Environment

    MedlinePlus

    ... Program in Brief Related Issues Resources Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New ... ng Việt [PDF - 273 KB] Quick Links Air Pollution & Respiratory Health Air Quality Asthma Mold What's New ...

  10. QUANTIFYING INDOOR MOLDS

    EPA Science Inventory

    There is growing awareness that indoor molds/fungi may be connected to such conditions as asthma, allergies, hemorrhaging, chronic rhinosinusitis, memory loss, and a symptom complex called sick-building-syndrome. In addition, molds cause frequently fatal nosocomical infections. ...

  11. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  12. Applicability of the Environmental Relative Moldiness Index for Quantification of Residential Mold Contamination in an Air Pollution Health Effects Study

    EPA Science Inventory

    As part of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) investigating the respiratory health impacts of traffic-related air pollutants on asthmatic children in Detroit, Michigan, residential dust samples were collected to quantify mold exposure. Sett...

  13. Mold-Resistant Construction.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Asserts that one of the surest ways to prevent indoor air quality and mold issues is to use preventive construction materials, discussing typical resistance to dealing with mold problems (usually budget-related) and describing mold-resistant construction, which uses concrete masonry, brick, and stone and is intended to withstand inevitable…

  14. Allergies, asthma, and molds

    MedlinePlus

    ... in damp places. Outdoors, mold lives in the soil, on compost, and on plants that are damp. Keeping your house and yard drier will help control mold growth. Central heating and air-conditioning systems can help control mold. Change furnace and ...

  15. Molds for cable dielectrics

    DOEpatents

    Roose, L.D.

    1996-12-10

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. 5 figs.

  16. Molds for cable dielectrics

    DOEpatents

    Roose, Lars D.

    1996-01-01

    Molds for use in making end moldings for high-voltage cables are described wherein the dielectric insulator of a cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made.

  17. Mold and Children's Health.

    ERIC Educational Resources Information Center

    Tuscano, Antoinette

    1998-01-01

    Mold can seriously affect the health of children with asthma or allergies. Indoor air problems related to mold can be difficult to identify, but when several students who spend time in the same classroom area show allergic symptoms, it is important to consider mold and air quality. Failure to respond promptly can have serious consequences. (SM)

  18. Bleach Neutralizes Mold Allergens

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  19. A method for producing large, accurate, economical female molds

    SciTech Connect

    Guenter, A.; Guenter, B.

    1996-11-01

    A process in which lightweight, highly accurate, economical molds can be produced for prototype and low production runs of large parts for use in composites molding has been developed. This has been achieved by developing existing milling technology, using new materials and innovative material applications to CNC mill large female molds directly. Any step that can be eliminated in the mold building process translates into savings in tooling costs through reduced labor and material requirements.

  20. Calculation and uses of the lithographic aerial image

    NASA Astrophysics Data System (ADS)

    Flagello, Donis G.; Smith, Daniel G.

    2012-09-01

    Beginning with the seminal Dill papers of 1975, the aerial image has been essential for understanding the process of microlithography. From the aerial image, we can predict the performance of a given lithographic process in terms of depth of focus, exposure latitude, etc. As lithographic technologies improved, reaching smaller and smaller printed features, the sophistication of aerial image calculations has had to increase from simple incoherent imaging theory, to partial coherence, polarization effects, thin film effects at the resist, thick mask effects, and so on. This tutorial provides an overview and semihistorical development of the aerial image calculation and then provides a review of some of the various ways in which the aerial image is typically used to estimate the performance of the lithographic process.

  1. Evaporative modeling for idealized lithographic pores

    NASA Astrophysics Data System (ADS)

    Oinuma, Ryoji; Best, Frederick

    2002-01-01

    total size of the evaporator for the same heat removal performance. As the demand for high performance and small size in electronics devices has increased, heat removal from these electronic devices is a critical factor. Lithographic techniques have been used to produce micron scale pore and surface structures in silicon. These are referred to as coherent wick structures. The purpose of this paper is to describe a study of optimized coherent pores or slits in the evaporative wick of a heat pipe with the high heat flux density heat source. The system considered in this paper consists of a plate heat source, the evaporative wick with coherent pores and conducting walls connecting the heat source and the evaporator. The evaporation along the meniscus interface in a micron scale pore or slit is calculated based on kinetic theory and statistical rate theory to optimize the diameter of pores. Calculations show that 80% of the evaporative energy is carried away in only less than 50% of the pore outer radius. Further, the results show that the smaller pore size has the higher evaporation rate per horizontal area and is preferred to achieve the smallest total size of the evaporator for the same heat removal performance. .

  2. Multi-scale soft-lithographic lift-off and grafting (MS-SLLOG) process for active polymer nanophotonic device fabrication

    NASA Astrophysics Data System (ADS)

    Tung, Yi-Chung; Truxal, Steven C.; Kurabayashi, Katsuo

    2005-12-01

    This paper reports a new microfabrication process named "Multi-Scale Soft-Lithographic Lift-Off and Grafting (MS-SLLOG)" used to construct active nanophotonic devices. MS-SLLOG is a low-temperature (less than 150°C) microfabrication technique that allows soft lithographically molded polymer micro-structures to be integrated together with silicon-based microelectromechanical systems (MEMS) structures to perform active control. Moreover, MS-SLLOG process allows us to achieve a hierarchical device structure seamlessly accommodating feature sizes ranging from tens of nanometer to sub-millimeters on a single chip for nanophotonic structure integration. To demonstrate the MS-SLLOG process capability, a strain-controlled micro-optical grating device is fabricated and experimentally characterized. The experimental results successfully show the operation of an active polymer nanophotonic device fabricated by the MS-SLLOG process.

  3. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.

    PubMed

    Jung, Min Wook; Myung, Sung; Kim, Ki Woong; Song, Wooseok; Jo, You-Young; Lee, Sun Suk; Lim, Jongsun; Park, Chong-Yun; An, Ki-Seok

    2014-07-18

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  4. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method

    NASA Astrophysics Data System (ADS)

    Jung, Min Wook; Myung, Sung; Kim, Ki Woong; Song, Wooseok; Jo, You-Young; Lee, Sun Suk; Lim, Jongsun; Park, Chong-Yun; An, Ki-Seok

    2014-07-01

    There has been considerable interest in soft lithographic patterning processing of large scale graphene sheets due to the low cost and simplicity of the patterning process along with the exceptional electrical or physical properties of graphene. These properties include an extremely high carrier mobility and excellent mechanical strength. Recently, a study has reported that single layer graphene grown via chemical vapor deposition (CVD) was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp. However, applications are limited because of the challenge of CVD-graphene functionalization for devices such as chemical or bio-sensors. In addition, graphene-based layers patterned with a micron scale width on the surface of biocompatible silk fibroin thin films, which are not suitable for conventional CMOS processes such as the patterning or etching of substrates, have yet to be reported. Herein, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or chemical sensors. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface. As a proof of concept using this soft lithographic patterning technique, we demonstrated a simple and efficient chemical sensor consisting of reduced graphene oxide and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated. Briefly, a soft lithographic patterning process via surface energy modification was developed for advanced graphene-based flexible devices such as transistors or chemical sensors and attachable devices on a

  5. Custom molded thermal MRg-FUS phantom

    NASA Astrophysics Data System (ADS)

    Eames, Matthew D. C.; Snell, John W.; Hananel, Arik; Kassell, Neal F.

    2012-11-01

    This article describes a method for creating custom-molded thermal phantoms for use with MR-guided focused ultrasound systems. The method is defined here for intracranial applications, though it may be modified for other anatomical targets.

  6. Lithographic VCSEL array multimode and single mode sources for sensing and 3D imaging

    NASA Astrophysics Data System (ADS)

    Leshin, J.; Li, M.; Beadsworth, J.; Yang, X.; Zhang, Y.; Tucker, F.; Eifert, L.; Deppe, D. G.

    2016-05-01

    Sensing applications along with free space data links can benefit from advanced laser sources that produce novel radiation patterns and tight spectral control for optical filtering. Vertical-cavity surface-emitting lasers (VCSELs) are being developed for these applications. While oxide VCSELs are being produced by most companies, a new type of oxide-free VCSEL is demonstrating many advantages in beam pattern, spectral control, and reliability. These lithographic VCSELs offer increased power density from a given aperture size, and enable dense integration of high efficiency and single mode elements that improve beam pattern. In this paper we present results for lithographic VCSELs and describes integration into military systems for very low cost pulsed applications, as well as continuouswave applications in novel sensing applications. The VCSELs are being developed for U.S. Army for soldier weapon engagement simulation training to improve beam pattern and spectral control. Wavelengths in the 904 nm to 990 nm ranges are being developed with the spectral control designed to eliminate unwanted water absorption bands from the data links. Multiple beams and radiation patterns based on highly compact packages are being investigated for improved target sensing and transmission fidelity in free space data links. These novel features based on the new VCSEL sources are also expected to find applications in 3-D imaging, proximity sensing and motion control, as well as single mode sensors such as atomic clocks and high speed data transmission.

  7. 1. Photocopy of lithograph (from Annual Report of the Supervising ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of lithograph (from Annual Report of the Supervising Architect to the Secretary of the Treasury for the Calender Year Ending December 31, 1888. Wahsington, D.C.: Government Printing Office, 1889. Will A. Freret, Supervising Architect) THREE-QUARTER VIEW OF FRONT ELEVATION (RIVERSIDE), FLOOR PLANS - U. S. Courthouse & Post Office, Binghamton, Broome County, NY

  8. 3. Photocopy: CA. 1880 LITHOGRAPH SHOWING INTERIOR OF CHURCH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy: CA. 1880 LITHOGRAPH SHOWING INTERIOR OF CHURCH OF ST. VINCENT de PAUL, from the collection of American Catholic Historical Society. Please use the following credit line: American Catholic Historical Society Ryan Memorial Library Historical Collections St. Charles Seminary Overbrook Philadelphia, Pa. 19151 - Church of St. Vincent de Paul (Roman Catholic), 101-107 East Price Street, Philadelphia, Philadelphia County, PA

  9. 1. Photocopy: CA. 1880 LITHOGRAPH SHOWING EXTERIOR VIEW OF CHURCH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy: CA. 1880 LITHOGRAPH SHOWING EXTERIOR VIEW OF CHURCH, from the collection of American Catholic Historical Society. Please use the following credit line: American Catholic Historical Society Ryan Memorial Library Historical Collections St. Charles Seminary Overbrook, Philadelphia, Pa. 19151 - Church of the Immaculate Conception, 1020 North Front Street, Philadelphia, Philadelphia County, PA

  10. 3. Photocopy: CA. 1880 LITHOGRAPH SHOWING EXTERIOR VIEW OF CHURCH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy: CA. 1880 LITHOGRAPH SHOWING EXTERIOR VIEW OF CHURCH, from the collection of American Catholic Historical Society. Please use the following credit line: American Catholic Historic Society Ryan Memorial Library Historical Collections St. Charles Seminary Overbrook Philadelphia, Pa. 19151 - Church of St. Philip de Neri (Roman Catholic), 220-228 Queen Street, Philadelphia, Philadelphia County, PA

  11. 4. Photocopy of ca. 1855 lithograph, VIEW OF CHURCH, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of ca. 1855 lithograph, VIEW OF CHURCH, SHOWING NORTH FRONT ELEVATION. ALSO SEEN IS THE PAROCHIAL SCHOOL BUILDING. In the collection of the American Catholic Historical Society, Philadelphia, Pa. - St. James Roman Catholic Church, 3728 Chestnut Street, Philadelphia, Philadelphia County, PA

  12. 53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  13. Comparative sampling molds evaluation

    SciTech Connect

    Pierrard, L.; Jarry, P.; Charbonnier, J.; Rigaut, C.

    1996-10-01

    The metallurgical industry needs to cast alloys with narrow tolerances in their chemical composition in order to reduce variability of their use properties. Therefore appropriate sampling practices and analytical methods are required. Both accuracy and precision of the analytical results are limited by the non-homogeneity of as-cast disk or cylinder samples, which results from macrosegregation phenomenon. This paper presents a comparison between six commonly used molds: four molds recommended by ASTM standards (center-pour molds type B and vacuum mold), mushroom shaped and cylinder molds. Two complementary approaches are exhibited for the different molds designs: (1) solidification modeling in order to predict macrosegregation localization using the Simulor software; (2) experimental characterization. Radial and axial segregation profiles are determined by Analytical Scanning Electron Microscopy in addition to analytical precision evaluation by spark optical emission and X-Ray fluorescence spectrometries for a given machining depth.

  14. Application of Rapid Prototyping and Wire Arc Spray to the Fabrication of Injection Mold Tools (MSFC Center Director's Discretionary Fund)

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.

    2000-01-01

    Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.

  15. Molded Magnetic Article

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Namkung, Min (Inventor); Wincheski, Russell A. (Inventor); Fulton, James P. (Inventor); Fox, Robert L. (Inventor)

    2000-01-01

    A molded magnetic article and fabrication method are provided. Particles of ferromagnetic material embedded in a polymer binder are molded under heat and pressure into a geometric shape. Each particle is an oblate spheroid having a radius-to-thickness aspect ratio approximately in the range of 15-30. Each oblate spheroid has flattened poles that are substantially in perpendicular alignment to a direction of the molding pressure throughout the geometric shape.

  16. Guide to Molds at School.

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., Albany, NY.

    Asserting that molds growing in schools can be harmful to children's health and learning, this guide offers information about the issue. It provides an overview of the basics, then addresses testing, types of molds, molds and health, monitoring schools for mold, mold prevention and clean-up tips for schools, and what parents should do if they…

  17. BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  18. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.

    PubMed

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-01-01

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting(1-4) (extrusion, dip pen and soft lithography), contactless bioprinting(5-7) (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization(8). It can be used for many applications such as tissue engineering(9-13), biosensor microfabrication(14-16) and as a tool to answer basic biological questions such as influences of co-culturing of different cell types(17). Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions(18). This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an

  19. Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture

    PubMed Central

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-01-01

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting1-4 (extrusion, dip pen and soft lithography), contactless bioprinting5-7 (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization8. It can be used for many applications such as tissue engineering9-13, biosensor microfabrication14-16 and as a tool to answer basic biological questions such as influences of co-culturing of different cell types17. Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions18. This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an epi

  20. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.

    PubMed

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A John

    2012-01-01

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT

  1. Rapid mold replication

    SciTech Connect

    Heestand, G.M.; Beeler, R.G. Jr.; Brown, D.L.

    1995-06-01

    The desire to reduce tooling costs have driven manufacturers to investigate new manufacturing methods and materials. In the plastics injection molding industry replicating molds to meet production needs is time consuming (up to 6 months) and costly in terms of lost business. We have recently completed a feasibility study demonstrating the capability of high rate Electron Beam Physical Vapor Deposition (EBPVD) in producing mold inserts in days, not months. In the current practice a graphite mandrel, in the shape of the insert`s negative image, was exposed to a jet of metal vapor atoms emanating from an electron beam heated source of an aluminum-bronze alloy. The condensation rate of the metal atoms on the mandrel was sufficient to allow the deposit to grow at over 30 {mu}m/min or 1.2 mils per minute. The vaporization process continued for approximately 14 hours after which the mandrel and deposit were removed from the EBPVD vacuum chamber. The mandrel and condensate were easily separated resulting in a fully dense aluminum-bronze mold insert about 2.5 cm or one inch thick. This mold was subsequently cleaned and drilled for water cooling passages and mounted on a fixture for operation in an actual injection molding machine. Results of the mold`s operation were extremely successful showing great promise for this technique. This paper describes the EBPVD feasibility demonstration in more detail and discusses future development work needed to bring this technique into practice.

  2. Lithographic performance evaluation of a contaminated EUV mask after cleaning

    SciTech Connect

    George, Simi; Naulleau, Patrick; Okoroanyanwu, Uzodinma; Dittmar, Kornelia; Holfeld, Christian; Wuest, Andrea

    2009-11-16

    The effect of surface contamination and subsequent mask surface cleaning on the lithographic performance of a EUV mask is investigated. SEMATECH's Berkeley micro-field exposure tool (MET) printed 40 nm and 50 nm line and space (L/S) patterns are evaluated to compare the performance of a contaminated and cleaned mask to an uncontaminated mask. Since the two EUV masks have distinct absorber architectures, optical imaging models and aerial image calculations were completed to determine any expected differences in performance. Measured and calculated Bossung curves, process windows, and exposure latitudes for the two sets of L/S patterns are compared to determine how the contamination and cleaning impacts the lithographic performance of EUV masks. The observed differences in mask performance are shown to be insignificant, indicating that the cleaning process did not appreciably affect mask performance.

  3. Ultrafast optical properties of lithographically defined quantum dot amplifiers

    SciTech Connect

    Miaja-Avila, L.; Verma, V. B.; Mirin, R. P.; Silverman, K. L.; Coleman, J. J.

    2014-02-10

    We measure the ultrafast optical response of lithographically defined quantum dot amplifiers at 40 K. Recovery of the gain mostly occurs in less than 1 picosecond, with some longer-term transients attributable to carrier heating. Recovery of the absorption proceeds on a much longer timescale, representative of relaxation between quantum dot levels and carrier recombination. We also measure transparency current-density in these devices.

  4. Dipole-on-dielectric model for infrared lithographic spiral antennas

    NASA Astrophysics Data System (ADS)

    Boreman, Glenn D.; Dogariu, Aristide; Christodoulou, Christos; Kotter, Dale

    1996-03-01

    We present a dipole-on-dielectric model for lithographic antennas used for bolometer coupling in the infrared. The predicted antenna patterns show good agreement with measurements of Au-on-Si spiral antennas at 9.5- mu m wavelength. Angle- and polarization-resolved measurements are proposed, which will further probe the behavior of these antenna structures and facilitate refinement of the analytical models.

  5. Silicone plesiotherapy molds

    SciTech Connect

    Karolis, C.; Reay-Young, P.S.; Walsh, W.; Velautham, G.

    1983-04-01

    Plesiotherapy, the treatment of superficial lesions by radioactive molds has largely been replaced by teletherapy techniques involving high energy photon and electron beams. There are, however, situations for which a short distance type treatment, in one form or another, is superior to any other presently available. Traditionally, molds have taken the form of rigid devices incorporating clamps to attach them to the patient. This ensures a reproducible geometry about a localized region since the molds are applied on a daily basis. To make such devices requires considerable skill and patience. This article describes an alternative method that eliminates the use of cumbersome devices in many situations. Silicone molds made from a plaster cast model have been found suitable for the treatment of surface lesions and especially for lesions in the oral and nasal cavities. With the use of radioactive gold seeds the molds may be left in place for a few days without fear of them moving.

  6. Lithographically encoded polymer microtaggant using high-capacity and error-correctable QR code for anti-counterfeiting of drugs.

    PubMed

    Han, Sangkwon; Bae, Hyung Jong; Kim, Junhoi; Shin, Sunghwan; Choi, Sung-Eun; Lee, Sung Hoon; Kwon, Sunghoon; Park, Wook

    2012-11-20

    A QR-coded microtaggant for the anti-counterfeiting of drugs is proposed that can provide high capacity and error-correction capability. It is fabricated lithographically in a microfluidic channel with special consideration of the island patterns in the QR Code. The microtaggant is incorporated in the drug capsule ("on-dose authentication") and can be read by a simple smartphone QR Code reader application when removed from the capsule and washed free of drug. PMID:22930454

  7. Fourier Synthesis Lithographic Machine for large panel display fabrication

    NASA Astrophysics Data System (ADS)

    Sadovnik, Lev

    1995-01-01

    This report addresses the development of a substitute for conventional lithographic technologies used to fabricate flat panel displays. Conventional technology has several weaknesses: an image field less than 50 mm x 50 mm, a need for expensive projection equipment and precision stepper machines with a positioning accuracy of -0.25 microns and depth of focus of -1 micron; and the necessity to use complicated mask technologies which pollute the environment. Physical Optics Corporation (POC) is developing a new Fourier synthesis lithography technology which will provide a field size of 500 mm x 500 mm without optical distortion or aberration. During Phase I, POC completed an optimization procedure to find the exact harmonic exposure to create the highest edge gradient in a synthetic lithographic pattern. We produced a comprehensive computer model of photoresist multiple exposure, and confirmed it experimentally. We also experimentally confirmed our simulation of the lateral propagation of the development process in photoresist. We completely designed the proposed Fourier synthesis lithographic machine (FSLM). We anticipate that development of this new technology will lead to the construction of a full scale FSLM.

  8. Glass molding process with mold lubrication

    DOEpatents

    Davey, Richard G.

    1978-06-27

    Improvements are provided in glass forming processes of the type wherein hot metal blank molds are employed by using the complementary action of a solid film lubricant layer, of graphite dispersed in a cured thermoset organopolysiloxane, along with an overspray of a lubricating oil.

  9. Lithographically defined 3-dimensional graphene scaffolds

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Xiao, Xiaoyin; Polsky, Ronen

    2015-09-01

    Interferometrically defined 3D photoresist scaffolds are formed through a series of three successive two-beam interference exposures, a post exposure bake and development. Heating the resist scaffold in a reducing atmosphere to > 1000 °C, results in the conversion of the resist structure into a carbon scaffold through pyrolysis, resulting in a 3D sp3- bonded glassy carbon scaffold which maintains the same in-plane morphology as the resist despite significant shrinkage. The carbon scaffolds are readily modified using a variety of deposition methods such as electrochemical, sputtering and CVD/ALD. Remarkably, sputtering metal into scaffolds with ~ 5 unit cells tall results in conformal coating of the scaffold with the metal. When the metal is a transition metal such as nickel, the scaffold can be re-annealed, during which time the carbon diffuses through the nickel, emerging on the exterior of the nickel as sp2-bonded carbon, termed 3D graphene. This paper details the fabrication, characterization and some potential applications for these structures.

  10. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, R.W.; Hrubesh, L.W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner is disclosed. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50--800 kg/m{sup 3} (0.05--0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization. 4 figs.

  11. Compression molding of aerogel microspheres

    DOEpatents

    Pekala, Richard W.; Hrubesh, Lawrence W.

    1998-03-24

    An aerogel composite material produced by compression molding of aerogel microspheres (powders) mixed together with a small percentage of polymer binder to form monolithic shapes in a cost-effective manner. The aerogel composites are formed by mixing aerogel microspheres with a polymer binder, placing the mixture in a mold and heating under pressure, which results in a composite with a density of 50-800 kg/m.sup.3 (0.05-0.80 g/cc). The thermal conductivity of the thus formed aerogel composite is below that of air, but higher than the thermal conductivity of monolithic aerogels. The resulting aerogel composites are attractive for applications such as thermal insulation since fabrication thereof does not require large and expensive processing equipment. In addition to thermal insulation, the aerogel composites may be utilized for filtration, ICF target, double layer capacitors, and capacitive deionization.

  12. Resin film infusion mold tooling and molding method

    NASA Technical Reports Server (NTRS)

    Burgess, Roger (Inventor); Grossheim, Brian (Inventor); Mouradian, Karbis (Inventor); Thrash, Patrick J. (Inventor)

    1999-01-01

    A mold apparatus and method for resin film infusion molding including an outer mold tool having a facing sheet adapted to support a resin film and preform assembly. The facing sheet includes attachment features extending therefrom. An inner mold tool is positioned on the facing sheet to enclose the resin film and preform assembly for resin film infusion molding. The inner mold tool includes a plurality of mandrels positioned for engagement with the resin film and preform assembly. Each mandrel includes a slot formed therein. A plurality of locating bars cooperate with the slots and with the attachment features for locating the mandrels longitudinally on the outer mold tool.

  13. 92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    92. PRODUCTION MOLDS. THESE MOLDS ARE COPIES OF THE ORIGINAL MOLDS IN THE MORAVIAN POTTERY AND TILE WORKS COLLECTION, AND ARE USED TO PRESS TILES. THE FACTORY KEEPS TEN PRODUCTION MOLDS FOR EACH IMAGE. THE ORIGINAL MOLDS ARE NOT USED IN PRODUCTION. SAME VIEW AS PA-107-53. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  14. Implications of diamond-turned versus diamond-ground mold fabrication techniques on precision-molded optics

    NASA Astrophysics Data System (ADS)

    Mertus, Lou; Symmons, Alan

    2012-10-01

    In recent years, the trend within the molded optics community has been an overall advancement in the capability to diamond grind molds using a variety of grinding techniques. Improvements in grinding equipment, materials and tooling have enabled higher quality ceramic and carbide molds and thereby lenses. Diamond turned molds from ductile metals are still used prevalently throughout the molding industry. Each technology presents a unique set of advantages and disadvantages whether used for precision injection molding of plastic optics or precision glass molding. This paper reviews the manufacturing techniques for each approach and applicable molding process. The advantages and disadvantages of each are compared and analyzed. The subtle differences that exist in optics molded from each technique and the impact they have on the performance in various applications is reviewed. Differences stemming from tooling material properties, material-specific minor defects, as well as cutting and grinding process-induced artifacts are described in detail as well as their influence on the roughness, waviness, and form errors present on the molded surface. A comparison with results between similar surfaces for both diamond grinding and diamond turning is presented.

  15. Lithographically patterned and self-folded bio-origami scaffolds for three-dimensional cell culture

    NASA Astrophysics Data System (ADS)

    Jamal, Mustapha

    The ability to control both cell placement and chemical gradients within micropatterned three-dimensional (3D) scaffolds is important for tissue engineering. Several layer-by-layer microfabrication techniques such as direct-write printing, molding and sequential photolithographic patterning have been adapted to culture cells within 3D blocks of hydrogels and in microfluidic chips. However, patterning cell populations into curved, anatomically relevant 3D geometries still remains a considerable challenge, especially at small-length scales. In this dissertation, we characterize three methods that we have developed to culture cells in 3D. Our strategy involves the wafer-scale assembly of initially planar templates that are engineered to self-fold into intricate "bio-origami" 3D geometries. We first introduce the concept of self-folding bio-origami by engineering curved, nanometer-scale-thick bilayer films of chromium and gold. Lift-off metallization was used to pattern the thermally evaporated bilayers and upon release from the underlying wafer, intrinsic stresses within the films drove the self-folding process. Fibroblasts were cultured on these 3D micropatterned scaffolds and conventional imaging techniques such as fluorescence and scanning electron microscopy could be readily performed. We then develop a differential photocrosslinking method to achieve reversible self-folding of single-layered polymeric films of SU-8. These films could be integrated with other materials, and the incorporation of microfluidic channels enabled the self-folding of curved and flexible microfluidic devices. Moreover, the inclusion of lithographically defined pores in the device walls enabled localized delivery of biochemicals to externally cultured cells in 3D. Lastly, we develop a facile method to self-fold cell-laden hydrogel bilayers for long-term 3D cell culture in curved and micropatterned geometries. The difference in molecular weights of the constituent hydrogel layers resulted

  16. Mold After a Disaster

    MedlinePlus

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Disaster Mold Removal After a Disaster Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ...

  17. Breaking the Mold.

    ERIC Educational Resources Information Center

    Huckabee, Christopher

    2003-01-01

    Using the example of a Texas elementary school, describes how to eliminate mold and mildew from school facilities, including discovering the problem, responding quickly, reconstructing the area, and crisis planning and prevention. (EV)

  18. Newborn head molding

    MedlinePlus

    ... molding. In: Graham JM, Sanchez-Lara PA, eds. Smiths' Recognizable Patterns of Human Deformation . 4th ed. Philadelphia, PA: Elsevier; 2016:chap 35. Smith J. Initial evaluation. In: Gleason CA, Devaskar SU, ...

  19. 40 CFR 428.100 - Applicability; description of the latex-dipped, latex-extruded, and latex-molded rubber subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... latex-dipped, latex-extruded, and latex-molded rubber subcategory. 428.100 Section 428.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex-Dipped, Latex-Extruded, and Latex-Molded Rubber Subcategory §...

  20. 40 CFR 428.100 - Applicability; description of the latex-dipped, latex-extruded, and latex-molded rubber subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... latex-dipped, latex-extruded, and latex-molded rubber subcategory. 428.100 Section 428.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex-Dipped, Latex-Extruded, and Latex-Molded Rubber Subcategory §...

  1. 40 CFR 428.100 - Applicability; description of the latex-dipped, latex-extruded, and latex-molded rubber subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... latex-dipped, latex-extruded, and latex-molded rubber subcategory. 428.100 Section 428.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex-Dipped, Latex-Extruded, and Latex-Molded Rubber Subcategory §...

  2. 40 CFR 428.100 - Applicability; description of the latex-dipped, latex-extruded, and latex-molded rubber subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... latex-dipped, latex-extruded, and latex-molded rubber subcategory. 428.100 Section 428.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex-Dipped, Latex-Extruded, and Latex-Molded Rubber Subcategory §...

  3. 40 CFR 428.100 - Applicability; description of the latex-dipped, latex-extruded, and latex-molded rubber subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... latex-dipped, latex-extruded, and latex-molded rubber subcategory. 428.100 Section 428.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex-Dipped, Latex-Extruded, and Latex-Molded Rubber Subcategory §...

  4. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  5. Astrometric Correction for WFC3/UVIS Lithographic-Mask Pattern

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, V.; Hammer, D.; Dencheva, N.; Hack, W.

    2013-07-01

    Observations of the central field in Cen taken with large dither patterns and over a large range of HST roll-angles exposed through F606W UVIS filter hav e been used to examine the lithographic-mask pattern imprinted on the WFC3/UVIS detec tor during the manufacturing process. This detector defect introduces fine-scale astrome tric errors at the level of about 0.2 pixel with a complicated spatial structure across the WFC3/ UVIS CCD chips. The fine-scale solution was utilized to construct a 2-D look-up table for co rrection of the WFC3/UVIS lithographic-mask pattern. The astrometric errors due to th is detector defect have been cor- rected down to the ~ 0.05 pixel level. The derived 2-D look-up table can be interpol ated at any point in the WFC3/UVIS image by ST software DrizzlePac / AstroDrizzle. The main results of these calibrations are: 1) new polynomial coefficien ts of geometric distortion for 14 calibrated UVIS filters in the form of Instrument Distortion Co rrection Table (IDCTAB file) were improved to account for the lithographic-mask pattern i n the WFC3/UVIS detector; 2) new derived look-up table in the form of a D2IMFILE, which sig nificantly improves (30-60%) the fine-scale structure in the WFC3/UVIS geometric distorti on; 3) geometric distortion cou- pled with the D2IMFILE and new improved IDCTAB can now be succ essfully corrected to the precision level of ~ 0.05 pixel (2 mas) for the UVIS detector.

  6. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOEpatents

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  7. Thermal monitoring of the thermoplastic injection molding process with FBGs

    NASA Astrophysics Data System (ADS)

    Alberto, Nélia J.; Nogueira, Rogério N.; Neto, Victor F.

    2014-08-01

    Injection molding is an important polymer processing method for manufacturing plastic components. In this work, the thermal monitoring of the thermoplastic injection molding is presented, since temperature is a critical parameter that influences the process features. A set of fiber Bragg gratings were multiplexed, aiming a two dimensional monitoring of the mold. The results allowed to identify the different stages of the thermoplastic molding cycle. Additionally, the data provide information about the heat transfer phenomena, an important issue for the thermoplastic injection sector, and thus for an endless number of applications that employ this type of materials.

  8. Fabrication of low-cost beta-type Ti-Mn alloys for biomedical applications by metal injection molding process and their mechanical properties.

    PubMed

    Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko

    2016-06-01

    Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%. PMID:26999621

  9. The lithographer's dilemma: shrinking without breaking the bank

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2013-10-01

    It can no longer be assumed that the lithographic scaling which has previously driven Moore's Law will lead in the future to reduced cost per transistor. Until recently, higher prices for lithography tools were offset by improvements in scanner productivity. The necessity of using double patterning to extend scaling beyond the single exposure resolution limit of optical lithography has resulted in a sharp increase in the cost of patterning a critical construction layer that has not been offset by improvements in exposure tool productivity. Double patterning has also substantially increased the cost of mask sets. EUV lithography represents a single patterning option, but the combination of very high exposure tools prices, moderate throughput, high maintenance costs, and expensive mask blanks makes this a solution more expensive than optical double patterning but less expensive than triple patterning. Directed self-assembly (DSA) could potentially improve wafer costs, but this technology currently is immature. There are also design layout and process integration issues associated with DSA that need to be solved in order to obtain full benefit from tighter pitches. There are many approaches for improving the cost effectiveness of lithography. Innovative double patterning schemes lead to smaller die. EUV lithography productivity can be improved with higher power light sources and improved reliability. There are many technical and business challenges for extending EUV lithography to higher numerical apertures. Efficient contact hole and cut mask solutions are needed, as well as very tight overlay control, regardless of lithographic solution.

  10. Removable pellicle for lithographic mask protection and handling

    DOEpatents

    Klebanoff, Leonard E.; Rader, Daniel J.; Hector, Scott D.; Nguyen, Khanh B.; Stulen, Richard H.

    2002-01-01

    A removable pellicle for a lithographic mask that provides active and robust particle protection, and which utilizes a traditional pellicle and two deployments of thermophoretic protection to keep particles off the mask. The removable pellicle is removably attached via a retaining structure to the mask substrate by magnetic attraction with either contacting or non-contacting magnetic capture mechanisms. The pellicle retaining structural is composed of an anchor piece secured to the mask substrate and a frame member containing a pellicle. The anchor piece and the frame member are in removable contact or non-contact by the magnetic capture or latching mechanism. In one embodiment, the frame member is retained in a floating (non-contact) relation to the anchor piece by magnetic levitation. The frame member and the anchor piece are provided with thermophoretic fins which are interdigitated to prevent particles from reaching the patterned area of the mask. Also, the anchor piece and mask are maintained at a higher temperature than the frame member and pellicle which also prevents particles from reaching the patterned mask area by thermophoresis. The pellicle can be positioned over the mask to provide particle protection during mask handling, inspection, and pumpdown, but which can be removed manually or robotically for lithographic use of the mask.

  11. Alternative lithographic methods for variable aspect ratio vias

    NASA Astrophysics Data System (ADS)

    Schepis, Anthony R.

    The foundation of semiconductor industry has historically been driven by scaling. Device size reduction is enabled by increased pattern density, enhancing functionality and effectively reducing cost per chip. Aggressive reductions in memory cell size have resulted in systems with diminishing area between parallel bit/word lines. This affords an even greater challenge in the patterning of contact level features that are inherently difficult to resolve because of their relatively small area, a product of their two domain critical dimension image. To accommodate these trends there has been a shift toward the implementation of elliptical contact features. This empowers designers to maximize the use of free space between bit/word lines and gate stacks while preserving contact area; effectively reducing the minor via axis dimension while maintaining a patternable threshold in increasingly dense circuitry. It is therefore critical to provide methods that enhance the resolving capacity of varying aspect ratio vias for implementation in electronic design systems. This work separately investigates two unique, non-traditional lithographic techniques in the integration of an optical vortex mask as well as a polymer assembly system as means to augment ellipticity while facilitating contact feature scaling. This document affords a fundamental overview of imaging theory, details previous literature as to the technological trends enabling the resolving of contact features and demonstrates simulated & empirical evidence that the described methods have great potential to extend the resolution of variable aspect ratio vias using lithographic technologies.

  12. TENDING THE MOLD, DURING THE TRANSFER FROM TUNDISH TO MOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TENDING THE MOLD, DURING THE TRANSFER FROM TUNDISH TO MOLD TO CONTAINMENT CHAMBER IS CONTINUOUS CASTING OPERATOR, CALVIN ANDERS. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  13. Pressure molding of powdered materials improved by rubber mold insert

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Pressure molding tungsten microspheres is accomplished by applying hydraulic pressure to a silicone rubber mold insert with several barrel shaped chambers which is placed in a steel die cavity. This technique eliminates castings containing shear fractures.

  14. FILLING MOLDS MADE ON THE BRITISH MOLDING MACHINE, AUTOMATIC COPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FILLING MOLDS MADE ON THE BRITISH MOLDING MACHINE, AUTOMATIC COPE AND DRAG (BMM) FROM MOBILE LADLE. EMPTY BULL LADLE IN FOREGROUND. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  15. Lithographically-generated 3D lamella layers and their structural color

    NASA Astrophysics Data System (ADS)

    Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen

    2016-04-01

    Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ~ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.

  16. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    NASA Astrophysics Data System (ADS)

    Nam, Chang-Yong; Stein, Aaron; Kisslinger, Kim; Black, Charles T.

    2015-11-01

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ˜1019 cm-3 carrier density, and ˜0.1 cm2 V-1 s-1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate the potential application of infiltration synthesis in fabricating metal oxide electronic devices.

  17. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    SciTech Connect

    Nam, Chang-Yong Stein, Aaron; Kisslinger, Kim; Black, Charles T.

    2015-11-16

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ∼10{sup 19 }cm{sup −3} carrier density, and ∼0.1 cm{sup 2} V{sup −1} s{sup −1} electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate the potential application of infiltration synthesis in fabricating metal oxide electronic devices.

  18. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    SciTech Connect

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim; Black, Charles T.

    2015-11-17

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm-3 carrier density, and ~0.1 cm2 V-1 s-1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate the potential application of infiltration synthesis in fabricating metal oxide electronic devices.

  19. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE PAGESBeta

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim; Black, Charles T.

    2015-11-17

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm-3 carrier density, and ~0.1 cm2 V-1 s-1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate the potential application ofmore » infiltration synthesis in fabricating metal oxide electronic devices.« less

  20. Lithographically-generated 3D lamella layers and their structural color.

    PubMed

    Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen

    2016-04-28

    Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ∼ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc. PMID:27087577

  1. Bag molding processes

    NASA Astrophysics Data System (ADS)

    Slobodzinsky, A.

    Features, materials, and techniques of vacuum, pressure, and autoclave FRP bag molding processes are described. The bags are used in sealed environments, inflated to flexibly force a curing FRP laminate to conform to a stiff mold form which defines the shape of the finished product. Densification is achieved as the bag presses out the voids and excess resin from the laminate, and consolidation occurs as the plies and adherends are bonded by the bag pressure. Curing techniques nominally involved room temperature or high temperature, and investigations of alternative techniques, such as induction, dielectric, microwave, xenon flash, UV, electron beam, and gamma radiation heating are proceeding. Polysulfone is the most common thermoplastic. Details are given of mold preparations, peel plies or release films and fabrics, bagging techniques, and reusable venting blankets and silicone rubber bags.

  2. Lithographer 3 and 2: Naval Rate Training Manual and Nonresident Career Course.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The rate training manual and nonresident career course (RTM/NRCC) form is a self-study package that will enable third class and second class lithographers to fulfill the requirements for that rating. Chapter one provides a brief history of printing and discusses the duties and qualifications of the Navy lithographer. Chapters two through eighteen…

  3. End moldings for cable dielectrics

    DOEpatents

    Roose, Lars D.

    2000-01-01

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble-free cable connectors suitable for mating to premanufactured fittings are made. Disclosed is a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  4. Molding process for imidazopyrrolone polymers

    NASA Technical Reports Server (NTRS)

    Johnson, C. L. (Inventor)

    1973-01-01

    A process is described for producing shaped articles of imidazopyrrolone polymers comprising molding imidazopyrrolone polymer molding power under pressure and at a temperature greater than 475 C. Moderate pressures may be employed. Preferably, prior to molding, a preform is prepared by isostatic compression. The preform may be molded at a relatively low initial pressure and temperature; as the temperature is increased to a value greater than 475 C., the pressure is also increased.

  5. Self-Assembled Biomolecular Materials Confined on Lithographic Surfaces

    NASA Astrophysics Data System (ADS)

    Pfohl, Thomas; Kim, Joon Heon; Case, Ryan; Li, Youli; Safinya, Cyrus R.

    2000-03-01

    Lithographically patterned Si-surfaces with different geometries (linear and circular channels) are used for confining and orienting assemblies of biomacromolecules. In order to direct the self assembly, the surfaces are coated with thin organic layers to change the hydrophobicity and surface charge. Droplet casting, spin coating and microinjection are used to fill the channels with biomaterials. In particular, the use of the microinjection technique allows us to control the formation of biomolecular assemblies for highly oriented x-ray samples as well as to fill single channels (width < 5μm) with dilute solutions for single molecule investigations. Biomaterials based on tubulin are our primary interest. We use fluorescence, confocal, and polarization microscopy to observe the polymerization of microtubules from tubulin and the formation of tubulin-cationic lipid complexes. Supported by NSF DMR-9972246, University of California Biotech Research, and Education Program Training Grant 99-14, DFG Pf 375/1-1.

  6. Impact of attenuated mask topography on lithographic performance

    NASA Astrophysics Data System (ADS)

    Ferguson, Richard A.; Adair, William J.; O'Grady, David S.; Martino, Ronald M.; Molless, Antoinette F.; Grenon, Brian J.; Wong, Alfred K. K.; Liebmann, Lars W.; Callegari, Alessandro; LaTulipe, Douglas C.; Sprout, Donna M.; Seguin, Christopher M.

    1994-05-01

    Experimental evaluations were used in conjunction with rigorous electromagnetic simulations to evaluate the affect of attenuated phase-shifting mask (PSM) fabrication processes on lithographic performance. Three attenuated PSMs were fabricated including a normal leaky- chrome reticle and two novel approaches: a recessed leaky-chrome reticle for reduction of edge scattering and a single-layer reticle employing a hydrogenated amorphous carbon film. Direct aerial image measurements with the Aerial Image Measurement System (AIMSTM), exposures on an SVGL Micrascan 92 deep-UV stepper, and TEMPEST simulations were used to explore the effects of edge-scattering phenomena for the different mask topographies. For each reticle, the process window at a feature size of 0.25 micrometers was evaluated for four basic feature types: nested lines, isolated lines, isolated spaces, and contact holes. Further evaluation of the sidewall profiles and the image size on the mask are required to address these discrepancies.

  7. The mechanical response of lithographically defined break junctions

    SciTech Connect

    Huisman, E. H.; Bakker, F. L.; Wees, B. J. van; Trouwborst, M. L.; Molen, S. J. van der

    2011-05-15

    We present an experimental study on the mechanical response of lithographically defined break junctions by measuring atomic chain formation, tunneling traces and Gundlach oscillations. The calibration factor, i.e., the ratio between the electrode movement and the bending of the substrate, is found to be 2.5 times larger than expected from a simple mechanical model. This result is consistent with previous finite-element calculations. Comparing different samples, the mechanical response is found to be similar for electrode separations >4 A. However, for smaller electrode separations significant sample-to-sample variations appear. These variations are ascribed to differences in the shape of the two electrodes on the atomic scale which cannot be controlled by the fabrication process.

  8. Gating of Permanent Molds for Aluminum Casting

    SciTech Connect

    David Schwam; John F. Wallace; Tom Engle; Qingming Chang

    2004-01-01

    sprue-wells should be evaluated. In order for a runner extension to operate efficiently, it must have a small squared cross-section. If it is tapered, the first metal to enter the first metal to enter the system is not effectively trapped. If the cross section is large, there is less turbulence when the aluminum enters the mold cavity in comparison to the smaller cross sectioned, squared runner. However, a large runner reduces yield. In bottom-feeding gating systems, a filter can significantly improve the filling of the casting. The filter helps to slow the metal flow rate enough to reduce jetting into the mold cavity. In top feeding gating systems, a filter can initially slow the metal flow rate, but because the metal drops after passing the filter, high velocities are achieved during free fall when a filter is in place. Side feeding gating systems provide less turbulent flow into the mold cavity. The flow is comparable to a bottom-feeding gating system with a filter. Using properly designed side-gating system instead of a bottom-feeding system with a filter can potentially save the cost of the filter. Rough coatings promote better fill than smooth coatings. This conclusion seems at first counter intuitive. One tends to assume a rough coating creates more friction resistance to the flow of molten metal. In actuality the molten aluminum stream flows inside an oxide film envelope. When this film rests on top of the ridges of a rough coating the microscopic air pockets between the coating and the oxide film provide more thermal insulation than in a smooth coating. This insulation promotes longer feeding distances in the mold as demonstrated in the experiments. Much of this work is applicable to vertically parted sand molds as well, although the heat transfer conditions do vary from a metal mold generally used in permanent molding of aluminum. The flow measurements were conducted using graphite molds and real time X-Ray radiography recorded at a rate of 30 images per

  9. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  10. Injection molding of iPP samples in controlled conditions and resulting morphology

    NASA Astrophysics Data System (ADS)

    Sessa, Nino; De Santis, Felice; Pantani, Roberto

    2015-12-01

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  11. Injection molding of iPP samples in controlled conditions and resulting morphology

    SciTech Connect

    Sessa, Nino De Santis, Felice Pantani, Roberto

    2015-12-17

    Injection molded parts are driven down in size and weight especially for electronic applications. In this work, an investigation was carried out on the process of injection molding of thin iPP samples and on the morphology of these parts. Melt flow in the mold cavity was analyzed and described with a mathematical model. Influence of mold temperature and injection pressure was analyzed. Samples orientation was studied using optical microscopy.

  12. MOLDED SEALING ELEMENT

    DOEpatents

    Bradford, B.W.; Skinner, W.J.

    1959-03-24

    Molded sealing elements suitable for use under conditions involving exposure to uranium hexafluoride vapor are described. Such sealing elements are made by subjecting graphitic carbons to a preliminary treatment with uranium hexafluoride vapor, and then incorporating polytetrafluorethylene in them. The resulting composition has good wear resistant and frictional properties and is resistant to disintegration by uranium hexafluoride over long periods of exposure.

  13. White Mold of Chickpea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White mold of chickpea can occur at either seedling stage or at flowering and pod filling stages. At seedling stage, the disease occurs at the base of the stem causing symptoms like collar rot. Often white mycelial growth around the stem on soil surface is visible. Affected plants wilt and die. ...

  14. Process and mold for molding foamed plastic articles

    SciTech Connect

    Baumrucker, E.J.

    1984-10-30

    A method for forming foamed plastic articles which includes the steps of closing a mold; prepressurizing the mold cavity with gas to prevent premature diffusion of blowing gas from the material injected into the cavity; injecting a short shot of molten synthetic resin material containing a blowing agent into the cavity; venting a portion of the prepressurization gas during the injection step; and venting the remaining prepressurization gas from the mold cavity to a vacuum chamber means to allow expansion of the injected foamable resin material within the mold cavity, the vacuum drawing the resin material throughout the mold cavity. In addition, the vacuum chamber is coupled to the mold cavity through plural spaced passageways so that the vacuum is drawn at various locations throughout the cavity to thereby enhance the complete filling of the cavity with the injected material as it expands. The mold is vented following the injection step automatically at the expiration of a predetermined time following the closing of a nozzle of the injection apparatus. A mold for carrying out the process includes improved gas flow means for delivering gas to and venting gas from the mold cavity. The mold also includes improved sealing means for sealing the mold to maintain it in a pressurized state as desired.

  15. Nonpost mold cure compound

    NASA Astrophysics Data System (ADS)

    Hirata, Akihiro

    1997-08-01

    The recent low price trend of electronic products has made IC manufacturing efficiency a top priority in the semiconductor industry. Post mold cure (PMC) process, which generally involves heating the packages in the oven at 175 C for 4 to 8 hours, takes up much longer time than most other assembly processes. If this PMC process can be reduced or eliminated, semiconductor makers will be rewarded with a much higher cost merit. We define the purpose of Non-PMC as 'to get high reliability with suitable physical and electrical properties without PMC'. We compared carious properties of molding compound before and after PMC. We found that curing reaction has almost complete through DSC and C-NMR measurement, but several properties have not stabilized yet, and that not all properties after PMC were better than before PMC. We developed new grade of molding compound considering these facts. And we found that main factors to accomplish non-PMC compound are curability and flowability, and more, increasing of fundamental properties. To accomplish non-PMC, at first, molding compound need to have very high curability. Generally speaking, too high curability causes low flowability, and causes incomplete filing, wire sweep, pad shift, and weak adhesion to inner parts of IC packages. To prevent these failures, various compound properties were studied, and we achieved in adding good flowability to very high curable molding compound. Finally, anti-popcorn property was improved by adding low moisture, high adhesion, high Tg, and high flexural strengths at high temperature. Through this study, we developed new compound grade for various package, especially large QFP using standard ECN resin.

  16. Multilevel micro-structuring of glassy carbon molds for precision glass molding

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-09-01

    Replication techniques for diffractive optical elements (DOEs) in soft materials such as plastic injection molding are state of the art. For precision glass molding in glasses with high transition temperatures, molds with extreme thermal resistivity, low chemical reactivity and high mechanical strength are needed. Glassy Carbon can be operated up to 2000°C making it possible to mold almost all glasses including Fused Silica with a transition temperatures above 1060°C. For the structuring of Glassy Carbon wafers photolithography and a RIE process is used. We have developed a process using Si as a hard mask material. If the flow rates of the etching gases O2 and SF6 are chosen properly, high selectivity of GC to Si 19:1 can be achieved, which provides excellent conditions to realize high resolution elements with feature size down to 1 micron and fulfills requirements for optical applications. We fabricated several multilevel GC molds with 8 levels of structuring. Two different optical functionalities were implemented: 6x6 array beamsplitter and 1x4 linear beamsplitter. The molds were applied for precision glass molding of a low Tg glass L-BAL 42 (from Ohara) with a transition temperature of 565°C. Their optical performance was measured. A more detailed analysis of the impact of mold fabrication defects on optical performance is done. Rigorous coupled wave analysis simulations are performed, where we included fabrication constrains such as duty cycle, edge depth errors, wall verticality and misalignment errors. We will compare the results with the design specifications and discuss the influence of fabrication errors introduced during the different process steps.

  17. High resolution PFPE-based molding High resolution PFPE-based molding High resolution PFPE-based molding techniques for nanofabrication of high pattern density sub-20 nm features: A fundamental materials approach

    SciTech Connect

    Williams, Stuart S; Samulski, Edward; Lopez, Renee; Ruiz, Ricardo; DeSimone, Joseph; Retterer, Scott T

    2010-01-01

    ABSTRACT. Described herein is the development and investigation of PFPE-based elastomers for high resolution replica molding applications. The modulus of the elastomeric materials was increased through synthetic and additive approaches while maintaining relatively low surface energies (<25 mN/m). Using practically relevant large area master templates, we show that the resolution of the molds is strongly dependant upon the elastomeric mold modulus. A composite mold approach was used to form flexible molds out of stiff, high modulus materials that allow for replication of sub-20 nm post structures. Sub-100 nm line grating master templates, formed using e-beam lithography, were used to determine the experimental stability of the molding materials. It was observed that as the feature spacing decreased, high modulus composite molds were able to effectively replicate the nano-grating structures without cracking or tear-out defects that typically occur with high modulus elastomers.

  18. Effect of the control of global planarity of intermetal dielectric layers on the lithographic process window

    NASA Astrophysics Data System (ADS)

    Keysar, Shani; Markowitz, Leah; Ben-Gigi, Corin; Tweg, Rama; Margalit-Ilovich, Ayelet; Kepten, Avishai; Wachs, Amir; Shaviv, Roey

    1999-06-01

    The sensitivity of lithographic process window to global planarity of the inter metal dielectric layers is established in this work. The inter metal dielectric layers, between the metal layers, were prepared by utilizing the H2O2/SiH4 chemistry known as the 'Advanced Planarity Layer (APL)'. Four degrees of global planarity were tested within the APL process window, utilizing different H2O2 stabilization pressures. SEM cross sections were used to determine the degree of planarity in the CMOS product and at lithographic test structures. The lithographic process window and the effect of the stepper leveling system were defined for typical high and low topographies. The results how a strong link between the lithographic process window to degree of global planarity of the APL. Good global planarity enlarged depth of focus and energy latitude, allowing a wider lithographic process window. Also, in cases of improved APL planarity, the stepper leveling system had only a limited contribution to a lithographic process window. This control over the global planarity of the inter metal dielectric layers and the wide lithographic process window that results eliminate the need for CMP at 0.5 (mu) technology.

  19. Standard Molded Composite Rocket Pyrogen Igniter - A progress report

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1978-01-01

    The pyrogen igniter has the function to furnish a controlled, high temperature, high pressure gas to ignite solid propellant surfaces in a rocket motor. Present pyrogens consist of numerous inert components. The Standard Molded Pyrogen Igniter (SMPI) consists of three basic parts, a cap with several integrally molded features, an ignition pellet retainer plate, and a tube with additional integrally molded features. A description is presented of an investigation which indicates that the SMPI concept is a viable approach to the design and manufacture of pyrogen igniters for solid propellant rocket motors. For some applications, combining the structural and thermal properties of molded composites can result in the manufacture of lighter assemblies at considerable cost reduction. It is demonstrated that high strength, thin walled tubes with high length to diameter ratios can be fabricated from reinforced plastic molding compound using the displacement compression process.

  20. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces.

    PubMed

    Chen, Jianwei; Gu, Chenglin; Lin, Hui; Chen, Shih-Chi

    2015-08-10

    Patterning micro- and nano-scale optical elements on nonplanar substrates has been technically challenging and prohibitively expensive via conventional processes. A low-cost, high-precision fabrication process is thus highly desired and can have significant impact on manufacturing that leads to wider applications. In this paper, we present a new hot embossing process that enables high-resolution patterning of micro- and nano-structures on non-planar substrates. In this process, a flexible elastomer stamp, i.e., PDMS, was used as a mold to perform hot-embossing on substrates of arbitrary curvatures. The new process was optimized through the development of an automated vacuum thermal imprinting system that allows non-clean room operation as well as precise control of all process parameters, e.g., pressure, temperature and time. Surface profiles and optical properties of the fabricated components, including micro-lens array and optical gratings, were characterized quantitatively, e.g., RMS ~λ/30 for a micro-lens, and proved to be comparable with high cost conventional precision processes such as laser lithographic fabrication. PMID:26367950

  1. EVALUATION OF POLLUTION PREVENTION OPPORTUNITIES FOR MOLD RELEASE AGENTS

    EPA Science Inventory

    The report gives results of an assessment of the processes, materials, installation practices, and emission characteristics associated with the application of mold release agents (MRAs). Emissions were estimated based on available information on MRA composition and consumption. V...

  2. A fabrication method of microneedle molds with controlled microstructures.

    PubMed

    Wang, Qi Lei; Zhu, Dan Dan; Chen, Yang; Guo, Xin Dong

    2016-08-01

    Microneedle (MN) offers an attractive, painless and minimally invasive approach for transdermal drug delivery. Polymer microneedles are normally fabricated by using the micromolding method employing a MN mold, which is suitable for mass production due to high production efficiency and repeat-using of the mold. Most of the MN molds are prepared by pouring sylgard polymer over a MN master to make an inverse one after curing, which is limited in optimizing or controlling the MN structures and failing to keep the sharpness of MNs. In this work we describe a fabrication method of MN mold with controlled microstructures, which is meaningful for the fabrication of polymer MNs with different geometries. Laser micro-machining method was employed to drill on the surface of PDMS sheets to obtain MN molds. In the fabrication process, the microstructures of MN molds are precisely controlled by changing laser parameters and imported patterns. The MNs prepared from these molds are sharp enough to penetrate the skin. This scalable MN mold fabrication method is helpful for future applications of MNs. PMID:27157736

  3. The Fabrication of Nanoimprinted P3HT Nanograting by Patterned ETFE Mold at Room Temperature and Its Application for Solar Cell

    NASA Astrophysics Data System (ADS)

    Ding, Guangzhu; Wang, Kaixuan; Li, Xiaohui; Chen, Qing; Hu, Zhijun; Liu, Jieping

    2016-05-01

    Nanoimprinting lithography (NIL) is investigated as a promising method to define nanostructure; however, finding a practical method to achieve large area patterning of conjugated polymer remains a challenge. We demonstrate here that a simple and cost-effective technique is proposed to fabricate the nanoimprinted P3HT nanograting by solvent-assisted room temperature NIL (SART-NIL) method with patterned ETFE film as mold. The patterned ETFE template is produced by embossing ETFE film into a patterned silicon master and is used as template to transfer nanogratings during the SART-NIL process. It indicates that highly reproducible and well-controlled P3HT nanograting film is obtained successfully with feature size of nanogratings ranging from 130 to 700 nm, due to the flexibility, stiffness, and low surface energy of ETFE mold. Moreover, the SART-NIL method using ETFE mold is able to fabricate nanogratings but not to induce the change of molecular orientation within conjugated polymer. The conducting ability of P3HT nanograting in the vertical direction is also not damaged after patterning. Finally, we further apply P3HT nanograting for the fabrication of active layer of OBHJ solar cell device, to investigate the morphology role presented by ETFE mold in device performance. The device performance of OBHJ solar cell is preferential to that of PBHJ device obviously.

  4. The Fabrication of Nanoimprinted P3HT Nanograting by Patterned ETFE Mold at Room Temperature and Its Application for Solar Cell.

    PubMed

    Ding, Guangzhu; Wang, Kaixuan; Li, Xiaohui; Chen, Qing; Hu, Zhijun; Liu, Jieping

    2016-12-01

    Nanoimprinting lithography (NIL) is investigated as a promising method to define nanostructure; however, finding a practical method to achieve large area patterning of conjugated polymer remains a challenge. We demonstrate here that a simple and cost-effective technique is proposed to fabricate the nanoimprinted P3HT nanograting by solvent-assisted room temperature NIL (SART-NIL) method with patterned ETFE film as mold. The patterned ETFE template is produced by embossing ETFE film into a patterned silicon master and is used as template to transfer nanogratings during the SART-NIL process. It indicates that highly reproducible and well-controlled P3HT nanograting film is obtained successfully with feature size of nanogratings ranging from 130 to 700 nm, due to the flexibility, stiffness, and low surface energy of ETFE mold. Moreover, the SART-NIL method using ETFE mold is able to fabricate nanogratings but not to induce the change of molecular orientation within conjugated polymer. The conducting ability of P3HT nanograting in the vertical direction is also not damaged after patterning. Finally, we further apply P3HT nanograting for the fabrication of active layer of OBHJ solar cell device, to investigate the morphology role presented by ETFE mold in device performance. The device performance of OBHJ solar cell is preferential to that of PBHJ device obviously. PMID:27206643

  5. Effect of Zr, Nb and Ti addition on injection molded 316L stainless steel for bio-applications: Mechanical, electrochemical and biocompatibility properties.

    PubMed

    Gulsoy, H Ozkan; Pazarlioglu, Serdar; Gulsoy, Nagihan; Gundede, Busra; Mutlu, Ozal

    2015-11-01

    The research investigated the effect of Zr, Nb and Ti additions on mechanical, electrochemical properties and biocompatibility of injection molded 316L stainless steel. Addition of elemental powder is promoted to get high performance of sintered 316L stainless steels. The amount of additive powder plays a role in determining the sintered microstructure and all properties. In this study, 316L stainless steel powders used with the elemental Zr, Nb and Ti powders. A feedstock containing 62.5 wt% powders loading was molded at different injection molded temperature. The binders were completely removed from molded components by solvent and thermal debinding at different temperatures. The debinded samples were sintered at 1350°C for 60 min. Mechanical, electrochemical property and biocompatibility of the sintered samples were performed mechanical, electrochemical, SBF immersion tests and cell culture experiments. Results of study showed that sintered 316L and 316L with additives samples exhibited high corrosion properties and biocompatibility in a physiological environment. PMID:26275484

  6. Vacuum isostatic micro/macro molding of PTFE materials for laser beam shaping in environmental applications: large scale UV laser water purification

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2009-08-01

    Accessibility to fresh clean water has determined the location and survival of civilizations throughout the ages [1]. The tangible economic value of water is demonstrated by industry's need for water in fields such as semiconductor, food and pharmaceutical manufacturing. Economic stability for all sectors of industry depends on access to reliable volumes of good quality water. As can be seen on television a nation's economy is seriously affected by water shortages through drought or mismanagement and as such those water resources must therefore be managed both for the public interest and the economic future. For over 50 years ultraviolet water purification has been the mainstay technology for water treatment, killing potential microbiological agents in water for leisure activities such as swimming pools to large scale waste water treatment facilities where the UV light photo-oxidizes various pollutants and contaminants. Well tailored to the task, UV provides a cost effective way to reduce the use of chemicals in sanitization and anti-biological applications. Predominantly based on low pressure Hg UV discharge lamps, the system is plagued with lifetime issues (~1 year normal operation), the last ten years has shown that the technology continues to advance and larger scale systems are turning to more advanced lamp designs and evaluating solidstate UV light sources and more powerful laser sources. One of the issues facing the treatment of water with UV lasers is an appropriate means of delivering laser light efficiently over larger volumes or cross sections of water. This paper examines the potential advantages of laser beam shaping components made from isostatically micro molding microstructured PTFE materials for integration into large scale water purification and sterilization systems, for both lamps and laser sources. Applying a unique patented fabrication method engineers can form micro and macro scale diffractive, holographic and faceted reflective structures

  7. 3. Copy of early 20th century lithograph, aerial rendering, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Copy of early 20th century lithograph, aerial rendering, looking south. Rendering owned by Baker Materials Handling Corporation, Cleveland, Ohio. - Rauch & Lang Carriage Company, West Twenty-fifth Street & Monroe Avenue, Cleveland, Cuyahoga County, OH

  8. 1. Copy of early 20th century lithograph showing aerial view, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Copy of early 20th century lithograph showing aerial view, looking west. Rendering owned by Baker Materials Handling Corpation, Cleveland Ohio. - Rauch & Lang Carriage Company, West Twenty-fifth Street & Monroe Avenue, Cleveland, Cuyahoga County, OH

  9. 3. photocopy of lithograph by A. Hoen & Co.,1877,City Hall,Baltimore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. photocopy of lithograph by A. Hoen & Co.,1877,City Hall,Baltimore printed by authority of the mayor and city council,1877,showing plan of first floor - Baltimore City Hall, Holliday Street, Baltimore, Independent City, MD

  10. 4. photocopy of lithograph by A. Hoen & Co.,1877,City Hall,Baltimore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. photocopy of lithograph by A. Hoen & Co.,1877,City Hall,Baltimore printed by authority of the mayor and city council,1877,showing section on line C-D - Baltimore City Hall, Holliday Street, Baltimore, Independent City, MD

  11. 2. photocopy of lithograph by A. Hoen & Co.,1877,City Hall,Baltimore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. photocopy of lithograph by A. Hoen & Co.,1877,City Hall,Baltimore printed by authority of the mayor and city council,1877,showing plan of roof and dome - Baltimore City Hall, Holliday Street, Baltimore, Independent City, MD

  12. 1. Copy of early 20th Century lithograph looking north showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Copy of early 20th Century lithograph looking north showing aerial view of company. Rendering owned by the Crawford Auto- aviation Museum, 10825 East Blvd, Cleveland, Ohio. - Winton Motor Carriage Company, Berea Road & Madison Avenue, Cleveland, Cuyahoga County, OH

  13. Predicting and preventing mold spoilage of food products.

    PubMed

    Dagnas, Stéphane; Membré, Jeanne-Marie

    2013-03-01

    This article is a review of how to quantify mold spoilage and consequently shelf life of a food product. Mold spoilage results from having a product contaminated with fungal spores that germinate and form a visible mycelium before the end of the shelf life. The spoilage can be then expressed as the combination of the probability of having a product contaminated and the probability of mold growth (germination and proliferation) up to a visible mycelium before the end of the shelf life. For products packed before being distributed to the retailers, the probability of having a product contaminated is a function of factors strictly linked to the factory design, process, and environment. The in-factory fungal contamination of a product might be controlled by good manufacturing hygiene practices and reduced by particular processing practices such as an adequate air-renewal system. To determine the probability of mold growth, both germination and mycelium proliferation can be mathematically described by primary models. When mold contamination on the product is scarce, the spores are spread on the product and more than a few spores are unlikely to be found at the same spot. In such a case, models applicable for a single spore should be used. Secondary models can be used to describe the effect of intrinsic and extrinsic factors on either the germination or proliferation of molds. Several polynomial models and gamma-type models quantifying the effect of water activity and temperature on mold growth are available. To a lesser extent, the effect of pH, ethanol, heat treatment, addition of preservatives, and modified atmospheres on mold growth also have been quantified. However, mold species variability has not yet been properly addressed, and only a few secondary models have been validated for food products. Once the probability of having mold spoilage is calculated for various shelf lives and product formulations, the model can be implemented as part of a risk management

  14. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  15. Fabrication of Molded Magnetic Article

    NASA Technical Reports Server (NTRS)

    Bryant, Robert G. (Inventor); Namkung, Min (Inventor); Wincheski, Russell A. (Inventor); Fox, Robert L. (Inventor)

    2001-01-01

    A molded magnetic article and fabrication method are provided. Particles of ferromagnetic material embedded in a polymer binder are molded under heat and pressure into a geometric shape. Each particle is an oblate spheroid having a radius-to-thickness aspect ratio approximately in the range of 15-30. Each oblate spheroid has flattened poles that are substantially in perpendicular alignment to a direction of the molding pressure throughout the geometric shape.

  16. Injection molded polymeric micropatterns for bone regeneration study.

    PubMed

    Zanchetta, Erika; Guidi, Enrica; Della Giustina, Gioia; Sorgato, Marco; Krampera, Mauro; Bassi, Giulio; Di Liddo, Rosa; Lucchetta, Giovanni; Conconi, Maria Teresa; Brusatin, Giovanna

    2015-04-01

    An industrially feasible process for the fast mass-production of molded polymeric micro-patterned substrates is here presented. Microstructured polystyrene (PS) surfaces were obtained through micro injection molding (μIM) technique on directly patterned stamps realized with a new zirconia-based hybrid spin-on system able to withstand 300 cycles at 90 °C. The use of directly patterned stamps entails a great advantage on the overall manufacturing process as it allows a fast, flexible, and simple one-step process with respect to the use of milling, laser machining, electroforming techniques, or conventional lithographic processes for stamp fabrication. Among the different obtainable geometries, we focused our attention on PS replicas reporting 2, 3, and 4 μm diameter pillars with 8, 9, 10 μm center-to-center distance, respectively. This enabled us to study the effect of the substrate topography on human mesenchymal stem cells behavior without any osteogenic growth factors. Our data show that microtopography affected cell behavior. In particular, calcium deposition and osteocalcin expression enhanced as diameter and interpillar distance size increases, and the 4-10 surface was the most effective to induce osteogenic differentiation. PMID:25756304

  17. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  18. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  19. Rapid and low-cost prototyping of medical devices using 3D printed molds for liquid injection molding.

    PubMed

    Chung, Philip; Heller, J Alex; Etemadi, Mozziyar; Ottoson, Paige E; Liu, Jonathan A; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  20. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    PubMed Central

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  1. 8. VIEW OF A MOLD FOR PRECISION CASTING. THE MOLD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF A MOLD FOR PRECISION CASTING. THE MOLD WAS USED IN FOUNDRY OPERATIONS THAT CAST PLUTONIUM EITHER AS INGOTS SUITABLE FOR ROLLING AND FURTHER WROUGHT PROCESSING OR INTO SHAPES AMENABLE TO DIRECT MACHINING OPERATIONS. (5/6/59) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  2. MOLD SPECIFIC QUANTITATIVE PCR: THE EMERGING STANDARD IN MOLD ANALYSIS

    EPA Science Inventory

    Today I will talk about the use of quantitative or Real time PCR for the standardized identification and quantification of molds. There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to human...

  3. Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science

    PubMed Central

    Helgeson, Matthew E.; Chapin, Stephen C.; Doyle, Patrick S.

    2011-01-01

    In recent years there has been a surge in methods to synthesize geometrically and chemically complex microparticles. Analogous to atoms, the concept of a “periodic table” of particles has emerged and continues to be expanded upon. Complementing the natural intellectual curiosity that drives the creation of increasingly intricate particles is the pull from applications that take advantage of such high-value materials. Complex particles are now being used in fields ranging from diagnostics and catalysis to self-assembly and rheology, where material composition and microstructure are closely linked with particle function. This is especially true of polymer hydrogels, which offer an attractive and broad class of base materials for synthesis. Lithography affords the ability to engineer particle properties a priori and leads to the production of homogenous ensembles of particles. This review summarizes recent advances in synthesizing hydrogel microparticles using lithographic processes and highlight a number of emerging applications. We discuss advantages and limitations of current strategies, and conclude with an outlook on future trends in the field. PMID:21516212

  4. Mold Materials For Permanent Molding of Aluminum Alloys

    SciTech Connect

    John F Wallace; David Schwam; Wen Hong dxs11@po.cwru.edu

    2001-09-14

    A test that involves immersion of the potential mod materials for permanent molds has been developed that provides a thermal cycle that is similar to the experienced during casting of aluminum in permanent molds. This test has been employed to determine the relative thermal fatigue resistance of several different types of mold materials. Four commercial mold coatings have been evaluated for their insulating ability, wear resistance and roughness. The results indicate that composition and structure of the mold materials have considerable effect on their thermal fatigue cracking behavior. Irons with a gray iron structure are the most prone to thermal fatigue cracking followed by compacted graphite irons with the least thermal fatigue cracking of the cast irons experienced by ductile iron. The composition of these various irons affects their behavior.

  5. Lithographic process window optimization for mask aligner proximity lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna; Erdmann, Andreas; Ünal, Nezih; Hofmann, Ulrich; Hennemeyer, Marc; Zoberbier, Ralph; Nguyen, David; Brugger, Juergen

    2014-03-01

    We introduce a complete methodology for process window optimization in proximity mask aligner lithography. The commercially available lithography simulation software LAB from GenISys GmbH was used for simulation of light propagation and 3D resist development. The methodology was tested for the practical example of lines and spaces, 5 micron half-pitch, printed in a 1 micron thick layer of AZ® 1512HS1 positive photoresist on a silicon wafer. A SUSS MicroTec MA8 mask aligner, equipped with MO Exposure Optics® was used in simulation and experiment. MO Exposure Optics® is the latest generation of illumination systems for mask aligners. MO Exposure Optics® provides telecentric illumination and excellent light uniformity over the full mask field. MO Exposure Optics® allows the lithography engineer to freely shape the angular spectrum of the illumination light (customized illumination), which is a mandatory requirement for process window optimization. Three different illumination settings have been tested for 0 to 100 micron proximity gap. The results obtained prove, that the introduced process window methodology is a major step forward to obtain more robust processes in mask aligner lithography. The most remarkable outcome of the presented study is that a smaller exposure gap does not automatically lead to better print results in proximity lithography - what the "good instinct" of a lithographer would expect. With more than 5'000 mask aligners installed in research and industry worldwide, the proposed process window methodology might have significant impact on yield improvement and cost saving in industry.

  6. Lithographic Evaluation Of Copolymers With Enhanced Dry Etch Resistance

    NASA Astrophysics Data System (ADS)

    Namaste, Y. M.; Obendorf, S. K.; Rosenblum, J. M.; Gifford, G. G.; Dems, B. C.; Rodriguez, F.

    1987-08-01

    Alternating copolymers of alphamethylstyrene (AMS) with maleic anhydride (MA) and methyl maleate (MeM) are evaluated as positive electron resists. The chain scission efficiency (Gs) of P(AMS-MA), determined by exposure to 50 keV electrons, is 0.90 scissions/100 eV. When the maleic anhydride in the copolymer is reacted with sodium methoxide to form its methyl ester, P(AMS-MeM), the Gs increases to 2.9 for electrons and to 3.5 for gamma radiation. Based on these G-scission values, this copolymer is expected to exhibit enhanced sensitivity, while having good dry etch resistance due to the aromatic nature of alphamethylstyrene. Lithographically, P(AMS-MeM) is more sensitive than P(AMS-MA), as expected from G-scission data. Film properties such as adhesion are also superior for P(AMS-MeM). Using a one hour prebake at 140°C, 10% thinning of unexposed P(AMS-MeM) occurs upon development of pads exposed to an incident electron dose of 8 jC/cm2 (accelerating voltage = 20 kV). The contrast (1) is 2.0 for development of 12 iiC/cm exposur2es. In comparison, P(AMS-MA) exhibited 10% thinning for an incident dose of 40 pC/cm, which is similar to observations with PMMA. The copolymers are developed with mixtures of ethyl 3-ethoxypropionate and 1-methoxy-2-propanol acetate. The dry etch rate of P(AMS-MA) in CFI.' plasma with 8% 02 varies from 45 to 53% of the etch rate of a PMMA standard. The etch rate of P(AMS-MeM) after a 140°C prebake is about 65% that of PMMA. Thus, much of the etch resistance of alphamethylstyrene is maintained in copolymers with maleic anhydride or methyl maleate, while the copolymer with methyl maleate also exhibits significantly enhanced sensitivity.

  7. Replication of optical microlens array using photoresist coated molds.

    PubMed

    Chakrabarti, M; Dam-Hansen, C; Stubager, J; Pedersen, T F; Pedersen, H C

    2016-05-01

    A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating with photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from the light engine. Polymer injection molded microlens arrays were produced from both the rough and coated molds and have been characterized for lenslet parameters, surface quality, light scattering, and acceptance angle. The surface roughness (Ra) is improved approximately by a factor of two after the coating process and the light scattering is reduced so that the molded microlens array can be used for the color mixing application. The measured accepted angle of the microlens array is 40° which is in agreement with simulations. PMID:27137566

  8. Evaluation of Additive Manufacturing for Composite Part Molds

    SciTech Connect

    Duty, Chad E.; Springfield, Robert M.

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  9. STANDARDIZED MOLD IDENTIFICATION AND ENUMERATION

    EPA Science Inventory

    There are probably at least 100,000 species of molds or fungi. But there are actually about 100 typically found indoors. Some pose a threat to humans and animals and others don't. We need to know what molds are present indoors and their concentrations. The older methods of cult...

  10. Twistable mold for helicopter blades

    NASA Technical Reports Server (NTRS)

    Carter, E. S.; Kiely, E. F.

    1972-01-01

    Design is described of mold for fabrication of blades composed of sets of aerodynamic shells having same airfoil section characteristics but different distributions. Mold consists of opposing stacks of thin templates held together by long bolts. When bolts are loosened, templates can be set at different positions with respect to each other and then locked in place.