Science.gov

Sample records for molecular charge transfer

  1. Photoinduced charge and energy transfer in molecular wires.

    PubMed

    Gilbert, Mélina; Albinsson, Bo

    2015-02-21

    Exploring charge and energy transport in donor-bridge-acceptor systems is an important research field which is essential for the fundamental knowledge necessary to develop future applications. These studies help creating valuable knowledge to respond to today's challenges to develop functionalized molecular systems for artificial photosynthesis, photovoltaics or molecular scale electronics. This tutorial review focuses on photo-induced charge/energy transfer in covalently linked donor-bridge-acceptor (D-B-A) systems. Of utmost importance in such systems is to understand how to control signal transmission, i.e. how fast electrons or excitation energy could be transferred between the donor and acceptor and the role played by the bridge (the "molecular wire"). After a brief description of the electron and energy transfer theory, we aim to give a simple yet accurate picture of the complex role played by the bridge to sustain donor-acceptor electronic communication. Special emphasis is put on understanding bridge energetics and conformational dynamics effects on the distance dependence of the donor-acceptor electronic coupling and transfer rates. Several examples of donor-bridge-acceptor systems from the literature are described as a support to the discussion. Finally, porphyrin-based molecular wires are introduced, and the relationship between their electronic structure and photophysical properties is outlined. In strongly conjugated porphyrin systems, limitations of the existing electron transfer theory to interpret the distance dependence of the transfer rates are also discussed. PMID:25212903

  2. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  3. Charge-transfer crystallites as molecular electrical dopants.

    PubMed

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi-Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites-rather than individual acceptor molecules-should be regarded as the dopants in such systems. PMID:26440403

  4. Photoinduced Charge and Energy Transfer Processes in Molecular Aggregates

    SciTech Connect

    John F. Endicott

    2009-10-20

    This project involved the experimental probing of the electronic excited states generated by photoinduced (center-to-center) electron and energy transfer processes in several classes of transition metal donor/acceptor (D/A) complexes. Some of the general properties inferred from these studies should be useful in the design of new systems for energy conversion applications. Pursuit of the project goals has involved the determination of electron transfer efficiencies and the detailed study of variations in the electronic spectra of D/A complexes. This has resulted in the study of some very fundamental issues of photoinduced charge transfer and the identification of some of the constraints on its efficiency. The experimental studies of the competition between the degradative non-radiative unimolecular relaxation of transition metal excited states and their transfer of charge from these excited states to external acceptors have involved a range of techniques such as transient decay kinetics, photoacoustic calorimetry and transient or stationary state spectroscopy. The substrates synthesized for these studies were selected to provide model systems, or series of model systems to probe the validity of models of electronic excited states and their reactivity. The work during the last few years has focused largely, but not exclusively, on the use of emission spectral band shapes to probe the properties of charge transfer (CT) excited states. Bandshape variations are one of the very few approaches for systematically probing electronic excited states and good band shape resolution is necessary in order to gain information about the structural variations that correlate with excited state reactivity. Differences in molecular structure correlate with differences in chemical reactivity, and the variations in emission bandshapes are well known to relate to variations in the molecular structural differences between the excited and ground electronic states. However, it is has been

  5. Charge transfer processes: the role of optimized molecular orbitals.

    PubMed

    Meyer, Benjamin; Domingo, Alex; Krah, Tim; Robert, Vincent

    2014-08-01

    The influence of the molecular orbitals on charge transfer (CT) reactions is analyzed through wave function-based calculations. Characteristic CT processes in the organic radical 2,5-di-tert-butyl-6-oxophenalenoxyl linked with tetrathiafulvalene and the inorganic crystalline material LaMnO3 show that changes in the inner shells must be explicitly taken into account. Such electronic reorganization can lead to a reduction of the CT vertical transition energy up to 66%. A state-specific approach accessible through an adapted CASSCF (complete active space self-consistent field) methodology is capable of reaching good agreement with the experimental spectroscopy of CT processes. A partitioning of the relaxation energy in terms of valence- and inner-shells is offered and sheds light on their relative importance. This work paves the way to the intimate description of redox reactions using quantum chemistry methods. PMID:24781811

  6. Ultrafast charge transfer processes in ordered molecular systems

    NASA Astrophysics Data System (ADS)

    Olson, Eric James Crane

    1998-11-01

    optical microscopy (NSOM) are used in conjunction with bulk absorption and fluorescence measurements to correlate the morphological and photophysical properties of titanyl phthalocyanine/perylene phenethylimide (TiOPc/PPEI) bilayer systems. Steady-state fluorescence intensity and fluorescence lifetime measurements are used as a measure of interfacial charge-transfer quenching efficiencies.

  7. Spectral properties of molecular charge-transfer probe QMOM

    NASA Astrophysics Data System (ADS)

    Tomin, V. I.; Jaworski, R.; Yushchenko, D. A.

    2010-09-01

    The spectral characteristics of solutions of a dye with dual fluorescence, 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone, in acetonitrile are studied upon selective excitation. This dye is a structural analogue of 3-hydroxyflavone and also exhibits excited-state proton transfer, which, as well as in the case of 3-hydroxyflavone, has a kinetic nature. The fluorescence spectra are studied upon excitation by photons of various energies, and the excitation spectra are recorded at wavelengths of different fluorescence bands. It is found that the intensity ratio of the emission of the normal and tautomeric forms (at wavelength of 415 and 518 nm, respectively) is almost the same (0.23-0.25) for excitation in the regions of the main and the second absorption bands. At the same time, in the case of excitation between these bands, this ratio decreases to 0.19. The second interesting feature is the existence of a third latent emission band peaked at about 480 nm, which is reliably detected upon excitation at wavelengths in the region of 400-450 nm. This study shows that this emission belongs to the anionic form of the dye. This form is also responsible for a decrease in the intensity ratio of the emission of the two main forms in the case of excitation between the first and second absorption bands.

  8. Dependence of charge transfer reorganization energy on carrier localisation in organic molecular crystals.

    PubMed

    Bromley, Stefan T; Illas, Francesc; Mas-Torrent, Marta

    2008-01-01

    Taking the organic molecular material dithiophene-tetrathiafulvalene (DT-TTF) as an example of a high mobility organic molecular material, we use density functional calculations to calculate the dependency of the reorganization energy associated with charge carrier transport on: (i) the geometric and electronic responsiveness of the local molecular crystal environment, and, (ii) the local spatial extent of the charge carrier. We find that in our most realistic extended models the charge transfer reorganization energy is strongly dependent on carrier localization. In particular, whereas highly localized carriers are found to be highly susceptible to their charge transfer efficiency being affected by changes in the local crystal environment, more delocalized carriers are better able to maintain their low reorganization energies. Considering that maintaining a relatively small charge transfer reorganization energy magnitude is an important factor in achieving high carrier mobilities, we suggest that those materials better able to sustain carriers with short-range thermally resistant intermolecular delocalisation should be sought for device applications. PMID:18075690

  9. Designed self-assembly of molecular necklaces using host-stabilized charge-transfer interactions.

    PubMed

    Ko, Young Ho; Kim, Kyungpil; Kang, Jin-Koo; Chun, Hyungphil; Lee, Jae Wook; Sakamoto, Shigeru; Yamaguchi, Kentaro; Fettinger, James C; Kim, Kimoon

    2004-02-25

    A novel approach to the noncovalent synthesis of molecular necklaces successfully led to the first quantitative self-assembly of a molecular necklace [6]MN, in which five small rings are threaded on a large ring, from 10 components. Our strategy involves the host-guest complex formation between the molecular host cucurbit[8]uril (CB[8]) and a guest molecule in which an electron donor and an electron acceptor unit are connected by a rigid linker with a proper angle, to form a cyclic oligomer through the host-stabilized intermolecular charge-transfer (CT) complex formation. In the structure of the molecular necklace [6]MN, five molecules of the guest form a cyclic framework by the intermolecular CT interactions, on which five CB[8] molecules are threaded with an arrangement reminiscent of a five-fold propeller. The molecular necklace measures approximately 3.7 nm in diameter and approximately 1.8 nm in thickness. PMID:14971915

  10. Combining intra- and intermolecular charge-transfer: a new strategy towards molecular ferromagnets and multiferroics

    PubMed Central

    Di Maiolo, Francesco; Sissa, Cristina; Painelli, Anna

    2016-01-01

    Organic ferroelectric materials are currently a hot research topic, with mixed stack charge transfer crystals playing a prominent role with their large, electronic-in-origin polarization and the possibility to tune the transition temperature down to the quantum limit and/or to drive the ferroelectric transition via an optical stimulus. By contrast, and in spite of an impressive research effort, organic ferromagnets are rare and characterized by very low transition temperatures. Coexisting magnetic and electric orders in multiferroics offer the possibility to control magnetic (electric) properties by an applied electric (magnetic) field with impressive technological potential. Only few examples of multiferroics are known today, based on inorganics materials. Here we demonstrate that, by decorating mixed stack charge transfer crystals with organic radicals, a new family of robust molecular ferromagnets can be designed, stable up to ambient temperature, and with a clear tendency towards multiferroic behaviour. PMID:26790963

  11. Combining intra- and intermolecular charge-transfer: a new strategy towards molecular ferromagnets and multiferroics

    NASA Astrophysics Data System (ADS)

    di Maiolo, Francesco; Sissa, Cristina; Painelli, Anna

    2016-01-01

    Organic ferroelectric materials are currently a hot research topic, with mixed stack charge transfer crystals playing a prominent role with their large, electronic-in-origin polarization and the possibility to tune the transition temperature down to the quantum limit and/or to drive the ferroelectric transition via an optical stimulus. By contrast, and in spite of an impressive research effort, organic ferromagnets are rare and characterized by very low transition temperatures. Coexisting magnetic and electric orders in multiferroics offer the possibility to control magnetic (electric) properties by an applied electric (magnetic) field with impressive technological potential. Only few examples of multiferroics are known today, based on inorganics materials. Here we demonstrate that, by decorating mixed stack charge transfer crystals with organic radicals, a new family of robust molecular ferromagnets can be designed, stable up to ambient temperature, and with a clear tendency towards multiferroic behaviour.

  12. Combining intra- and intermolecular charge-transfer: a new strategy towards molecular ferromagnets and multiferroics.

    PubMed

    Di Maiolo, Francesco; Sissa, Cristina; Painelli, Anna

    2016-01-01

    Organic ferroelectric materials are currently a hot research topic, with mixed stack charge transfer crystals playing a prominent role with their large, electronic-in-origin polarization and the possibility to tune the transition temperature down to the quantum limit and/or to drive the ferroelectric transition via an optical stimulus. By contrast, and in spite of an impressive research effort, organic ferromagnets are rare and characterized by very low transition temperatures. Coexisting magnetic and electric orders in multiferroics offer the possibility to control magnetic (electric) properties by an applied electric (magnetic) field with impressive technological potential. Only few examples of multiferroics are known today, based on inorganics materials. Here we demonstrate that, by decorating mixed stack charge transfer crystals with organic radicals, a new family of robust molecular ferromagnets can be designed, stable up to ambient temperature, and with a clear tendency towards multiferroic behaviour. PMID:26790963

  13. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    NASA Astrophysics Data System (ADS)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their

  14. Direct observation of collective modes coupled to molecular orbital-driven charge transfer

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tadahiko; Hayes, Stuart A.; Keskin, Sercan; Corthey, Gastón; Hada, Masaki; Pichugin, Kostyantyn; Marx, Alexander; Hirscht, Julian; Shionuma, Kenta; Onda, Ken; Okimoto, Yoichi; Koshihara, Shin-ya; Yamamoto, Takashi; Cui, Hengbo; Nomura, Mitsushiro; Oshima, Yugo; Abdel-Jawad, Majed; Kato, Reizo; Miller, R. J. Dwayne

    2015-12-01

    Correlated electron systems can undergo ultrafast photoinduced phase transitions involving concerted transformations of electronic and lattice structure. Understanding these phenomena requires identifying the key structural modes that couple to the electronic states. We report the ultrafast photoresponse of the molecular crystal Me4P[Pt(dmit)2]2, which exhibits a photoinduced charge transfer similar to transitions between thermally accessible states, and demonstrate how femtosecond electron diffraction can be applied to directly observe the associated molecular motions. Even for such a complex system, the key large-amplitude modes can be identified by eye and involve a dimer expansion and a librational mode. The dynamics are consistent with the time-resolved optical study, revealing how the electronic, molecular, and lattice structures together facilitate ultrafast switching of the state.

  15. Trifluoromethylmetallate anions as components of molecular charge transfer salts and superconductors.

    SciTech Connect

    Schlueter, J. A.

    1998-10-14

    Whereas polymeric and common inorganic anions frequently deprive the synthetic chemist of a chance to modify a charge transfer salt's structure through anion alterations, discrete organometallic anions provide a vast opportunity to probe the structure/property correlations of a material through rational synthetic methods. We have recently undertaken a research effort aimed at the crystallization of conducting charge transfer salts which possess modifiable, organometallic anions as the charge compensating entities. This research has been richly rewarded with the discovery of a new family of bis(ethylenedithio) tetrathiafulvalene (BEDT-TTF or ET) based molecular superconductors. Herein is presented a summary of over twenty {kappa}(ET){sub 2}M(CF{sub 3}){sub 4}(1,1,2-trihaloethane) (M = Cu, Ag, Au) superconducting salts. Three new related salts are also reported: (ET){sub 2} [trans-Ag(CF{sub 3}),(CN){sub 2}], {kappa}{sub L}(BEDT-TSF){sub 2}Ag(CF{sub 3}){sub 4}(TCE), and {kappa}{sub L}(ET){sub 2}Ag(CF{sub 3}){sub 3}Cl(TCE).

  16. Physical adsorption and charge transfer of molecular Br2 on graphene.

    PubMed

    Chen, Zheyuan; Darancet, Pierre; Wang, Lei; Crowther, Andrew C; Gao, Yuanda; Dean, Cory R; Taniguchi, Takashi; Watanabe, Kenji; Hone, James; Marianetti, Chris A; Brus, Louis E

    2014-03-25

    We present a detailed study of gaseous Br2 adsorption and charge transfer on graphene, combining in situ Raman spectroscopy and density functional theory (DFT). When graphene is encapsulated by hexagonal boron nitride (h-BN) layers on both sides, in a h-BN/graphene/h-BN sandwich structure, it is protected from doping by strongly oxidizing Br2. Graphene supported on only one side by h-BN shows strong hole doping by adsorbed Br2. Using Raman spectroscopy, we determine the graphene charge density as a function of pressure. DFT calculations reveal the variation in charge transfer per adsorbed molecule as a function of coverage. The molecular adsorption isotherm (coverage versus pressure) is obtained by combining Raman spectra with DFT calculations. The Fowler-Guggenheim isotherm fits better than the Langmuir isotherm. The fitting yields the adsorption equilibrium constant (∼0.31 Torr(-1)) and repulsive lateral interaction (∼20 meV) between adsorbed Br2 molecules. The Br2 molecule binding energy is ∼0.35 eV. We estimate that at monolayer coverage each Br2 molecule accepts 0.09 e- from single-layer graphene. If graphene is supported on SiO2 instead of h-BN, a threshold pressure is observed for diffusion of Br2 along the (somewhat rough) SiO2/graphene interface. At high pressure, graphene supported on SiO2 is doped by adsorbed Br2 on both sides. PMID:24528378

  17. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems.

    PubMed

    Li, Yongjun; Liu, Taifeng; Liu, Huibiao; Tian, Mao-Zhong; Li, Yuliang

    2014-04-15

    Highly polarized compounds exhibiting intramolecular charge transfer (ICT) are used widely as nonlinear optical (NLO) materials and red emitters and in organic light emitting diodes. Low-molecular-weight donor/acceptor (D/A)-substituted ICT compounds are ideal candidates for use as the building blocks of hierarchically structured, multifunctional self-assembled supramolecular systems. This Account describes our recent studies into the development of functional molecular systems with well-defined self-assembled structures based on charge-transfer (CT) interactions. From solution (sensors) to the solid state (assembled structures), we have fully utilized intrinsic and stimulus-induced CT interactions to construct these functional molecular systems. We have designed some organic molecules capable of ICT, with diversity and tailorability, that can be used to develop novel self-assembled materials. These ICT organic molecules are based on a variety of simple structures such as perylene bisimide, benzothiadiazole, tetracyanobutadiene, fluorenone, isoxazolone, BODIPY, and their derivatives. The degree of ICT is influenced by the nature of both the bridge and the substituents. We have developed new methods to synthesize ICT compounds through the introduction of heterocycles or heteroatoms to the π-conjugated systems or through extending the conjugation of diverse aromatic systems via another aromatic ring. Combining these ICT compounds featuring different D/A units and different degrees of conjugation with phase transfer methodologies and solvent-vapor techniques, we have self-assembled various organic nanostructures, including hollow nanospheres, wires, tubes, and ribbonlike architectures, with controllable morphologies and sizes. For example, we obtained a noncentrosymmetric microfiber structure that possessed a permanent dipole along its fibers' long axis and a transition dipole perpendicular to it; the independent NLO responses of this material can be separated and

  18. Supercell convergence of charge-transfer energies in pentacene molecular crystals from constrained DFT

    NASA Astrophysics Data System (ADS)

    Turban, David H. P.; Teobaldi, Gilberto; O'Regan, David D.; Hine, Nicholas D. M.

    2016-04-01

    Singlet fission (SF) is a multiexciton generation process that could be harnessed to improve the efficiency of photovoltaic devices. Experimentally, systems derived from the pentacene molecule have been shown to exhibit ultrafast SF with high yields. Charge-transfer (CT) configurations are likely to play an important role as intermediates in the SF process in these systems. In molecular crystals, electrostatic screening effects and band formation can be significant in lowering the energy of CT states, enhancing their potential to effectively participate in SF. In order to simulate these, it desirable to adopt a computational approach which is acceptably accurate, relatively inexpensive, and which scales well to larger systems, thus enabling the study of screening effects. We propose an electrostatically corrected constrained density functional theory (cDFT) approach as a low-cost solution to the calculation of CT energies in molecular crystals such as pentacene. Here we consider an implementation in the context of the onetep linear-scaling DFT code, but our electrostatic correction method is in principle applicable in combination with any constrained DFT implementation, also outside the linear-scaling framework. Our newly developed method allows us to estimate CT energies in the infinite crystal limit, and with these to validate the accuracy of the cluster approximation.

  19. Molecular structure and charge transfer contributions to nonlinear optical property of 2-Methyl-4-nitroaniline: A DFT study

    NASA Astrophysics Data System (ADS)

    Jasmine, G. Femina; Amalanathan, M.; Roy, S. Dawn Dharma

    2016-05-01

    The Charge transfer contributions to the second-order nonlinear optical properties of 2-Methyl-4-nitroaniline have been performed by means of DFT computation. The vibrational contribution studies of 2-Methyl-4-nitroaniline have also been performed using FTIR, FT-Raman analysis. More support on the experimental findings were added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G(d,p)basis sets. Natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. The first order hyperpolarizability (α0) and related properties (β,α0 and Δα) of 2-Methyl-4-nitroaniline were calculated. In addition, molecular electrostatic potential (MEP), charge analysis also were investigated using theoretical calculations.

  20. Vibrationally resolved charge transfer of O{sup 3+} with molecular hydrogen

    SciTech Connect

    Wang, J.G.; Stancil, P.C.; Turner, A.R.; Cooper, D.L.

    2004-06-01

    Charge transfer due to collisions of ground state O{sup 3+}(2s{sup 2}2p {sup 2}P{sup o}) ions with molecular hydrogen are investigated using the quantum-mechanical molecular-orbital (QMO) coupled-channel method. The QMO calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach for a representative range of orientation angles and diatom internuclear separations. Vibrationally resolved cross sections for nondissociative single electron capture are obtained for energies between 0.1 eV/u and 10 keV/u for H{sub 2} in its ground vibrational level using the infinite order sudden approximation (IOSA). Two further approximations are considered in which the electronic radial couplings are assumed to be independent of the diatom stretching. In the first case, vibrational motion is taken into account by multiplying the electronic radial couplings by Franck-Condon (FC) ionization factors while in the second, vibrational motion is completely neglected. We refer to these two approaches as the vibrational sudden approximation (VSA) and the electronic approximation (EA), respectively. In the latter, the resulting cross sections for electronic transitions are multiplied by FC factors to obtain relative vibrationally resolved cross sections which are independent of the collision energy (the centroid approximation). Comparison with existing experimental data for total and electronic state-selective cross sections shows best agreement with IOSA and VSA, but discrepancies for EA. The triplet-singlet electronic cross section ratio reveals a departure at low collision energies from the statistical value.

  1. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    Electronic transitions between the Fe-Fe bonding and Fe-Fe antibonding orbitals results in the optically-induced intervalence charge transfer bands observed in the electronic spectra of mixed valence minerals. Such transitions are predicted to be polarized along the metal-metal bond direction, in agreement with experimental observations.

  2. Spectroscopic studies and molecular orbital calculations of charge transfer complexation between 3,5-dimethylpyrazole with DDQ in acetonitrile

    NASA Astrophysics Data System (ADS)

    Habeeb, Moustafa M.; Al-Attas, Amirah S.; Al-Raimi, Doaa S.

    2015-05-01

    Charge transfer (CT) interaction between 3,5-dimethylpyrazole (DMP) with the π-acceptor 2,3-dichloro-5,6-dicyano-p-benzoquinon (DDQ) has been investigated spectrophotometrically in acetonitrile (AN). Simultaneous reddish brown color has been observed upon mixing donor with acceptor solutions attributing to CT complex formation. The electronic spectra of the formed complex exhibited multi-charge transfer bands at 429, 447, 506, 542 and 589 nm, respectively. Job's method of continuous variations and spectrophotometric titration methods confirmed the formation of the studied complex in 1:2 ratio between DMP and DDQ. Benesi-Hildebrand equation has been applied to calculate the stability constant of the formed complex where it recorded high value supporting formation of stable complex. Molecular orbital calculations using MM2 method and GAMESS (General Atomic and Molecular Electronic Structure System) interface computations as a package of ChemBio3D Ultra12 software were carried out for more analysis of the formed complex in the gas phase. The computational analysis included energy minimisation, stabilisation energy, molecular geometry, Mullikan charges, molecular electrostatic potential (MEP) surfaces of reactants and complex as well as characterization of the higher occupied molecular orbitals (HOMO) and lower unoccupied molecular orbitals (LUMO) surfaces of the complex. A good consistency between experimental and theoretical results has been recorded.

  3. Defect-Enhanced Charge Transfer by Ion-Solid Interactions in SiC using Large-Scale Ab Initio Molecular Dynamics Simulations

    SciTech Connect

    Gao, Fei; Xiao, H. Y.; Zu, Xiaotao T.; Posselt, Matthias; Weber, William J.

    2009-07-10

    Large-scale ab initio molecular dynamics simulations of ion-solid interactions in SiC reveal that significant charge-transfer occurs between atoms and defects can enhance charge transfer to surrounding atoms. The results demonstrate that charge transfer to and from recoiling atoms can alter the energy barriers and dynamics for stable defect formation. The present simulations illustrate in detail the dynamic processes for charged defect formation. The averaged values of displacement threshold energies along four main crystallographic directions are smaller than those determined by empirical potentials due to charge transfer effects on recoil atoms.

  4. Defect-Enhanced Charge Transfer by Ion-Solid Interactions in SiC using Large-Scale Ab Initio Molecular Dynamics Simulations

    SciTech Connect

    Gao Fei; Weber, William J.; Xiao Haiyan; Zu Xiaotao; Posselt, Matthias

    2009-07-10

    Large-scale ab initio molecular dynamics simulations of ion-solid interactions in SiC reveal that significant charge transfer occurs between atoms, and defects can enhance charge transfer to surrounding atoms. The results demonstrate that charge transfer to and from recoiling atoms can alter the energy barriers and dynamics for stable defect formation. The present simulations illustrate in detail the dynamic processes for charged defect formation. The averaged values of displacement threshold energies along four main crystallographic directions are smaller than those determined by empirical potentials due to charge-transfer effects on recoil atoms.

  5. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  6. Structural charge transfer in the aluminophosphate molecular sieves by diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zanjanchi, M. A.; Rashidi, M. K.

    1999-05-01

    Influence of water adsorption in AlPO-5, SAPO-5, AlPO-11 and SAPO-11 has been studied with UV diffuse reflectance spectroscopy. The observed UV absorption spectra in the as-synthesized, template free and hydrated materials are related to the charge transfer processes between aluminum and oxygen atoms of the aluminophosphate and water molecules. As-synthesised materials show two distinct and well-defined bands at about 220 and 260-280 nm correlated to framework aluminum and organic templates, respectively. Upon calcination, the band of occluded template disappears and the band assigned to the framework aluminum shifts at about 240 nm. When the calcined samples are completely hydrated, broadening of the aluminum charge transfer band is observed. This is due to coordination of water molecules to the part of the framework aluminum. Broadening occurs more in AlPO-5 possibly because of higher water capacity and homogenity with respect to SAPO-5.

  7. Charge Transfer-Induced Molecular Hole Doping into Thin Film of Metal-Organic Frameworks.

    PubMed

    Lee, Deok Yeon; Kim, Eun-Kyung; Shrestha, Nabeen K; Boukhvalov, Danil W; Lee, Joong Kee; Han, Sung-Hwan

    2015-08-26

    Despite the highly porous nature with significantly large surface area, metal-organic frameworks (MOFs) can be hardly used in electronic and optoelectronic devices due to their extremely poor electrical conductivity. Therefore, the study of MOF thin films that require electron transport or conductivity in combination with the everlasting porosity is highly desirable. In the present work, thin films of Co3(NDC)3DMF4 MOFs with improved electronic conductivity are synthesized using layer-by-layer and doctor blade coating techniques followed by iodine doping. The as-prepared and doped films are characterized using FE-SEM, EDX, UV/visible spectroscopy, XPS, current-voltage measurement, photoluminescence spectroscopy, cyclic voltammetry, and incident photon to current efficiency measurements. In addition, the electronic and semiconductor properties of the MOF films are characterized using Hall Effect measurement, which reveals that, in contrast to the insulator behavior of the as-prepared MOFs, the iodine doped MOFs behave as a p-type semiconductor. This is caused by charge transfer-induced hole doping into the frameworks. The observed charge transfer-induced hole doping phenomenon is also confirmed by calculating the densities of states of the as-prepared and iodine doped MOFs based on density functional theory. Photoluminescence spectroscopy demonstrates an efficient interfacial charge transfer between TiO2 and iodine doped MOFs, which can be applied to harvest solar radiations. PMID:26226050

  8. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  9. Synthesis and energy band characterization of hybrid molecular materials based on organic–polyoxometalate charge-transfer salts

    SciTech Connect

    Tan, Chunxia; Bu, Weifeng

    2014-11-15

    A cationic amphiphilic molecule was synthesized and employed to encapsulate Lindqvist ([M{sub 6}O{sub 19}]{sup 2−}) and Keggin polyoxometalates ([SiM{sub 12}O{sub 40}]{sup 4−}, M=Mo, W) to form hybrid molecules through electrostatic interaction. The X-ray diffraction results illustrate that the former hybrids possess lamellar nanostructures in their solid states, while the latter hybrids show a cubic Im3m packing model with low intensities and poor long-range order. These hybrids have clear charge-transfer characters as shown in their deeper colors and UV–vis diffuse reflectance spectra. According to the reported reduction potentials of the POM acceptors and the band gaps deduced from their diffuse reflectance spectra, we have calculated the theoretical values of the lowest unoccupied molecular orbital (LUMO) position similar to the electron affinity (E{sub A}) of solid materials. Such energy level parameters are comparable to those of electroluminescence and electron-transport materials commonly used in organic electroluminescence devices. These organic–polyoxometalate charge-transfer salts have more advantages, such as higher decomposition temperatures, easier film fabrication and better electron affinities, which presumably would be used for electron-transport materials in the area of the electroluminescence. - Graphical abstract: Hybrid molecular materials with charge-transfer characters formed by a positively charged donor L and acceptors of the Lindqvist-type and Keggin-type POMs have lamellar and cubic structures in their solid state. - Highlights: • Charge-transfer salts are obtained by self-assembling POMs with an anthracene cation. • Their energy parameters are comparable to those of optoelectronic materials in OLEDs. • These POM-based hybrids could be applied in the area of optoelectronic devices.

  10. AC electrical characterisation and insight to charge transfer mechanisms in DNA molecular wires through temperature and UV effects.

    PubMed

    Kassegne, Sam; Wibowo, Denni; Chi, James; Ramesh, Varsha; Narenji, Alaleh; Khosla, Ajit; Mokili, John

    2015-06-01

    In this study, AC characterisation of DNA molecular wires, effects of frequency, temperature and UV irradiation on their conductivity is presented. λ-DNA molecular wires suspended between high aspect-ratio electrodes exhibit highly frequency-dependent conductivity that approaches metal-like behaviour at high frequencies (∼MHz). Detailed temperature dependence experiments were performed that traced the impedance response of λ-DNA until its denaturation. UV irradiation experiments where conductivity was lost at higher and longer UV exposures helped to establish that it is indeed λ-DNA molecular wires that generate conductivity. The subsequent renaturation of λ-DNA resulted in the recovery of current conduction, providing yet another proof of the conducting DNA molecular wire bridge. The temperature results also revealed hysteretic and bi-modal impedance responses that could make DNA a candidate for nanoelectronics components like thermal transistors and switches. Further, these experiments shed light on the charge transfer mechanism in DNA. At higher temperatures, the expected increase in thermal-induced charge hopping may account for the decrease in impedance supporting the 'charge hopping mechanism' theory. UV light, on the other hand, causes damage to GC base-pairs and phosphate groups reducing the path available both for hopping and short-range tunneling mechanisms, and hence increasing impedance--this again supporting both the 'charge hopping' and 'tunneling' mechanism theories. PMID:26023159

  11. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  12. First principles molecular dynamics of molten NaI: Structure, self-diffusion, polarization effects, and charge transfer

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-09-01

    The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.

  13. Photoinduced charge-transfer dynamics simulations in noncovalently bonded molecular aggregates.

    PubMed

    Medrano, Carlos R; Oviedo, M Belén; Sánchez, Cristián G

    2016-06-01

    The rational design of new materials as prototype systems for organic solar cells remains challenging. Perylene diimide has emerged as a promising material to replace fullerene derivatives because of its synthetic flexibility, leading to the manipulation of their optical properties. As a result of their fused aromatic core that favors π-π stacking interactions, the aggregation of these molecules can reach highly ordered nanostructures as one-dimensional nanofibers, with a fast photoinduced charge transfer mechanism. In this article, we present an atomistic description of the photoexcited exciton dynamics in noncovalently bonded perylene diimides by time integration of the electron density in the presence of external time varying electric fields. We show that our approach is able to capture and explain the physics that underlies the charge transport mechanism through perylene diimide aggregates. PMID:27189740

  14. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    NASA Astrophysics Data System (ADS)

    Amin, B.; Nazir, S.; Schwingenschlögl, U.

    2013-04-01

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  15. Molecular distortion and charge transfer effects in ZnPc/Cu(111)

    PubMed Central

    Amin, B.; Nazir, S.; Schwingenschlögl, U.

    2013-01-01

    The adsorption geometry and electronic properties of a zinc-phthalocyanine molecule on a Cu(111) substrate are studied by density functional theory. In agreement with experiment, we find remarkable distortions of the molecule, mainly as the central Zn atom tends towards the substrate to minimize the Zn-Cu distance. As a consequence, the Zn-N chemical bonding and energy levels of the molecule are significantly modified. However, charge transfer induces metallic states on the molecule and therefore is more important for the ZnPc/Cu(111) system than the structural distortions.

  16. Influences of molecular packing on the charge mobility of organic semiconductors: from quantum charge transfer rate theory beyond the first-order perturbation.

    PubMed

    Nan, Guangjun; Shi, Qiang; Shuai, Zhigang; Li, Zesheng

    2011-05-28

    The electronic coupling between adjacent molecules is an important parameter for the charge transport properties of organic semiconductors. In a previous paper, a semiclassical generalized nonadiabatic transition state theory was used to investigate the nonperturbative effect of the electronic coupling on the charge transport properties, but it is not applicable at low temperatures due to the presence of high-frequency modes from the intramolecular conjugated carbon-carbon stretching vibrations [G. J. Nan et al., J. Chem. Phys., 2009, 130, 024704]. In the present paper, we apply a quantum charge transfer rate formula based on the imaginary-time flux-flux correlation function without the weak electronic coupling approximation. The imaginary-time flux-flux correlation function is then expressed in terms of the vibrational-mode path average and is evaluated by the path integral approach. All parameters are computed by quantum chemical approaches, and the mobility is obtained by kinetic Monte-Carlo simulation. We evaluate the intra-layer mobility of sexithiophene crystal structures in high- and low-temperature phases for a wide range of temperatures. In the case of strong coupling, the quantum charge transfer rates were found to be significantly smaller than those calculated using the weak electronic coupling approximation, which leads to reduced mobility especially at low temperatures. As a consequence, the mobility becomes less dependent on temperature when the molecular packing leads to strong electronic coupling in some charge transport directions. The temperature-independent charge mobility in organic thin-film transistors from experimental measurements may be explained from the present model with the grain boundaries considered. In addition, we point out that the widely used Marcus equation is invalid in calculating charge carrier transfer rates in sexithiophene crystals. PMID:21503350

  17. Cellular and molecular analysis of mutagenesis induced by charged particles of defined linear energy transfer.

    PubMed

    Zhu, L X; Waldren, C A; Vannias, D; Hei, T K

    1996-03-01

    Mutation induction by charged particles of defined linear energy transfer (LET) and gamma rays was scored using human-hamster hybrid AL cells. The LET values for charged particles accelerated at the Radiological Research Accelerator Facility ranged from 10 keV/microm protons to 150 keV/microm 4He ions. The induced mutant fractions at both the S1 and HGPRT loci were dependent on the dose and LET. In addition, for each dose examined, the mutant yield at the S1 locus was 30-60 fold higher than at the corresponding HGPRT locus. To determine whether the mutation spectrum was comparably dependent on dose and LET, independent S1- and HGPRT- mutants induced by 150 keV/microm 4He ions and gamma rays were isolated, and their DNA was analyzed by both Southern blotting and multiplex PCR methods. While the majority of radiation-induced mutants showed deletions of varying sizes, the relative percentage of large deletions was found to be related to both the dose and LET of the radiation examined. Using a mutation system that can detect multilocus changes, results of the present study show that radiation-induced chromosomal loss can be in the millions of base pairs. PMID:8927691

  18. Cellular and molecular analysis of mutagenesis induced by charged particles of defined linear energy transfer

    NASA Technical Reports Server (NTRS)

    Zhu, L. X.; Waldren, C. A.; Vannias, D.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Mutation induction by charged particles of defined linear energy transfer (LET) and gamma rays was scored using human-hamster hybrid AL cells. The LET values for charged particles accelerated at the Radiological Research Accelerator Facility ranged from 10 keV/microm protons to 150 keV/microm 4He ions. The induced mutant fractions at both the S1 and HGPRT loci were dependent on the dose and LET. In addition, for each dose examined, the mutant yield at the S1 locus was 30-60 fold higher than at the corresponding HGPRT locus. To determine whether the mutation spectrum was comparably dependent on dose and LET, independent S1- and HGPRT- mutants induced by 150 keV/microm 4He ions and gamma rays were isolated, and their DNA was analyzed by both Southern blotting and multiplex PCR methods. While the majority of radiation-induced mutants showed deletions of varying sizes, the relative percentage of large deletions was found to be related to both the dose and LET of the radiation examined. Using a mutation system that can detect multilocus changes, results of the present study show that radiation-induced chromosomal loss can be in the millions of base pairs.

  19. The role of solitons in charge and energy transfer in 1D molecular chains

    NASA Astrophysics Data System (ADS)

    Ivić , Zoran

    1998-03-01

    The idea that polarons and solitons could play the crucial role in the transport processes in biological structures, has been critically reexamined on the basis of the general theory of self-trapping phenomena. The criteria which enable one to determine conditions for the existence and stability of polarons and solitons and to determine their character, in dependence of the values of the basic physical parameters of the system, were formulated. Validity of the so-called Davydov's soliton model was discussed on the basis of these criteria. It was found that the original Davydov's proposal, based upon the idea of the soliton creation due to the single excitation (particle, vibron, etc.) self-trapping, cannot explain the intramolecular energy transfer in α-helix and acetanilide. However, Davydov theory is flexible enough to describe the single electron transfer in some systems (α-helix and acetanilide for example). In the many-particle systems, dressing effect, due to the quantum nature of phonons, may cause the creation of the bound states of the several excitons in the molecular chain. The possibility of creation of the soliton states of this type is discussed for the simple Fröhlich's one-dimensional model. The regions of the system parameter space where different mechanisms dominate the behaviour of such entities are characterized.

  20. Packing effects in charge transfer dynamics in organic molecular heterojunctions consisting of TFB and F8BT

    NASA Astrophysics Data System (ADS)

    Fujii, Mikiya; Yamashita, Koichi

    2013-03-01

    Organic semiconductors have been widely investigated for photovoltaic and light emitting devices. Especially, further improvements for more efficient organic solar cells (OSCs) are desired. Thus, we explored computationally possibilities to make OSCs more efficient by adjusting the packing of molecular heterojunctions. We analyzed a molecular heterojunction that consists of poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylenediamine) (TFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT). Geometrical optimization of TFB(monomer)/F8BT(monomer) complex was carried out with DFT-D/B3LYP/6-31G*. Excited states were also calculated with CIS/6-31G*. To analyze packing effects, we rotated TFB around a principal axis. Then, charge transfer dynamics is analyzed with a quantum master equation (QME) approach in each packing From the excited states calculations, it is clarified that the packing strongly affects the energy level of the charge transfer state only. This packing dependency arises from a packing dependency of the exciton binding energy that is Coulomb interaction between an electron localized to F8BT and a hole localized to TFB. From the QME approach, it is confirmed that qualitative different electronic relaxation dynamics occurs in each different packing.

  1. Direct Correlation of Charge Transfer Absorption with Molecular Donor:Acceptor Interfacial Area via Photothermal Deflection Spectroscopy.

    PubMed

    Buchaca-Domingo, Ester; Vandewal, Koen; Fei, Zhuping; Watkins, Scott E; Scholes, Fiona H; Bannock, James H; de Mello, John C; Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram; Heeney, Martin; Salleo, Alberto; Stingelin, Natalie

    2015-04-29

    Here we show that the charge transfer (CT) absorption signal in bulk-heterojunction solar cell blends, measured by photothermal deflection spectroscopy, is directly proportional to the density of molecular donor:acceptor interfaces. Since the optical transitions from the ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both the donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer:fullerene interface. The latter is ∼100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment as 0.3 D and the electronic coupling between the ground and CT states to be on the order of 30 meV. PMID:25856143

  2. Synthesis of Charge Transfer Dyes for Use as Molecular Sensors in Biological Systems

    NASA Technical Reports Server (NTRS)

    Christie, Joseph J.

    2003-01-01

    This is a continuation of last year's project to synthesize tetraaryl substituted benzodifurans for use as molecular probes in biological systems. The project will involve the synthesis and chemical characterization of dyes and precursor molecules.

  3. Engineering of an ultra-thin molecular superconductor by charge transfer

    DOEpatents

    Hla, Saw Wai; Hassanien, Abdelrahim; Kendal, Clark

    2016-06-07

    A method of forming a superconductive device of a single layer of (BETS).sub.2GaCl.sub.4 molecules on a substrate surface which displays a superconducting gap that increases exponentially with the length of the molecular chain is provided.

  4. Ab initio molecular treatment for charge transfer by P{sup 3+} ions on hydrogen and helium

    SciTech Connect

    Moussa, A.; Zaidi, A.; Lahmar, S.; Bacchus-Montabonel, M.-C.

    2010-02-15

    A theoretical treatment of charge-transfer processes induced by collision of phosphorus P{sup 3+}(3s{sup 2}){sup 1}S ions on atomic hydrogen and helium has been carried out using ab initio potential-energy curves and couplings at the multireference configuration interaction level of theory. The cross sections calculated by means of semiclassical collision methods show the existence of a significant charge transfer in the 0.1-700-keV laboratory energy range. Radial and rotational coupling interactions were analyzed for both collision systems.

  5. Charge transferred in brush discharges

    NASA Astrophysics Data System (ADS)

    Talarek, M.; Kacprzyk, R.

    2015-10-01

    Electrostatic discharges from surfaces of plastic materials can be a source of ignition, when appear in explosive atmospheres. Incendivity of electrostatic discharges can be estimated using the transferred charge test. In the case of brush discharges not all the energy stored at the tested sample is released and the effective surface charge density (or surface potential) crater is observed after the discharge. Simplified model, enabling calculation of a charge transferred during electrostatic brush discharge, was presented. Comparison of the results obtained from the simplified model and from direct measurements of transferred charge are presented in the paper.

  6. Effect of Molecular Coupling on Ultrafast Electron-Transfer and Charge-Recombination Dynamics in a Wide-Gap ZnS Nanoaggregate Sensitized by Triphenyl Methane Dyes.

    PubMed

    Debnath, Tushar; Maity, Partha; Dana, Jayanta; Ghosh, Hirendra N

    2016-03-01

    Wide-band-gap ZnS nanocrystals (NCs) were synthesized, and after sensitizing the NCs with series of triphenyl methane (TPM) dyes, ultrafast charge-transfer dynamics was demonstrated. HRTEM images of ZnS NCs show the formation of aggregate crystals with a flower-like structure. Exciton absorption and lumimescence, due to quantum confinement of the ZnS NCs, appear at approximately 310 and 340 nm, respectively. Interestingly, all the TPM dyes (pyrogallol red, bromopyrogallol red, and aurin tricarboxylic acid) form charge-transfer complexes with the ZnS NCs, with the appearance of a red-shifted band. Electron injection from the photoexcited TPM dyes into the conduction band of the ZnS NCs is shown to be a thermodynamically viable process, as confirmed by steady-state and time-resolved emission studies. To unravel charge-transfer (both electron injection and charge recombination) dynamics and the effect of molecular coupling, femtosecond transient absorption studies were carried out in TPM-sensitized ZnS NCs. The electron-injection dynamics is pulse-width-limited in all the ZnS/TPM dye systems, however, the back electron transfer differs, depending on the molecular coupling of the sensitizers (TPM dyes). The detailed mechanisms for the above-mentioned processes are discussed. PMID:26548569

  7. Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence.

    PubMed

    Zhang, Qisheng; Kuwabara, Hirokazu; Potscavage, William J; Huang, Shuping; Hatae, Yasuhiro; Shibata, Takumi; Adachi, Chihaya

    2014-12-31

    Red fluorescent molecules suffer from large, non-radiative internal conversion rates (k(IC)) governed by the energy gap law. To design efficient red thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs), a large fluorescence rate (k(F)) as well as a small energy difference between the lowest singlet and triplet excited states (ΔE(ST)) is necessary. Herein, we demonstrated that increasing the distance between donor (D) and acceptor (A) in intramolecular-charge-transfer molecules is a promising strategy for simultaneously achieving small ΔE(ST) and large k(F). Four D-Ph-A-Ph-D-type molecules with an anthraquinone acceptor, phenyl (Ph) bridge, and various donors were designed, synthesized, and compared with corresponding D-A-D-type molecules. Yellow to red TADF was observed from all of them. The k(F) and ΔE(ST) values determined from the measurements of quantum yield and lifetime of the fluorescence and TADF components are in good agreement with those predicted by corrected time-dependent density functional theory and are approximatively proportional to the square of the cosine of the theoretical twisting angles between each subunit. However, the introduction of a Ph-bridge was found to enhance k(F) without increasing ΔE(ST). Molecular simulation revealed a twisting and stretching motion of the N-C bond in the D-A-type molecules, which is thought to lower ΔE(ST) and k(F) but raise k(IC), that was experimentally confirmed in both solution and doped film. OLEDs containing D-Ph-A-Ph-D-type molecules with diphenylamine and bis(4-biphenyl)amine donors demonstrated maximum external quantum efficiencies of 12.5% and 9.0% with emission peaks at 624 and 637 nm, respectively. PMID:25469624

  8. Preparation, spectroscopic and thermal characterization of charge-transfer molecular complexes formed in the reaction of 4-dimethylaminopyridine with π-electron acceptors

    NASA Astrophysics Data System (ADS)

    Mostafa, Adel; Benjamin Cieslinski, G.; Bazzi, Hassan S.

    2015-02-01

    The interactions of the electron donor 4-dimethylaminopyridine (4DMAP) with the π-acceptors tetracyanoethylene (TCNE), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) were studied spectrophotometrically in chloroform at room temperature. The electronic and infrared spectra of the formed molecular charge-transfer (CT) complexes were recorded. Photometric titration showed that the stoichiometries of the reactions were not fixed and depended on the nature of both the donor and the acceptor. The molecular structures of the CT-complexes were, however, affected by the amino group in 4-dimethylaminopyridine and the two methyl groups and were formulated as [(4DMAP)(TCNE)2], [(4DMAP)(TCNQ)2] and [(4DMAP)(TBCHD)]. The formation constant (KCT), charge transfer energy (ECT), molar extinction coefficients (εCT) and free energy change of the formed CT-complexes were obtained.

  9. Catalysis: Quantifying charge transfer

    NASA Astrophysics Data System (ADS)

    James, Trevor E.; Campbell, Charles T.

    2016-02-01

    Improving the design of catalytic materials for clean energy production requires a better understanding of their electronic properties, which remains experimentally challenging. Researchers now quantify the number of electrons transferred from metal nanoparticles to an oxide support as a function of particle size.

  10. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  11. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C60 molecular triad

    NASA Astrophysics Data System (ADS)

    Olguin, Marco; Basurto, Luis; Zope, Rajendra R.; Baruah, Tunna

    2014-05-01

    We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C60 (CPC60) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC60 triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ˜110 D and ˜160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C60-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC60 conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ˜0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D-188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed.

  12. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C60 molecular triad.

    PubMed

    Olguin, Marco; Basurto, Luis; Zope, Rajendra R; Baruah, Tunna

    2014-05-28

    We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C60 (CPC60) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC60 triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ∼110 D and ∼160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C60-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC60 conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ∼0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D-188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed. PMID:24880282

  13. The effect of structural changes on charge transfer states in a light-harvesting carotenoid-diaryl-porphyrin-C{sub 60} molecular triad

    SciTech Connect

    Olguin, Marco; Basurto, Luis; Zope, Rajendra R.; Baruah, Tunna

    2014-05-28

    We present a detailed study of charge transfer (CT) excited states for a large number of configurations in a light-harvesting Carotenoid-diaryl-Porphyrin-C{sub 60} (CPC{sub 60}) molecular triad. The chain-like molecular triad undergoes photoinduced charge transfer process exhibiting a large excited state dipole moment, making it suitable for application to molecular-scale opto-electronic devices. An important consideration is that the structural flexibility of the CPC{sub 60} triad impacts its dynamics in solvents. Since experimentally measured dipole moments for the triad of ∼110 D and ∼160 D strongly indicate a range in structural variability in the excited state, studying the effect of structural changes on the CT excited state energetics furthers the understanding of its charge transfer states. We have calculated the variation in the lowest CT excited state energies by performing a scan of possible variation in the structure of the triad. Some of these configurations were generated by incrementally scanning a 360° torsional (dihedral) twist at the C{sub 60}-porhyrin linkage and the porphyrin-carotenoid linkage. Additionally, five different CPC{sub 60} conformations were studied to determine the effect of pi-conjugation and particle-hole Coulombic attraction on the CT excitation energies. Our calculations show that configurational changes in the triad induces a variation of ∼0.6 eV in CT excited state energies in the gas-phase. The corresponding calculated excited state dipoles show a range of 47 D–188 D. The absorption spectra and density of states of these structures show little variation except for the structures where the porphyrin and aryl conjugation is changed.

  14. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations

    SciTech Connect

    Kubas, Adam; Blumberger, Jochen; Hoffmann, Felix; Heck, Alexander; Elstner, Marcus; Oberhofer, Harald

    2014-03-14

    We introduce a database (HAB11) of electronic coupling matrix elements (H{sub ab}) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H{sub ab} values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.

  15. Contact charge-transfer lasers

    SciTech Connect

    Dharamsi, A.N.; Tulip, J.

    1981-07-01

    A mechanism for sustaining population inversions in contact charge-transfer complexes in which the ground electronic state is not bound is described. The mechanism relies on picosecond radiationless depletion of the lower laser state. This generates an inversion even when the ground-state potential curve, as plotted against the donor-acceptor distance, is not repulsive vertically below the excited state minimum. Contact charge-transfer lasers would offer high gain, high-energy density, and tunable sources of coherent radiation in the uv and visible. A method for pumping such a laser is examined and applied to the pyrrole-oxygen complex. A rate equation analysis is done and estimates for gain and energy density are presented.

  16. Electronic structure, molecular orientation, charge transfer dynamics and solar cells performance in donor/acceptor copolymers and fullerene: Experimental and theoretical approaches

    SciTech Connect

    Garcia-Basabe, Y.; Borges, B. G. A. L.; Rocco, M. L. M. E-mail: luiza@iq.ufrj.br; Marchiori, C. F. N.; Yamamoto, N. A. D.; Koehler, M.; Roman, L. S. E-mail: luiza@iq.ufrj.br; Macedo, A. G.

    2014-04-07

    By combining experimental and theoretical approaches, the electronic structure, molecular orientation, charge transfer dynamics and solar cell performance in donor/acceptor copolymer poly[2,7-(9,9-bis(2-ethylhexyl)-dibenzosilole)-alt-4,7-bis(thiophen-2-yl) benzo-2,1,3-thiadiazole] (PSiF-DBT) films and blended with 6,6.-phenyl-C 61-butyric acid methyl ester (PSiF-DBT:PCBM) were investigated. Good agreement between experimental and theoretical PSiF-DBT UV-Vis absorption spectrum is observed and the main molecular orbitals contributing to the spectrum were determined using DFT single point calculations. Non-coplanar configuration was determined by geometric optimization calculation in isolated PSiF-DBT pentamer and corroborated by angular variation of the sulphur 1s near-edge X-ray absorption fine structure (NEXAFS) spectra. Edge-on and plane-on molecular orientations were obtained for thiophene and benzothiadiazole units, respectively. A power conversion efficiency up to 1.58%, open circuit voltage of 0.51 V, short circuit current of 8.71 mA/cm{sup 2} and a fill factor of 35% was obtained using blended PSiF-DBT:PCBM as active layer in a bulk heterojunction solar cell. Ultrafast electron dynamics in the low-femtosecond regime was evaluated by resonant Auger spectroscopy using the core-hole clock methodology around sulphur 1s absorption edge. Electron delocalization times for PSiF-DBT and PSiF-DBT:PCBM polymeric films were derived for selected excitation energies corresponding to the main transitions in the sulphur 1s NEXAFS spectra. The mixture of PSiF-DBT with PCBM improves the charge transfer process involving the π* molecular orbital of the thiophene units.

  17. Photoinduced Charge Separation in Molecular Silicon.

    PubMed

    Zhou, Jiawang; Surampudi, Sravan K; Bragg, Arthur E; Klausen, Rebekka S

    2016-04-25

    Interest in molecular silicon semiconductors arises from the properties shared with bulk silicon like earth abundance and the unique architectures accessible from a structure distinctly different than rigid π-conjugated organic semiconductors. We report ultrafast spectroscopic evidence for direct, photoinduced charge separation in molecular silicon semiconductors that supports the viability of molecular silicon as donor materials in optoelectronic devices. The materials in this study are σ-π hybrids, in which electron-deficient aromatic acceptors flank a σ-conjugated silicon chain. Transient absorption and femtosecond-stimulated Raman spectroscopy (FSRS) techniques revealed signatures consistent with direct, optical charge transfer from the silane chain to the acceptor; these signatures were only observed by probing excited-state structure. Our findings suggest new opportunities for controlling charge separation in molecular electronics. PMID:26919126

  18. Charge transport network dynamics in molecular aggregates.

    PubMed

    Jackson, Nicholas E; Chen, Lin X; Ratner, Mark A

    2016-08-01

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, [Formula: see text] Simulations reveal the relevant timescale for local transfer integral decorrelation to be [Formula: see text]100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed. PMID:27439871

  19. Methylthio- and ethanediyldithio-substituted 1,6-dithiapyrenes and their charge-transfer complexes: new organic molecular metals

    SciTech Connect

    Nakasuji, K.; Sasaki, M.; Kotani, T.; Murata, I.; Enoki, T.; Imaeda, K.; Inokuchi, H.; Kawamoto, A.; Tanaka, J.

    1987-11-11

    The synthesis and physical properties of 2,7-bis(methylthio)-1,6-diathiapyrene (MTDTPY) and 2,3:7,8-bis(ethanediyldithio)-1,6-dithiapyrene (ETDTPY) and their charge-transfer complexes are reported. MTDTPY was prepared from 1,6-dithiapyrene. ETDTPY was prepared from naphthalene-1,5-dithiol in four steps. These two new donors showed reversible two-stage redox behavior with potentials comparable to that of tetrathiafulvalene. MTDTPY produced two crystalline phases of 1:1 TCNQ complexes, the ..cap alpha..-form (monoclinic, P2/sub 1//c) and the ..beta..-form (triclinic, P anti 1), which consist of mixed stacks and uniform segregated stacks of donors and acceptors, respectively. The ..beta..-form contained short S...S contacts between adjacent donor columns (3.48 and 3.57 A). The single-crystal conductivity of the ..beta..-form was metallic (sigma/sub rt/ = 110 S cm/sup -1/, T/sub c/ = 110 K), while that of the ..cap alpha..-form was semiconductive (sigma/sub rt/ = 3.4 x 10/sup -6/ S cm/sup -1/). MTDTPY-chloranil crystallized in uniform segregated stacks of donors and acceptors (triclinic P anti 1). Relatively short interstack S...S contacts were also observed (3.60 and 3.67 A). The single-crystal conductivity was metallic (sigma/sub rt/ = 140 S cm/sup -1/, T/sub c/ = 240 K). MTDTPY-bromanil also showed metallic conductivity (sigma/sub rt/ = 230 S cm/sup -1/, T/sub c/ = 125 K). The long needle crystals of MTDTPY-I/sub 2.2/ and ETDTPY-I/sub 2.3/ showed semiconducting behavior with relatively high conductivities, 13 and 42 S cm/sup -1/, respectively.

  20. Biological charge transfer via flickering resonance.

    PubMed

    Zhang, Yuqi; Liu, Chaoren; Balaeff, Alexander; Skourtis, Spiros S; Beratan, David N

    2014-07-15

    Biological electron-transfer (ET) reactions are typically described in the framework of coherent two-state electron tunneling or multistep hopping. However, these ET reactions may involve multiple redox cofactors in van der Waals contact with each other and with vibronic broadenings on the same scale as the energy gaps among the species. In this regime, fluctuations of the molecular structures and of the medium can produce transient energy level matching among multiple electronic states. This transient degeneracy, or flickering electronic resonance among states, is found to support coherent (ballistic) charge transfer. Importantly, ET rates arising from a flickering resonance (FR) mechanism will decay exponentially with distance because the probability of energy matching multiple states is multiplicative. The distance dependence of FR transport thus mimics the exponential decay that is usually associated with electron tunneling, although FR transport involves real carrier population on the bridge and is not a tunneling phenomenon. Likely candidates for FR transport are macromolecules with ET groups in van der Waals contact: DNA, bacterial nanowires, multiheme proteins, strongly coupled porphyrin arrays, and proteins with closely packed redox-active residues. The theory developed here is used to analyze DNA charge-transfer kinetics, and we find that charge-transfer distances up to three to four bases may be accounted for with this mechanism. Thus, the observed rapid (exponential) distance dependence of DNA ET rates over distances of ≲ 15 Å does not necessarily prove a tunneling mechanism. PMID:24965367

  1. Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited

    SciTech Connect

    Moore, Barry; Sun, Haitao; Govind, Niranjan; Kowalski, Karol; Autschbach, Jochen

    2015-07-14

    Criteria to assess charge-transfer (CT) and `CT-like' character of electronic excitations are examined. Time-dependent density functional theory (TDDFT) with non-hybrid, hybrid, and tuned long-range corrected (LC) functionals is compared with with coupled-cluster (CC) benchmarks. The test set includes an organic CT complex, two `push-pull' donor-acceptor chromophores, a cyanine dye, and several polycyclic aromatic hydrocarbons. Proper CT is easily identified. Excitations with significant density changes upon excitation within regions of close spatial proximity can also be diagnosed. For such excitations, the use of LC functionals in TDDFT sometimes leads to dramatic improvements of the singlet energies, similar to proper CT, which has led to the concept of `CT-like' excitations. However, `CT-like' excitations are not like charge transfer, and the improvements are not obtained for the right reasons. The triplet excitation energies are underestimated for all systems, often severely. For the `CT-like' candidates, when going from a non-hybrid to an LC functional the error in the singlet-triplet (S/T) separation changes from negative to positive, providing error compensation. For the cyanine, the S/T separation is too large with all functionals, leading to the best error compensation for non-hybrid functionals.

  2. Investigation of the Coupled Effects of Molecular Weight and Charge-Transfer Interactions on the Optical and Photochemical Properties of Dissolved Organic Matter.

    PubMed

    McKay, Garrett; Couch, Kylie D; Mezyk, Stephen P; Rosario-Ortiz, Fernando L

    2016-08-01

    We studied the formation of photochemically produced reactive intermediates (RI) from dissolved organic matter (DOM). Specifically, we focused on the effects of variable molecular weight and chemical reduction on the optical properties of DOM (absorbance and fluorescence) and the formation of singlet oxygen ((1)O2), DOM triplet excited states ((3)DOM*), and the hydroxyl radical ((•)OH). The data are largely evaluated in terms of a charge-transfer (CT) model, but deficiencies in the model to explain the data are pointed out when evident. A total of two sets of samples were studied that were subjected to different treatments; the first set included secondary-treated wastewaters and a wastewater-impacted stream, and the second was a DOM isolate. Treatments included size fractionation and chemical reduction using sodium borohydride. Taken as a whole, the results demonstrate that decreasing molecular weight and borohydride reduction work in opposition regarding quantum efficiencies for (1)O2 and (3)DOM* production but in concert for fluorescence and (•)OH production. The optical and photochemical data provide evidence for a limited role of CT interactions occurring in lower-molecular-weight DOM molecules. In addition, the data suggest that the observed optical and photochemical properties of DOM are a result of multiple populations of chromophores and that their relative contribution is changed by molecular-weight fractionation and borohydride reduction. PMID:27377760

  3. Molecular dynamics simulations of ion solvation by flexible-boundary QM/MM: on-the-fly partial charge transfer between QM and MM subsystems.

    PubMed

    Pezeshki, Soroosh; Lin, Hai

    2014-09-15

    The flexible-boundary (FB) quantum mechanical/molecular mechanical (QM/MM) scheme accounts for partial charge transfer between the QM and MM subsystems. Previous calculations have demonstrated excellent performance of FB-QM/MM in geometry optimizations. This article reports an implementation to extend FB-QM/MM to molecular dynamics simulations. To prevent atoms from getting unreasonably close, which can lead to polarization catastrophe, empirical correcting functions are introduced to provide additive penalty energies for the involved atom pairs and to improve the descriptions of the repulsive exchange forces in FB-QM/MM calculations. Test calculations are carried out for chloride, lithium, sodium, and ammonium ions solvated in water. Comparisons with conventional QM/MM calculations suggest that the FB treatment provides reasonably good results for the charge distributions of the atoms in the QM subsystems and for the solvation shell structural properties, albeit smaller QM subsystems have been used in the FB-QM/MM dynamics simulations. PMID:25056247

  4. A study of donor-acceptor in the charge transfer molecular complexes of some thiacrown ethers with dihalogen molecules by DFT method.

    PubMed

    Oftadeh, Mohsen; Moghadary, Mitra; Solimannejad, Mohammad; Semnani, Abolfazl

    2013-01-01

    The molecular complexes of 1,3,5-trithiane, (TT), tetrathia-8-crown-4, (TT8C4), and trithia-9-crown-3 , (TT9C3) with dihalogens in the ground state were investigated in the gas and dicholoromethane phases using B3LYP method and 6-31G** and 6-31+G** bases sets. In both TT and TT8C4 complexes, it is predicted that charge transfer takes place from the dihalogen to the thiacrown ether molecule; the magnitude trend of the total CT was ICl > IBr > I2, and Cl2 > Br2 > I2, respectively. There was not such a trend with TT9C3. The frequency analysis showed that all complexes in the excited state were unstable. The analysis of natural bond orbitals and comparison of the calculated thermodynamic quantities of the complexes between the gas phase and tetrachloromethane solution confirmed the results. PMID:23841337

  5. Sparfloxacin charge transfer complexes with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoquinodimethane: Molecular structures, spectral, and DFT studies

    NASA Astrophysics Data System (ADS)

    Shehab, Ola R.; Mansour, Ahmed M.

    2015-08-01

    A simple, sensitive and rapid method was developed for the quantitative analysis of sparfloxacin in its pharmaceutical formulations through the formation of charge transfer complexes with π-acceptor systems. The Lambert-Beer's law was obeyed in the concentration ranges of 7-70 and 10-50 μg/mL sparfloxacin for 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and tetracyanoquinodimethane. Structural characterization of the isolated solid CT complexes was carried out by IR, 1H NMR, UV-Vis. and MS. The experimental studies were complemented by quantum chemical calculations at DFT level of theory. The electronic structures were investigated by TD-DFT calculations. Natural bond orbital analysis and molecular electrostatic potential maps were helpful in assigning the CT route. The formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy and ionization potential were calculated.

  6. Charge transfer and 2kF vs. 4kF instabilities in the NMP-TCNQ molecular metal and (NMP)x(Phen)1-xTCNQ solid solutions

    NASA Astrophysics Data System (ADS)

    Alemany, Pere; Canadell, Enric; Pouget, Jean-Paul

    2016-01-01

    A first-principles DFT study of the electronic structure of the two-chain molecular conductor NMP-TCNQ is reported. It is shown that the charge transfer occurring in this salt is not 1 but 2/3, finally settling the debate concerning the real charge transfer in this molecular metal. These calculations also lead to a simple rationalization of the three different regimes of 2k F and 4k F CDW instabilities occurring in the solid solutions (NMP) x (Phen)1-x TCNQ.

  7. Long-range charge transfer in biopolymers

    NASA Astrophysics Data System (ADS)

    Astakhova, T. Yu; Likhachev, V. N.; Vinogradov, G. A.

    2012-11-01

    The results of theoretical and experimental studies on the charge transfer in biopolymers, namely, DNA and peptides, are presented. Conditions that ensure the efficient long-range charge transport (by several tens of nanometres) are considered. The known theoretical models of charge transfer mechanisms are discussed and the scopes of their application are analyzed. Attention is focused on the charge transport by the polaron mechanism. The bibliography includes 262 references.

  8. Molecular recognition of NO/NO+ via multicenter (charge-transfer) binding to bridged diarene donors. Effect of structure on the optical transitions and complexation thermodynamics.

    PubMed

    Rosokha, S V; Lindeman, S V; Rathore, R; Kochi, J K

    2003-05-16

    Bridged diarenes form very strong [1:1] complexes with nitrosonium/nitric oxide in which the NO moiety is optimally sandwiched in the cleft between a pair of cofacial aromatic rings which act as a molecular "Venus flytrap". The spectral features of these associates are generally similar to those for [1:1] and [2:1] nitrosonium complexes with mononuclear alkyl-substituted benzenes, and they are appropriately described within the LCAO molecular-orbital methodology and the Mulliken (charge-transfer) formulation of donor/acceptor electronic transitions. The thermodynamics study indicates that the efficient binding is determined by (i) the close matching of the donor/acceptor redox potentials and (ii) the ability of bridged diarenes for multicentered interactions with a single NO moiety. The best fit of the electronic and structural parameters is provided by a calixarene host that allows the interacting centers to be arranged in a manner similar to those extant in [2:1] nitrosonium complexes with analogous (nonbridged) aromatic donors; this results in its very strong noncovalent binding with nitrosonium/nitric oxide with the formation constant of K(B) approximately 10(8) M(-)(1) and free-energy change of -DeltaG degrees = 45 kJ mol(-)(1). Such strong, selective, and reversible bindings of nitrosonium/nitric oxide by (cofacial) aromatic centers thus provide the basis for the development of efficient NO sensors/absorbents and also suggest their potential relevance to biochemical systems. PMID:12737577

  9. Charge transfer-mediated singlet fission.

    PubMed

    Monahan, N; Zhu, X-Y

    2015-04-01

    Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers. PMID:25648486

  10. Charge Transfer-Mediated Singlet Fission

    NASA Astrophysics Data System (ADS)

    Monahan, N.; Zhu, X.-Y.

    2015-04-01

    Singlet fission, the splitting of a singlet exciton into two triplet excitons in molecular materials, is interesting not only as a model many-electron problem, but also as a process with potential applications in solar energy conversion. Here we discuss limitations of the conventional four-electron and molecular dimer model in describing singlet fission in crystalline organic semiconductors, such as pentacene and tetracene. We emphasize the need to consider electronic delocalization, which is responsible for the decisive role played by the Mott-Wannier exciton, also called the charge transfer (CT) exciton, in mediating singlet fission. At the strong electronic coupling limit, the initial excitation creates a quantum superposition of singlet, CT, and triplet-pair states, and we present experimental evidence for this interpretation. We also discuss the most recent attempts at translating this mechanistic understanding into design principles for CT state-mediated intramolecular singlet fission in oligomers and polymers.

  11. Impact of Molecular Organization on Exciton Diffusion in Photosensitive Single-Crystal Halogenated Perylenediimides Charge Transfer Interfaces.

    PubMed

    Pinto, Rui M; Gouveia, Wilson; Maçôas, Ermelinda M S; Santos, Isabel C; Raja, Sebastian; Baleizão, Carlos; Alves, Helena

    2015-12-23

    The efficiency of organic photodetectors and optoelectronic devices is strongly limited by exciton diffusion, in particular for acceptor materials. Although mechanisms for exciton diffusion are well established, their correlation to molecular organization in real systems has received far less attention. In this report, organic single-crystals interfaces were probed with wavelength-dependent photocurrent spectroscopy and their crystal structure resolved using X-ray diffraction. All systems present a dynamic photoresponse, faster than 500 ms, up to 650 nm. A relationship between molecular organization and favorable exciton diffusion in substituted butyl-perylenediimides (PDIB) is established. This is demonstrated by a set of PDIBs with different intra- and interstack distances and short contacts and their impact on photoresponse. Given the short packing distances between PDIs cores along the same stacking direction (3.4-3.7 Å), and across parallel stacks (2.5 Å), singlet exciton in these PDIBs can follow both Förster and Dexter exciton diffusion, with the Dexter-type mechanism assuming special relevance for interstack exciton diffusion. Yet, the response is maximized in substituted PDIBs, where a 2D percolation network is formed through strong interstack contacts, allowing for PDIBs primary excitons to reach with great efficiency the splitting interface with crystalline rubrene. The importance of short contacts and molecular distances, which is often overlooked as a parameter to consider and optimize when choosing materials for excitonic devices, is emphasized. PMID:26599347

  12. Synthesis and spectroscopic studies on charge-transfer molecular complexes formed in the reaction of imidazole and 1-benzylimidazole with σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Mostafa, Adel; Bazzi, Hassan S.

    2011-09-01

    The spectrophotometric characteristics of the solid charge-transfer molecular complexes (CT) formed in the reaction of the electron donors imidazole (IML) and 1-benzylimidazole (BIML) with the σ-acceptor iodine and π-acceptors 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), tetracyanoethylene (TCNE) and 2,3,5,6-tetrachloro-1,4-benzoquinone (CHL) have been studied in chloroform at 25 °C. These were investigated through electronic and infrared spectra as well as elemental analysis. The results show that the formed solid CT-complexes have the formulas [(IML) 2 I]I 3, [(IML)(DDQ)], [(IML) 2(TCNE) 5] and [(IML)(CHL)] for imidazole and [(BIML) I]I 3, [(BIML)(DDQ) 2], [(BIML)(TCNE) 2] and [(BIML)(CHL) 2] for 1-benzylimidazole in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements. The formation constant KCT, molar extinction coefficient ɛCT, free energy change Δ G0, CT energy ECT and ionization potential Ip have been calculated for the CT-complexes [(IML) 2 I]I 3, [(IML)(DDQ)], [(IML)(CHL)], [(BIML) I]I 3, [(BIML)(DDQ) 2], [(BIML)(TCNE) 2] and [(BIML)(CHL) 2].

  13. Synthesis, spectroscopic and thermal studies of charge-transfer molecular complexes formed in the reaction of 1,4-bis (3-aminopropyl) piperazine with σ- and π acceptors

    NASA Astrophysics Data System (ADS)

    AlQaradawi, Siham Y.; Mostafa, Adel; Bazzi, Hassan S.

    2012-03-01

    In the present study, solid charge-transfer (CT) molecular complexes formed in the reaction of the electron donor 1,4-bis (3-aminopropyl) piperazine (APPIP) with the σ-electron acceptor iodine and π-acceptors 7,7,8,8-tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) have been investigated spectrophotometrically in chloroform at 25 °C. These were characterized through electronic and infrared spectra as well as elemental and thermal analysis. The obtained results showed that the formed solid CT-complexes have the formulas [(APPIP) I]+I3-, [(APPIP)(TCNQ)], [(APPIP)2(TCNE)3], [(APPIP)(DDQ)] and [(APPIP)(TBCHD)] in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements. The formation constant KCT, molar extinction coefficient ɛCT, free energy change ΔG0, CT energy ECT and the ionization potential Ip have been calculated for the CT complexes [(APPIP) I]+I3-, [(APPIP)(TCNQ)], [(APPIP)(DDQ)] and [(APPIP)(TBCHD)].

  14. Multicomponent Molecular Puzzles for Photofunction Design: Emission Color Variation in Lewis Acid-Base Pair Crystals Coupled with Guest-to-Host Charge Transfer Excitation.

    PubMed

    Ono, Toshikazu; Sugimoto, Manabu; Hisaeda, Yoshio

    2015-08-01

    Simple yet ubiquitous multimolecular assembly systems with color-tunable emissions are realized by cooperative electron donor-acceptor interactions, such as the boron-nitrogen (B-N) dative bond as a Lewis acid-base pair and charge transfer (CT) interactions. These are ternary-component systems consisting of a naphthalenediimide derivative (NDI), tris(pentafluorophenyl)borane (TPFB), and aromatic molecules (guest) with an NDI:TPFB:guest ratio of 1:2:2. The crystal shows guest-dependent color-tunable emissions such as deep blue to orange when a guest molecule of benzene is replaced with other π-conjugated systems. A good correlation between the emission wavelength and ionization potential of the guest and electronic structure calculations indicated that the emission is due to the CT transition from the guest to the NDI. The present study suggests that a rational solution of multcomponent molecular puzzles would be useful for obtaining novel photofunctional solid-state systems. PMID:26211567

  15. Charge Transfer Calculations and Database for Astrophysics

    NASA Technical Reports Server (NTRS)

    Wang, J. G.; Stancil, P. C.; Rakovic, M.; Schultz, D. R.; Zygelman, B.

    2002-01-01

    A variety of theoretical approaches, having different but overlapping energy ranges of applicability, are applied to investigate charge transfer processes for collisions of atomic ions with atoms and molecules. The methods include quantal molecular-orbital close-coupling, classical trajectory Monte Carlo, and continuum distorted wave methods. Recent collision systems studied include S(+4) + H, S(+4) + He, N(+7) + He, H2O, CO, and CO2, O(+q)(q = 1 - 8) + H, H2, and S(+q)(q = 1 - 16) + H2. The database effort is concentrating on astrophysically important reactions of atomic ions X(+q)(X=H-Zn, q=1-4, and selected higher charges) with H, He, various metal atoms, H2, and other selected molecular targets. Existing data, much of it produced by us, has been compiled and critically evaluated. Data for many reactions missing in the literature are estimated using the multichannel Landau-Zener approximation. Fits to cross sections and rate coefficients using standard functions are provided as well as tabulations of the raw data. The database is available on the World Wide Web at cfadc.phy.ornl.gov/astro/ps/data.

  16. Ultrafast Measurement Confirms Charge Generation through Cold Charge Transfer States

    NASA Astrophysics Data System (ADS)

    Gautam, Bhoj; Younts, Robert; Yan, Liang; Danilov, Evgeny; Ade, Harald; You, Wei; Gundogdu, Kenan

    2015-03-01

    The role of excess energy in generation and extraction of charges through charge transfer (CT) states in polymer solar cells is a subject of debate. There are reports suggesting increase of charge generation yield with excess energy based on ultrafast experiments. On the other hand time delayed collection field measurements shows that excess photon energy has no effect in photovoltaic efficiency. Here we resolved this discrepancy by studying the dynamics of CT excitons and polarons in blends of medium gap copolymers. We found that low-lying charge transfer (CT) excitons can generate charges over a long time period (nanosecond) and contribute photocurrent on the bulk heterojunction devices. By performing resonant CT excitation as well as above gap excitation transient absorption measurements we investigated that the charges are generated more efficiently through low-lying CT states in efficient devices independent of excitation energy. This work is supported by Office of Naval Research Grant N000141310526 P00002.

  17. Charge-transfer reaction of 1,4-benzoquinone with crizotinib: spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib.

    PubMed

    Darwish, Ibrahim A; Alshehri, Jamilah M; Alzoman, Nourah Z; Khalil, Nasr Y; Abdel-Rahman, Hamdy M

    2014-10-15

    The reaction of 1,4-benzoquinone (BQ) with crizotinib (CZT); a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction resulted in the formation of a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge-transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9425 and 0.8340, respectively. The stoichiometric ratio of BQ:CZT was found to be 2:1 and the association constant of the complex was found to be 0.26×10(3)lmol(-1). The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between BQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT. The assay limits of detection and quantitation were 5.2 and 15.6μgml(-1), respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes minimum volume of organic solvent thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost. PMID:24835938

  18. Charge-transfer reaction of 1,4-benzoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib

    NASA Astrophysics Data System (ADS)

    Darwish, Ibrahim A.; Alshehri, Jamilah M.; Alzoman, Nourah Z.; Khalil, Nasr Y.; Abdel-Rahman, Hamdy M.

    2014-10-01

    The reaction of 1,4-benzoquinone (BQ) with crizotinib (CZT); a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction resulted in the formation of a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge-transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9425 and 0.8340, respectively. The stoichiometric ratio of BQ:CZT was found to be 2:1 and the association constant of the complex was found to be 0.26 × 103 l mol-1. The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between BQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT. The assay limits of detection and quantitation were 5.2 and 15.6 μg ml-1, respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes minimum volume of organic solvent thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost.

  19. Opposites Attract: Organic Charge Transfer Salts

    ERIC Educational Resources Information Center

    van de Wouw, Heidi L.; Chamorro, Juan; Quintero, Michael; Klausen, Rebekka S.

    2015-01-01

    A laboratory experiment is described that introduces second-year undergraduate organic chemistry students to organic electronic materials. The discovery of metallic conductivity in the charge transfer salt tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) is a landmark result in the history of organic electronics. The charge transfer…

  20. Room Temperature Multiferroicity of Charge Transfer Crystals.

    PubMed

    Qin, Wei; Chen, Xiaomin; Li, Huashan; Gong, Maogang; Yuan, Guoliang; Grossman, Jeffrey C; Wuttig, Manfred; Ren, Shenqiang

    2015-09-22

    Room temperature multiferroics has been a frontier research field by manipulating spin-driven ferroelectricity or charge-order-driven magnetism. Charge-transfer crystals based on electron donor and acceptor assembly, exhibiting simultaneous spin ordering, are drawing significant interests for the development of all-organic magnetoelectric multiferroics. Here, we report that a remarkable anisotropic magnetization and room temperature multiferroicity can be achieved through assembly of thiophene donor and fullerene acceptor. The crystal motif directs the dimensional and compositional control of charge-transfer networks that could switch magnetization under external stimuli, thereby opening up an attractive class of all-organic nanoferronics. PMID:26257033

  1. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE. PMID:27538341

  2. Electrical conduction in organic charge transfer complexes under pressure: A theoretical view

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2016-05-01

    We propose a theoretical view of temperature dependent electrical conductivity in organic charge transfer complexes and radical ion salts. Understanding of the basic conduction mechanism under high pressure in these systems is our aim. The mechanism is discussed mainly on the basis of molecular orbital overlap theory, role of charge transfer forces and charge density waves etc.

  3. Charge-transfer magnetoelectrics of polymeric multiferroics.

    PubMed

    Qin, Wei; Jasion, Daniel; Chen, Xiaomin; Wuttig, Manfred; Ren, Shenqiang

    2014-04-22

    The renaissance of multiferroics has yielded a deeper understanding of magneto-electric coupling of inorganic single-phase multiferroics and composites. Here, we report charge-transfer polymeric multiferroics, which exhibit external field-controlled magnetic, ferroelectric, and microwave response, as well as magneto-dielectric coupling. The charge-transfer-controlled ferroic properties result from the magnetic field-tunable triplet exciton which has been validated by the dynamic polaron-bipolaron transition model. In addition, the temperature-dependent dielectric discontinuity and electric-field-dependent polarization confirms room temperature ferroelectricity of crystalline charge-transfer polymeric multiferroics due to the triplet exciton, which allows the tunability of polarization by the photoexcitation. PMID:24654686

  4. Ultrafast charge transfer and atomic orbital polarization

    SciTech Connect

    Deppe, M.; Foehlisch, A.; Hennies, F.; Nagasono, M.; Beye, M.; Sanchez-Portal, D.; Echenique, P. M.; Wurth, W.

    2007-11-07

    The role of orbital polarization for ultrafast charge transfer between an atomic adsorbate and a substrate is explored. Core hole clock spectroscopy with linearly polarized x-ray radiation allows to selectively excite adsorbate resonance states with defined spatial orientation relative to the substrate surface. For c(4x2)S/Ru(0001) the charge transfer times between the sulfur 2s{sup -1}3p*{sup +1} antibonding resonance and the ruthenium substrate have been studied, with the 2s electron excited into the 3p{sub perpendicular}* state along the surface normal and the 3p{sub parallel}* state in the surface plane. The charge transfer times are determined as 0.18{+-}0.07 and 0.84{+-}0.23 fs, respectively. This variation is the direct consequence of the different adsorbate-substrate orbital overlap.

  5. Spacecraft Charging in Geostationary Transfer Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.

    2014-01-01

    The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.

  6. Adsorption geometry, molecular interaction, and charge transfer of triphenylamine-based dye on rutile TiO{sub 2}(110)

    SciTech Connect

    Yu Shun; Ahmadi, Sareh; Weissenrieder, Jonas; Goethelid, Mats; Zuleta, Marcelo; Tian Haining; Yang Xichuan; Schulte, Karina; Pietzsch, Annette; Hennies, Franz

    2010-12-14

    The fast development of new organic sensitizers leads to the need for a better understanding of the complexity and significance of their adsorption processes on TiO{sub 2} surfaces. We have investigated a prototype of the triphenylamine-cyanoacrylic acid (donor-acceptor) on rutile TiO{sub 2} (110) surface with special attention on the monolayer region. This molecule belongs to the type of dye, some of which so far has delivered the record efficiency of 10%-10.3% for pure organic sensitizers [W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, Chem. Mater. 22, 1915 (2010)]. The molecular configuration of this dye on the TiO{sub 2} surface was found to vary with coverage and adopt gradually an upright geometry, as determined from near edge x-ray absorption fine structure spectroscopy. Due to the molecular interaction within the increasingly dense packed layer, the molecular electronic structure changes systematically: all energy levels shift to higher binding energies, as shown by photoelectron spectroscopy. Furthermore, the investigation of charge delocalization within the molecule was carried out by means of resonant photoelectron spectroscopy. A fast delocalization ({approx}1.8 fs) occurs at the donor part while a competing process between delocalization and localization takes place at the acceptor part. This depicts the ''push-pull'' concept in donor-acceptor molecular system in time scale.

  7. Charge transfer and atomic-level pressure in metallic glasses

    SciTech Connect

    Ding, Jun; Cheng, Yongqiang

    2014-02-03

    This paper presents a systematic study on the charge transfer and ionicity in various metallic-glass forming systems, as well as its relationship with other atomic-level structure indicators, using the Bader analysis method and molecular dynamics simulation. It is shown that in a binary or multicomponent system, the chemical effects (when more than one elements present) appear to play a more important role in setting the absolute level of the atomic-level pressure, compared to the topological fluctuation.

  8. Charge Transfer Excitons at van der Waals Interfaces.

    PubMed

    Zhu, Xiaoyang; Monahan, Nicholas R; Gong, Zizhou; Zhu, Haiming; Williams, Kristopher W; Nelson, Cory A

    2015-07-01

    The van der Waals interfaces of molecular donor/acceptor or graphene-like two-dimensional (2D) semiconductors are central to concepts and emerging technologies of light-electricity interconversion. Examples include, among others, solar cells, photodetectors, and light emitting diodes. A salient feature in both types of van der Waals interfaces is the poorly screened Coulomb potential that can give rise to bound electron-hole pairs across the interface, i.e., charge transfer (CT) or interlayer excitons. Here we address common features of CT excitons at both types of interfaces. We emphasize the competition between localization and delocalization in ensuring efficient charge separation. At the molecular donor/acceptor interface, electronic delocalization in real space can dictate charge carrier separation. In contrast, at the 2D semiconductor heterojunction, delocalization in momentum space due to strong exciton binding may assist in parallel momentum conservation in CT exciton formation. PMID:26001297

  9. Improved Charge-Transfer Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Meador, Michael

    2005-01-01

    Improved charge-transfer fluorescent dyes have been developed for use as molecular probes. These dyes are based on benzofuran nuclei with attached phenyl groups substituted with, variously, electron donors, electron acceptors, or combinations of donors and acceptors. Optionally, these dyes could be incorporated as parts of polymer backbones or as pendant groups or attached to certain surfaces via self-assembly-based methods. These dyes exhibit high fluorescence quantum yields -- ranging from 0.2 to 0.98, depending upon solvents and chemical structures. The wavelengths, quantum yields, intensities, and lifetimes of the fluorescence emitted by these dyes vary with (and, hence, can be used as indicators of) the polarities of solvents in which they are dissolved: In solvents of increasing polarity, fluorescence spectra shift to longer wavelengths, fluorescence quantum yields decrease, and fluorescence lifetimes increase. The wavelengths, quantum yields, intensities, and lifetimes are also expected to be sensitive to viscosities and/or glass-transition temperatures. Some chemical species -- especially amines, amino acids, and metal ions -- quench the fluorescence of these dyes, with consequent reductions in intensities, quantum yields, and lifetimes. As a result, the dyes can be used to detect these species. Another useful characteristic of these dyes is a capability for both two-photon and one-photon absorption. Typically, these dyes absorb single photons in the ultraviolet region of the spectrum (wavelengths < 400 nm) and emit photons in the long-wavelength ultraviolet, visible, and, when dissolved in some solvents, near-infrared regions. In addition, these dyes can be excited by two-photon absorption at near-infrared wavelengths (600 to 800 nm) to produce fluorescence spectra identical to those obtained in response to excitation by single photons at half the corresponding wavelengths (300 to 400 nm). While many prior fluorescent dyes exhibit high quantum yields

  10. Charge transfer reactions between gas-phase hydrated electrons, molecular oxygen and carbon dioxide at temperatures of 80-300 K.

    PubMed

    Akhgarnusch, Amou; Tang, Wai Kit; Zhang, Han; Siu, Chi-Kit; Beyer, Martin K

    2016-09-14

    The recombination reactions of gas-phase hydrated electrons (H2O)n˙(-) with CO2 and O2, as well as the charge exchange reaction of CO2˙(-)(H2O)n with O2, were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry in the temperature range T = 80-300 K. Comparison of the rate constants with collision models shows that CO2 reacts with 50% collision efficiency, while O2 reacts considerably slower. Nanocalorimetry yields internally consistent results for the three reactions. Converted to room temperature condensed phase, this yields hydration enthalpies of CO2˙(-) and O2˙(-), ΔHhyd(CO2˙(-)) = -334 ± 44 kJ mol(-1) and ΔHhyd(O2˙(-)) = -404 ± 28 kJ mol(-1). Quantum chemical calculations show that the charge exchange reaction proceeds via a CO4˙(-) intermediate, which is consistent with a fully ergodic reaction and also with the small efficiency. Ab initio molecular dynamics simulations corroborate this picture and indicate that the CO4˙(-) intermediate has a lifetime significantly above the ps regime. PMID:27498686

  11. Synthesis and investigation of intra-molecular charge transfer state properties of novel donor-acceptor-donor pyridine derivatives: the effects of temperature and environment on molecular configurations and the origin of delayed fluorescence.

    PubMed

    Aydemir, Murat; Haykır, Gülçin; Türksoy, Figen; Gümüş, Selçuk; Dias, Fernando B; Monkman, Andy P

    2015-10-14

    A novel series of donor-acceptor-donor (D-A-D) structured pyridine derivatives were synthesised and detailed photo-physical investigations were made using mainly steady-state and time-resolved spectroscopy techniques at varying temperatures. The investigations showed that the molecules have solvent polarity and temperature dependent excited-state configurations, confirmed in two different polarity solvents (295-90 K), i.e. methyl cyclohexane (MCH) and 2-methyltetrahdrofurane (2-MeTHF). In MCH, the investigations revealed dual fluorescence over the temperature range of 295-90 K. At 295 K, the ground-state configuration of the molecules has a partially twisted geometry as determined by DFT calculation, yet the emission originates totally from a locally excited (LE) state, however once the temperature is lowered to 90 K, the twisted molecular configuration is stabilised, and the emission originates from a fully-relaxed intramolecular charge transfer state (ICT), this is contrary to the systems where structural reorganisation stabilises ICT and this is frozen out at low temperatures. The DFT calculations revealed different ground state molecular configurations due to the presence of different electron-donating groups, e.g. the molecule including anthracene groups has a near 90° twisted geometry whereas the triphenylamine including molecule has a pyramidal geometrical folding, therefore, the decrease in temperature restricts the donor degree of rotational freedom. In 2-MeTHF solution, the fluorescence spectrum of both molecules is always of ICT character, but gradually red-shifts through the fluid to glass transition temperature (∼135 K), in this case, the fluorescence occurs after structural and solvent-shell relaxations, however, upon cooling below 135 K, the spectra dramatically shift back to blue giving rise to strong emission from an ICT excited-state (but not the LE state) where the molecules have unrelaxed geometries. This significant change in the nature of

  12. Singlet molecular oxygen ( sup 1. Delta. sub g O sub 2 ) formation upon irradiation of an oxygen ( sup 3. Sigma. sub g sup minus O sub 2 )-organic molecule charge-transfer absorption band

    SciTech Connect

    Scurlock, R.D.; Ogilby, P.R. )

    1989-07-13

    Singlet molecular oxygen ({sup 1}{Delta}{sub g}O{sub 2}) phosphorescence ({sup 3}{Sigma}{sub g}{sup {minus}}O{sub 2} {l arrow} {sup 1}{Delta}{sub g}O{sub 2}: 1270 nm) has been observed in a time-resolved experiment subsequent to pulsed UV laser irradiation of the oxygen ({sup 3}{Sigma}{sub g}{sup {minus}}O{sub 2})-organic molecule charge-transfer bands of liquid aromatic hydrocarbons (mesitylene, p-xylene, o-xylene, toluene, benzene), ethers (tetrahydrofuran, 1,4-dioxane, glyme, diglyme, triglyme), alcohols (methanol, propanol), and aliphatic hydrocarbons (cyclohexane, cyclooctane, decahydronaphthalene). Although {sup 1}{Delta}{sub g}O{sub 2} could originate from a variety of different processes in these oxygenated solvent systems, we have used the results of several independent experiments to indicate that an oxygen-solvent charge-transfer (CT) state is the {sup 1}{Delta}{sub g}O{sub 2} precursor. Other transient species have also been observed in time-resolved absorption experiments subsequent to pulsed UV irradiation of the oxygen-solvent CT bands. Some of these molecular transients, or species derived from these intermediates, may be responsible for an observed increase in the rate of {sup 1}{Delta}{sub g}O{sub 2} decay under certain conditions.

  13. Computational studies of molecular charge transfer complexes of heterocyclic 4-methylepyridine-2-azomethine-p-benzene derivatives with picric acid and m-dinitrobenzene.

    PubMed

    Al-Harbi, L M; El-Mossalamy, E H; Obaid, A Y; Al-Jedaani, A H

    2014-01-01

    Charge transfer complexes of substituted aryl Schiff bases as donors with picric acid and m-dinitrobenzene as acceptors were investigated by using computational analysis calculated by Configuration Interaction Singles Hartree-Fock (CIS-HF) at standard 6-31G∗ basis set and Time-Dependent Density-Functional Theory (TD-DFT) levels of theory at standard 6-31G∗∗ basis set, infrared spectra, visible and nuclear magnetic resonance spectra are investigated. The optimized geometries and vibrational frequencies were evaluated. The energy and oscillator strength were calculated by Configuration Interaction Singles Hartree-Fock method (CIS-HF) and the Time-Dependent Density-Functional Theory (TD-DFT) results. Electronic properties, such as HOMO and LUMO energies and band gaps of CTCs set, were studied by the Time-Dependent density functional theory with Becke-Lee-Young-Parr (B3LYP) composite exchange correlation functional and by Configuration Interaction Singles Hartree-Fock method (CIS-HF). The ionization potential Ip and electron affinity EA were calculated by PM3, HF and DFT methods. The columbic force was calculated theoretically by using (CIS-HF and TD-DFT) methods. This study confirms that the theoretical calculation of vibrational frequencies for (aryl Schiff bases--(m-dinitrobenzene and picric acid)) complexes are quite useful for the vibrational assignment and for predicting new vibrational frequencies. PMID:24177865

  14. Charge transfer through a cytochrome multiheme chain: theory and simulation.

    PubMed

    Burggraf, Fabian; Koslowski, Thorsten

    2014-01-01

    We study sequential charge transfer within a chain of four heme cofactors located in the c-type cytochrome subunit of the photoreaction center of Rhodopseudomonas viridis from a theoretical perspective. Molecular dynamics simulations of the thermodynamic integration type are used to compute two key energies of Marcus' theory of charge transfer, the driving force ∆G and the reorganization energy λ. Due to the small exposure of the cofactors to the solvent and to charged amino acids, the outer sphere contribution to the reorganization energy almost vanishes. Interheme effective electronic couplings are estimated using ab initio wave functions and a well-parameterized semiempirical scheme for long-range interactions. From the resulting charge transfer rates, we conclude that at most the two heme molecules closest to the membrane participate in a fast recharging of the photoreaction center, whereas the remaining hemes are likely to have a different function, such as intermediate electron storage. Finally, we suggest means to verify or falsify this hypothesis. PMID:24055674

  15. Charge-transfer complexes of phenylephrine with nitrobenzene derivatives

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.

    2004-04-01

    The molecular charge-transfer complexes of phenylephrine with picric acid and m-dinitrobenzene have been studied and investigated by IR, 1H NMR electronic spectra in organic solvents and buffer solutions, respectively. Simple and selective methods are proposed for the determination of phenylephrine hydrochloride in bulk form and in tablets. The two methods are based on the formation of charge-transfer complexes between drug base as a n-donor (D) and picric acid, m-dinitrobenzene as π-acceptor (A). The products exhibit absorption maxima at 497 and 560 nm in acetonitrile for picric acid and m-dinitrobenzene, respectively. The coloured product exhibits an absorption maximum at 650 nm in dioxane. The sensitive kinetic methods for the determination phynylephrine hydrochloride are described. The method is based upon a kinetic investigation of the oxidation reaction of the drug with alkaline potassium permanganate at room temperature for a fixed time at 20 min.

  16. Charge Redistribution and Transport in Molecular Contacts

    NASA Astrophysics Data System (ADS)

    Corso, Martina; Ondráček, Martin; Lotze, Christian; Hapala, Prokop; Franke, Katharina J.; Jelínek, Pavel; Pascual, J. Ignacio

    2015-09-01

    The forces between two single molecules brought into contact, and their connection with charge transport through the molecular junction, are studied here using non contact AFM, STM, and density functional theory simulations. A carbon monoxide molecule approaching an acetylene molecule (C2 H2 ) initially feels weak attractive electrostatic forces, partly arising from charge reorganization in the presence of molecular . We find that the molecular contact is chemically passive, and protects the electron tunneling barrier from collapsing, even in the limit of repulsive forces. However, we find subtle conductance and force variations at different contacting sites along the C2 H2 molecule attributed to a weak overlap of their respective frontier orbitals.

  17. Tuning of Charge Transfer Assisted Phase Transition and Slow Magnetic Relaxation Functionalities in {Fe(9-x)Co(x)[W(CN)8]6} (x = 0-9) Molecular Solid Solution.

    PubMed

    Chorazy, Szymon; Stanek, Jan J; Nogaś, Wojciech; Majcher, Anna M; Rams, Michał; Kozieł, Marcin; Juszyńska-Gałązka, Ewa; Nakabayashi, Koji; Ohkoshi, Shin-ichi; Sieklucka, Barbara; Podgajny, Robert

    2016-02-10

    Precisely controlled stoichiometric mixtures of Co(2+) and Fe(2+) metal ions were combined with the [W(V)(CN)8](3-) metalloligand in a methanolic solution to produce a series of trimetallic cyanido-bridged {Fe(9-x)Co(x)[W(CN)8]6(MeOH)24}·12MeOH (x = 0, 1, ..., 8, 9; compounds 0, 1, ..., 8, 9) clusters. All the compounds, 0-9, are isostructural, and consist of pentadecanuclear clusters of a six-capped body-centered cube topology, capped by methanol molecules which are coordinated to 3d metal centers. Thus, they can be considered as a unique type of a cluster-based molecular solid solution in which different Co/Fe metal ratios can be introduced while preserving the coordination skeleton and the overall molecular architecture. Depending on the Co/Fe ratio, 0-9 exhibit an unprecedented tuning of magnetic functionalities which relate to charge transfer assisted phase transition effects and slow magnetic relaxation effects. The iron rich 0-5 phases exhibit thermally induced reversible structural phase transitions in the 180-220 K range with the critical temperatures being linearly dependent on the value of x. The phase transition in 0 is accompanied by (HS)Fe(II) W(V) ↔ (HS)Fe(III) W(IV) charge transfer (CT) and the additional minor contribution of a Fe-based spin crossover (SCO) effect. The Co-containing 1-5 phases reveal two simultaneous electron transfer processes which explore (HS)Fe(II) W(V) ↔ (HS)Fe(III) W(IV) CT and the more complex (HS)Co(II) W(V) ↔ (LS)Co(III) W(IV) charge transfer induced spin transition (CTIST). Detailed structural, spectroscopic, and magnetic studies help explain the specific role of both types of CN(-)-bridged moieties: the Fe-NC-W linkages activate the molecular network toward a phase transition, while the subsequent Co-W CTIST enhances structural changes and enlarges thermal hysteresis of the magnetic susceptibility. On the second side of the 0-9 series, the vanishing phase transition in the cobalt rich 6-9 phases results in the

  18. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  19. Understanding charge transport in molecular electronics.

    PubMed

    Kushmerick, J J; Pollack, S K; Yang, J C; Naciri, J; Holt, D B; Ratner, M A; Shashidhar, R

    2003-12-01

    For molecular electronics to become a viable technology the factors that control charge transport across a metal-molecule-metal junction need to be elucidated. We use an experimentally simple crossed-wire tunnel junction to interrogate how factors such as metal-molecule coupling, molecular structure, and the choice of metal electrode influence the current-voltage characteristics of a molecular junction. PMID:14976024

  20. Pattern classification using charge transfer devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The feasibility of using charge transfer devices in the classification of multispectral imagery was investigated by evaluating particular devices to determine their suitability in matrix multiplication subsystem of a pattern classifier and by designing a protype of such a system. Particular attention was given to analog-analog correlator devices which consist of two tapped delay lines, chip multipliers, and a summed output. The design for the classifier and a printed circuit layout for the analog boards were completed and the boards were fabricated. A test j:g for the board was built and checkout was begun.

  1. Coronene-based charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Yoshida, Yukihiro; Isomura, Kazuhide; Kumagai, Yoshihide; Maesato, Mitsuhiko; Kishida, Hideo; Mizuno, Motohiro; Saito, Gunzi

    2016-08-01

    Recent developments in the arena of charge-transfer complexes composed of the D 6h-symmetric polycyclic aromatic hydrocarbon, coronene, are highlighted with emphasis on the structural and physical properties of these complexes. Because of the dual electron-donating and -accepting abilities of coronene, this group involves structurally-defined four cation salts and three anion salts. The Jahn–Teller distortions and in-plane motion of coronene molecules in the solids, both of which are closely associated with the high symmetry of coronene molecules, and syntheses of clathrate-type complexes are also presented.

  2. Coronene-based charge-transfer complexes.

    PubMed

    Yoshida, Yukihiro; Isomura, Kazuhide; Kumagai, Yoshihide; Maesato, Mitsuhiko; Kishida, Hideo; Mizuno, Motohiro; Saito, Gunzi

    2016-08-01

    Recent developments in the arena of charge-transfer complexes composed of the D 6h-symmetric polycyclic aromatic hydrocarbon, coronene, are highlighted with emphasis on the structural and physical properties of these complexes. Because of the dual electron-donating and -accepting abilities of coronene, this group involves structurally-defined four cation salts and three anion salts. The Jahn-Teller distortions and in-plane motion of coronene molecules in the solids, both of which are closely associated with the high symmetry of coronene molecules, and syntheses of clathrate-type complexes are also presented. PMID:27294380

  3. Photoinduced charge-transfer materials for nonlinear optical applications

    DOEpatents

    McBranch, Duncan W.

    2006-10-24

    A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.

  4. Synthesis, spectroscopic and thermal studies on solid charge-transfer molecular complexes formed in the reaction of 1-(2-aminoethyl)piperidine with π- and σ-acceptors

    NASA Astrophysics Data System (ADS)

    Mostafa, Adel; Benjamin Cieslinski, G.; Bazzi, Hassan S.

    2012-12-01

    The solid charge-transfer molecular complexes formed in the reaction of the electron donor 1-(2-aminoethyl) piperidine (AEP) with the σ-acceptor iodine and π-acceptors 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD)were studied in chloroform at 25 0C. These were investigated through electronic spectra, infrared spectra, thermal and elemental analysis. The obtained results showed that the formed solid CT-complexes have the formulas [(AEP)I]+I3-, [(AEP)(DDQ)2], [(AEP)(TCNQ)2] and [(AEP)(TBCHD)] in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements. The formation constant KCT (L mol-1), the molar extinction coefficient ɛCT (L mol-1 cm-1), the free energy change ΔG° (cal mol-1), the charge transfer energy ECT, and the ionization potential Ip were calculated for the CT-complexes [(AEP)I]+I3-, [(AEP)(DDQ)2], [(AEP)(TCNQ)2] and [(AEP)(TBCHD)].

  5. A charge-driven molecular water pump.

    PubMed

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient. PMID:18654410

  6. Nucleic Acid Charge Transfer: Black, White and Gray

    PubMed Central

    Venkatramani, Ravindra; Keinan, Shahar; Balaeff, Alexander; Beratan, David N.

    2011-01-01

    Theoretical studies of charge transport in deoxyribonucleic acid (DNA) and peptide nucleic acid (PNA) indicate that structure and dynamics modulate the charge transfer rates, and that different members of a structural ensemble support different charge transport mechanisms. Here, we review the influences of nucleobase geometry, electronic structure, solvent environment, and thermal conformational fluctuations on the charge transfer mechanism. We describe an emerging framework for understanding the diversity of charge transport mechanisms seen in nucleic acids. PMID:21528017

  7. Molecular Electrostatic Potentials from Invariom Point Charges.

    PubMed

    Wandtke, Claudia M; Lübben, Jens; Dittrich, Birger

    2016-07-18

    A set of look-up point charges for generating molecular electrostatic potentials is provided. The set relies on atom classification of the invariom database, which has already been applied to assign aspherical scattering factors in single-crystal X-ray diffraction. The focus of the investigation is on improving the accuracy of electrostatic potentials calculated by using tabulated point charges. In this respect, the performance of invariom point charges is compared with 1) those from a restrained fit to the electrostatic potential directly following quantum-chemical DFT computations, 2) semi-empirical AM1-bcc charges, and 3) conceptually similar TPACM4 look-up charges. Invariom classification gives charges that perform better than those from TPACM4, although tabulated charges remain inferior to those from molecule-specific computations. Point-charge electrostatic potentials also agree favorably with those from charge-density studies on the basis of X-ray experiments, without requiring the considerable effort of the latter. PMID:26999276

  8. Intramolecular charge transfer in donor-acceptor molecules

    SciTech Connect

    Slama-Schwok, A.; Blanchard-Desce, M.; Lehn, J.M. )

    1990-05-17

    The photophysical properties of donor-acceptor molecules, push-pull polyenes and carotenoids, have been studied by absorption and fluorescence spectroscopy. The compounds bear various acceptor and donor groups, linked together by chains of different length and structure. The position of the absorption and fluorescence maxima and their variation in solvents of increasing polarity are in agreement with long-distance intramolecular charge-transfer processes, the linker acting as a molecular wire. The effects of the linker length and structure and of the nature of acceptor and donor are presented.

  9. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGESBeta

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; West, Damien; Meunier, Vincent; Zhang, Shengbai; Liang, Linagbo

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the

  10. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    SciTech Connect

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Chen; Damien, West; Meunier, Vincent; Zhang, Prof. Shengbai

    2016-01-01

    The success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherent charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application

  11. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    PubMed Central

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  12. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-05-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.

  13. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.

    PubMed

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    2016-01-01

    The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs. PMID:27160484

  14. Charge transfer reaction laser with preionization means

    NASA Technical Reports Server (NTRS)

    Lauderslager, J. B.; Pacala, T. J. (Inventor)

    1978-01-01

    A helium-nitrogen laser is described in which energy in the visible range is emitted as a result of charge transfer reaction between helium ions and nitrogen molecules. The helium and nitrogen are present in a gas mixture at several atmospheres pressure, with a nitrogen partial pressure on the order of a pair of main discharge electrodes, the gas mixture is preionized to prevent arcing when the discharge pulse is applied. The preionization is achieved by the application of a high voltage across a pair of secondary electrodes which are spaced apart in a direction perpendicular to the spacing direction of the main discharge electrodes and the longitudinal axis of the space in which the gas mixture is contained. Feedback, by means of a pair of appropriately spaced mirrors, is provided, to produce coherent energy pulses at a selected wavelength.

  15. Detection of Molecular Charges at Cell Membrane

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Miyahara, Yuji

    2008-01-01

    Molecular charges at the cell membrane have been successfully detected using cell-based field-effect devices. Mouse fibroblast cells were adhered to the Si3N4 gate surface of the field-effect devices. The negative charges of sialic acid at the surface of the cell membrane could be detected as a shift of the flatband voltage of the field-effect devices. Quantitative analysis of molecular charges at the cell membrane could be demonstrated in relation to the number of adhered cells on the Si3N4 gate surface. The platform based on the field-effect devices is suitable for a simple, accurate and non-invasive system for cell functional analysis.

  16. Charge Redistribution and Transport in Molecular Contacts.

    PubMed

    Corso, Martina; Ondráček, Martin; Lotze, Christian; Hapala, Prokop; Franke, Katharina J; Jelínek, Pavel; Pascual, J Ignacio

    2015-09-25

    The forces between two single molecules brought into contact, and their connection with charge transport through the molecular junction, are studied here using non contact AFM, STM, and density functional theory simulations. A carbon monoxide molecule approaching an acetylene molecule (C_{2}H_{2}) initially feels weak attractive electrostatic forces, partly arising from charge reorganization in the presence of molecular . We find that the molecular contact is chemically passive, and protects the electron tunneling barrier from collapsing, even in the limit of repulsive forces. However, we find subtle conductance and force variations at different contacting sites along the C_{2}H_{2} molecule attributed to a weak overlap of their respective frontier orbitals. PMID:26451568

  17. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.

    PubMed

    Boerigter, Calvin; Aslam, Umar; Linic, Suljo

    2016-06-28

    Plasmonic metal nanoparticles can efficiently convert the energy of visible photons into the energy of hot charge carriers within the nanoparticles. These energetic charge carriers can transfer to molecules or semiconductors, chemically attached to the nanoparticles, where they can induce photochemical transformations. Classical models of photoinduced charge excitation and transfer in metals suggest that the majority of the energetic charge carriers rapidly decay within the metal nanostructure before they are transferred into the neighboring molecule or semiconductor, and therefore, the efficiency of charge transfer is low. Herein, we present experimental evidence that calls into question this conventional picture. We demonstrate a system where the presence of a molecule, adsorbed on the surface of a plasmonic nanoparticle, significantly changes the flow of charge within the excited plasmonic system. The nanoparticle-adsorbate system experiences high rates of direct, resonant flow of charge from the nanoparticle to the molecule, bypassing the conventional charge excitation and thermalization process taking place in the nanoparticle. This picture of charge transfer suggests that the yield of extracted hot electrons (or holes) from plasmonic nanoparticles can be significantly higher than the yields expected based on conventional models. We discuss a conceptual physical framework that allows us to explain our experimental observations. This analysis points us in a direction toward molecular control of the charge transfer process using interface and local field engineering strategies. PMID:27268233

  18. Solid-to-Liquid Charge Transfer for Generating Droplets with Tunable Charge.

    PubMed

    Sun, Yajuan; Huang, Xu; Soh, Siowling

    2016-08-16

    Charged liquid droplets are typically generated by a high-voltage power supply. Herein, a previously unreported method is used for charging liquid droplets: by transferring charge from an insulating solid surface charged by contact electrification to the droplets. Charging the solid surface by contact electrification involves bringing it into contact with another solid surface for generating static charge. Subsequently, water droplets that flow across the surface are found to be charged-thus, the charge is readily transferred from solid to liquid. The charge of the droplets can be tuned continuously from positive to negative by varying the way the solid surface is charged. The amount of charge generated is sufficient for manipulating, coalescing, and sorting the water droplets by solid surfaces charged by contact electrification. This method of generating charged droplets is general, simple, inexpensive, and does not need any additional equipment or power supply. PMID:27417888

  19. Integer versus Fractional Charge Transfer at Metal(/Insulator)/Organic Interfaces: Cu(/NaCl)/TCNE

    PubMed Central

    2015-01-01

    Semilocal and hybrid density functional theory was used to study the charge transfer and the energy-level alignment at a representative interface between an extended metal substrate and an organic adsorbate layer. Upon suppressing electronic coupling between the adsorbate and the substrate by inserting thin, insulating layers of NaCl, the hybrid functional localizes charge. The laterally inhomogeneous charge distribution resulting from this spontaneous breaking of translational symmetry is reflected in observables such as the molecular geometry, the valence and core density of states, and the evolution of the work function with molecular coverage, which we discuss for different growth modes. We found that the amount of charge transfer is determined, to a significant extent, by the ratio of the lateral spacing of the molecules and their distance to the metal. Therefore, charge transfer does not only depend on the electronic structure of the individual components but, just as importantly, on the interface geometry. PMID:25905769

  20. Thiolate versus Selenolate: Structure, Stability, and Charge Transfer Properties.

    PubMed

    Ossowski, Jakub; Wächter, Tobias; Silies, Laura; Kind, Martin; Noworolska, Agnieszka; Blobner, Florian; Gnatek, Dominika; Rysz, Jakub; Bolte, Michael; Feulner, Peter; Terfort, Andreas; Cyganik, Piotr; Zharnikov, Michael

    2015-04-28

    Selenolate is considered as an alternative to thiolate to serve as a headgroup mediating the formation of self-assembled monolayers (SAMs) on coinage metal substrates. There are, however, ongoing vivid discussions regarding the advantages and disadvantages of these anchor groups, regarding, in particular, the energetics of the headgroup-substrate interface and their efficiency in terms of charge transport/transfer. Here we introduce a well-defined model system of 6-cyanonaphthalene-2-thiolate and -selenolate SAMs on Au(111) to resolve these controversies. The exact structural arrangements in both types of SAMs are somewhat different, suggesting a better SAM-building ability in the case of selenolates. At the same time, both types of SAMs have similar packing densities and molecular orientations. This permitted reliable competitive exchange and ion-beam-induced desorption experiments which provided unequivocal evidence for a stronger bonding of selenolates to the substrate as compared to the thiolates. Regardless of this difference, the dynamic charge transfer properties of the thiolate- and selenolate-based adsorbates were found to be nearly identical, as determined by the core-hole-clock approach, which is explained by a redistribution of electron density along the molecular framework, compensating the difference in the substrate-headgroup bond strength. PMID:25857927

  1. Exceptional photosensitivity of a polyoxometalate-based charge-transfer hybrid material.

    PubMed

    Liao, Jian-Zhen; Wu, Chen; Wu, Xiao-Yuan; Deng, Shui-Quan; Lu, Can-Zhong

    2016-05-31

    An unusual room-temperature light sensitivity was realized in a polyoxometalate-based hybrid material due to cooperative multicomponent molecular charge-transfer interactions taking place in this material, mainly among POMs, NDIs, and other molecules. The functional π-acidic NDI linkers and POM clusters in the discussed hybrid material were individually designed as photosensors and electron reservoirs. To propose a photo-induced charge-transfer mechanism, EPR, XPS, UV-Vis and computational studies were carried out, and indicated the presence of active charge-transfer interactions among several of the components. PMID:27192943

  2. Highly Twisted Triarylamines for Photoinduced Intramoleculer ChargeTransfer

    SciTech Connect

    Chudomel, J. M.; Yang, B. Q.; Barnes, M. D.; Achermann, M.; Mague, J. T.; Lahti, P. M.

    2011-08-04

    9-(N,N-Dianisylamino)anthracene (9DAAA), 9-(N,N-dianisylamino)dinaphth([1,2-a:2'-1'-j]-anthracene (9DAAH), and 9,10-bis(N,N-dianisylamino)anthracene (910BAA) were synthesized as highly twisted triarylamines with potential for photoexcited internal charge transfer. Crystallography of 9DAAA shows its dianisylamino group to be twisted nearly perpendicular to its anthracene unit, similar to a report for 910BAA. The solution fluorescence spectra show strong bathochromic shifts for each of the three molecular systems with strongly decreased quantum efficiency in higher polarity solvents. Solution-phase (ensemble) time-resolved photoluminescence measurements show up to 4-fold decreases in fluorescence lifetime in acetonitrile compared to hexane. The combined results are consistent with photoinduced, transient intramolecular charge-transfer from the bis-anisylamine unit to the polycyclic aromatic unit. Computational modeling is in accord with intramolecular transfer of electron density from the bis-anisylamino unit to the anthracene, based on in comparisons of HOMO and LUMO.

  3. Orientation-dependent dissociative charge transfer

    SciTech Connect

    Wu, W.; Prior, M.H.; Braeuning, H.

    1998-01-01

    Recoil-ion momentum spectroscopy and molecular fragment imaging techniques are combined to study dissociative electron capture from He by HeH{sup +} at 0.20-a.u. collision velocity. Groups of final HeH states which dissociate to ground or excited H and He atoms are separated. For each group, the experiment provides two-dimensional H fragment distributions with respect to the collision plane and for fixed transverse momentum transfer. These patterns show that the capture probability is highest for HeH{sup +} ions with their axis oriented normal to the scattering plane for two of the three groups populated. {copyright} {ital 1998} {ital The American Physical Society}

  4. Metal-Organic Coordination Number Determined Charge Transfer Magnitude

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Hsiang; Chu, Yu-Hsun; Lu, Chun-I.; Yang, Tsung-Han; Yang, Kai-Jheng; Kaun, Chao-Cheng; Hoffmann, Germar; Lin, Minn-Tsong

    2014-03-01

    By the appropriate choice of head groups and molecular ligands, various metal-organic coordination geometries can be engineered. Such metal-organic structures provide different chemical environments for molecules and give us templates to study the charge redistribution within the metal-organic interface. We created various metal-organic bonding environment by growing self-assembly nanostructures of Fe-PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) chains and networks on a Au(111) surface. Bonding environment dependent frontier molecular orbital energies are acquired by low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. By comparing the frontier energies with the molecular coordination environments, we conclude that the specific coordination affects the magnitude of charge transfer onto each PTCDA in the Fe-PTCDA hybridization system. H.-H. Yang, Y.-H. Chu, C.-I Lu, T.-H. Yang, K.-J. Yang, C.-C. Kaun, G. Hoffmann, and M.-T. Lin, ACS Nano 7, 2814 (2013).

  5. Charge-transfer excitons in DNA.

    PubMed

    Conwell, E M; McLaughlin, P M; Bloch, S M

    2008-02-21

    There have been a number of theoretical treatments of excitons in DNA, most neglecting both the intrachain and interchain wavefunction overlaps of the electron and hole, treating them as Frenkel excitons. Recently, the importance of the intrachain and interchain coupling has been highlighted. Experiments have shown that in (dA)n oligomers and in duplex (dA)n.(dT)n, to be abbreviated (A/T), where A is adenine and T is thymine, the exciton wavefunction is delocalized over several bases. In duplexes it is possible to have charge-transfer (CT) excitons. Theoretical calculations have suggested that CT excitons in DNA may have lower energy than single chain excitons. In all the calculations of excitons in DNA, the polarization of the surrounding water has been neglected. Calculations have shown, however, that polarization of the water by an excess electron or a hole in DNA lowers its energy by approximately 1/2 eV, causing it to become a polaron. It is therefore to be expected that polarization charge induced in the surrounding water has a significant effect on the properties of the exciton. In what follows, we present calculations of some properties CT excitons would have in an A/T duplex taking into account the wavefunction overlaps, the effect of the surrounding water, which results in the electron and hole becoming polarons, and the ions in the water. As expected, the CT exciton has lowest energy when the electron and hole polarons are directly opposite each other. By appropriate choice of the dielectric constant, we can obtain a CT exciton delocalized over the number of sites found in photoinduced absorption experiments. The absorption threshold that we then calculate for CT exciton creation in A/T is in reasonable agreement with the lowest singlet absorption deduced from available data. PMID:18232682

  6. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    NASA Astrophysics Data System (ADS)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  7. Effects of the charge-transfer reorganization energy on the open-circuit voltage in small-molecular bilayer organic photovoltaic devices: comparison of the influence of deposition rates of the donor.

    PubMed

    Lee, Chih-Chien; Su, Wei-Cheng; Chang, Wen-Chang

    2016-05-14

    The theoretical maximum of open-circuit voltage (VOC) of organic photovoltaic (OPV) devices has yet to be determined, and its origin remains debated. Here, we demonstrate that VOC of small-molecule OPV devices can be improved by controlling the deposition rate of a donor without changing the interfacial energy gap at the donor/acceptor interface. The measurement of external quantum efficiency and electroluminescence spectra facilitates the observation of the existence of charge transfer (CT) states. A simplified approach by reusing the reciprocity relationship for obtaining the properties of the CT states is proposed without introducing complex techniques. We compare experimental and fitting results and propose that reorganization energy is the primary factor in determining VOC instead of either the CT energy or electronic coupling term in bilayer OPV devices. Atomic force microscopy images indicate a weak molecular aggregation when a higher deposition rate is used. The results of temperature-dependent measurements suggest the importance of molecular stacking for the CT properties. PMID:27095179

  8. Symmetry Reduced Dynamics of Charged Molecular Strands

    NASA Astrophysics Data System (ADS)

    Ellis, David C. P.; Gay-Balmaz, François; Holm, Darryl D.; Putkaradze, Vakhtang; Ratiu, Tudor S.

    2010-09-01

    The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonlocal when the screened Coulomb interactions, or Lennard-Jones potentials between pairs of charges, are included. The nonlocal dynamics is derived in the convective representation of continuum motion by using modified Euler-Poincaré and Hamilton-Pontryagin variational formulations that illuminate the various approaches within the framework of symmetry reduction of Hamilton’s principle for exact geometric rods. In the absence of nonlocal interactions, the equations recover the classical Kirchhoff theory of elastic rods. The motion equations in the convective representation are shown to arise by a classical Lagrangian reduction associated to the symmetry group of the system. This approach uses the process of affine Euler-Poincaré reduction initially developed for complex fluids. On the Hamiltonian side, the Poisson bracket of the molecular strand is obtained by reduction of the canonical symplectic structure on phase space. A change of variables allows a direct passage from this classical point of view to the covariant formulation in terms of Lagrange-Poincaré equations of field theory. In another revealing perspective, the convective representation of the nonlocal equations of molecular strand motion is transformed into quaternionic form.

  9. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  10. Delayed thermal fluorescence in some charge-transfer crystals

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.; Prochorow, J.

    1984-03-01

    Time-resolved spectra of long-lived emission of tetrachlorophthalic-hexamethylbenzene charge-transfer crystal were measured at different temperatures. The results give a clear evidence for the existence of E-type delayed fluorescence that results from thermal activation of trapped charge-transfer triplet excitone.

  11. Polarization and charge transfer in the hydration of chloride ions

    SciTech Connect

    Zhao Zhen; Rogers, David M.; Beck, Thomas L.

    2010-01-07

    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The quantum theory of atoms in molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. The clusters extracted from the AMOEBA simulations exhibit high probabilities of anisotropic solvation for chloride ions in bulk water. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared to the quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2-level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.

  12. Spectrophotometric study of the charge transfer complex between 2-amino-4-picoline with chloranilic acid

    NASA Astrophysics Data System (ADS)

    Alghanmi, Reem M.; Al-Attas, Amirah S.; Habeeb, Moustafa M.

    2013-02-01

    Charge transfer complex formation between 2-amino-4-picoline (2A4P) as the electron donor with chloranilic acid (CLA) as the electron acceptor has been studied spectrophotometrically in different polar solvents included acetone (AcN), ethanol (EtOH) and acetonitrile (AN). The molecular composition of the formed complex was recognized utilizing Job's, photometric and conductometric titration methods to be 1:1. The formation constants and molecular extinction coefficients were estimated using Benesi-Hildebrand equation; they recorded high values confirming high stability of the formed complex. Moreover, the results showed that the complex is more stable in acetone with lower electric permittivity compared with ethanol or acetonitrile of higher ones. The values of some spectroscopic physical parameters like oscillator strength f, transition dipole moment μ, resonance energy RN, charge transfer energy ECT, dissociation energy W, ionization potential IP and standard free energy ΔGo were determined and evaluated. The solid complex was isolated and its molecular composition was determined by elemental analysis to be 1:1. Furthermore, the solid complex was characterized using FTIR and 1H NMR measurements. They confirmed the presence of proton transfer beside charge transfer in the obtained complex. Molecular orbital calculations utilizing GAMESS computations were carried out to predict infrared spectra. They also confirmed the presence of proton transfer beside charge transfer in the formed complex.

  13. Charge transfer and association of protons colliding with potassium from very low to intermediate energies

    SciTech Connect

    Liu, C. H.; Qu, Y. Z.; Wang, J. G.; Li, Y.; Buenker, R. J.

    2010-01-15

    The nonradiative charge-transfer process for H{sup +}+K(4s) collision is investigated using the quantum-mechanical molecular-orbital close-coupling method for collision energies from 1 eV to 10 keV. The radiative-decay and radiative charge transfer cross sections are calculated using the optical potential approach and the fully quantal method, respectively, for the energy range of 10{sup -5}-10 eV. The radiative-association cross sections are obtained by subtracting the radiative charge-transfer part from total radiative-decay cross sections. The relevant molecular data are calculated from the multireference single- and double-excitation configuration interaction approach. The nonradiative charge transfer is the dominant mechanism at energies above 2 eV, whereas the radiative charge transfer becomes primary in the low-energy region of E<1.5 eV. The present radiative-decay cross sections disagree with the calculations of Watanabe et al. [Phys. Rev. A 66, 044701 (2002)]. The total charge-transfer rate coefficient is obtained in the temperature range of 1-20000 K.

  14. Note: Charge transfer in a hydrated peptide group is determined mainly by its intrinsic hydrogen-bond energetics

    SciTech Connect

    Mirkin, Noemi G.; Krimm, Samuel

    2014-01-28

    Charge transfer in a hydrogen-bonded N-methylacetamide(H{sub 2}O){sub 3} system is obtained from ωB97X-D/6-31++G** and CHelpG atomic charge calculations of individual peptide-water interactions as well as that of the entire complex. In the latter, the electron transfer to water is 0.19 e, influenced primarily by the hydrogen bonds to the C=O group. The values of such charge transfer are paralleled by the corresponding intrinsic hydrogen-bond energies. These results support the desirability of incorporating charge transfer in molecular mechanics energy functions.

  15. Magnetic ordering in fullerene charge-transfer complexes

    NASA Astrophysics Data System (ADS)

    Sato, Tohru; Yamabe, Tokio; Tanaka, Kazuyoshi

    1997-07-01

    We have determined the ground states of the charge-transfer (CT) complexes in which the energy levels of the highest occupied molecular orbital (HOMO) of donors and the lowest unoccupied MO (LUMO) of acceptors are closely located, and examined some fullerene complexes consisting of C60, C70, tetrakis(dimethylamino)ethylene (TDAE), and 1,1',3,3'-tetramethyl-Δ2,2'-bi(imidazolidine) (TMBI). The observed magnetic properties of TDAE-C60, TMBI-C60, and TDAE-C70 can be accounted for by employing realistic parameters. The effective Hamiltonian including up to the fourth-order perturbation has also been derived in the fourfold degenerate model space. The effective Hamiltonian can plausibly reproduce the magnetic phase diagram obtained by the variational treatment of TDAE-C60. It has been shown that the third and the fourth processes contribute to the stabilization of the antiferromagnetic state.

  16. Charge transfer along DNA molecule within Peyrard-Bishop-Holstein model

    NASA Astrophysics Data System (ADS)

    Edirisinghe, Neranjan; Apalkov, Vadym

    2010-03-01

    Charge transport through DNA molecule is important in many areas ranging from DNA damage repair to molecular nanowires. It is now widely accepted that a phonon mediated hopping of a charge carrier plays a major role in charge transport through DNA. In the present study we investigate system dynamics within Peyrard-Bishop-Holstein model for the charge transfer between donor and acceptor sites. We found that an escape time of a charge, trapped at the donor state of the DNA strand, is very sensitive to the initial value of H-bond stretching. This suggests importance of ensemble averaging. Moreover sharp phase transitions were observed for escape time in parameter space of transfer integrals and phonon-charge coupling constant.

  17. Charge Transfer and Catalysis at the Metal Support Interface

    SciTech Connect

    Baker, Lawrence Robert

    2012-07-31

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalytic reaction kinetics.

  18. Theoretical characterization of charge transport in organic molecular crystals

    NASA Astrophysics Data System (ADS)

    Sanchez-Carrera, Roel S.

    The rapid growth in the interest to explore new synthetic crystalline organic semiconductors and their subsequent device characterization has revived the debate on the development of theoretical models to better understand the intrinsic charge transport mechanisms in organic materials. At the moment, several charge-transport theories for organic molecular crystals have been proposed and have observed a comparable agreement with experimental results. However, these models are limited in scope and restricted to specific ranges of microscopic parameters and temperatures. A general description that is applicable in all parameter regimes is still unavailable. The first step towards a complete understanding of the problem associated with the charge transport in organic molecular crystals includes the development of a first-principles theoretical methodology to evaluate with high accuracy the main microscopic charge-transport parameters and their respective couplings with intra- and intermolecular vibrational degrees of freedom. In this thesis, we have developed a first-principles methodology to investigate the impact of electron-phonon interactions on the charge-carrier mobilities in organic molecular crystals. Well-known organic materials such as oligoacene and oligothienoacene derivatives were studied in detail. To predict the charge-transport phenomena in organic materials, we rely on the Marcus theory of electron-transfer reactions. Within this context, the nature of the intramolecular vibronic coupling in oligoacenes was studied using an approach that combines high-resolution gas-phase photo-electron spectroscopy measurements with first-principles quantum-mechanical calculations. This further led to investigation of the electron interactions with optical phonons in oligoacene single crystals. The lattice phonon modes were computed at both density functional theory (DFT) and empirical force field levels. The low-frequency optical modes are found to play a significant

  19. [Photoinduced charge separation in solid state and molecular systems]. Final report

    SciTech Connect

    Not Available

    1993-10-01

    A critical theme has been to understand the role of intrinsic cyanometalate overlayers in modulating interfacial photoinduced charge transfer processes occurring at the Cd chalconide/aqueous ferri-ferrocyanide interface. Structural and charge transfer studies of [CdFe(CN){sub 6}]{sup 2-/1-} overlayers have been undertaken. It is reiterated that the focus of attention on the Cd ferrocyanide overlayer as a critical element in II-VI semiconductor based photoelectrochemical cells, is correct. A new project on metallization of solid supports, using photodeposition of Pt, has been initiated. A project has also been started in the area of visible light, molecular, charge transfer photochemistry.

  20. Probing charge transfer and hot carrier dynamics in organic solar cells with terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Cunningham, Paul D.; Lane, Paul A.; Melinger, Joseph S.; Esenturk, Okan; Heilweil, Edwin J.

    2016-04-01

    Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

  1. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory

    PubMed Central

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.

    2011-01-01

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159

  2. Charge transfer and emergent phenomena of oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui

    Charge transfer is a common phenomenon at oxide interfaces. We use first-principles calculations to show that via heterostructuring of transition metal oxides, the electronegativity difference between two dissimilar transition metal ions can lead to high level of charge transfer and induce substantial redistribution of electrons and ions. Notable examples include i) enhancing correlation effects and inducing a metal-insulator transition; ii) tailoring magnetic structures and inducing interfacial ferromagnetism; iii) engineering orbital splitting and inducing a non-cuprate single-orbital Fermi surface. Utilizing charge transfer to induce emergent electronic/magnetic/orbital properties at oxide interfaces is a robust approach. Combining charge transfer with quantum confinement and expitaxial strain provides an appealing prospect of engineering electronic structure of artificial oxide heterostructures. This research was supported by National Science Foundation under Grant No. DMR-1120296.

  3. A molecularly based theory for electron transfer reorganization energy

    NASA Astrophysics Data System (ADS)

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-01

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  4. A molecularly based theory for electron transfer reorganization energy

    SciTech Connect

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  5. Femtochemistry of Intramolecular Charge and Proton Transfer Reactions in Solution

    SciTech Connect

    Douhal, Abderrazzak; Sanz, Mikel; Carranza, Maria Angeles; Organero, Juan Angel; Tormo, Laura

    2005-03-17

    We report on the first observation of ultrafast intramolecular charge- and proton-transfer reactions in 4'-dimethylaminoflavonol (DAMF) in solution. Upon femtosecond excitation of a non-planar structure of DMAF in apolar medium, the intramolecular charge transfer (ICT) does not occur, and a slow (2 ps) proton motion takes place. However, in polar solvents, the ICT is very fast (100-200 fs) and the produced structure is stabilized that proton motion takes place in few or tens of ps.

  6. Screen charge transfer by grounded tip on ferroelectric surfaces.

    SciTech Connect

    Kim, Y.; Kim, J.; Buhlmann, S.; Hong, S.; Kim, Y. K.; Kim, S.-H.; No, K.; Materials Science Division; Korea Advanced Inst. of Science and Technology; Samsung Advanced Inst. of Technology; Inostek Inc.

    2008-03-01

    We have investigated polarization reversal and charge transfer effects by a grounded tip on 50 nm thick ferroelectric thin films using piezoelectric force microscopy and Kelvin force microscopy. We observed the polarization reversal in the center of written domains, and also identified another mechanism, which is the transfer of screen charges toward the grounded tip. In order to overcome these phenomena, we successfully applied a modified read/write scheme featuring a bias voltage.

  7. Charge-transfer gap and superexchange interaction in insulating cuprates

    SciTech Connect

    Ohta, Y.; Tohyama, T.; Maekawa, S. )

    1991-03-04

    A cluster-model analysis is made on the material dependence of the optical charge-transfer gap and antiferromagnetic superexchange interaction of a variety of insulating cuprates. It is shown that the electronic structure of cuprates typically of the charge-transfer type is characterized by the unique energy-level separation that reflects the three dimensionality of the crystal via the long-range Madelung potential; such characteristics are absent in the Mott-Hubbard regime.

  8. Charge transfer induced activity of graphene for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Shen, Anli; Xia, Weijun; Zhang, Lipeng; Dou, Shuo; Xia, Zhenhai; Wang, Shuangyin

    2016-05-01

    Tetracyanoethylene (TCNE), with its strong electron-accepting ability, was used to dope graphene as a metal-free electrocatalyst for the oxygen reduction reaction (ORR). The charge transfer process was observed from graphene to TCNE by x-ray photoelectron spectroscopy and Raman characterizations. Our density functional theory calculations found that the charge transfer behavior led to an enhancement of the electrocatalytic activity for the ORR.

  9. Measurement techniques and applications of charge transfer to aerospace research

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1978-01-01

    A technique of developing high-velocity low-intensity neutral gas beams for use in aerospace research problems is described. This technique involves ionization of gaseous species with a mass spectrometer and focusing the resulting primary ion beam into a collision chamber containing a static gas at a known pressure and temperature. Equations are given to show how charge-transfer cross sections are obtained from a total-current measurement technique. Important parameters are defined for the charge-transfer process.

  10. Mean-Field Theory of Intra-Molecular Charge Ordering in (TTM--TTP)I3

    NASA Astrophysics Data System (ADS)

    Omori, Yukiko; Tsuchiizu, Masahisa; Suzumura, Yoshikazu

    2011-02-01

    We examine an intra-molecular charge-ordered (ICO) state in the multi-orbital molecular compound (TTM--TTP)I3 on the basis of an effective two-orbital model derived from ab initio calculations. Representing the model in terms of the fragment molecular-orbital (MO) picture, the ICO state is described as the charge disproportionation on the left and right fragment MOs. By applying the mean-field theory, the phase diagram of the ground state is obtained as a function of the inter-molecular Coulomb repulsion and the intra-molecular transfer integral. The ICO state is stabilized by large inter-fragment Coulomb interactions, and the small intra-molecular transfer energy between two fragment MOs. Furthermore, we examine the finite-temperature phase diagram. The relevance to the experimental observations in the molecular compound of (TTM--TTP)I3 is also discussed.

  11. Charge transfer during individual collisions in ice growing by riming

    NASA Technical Reports Server (NTRS)

    Avila, Eldo E.; Caranti, Giorgio M.

    1991-01-01

    The charging of a target by riming in the wind was studied in the temperature range of (-10, -18 C). For each temperature, charge transfers of both signs are observed and, according to the environmental conditions, one of them prevails. The charge is more positive as the liquid water concentration is increased at any particular temperature. It is found that even at the low impact velocities used (5 m/s) there is abundant evidence of fragmentation following the collision.

  12. Photoinduced Charge Transfer from Titania to Surface Doping Site

    PubMed Central

    Inerbaev, Talgat; Hoefelmeyer, James D.; Kilin, Dmitri S.

    2013-01-01

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  13. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    PubMed

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO2. Charge transfer from the photo-excited TiO2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO2 nanorod and catalytic site. A slab of TiO2 represents a fragment of TiO2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting. PMID:23795229

  14. Molecular polarizabilities in aqueous proton transfer reactions

    NASA Astrophysics Data System (ADS)

    Buin, Andrei; Iftimie, Radu

    2009-12-01

    Dipole polarizabilities of individual ions and molecules are computed from first principles in three condensed-phase systems: pure water, pure hydrofluoric acid, and an equimolar mixture of water and hydrofluoric acid in which HF is mostly ionized. We find that the polarizability of fluorine and oxygen centers varies linearly with the value of the bond order, which measures the local degree of advancement of the ionization reaction F-H+H2O⇄[Fδ -ṡHṡOδ+H2]⇄F-+H3O+. This observation explains the validity of the Lorentz-Lorenz formula for mixtures of acids and water and could have important practical consequences concerning the construction of empirical polarizable reactive force fields. Our results are consistent with the Mulliken charge-transfer picture of proton transfer reactions. The present results also suggest that the average isotropic polarizability of a chemical entity changes substantially only when that entity is involved in charge-transfer processes.

  15. INTRAMOLECULAR CHARGE AND ENERGY TRANSFER IN MULTICHROMOPHORIC AROMATIC SYSTEMS

    SciTech Connect

    Edward C. Lim

    2008-09-09

    A concerted experimental and computational study of energy transfer in nucleic acid bases and charge transfer in dialkylaminobenzonitriles, and related electron donor-acceptor molecules, indicate that the ultrafast photoprocesses occur through three-state conical interactions involving an intermediate state of biradical character.

  16. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  17. Charge-transfer reaction of 2,3-dichloro-1,4-naphthoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib.

    PubMed

    Alzoman, Nourah Z; Alshehri, Jamilah M; Darwish, Ibrahim A; Khalil, Nasr Y; Abdel-Rahman, Hamdy M

    2015-01-01

    The reaction of 2,3-dichloro-1,4-naphthoquinone (DCNQ) with crizotinib (CZT; a novel drug used for treatment of non-small cell lung cancer) was investigated in different solvents of varying dielectric constants and polarity indexes. The reaction produced a red-colored product. Spectrophotometric investigations confirmed that the reaction proceeded through charge-transfer (CT) complex formation. The molar absorptivity of the complex was found to be linearly correlated with the dielectric constant and polarity index of the solvent; the correlation coefficients were 0.9567 and 0.9069, respectively. The stoichiometric ratio of DCNQ:CZT was found to be 2:1 and the association constant of the complex was found to be 1.07 × 10(2) l/mol. The kinetics of the reaction was studied; the order of the reaction, rate and rate constant were determined. Computational molecular modeling for the complex between DCNQ and CZT was conducted, the sites of interaction on CZT molecule were determined, and the mechanism of the reaction was postulated. The reaction was employed as a basis in the development of a novel 96-microwell assay for CZT in a linear range of 4-500 μg/ml. The assay limits of detection and quantitation were 2.06 and 6.23 μg/ml, respectively. The assay was validated as per the guidelines of the International Conference on Harmonization (ICH) and successfully applied to the analysis of CZT in its bulk and capsules with good accuracy and precision. The assay has high throughput and consumes a minimum volume of organic solvents thus it reduces the exposures of the analysts to the toxic effects of organic solvents, and significantly reduces the analysis cost. PMID:25685046

  18. Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan

    2016-05-01

    Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research.

  19. Charge Transfer Dynamics from Photoexcited Semiconductor Quantum Dots.

    PubMed

    Zhu, Haiming; Yang, Ye; Wu, Kaifeng; Lian, Tianquan

    2016-05-27

    Understanding photoinduced charge transfer from nanomaterials is essential to the many applications of these materials. This review summarizes recent progress in understanding charge transfer from quantum dots (QDs), an ideal model system for investigating fundamental charge transfer properties of low-dimensional quantum-confined nanomaterials. We first discuss charge transfer from QDs to weakly coupled acceptors within the framework of Marcus nonadiabatic electron transfer (ET) theory, focusing on the dependence of ET rates on reorganization energy, electronic coupling, and driving force. Because of the strong electron-hole interaction, we show that ET from QDs should be described by the Auger-assisted ET model, which is significantly different from ET between molecules or from bulk semiconductor electrodes. For strongly quantum-confined QDs on semiconductor surfaces, the coupling can fall within the strong coupling limit, in which case the donor-acceptor interaction and ET properties can be described by the Newns-Anderson model of chemisorption. We also briefly discuss recent progress in controlling charge transfer properties in quantum-confined nanoheterostructures through wavefunction engineering and multiple exciton dissociation. Finally, we identify a few key areas for further research. PMID:27215815

  20. Charge transfer in collisions of C{sup 2+} carbon ions with CO and OH targets

    SciTech Connect

    Bene, E.; Martinez, P.; Halsaz, G. J.; Vibok, A.; Bacchus-Montabonel, M. C.

    2009-07-15

    The charge transfer in collisions of C{sup 2+} ions with the CO molecule and the OH radical has been studied theoretically by means of ab initio quantum chemistry molecular methods followed by a semiclassical dynamical treatment in the keV collision energy range. The comparison of the cross sections calculated for these two collision systems exhibits interesting features with regard to the anisotropy of these processes and the influence of the vibration of the molecular target.

  1. Strongly Dichroic Organic Films via Controlled Assembly of Modular Aromatic Charge-Transfer Liquid Crystals.

    PubMed

    Bé, Ariana Gray; Tran, Cheryl; Sechrist, Riley; Reczek, Joseph J

    2015-10-01

    The formation of highly anisotropic organic thin films based on the designed self-assembly of mixed-stack liquid crystals is reported. A series of alkoxyanthracene donors is combined in a modular fashion with a naphthalenediimide acceptor to generate new charge-transfer columnar liquid crystals. Materials characterization and molecular modeling provides insight into structure-function relationships in these organic materials that lead to the striking bulk dichroic properties of certain molecular assemblies. PMID:26375256

  2. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    PubMed

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. PMID:23968861

  3. Coherent ultrafast charge transfer in an organic photovoltaic blend.

    PubMed

    Falke, Sarah Maria; Rozzi, Carlo Andrea; Brida, Daniele; Maiuri, Margherita; Amato, Michele; Sommer, Ephraim; De Sio, Antonietta; Rubio, Angel; Cerullo, Giulio; Molinari, Elisa; Lienau, Christoph

    2014-05-30

    Blends of conjugated polymers and fullerene derivatives are prototype systems for organic photovoltaic devices. The primary charge-generation mechanism involves a light-induced ultrafast electron transfer from the light-absorbing and electron-donating polymer to the fullerene electron acceptor. Here, we elucidate the initial quantum dynamics of this process. Experimentally, we observed coherent vibrational motion of the fullerene moiety after impulsive optical excitation of the polymer donor. Comparison with first-principle theoretical simulations evidences coherent electron transfer between donor and acceptor and oscillations of the transferred charge with a 25-femtosecond period matching that of the observed vibrational modes. Our results show that coherent vibronic coupling between electronic and nuclear degrees of freedom is of key importance in triggering charge delocalization and transfer in a noncovalently bound reference system. PMID:24876491

  4. High pressure study of charge transfer complexes and radical ion salts: A review

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2016-05-01

    High pressure is an important tool to study of material in respect of variation in interatomic distances, phase transitions and other physical properties. The pressure study of charge transfer complexes and radical ion salts provide us a better understanding about the effect of charge transfer forces, structural changes, formation of new ground states, suppression ofPeierls distortions occurs particularly at low temperatures and the intra-molecular overlapping etc. in these materials. The pressure plays a significant role in bringing superconducting transitions in the organic materials.

  5. The effects of charge transfer on the aqueous solvation of ions

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2012-07-28

    Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.

  6. DFT and TD-DFT computation of charge transfer complex between o-phenylenediamine and 3,5-dinitrosalicylic acid

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Alam, Mohammad Jane; Zulkarnain, Faizan, Mohd.; Ahmad, Afaq; Ahmad, Shabbir

    2016-05-01

    DFT and TD-DFT studies of o-phenylenediamine (PDA), 3,5-dinitrosalicylic acid (DNSA) and their charge transfer complex have been carried out at B3LYP/6-311G(d,p) level of theory. Molecular geometry and various other molecular properties like natural atomic charges, ionization potential, electron affinity, band gap, natural bond orbital (NBO) and frontier molecular analysis have been presented at same level of theory. Frontier molecular orbital and natural bond orbital analysis show the charge delocalization from PDA to DNSA.

  7. Solvation-Driven Charge Transfer and Localization in Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole–dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent–solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and

  8. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  9. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  10. Photophysical properties of charge transfer pairs encapsulated inside macrocycle cage: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Arkamita; Pati, Swapan K.

    2015-03-01

    Density functional theory calculations have been performed on three charge transfer donor-acceptor (D-A) molecular pairs, i.e. naphthalene-diamine (Naph) and tetrathiafulvalene (TTF) molecules as electron donors and benzene-diimide (Diimide) and tetracyanoquinodimethane (TCNQ) as electron acceptors. Structural, charge transfer and optical properties of the systems have been studied. The D-A pairs then has been considered inside a macrocycle (cucurbit[8]uril) cavity and Naph-Diimide and TTF-Diimide pairs have been shown to exhibit changes in their structures and orientations, TTF-TCNQ pair does not show any significant structural change. Our work suggests that these changes in structures or orientations are result of electronic repulsion between the keto group oxygen atoms and it can lead to tuning of charge transfer and optical properties of the systems.

  11. Attosecond timing the ultrafast charge-transfer process in atomic collisions

    SciTech Connect

    Hu, S. X.

    2011-04-15

    By solving the three-dimensional, time-dependent Schroedinger equation, we have demonstrated that the ultrafast charge-transfer process in ion-atom collisions can be mapped out with attosecond extreme uv (xuv) pulses. During the dynamic-charge transfer from the target atom to the projectile ion, the electron coherently populates the two sites of both nuclei, which can be viewed as a 'short-lived' molecular state. A probing attosecond xuv pulse can instantly unleash the delocalized electron from such a ''transient molecule,'' so that the resulting photoelectron may exhibit a ''double-slit'' interference. On the contrary, either reduced or no photoelectron interference will occur if the attosecond xuv pulse strikes well before or after the collision. Therefore, by monitoring the photoelectron interference visibility, one can precisely time the ultrafast charge-transfer process in atomic collisions with time-delayed attosecond xuv pulses.

  12. Ga Nanoparticle/Graphene Platforms: Plasmonic and Charge Transfer Interactions

    NASA Astrophysics Data System (ADS)

    Yi, Congwen; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Brown, April S.

    2013-03-01

    Metal nanoparticle (NP) - graphene multifunctional platforms are of great interest for numerous applications, such as sensing and catalysis, and for fundamental studies on charge transfer and light-matter interactions. To understand platform-photon interactions, it is important to articulate the coupling of photon-based excitations, such as the interaction between plasmons in each of the material components, as well as their charge-based interactions dependent upon the energy alignment at the metal/graphene interface. Herein, we use liquid metal Ga nanoparticles, which can be deposited at 300K on graphene, to explore the surface-enhanced Raman spectroscopy modulation induced by the NPs,. The localized charge transfer between Ga NPs and graphene are investigated, and enhancement of the graphene Raman modes is correlated with metal coverage the transfer of electrons from Ga to graphene creating local regions of enhanced electron concentration which modify the electron-phonon interaction in graphene.

  13. Charge transfer properties of pentacene adsorbed on silver: DFT study

    SciTech Connect

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-24

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  14. Dynamic salt effect on intramolecular charge-transfer reactions

    SciTech Connect

    Zhu Jianjun; Ma Rong; Lu Yan; Stell, George

    2005-12-08

    The dynamic salt effect in charge-transfer reactions is investigated theoretically in this paper. Free-energy surfaces are derived based on a nonequilibrium free-energy functional. Reaction coordinates are clearly defined. The solution of the reaction-diffusion equation leads to a rate constant depending on the time correlation function of the reaction coordinates. The time correlation function of the ion-atmosphere coordinate is derived from the solution of the Debye-Falkenhagen equation. It is shown that the dynamic salt effect plays an important role in controlling the rate of charge-transfer reactions in the narrow-window limit but is balanced by the energetics and the dynamics of the polar-solvent coordinate. The simplest version of the theory is compared with an experiment, and the agreement is fairly good. The theory can also be extended to charge-transfer in the class of electrolytes that has come to be called 'ionic fluids'.

  15. Direct experimental characterization of photoemission charge-transfer satellites

    NASA Astrophysics Data System (ADS)

    Weiland, Conan; Rumaiz, Abdul; Woicik, Joseph

    Energy-loss satellites in photoelectron spectroscopy often arise due to different charge-transfer states in condensed matter systems. The specific characterization of these satellites, however, has been controversial, and different theoretical approaches may lead to contradictory characterizations. Here we demonstrate the ability of high energy resonant photoelectron spectroscopy to provide direct experimental evidence of the nature of charge transfer satellites. Analysis of the Ti 1 s core line in SrTiO3 reveals two satellites, located approximately 5 eV and 13 eV lower kinetic energy than the main line. High energy resonant photoelectron spectroscopy reveals that these two peaks originate from ligand 2 p t2 g to metal 3 d t2 g and ligand 2 p eg to metal 3 d eg charge-transfer excitations.

  16. Charge transfer in helium-rich supernova plasma

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.

    1994-01-01

    Charge transfer rate coefficients are estimated using Landau-Zener and modified Demkov approximations. The coefficients, augmented by those available from the literature, are used in statistical equilibrium equations describing the state of helium-rich supernova plasma. Such a plasma may describe both Type Ib and Type Ic supernova ejecta. The hypothesis that extensive mixing of metals with helium in Type Ic supernovae may provide a catalyst for rapid charge transfer that weakens the helium line emission by altering the excitation balance is tested. It is shown that charge transfer as a mechanism for suppressing helium line emission is ineffective unless the metal abundance is comparable to or larger than the helium abundance. This result supports an earlier conclusion that Type Ic supernovae must be helium poor relative to Type Ib events.

  17. Multiple-charge transfer and trapping in DNA dimers

    NASA Astrophysics Data System (ADS)

    Tornow, Sabine; Bulla, Ralf; Anders, Frithjof B.; Zwicknagl, Gertrud

    2010-11-01

    We investigate the charge transfer characteristics of one and two excess charges in a DNA base-pair dimer using a model Hamiltonian approach. The electron part comprises diagonal and off-diagonal Coulomb matrix elements such a correlated hopping and the bond-bond interaction, which were recently calculated by Starikov [E. B. Starikov, Philos. Mag. Lett. 83, 699 (2003)10.1080/0950083031000151374] for different DNA dimers. The electronic degrees of freedom are coupled to an ohmic or a superohmic bath serving as dissipative environment. We employ the numerical renormalization group method in the nuclear tunneling regime and compare the results to Marcus theory for the thermal activation regime. For realistic parameters, the rate that at least one charge is transferred from the donor to the acceptor in the subspace of two excess electrons significantly exceeds the rate in the single charge sector. Moreover, the dynamics is strongly influenced by the Coulomb matrix elements. We find sequential and pair transfer as well as a regime where both charges remain self-trapped. The transfer rate reaches its maximum when the difference of the on-site and intersite Coulomb matrix element is equal to the reorganization energy which is the case in a guanine/cytosine (GC)-dimer. Charge transfer is completely suppressed for two excess electrons in adenine/thymine (AT)-dimer in an ohmic bath and replaced by damped coherent electron-pair oscillations in a superohmic bath. A finite bond-bond interaction W alters the transfer rate: it increases as function of W when the effective Coulomb repulsion exceeds the reorganization energy (inverted regime) and decreases for smaller Coulomb repulsion.

  18. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; Liang, Liangbo; West, Damien; Meunier, Vincent; Zhang, Shengbai

    The success of van der Waals (vdW) heterostructures made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of these heterostructures. Using time-dependent density functional theory molecular dynamics, we find that the collective motion of excitons at the interface lead to plasma oscillations associated with optical excitation. Furthermore, instability of these oscillations explain the rapid charge transfer across the interface and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to the MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.

  19. Dielectric spectroscopy on organic charge-transfer salts.

    PubMed

    Lunkenheimer, P; Loidl, A

    2015-09-23

    This topical review provides an overview of the dielectric properties of a variety of organic charge-transfer salts, based on both, data reported in literature and our own experimental results. Moreover, we discuss in detail the different processes that can contribute to the dielectric response of these materials. We concentrate on the family of the 1D (TMTTF)2 X systems and the 2D BEDT-TTF-based charge-transfer salts, which in recent years have attracted considerable interest due to their often intriguing dielectric properties. We will mainly focus on the occurrence of electronic ferroelectricity in these systems, which also includes examples of multiferroicity. PMID:26325011

  20. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions. PMID:23931364

  1. Bioexcimers as Precursors of Charge Transfer and Reactivity in Photobiology

    SciTech Connect

    Serrano-Andres, Luis; Merchan, Manuela; Roca-Sanjuan, Daniel; Olaso-Gonzalez, Gloria; Rubio, Mercedes

    2007-11-29

    Accurate CASPT2//CASSCF calculations show that {pi}-stacked interactions in different biochromophores such as DNA nucleobases or porphyrin-quinone pairs yield excimer-like situations which behave as precursors of processes like charge transfer or photoreactivity. Examples are the transfer of charge between a reduced pheophytin and an accepting quinone molecule, process that trigger the sequence of electron transfer phenomena in photosynthetic photosystem II, the electron transfer between adjacent DNA nucleobases in a strand of oligonucleotides, and the photodimerization taking place in cytosine pairs leading to cyclobutanecytosine mutants. These processes take place through nonadiabatic photochemical mechanisms whose evolution is determined by the presence and accessibility of conical intersections and other surface crossings between different electronic states.

  2. Bioexcimers as Precursors of Charge Transfer and Reactivity in Photobiology

    NASA Astrophysics Data System (ADS)

    Serrano-Andrés, Luis; Merchán, Manuela; Roca-Sanjuán, Daniel; Olaso-González, Gloria; Rubio, Mercedes

    2007-11-01

    Accurate CASPT2//CASSCF calculations show that π-stacked interactions in different biochromophores such as DNA nucleobases or porphyrin-quinone pairs yield excimer-like situations which behave as precursors of processes like charge transfer or photoreactivity. Examples are the transfer of charge between a reduced pheophytin and an accepting quinone molecule, process that trigger the sequence of electron transfer phenomena in photosynthetic photosystem II, the electron transfer between adjacent DNA nucleobases in a strand of oligonucleotides, and the photodimerization taking place in cytosine pairs leading to cyclobutanecytosine mutants. These processes take place through nonadiabatic photochemical mechanisms whose evolution is determined by the presence and accessibility of conical intersections and other surface crossings between different electronic states.

  3. Robust, basis-set independent method for the evaluation of charge-transfer energy in noncovalent complexes.

    PubMed

    Řezáč, Jan; de la Lande, Aurélien

    2015-02-10

    Separation of the energetic contribution of charge transfer to interaction energy in noncovalent complexes would provide important insight into the mechanisms of the interaction. However, the calculation of charge-transfer energy is not an easy task. It is not a physically well-defined term, and the results might depend on how it is described in practice. Commonly, the charge transfer is defined in terms of molecular orbitals; in this framework, however, the charge transfer vanishes as the basis set size increases toward the complete basis set limit. This can be avoided by defining the charge transfer in terms of the spatial extent of the electron densities of the interacting molecules, but the schemes used so far do not reflect the actual electronic structure of each particular system and thus are not reliable. We propose a spatial partitioning of the system, which is based on a charge transfer-free reference state, namely superimposition of electron densities of the noninteracting fragments. We show that this method, employing constrained DFT for the calculation of the charge-transfer energy, yields reliable results and is robust with respect to the strength of the charge transfer, the basis set size, and the DFT functional used. Because it is based on DFT, the method is applicable to rather large systems. PMID:26580910

  4. Dynamic self-assembly of charge-transfer nanofibers of tetrathiafulvalene derivatives with F4TCNQ.

    PubMed

    Jain, Ankit; Rao, K Venkata; Mogera, Umesha; Sagade, Abhay A; George, Subi J

    2011-10-24

    One-dimensional charge-transfer nanostructures were constructed by the supramolecular coassembly of amphiphilic (Amph-TTF) and hydrophobic (TDD-TTF) tetrathiafulvalene (TTF) donor derivatives with the acceptor 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ), in appropriate solvent composition mixtures. Microscopic analyses show that TDD-TTF retains its self-assembled fibrillar morphology even in the charge-transfer state, whereas Amph-TTF undergoes a spherical to nanorod transition upon coassembly. Time-dependent optical spectroscopy studies have shown a spontaneous change in molecular organization in TDD-TTF-based donor-acceptor costacks, which suggests a dynamic behavior, in contrast to the kinetically stable amphiphilic TTF assemblies. We have also tried to get an insight into the observed time-dependent change in molecular packing of these nanostructures through spectroscopic analyses by commenting on whether the TTF-TCNQ pair is cofacially arranged or present in the classical herringbone (orthogonal) fashion. Furthermore, our two-probe electrical measurements showed that these charge-transfer fibers are conducting. A supramolecular approach that yields 1D charge-transfer nanostructures of donor and acceptor molecules will be an alternative to existing crystalline substances with high conductivity and hence can be a viable tool for nanoelectronics. PMID:21922580

  5. Organic Semiconductors: A Molecular Picture of the Charge-Transport and Energy-Transport Processes.

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc

    2007-03-01

    Conjugated organic oligomer and polymer materials are being increasingly considered for their incorporation as the active semiconductor elements in devices such as photo-voltaic cells, light-emitting diodes, or field-effects transistors. In the operation of these devices, electron-transfer and energy-transfer processes play a key role, for instance in the form of charge transport (in the bulk or across interfaces), energy transport, charge separation, or charge recombination [1]. Here, we provide a theoretical description of electron-transfer phenomena based on electron-transfer theory, which allows us to provide a molecular, chemically-oriented understanding. In this presentation, we focus on the parameters that impact the mobility of charge carriers [2], that is the electronic coupling within chains and between adjacent chains and the reorganization energy of the chains upon ionization. Materials under study include conjugated oligomers such as oligoacenes, oligothiophene-acenes, oligothiophenes, and oligothienacenes. [1] J.L. Br'edas, D. Beljonne, V. Coropceanu, and J. Cornil, ``Charge-Transfer and Energy-Transfer Processes in pi-Conjugated Oligomers and Polymers'', Chemical Reviews, 104, 4971-5004 (2004). [2] V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Br'edas, ``Charge Transport in Organic Semiconductors'', Chemical Reviews, 107, xxx (2007).

  6. Molecular polarizabilities in aqueous proton transfer reactions

    SciTech Connect

    Buin, Andrei; Iftimie, Radu

    2009-12-21

    Dipole polarizabilities of individual ions and molecules are computed from first principles in three condensed-phase systems: pure water, pure hydrofluoric acid, and an equimolar mixture of water and hydrofluoric acid in which HF is mostly ionized. We find that the polarizability of fluorine and oxygen centers varies linearly with the value of the bond order, which measures the local degree of advancement of the ionization reaction F-H+H{sub 2}O<-->[F{sup {delta}-}{center_dot}H{center_dot}{sup {delta}+}OH{sub 2}]<-->F{sup -}+H{sub 3}O{sup +}. This observation explains the validity of the Lorentz-Lorenz formula for mixtures of acids and water and could have important practical consequences concerning the construction of empirical polarizable reactive force fields. Our results are consistent with the Mulliken charge-transfer picture of proton transfer reactions. The present results also suggest that the average isotropic polarizability of a chemical entity changes substantially only when that entity is involved in charge-transfer processes.

  7. Inhomogeneous charge transfer within monolayer zinc phthalocyanine absorbed on TiO{sub 2}(110)

    SciTech Connect

    Yu Shun; Ahmadi, Sareh; Adibi, Pooya Tabib Zadeh; Chow, Winnie; Goethelid, Mats; Sun, Chenghua; Pietzsch, Annette

    2012-04-21

    The d-orbital contribution from the transition metal centers of phthalocyanine brings difficulties to understand the role of the organic ligands and their molecular frontier orbitals when it adsorbs on oxide surfaces. Here we use zinc phthalocyanine (ZnPc)/TiO{sub 2}(110) as a model system where the zinc d-orbitals are located deep below the organic orbitals leaving room for a detailed study of the interaction between the organic ligand and the substrate. A charge depletion from the highest occupied molecular orbital is observed, and a consequent shift of N1s and C1s to higher binding energy in photoelectron spectroscopy (PES). A detailed comparison of peak shifts in PES and near-edge X-ray absorption fine structure spectroscopy illustrates a slightly uneven charge distribution within the molecular plane and an inhomogeneous charge transfer screening between the center and periphery of the organic ligand: faster in the periphery and slower at the center, which is different from other metal phthalocyanine, e.g., FePc/TiO{sub 2}. Our results indicate that the metal center can substantially influence the electronic properties of the organic ligand at the interface by introducing an additional charge transfer channel to the inner molecular part.

  8. Charge-transfer complexation between naphthalene diimides and aromatic solvents.

    PubMed

    Kulkarni, Chidambar; Periyasamy, Ganga; Balasubramanian, S; George, Subi J

    2014-07-28

    Naphthalene diimides (NDIs) form emissive ground-state charge-transfer (CT) complexes with various electron rich aromatic solvents like benzene, o-xylene and mesitylene. TD-DFT calculation of the complexes suggests CT interaction and accounts for the observed ground-state changes. PMID:24931833

  9. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  10. Primary cells utilize halogen-organic charge transfer complex

    NASA Technical Reports Server (NTRS)

    Gutmann, F.; Hermann, A. M.; Rembaum, A.

    1966-01-01

    Electrochemical cells with solid state components employ charge transfer complexes or donor-acceptor complexes in which the donor component is an organic compound and the acceptor component is a halogen. A minor proportion of graphite added to these composition helps reduce the resistivity.

  11. Multifunctional Charge-Transfer Single Crystals through Supramolecular Assembly.

    PubMed

    Xu, Beibei; Luo, Zhipu; Wilson, Andrew J; Chen, Ke; Gao, Wenxiu; Yuan, Guoliang; Chopra, Harsh Deep; Chen, Xing; Willets, Katherine A; Dauter, Zbigniew; Ren, Shenqiang

    2016-07-01

    Centimeter-sized segregated stacking TTF-C60 single crystals are crystallized by a mass-transport approach combined with solvent-vapor evaporation for the first time. The intermolecular charge-transfer interaction in the long-range ordered superstructure enables the crystals to demonstrate external stimuli-controlled multifunctionalities and angle/electrical-potential-dependent luminescence. PMID:27146726

  12. CORRELATING ELECTRONIC AND VIBRATIONAL MOTIONS IN CHARGE TRANSFER SYSTEMS

    SciTech Connect

    Khalil, Munira

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  13. Layered charge transfer complex cathodes or solid electrolyte cells

    SciTech Connect

    Louzos, D.V.

    1981-05-12

    Layered charge transfer complex cathodes for use in solid electrolyte cells are described wherein one layer of the cathode contains an electronic conductor which is isolated from the cell's solid electrolyte by a second layer of the cathode that does not contain an electronic conductor.

  14. Imaging charge and energy transfer in molecules using free-electron lasers

    NASA Astrophysics Data System (ADS)

    Rudenko, Artem

    2014-05-01

    Charge and energy transfer reactions drive numerous important processes in physics, chemistry and biology, with applications ranging from X-ray astrophysics to artificial photosynthesis and molecular electronics. Experimentally, the central goal in studies of transfer phenomena is to trace the spatial localization of charge at a given time. Because of their element and site sensitivity, ultrafast X-rays provide a promising tool to address this goal. In this talk I will discuss several experiments where free-electron lasers were employed to study charge and energy transfer dynamics in fragmenting molecules. In a first example, we used intense, 70 femtosecond 1.5 keV pulses from the Linac Coherent Light Source (LCLS) to study distance dependence of electron transfer in laser-dissociated methyl iodide molecules. Inducing well-localized positive charge on the heavy iodine atom, we observe signature of electron transition from the separated methyl group up to the distances of 35 atomic units. In a complementary experiment, we studied charge exchange between two partners in a dissociating molecular iodine employing a pump-probe arrangement with two identical 90 eV pulses from the Free-Electron LASer in Hamburg (FLASH). In both cases, the effective spatial range of the electron transfer can be reasonably described by a classical over-the-barrier model developed for ion-atom collisions. Finally, I will discuss a time-resolved measurement on non-local relaxation mechanism based on a long-range energy transfer, the so-called interatomic Coulombic decay. This work was supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy and by the Kansas NSF ``First Award'' program.

  15. Infrared Spectroscopy of Charge Transfer Complexes of Purines and Pyrimidines

    SciTech Connect

    Rathod, Pravinsinh I.; Oza, A. T.

    2011-10-20

    The FTIR spectra of charge transfer complexes of purines and pyrimidines with organic acceptors such as TCNQ, TCNE, DDQ, chloranil and iodine are obtained and studied in the present work. Adenine, guanine, thymine, cytosine and uracil are the purines and pyrimidines which are found as constituent of DNA and RNA. Charge transfer induced hydrogen bonding is concluded on the basis of indirect transitions observed in the infrared range in these CTCs. Some CTCs show gaussian bands revealing delocalization of charge carriers. The CTCs show interband transition in three-dimensions rather than two-dimensions unlike CTCs of amino acids. There is no extended hydrogen bonded network spanning the whole crystal. This leads to indirect transition due to locally deformed lattice furnishing a phonon-assisted transition.

  16. Molecular Models for Conductance in Junctions and Electrochemical Electron Transfer

    NASA Astrophysics Data System (ADS)

    Mazinani, Shobeir Khezr Seddigh

    This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes. First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon's tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer. Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed. Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of

  17. A tetrastable naphthalenediimide: anion induced charge transfer, single and double electron transfer for combinational logic gates.

    PubMed

    Ajayakumar, M R; Hundal, Geeta; Mukhopadhyay, Pritam

    2013-09-11

    Herein we demonstrate the formation of the first tetrastable naphthalenediimide (NDI, 1a) molecule having multiple distinctly readable outputs. Differential response of 1a to fluoride anions induces intramolecular charge transfer (ICT), single/double electron transfer (SET/DET) leading to a set of combinational logic gates for the first time with a NDI moiety. PMID:23752683

  18. Electron transfer kinetics in molecular photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Heimer, Todd Anthony

    1997-11-01

    Solar energy devices based on the sensitization of nanostructured titanium dioxide semiconductors have proven to be efficient converters of photons into electricity. However, many questions remain concerning the factors which govern conversion efficiency, stability, and photovoltage in these molecular level devices. The energetics and kinetics of electron transfer at the semiconductor/sensitizer interface play a critical role in solar cell photoelectrochemical properties. Through electrochemical and spectroscopic techniques the kinetics of the interfacial electron transfer processes have been measured. The kinetics are in general complex, and various models based on distributions of first order reaction rates or higher order reactions have been used to describe the experimental observations. The unique molecular nature of these devices allows the energy levels involved in electron transfer to be tuned through synthetic modification of the sensitizer. Systematic studies of chemically related sensitizers allow conclusions to be drawn about the factors which govern interfacial electron transfer processes and therefore determine the photoelectrochemical properties of the device. Hopefully, this thesis presents a foundation of knowledge which can successfully direct future development of sensitizers and semiconductors for efficient conversion of light to electricity.

  19. A Gating Charge Transfer Center in Voltage Sensors

    SciTech Connect

    Tao, X.; Lee, A; Limapichat, W; Dougherty, D; MacKinnon, R

    2010-01-01

    Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic 'cap' and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.

  20. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  1. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  2. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  3. A Gating Charge Transfer Center in Voltage Sensors

    PubMed Central

    Tao, Xiao; Lee, Alice; Limapichat, Walrati; Dougherty, Dennis A.; MacKinnon, Roderick

    2010-01-01

    Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switch-like response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings and X-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic ‘cap’ and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations the voltage sensor can be stabilized in different conformations, thus enabling a dissection of voltage sensor movements and their relationship to ion channel opening. PMID:20360102

  4. Intermolecular transfer integrals for organic molecular materials: can basis set convergence be achieved?

    NASA Astrophysics Data System (ADS)

    Huang, Jingsong; Kertesz, Miklos

    2004-05-01

    Intermolecular transfer integrals, and associated band-structures of organic molecular materials can be calculated through a dimer approach. Extensive numerical studies are performed on an ethylene π-dimer to investigate the basis sets dependence of transfer integrals. Convergence of calculated transfer integrals is achieved with respect to both Gaussian and plane-wave basis sets, provided the same level of theory is used. Effects of diffuse and polarization Gaussian functions on transfer integrals are identified. Comparison of experimental and theoretical values of transfer integrals of the TTF-TCNQ charge transfer salt is also presented.

  5. Synthesis and spectroscopic studies of the charge transfer complexes of 2- and 3-aminopyridine

    NASA Astrophysics Data System (ADS)

    Mostafa, Adel; Bazzi, Hassan S.

    2009-09-01

    The interactions of the electron donors 2-aminopyridine (2APY) and 3-aminopyridine (3APY) with the π-acceptors tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 2-chloro-1,3,5-trinitrobenzene (picryl chloride, PC), and 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil) were studied spectrophotometrically in chloroform at room temperature. The electronic and infrared spectra of the formed molecular charge transfer (CT) complexes were recorded. Photometric titration showed that the stoichiometries of the reactions were fixed and depended on the nature of both the donor and the acceptor. The molecular structures of the CT-complexes were, however, independent of the position of the amino group on the pyridine ring and were formulated as [(APY)(TCNE)], [(APY)(DDQ)], [(APY)(PC)], and [(APY) (chloranil)]. The formation constants ( KCT), charge transfer energy ( ECT) and molar extinction coefficients ( ɛCT) of the formed CT-complexes were obtained.

  6. Conformationally Gated Charge Transfer in DNA Three-Way Junctions.

    PubMed

    Zhang, Yuqi; Young, Ryan M; Thazhathveetil, Arun K; Singh, Arunoday P N; Liu, Chaoren; Berlin, Yuri A; Grozema, Ferdinand C; Lewis, Frederick D; Ratner, Mark A; Renaud, Nicolas; Siriwong, Khatcharin; Voityuk, Alexander A; Wasielewski, Michael R; Beratan, David N

    2015-07-01

    Molecular structures that direct charge transport in two or three dimensions possess some of the essential functionality of electrical switches and gates. We use theory, modeling, and simulation to explore the conformational dynamics of DNA three-way junctions (TWJs) that may control the flow of charge through these structures. Molecular dynamics simulations and quantum calculations indicate that DNA TWJs undergo dynamic interconversion among "well stacked" conformations on the time scale of nanoseconds, a feature that makes the junctions very different from linear DNA duplexes. The studies further indicate that this conformational gating would control charge flow through these TWJs, distinguishing them from conventional (larger size scale) gated devices. Simulations also find that structures with polyethylene glycol linking groups ("extenders") lock conformations that favor CT for 25 ns or more. The simulations explain the kinetics observed experimentally in TWJs and rationalize their transport properties compared with double-stranded DNA. PMID:26266714

  7. Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.

    PubMed

    Liu, Chaoren; Beratan, David N; Zhang, Peng

    2016-04-21

    System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (charge delocalization and charge-transfer rates; however, in a system of units with different site energies, spatial correlations slow the fluctuations to bring units into degeneracy, in turn, slowing the charge-transfer rates. The spatial and temporal correlations of condensed phase medium fluctuations provide another source to control and tune the kinetics and dynamics of charge-transfer systems. PMID:27008541

  8. Charge transfer mobility of naphthodithiophenediimide derivative: Normal-mode and bond length relaxation analysis

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Liu, Yujuan; Zheng, Yujun

    2016-02-01

    In this letter, the charge transfer mobility of naphthalenediimide (NDTI) derivative is investigated. By employing the normal-mode analysis and bond length relaxation analysis, the influences of chemical elements on reorganization energies and intermolecular electronic couplings are investigated in NDTI derivative. The results show that the introduction of atom O would decrease reorganization energy in hole-hopping process and increase electronic coupling. This analysis encourages the molecular and material design in organic semiconductors.

  9. Charge-transfer excitons at organic semiconductor surfaces and interfaces.

    PubMed

    Zhu, X-Y; Yang, Q; Muntwiler, M

    2009-11-17

    When a material of low dielectric constant is excited electronically from the absorption of a photon, the Coulomb attraction between the excited electron and the hole gives rise to an atomic H-like quasi-particle called an exciton. The bound electron-hole pair also forms across a material interface, such as the donor/acceptor interface in an organic heterojunction solar cell; the result is a charge-transfer (CT) exciton. On the basis of typical dielectric constants of organic semiconductors and the sizes of conjugated molecules, one can estimate that the binding energy of a CT exciton across a donor/acceptor interface is 1 order of magnitude greater than k(B)T at room temperature (k(B) is the Boltzmann constant and T is the temperature). How can the electron-hole pair escape this Coulomb trap in a successful photovoltaic device? To answer this question, we use a crystalline pentacene thin film as a model system and the ubiquitous image band on the surface as the electron acceptor. We observe, in time-resolved two-photon photoemission, a series of CT excitons with binding energies < or = 0.5 eV below the image band minimum. These CT excitons are essential solutions to the atomic H-like Schrodinger equation with cylindrical symmetry. They are characterized by principal and angular momentum quantum numbers. The binding energy of the lowest lying CT exciton with 1s character is more than 1 order of magnitude higher than k(B)T at room temperature. The CT(1s) exciton is essentially the so-called exciplex and has a very low probability of dissociation. We conclude that hot CT exciton states must be involved in charge separation in organic heterojunction solar cells because (1) in comparison to CT(1s), hot CT excitons are more weakly bound by the Coulomb potential and more easily dissociated, (2) density-of-states of these hot excitons increase with energy in the Coulomb potential, and (3) electronic coupling from a donor exciton to a hot CT exciton across the D

  10. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  11. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2000-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  12. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.

    PubMed

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C Y

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N(2)(+)(v(+), N(+)) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N(2)(+)(X (2)Σ(g)(+), v(+) = 0-2, N(+) = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N(2)(+) PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔE(lab) = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E(cm)'s) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v(+) = 0-2, N(+) = 0-9) for the N(2)(+)(X (2)Σ(g)(+); v(+) = 0-2, N(+) = 0-9) + Ar CT reaction have been measured in the E(cm) range of 0.04-10.0 eV, revealing strong vibrational enhancements and E(cm)-dependencies of σ(v(+) = 0-2, N(+) = 0-9). The thermochemical threshold at E(cm) = 0.179 eV for the formation of Ar(+) from N(2)(+)(X; v(+) = 0, N(+)) + Ar was observed by the measured σ(v(+) = 0), confirming the narrow ΔE(cm) spread achieved in the present study. The σ(v(+) = 0-2; N(+)) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions

  13. CHARACTERIZING COUPLED CHARGE TRANSPORT WITH MULTISCALE MOLECULAR DYNAMICS

    SciTech Connect

    Swanson, Jessica

    2011-08-31

    This is the final progress report for Award DE-SC0004920, entitled 'Characterizing coupled charge transport with multi scale molecular dynamics'. The technical abstract will be provided in the uploaded report.

  14. Nonadiabatic couplings and charge transfer study in H + CS+ collision using time-dependent quantum dynamics

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2015-11-01

    Experiments have reported the high stability of HCS+ ion and inhibit to decompose over the range of collision energies. In this study, the various energy transfer channels of atomic H collision with CS+ molecular ion has been performed by ab initio computations at the multireference configuration interaction/aug-cc-pVQZ level of theory. The ground and several low-lying excited electronic state potential energy surfaces in three different molecular orientations, namely, two collinear configurations with, (1) H approaching the S atom (γ = 0°), (2) H approaching the C atom (γ = 180°) and one perpendicular configuration, (3) H approaching the centre of mass of CS (γ = 90°) with the diatom fixed at the equilibrium bond length, have been obtained. Nonadiabatic effects with Landau-Zener coupling leading to avoided crossings are observed between the ground- and the first-excited states in γ = 90° orientation, and also between the first- and second-excited states in γ = 180° orientation. Quantum dynamics have been performed to study the charge transfer using time-dependent wave packet method on the diabatic potential energy surfaces. The probability of charge transfer is found to be highest with 42% in γ = 180°. The high charge transfer probability result in the formation of H+ + CS channel which ascertains the high stability of HCS+ ion.

  15. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  16. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  17. Excitation of the ligand-to-metal charge transfer band induces electron tunnelling in azurin

    SciTech Connect

    Baldacchini, Chiara; Bizzarri, Anna Rita; Cannistraro, Salvatore

    2014-03-03

    Optical excitation of azurin blue copper protein immobilized on indium-tin oxide, in resonance with its ligand-to-metal charge transfer absorption band, resulted in a light-induced current tunnelling within the protein milieu. The related electron transport rate is estimated to be about 10{sup 5} s{sup −1}. A model based on resonant tunnelling through an azurin excited molecular state is proposed. The capability of controlling electron transfer processes through light pulses opens interesting perspectives for implementation of azurin in bio-nano-opto-electronic devices.

  18. New Type of Dual Solid-State Thermochromism: Modulation of Intramolecular Charge Transfer by Intermolecular π-π Interactions, Kinetic Trapping of the Aci-Nitro Group, and Reversible Molecular Locking

    NASA Astrophysics Data System (ADS)

    Naumov, Panče; Lee, Sang Cheol; Ishizawa, Nobuo; Jeong, Young Gyu; Chung, Ihn Hee; Fukuzumi, Shunichi

    2009-09-01

    When heated above room temperature, some crystalline polymorphs of the 1,3-bis(hydroxyalkylamino)-4,6-dinitrobenzenes (BDBn, n = 2-5), bis(hydroxyalkyl) analogues of the intramolecular charge-transfer molecule 1,3-diamino-4,6-dinitrobenzene, exhibit "dual" thermochromism: gradual color change from yellow to orange at lower temperatures, and sharp color change from orange to red at higher temperatures. These two thermochromic changes are related to different solid-state processes. When allowed to cool to room temperature, the yellow color of the thermochromic molecules with different alkyl length (n) is recovered with unexpectedly different kinetics, the order of the respective rate constants ranging from 10-7-10-6 s-1 for BDB2 to about 0.1 s-1 in the case of BDB3. The thermochromic mechanism and the reasons behind the different kinetics were clarified on the basis of detailed crystallographic characterization, kinetic thermoanalysis, and spectroscopic study of eight crystalline forms (seven polymorphs and one solvate). It was found that the polymorphism is due to the possibility of "locking" and "unlocking" of the alkyl arms by formation of a strong intramolecular hydrogen bond between the hydroxyl groups at their hydroxyl termini. The locking of BDB2, with shortest alkyl arms, is reversible and it can be controlled thermally; either of the two conformations can be obtained in the solid state by proper thermal treatment. By use of high temperature in situ single crystal X-ray diffraction analysis of BDB3, direct evidence was obtained that the gradual thermochromic change is related to increased distance and weakened π-π interactions between the stacked benzene rings: the lattice expands preferably in the stacking direction, causing enhanced oscillator strength and red shift of the absorption edge of the intramolecular charge transfer transition. The second, sharp thermochromic change had been assigned previously to solid-solid phase transition triggered by

  19. New type of dual solid-state thermochromism: modulation of intramolecular charge transfer by intermolecular pi-pi interactions, kinetic trapping of the aci-nitro group, and reversible molecular locking.

    PubMed

    Naumov, Pance; Lee, Sang Cheol; Ishizawa, Nobuo; Jeong, Young Gyu; Chung, Ihn Hee; Fukuzumi, Shunichi

    2009-10-22

    When heated above room temperature, some crystalline polymorphs of the 1,3-bis(hydroxyalkylamino)-4,6-dinitrobenzenes (BDBn, n = 2-5), bis(hydroxyalkyl) analogues of the intramolecular charge-transfer molecule 1,3-diamino-4,6-dinitrobenzene, exhibit "dual" thermochromism: gradual color change from yellow to orange at lower temperatures, and sharp color change from orange to red at higher temperatures. These two thermochromic changes are related to different solid-state processes. When allowed to cool to room temperature, the yellow color of the thermochromic molecules with different alkyl length (n) is recovered with unexpectedly different kinetics, the order of the respective rate constants ranging from 10(-7)-10(-6) s(-1) for BDB2 to about 0.1 s(-1) in the case of BDB3. The thermochromic mechanism and the reasons behind the different kinetics were clarified on the basis of detailed crystallographic characterization, kinetic thermoanalysis, and spectroscopic study of eight crystalline forms (seven polymorphs and one solvate). It was found that the polymorphism is due to the possibility of "locking" and "unlocking" of the alkyl arms by formation of a strong intramolecular hydrogen bond between the hydroxyl groups at their hydroxyl termini. The locking of BDB2, with shortest alkyl arms, is reversible and it can be controlled thermally; either of the two conformations can be obtained in the solid state by proper thermal treatment. By use of high temperature in situ single crystal X-ray diffraction analysis of BDB3, direct evidence was obtained that the gradual thermochromic change is related to increased distance and weakened pi-pi interactions between the stacked benzene rings: the lattice expands preferably in the stacking direction, causing enhanced oscillator strength and red shift of the absorption edge of the intramolecular charge transfer transition. The second, sharp thermochromic change had been assigned previously to solid-solid phase transition triggered

  20. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  1. Charge transfer and interface properties in inorganic superstructures and composites

    NASA Astrophysics Data System (ADS)

    Flyagina, I. S.; Petrov, A. A.; Pervov, V. S.

    2016-06-01

    The processes of charge transfer and electronic reconstruction at interfaces of inorganic superstructures and composites have not yet been adequately investigated. This review integrates and analyzes the results of theoretical and experimental studies of structural and electronic effects at interfaces of metal oxide or chalcogenide superstructures and composites. Charge transfer and, hence, change in interface properties compared to the properties of substructures are shown to be determined by the preparation method of composites and chemical nature of the superstructures, incommensurability of structural parameters and valence states of the constituent metals. The changes are maximal for nanoheterostructures, and the degree of change is related to electronic conductivity of substructures. The macroscopic properties of the composite materials depend on the amount of interfaces in their bulk. The bibliography includes 66 references.

  2. Charge transfer transitions within the octahedral uranate group

    NASA Astrophysics Data System (ADS)

    Bleijenberg, K. C.

    1980-07-01

    In this paper the excitation spectra of the luminescence of the octahedral uranate group (UO6-6) are presented for various uranium-doped compounds. The excitation bands have been assigned using the results of theoretical and experimental investigations into the spectroscopic properties of uranium hexafluoride which is isoelectronic with the octahedral uranate group. Charge transfer transitions from orbitals having mainly oxygen 2p character to orbitals having mainly uranium 5f charcter have been observed in the region 2.24-˜4 eV. Charge transfer transitions to orbitals having mainly uranium 6d character have been observed at 4.4 eV and at 5.4 eV.

  3. Negative ion-uranium hexafluoride charge transfer reactions

    NASA Astrophysics Data System (ADS)

    Streit, Gerald E.; Newton, T. W.

    1980-10-01

    The flowing afterglow technique has been used to study the process of charge transfer from selected negative ions (F-, Cl-, Br-, I-, SF6-) to UF6. The sole ionic product in all cases was observed to be UF6-. Data analysis was complicated by an unexpected coupling of chemical and diffusive ion loss processes when UF6- product ions were present. The rate coefficients for the charge transfer processes are (k in 10-9 cm3 molecule-1 s-1) F-, 1.3; Cl-, 1.1; Br-, 0.93; I-, 0.77; and SF6-, 0.69. The rate constants agree quite well with the classical Langevin predictions.

  4. Integrated Charge Transfer in Organic Ferroelectrics for Flexible Multisensing Materials.

    PubMed

    Xu, Beibei; Ren, Shenqiang

    2016-09-01

    The ultimate or end point of functional materials development is the realization of strong coupling between all energy regimes (optical, electronic, magnetic, and elastic), enabling the same material to be utilized for multifunctionalities. However, the integration of multifunctionalities in soft materials with the existence of various coupling is still in its early stage. Here, the coupling between ferroelectricity and charge transfer by combining bis(ethylenedithio)tetrathiafulvalene-C60 charge-transfer crystals with ferroelectric polyvinylidene fluoride polymer matrix is reported, which enables external stimuli-controlled polarization, optoelectronic and magnetic field sensing properties. Such flexible composite films also display a superior strain-dependent capacitance and resistance change with a giant piezoresistance coefficient of 7.89 × 10(-6) Pa(-1) . This mutual coupled material with the realization of enhanced couplings across these energy domains opens up the potential for multisensing applications. PMID:27378088

  5. Charge transfer magnetoexciton formation at vertically coupled quantum dots.

    PubMed

    Gutiérrez, Willian; Marin, Jairo H; Mikhailov, Ilia D

    2012-01-01

    A theoretical investigation is presented on the properties of charge transfer excitons at vertically coupled semiconductor quantum dots in the presence of electric and magnetic fields directed along the growth axis. Such excitons should have two interesting characteristics: an extremely long lifetime and a permanent dipole moment. We show that wave functions and the low-lying energies of charge transfer exciton can be found exactly for a special morphology of quantum dots that provides a parabolic confinement inside the layers. To take into account a difference between confinement potentials of an actual structure and of our exactly solvable model, we use the Galerkin method. The density of energy states is calculated for different InAs/GaAs quantum dots' dimensions, the separation between layers, and the strength of the electric and magnetic fields. A possibility of a formation of a giant dipolar momentum under external electric field is predicted. PMID:23092373

  6. Charge transfer magnetoexciton formation at vertically coupled quantum dots

    PubMed Central

    2012-01-01

    A theoretical investigation is presented on the properties of charge transfer excitons at vertically coupled semiconductor quantum dots in the presence of electric and magnetic fields directed along the growth axis. Such excitons should have two interesting characteristics: an extremely long lifetime and a permanent dipole moment. We show that wave functions and the low-lying energies of charge transfer exciton can be found exactly for a special morphology of quantum dots that provides a parabolic confinement inside the layers. To take into account a difference between confinement potentials of an actual structure and of our exactly solvable model, we use the Galerkin method. The density of energy states is calculated for different InAs/GaAs quantum dots’ dimensions, the separation between layers, and the strength of the electric and magnetic fields. A possibility of a formation of a giant dipolar momentum under external electric field is predicted. PMID:23092373

  7. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  8. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  9. Charge-transfer-state photoluminescence in asymmetric coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Norris, T. B.; Vodjdani, N.; Vinter, B.; Weisbuch, C.; Mourou, G. A.

    1989-07-01

    We have performed continuous and time-resolved photoluminescence experiments on novel double-quantum-well structures in Schottky diodes. We have directly observed the buildup of a charge-transfer (CT) state in which the electrons and holes are in separate wells because of the fact that they tunnel in opposite directions. We have studied the effect of an electric field on the CT state formation, and have observed a strong, linear Stark shift of the CT luminescence.

  10. Inelastic Heat Transfer in Molecular Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dyrkacz, Joanna; Walczak, Kamil

    We examine electronic heat conduction via molecular complexes in the presence of local electron-phonon coupling effects. In off-resonance transport regime, even weak electron-phonon interactions lead to phonon-mediated changes of transport characteristics. In the nearly resonance conditions, the strong electron-phonon coupling reduces the height of the main conductance peak, generating additional satellites (phonon sidebands) in transport characteristics and shifting molecular energy spectrum via reorganization (polaron) energy. In the past, it was shown that inclusion of electron-phonon coupling effects into computational scheme reduces discrepancy between theoretical results and experimental data. The aim of this project is to study electron-phonon coupling effects on electronic heat transfer at molecular level. For that purpose, we use non-perturbative computational scheme based on inelastic version of Landauer formula, where the Green's functions technique combined with polaron transformation was used to calculate multi-channel transmission probability function, while accessibility of individual conduction channels is governed by Boltzmann statistics. Our analysis is based on the hypothesis that the dynamics created by electron-phonon interaction onto the molecular quantum dot asymmetrically connected to two thermal reservoirs will lead to thermal rectification effect. Our results will be discussed in a few aspects: electron-phonon coupling strength, phonon dispersion relationship, and heat fluxes generated by temperature difference as well as bias voltage.

  11. Interfacial Charge Transfer States in Condensed Phase Systems

    NASA Astrophysics Data System (ADS)

    Vandewal, Koen

    2016-05-01

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified.

  12. Interfacial Charge Transfer States in Condensed Phase Systems.

    PubMed

    Vandewal, Koen

    2016-05-27

    Intermolecular charge transfer (CT) states at the interface between electron-donating (D) and electron-accepting (A) materials in organic thin films are characterized by absorption and emission bands within the optical gap of the interfacing materials. CT states efficiently generate charge carriers for some D-A combinations, and others show high fluorescence quantum efficiencies. These properties are exploited in organic solar cells, photodetectors, and light-emitting diodes. This review summarizes experimental and theoretical work on the electronic structure and interfacial energy landscape at condensed matter D-A interfaces. Recent findings on photogeneration and recombination of free charge carriers via CT states are discussed, and relations between CT state properties and optoelectronic device parameters are clarified. PMID:26980308

  13. Unified description of charge transfer mechanisms and vibronic dynamics in nanoscale junctions.

    PubMed

    Avriller, R

    2011-03-16

    We propose a general framework that unifies the description of counting statistics of transmitted (fermionic) charges as it is commonly used in the quantum transport community with the description of counting statistics of phonons (bosons). As a particular example, we study on the same footing the counting statistics of electrons transferred through a molecular junction and the corresponding population dynamics of the associated molecular vibrational mode. In the tunnel limit, non-perturbative results in the electron-phonon interaction are derived that unify complementary approaches based on rate equations or on the use of non-equilibrium Green functions. PMID:21335641

  14. Spontaneous charge transfer at organic-organic homointerfaces to establish thermodynamic equilibrium

    SciTech Connect

    Duhm, S.; Glowatzki, H.; Rabe, J. P.; Koch, N.; Johnson, R. L.

    2007-03-19

    The energy level alignment of {alpha},{omega}-dihexylsexithienyl (DH6T) mono- and multilayers on tetrafluorotetracyanoquinodimethane (F4-TCNQ) precovered Ag(111) and polycrystalline Au substrates was investigated with ultraviolet photoelectron spectroscopy. For certain F4-TCNQ precoverages molecular level pinning at DH6T monolayer-multilayer homointerfaces was observed. The pinning behavior shows that thermodynamic equilibrium can be established across hexyl chains via charge transfer, indicating the limited use of these short alkyl chains for insulation in the field of molecular electronics.

  15. Charge Transfer Models of Zinc and Magnesium in Water.

    PubMed

    Soniat, Marielle; Hartman, Lisa; Rick, Steven W

    2015-04-14

    Quantum mechanical studies point to the importance of polarization and charge transfer (CT) in zinc binding. A new CT force field is used to study these effects in ion-water dimers and in aqueous solution. Quantum mechanics calculations are carried out to determine amounts of CT. Models for zinc and magnesium are parametrized to reproduce solvation structure, hydration free energy, and CT properties. The new models are subjected to energy decomposition, in which the effects of polarization and CT are investigated. The importance of these multibody interactions in the liquid is also considered. We find that, for divalent cations, polarization and charge transfer both strongly affect binding to water. Though polarization increases the internal (self) energy of water and ions, this is more than compensated for by a stronger ion-water interaction energy. The direction of the charge transfer from the water to the cation weakens the ion-water interaction; this increase in energy is counteracted by a decrease in the system energy due to electron delocalization. PMID:26574375

  16. Energy and charge transfer in ionized argon coated water clusters

    SciTech Connect

    Kočišek, J. E-mail: michal.farnik@jh-inst.cas.cz Lengyel, J.; Fárník, M. E-mail: michal.farnik@jh-inst.cas.cz; Slavíček, P. E-mail: michal.farnik@jh-inst.cas.cz

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H{sub 2}O){sub n} clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar{sup +} and water occurs above the threshold; at higher electron energies above ∼28 eV, an excitonic transfer process between Ar{sup +}* and water opens leading to new products Ar{sub n}H{sup +} and (H{sub 2}O){sub n}H{sup +}. On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H{sub 2}O){sub n}H{sub 2}{sup 2+} and (H{sub 2}O){sub n}{sup 2+} ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  17. Theory of ultrafast heterogeneous electron transfer: Contributions of direct charge transfer excitations to the absorbance

    NASA Astrophysics Data System (ADS)

    Wang, Luxia; Willig, Frank; May, Volkhard

    2007-04-01

    Absorption spectra related to heterogeneous electron transfer are analyzed with the focus on direct charge transfer transition from the surface attached molecule into the semiconductor band states. The computations are based on a model of reduced dimensionality with a single intramolecular vibrational coordinate but a complete account for the continuum of conduction band states. The applicability of this model to perylene on TiO2 has been demonstrated in a series of earlier papers. Here, based on a time-dependent formulation, the absorbance is calculated with the inclusion of charge transfer excitations. A broad parameter set inspired by the perylene TiO2 systems is considered. In particular, the description generalizes the Fano effect to heterogeneous electron transfer reactions. Preliminary simulations of measured spectra are presented for perylene-catechol attached to TiO2.

  18. Quantum information transfer between topological and conventional charge qubits

    NASA Astrophysics Data System (ADS)

    Jun, Li; Yan, Zou

    2016-02-01

    We propose a scheme to realize coherent quantum information transfer between topological and conventional charge qubits. We first consider a hybrid system where a quantum dot (QD) is tunnel-coupled to a semiconductor Majorana-hosted nanowire (MNW) via using gated control as a switch, the information encoded in the superposition state of electron empty and occupied state can be transferred to each other through choosing the proper interaction time to make measurements. Then we consider another system including a double QDs and a pair of parallel MNWs, it is shown that the entanglement information transfer can be realized between the two kinds of systems. We also realize long distance quantum information transfer between two quantum dots separated by an MNW, by making use of the nonlocal fermionic level formed with the pared Majorana feimions (MFs) emerging at the two ends of the MNW. Furthermore, we analyze the teleportationlike electron transfer phenomenon predicted by Tewari et al. [Phys. Rev. Lett. 100, 027001 (2008)] in our considered system. Interestingly, we find that this phenomenon exactly corresponds to the case that the information encoded in one QD just returns back to its original place during the dynamical evolution of the combined system from the perspective of quantum state transfer. Project supported by the National Natural Science Foundation of China (Grant No. 11304031).

  19. Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing.

    PubMed

    Cole, Jesse J; Barry, Chad R; Knuesel, Robert J; Wang, Xinyu; Jacobs, Heiko O

    2011-06-01

    Contact electrification creates an invisible mark, overlooked and often undetected by conventional surface spectroscopic measurements. It impacts our daily lives macroscopically during electrostatic discharge and is equally relevant on the nanoscale in areas such as soft lithography, transfer, and printing. This report describes a new conceptual approach to studying and utilizing contact electrification beyond prior surface force apparatus and point-contact implementations. Instead of a single point contact, our process studies nanocontact electrification that occurs between multiple nanocontacts of different sizes and shapes that can be formed using flexible materials, in particular, surface-functionalized poly(dimethylsiloxane) (PDMS) stamps and other common dielectrics (PMMA, SU-8, PS, PAA, and SiO(2)). Upon the formation of conformal contacts and forced delamination, contacted regions become charged, which is directly observed using Kelvin probe force microscopy revealing images of charge with sub-100-nm lateral resolution. The experiments reveal chemically driven interfacial proton exchange as the dominant charging mechanism for the materials that have been investigated so far. The recorded levels of uncompensated charges approach the theoretical limit that is set by the dielectric breakdown strength of the air gap that forms as the surfaces are delaminated. The macroscopic presence of the charges is recorded using force-distance curve measurements involving a balance and a micromanipulator to control the distance between the delaminated objects. Coulomb attraction between the delaminated surfaces reaches 150 N/m(2). At such a magnitude, the force finds many applications. We demonstrate the utility of printed charges in the fields of (i) nanoxerography and (ii) nanotransfer printing whereby the smallest objects are ∼10 nm in diameter and the largest objects are in the millimeter to centimeter range. The printed charges are also shown to affect the electronic

  20. Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in para-nitroaniline

    NASA Astrophysics Data System (ADS)

    Eriksen, Janus J.; Sauer, Stephan P. A.; Mikkelsen, Kurt V.; Christiansen, Ove; Jensen, Hans Jørgen Aa.; Kongsted, Jacob

    2013-07-01

    We investigate the failure of time-dependent density functional theory (TDDFT) with the CAM-B3LYP exchange-correlation (xc) functional coupled to the polarisable embedding (PE) scheme (PE-CAM-B3LYP) in reproducing the solvatochromic shift of the lowest intense charge-transfer excitation in para-nitroaniline (pNA) in water by comparing with results obtained with the coupled cluster singles and doubles (CCSD) model also coupled to the polarisable embedding scheme (PE-CCSD). We determine the amount of charge separation in the ground and excited charge-transfer state with both methods by calculating the electric dipole moments in the gas phase and for 100 solvent configurations. We find that CAM-B3LYP overestimates the amount of charge separation inherent in the ground state and TDDFT/CAM-B3LYP drastically underestimates this amount in the excited charge-transfer state. As the errors in the solvatochromatic shift are found to be inverse proportional to the change in dipole moment upon excitation, we conclude that the flaws in the description of the solvatochromic shift of this excitation are related to TDDFT itself and how it responds to the solvent effects modelled by the PE scheme. We recommend therefore to benchmark results of TDDFT calculations with CAM-B3LYP for intramolecular charge-transfer excitations in molecular systems similar to pNA against higher level ab initio wave function methods, like, e.g. CCSD, prior to their use. Using the calculated change in dipole moment upon excitation as a measure for charge-transfer character, we furthermore confirm that the difference between excitation energies calculated with TDDFT and with the Tamm-Dancoff approximation (TDA) to TDDFT is indeed correlated with the charge-transfer character of a given electronic transition both in vacuo and in solution. This is supported by a corresponding correlation between the change in dipole moment and the size of the Λ index diagnostic for the investigated CT excitation.

  1. Ab initio charge-carrier mobility model for amorphous molecular semiconductors

    NASA Astrophysics Data System (ADS)

    Massé, Andrea; Friederich, Pascal; Symalla, Franz; Liu, Feilong; Nitsche, Robert; Coehoorn, Reinder; Wenzel, Wolfgang; Bobbert, Peter A.

    2016-05-01

    Accurate charge-carrier mobility models of amorphous organic molecular semiconductors are essential to describe the electrical properties of devices based on these materials. The disordered nature of these semiconductors leads to percolative charge transport with a large characteristic length scale, posing a challenge to the development of such models from ab initio simulations. Here, we develop an ab initio mobility model using a four-step procedure. First, the amorphous morphology together with its energy disorder and intermolecular charge-transfer integrals are obtained from ab initio simulations in a small box. Next, the ab initio information is used to set up a stochastic model for the morphology and transfer integrals. This stochastic model is then employed to generate a large simulation box with modeled morphology and transfer integrals, which can fully capture the percolative charge transport. Finally, the charge-carrier mobility in this simulation box is calculated by solving a master equation, yielding a mobility function depending on temperature, carrier concentration, and electric field. We demonstrate the procedure for hole transport in two important molecular semiconductors, α -NPD and TCTA. In contrast to a previous study, we conclude that spatial correlations in the energy disorder are unimportant for α -NPD. We apply our mobility model to two types of hole-only α -NPD devices and find that the experimental temperature-dependent current density-voltage characteristics of all devices can be well described by only slightly decreasing the simulated energy disorder strength.

  2. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    NASA Astrophysics Data System (ADS)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-01

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an

  3. Coupled electron-nuclear dynamics: charge migration and charge transfer initiated near a conical intersection.

    PubMed

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J; Robb, Michael A

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N(+)-Phenyl, N-Phenyl(+)). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an

  4. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    SciTech Connect

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled

  5. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    SciTech Connect

    Yao, Yi; Berkowitz, Max L. E-mail: ykanai@unc.edu; Kanai, Yosuke E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  6. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Berkowitz, Max L.; Kanai, Yosuke

    2015-12-01

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na+ and K+ ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  7. Digitized charge transfer magnitude determined by metal-organic coordination number.

    PubMed

    Yang, Hung-Hsiang; Chu, Yu-Hsun; Lu, Chun-I; Yang, Tsung-Han; Yang, Kai-Jheng; Kaun, Chao-Cheng; Hoffmann, Germar; Lin, Minn-Tsong

    2013-03-26

    Well-ordered metal-organic nanostructures of Fe-PTCDA (perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride) chains and networks are grown on a Au(111) surface. These structures are investigated by high-resolution scanning tunneling microscopy. Digitized frontier orbital shifts are followed in scanning tunneling spectroscopy. By comparing the frontier energies with the molecular coordination environments, we conclude that the specific coordination affects the magnitude of charge transfer onto each PTCDA in the Fe-PTCDA hybridization system. A basic model is derived, which captures the essential underlying physics and correlates the observed energetic shift of the frontier orbital with the charge transfer. PMID:23451803

  8. Charge-transfer dynamics in azobenzene alkanethiolate self-assembled monolayers on gold

    NASA Astrophysics Data System (ADS)

    Gahl, Cornelius; Schmidt, Roland; Brete, Daniel; Paarmann, Stephanie; Weinelt, Martin

    2016-01-01

    We have studied the charge-transfer dynamics in azobenzene-functionalized alkanethiolate self-assembled monolayers. We compare the core-hole-clock technique, i.e., resonant vs. non-resonant contributions in the azobenzene autoionization of the Cls-π* core exciton, with the lifetime of a molecular resonance determined by two-photon photoemission spectroscopy using femtosecond laser pulses. Both techniques yield comparable charge-transfer times of 80 ± 20 fs for a linker consisting of three CH2 groups and one oxygen unit. Thus the quenching of the excitation is about one order of magnitude faster than the time required for the trans to cis isomerization of the azobenzene photoswitch in solution.

  9. Low-energy charge transfer between C5+ and atomic hydrogen

    SciTech Connect

    Draganic, Ilija N; Havener, Charles C; Seely, D. G.

    2011-01-01

    Charge transfer with carbon ions has been identified as important in both magnetic fusion plasma devices and, more recently, in solar wind interactions with comets, planets, or neutrals in the heliosphere. A merged-beams technique is used to measure the absolute total charge-transfer cross section for C{sup 5+} and atomic H over four orders of magnitude in collision energy, from 12,000 to 0.64 eV/u. The present measurements are compared with previous measurements using an atomic hydrogen target and benchmark available classical trajectory Monte Carlo and molecular-orbital close-coupling calculations. An observed increasing cross section below 10 eV/u is attributed to trajectory effects due to the ion-induced dipole attraction between reactants.

  10. Low Energy Charge Transfer between C5+ and Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; Havener, Charles C

    2011-01-01

    Charge transfer (CT) with carbon ions has been identified for a long time as important in both magnetic fusion plasma devices and more recently in solar wind interactions with comets, planets, or neutrals in the heliosphere. A merged-beams technique is used to measure the absolute total charge transfer cross section for C5+ and atomic H over four orders of magnitude in collision energy, from 12,000 eV/u to 0.64 eV/u. The present measurements are compared with previous measurements using an atomic hydrogen target and benchmark available classical trajectory Monte-Carlo and molecular-orbital close-coupling calculations. An increasing cross section below 10 eV/u is attributed to trajectory effects due to the ion-induced dipole attraction between reactants.

  11. Charge transfer efficiency in proton damaged CCD`s

    SciTech Connect

    Hardy, T. |; Murowinski, R.; Deen, M.J.

    1998-04-01

    The authors have performed detailed measurements of the charge transfer efficiency (CTE) in a thinned, backside-illuminated imaging charge-coupled device (CCD). The device had been damaged in three separate sections by proton radiation typical of that which a CCD would receive in space-borne experiments, nuclear imaging, or particle detection. They examined CTE as a function of signal level, temperature, and radiation dose. The dominant factor affecting the CTE in radiation-damaged CCD`s is seen to be trapping by bulk states. They present a simple physical model for trapping as a function of transfer rate, trap concentration, and temperature. They have made calculations using this model and arrived at predictions which closely match the measured results. The CTE was also observed to have a nonlinear dependence on signal level. Using two-dimensional device simulations to examine the distribution of the charge packets in the CCD channel over a range of signal levels, they were able to explain the observed variation.

  12. Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface.

    PubMed

    Akimov, Alexey V; Prezhdo, Oleg V

    2014-01-29

    Charge carrier multiplication in organic heterojunction systems, a process known as singlet fission (SF), holds promise for development of solar cells with enhanced photon-to-electron yields, and therefore it is of substantial fundamental interest. The efficiency of photovoltaic devices based on this principle is determined by complex dynamics involving key electronic states coupled to particular nuclear motions. Extensive experimental and theoretical studies are dedicated to this topic, generating multiple opinions on the nature of such states and motions, their properties, and mechanisms of the competing processes, including electron-phonon relaxation, SF, and charge separation. Using nonadiabatic molecular dynamics, we identify the key steps and mechanisms involved in the SF and subsequent charge separation, and build a comprehensive kinetic scheme that is consistent with the existing experimental and theoretical results. The ensuing model provides time scales that are in excellent agreement with the experimental observations. We demonstrate that SF competes with the traditional photoinduced electron transfer between pentacene and C60. Efficient SF relies on the presence of intermediate dark states within the pentacene subsystem. Having multiexciton and charge transfer character, these states play critical roles in the dynamics, and should be considered explicitly when explaining the entire process from the photoexcitation to the final charge separation. PMID:24397723

  13. Radiative charge-transfer lifetime of the excited state of (NaCa){sup +}

    SciTech Connect

    Makarov, Oleg P.; Cote, R.; Michels, H.; Smith, W.W.

    2003-04-01

    New experiments were proposed recently to investigate the regime of cold atomic and molecular ion-atom collision processes in a special hybrid neutral-atom-ion trap under high-vacuum conditions. We study the collisional cooling of laser precooled Ca{sup +} ions by ultracold Na atoms. Modeling this process requires knowledge of the radiative lifetime of the excited singlet A {sup 1}{sigma}{sup +} state of the (NaCa){sup +} molecular system. We calculate the rate coefficient for radiative charge transfer using a semiclassical approach. The dipole radial matrix elements between the ground and the excited states, and the potential curves were calculated using complete active space self-consistent field and Moeller-Plesset second-order perturbation theory with an extended Gaussian basis, 6-311+G (3df). The semiclassical charge-transfer rate coefficient was averaged over a thermal Maxwellian distribution. In addition, we also present elastic collision cross sections and the spin-exchange cross section. The rate coefficient for charge transfer was found to be 2.3x10{sup -16} cm{sup 3}/sec, while those for the elastic and spin-exchange cross sections were found to be several orders of magnitude higher (1.1x10{sup -8} cm{sup 3}/sec and 2.3x10{sup -9} cm{sup 3}/sec, respectively). This confirms our assumption that the milli-Kelvin regime of collisional cooling of calcium ions by sodium atoms is favorable with the respect to low loss of calcium ions due to the charge transfer.

  14. Tunable charge transfer properties in metal-phthalocyanine heterojunctions

    NASA Astrophysics Data System (ADS)

    Siles, P. F.; Hahn, T.; Salvan, G.; Knupfer, M.; Zhu, F.; Zahn, D. R. T.; Schmidt, O. G.

    2016-04-01

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin.Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of

  15. Characteristics of Intramolecular Charge Transfer by J-Aggregates in Merocyanine Dye LB Films.

    PubMed

    Yang, Chang Heon; Kwon, Young-Soo; Shin, Hoon-Kyu

    2016-06-01

    In this study, for the development of future molecular electronic devices, we have investigated the characteristics of the aggregates of Langmuir-Blodgett films. The characteristics of intramolecular charge transfer by J-aggregates in merocyanine dye LB films have been studied experimentally by using UV irradiation and heat treatment. In addition to intramolecular charge transfer, we also studied the conjugation and energy changes of the molecules. In case a dye is thinned by LB method, the alkyl chain is often displaced in order to form a mono-molecular film with ease. Since the molecular association form is often made by self-organization of molecules themselves, in case the dye and the alkyl chain are strongly bonded by the covalent bond, it may be said that the properties of the LB film to be built up are almost determined at the time of synthesis of film-forming molecules. Meanwhile, since, in case LB film is fabricated by the diffusion absorption method, the cohesive force between the water-soluble dye and the surface-active mono-molecular film is electrostatic, the dye molecule can move relatively freely on the air/water interface, which may be regarded as a two-dimensional crystal growth process. PMID:27427711

  16. Charge transfer in proton-hydrogen collisions under Debye plasma

    SciTech Connect

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2015-02-15

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20–1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  17. Charge transfer in proton-hydrogen collisions under Debye plasma

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2015-02-01

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20-1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  18. Molecular Transfer Printing Using Block Copolymers

    NASA Astrophysics Data System (ADS)

    Ji, Shengxiang; Liu, Chi-Chun; Liu, Guoliang; Nealey, Paul

    2009-03-01

    We report a new parallel patterning technique, molecular transfer printing (MTP), for replicating geometrically complex patterns over macroscopic areas with sub-15 nm feature dimensions, and the ability to replicate the same pattern multiple times. In MTP, inks are mixed with block copolymers (BCPs) and deposited as films on a substrate. The inks are compatible with only one block of the BCP, and sequestered into domains of nanometer scale dimensions after microphase separation. A second substrate is then placed in contact with the surface of the film. By designing the inks to react, adsorb, or otherwise interact with the second substrate, inks are transferred to the second substrate in the exact pattern of domains present at the surface of the ``master'' BCP film. Here we demonstrate high degrees of perfection on both line and dot patterns. We also show that 1) the master template can be regenerated, 2) the resultant replica can be used to direct the assembly of BCPs and as a daughter master for MTP, and 3) the master and daughter templates can be reused tens of times.

  19. Tunable charge transfer properties in metal-phthalocyanine heterojunctions.

    PubMed

    Siles, P F; Hahn, T; Salvan, G; Knupfer, M; Zhu, F; Zahn, D R T; Schmidt, O G

    2016-04-28

    Organic materials such as phthalocyanine-based systems present a great potential for organic device applications due to the possibility of integrating films of different organic materials to create organic heterostructures which combine the electrical capabilities of each material. This opens the possibility to precisely engineer and tune new electrical properties. In particular, similar transition metal phthalocyanines demonstrate hybridization and charge transfer properties which could lead to interesting physical phenomena. Although, when considering device dimensions, a better understanding and control of the tuning of the transport properties still remain in the focus of research. Here, by employing conductive atomic force microscopy techniques, we provide an insight about the nanoscale electrical properties and transport mechanisms of MnPc and fluorinated phthalocyanines such as F16CuPc and F16CoPc. We report a transition from typical diode-like transport mechanisms for pure MnPc thin films to space-charge-limited current transport regime (SCLC) for Pc-based heterostructures. The controlled addition of fluorinated phthalocyanine also provides highly uniform and symmetric-polarized transport characteristics with conductance enhancements up to two orders of magnitude depending on the polarization. We present a method to spatially map the mobility of the MnPc/F16CuPc structures with a nanoscale resolution and provide theoretical calculations to support our experimental findings. This well-controlled nanoscale tuning of the electrical properties for metal transition phthalocyanine junctions stands as key step for future phthalocyanine-based electronic devices, where the low dimension charge transfer, mediated by transition metal atoms could be intrinsically linked to a transfer of magnetic moment or spin. PMID:27049842

  20. Charge transfer reaction of multi-charged oxygen ions with O2

    NASA Astrophysics Data System (ADS)

    Holzscheiter, H. M.; Church, D. A.

    1981-10-01

    The reaction rates for charge transfer from O2 to doubly and triply charged oxygen atoms are measured in a demonstration of the measurement capabilities of a system at ultrahigh vacuum with low-energy magnetically confined ions. Ions were produced by electron impact ionization of gas within a Penning-type ion trap, with selective removal of unwanted ionization states by radio-frequency resonant excitation. Ion number mass-to-charge ratio spectra obtained at partial pressures of O2 from 9.9 x 10 to the -9th to 1.5 x 10 to the -7th torr yield rate constants of 1.0 x 10 to the -9th cu cm/sec and 2.5 x 10 to the -9th cu cm/sec for the O(2+) and O(3+) reactions, respectively. Measurements made at a 30% increase of the effective axial well depth of the trap demonstrate that the rate constant is essentially energy independent in the energy range studies, implying that the O(2+) cross section for charge transfer has an inverse velocity dependence of the Langevin type, despite a reaction rate lower than the Langevin valve.

  1. Coupled quantum-classical method for long range charge transfer: relevance of the nuclear motion to the quantum electron dynamics

    NASA Astrophysics Data System (ADS)

    da Silva, Robson; Hoff, Diego A.; Rego, Luis G. C.

    2015-04-01

    Charge and excitonic-energy transfer phenomena are fundamental for energy conversion in solar cells as well as artificial photosynthesis. Currently, much interest is being paid to light-harvesting and energy transduction processes in supramolecular structures, where nuclear dynamics has a major influence on electronic quantum dynamics. For this reason, the simulation of long range electron transfer in supramolecular structures, under environmental conditions described within an atomistic framework, has been a difficult problem to study. This work describes a coupled quantum mechanics/molecular mechanics method that aims at describing long range charge transfer processes in supramolecular systems, taking into account the atomistic details of large molecular structures, the underlying nuclear motion, and environmental effects. The method is applied to investigate the relevance of electron-nuclei interaction on the mechanisms for photo-induced electron-hole pair separation in dye-sensitized interfaces as well as electronic dynamics in molecular structures.

  2. Spectroscopic Structural Investigations of Charge-Transfer Complexes of n-DONORS and - and Pi-Acceptors

    NASA Astrophysics Data System (ADS)

    Nour, El-Metwally; Alqaradawi, Siham Y.

    2009-06-01

    Molecular charge - transfer complexes of n-electron donors such as amines, pyridines and polynitrogen cyclic bases with both sigma- and pi-acceptors have been studied spectrophotometrically in chloroform. The reaction stoichiometries were determined using photometric titration methods. The formed CT-complexes are characterized and formulated based on electronic and infrared spectra as well as elemental and thermal measurements.

  3. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    NASA Astrophysics Data System (ADS)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  4. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    SciTech Connect

    Kilgour, Michael; Segal, Dvira

    2015-07-14

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This “Landauer-Büttiker’s probe technique” can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, k{sub B}T/ϵ{sub B} > 1/25, with ϵ{sub B} as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker’s probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  5. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    NASA Astrophysics Data System (ADS)

    Kilgour, Michael; Segal, Dvira

    2015-07-01

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This "Landauer-Büttiker's probe technique" can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, kBT/ɛB > 1/25, with ɛB as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker's probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  6. Effective bridge spectral density for long-range biological energy and charge transfer

    NASA Astrophysics Data System (ADS)

    Kühn, Oliver; Rupasov, Valery; Mukamel, Shaul

    1996-04-01

    The role of medium-induced relaxation of intermediate (bridge) sites in energy and charge transfer processes in molecular aggregates of arbitrary size and geometry is explored by means of Green's function techniques. The coupling of electronic and (solvent and intramolecular) nuclear degrees of freedom is incorporated using the Brownian oscillator model, which allows an exact calculation of the necessary two-point and four-point correlation functions of exciton operators. The signatures of energy transfer and spectral diffusion in time- and frequency-resolved fluorescence spectroscopy are studied. A unified expression for the frequency-dependent transfer rate is derived, which interpolates between the sequential and superexchange limits. Numerical results and a Liouville space pathway analysis for a donor-acceptor system coupled through a single bridge molecule are presented.

  7. Charge transfer interactions in oligomer coated gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Newmai, M. Boazbou; Kumar, Pandian Senthil

    2016-05-01

    Gold nanoclusters were synthesized by a bottom-up synergistic approach of in-situ oligomerization of the monomer, N-vinyl pyrrolidone (NVP) and simultaneous weak reduction of Au-NVP complexes in the absence of any other external energy sources, thereby making these tiny gold clusters as the most elemental building blocks to construct further novel nano/microstructures with application potentials. It is well-known that metal clusters with less than 2 nm size do not show the usual surface plasmon band, because of the presence of a band-gap at the fermi level. Nevertheless, our present oligomer coated gold clusters show a discrete intense band at around 630 nm, which could very well be attributed to the charge transfer between the oligomer chain and the surface Au atoms. Such kind of sacrificial plasmon induced charge transfer interaction, observed for the very first time to the best of our knowledge, were also strongly corroborated through the enhancement / shifting of specific vibrational / rotational peaks as observed from the FTIR and Raman measurements as a function of the metal oxidation states, thus representing a new prototype for an efficient solar energy conversion probe.

  8. Dynamical Theory of Charge Transfer Between Complex Atoms and Surfaces

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Basudev; Marston, Brad

    2000-03-01

    An existing dynamical quantum many-body theory of charge transfer(A. V. Onufriev and J. B. Marston, Phys. Rev. B 53), 13340 (1996); J. Merino and J. B. Marston, Phys. Rev. B 58, 6982 (1998). describes atoms with simple s-orbitals, such as alkalis and alkaline-earths, interacting with metal surfaces. The many-body equations of motion (EOM) are developed systematically as an expansion in the number of surface particle-hole excitations. Here we generalize this theory to describe atoms with richer orbital structures, such as atomic oxygen. In the simplest version of the model, only the single-particle p_z-orbitals of the atom, the ones oriented perpendicular to the surface, participate directly in resonant charge transfer as they have the largest overlap with the metallic wavefunctions. However, as the several-electron Russell-Saunders eigenstates, labeled by total angular momenta quantum numbers J, L, and S, are built out of products of single-particle orbitals, non-trivial matrix elements must be incorporated into the many-body EOM's. Comparison to recent experimental results(A. C. Lavery, C. E. Sosolik, and B. H. Cooper, Nucl. Instrum. Meth. B 157), 42 (1999); A. C. Lavery et al. to appear in Phys. Rev. B. on the scattering of low-energy oxygen ions off Cu(001) surfaces is made.

  9. Mutation induction by charged particles of defined linear energy transfer.

    PubMed

    Hei, T K; Chen, D J; Brenner, D J; Hall, E J

    1988-07-01

    The mutagenic potential of charged particles of defined linear energy transfer (LET) was assessed using the hypoxanthine-guanine phosphoribosyl transferase locus (HGPRT) in primary human fibroblasts. Exponentially growing cultures of early passaged fibroblasts were grown as monolayers on thin mylar sheets and were irradiated with accelerated protons, deuterons or helium-3 ions. The mutation rates were compared with those generated by 137Cs gamma-rays. LET values for charged particles accelerated at the Radiological Research Accelerator Facility, using the track segment mode, ranged from 10 to 150 keV/micron. After irradiation, cells were trypsinized, subcultured and assayed for both cytotoxicity and 6-thioguanine resistance. For gamma-rays, and for the charged particles of lower LET, the dose-response curves for cell survival were characterized by a marked initial shoulder, but approximated to an exponential function of dose for higher LETs. Mutation frequencies, likewise, showed a direct correlation to LET over the dose range examined. Relative biological effectiveness (RBE) for mutagenesis, based on the initial slopes of the dose-response curves, ranged from 1.30 for 10 keV/micron protons to 9.40 for 150 keV/micron helium-3 ions. Results of the present studies indicate that high-LET radiations, apart from being efficient inducers of cell lethality, are even more efficient in mutation induction as compared to low-LET ionizing radiation. These data are consistent with results previously obtained with both rodent and human fibroblast cell lines. PMID:3383341

  10. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  11. Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics.

    PubMed

    Ng, Tsz-Wai; Lo, Ming-Fai; Fung, Man-Keung; Zhang, Wen-Jun; Lee, Chun-Sing

    2014-08-20

    Charge transfer and interactions at organic heterojunctions (OHJs) are known to have critical influences on various properties of organic electronic devices. In this Research News article, a short review is given from the electronic viewpoint on how the local molecular interactions and interfacial energetics at P/N OHJs contribute to the recombination/dissociation of electron-hole pairs. Very often, the P-type materials donate electrons to the N-type materials, giving rise to charge-transfer complexes (CTCs) with a P(δ+) -N(δ-) configuration. A recently observed opposite charge-transfer direction in OHJs is also discussed (i.e., N-type material donates electrons to P-type material to form P(δ-) -N(δ+) ). Recent studies on the electronic structures of CTC-forming material pairs are also summarized. The formation of P(δ-) -N(δ+) -type CTCs and their correlations with exciplex emission are examined. Furthermore, the potential applications of CTCs in NIR photovoltaic devices are reviewed. PMID:24799189

  12. Charge-transfer interactions between TCNQ and silver clusters Ag20 and Ag13.

    PubMed

    Chen, Jing; Zhang, Hanyu; Liu, Xianhu; Yuan, Chengqian; Jia, Meiye; Luo, Zhixun; Yao, Jiannian

    2016-03-14

    Interactions between tetracyanoquinodimethane (TCNQ) and two typical silver clusters Ag13 and Ag20 are studied by first-principles DFT calculations. Charge transfer (CT) from silver clusters to TCNQ molecules initiates the Ag-N bond formation at selective sites resulting in the formation of different isomers of Ag13-TCNQ and Ag20-TCNQ complexes. We show here a comprehensive spectroscopic analysis for the two CT complexes on the basis of Raman and infrared activities. Furthermore, frontier molecular orbital (FMO) and natural bond orbital (NBO) analysis of the complexes provides a vivid illustration of electron cloud overlap and interactions. The behavior of TCNQ adsorbed on the tetrahedral Ag20 cluster was even found in good agreement with the experimental measurement of TCNQ molecules on a single-crystal Ag(111) surface. This study not only endeavors to clarify the charge-transfer interactions of TCNQ with silver, but also presents a finding of enhanced charge transfer between Ag13 and TCNQ indicating potential for candidate building blocks of granular materials. PMID:26888771

  13. Ultrafast charge separation at a polymer-single-walled carbon nanotube molecular junction.

    PubMed

    Stranks, Samuel D; Weisspfennig, Christian; Parkinson, Patrick; Johnston, Michael B; Herz, Laura M; Nicholas, Robin J

    2011-01-12

    We have investigated the charge photogeneration dynamics at the interface formed between single-walled carbon nanotubes (SWNTs) and poly(3-hexylthiophene) (P3HT) using a combination of femtosecond spectroscopic techniques. We demonstrate that photoexcitation of P3HT forming a single molecular layer around a SWNT leads to an ultrafast (∼430 fs) charge transfer between the materials. The addition of excess P3HT leads to long-term charge separation in which free polarons remain separated at room temperature. Our results suggest that SWNT-P3HT blends incorporating only small fractions (1%) of SWNTs allow photon-to-charge conversion with efficiencies comparable to those for conventional (60:40) P3HT-fullerene blends, provided that small-diameter tubes are individually embedded in the P3HT matrix. PMID:21105722

  14. Nanohydration of uracil: emergence of three-dimensional structures and proton-induced charge transfer.

    PubMed

    Bacchus-Montabonel, Marie-Christine; Calvo, Florent

    2015-04-21

    Stepwise hydration of uracil has been theoretically revisited using different methods ranging from classical force fields to quantum chemical approaches. Hydration initially begins within the uracil plane but proceeds at four molecules into three-dimensional configurations or even water clusters next to the nucleobase. The relative stability between the various structures is significantly affected by zero-point energy and finite temperature (entropy) effects and also gives rise to markedly different responses to an excitation by an impinging high-energy proton. In particular, charge transfer to the molecular complex is dramatically altered in collisions toward the coating cluster but barely modified for peripheral hydration patterns. PMID:25793649

  15. Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium (II) organometallic complexes

    NASA Astrophysics Data System (ADS)

    Chantzis, Agisilaos; Very, Thibaut; Daniel, Chantal; Monari, Antonio; Assfeld, Xavier

    2013-07-01

    The absorption spectrum of two ruthenium (II) organometallic complexes intercalated into DNA is studied at the quantum mechanic/molecular mechanic level. The macromolecular environment is taken into account as to include geometric, electrostatic and polarization effects that can alter the excitation energy and oscillator strength. The inclusion of DNA base pairs into the quantum mechanic partition allows us for the first time to clearly evidence the presence of charge transfer excited states involving an electron withdraw from DNA base pairs to the organometallic complex.

  16. Charge transfer and negative curvature energy in magnesium boride nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Hui; Ismail-Beigi, Sohrab

    2016-07-01

    Using first-principles calculations based on density functional theory, we study the energetics and charge transfer effects in MgBx nanotubes and two-dimensional (2D) sheets. The behavior of adsorbed Mg on 2D boron sheets is found to depend on the amount of electron transfer between the two subsystems. The amount is determined by both the density of adsorbed Mg as well as the atomic-scale structure of the boron subsystem. The degree of transfer can lead to repulsive or attractive Mg-Mg interactions. In both cases, model MgBx nanotubes built from 2D MgBx sheets can display negative curvature energy: a relatively unusual situation in nanosystems where the energy cost to curve the parent 2D sheet into a small-diameter nanotube is negative. Namely, the small-diameter nanotube is energetically preferred over the corresponding flat sheet. We also discuss how these findings may manifest themselves in experimentally synthesized MgBx nanotubes.

  17. "Like-charge attraction" between anionic polyelectrolytes: molecular dynamics simulations.

    PubMed

    Molnar, Ferenc; Rieger, Jens

    2005-01-18

    "Like-charge attraction" is a phenomenon found in many biological systems containing DNA or proteins, as well as in polyelectrolyte systems of industrial importance. "Like-charge attraction" between polyanions is observed in the presence of mobile multivalent cations. At a certain limiting concentration of cations, the negatively charged macroions cease to repel each other and even an attractive force between the anions is found. With classical molecular dynamics simulations it is possible to elucidate the processes that govern the attractive behavior with atomistic resolution. As an industrially relevant example we study the interaction of negatively charged carboxylate groups of sodium polyacrylate molecules with divalent cationic Ca2+ counterions. Here we show that Ca2+ ions initially associate with single chains of polyacrylates and strongly influence sodium ion distribution; shielded polyanions approach each other and eventually "stick" together (precipitate), contrary to the assumption that precipitation is initially induced by intermolecular Ca2+ bridging. PMID:15641856

  18. Dual Fluorescence in GFP Chromophore Analogues: Chemical Modulation of Charge Transfer and Proton Transfer Bands.

    PubMed

    Chatterjee, Tanmay; Mandal, Mrinal; Das, Ananya; Bhattacharyya, Kalishankar; Datta, Ayan; Mandal, Prasun K

    2016-04-14

    Dual fluorescence of GFP chromophore analogues has been observed for the first time. OHIM (o-hydroxy imidazolidinone) shows only a charge transfer (CT) band, CHBDI (p-cyclicamino o-hydroxy benzimidazolidinone) shows a comparable intensity CT and PT (proton transfer) band, and MHBDI (p-methoxy o-hydroxy benzimidazolidinone) shows a higher intensity PT band. It could be shown that the differential optical behavior is not due to conformational variation in the solid or solution phase. Rather, control of the excited state electronic energy level and excited state acidity constant by functional group modification could be shown to be responsible for the differential optical behavior. Chemical modification-induced electronic control over the relative intensity of the charge transfer and proton transfer bands could thus be evidenced. Support from single-crystal X-ray structure, NMR, femtosecond to nanosecond fluorescence decay analysis, and TDDFT-based calculation provided important information and thus helped us understand the photophysics better. PMID:26998908

  19. Orbital dependent ultrafast charge transfer dynamics of ferrocenyl-functionalized SAMs on gold studied by core-hole clock spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Yang, Ming; Yuan, Li; Nerngchamnong, Nisachol; Feng, Yuan-Ping; Wee, Andrew T. S.; Qi, Dong-Chen; Nijhuis, Christian A.

    2016-03-01

    Understanding the charge transport properties in general of different molecular components in a self-assembled monolayer (SAM) is of importance for the rational design of SAM molecular structures for molecular electronics. In this study, we study an important aspect of the charge transport properties, i.e. the charge transfer (CT) dynamics between the active molecular component (in this case, the ferrocenyl moieties of a ferrocenyl-n-alkanethiol SAM) and the electrode using synchrotron-based core-hole clock (CHC) spectroscopy. The characteristic CT times are found to depend strongly on the character of the ferrocenyl-derived molecular orbitals (MOs) which mediate the CT process. Furthermore, by systemically shifting the position of the ferrocenyl moiety in the SAM, it is found that the CT characteristics of the ferrocenyl MOs display distinct dependence on its distance to the electrode. These results demonstrate experimentally that the efficiency and rate of charge transport through the molecular backbone can be modulated by resonant injection of charge carriers into specific MOs.

  20. Metal-to-metal charge transfer transitions - Interpretation of visible-region spectra of the moon and lunar materials

    NASA Technical Reports Server (NTRS)

    Loeffler, B. M.; Burns, R. G.; Tossell, J. A.

    1975-01-01

    Prominent bands in the spectral profiles of Fe-Ti phases in lunar samples have been attributed to charge-transfer transitions between Fe and Ti cations, and a model is presented for calculating charge transfer energies from energy levels computed by the SCF-X(alpha) scattered wave molecular orbital method for isolated MO6 octahedral coordination clusters containing Fe(2+), Fe(3+), Ti(3+), and Ti(4+) cations. The calculated charge transfer energy for the Fe(2+) to Ti(4+) transition correlates well with a measured spectral feature around 0.6 micron in ilmenite, and, since ilmenite is a major constituent of mare basalts and dark-mantling material, the observed darkness and blueness of the regolith in lunar black spots is attributed primarily to this transition. The Ti(3+) to Ti(4+) transition is thought to contribute to some phases.

  1. HST WFC3/UVIS: charge transfer efficiency monitoring and mitigation

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Sosey, Megan L.; Anderson, Jay; Gosmeyer, Catherine; Bourque, Matthew; Bajaj, Varun; Khandrika, Harish G.; Martlin, Catherine; Kozhurina-Platais, Vera; Sabbi, Elena; WFC3 Team

    2016-01-01

    The harsh low-earth orbit environment is known to damage CCD devices and the HST WFC3/UVIS camera is no exception. One consequence of the radiation damage is charge-transfer efficiency (CTE) loss over time. We summarize the level of the CTE losses, the effect on science data, and the pre- and post-observation mitigation options available. Among them is the pixel-based CTE correction, which has been incorporated into the HST automatic data processing pipeline. The pipeline now provides both standard and CTE-corrected data products; observers with older data can re-retrieve their images via the the Mikulski Archive for Space Telescopes (MAST) to obtain the new products.

  2. Charge Transfer in C6+ Collisions with H and He

    NASA Astrophysics Data System (ADS)

    Lee, T. G.; Pindzola, M. S.

    2015-05-01

    Charge transfer cross sections are calculated for C6+ + H and C6+ + He collisions using a time-dependent close-coupling method in Cartesian coordinates. Capture cross sections into the 1 s , 2 l(l = 0 - 1) , 3 l(l = 0 - 2) , and 4 l(l = 0 - 3) subshells of C5+ are found for projectile energies ranging from 5.0 keV/amu to 15.0 keV/amu. Comparisons are made with previous calculations and recent experiments. The atomic collision data will be used to better understand the interaction of solar wind ions with interplanetary atoms. Work supported in part by grants from NSF, NASA, and DOE.

  3. Experimental study of low-energy charge transfer in nitrogen

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1979-01-01

    Total charge transfer cross sections were obtained for the N2(+)-N2 system with relative translational ion energies between 9 and 441 eV. Data were obtained to examine the dependence of total cross section on ion energy. The effect of ion excitation on the cross sections was studied by varying the electron ionization energy in the mass spectrometer ion source over an electron energy range between 14.5 and 32.1 eV. The dependence of total cross section on the neutralization chamber gas pressure was examined by obtaining data at pressure values from 9.9 to 0.000199 torr. Cross section values obtained were compared with experimental and theoretical results of other investigations.

  4. Interstellar Dust Charging in Dense Molecular Clouds: Cosmic Ray Effects

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Padovani, M.; Galli, D.; Caselli, P.

    2015-10-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold, dense molecular cloud to investigate two mechanisms of dust charging that have, thus far, been neglected: the collection of suprathermal CR electrons and protons by grains and photoelectric emission from grains due to the UV radiation generated by CRs. These two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: while the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities n({{{H}}}2) between ˜104 and ˜106 cm-3. The charging effect of CRs is of a generic nature, and is therefore expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary disks.

  5. Visualizing interfacial charge transfer in dye sensitized nanoparticles using x-ray transient absorption spectroscopy.

    SciTech Connect

    Zhang, X. Y.; Smolentsev, G.; Guo, J.; Attenkofer, K.; Kurtz, C.; Jennings, G.; Lockard, J. V.; Stickrath, A. B.; Chen, L. X.

    2011-01-01

    A molecular level understanding of the structural reorganization accompanying interfacial electron transfer is important for rational design of solar cells. Here we have applied XTA (X-ray transient absorption) spectroscopy to study transient structures in a heterogeneous interfacial system mimicking the charge separation process in dye-sensitized solar cell (DSSC) with Ru(dcbpy){sub 2}(NCS){sub 2} (RuN3) dye adsorbed to TiO{sub 2} nanoparticle surfaces. The results show that the average Ru-NCS bond length reduces by 0.06 {angstrom}, whereas the average Ru-N(dcbpy) bond length remains nearly unchanged after the electron injection. The differences in bond-order change and steric hindrance between two types of ligands are attributed to their structural response in the charge separation. This study extends the application of XTA into optically opaque hybrid interfacial systems relevant to the solar energy conversion.

  6. A Model of Charge-Transfer Excitons: Diffusion, Spin Dynamics, and Magnetic Field Effects.

    PubMed

    Lee, Chee Kong; Shi, Liang; Willard, Adam P

    2016-06-16

    In this Letter, we explore how the microscopic dynamics of charge-transfer (CT) excitons are influenced by the presence of an external magnetic field in disordered molecular semiconductors. This influence is driven by the dynamic interplay between the spin and spatial degrees of freedom of the electron-hole pair. To account for this interplay, we have developed a numerical framework that combines a traditional model of quantum spin dynamics with a stochastic coarse-grained model of charge transport. This combination provides a general and efficient methodology for simulating the effects of magnetic field on CT state dynamics, therefore providing a basis for revealing the microscopic origin of experimentally observed magnetic field effects. We demonstrate that simulations carried out on our model are capable of reproducing experimental results as well as generating theoretical predictions related to the efficiency of organic electronic materials. PMID:27237448

  7. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.

    PubMed

    Zhou, Changjie; Yang, Weihuang; Zhu, Huili

    2015-06-01

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides. PMID:26049513

  8. Charge transfer in E. coli DNA photolyase: understanding polarization and stabilization effects via QM/MM simulations.

    PubMed

    Lüdemann, Gesa; Woiczikowski, P Benjamin; Kubař, Tomáš; Elstner, Marcus; Steinbrecher, Thomas B

    2013-09-19

    We study fast hole transfer events in E. coli DNA photolyase, a key step in the photoactivation process, using a multiscale computational method that combines nonadiabatic propagation schemes and linear-scaling quantum chemical methods with molecular mechanics force fields. This scheme allows us to follow the time-dependent evolution of the electron hole in an unbiased fashion; that is, no assumptions about hole wave function localization, time scale separation, or adiabaticity of the process have to be made beforehand. DNA photolyase facilitates an efficient long-range charge transport between its flavin adenine dinucleotide (FAD) cofactor and the protein surface via a chain of evolutionary conserved Trp residues on the sub-nanosecond time scale despite the existence of multiple potential trap states. By including a large number of aromatic residues along the charge transfer pathway into the quantum description, we are able to identify the main pathway among alternative possible routes. The simulations show that charge transfer, which is extremely fast in this protein, occurs on the same time scale as the protein response to the electrostatic changes; that is, time-scale separation as often presupposed in charge transfer studies seems to be inappropriate for this system. Therefore, coupled equations of motion, which propagate electrons and nuclei simultaneously, appear to be necessary. The applied computational model is shown to capture the essentials of the reaction kinetics and thermodynamics while allowing direct simulations of charge transfer events on their natural time scale. PMID:23964783

  9. Doping graphene films via chemically mediated charge transfer.

    PubMed

    Ishikawa, Ryousuke; Bando, Masashi; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-01-01

    Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs. PMID:21711624

  10. Charge Transfer Characteristics and Initiation Mechanisms of Long Delayed Sprites

    NASA Astrophysics Data System (ADS)

    Li, J.; Cummer, S. A.; Lyons, W. A.; Nelson, T. E.

    2007-12-01

    Simultaneous measurements of high altitude optical emissions and the magnetic field produced by sprite-associated lightning discharges enable a close examination of the link between low altitude lightning process and high altitude sprite process. In this work, we report results of the coordinated analysis of high speed (1000--10000 frames per second) sprite video and wideband (0.1 Hz to 30 kHz) magnetic field measurements made simultaneously at the Yucca Ridge Field Station and Duke University during the June through August 2005 campaign period. During the observation period, the high speed camera detected 83 sprite events in 67 TLE sequences, which are caused by the same number of +CGs. 46% of these sprite events are delayed more than 10 ms after the lightning return stroke. With the estimated lightning source current moment waveform, we computed the continuing current amplitude and total charge transfer characteristics of the long delayed sprites (>10 ms delay). Our calculation shows the total charge moment change of the long delayed sprites can vary from several hundred C km to more than ten thousand C km. All the long delayed sprites are related with intense continuing current bigger than 2 kA. This continuing current provides about 50% to 90% of the total charge transfer. However, a bigger continuing current does not necessarily mean a shorter time delay. This indicates that other processes also involved in the sprite initiation for long delayed sprites. In our observations, the sferic burst, a high frequency noise caused by intra-cloud activity, is always accompanied by a slow intensification in the lightning source current before the time of sprite initiation. Thus we used the lightning source current as an input and employed a 2-D FDTD model to numerically simulate the electric field at different altitudes and compare it with the breakdown field. Including the effect of the electron mobility dependence on electric field, the simulation results showed that

  11. Molecular Dynamics Simulations of Highly Charged Green Fluorescent Proteins

    SciTech Connect

    Lau, E Y; Phillips, J L; Colvin, M E

    2009-03-26

    A recent experimental study showed that green fluorescent protein (GFP) that has been mutated to have ultra-high positive or negative net charges, retain their native structure and fluorescent properties while gaining resistance to aggregation under denaturing conditions. These proteins also provide an ideal test case for studying the effects of surface charge on protein structure and dynamics. They have performed classical molecular dynamics (MD) simulations on the near-neutral wildtype GFP and mutants with net charges of -29 and +35. They analyzed the resulting trajectories to quantify differences in structure and dynamics between the three GFPs. This analyses shows that all three proteins are stable over the MD trajectory, with the near-neutral wild type GFP exhibiting somewhat more flexibility than the positive or negative GFP mutants, as measured by the order parameter and changes in phi-psi angles. There are more dramatic differences in the properties of the water and counter ions surrounding the proteins. The water diffusion constant near the protein surface is closer to the value for bulk water in the positively charged GFP than in the other two proteins. Additionally, the positively charged GFP shows a much greater clustering of the counter ions (CL-) near its surface than corresponding counter ions (Na+) near the negatively charged mutant.

  12. Charge transfer inefficiency in the pre- and post-irradiated Swept Charge Device CCD236

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; Gow, J. P. D.; Pool, P.; Holland, A. D.

    2015-03-01

    This paper describes the mapping of spectral response of an e2v technologies Swept Charge Device (SCD) CCD236 pre and post irradiation with a 10 MeV equivalent proton fluence of 5.0 × 108 protons cm-2. The CCD236 is a large area (4.4 cm2) X-ray detector which will be used in India's Chandrayaan-2 Large Soft X-ray Spectrometer (CLASS) and China's Hard X-ray Modulation Telescope (HXMT). To enable the suppression of surface dark current, clocking is performed continuously resulting in a linear readout. As such the flat field illumination used to measure any change in spectral response over a conventional Charge-Coupled Devices (CCDs) is not possible. An alternative masking technique has been used to expose pinpoint regions of the device to Mn-Kα and Mn-Kβ X-rays, enabling a local map of spectral response to be built up over the device. This novel approach allows for an estimation of the Charge Transfer Inefficiency (CTI) of the device to be made by allowing the creation of a CTI scatter plot similar to that typically observed in conventional CCDs.

  13. Charge Transfer and Support Effects in Heterogeneous Catalysis

    SciTech Connect

    Hervier, Antoine

    2011-12-21

    The kinetic, electronic and spectroscopic properties of two-dimensional oxide-supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO2 nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I-V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non-adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO2. The yield for this phenomenon is on the order of 10-4 electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO2 system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent yield 5 times greater for D2 compared to H2, contrary to what is expected given the higher mass of D2. Reversible changes in the rectification factor of the diode are observed when switching between D2 and H2. These changes are a likely cause for the differences in current between the two isotopes. In the nanodiode experiments, surface chemistry leads to charge flow, suggesting the possibility of creating charge flow to tune surface chemistry. This was done first by exposing a Pt/Si diode to visible light while using it as a catalyst for H2 oxidation. Absorption of the light in the Si, combined with

  14. Relation between Nonlinear Optical Properties of Push-Pull Molecules and Metric of Charge Transfer Excitations.

    PubMed

    List, Nanna Holmgaard; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Bartkowiak, Wojciech; Ågren, Hans

    2015-09-01

    We establish the relationships between the metric of charge transfer excitation (Δr) for the bright ππ* state and the two-photon absorption probability as well as the first hyperpolarizability for two families of push-pull π-conjugated systems. As previously demonstrated by Guido et al. (J. Chem. Theory Comput. 2013, 9, 3118-3126), Δr is a measure for the average hole-electron distance upon excitation and can be used to discriminate between short- and long-range electronic excitations. We indicate two new benefits from using this metric for the analyses of nonlinear optical properties of push-pull systems. First, the two-photon absorption probability and the first hyperpolarizability are found to be interrelated through Δr; if β ∼ (Δr)(k), then roughly, δ(TPA) ∼ (Δr)(k+1). Second, a simple power relation between Δr and the molecular hyperpolarizabilities of push-pull systems offers the possibility of estimating properties for longer molecular chains without performing calculations of high-order response functions explicitly. We further demonstrate how to link the hyperpolarizabilities with the chain length of the push-pull π-conjugated systems through the metric of charge transfer. PMID:26575913

  15. Experimental and modeling study on charge storage/transfer mechanism of graphene-based supercapacitors

    NASA Astrophysics Data System (ADS)

    Ban, Shuai; Jing, Xie; Zhou, Hongjun; Zhang, Lei; Zhang, Jiujun

    2014-12-01

    A symmetrical graphene-based supercapacitor is constructed for studying the charge-transfer mechanism within the graphene-based electrodes using both experiment measurements and molecular simulation. The in-house synthesized graphene is characterized by XRD, SEM and BET measurements for morphology and surface area. It is observed that the electric capacity of graphene electrode can be reduced by both high internal resistance and limited mass transfer. Computer modeling is conducted at the molecular level to characterize the diffusion behavior of electrolyte ions to the interior of electrode with emphasis on the unique 2D confinement imposed by graphene layers. Although graphene powder poses a moderate internal surface of 400 m2 g-1, the capacitance performance of graphene electrode can be as good as that of commercial activated carbon which has an overwhelming surface area of 1700 m2 g-1. An explanation to this abnormal correlation is that graphene material has an intrinsic capability of adaptively reorganizing its microporous structure in response to intercalation of ions and immergence of electrolyte solvent. The accessible surface of graphene is believed to be dramatically enlarged for ion adsorption during the charging process of capacitor.

  16. Asymmetric topological interfaces and charge transfer in epitaxial Bi2 Se3 /II-VI superlattices

    NASA Astrophysics Data System (ADS)

    Chen, Zhiyi; Zhao, Lukasf; Korzhovska, Inna; Garcia, Thor; Tamargo, Maria; Krusin-Elbaum, Lia; Park, Kyungwha

    Access to charge transport through Dirac surface states in topological insulators (TIs) can be challenging due to their intermixing with the bulk or with non-topological subsurface two-dimensional electron gas (2DEG) quantum well states. Formed by bending of bulk electronic bands near the surface, 2DEG states arise via charge transfer to the topological surfaces, so the choice of layers abutting these surfaces is critical. Here we report molecular beam epitaxial growth of Bi2Se3/ZnxCd1-xSe superlattices that support only one topological surface channel per TI layer. The topological nature of conducting channels is evidenced by π-Berry phase and by the two-dimensional weak antilocalization. Both density functional theory calculations and transport measurements suggest that a single topological Dirac cone per TI layer arises from the asymmetry between the Se-terminated and Zn-terminated interfaces of ZnxCd1-xSe with Bi2Se3. Our findings suggest that topological transport could be controlled by adjusting charge transfer from non-topological spacers in hybrid structures. Supported by NSF-DMR-1420634, NSF-DMR-1312483, DOD-W911NF-13-1-0159, NSF DMR-1206354 and computer resources from SDSC under DMR060009N and VT ARC.

  17. Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Vendrell, Oriol; Santra, Robin

    2015-10-01

    We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.

  18. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions

    SciTech Connect

    Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.

    2009-02-12

    Photoelectrons emitted from multiply charged anions (MCAs) carry information of the intramolecular Coulomb repulsion (ICR), which is dependent on molecular structures. Using photoelectron imaging, we observed the effects of ICR on photoelectron angular distributions (PAD) of the three isomers of benzene dicarboxylate dianions C6H4(CO2)22– (o-, m- and p-BDC2–). Photoelectrons were observed to peak along the laser polarization due to the ICR, but the anisotropy was the largest for p-BDC2–, followed by the m- and o-isomer. The observed anisotropy is related to the direction of the ICR or the detailed molecular structures, suggesting that photoelectron imaging may allow structural information to be obtained for complex multiply charged anions.

  19. Optical switching of electric charge transfer pathways in porphyrin: a light-controlled nanoscale current router.

    PubMed

    Thanopulos, Ioannis; Paspalakis, Emmanuel; Yannopapas, Vassilios

    2008-11-01

    We introduce a novel molecular junction based on a thiol-functionalized porphyrin derivative with two almost energetically degenerate equilibrium configurations. We show that each equilibrium structure defines a pathway of maximal electric charge transfer through the molecular junction and that these two conduction pathways are spatially orthogonal. We further demonstrate computationally how to switch between the two equilibrium structures of the compound by coherent light. The optical switching mechanism is presented in the relevant configuration subspace of the compound, and the corresponding potential and electric dipole surfaces are obtained by ab initio methods. The laser-induced isomerization takes place in two steps in tandem, while each step is induced by a two-photon process. The effect of metallic electrodes on the electromagnetic irradiation driving the optical switching is also investigated. Our study demonstrates the potential for using thiol-functionalized porphyrin derivatives for the development of a light-controlled nanoscale current router. PMID:21832723

  20. Field and chirality effects on electrochemical charge transfer rates: spin dependent electrochemistry.

    PubMed

    Mondal, Prakash Chandra; Fontanesi, Claudio; Waldeck, David H; Naaman, Ron

    2015-03-24

    This work examines whether electrochemical redox reactions are sensitive to the electron spin orientation by examining the effects of magnetic field and molecular chirality on the charge transfer process. The working electrode is either a ferromagnetic nickel film or a nickel film that is coated with an ultrathin (5-30 nm) gold overlayer. The electrode is coated with a self-assembled monolayer that immobilizes a redox couple containing chiral molecular units, either the redox active dye toluidine blue O with a chiral cysteine linking unit or cytochrome c. By varying the direction of magnetization of the nickel, toward or away from the adsorbed layer, we demonstrate that the electrochemical current depends on the orientation of the electrons' spin. In the case of cytochrome c, the spin selectivity of the reduction is extremely high, namely, the reduction occurs mainly with electrons having their spin-aligned antiparallel to their velocity. PMID:25752750

  1. Excited state structural evolution during charge-transfer reactions in betaine-30.

    PubMed

    Ruchira Silva, W; Frontiera, Renee R

    2016-07-27

    Ultrafast photo-induced charge-transfer reactions are fundamental to a number of photovoltaic and photocatalytic devices, yet the multidimensional nature of the reaction coordinate makes these processes difficult to model theoretically. Here we use femtosecond stimulated Raman spectroscopy to probe experimentally the structural changes occurring following photoexcitation in betaine-30, a canonical intramolecular charge-transfer complex. We observe changes in vibrational mode frequencies and amplitudes on the femtosecond timescale, which for some modes results in frequency shifts of over 20 cm(-1) during the first 200 fs following photoexcitation. These rapid mode-specific frequency changes track the planarization of the molecule on the 400 ± 100 fs timescale. Oscillatory amplitude modulations of the observed high frequency Raman modes indicate coupling between specific high frequency and low frequency vibrational motions, which we quantify for 6 low frequency modes and 4 high frequency modes. Analysis of the mode-specific kinetics is suggestive of the existence of a newly discovered electronic state involved in a relaxation pathway, which may be a low-lying triplet state. These results directly track the multiple nuclear coordinates involved in betaine-30's reactive pathway, and should be of use in rationally designing molecular systems with rapid electron transfer processes. PMID:26725657

  2. An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nomura, Ken-ichi; Small, Patrick E.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2015-07-01

    Reactive molecular dynamics (RMD) simulations describe chemical reactions at orders-of-magnitude faster computing speed compared with quantum molecular dynamics (QMD) simulations. A major computational bottleneck of RMD is charge-equilibration (QEq) calculation to describe charge transfer between atoms. Here, we eliminate the speed-limiting iterative minimization of the Coulombic energy in QEq calculation by adapting an extended-Lagrangian scheme that was recently proposed in the context of QMD simulations, Souvatzis and Niklasson (2014). The resulting XRMD simulation code drastically improves energy conservation compared with our previous RMD code, Nomura et al. (2008), while substantially reducing the time-to-solution. The XRMD code has been implemented on parallel computers based on spatial decomposition, achieving a weak-scaling parallel efficiency of 0.977 on 786,432 IBM Blue Gene/Q cores for a 67.6 billion-atom system.

  3. Proton-Coupled Electron Transfer: Moving Together and Charging Forward

    PubMed Central

    2016-01-01

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa’s for molecular electrocatalysts, as well as insights into linear correlations and non-innocent ligands, are also described. In addition, computational methods for simulating the nonadiabatic dynamics of photoexcited PCET are discussed. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. PMID:26110700

  4. Proton-Coupled Electron Transfer: Moving Together and Charging Forward.

    PubMed

    Hammes-Schiffer, Sharon

    2015-07-22

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa's for molecular electrocatalysts, as well as insights into linear correlations and non-innocent ligands, are also described. In addition, computational methods for simulating the nonadiabatic dynamics of photoexcited PCET are discussed. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. PMID:26110700

  5. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples.

    PubMed

    Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Lorenz, Pierre; Borsdorf, Helko

    2015-09-11

    Acesulfame is a known indicator that is used to identify the introduction of domestic wastewater into water systems. It is negatively charged and highly water-soluble at environmental pH values. In this study, a molecularly imprinted polymer (MIP) was synthesized for negatively charged acesulfame and successfully applied for the selective solid phase extraction (SPE) of acesulfame from influent and effluent wastewater samples. (Vinylbenzyl)trimethylammonium chloride (VBTA) was used as a novel phase transfer reagent, which enhanced the solubility of negatively charged acesulfame in the organic solvent (porogen) and served as a functional monomer in MIP synthesis. Different molecularly imprinted polymers were synthesized to optimize the extraction capability of acesulfame. The different materials were evaluated using equilibrium rebinding experiments, selectivity experiments and scanning electron microscopy (SEM). The most efficient MIP was used in a molecularly imprinted-solid phase extraction (MISPE) protocol to extract acesulfame from wastewater samples. Using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, detection and quantification limits were achieved at 0.12μgL(-1) and 0.35μgL(-1), respectively. Certain cross selectivity for the chemical compounds containing negatively charged sulfonamide functional group was observed during selectivity experiments. PMID:26256920

  6. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1996-01-01

    Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.

  7. Proton-Coupled Electron Transfer: Moving Together and Charging Forward

    SciTech Connect

    Hammes-Schiffer, Sharon

    2015-06-25

    Proton-coupled electron transfer (PCET) is ubiquitous throughout chemistry and biology. This Perspective discusses recent advances and current challenges in the field of PCET, with an emphasis on the role of theory and computation. The fundamental theoretical concepts are summarized, and expressions for rate constants and kinetic isotope effects are provided. Computational methods for calculating reduction potentials and pKa’s for molecular electrocatalysts, as well as methods for simulating the nonadiabatic dynamics of photoinduced processes, are also described. Representative applications to PCET in solution, proteins, electrochemistry, and photoinduced processes are presented, highlighting the interplay between theoretical and experimental studies. The current challenges and suggested future directions are outlined for each type of application, concluding with an overall view to the future. The work described herein was supported by National Science Foundation Grant CHE-13-61293 (theory development), National Institutes of Health Grant GM056207 (soybean lipoxygenase), Center for Chemical Innovation of the National Science Foundation Solar Fuels Grant CHE-1305124 (cobalt catalysts), Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (nickel catalysts), and Air Force Office of Scientific Research Award No. FA9550-14-1-0295 (photoinduced PCET).

  8. Nonadiabatic dynamics of charge transfer in diatomic anion clusters

    SciTech Connect

    Cho, Eunseog; Shin, Seokmin

    2007-12-28

    We have studied the photodissociation and recombination dynamics of the diatomic anions X{sub 2}{sup -} and XY{sup -} designed to mimic I{sub 2}{sup -} and ICl{sup -}, respectively, by using a one-electron model in size-selected N{sub 2}O clusters. The one-electron model is composed of two nuclei and an extra electron moving in a two-dimensional plane including the two nuclei. The main purpose of this study is to explain the salient features of various dynamical processes of molecular ions in clusters using a simple theoretical model. For heteronuclear diatomic anions, a mass disparity and asymmetric electron affinity between the X and Y atoms lead to different phenomena from the homonuclear case. The XY{sup -} anion shows efficient recombination for a smaller cluster size due to the effect of collision-mediated energy transfer and an inherent potential wall on excited state at asymptotic region, while the recombination for the X{sub 2}{sup -} anion is due to rearrangement of solvent configuration and faster nonadiabatic transitions. The results of the present study illustrate the microscopic details of the electronically nonadiabatic processes which control the photodissociation dynamics of molecular ions in clusters.

  9. Charge-Transfer Mobility Parameters in Photoelectronic Devices: The Advanced Miller-Abrahams Computation.

    PubMed

    Basilevsky, M V; Odinokov, A V; Komarova, K G

    2015-06-18

    The local hopping step of the electron transfer (ET) reaction is investigated for a real organic material composed of molecules M (N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine). This material is implemented in light-emitting photoelectronic devices. The conductivity effect is simulated and calculated at a molecular level. We have studied the ET mechanism alternative to that suggested by the usually employed Marcus-like polaron model. The ion-molecular binary complex M(+)M (for hole transfer) is considered as a reaction center. The reaction dynamics is carried through the low-frequency intermolecular vibration coordinate connecting its fragments (the promotion mode). Its coupling to the acoustic phonon bath serves for a dissipation of the reaction energy misfit. The high-frequency intramolecular vibrations (the reorganization modes) modulate the reaction kinetics via Franck-Condon factors induced by their polarization. The ET rate constants are evaluated in terms of the computational algorithm described earlier (Basilevsky, M. V.; et al. J. Chem. Phys. 2013 139, 234102). Standard quantum-chemical and molecular dynamical techniques are used for a calculation of all necessary parameters of this model. The macroscopic charge-carrier mobility of the material is estimated by properly averaging the rate constants over the total simulation cell. PMID:25636079

  10. Nematic and spin-charge orders driven by hole-doping a charge-transfer insulator

    NASA Astrophysics Data System (ADS)

    Fischer, Mark H.; Wu, Si; Lawler, Michael; Paramekanti, Arun; Kim, Eun-Ah

    2014-09-01

    Recent experimental discoveries have brought a diverse set of broken symmetry states to the center stage of research on cuprate superconductors. Here, we focus on a thematic understanding of the diverse phenomenology by exploring a strong-coupling mechanism of symmetry breaking driven by frustration of antiferromagnetic (AFM) order. We achieve this through a variational study of a three-band model of the CuO2 plane with Kondo type exchange couplings between doped oxygen holes and classical copper spins. Two main findings from this strong-coupling multi-band perspective are (1) that the symmetry hierarchy of spin stripe, charge stripe, intra-unit-cell nematic order and isotropic phases are all accessible microscopically within the model, (2) many symmetry-breaking patterns compete with energy differences within a few meV per Cu atom to produce a rich phase diagram. These results indicate that the diverse phenomenology of broken-symmetry states in hole-doped AFM charge-transfer insulators may indeed arise from hole-doped frustration of antiferromagnetism.

  11. Quantum ferroelectricity in charge-transfer complex crystals

    PubMed Central

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4–n bromine substituents (QBr4–nIn, n=0–4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF–QBr2I2 exhibits a ferroelectric neutral–ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral–ionic transition compounds, such as well-known ferroelectric complex of TTF–QCl4 and quantum antiferroelectric of dimethyl–TTF–QBr4. By contrast, TTF–QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  12. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    PubMed

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various π-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems. PMID:26540455

  13. Quantum ferroelectricity in charge-transfer complex crystals.

    PubMed

    Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori

    2015-01-01

    Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4-n bromine substituents (QBr4-nIn, n=0-4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF-QBr2I2 exhibits a ferroelectric neutral-ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral-ionic transition compounds, such as well-known ferroelectric complex of TTF-QCl4 and quantum antiferroelectric of dimethyl-TTF-QBr4. By contrast, TTF-QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656

  14. Charge transfer vibronic transitions in uranyl tetrachloride compounds;

    SciTech Connect

    Liu, G. K.; Deifel, N. P.; Cahill, C. L.

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO{sub 2}){sup 2+} in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3{sigma} ground state into the f{sub {delta}{phi}}, orbitals of uranyl. The Huang-Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck-Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  15. Charge transfer vibronic transitions in uranyl tetrachloride compounds

    SciTech Connect

    Liu, Guokui; Deifel, Nicholas P.; Cahill, Christopher L.; Zhurov, Vladimir V.; Pinkerton, A. Alan

    2012-01-01

    The electronic and vibronic interactions of uranyl (UO₂)2+ in three tetrachloride crystals have been investigated with spectroscopic experiments and theoretical modeling. Analysis and simulation of the absorption and photoluminescence spectra have resulted in a quantitative understanding of the charge transfer vibronic transitions of uranyl in the crystals. The spectra obtained at liquid helium temperature consist of extremely narrow zero-phonon lines (ZPL) and vibronic bands. The observed ZPLs are assigned to the first group of the excited states formed by electronic excitation from the 3σ ground state into the fδ,Φ orbitals of uranyl. The Huang–Rhys theory of vibronic coupling is modified successfully for simulating both the absorption and luminescence spectra. It is shown that only vibronic coupling to the axially symmetric stretching mode is Franck–Condon allowed, whereas other modes are involved through coupling with the symmetric stretching mode. The energies of electronic transitions, vibration frequencies of various local modes, and changes in the O=U=O bond length of uranyl in different electronic states and in different coordination geometries are evaluated in empirical simulations of the optical spectra. Multiple uranyl sites derived from the resolution of a superlattice at low temperature are resolved by crystallographic characterization and time- and energy-resolved spectroscopic studies. The present empirical simulation provides insights into fundamental understanding of uranyl electronic interactions and is useful for quantitative characterization of uranyl coordination.

  16. Charge transfer and in-cloud structure of large-charge-moment positive lightning strokes in a mesoscale convective system

    NASA Astrophysics Data System (ADS)

    Lu, Gaopeng; Cummer, Steven A.; Li, Jingbo; Han, Feng; Blakeslee, Richard J.; Christian, Hugh J.

    2009-08-01

    Lightning observations in the very high frequency band and measurements of ultra low frequency magnetic fields are analyzed to investigate the charge transfer and in-cloud structure of eight positive cloud-to-ground (+CG) strokes in a mesoscale convective system. Although no high altitude images were recorded, these strokes contained large charge moment changes (1500-3200 C·km) capable of producing nighttime sprites. Even though the convective region of the storm was where the flashes originated and where the CG strokes could occur, the charge transferred to ground was mainly from the stratiform region. The post-stroke long continuing currents were connected to highly branched negative leader extension into the stratiform region. While the storm dissipated, the altitude of negative leader propagation in the stratiform area dropped gradually from 8 to 5 km, indicating that in some and perhaps all of these strokes, it was the upper positive charge in the stratiform region that was transferred.

  17. Libraries of Extremely Localized Molecular Orbitals. 2. Comparison with the Pseudoatoms Transferability.

    PubMed

    Meyer, Benjamin; Guillot, Benoît; Ruiz-Lopez, Manuel F; Jelsch, Christian; Genoni, Alessandro

    2016-03-01

    Due to both technical and methodological difficulties, determining and analyzing charge densities of very large molecular systems represents a serious challenge that, in the crystallographers community, has been mainly tackled by observing that the so-called pseudoatoms of the electron density multipole expansions are reliably transferable from molecule to molecule. This has led to the construction of pseudoatoms databanks that have allowed successful refinements of crystallographic structures of macromolecules, while taking into account their corresponding reconstructed electron distributions. A recent alternative/complement to the previous approach is represented by techniques based on extremely localized molecular orbitals (ELMOs) that, due to their strict localization on small molecular fragments (e.g., atoms, bonds, and functional groups), are also in principle exportable from system to system. The ELMOs transferability has been already tested in detail, and, in this work, it has been compared to the one of the pseudoatoms. To accomplish this task, electron distributions obtained both through the transfer of pseudoatoms and through the transfer of extremely localized molecular orbitals have been analyzed, especially taking into account topological properties and similarity indexes. The obtained results indicate that all the considered reconstruction methods give completely reasonable and similar charge densities, and, consequently, the new ELMOs libraries will probably represent new useful tools not only for refining crystal structures but also for computing approximate electronic properties of very large molecules. PMID:26799595

  18. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    SciTech Connect

    Pan, Shanlin

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  19. Molecular Packing Determines Charge Separation in a Liquid Crystalline Bisthiophene-Perylene Diimide Donor-Acceptor Material.

    PubMed

    Polkehn, Matthias; Tamura, Hiroyuki; Eisenbrandt, Pierre; Haacke, Stefan; Méry, Stéphane; Burghardt, Irene

    2016-04-01

    Combined electronic structure and quantum dynamical calculations are employed to investigate charge separation in a novel class of covalently bound bisthiophene-perylene diimide type donor-acceptor (DA) co-oligomer aggregates. In an earlier spectroscopic study of this DA system in a smectic liquid crystalline (LC) film, efficient and ultrafast (subpicosecond) initial charge separation was found to be followed by rapid recombination. By comparison, the same DA system in solution exhibits ultrafast resonant energy transfer followed by slower (picosecond scale) charge separation. The present first-principles study explains these contrasting observations, highlighting the role of an efficient intermolecular charge-transfer pathway that results from the molecular packing in the LC phase. Despite the efficiency of this primary charge-transfer step, long-range charge separation is impeded by a comparatively high Coulomb barrier in conjunction with small electron- and hole-transfer integrals. Quantum dynamical calculations are carried out for a fragment-based model Hamiltonian, parametrized by ab initio second-order Algebraic Diagrammatic Construction (ADC(2)) and Time-Dependent Density Functional Theory (TDDFT) electronic structure calculations. Simulations of coherent vibronic quantum dynamics for up to 156 electronic states and 48 modes are performed using the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method. Excellent agreement with experimentally determined charge separation time scales is obtained, and the spatially coherent nature of the dynamics is analyzed. PMID:26987362

  20. Theoretical estimation of the rate of photoinduced charge transfer reactions in triphenylamine C60 donor-acceptor conjugate.

    PubMed

    Martínez, Juan Pablo; Solà, Miquel; Voityuk, Alexander A

    2016-06-01

    Fullerene-based molecular heterojunctions such as the [6,6]-pyrrolidine-C60 donor-acceptor conjugate containing triphenylamine (TPA) are potential materials for high-efficient dye-sensitized solar cells. In this work, we estimate the rate constants for the photoinduced charge separation and charge recombination processes in TPA-C60 using the unrestricted and time-dependent DFT methods. Different schemes are applied to evaluate excited state properties and electron transfer parameters (reorganization energies, electronic couplings, and Gibbs energies). The use of open-shell singlet or triplet states, several density functionals, and continuum solvation models is discussed. Strengths and limitations of the computational approaches are highlighted. The present benchmark study provides an overview of the expected performance of DFT-based methodologies in the description of photoinduced charge transfer reactions in fullerene heterojunctions. © 2016 Wiley Periodicals, Inc. PMID:26992355

  1. Manipulating the proton transfer process in molecular complexes: synthesis and spectroscopic studies.

    PubMed

    Panja, Sumit Kumar; Dwivedi, Nidhi; Saha, Satyen

    2016-08-01

    The proton transfer process in carefully designed molecular complexes has been investigated directly in the solid and solution phase. SCXRD studies have been employed to investigate the N-H-O bonding interaction sites of the molecular complexes, with additional experimental support from FTIR and Raman spectroscopic studies, to gain information on the relative position of hydrogen in between the N and O centers. Further, the proton transfer process in solution is studied using UV-Visible spectroscopy through monitoring the intramolecular charge transfer (ICT) process in these molecular complexes, which is primarily governed by the number of electron withdrawing groups (nitro groups) on proton donor moieties (NP, DNP and TNP). It is found that the magnitude of the ICT process depends on the extent of proton transfer, which on the other hand depends on the relative stabilities of the constituent species (phenolate species). A correlation is observed between an increase in the number of nitro groups and an increase in the melting point of the molecular complexes, indicating the enhancement of ionic character due to the proton transfer process. The aliphatic H-bonding is identified and monitored using (1)H-NMR spectroscopy, which reveals that the identity of molecular complexes in solution interestingly depends on the extent of proton transfer, in addition to the nature of the solvents. The aliphatic C-H-O H-bonding interaction between the oxygen atom of the nitro group and the alkyl hydrogen in piperidinium was also found to play a significant role in strengthening the primary interaction involving a hydrogen transfer process. The conductivity of the molecular complexes increases with an increase in the number of nitro groups, indicating the enhancement in ionic character of the molecular complexes. PMID:27424765

  2. Wire transfer of charge packets using a CCD-BBD structure for charge-domain signal processing

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.

    1991-02-01

    A structure for the virtual transfer of charge packets across metal wires is described theoretically and is experimentally verified. The structure is a hybrid of charge-coupled device (CCD) and bucket-brigade device (BBD) elements and permits the topological crossing of charge-domain signals in low power signal processing circuits. A test vehicle consisting of 8-, 32-, and 96-stage delay lines of various geometries implemented in a double-poly, double-metal foundry process is used to characterize the wire-transfer operation. Transfer efficiency ranging between 0.998 and 0.999 is obtained for surface n-channel devices with clock cycle times in the range from 40 ns to 0.3 ms. Transfer efficiency as high as 0.9999 is obtained for buried n-channel devices. Good agreement is found between experiment and simulation.

  3. Solvent-Mediated Electron Leapfrogging: Charge Transfer in IBr^-(CO_2) Photodissociation

    NASA Astrophysics Data System (ADS)

    Horvath, Samantha; McCoy, Anne B.; Sheps, Leonid; Miller, Elisa M.; Thompson, Matthew A.; Parson, Robert; Lineberger, W. Carl

    2010-06-01

    In this work, we investigate the time-resolved photoelectron spectra of IBr^-(CO_2). In the photodetachment studies performed by Lineberger and co-workers,^a IBr^-(CO_2) is prepared in its electronic ground state (^2Σ1/2^+) whereupon it is excited to its ~A'^ (^2Π3/2) excited state, before electron photodetachment/photoionization and dissociation on the Ctilde (^1Π_1) excited state of IBr. Previous experimental work showed that dissociation of bare IBr^- yields only I^- + Br products. However in IBr^-(CO_2), a small fraction (˜ 3%) of the dissociating molecules undergo an electron transfer from I to Br at 350 fs after the initial excitation. Thus a single solvent molecule can initiate a non-adiabatic transition from the ~A' state to either the lower ~A or ~X state, thereby producing I + Br^- (+ CO_2) prior to photoionization. To study the dynamics, we perform high level ab initio calculations (MR-SO-CISD/aug-cc-pVTZ(-PP)) as well as classical molecular dynamics (MD) simulations. The MD simulations capture much of the dynamics of the photodissociation but underestimate the charge-transfer channel. Results of the ab initio calculations show how CO_2 bend vibrational excitation could increase the percentage of non-adiabatic transitions and how the CO_2 modifies the charge distribution of IBr^- to make the charge transfer accessible. The proposed mechanism and timescales are consistent with the observed Br^- products. L. Sheps, E. M. Miller, S. Horvath, M. A. Thompson, R. Parson, A. B. McCoy, and W. C. Lineberger, Science, 2010, in press R. Mabbs, K. Pichugin, and A. Sanov, J. Chem. Phys., 2005, 122, 174305.

  4. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  5. Molecular transfer printing using block copolymers.

    PubMed

    Ji, Shengxiang; Liu, Chi-Chun; Liu, Guoliang; Nealey, Paul F

    2010-02-23

    Soft lithographic techniques augment or enhance the capabilities of traditional patterning processes and expand the diversity of materials that can be patterned. Realization of robust parallel techniques for creating chemical patterns at the nanoscale has been challenging. Here we present a method for creating and replicating chemical patterns that uses functionalized homopolymer inks that are preferentially segregated into the nanodomains of phase-separated diblock copolymer films. The inks are transferred by reaction to substrates that are brought into contact with block copolymer films, creating chemical patterns on the substrate that mirror the domain structure present at the film surface with high fidelity and resolution. In addition to printing from self-assembled domain structures, we can also direct the assembly of the block copolymer films from which transfer occurs using lithographically defined masters so as to replicate and transfer patterns of inks with controlled and well-defined geometries. The transferred patterns may be at higher resolution than the lithographically defined master, and the process can be repeated to create multiple copies of identical replicas. Transfer of one ink from one block of the copolymer is also possible, and filling the interspatial regions of the pattern with a second ink provides a pathway toward creating patterns with diverse chemical functionalities. PMID:20041629

  6. Charge Transfer in Collisions of Lithium Ions with Beryllium through Oxygen Ions at Energies Below 32 keV/amu

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Suzuki, S.; Shirai, T.; Shimakura, N.

    The charge transfer cross sections of Li+ (1s2) ions in collisions with B5+ , C6+, N5+ (1s2), and O6+ (1s2) ions, and of Li2+ (1s) ions with Be+ (1s22s) ions are calculated in the collision energy range of 0.02-32 keV/amu by using a semi-classical close-coupling method with molecular-state expansion.

  7. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    SciTech Connect

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  8. The effects of charge transfer on the properties of liquid water

    SciTech Connect

    Lee, Alexis J.; Rick, Steven W.

    2011-05-14

    A method for treating charge transfer interactions in classical potential models is developed and applied to water. In this method, a discrete amount of charge is transferred for each hydrogen bond formed. It is designed to be simple to implement, to be applicable to a variety of potential models, and to satisfy various physical requirements. The method does not transfer charge at large intramolecular distances, it does not result in a conductive liquid, and it can be easily parameterized to give the correct amount of charge transfer. Two charge transfer models are developed for a polarizable and a non-polarizable potential. The models reproduce many of the properties of liquid water, including the structure, the diffusion constant, and thermodynamic properties over a range of temperatures.

  9. Crystal growth of new charge-transfer salts based on π-conjugated donor molecules

    NASA Astrophysics Data System (ADS)

    Morherr, Antonia; Witt, Sebastian; Chernenkaya, Alisa; Bäcker, Jan-Peter; Schönhense, Gerd; Bolte, Michael; Krellner, Cornelius

    2016-09-01

    New charge transfer crystals of π-conjugated, aromatic molecules (phenanthrene and picene) as donors were obtained by physical vapor transport. The melting behavior, optimization of crystal growth and the crystal structure are reported for charge transfer salts with (fluorinated) tetracyanoquinodimethane (TCNQ-Fx, x=0, 2, 4), which was used as acceptor material. The crystal structures were determined by single-crystal X-ray diffraction. Growth conditions for different vapor pressures in closed ampules were applied and the effect of these starting conditions for crystal size and quality is reported. The process of charge transfer was investigated by geometrical analysis of the crystal structure and by infrared spectroscopy on single crystals. With these three different acceptor strengths and the two sets of donor materials, it is possible to investigate the distribution of the charge transfer systematically. This helps to understand the charge transfer process in this class of materials with π-conjugated donor molecules.

  10. Electron paramagnetic resonance in positively charged Au25 molecular nanoclusters.

    PubMed

    Akbari-Sharbaf, Arash; Hesari, Mahdi; Workentin, Mark S; Fanchini, Giovanni

    2013-01-14

    In this study, we investigated the unpaired electrons and singly occupied molecular orbitals (SOMO) of positively charged Au(25) molecular clusters using solid-state electron paramagnetic resonance (EPR). The EPR powder spectra of the positively charged (Au(25) (+)) and neutral (Au(25) (0)) species of Au(25) are discussed and compared. Our study demonstrates that Au(25) (+) is paramagnetic with a SOMO that is mostly localized about the central gold atom in the core of the molecule and possesses a strong p-type atomic character. The unpaired electron spin is demonstrated to strongly interact with the nuclear spins from other (197)Au nuclei in the core of Au(25) (+) molecules and the hyperfine tensor describing such interaction was extracted from the comparison of the EPR spectra with quantum mechanical simulations assuming an anisotropic structure of the core. Our simulations suggest that the core of Au(25) (+) molecular clusters is more distorted than in the corresponding neutral counterpart. They also confirm previous hypotheses suggesting that the icosahedral core of Au(25) (+) experiences contraction with decreasing temperature. PMID:23320681

  11. Charge Transfer Process During Collision of Riming Graupel Pellet with Small Ice Crystals within a Thundercloud

    NASA Technical Reports Server (NTRS)

    Datta, Saswati; De, Utpal K.; Goswami, K.; Jones, Linwood

    1999-01-01

    A charge transfer process during the collision of a riming graupel pellet and an ice-crystal at low temperature is proposed. During riming, the surface structure of graupel deviates from perfect crystalline structure. A concept of quasi-solid layer (QSL) formation on the surface is introduced. This QSL contains defects formed during riming. In absence of impurities, positively charged X-defect abundance is considered in the outer layer. These defects are assumed to be the charge carriers during the charge transfer process. Some part of the QSL is stripped off by the colliding ice crystals, which thereby gain some positive charge, leaving the graupel pellet negatively charged. With the proposed model, fC to pC of charge transfer is observed per collision. A transition temperature between -10 C to -15 C is also noted beyond which the QSL concept does not hold. This transition temperature is dependent on the bulk liquid water content of the cloud.

  12. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    PubMed Central

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA−, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  13. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  14. 46 CFR 35.35-35 - Duties of person in charge of transfer-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Duties of person in charge of transfer-TB/ALL. 35.35-35 Section 35.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Cargo Handling § 35.35-35 Duties of person in charge of transfer—TB/ALL. The person in charge of the transfer of liquid cargo in bulk, fuel oil in bulk,...

  15. Quantifying the intrinsic surface charge density and charge-transfer resistance of the graphene-solution interface through bias-free low-level charge measurement

    NASA Astrophysics Data System (ADS)

    Ping, Jinglei; Johnson, A. T. Charlie

    2016-07-01

    Liquid-based bio-applications of graphene require a quantitative understanding of the graphene-liquid interface, with the surface charge density of adsorbed ions, the interfacial charge transfer resistance, and the interfacial charge noise being of particular importance. We quantified these properties through measurements of the zero-bias Faradaic charge-transfer between graphene electrodes and aqueous solutions of varying ionic strength using a reproducible, low-noise, minimally perturbative charge measurement technique. The measurements indicated that the adsorbed ions had a negative surface charge density of approximately -32.8 mC m-2 and that the specific charge transfer resistance was 6.5 ± 0.3 MΩ cm2. The normalized current noise power spectral density for all ionic concentrations tested collapsed onto a 1/fα characteristic with α = 1.1 ± 0.2. All the results are in excellent agreement with predictions of the theory for the graphene-solution interface. This minimally perturbative method for monitoring charge-transfer at the sub-pC scale exhibits low noise and ultra-low power consumption (˜fW), making it suitable for use in low-level bioelectronics in liquid environments.

  16. Signature OH Absorption Spectrum from cluster Models of Solvation: a solvent-to-solute charge transfer state

    SciTech Connect

    Tsai, Ming Kang; Kowalski, Karol; Valiev, Marat; Dupuis, Michel

    2007-10-25

    ab initio electronic structure theories applied to cluster models support the characterization of the signature of the OH absorption spectrum to be a solvent-to-solute charge transfer state affected by the hydrogen bonding environment in the region of 250 nm (calculated). The vertical excited states were calculated at the TDDFT level of theory with using OH(H2O)n clusters (n = 0-7, 16) with companion calculations at the EOM-CCSD level of theory for n ≤ 7. An intense solvent-to-solute charge transfer transition was calculated for n = 16 cluster where the donor and acceptor molecular orbitals are in favorable alignment. In the other smaller clusters the transitions in this region were found to be weak. The present findings are consistent with the experimental absorption at 230 nm suggested to be a solvent-to-solute charge transfer and provide insight into the electronic states and orbitals that give rise to the intensity of the band. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program, and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.

  17. Laser desorption/ionization mass spectrometry of diesel particulate matter with charge-transfer complexes.

    PubMed

    Carré, Vincent; Vernex-Loset, Lionel; Krier, Gabriel; Manuelli, Pascal; Muller, Jean-François

    2004-07-15

    Polycyclic aromatic hydrocarbons (PAHs) are often associated with complex matrixes such as exhaust diesel particulate matter (DPM), which complicates their study. In that case, laser desorption/ionization mass spectrometry is one of the techniques which ensures their direct analysis in the solid state. We demonstrate in this paper that the use of charge-transfer pi-complexing agents allows us to selectively detect by Fourier transform ion cyclotron resonance mass spectrometry PAHs adsorbed on diesel particles with high sensitivity. 2,4,7-trinitro-9-fluorenone and 7,7',8,8'-tetracyanoquinodimethane pi-acceptor compounds form charge-transfer complexes with PAHs and prevent their evaporation in the mass spectrometer during analysis. Moreover, the production of PAH molecular ions is dramatically increased by laser irradiation of these complexes at short wavelength (221.7 nm) and low power density (5 x 10(6) W cm(-)(2)). This methodology is applied for the first time to the examination of DPM collected during the new European driving cycle for light-duty vehicles. Differentiation criteria may coherently be assigned to engine operating mode (engine temperature, driving conditions). DPM samples can also be easily distinguished in negative ions according to the high sensitivity of this detection mode to sulfate compounds. PMID:15253632

  18. Excited State Structural Dynamics of Carotenoids and ChargeTransfer Systems

    SciTech Connect

    Van Tassle, Aaron Justin

    2006-09-01

    This dissertation describes the development andimplementation of a visible/near infrared pump/mid-infrared probeapparatus. Chapter 1 describes the background and motivation ofinvestigating optically induced structural dynamics, paying specificattention to solvation and the excitation selection rules of highlysymmetric molecules such as carotenoids. Chapter 2 describes thedevelopment and construction of the experimental apparatus usedthroughout the remainder of this dissertation. Chapter 3 will discuss theinvestigation of DCM, a laser dye with a fluorescence signal resultingfrom a charge transfer state. By studying the dynamics of DCM and of itsmethyl deuterated isotopomer (an otherwise identical molecule), we areable to investigate the origins of the charge transfer state and provideevidence that it is of the controversial twisted intramolecular (TICT)type. Chapter 4 introduces the use of two-photon excitation to the S1state, combined with one-photon excitation to the S2 state of thecarotenoid beta-apo-8'-carotenal. These 2 investigations show evidencefor the formation of solitons, previously unobserved in molecular systemsand found only in conducting polymers Chapter 5 presents an investigationof the excited state dynamics of peridinin, the carotenoid responsiblefor the light harvesting of dinoflagellates. This investigation allowsfor a more detailed understanding of the importance of structuraldynamics of carotenoids in light harvesting.

  19. Polar Laser Dyes Dispersed in Polymer Matrices: Reverification of Charge Transfer Character and New Optical Functions

    NASA Astrophysics Data System (ADS)

    Kwak, Giseop; Okada, Chisato; Fujiki, Michiya; Takeda, Hiroaki; Nishida, Takashi; Shiosaki, Tadashi

    2008-03-01

    In this paper, we describe the photophysical properties and new functions of 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) and its derivative, 2-methyl-6-[2-(2,3,6,7-tetrahydro-1H,5H-benzo[i,j]quinolizin-9-yl)-ethenyl]-4H-pyran-4-ylidene)propane dinitrile (DCM2) in various polymer matrices, with respect to intramolecular charge transfer (ICT). The maximum fluorescence wavelengths of DCM and DCM2 shifted to red with an increase in the dielectric constant of the polymer matrix. The fluorescence lifetime shortened according to the matrix polarity. When a polymer with a dielectric constant varying according to its crystalline structure, poly(vinylidenefluoride-co-trifluoroethylene) (PVdF-co-TrFE), was used as a matrix, we were able to thermally tune the fluorescence wavelength as well as the fluorescence intensity of DCM2. The locked molecular structure of DCM2 was very effective for maintaining the charge transfer character during thermal stimulation.

  20. Three-centered model of ultrafast photoinduced charge transfer: Continuum dielectric approach

    SciTech Connect

    Khohlova, Svetlana S.; Mikhailova, Valentina A.; Ivanov, Anatoly I.

    2006-03-21

    A theoretical description of photoinduced charge transfer involves explicit treating both the optical formation of the nuclear wave packet on the excited free energy surface and its ensuing dynamics. The reaction pathway constitutes two-stage charge transfer between three centers. Manifestations of fractional charge transfer at first stage are explored. An expression for time dependent rate constant of photoinduced charge transfer is found in the framework of the linear dielectric continuum model of the medium. The model involves both the intramolecular vibrational reorganization and the Coulombic interaction of the transferred charge with the medium polarization fluctuations and allows to express the rate in terms of intramolecular reorganization parameters and complex dielectric permittivity. The influence of the vibrational coherent motion in the locally excited state on the charge transfer dynamics has been explored. The dependence of the ultrafast photoinduced charge transfer dynamics on the excitation pulse carrier frequency (spectral effect) has been investigated. The spectral effect has been shown to depend on quantity of the fractional charge.

  1. Transient Molecular Transfer During Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Perry, Radford L.

    2011-01-01

    A common question in contamination budgeting involves the loss of collected volatiles during ambient I&T activity under vacuum and the resultant cross-contamination from outgassing. (1) How much of the material collected under ambient conditions evaporates under vacuum? (2) Why do pristine surfaces sometimes show increased molecular contamination after vacuum bakeout? (3) How much of the collected molecular contamination is transient (i.e. migratory) and how much is permanent? Measuring the transient deposition may be accomplished using a thermally passive QCM

  2. Computing intramolecular charge and energy transfer rates using optimal modes

    SciTech Connect

    Yang, Xunmo; Bittner, Eric R.

    2015-06-28

    In our recent work [X. Yang and E. R. Bittner, J. Phys. Chem. A 118, 5196 (2014)], we showed how to construct a reduced set of nuclear motions that capture the coupling between electronic and nuclear degrees of freedom over the course of an electronic transition. We construct these modes, referred to as “Lanczos modes,” by applying a search algorithm to find linear combinations of vibrational normal modes that optimize the electronic/nuclear coupling operator. Here, we analyze the irreducible representations of the dominant contributions of these modes and find that for the cases considered here, these belong to totally symmetric irreducible representations of the donor and acceptor moieties. Upon investigating the molecular geometry changes following the transition, we propose that the electronic transition process can be broken into two steps, in the agreement of Born-Oppenheimer approximation: a fast excitation transfer occurs, facilitated by the “primary Lanczos mode,” followed by slow nuclear relaxation on the final electronic diabatic surface.

  3. Restricted Photochemistry in the Molecular Solid State: Structural Changes on Photoexcitation of Cu(I) Phenanthroline Metal-to-Ligand Charge Transfer (MLCT) Complexes by Time-Resolved Diffraction

    SciTech Connect

    Makal, Anna; Benedict, Jason; Trzop, Elzbieta; Sokolow, Jesse; Fournier, Bertrand; Chen, Yang; Kalinowski, Jaros; #322; aw A.; Graber, Tim; Henning, Robert; Coppens, Philip

    2015-10-15

    The excited-state structure of Cu{sup I}[(1,10-phenanthroline-N,N') bis(triphenylphosphine)] cations in their crystalline [BF{sub 4}] salt has been determined at both 180 and 90 K by single-pulse time-resolved synchrotron experiments with the modified polychromatic Laue method. The two independent molecules in the crystal show distortions on MLCT excitation that differ in magnitude and direction, a difference attributed to a pronounced difference in the molecular environment of the two complexes. As the excited states differ, the decay of the emission is biexponential with two strongly different lifetimes, the longer lifetime, assigned to the more restricted molecule, becoming more prevalent as the temperature increases. Standard deviations in the current Laue study are very much lower than those achieved in a previous monochromatic study of a Cu(I) 2,9-dimethylphenanthroline substituted complex (J. Am. Chem. Soc. 2009, 131, 6566), but the magnitudes of the shifts on excitation are similar, indicating that lattice restrictions dominate over the steric effect of the methyl substitution. Above all, the study illustrates emphatically that molecules in solids have physical properties different from those of isolated molecules and that their properties depend on the specific molecular environment. This conclusion is relevant for the understanding of the properties of molecular solid-state devices, which are increasingly used in current technology.

  4. Restricted Photochemistry in the Molecular Solid State: Structural changes on Photoexcitation of Cu(I) Phenanthroline metal-to-ligand-charge-transfer (MLCT) complexes by Time-Resolved Diffraction

    PubMed Central

    Makal, Anna; Benedict, Jason; Trzop, Elzbieta; Sokolow, Jesse; Fournier, Bertrand; Chen, Yang; Kalinowski, Jarosław A.; Graber, Tim; Henning, Robert; Coppens, Philip

    2012-01-01

    The excited state structure of [Cu(1)[(1,10-phenanthroline-N,N’) bis(triphenylphosphine)] cations in their crystalline [BF4] salt has been determined at both 180 and 90K by single-pulse time-resolved synchrotron experiments with the modified polychromatic Laue method. The two independent molecules in the crystal show distortions on MLCT excitation which differ in magnitude and direction, a difference attributed to a pronounced difference in the molecular environment of the two complexes. As the excited states differ, the decay of the emission is bi-exponential with two strongly different lifetimes, the longer lifetime, assigned to the more restricted molecule, becoming more prevalent as the temperature increases. Standard deviations in the current Laue study are very much lower than those achieved in a previous monochromatic study of a Cu(I) 2,9 dimethyl-phenanthroline substituted complex (J. Am. Chem. Soc. 2009, 131, 6566), but the magnitude of the shifts on excitation is similar, indicating that lattice restrictions dominate over the steric effect of the methyl substitution. Above all the study illustrates emphatically that molecules in solids have physical properties different from those of isolated molecules and that their properties depend on the specific molecular environment. This conclusion is relevant for the understanding of the properties of molecular solid state devices which are increasingly used in current technology. PMID:22385365

  5. Multiple Charge Transfer States at Ordered and Disordered Donor/Acceptor Interfaces

    NASA Astrophysics Data System (ADS)

    Fusella, Michael; Verreet, Bregt; Lin, Yunhui; Brigeman, Alyssa; Purdum, Geoffrey; Loo, Yueh-Lin; Giebink, Noel; Rand, Barry

    The presence of charge transfer (CT) states in organic solar cells is accepted, but their role in photocurrent generation is not well understood. Here we investigate solar cells based on rubrene and C60 to show that CT state properties are influenced by molecular ordering at the donor/acceptor (D/A) interface. Crystalline rubrene films are produced with domains of 100s of microns adopting the orthorhombic phase, as confirmed by grazing incidence XRD, with the (h00) planes parallel to the substrate. C60 grown atop these films adopts a highly oriented face-centered cubic phase with the (111) plane parallel to the substrate. For this highly ordered system we have discovered the presence of four CT states. Polarized external quantum efficiency (EQE) measurements assign three of these to crystalline origins with the remaining one well aligned with the disordered CT state. Varying the thickness of a disordered blend of rubrene:C60 atop the rubrene template modulates the degree of crystallinity at the D/A interface. Strikingly, this process alters the prominence of the four CT states measured via EQE, and results in a transition from single to multiple electroluminescence peaks. These results underscore the impact of molecular structure at the heterojunction on charge photogeneration.

  6. Charge transfer in DNA: The role of thermal fluctuations and of symmetry

    NASA Astrophysics Data System (ADS)

    D'Orsogna, Maria-Rita Rosaria

    The DNA double helix is a linear one-dimensional molecule, and charge transfer occurs along the base-pairs stacked along its longitudinal axis. DNA, however, is highly subject to disruptions and modifications in its configurational stacking due, for instance, to thermal fluctuations. These departures from a rigid, crystal-like structure must be taken in account for a correct description of the charge transfer process, so that the usual solid-state tight-binding pictures of charge transfer along organic one-dimensional crystals, such as the Bechgaard salts, cannot be used. We propose a model Hamiltonian for charge transfer between the DNA base-pairs with temperature driven fluctuations in the base-pair positions acting as the rate limiting factor. The underlying idea is that charge tunneling between base-pairs that fluctuate significantly from their nominal configuration can occur only when an optimal base-pair relative configuration is reached. We focus on this aspect of the process by modeling two adjacent base pairs in terms of a classical damped oscillator subject to thermal fluctuations and charge transfer to the acceptor. The Fokker-Planck equation for the system yields an unusual two-stage process, with distinct initial and late-time charge transfer rates. This result is in agreement with experimental findings and is not contemplated by other charge transfer paradigms. Another known consequence of charge transfer between DNA base-pairs is the geometrical modification of the base-pairs after the addition or removal of the migrating charge. This structural deformation breaks the mirror symmetry of the original DNA base-pair, leading to two alternate, symmetry related, 'left' and 'right' ionic configurations. We study charge transfer between donor-acceptor molecules subject to a mirror symmetry constraint in the presence of a dissipative environment. The symmetry requirement leads to the breakdown of the standard single reaction-coordinate paradigm of charge

  7. Charge transfer interactions of a Ru(II) dye complex and related ligand molecules adsorbed on Au(111)

    SciTech Connect

    Britton, Andrew J.; Weston, Matthew; O'Shea, James N.; Taylor, J. Ben; Rienzo, Anna; Mayor, Louise C.

    2011-10-28

    The interaction of the dye molecule, N3 (cis-bis(isothiocyanato)bis(2,2{sup '}-bipyridyl-4,4{sup '}-dicarboxylato) -ruthenium(II)), and related ligand molecules with a Au(111) surface has been studied using synchrotron radiation-based electron spectroscopy. Resonant photoemission spectroscopy (RPES) and autoionization of the adsorbed molecules have been used to probe the coupling between the molecules and the substrate. Evidence of charge transfer from the states near the Fermi level of the gold substrate into the lowest unoccupied molecular orbital (LUMO) of the molecules is found in the monolayer RPES spectra of both isonicotinic acid and bi-isonicotinic acid (a ligand of N3), but not for the N3 molecule itself. Calibrated x-ray absorption spectroscopy and valence band spectra of the monolayers reveals that the LUMO crosses the Fermi level of the surface in all cases, showing that charge transfer is energetically possible both from and to the molecule. A core-hole clock analysis of the resonant photoemission reveals a charge transfer time of around 4 fs from the LUMO of the N3 dye molecule to the surface. The lack of charge transfer in the opposite direction is understood in terms of the lack of spatial overlap between the {pi}*-orbitals in the aromatic rings of the bi-isonicotinic acid ligands of N3 and the gold surface.

  8. Intermolecular hydrogen bond complexes by in situ charge transfer complexation of o-tolidine with picric and chloranilic acids

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2011-08-01

    A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA) 2] and [(o-TOL)(CA) 2] have been prepared. The 13C NMR, 1H NMR, 1H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH 2 groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic.

  9. Probing the charge-transfer dynamics in DNA at the single-molecule level.

    PubMed

    Kawai, Kiyohiko; Matsutani, Eri; Maruyama, Atsushi; Majima, Tetsuro

    2011-10-01

    Photoinduced charge-transfer fluorescence quenching of a fluorescent dye produces the nonemissive charge-separated state, and subsequent charge recombination makes the reaction reversible. While the information available from the photoinduced charge-transfer process provides the basis for monitoring the microenvironment around the fluorescent dyes and such monitoring is particularly important in live-cell imaging and DNA diagnosis, the information obtainable from the charge recombination process is usually overlooked. When looking at fluorescence emitted from each single fluorescent dye, photoinduced charge-transfer, charge-migration, and charge recombination cause a "blinking" of the fluorescence, in which the charge-recombination rate or the lifetime of the charge-separated state (τ) is supposed to be reflected in the duration of the off time during the single-molecule-level fluorescence measurement. Herein, based on our recently developed method for the direct observation of charge migration in DNA, we utilized DNA as a platform for spectroscopic investigations of charge-recombination dynamics for several fluorescent dyes: TAMRA, ATTO 655, and Alexa 532, which are used in single-molecule fluorescence measurements. Charge recombination dynamics were observed by transient absorption measurements, demonstrating that these fluorescent dyes can be used to monitor the charge-separation and charge-recombination events. Fluorescence correlation spectroscopy (FCS) of ATTO 655 modified DNA allowed the successful measurement of the charge-recombination dynamics in DNA at the single-molecule level. Utilizing the injected charge just like a pulse of sound, such as a "ping" in active sonar systems, information about the DNA sequence surrounding the fluorescent dye was read out by measuring the time it takes for the charge to return. PMID:21875061

  10. Experimental and theoretical studies of the He(2+)-He system - Differential cross sections for direct, single-, and double-charge-transfer scattering at keV energies

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Dutta, C. M.; Lane, N. F.; Smith, K. A.; Stebbings, R. F.; Kimura, M.

    1992-01-01

    Measurements and calculations of differential cross sections for direct scattering, single-charge transfer, and double-charge transfer in collisions of 1.5-, 2.0-, 6.0-, and 10.0-keV (He-3)2+ with an He-4 target are reported. The measurements cover laboratory scattering angles below 1.5 deg with an angular resolution of about 0.03 deg. A quantum-mechanical molecular-state representation is employed in the calculations; in the case of single-charge transfer a two-state close-coupling calculation is carried out taking into account electron-translation effects. The theoretical calculations agree well with the experimental results for direct scattering and double-charge transfer. The present calculation identifies the origins of oscillatory structures observed in the differential cross sections.

  11. Observation of quantum interference in molecular charge transport.

    PubMed

    Guédon, Constant M; Valkenier, Hennie; Markussen, Troels; Thygesen, Kristian S; Hummelen, Jan C; van der Molen, Sense Jan

    2012-05-01

    As the dimensions of a conductor approach the nanoscale, quantum effects begin to dominate, and it becomes possible to control the conductance through direct manipulation of the electron wavefunction. Such control has been demonstrated in various mesoscopic devices at cryogenic temperatures, but it has proved to be difficult to exert control over the wavefunction at higher temperatures. Molecules have typical energy level spacings (∼eV) that are much larger than the thermal energy at 300 K (∼25 meV), and are therefore natural candidates for such experiments. Previously, phenomena such as giant magnetoresistance, Kondo effects and conductance switching have been observed in single molecules, and theorists have predicted that it should also be possible to observe quantum interference in molecular conductors, but until now all the evidence for such behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid π-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface, and find that the degree of interference can be controlled by simple chemical modifications of the molecular wire. PMID:22447160

  12. Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer.

    PubMed

    Dunk, Paul W; Mulet-Gas, Marc; Nakanishi, Yusuke; Kaiser, Nathan K; Rodríguez-Fortea, Antonio; Shinohara, Hisanori; Poblet, Josep M; Marshall, Alan G; Kroto, Harold W

    2014-01-01

    An understanding of chemical formation mechanisms is essential to achieve effective yields and targeted products. One of the most challenging endeavors is synthesis of molecular nanocarbon. Endohedral metallofullerenes are of particular interest because of their unique properties that offer promise in a variety of applications. Nevertheless, the mechanism of formation from metal-doped graphite has largely eluded experimental study, because harsh synthetic methods are required to obtain them. Here we report bottom-up formation of mono-metallofullerenes under core synthesis conditions. Charge transfer is a principal factor that guides formation, discovered by study of metallofullerene formation with virtually all available elements of the periodic table. These results could enable production strategies that overcome long-standing problems that hinder current and future applications of metallofullerenes. PMID:25524825

  13. Bottom-up formation of endohedral mono-metallofullerenes is directed by charge transfer

    NASA Astrophysics Data System (ADS)

    Dunk, Paul W.; Mulet-Gas, Marc; Nakanishi, Yusuke; Kaiser, Nathan K.; Rodríguez-Fortea, Antonio; Shinohara, Hisanori; Poblet, Josep M.; Marshall, Alan G.; Kroto, Harold W.

    2014-12-01

    An understanding of chemical formation mechanisms is essential to achieve effective yields and targeted products. One of the most challenging endeavors is synthesis of molecular nanocarbon. Endohedral metallofullerenes are of particular interest because of their unique properties that offer promise in a variety of applications. Nevertheless, the mechanism of formation from metal-doped graphite has largely eluded experimental study, because harsh synthetic methods are required to obtain them. Here we report bottom-up formation of mono-metallofullerenes under core synthesis conditions. Charge transfer is a principal factor that guides formation, discovered by study of metallofullerene formation with virtually all available elements of the periodic table. These results could enable production strategies that overcome long-standing problems that hinder current and future applications of metallofullerenes.

  14. Enhanced nonlinear optical response of an endohedral metallofullerene through metal-to-cage charge transfer

    NASA Astrophysics Data System (ADS)

    Heflin, J. R.; Marciu, D.; Figura, C.; Wang, S.; Burbank, P.; Stevenson, S.; Dorn, H. C.

    1998-06-01

    A new mechanism for increasing the third-order nonlinear optical susceptibility, χ(3), is described for endohedral metallofullerenes. A two to three orders of magnitude increase in the nonlinear response is reported for degenerate four-wave mixing experiments conducted with solutions of Er2@C82 (isomer III) relative to empty-cage fullerenes. A value of -8.7×10-32esu is found for the molecular susceptibility, γxyyx, of Er2@C82 compared to previously reported values of γxxxx=3×10-34 esu and γxyyx=4×10-35 esu for C60. The results confirm the importance of the metal-to-cage charge-transfer mechanism for enhancing the nonlinear optical response in endohedral metallofullerenes.

  15. A model for charge transfer in ultracold Rydberg ground-state atomic collisions

    NASA Astrophysics Data System (ADS)

    Markson, Samuel; Sadeghpour, H. R.

    2016-06-01

    In excited molecules, the interaction between the covalent Rydberg and ion-pair channels forms a unique class of excited states, in which the infinite manifold of vibrational levels are the equivalent of atomic Rydberg states with a heavy electron mass. Production of the ion-pair states usually requires excitation through one or several interacting Rydberg states; these interacting channels lead to loss of flux, diminishing the rate of ion-pair production. Here, we develop an analytical, asymptotic charge-transfer model for the interaction between ultracold Rydberg molecular states, and employ this method to demonstrate the utility of off-resonant field control over the ion-pair formation, with near unity efficiency.

  16. Charge-induced distortion and stabilization of surface transfer doped porphyrin films

    SciTech Connect

    Smets, Y.; Stark, C. B.; Wright, C. A.; Pakes, C. I.; Lach, S.; Schmitt, F.; Ziegler, C.; Wanke, M.; Ley, L.

    2013-07-28

    The interaction between zinc-tetraphenylporphyrin (ZnTPP) and fullerenes (C{sub 60} and C{sub 60}F{sub 48}) are studied using ultraviolet photoelectron spectroscopy (UPS) and scanning tunneling microscopy (STM). Low temperature STM reveals highly ordered ZnTPP monolayers on Au(111). In contrast to C{sub 60}, a submonolayer coverage of C{sub 60}F{sub 48} results in long-range disorder of the underlying single ZnTPP layer and distortion of individual ZnTPP molecules. This is induced by substantial charge transfer at the organic-organic interface, revealed by the interface energetics from UPS. However, a second layer of ZnTPP prevents C{sub 60}F{sub 48} guests from breaking the self-assembled porphyrin template. This finding is important for understanding the growth behaviour of “bottom-up” functional nanostructures involving strong donor-acceptor heterojunctions in molecular electronics.

  17. New measurement scheme to investigate low energy charge transfer in H + H 2 +

    NASA Astrophysics Data System (ADS)

    Andrianarijaona, V. M.

    2015-05-01

    The merged-beam apparatus at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, can reliably access low energy charge transfer in H + H2+ --> H+ + H2 and is able to benchmark the total cross section at 200 to under 0.1 eV/u, but is not equipped with a device that would provide the ro-vibrational state distribution of the primary molecular ions. A new experimental scheme, which will allow to upgrade the heretofore only total absolute cross section measurements to vibrationally resolved cross section measurements and will make comparison to state-to-state calculations possible, will be presented. Work supported by the National Science Foundation under Grant No. PHY-1068877.

  18. Ligand dissociation mediated charge transfer observed at colloidal W18O49 nanoparticle interfaces.

    PubMed

    Grauer, David C; Alivisatos, A Paul

    2014-03-11

    Understanding charge transfer dynamics through the ligand shell of colloidal nanoparticles has been an important pursuit in solar energy conversion. While charge transport through ligand shells of nanoparticle films has been studied intensely in static dry and electrochemical systems, its influence on charge transfer kinetics in dispersed colloidal systems has received relatively less attention. This work reports the oxidation of amine passivated tungsten oxide nanoparticles by an organically soluble tris-(1,10-phenanthroline) iron(III) derivative. By following the rate of this oxidation optically via the production of the ferroin derivative under various reaction conditions and particle derivatizations, we are able to show that the fluxional ligand shells on dispersed, colloidal nanoparticles provide a separate and more facile pathway for charge transfer, in which the rate-limiting step for charge transfer is the ligand dissociation. Since such ligand shells are frequently required for nanoparticle stability, this observation has significant implications for colloidal nanoparticle photocatalysis. PMID:24564847

  19. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems.

    PubMed

    Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura

    2015-12-17

    The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length. PMID:26554424

  20. Density functional investigation of the electronic structure and charge transfer excited states of a multichromophoric antenna

    NASA Astrophysics Data System (ADS)

    Basurto, Luis; Zope, Rajendra R.; Baruah, Tunna

    2016-05-01

    We report an electronic structure study of a multichromophoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. The snowflake shaped molecule behaves like an antenna capturing photon at different frequencies and transferring the photon energy to the porphyrin where electron transfer occurs from the porphyrin to the fullerene. The study is performed within density functional formalism using large polarized Guassian basis sets (12,478 basis functions in total). The energies of the HOMO and LUMO states in the complex, as adjudged by the ionization potential and the electron affinity values, show significant differences with respect to their values in participating subunits in isolation. These differences are also larger than the variations of the ionization potential and electron affinity values observed in non-bonded C60-ZnTPP complexes in co-facial arrangement or end-on orientations. An understanding of the origin of these differences is obtained by a systematic study of the effect of structural strain, the presence of ligands, the effect of orbital delocalization on the ionization energy and the electron affinity. Finally, a few lowest charge transfer energies involving electronic transitions from the porphyrin component to the fullerene subunit of the complex are predicted.

  1. Photoinduced intramolecular charge transfer in an electronically modified flavin derivative: roseoflavin.

    PubMed

    Karasulu, Bora; Thiel, Walter

    2015-01-22

    The photophysical properties of a push-pull flavin derivative, roseoflavin (RoF), are investigated in different surroundings at the molecular level, with focus on intramolecular charge transfer (ICT). Time-dependent density functional theory (TD-DFT, CAM-B3LYP functional) and DFT-based multireference configuration interaction (DFT/MRCI) are used to compute excited-state energies and one-electron properties of a truncated RoF model, roseolumiflavin (RoLF). Solvent effects are taken into account implicitly by the conductor-like polarizable continuum model and explicitly through a microsolvation scheme. In the gas phase, the calculations predict no crossing between the lowest locally excited (LE) and charge-transfer (CT) states upon twisting the dimethylamine donor group relative to the plane of the isoalloxazine acceptor moiety, whereas this crossing is found to be facile in solution (i.e., in water or benzene). Crossing of the LE and CT states facilitates ICT, which is the main cause of the fluorescence quenching and dual fluorescence character experimentally observed for roseoflavin in solution. The barrier for the ICT process is computed to be lower in water than in benzene, consistent with the enhanced ICT rates observed in more polar solvents. We present a detailed study of the molecular mechanism of the photoinduced ICT process in RoLF. For a typical donor-acceptor chromophore, three such mechanisms are discussed in the literature, which differ in the alignment of the donor and acceptor planes, namely, planar ICT (PICT), perpendicular-twisted ICT (TICT), and wagging ICT (WICT). Our theoretical results suggest that the TICT mechanism is favored in RoLF. PMID:25214319

  2. Synthesis and characterization of highly conductive charge-transfer complexes using positron annihilation spectroscopy.

    PubMed

    Adam, Abdel Majid A; Refat, Moamen S; Sharshar, T; Heiba, Z K

    2012-09-01

    Molecular charge-transfer complexes of the tetramethylethylenediamine (TMEDA) with picric acid (Pi-OH), benzene-1,4-diol (QL), tin(IV) tetrachloride (SnCl(4)), iodine, bromine, and zinc chloride (ZnCl(2)) have been synthesized and investigated by elemental and thermal analysis, electronic, infrared, Raman and proton-NMR, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and positron annihilation lifetime spectroscopy, and scanning electron microscopy. In this work, three types of acceptors π-acceptors (Pi-OH and QL), σ-acceptors (iodine and bromine), and vacant orbital acceptors (SnCl(4) and ZnCl(2)) were covered. The results of elemental analysis indicated that the CT complexes were formed with ratios 1:1 and 1:2 for QL, SnCl(4), and ZnCl(2) acceptors and iodine, Pi-OH, and Br(2) acceptors, respectively. The type of chelating between the TMEDA donor and the mentioned acceptors depends upon the behavior of both items. The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, and the power of acceptors. The correlation between these parameters and the molecular weight and biological activities of studied complexes was also observed. Regarding the electrical properties, the AC conductivity and the dielectric coefficients were measured as a function of frequency at room temperature. The TMEDA charge-transfer complexes were screened against antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and antifungal (Aspergillus flavus and Candida albicans) activities. PMID:22595252

  3. Nuclear Quadrupole Resonance Studies of Charge Distributions in Molecular Solids.

    NASA Astrophysics Data System (ADS)

    Greenbaum, Steven Garry

    . ('14)N NQR data for seven organic dye cations and one free base are presented. The cations are weakly paramagnetic at 77 K, exhibiting broad and featureless EPR spectra characteristic of weak charge-transfer complexes. The positive charge in the cations is largely delocalized. The existence of a simple relationship between the ('14)N NQR data and optical properties for three cyanine laser dyes is discussed.

  4. Transition-density-fragment interaction combined with transfer integral approach for excitation-energy transfer via charge-transfer states

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.

    2012-07-01

    A transition-density-fragment interaction (TDFI) combined with a transfer integral (TI) method is proposed. The TDFI method was previously developed for describing electronic Coulomb interaction, which was applied to excitation-energy transfer (EET) [K. J. Fujimoto and S. Hayashi, J. Am. Chem. Soc. 131, 14152 (2009)] and exciton-coupled circular dichroism spectra [K. J. Fujimoto, J. Chem. Phys. 133, 124101 (2010)]. In the present study, the TDFI method is extended to the exchange interaction, and hence it is combined with the TI method for applying to the EET via charge-transfer (CT) states. In this scheme, the overlap correction is also taken into account. To check the TDFI-TI accuracy, several test calculations are performed to an ethylene dimer. As a result, the TDFI-TI method gives a much improved description of the electronic coupling, compared with the previous TDFI method. Based on the successful description of the electronic coupling, the decomposition analysis is also performed with the TDFI-TI method. The present analysis clearly shows a large contribution from the Coulomb interaction in most of the cases, and a significant influence of the CT states at the small separation. In addition, the exchange interaction is found to be small in this system. The present approach is useful for analyzing and understanding the mechanism of EET.

  5. Surface Restricted Grating Studies of Interfacial Charge Transfer Dynamics at N-Gallium ARSENIDE(100) Liquid Junction.

    NASA Astrophysics Data System (ADS)

    Wang, Xiangdong

    1995-01-01

    Heterogeneous electron transfer involves the coupling of a dense manifold of highly delocalized electronic levels of the solid state to a discrete molecular state as well as an abrupt change in phase in the reaction coordinate. These features make this problem unique relative to homogeneous solution phase or gas phase reaction mechanisms which involve coupling between discrete states within a uniform medium. In this work, the advances in Surface Restricted Transient Grating Spectroscopy (Surface Restricted Transient Grating) are discussed in the context of studying interfacial charge transfer processes at single crystal semiconductor surfaces as a means to probe the primary processes governing heterogeneous electron transfer. In situ grating studies of n-GaAs/(Se ^{-2/-1}) aqueous liquid junction have observed 1 ~ 2 picosecond decay components in the presence of the selenium redox couple. Bias voltage and injection intensity dependencies have shown that field focusing of the hole carrier distribution to the surface reaction plane was achieved. Based on the bias voltage and injection intensity dependence, and known hole scavenging properties of Se^{ -2}, the fast initial decay is assigned to interfacial hole transfer. This time scale is coincident with the highly damped diffusive relaxation components of water under the high ionic concentrations present in the Helmholtz double layer of the GaAs electrode surface. The similarity in time scales between charge transfer and the rate limiting nuclear motion in the barrier crossing dynamics indicates that the electronic coupling at the interface is in the strong coupling regime. This study was the first direct time-resolved measurement of interfacial electron transfer from a single crystal surface. The observation that the dynamics are essentially in the strong coupling limit is contrary to conventional treatments of interfacial transfer processes, which assume weak coupling conditions. This result is important as it

  6. Charge-transfer-induced evaporation in collisions of Li2+31 clusters with Cs atoms

    NASA Astrophysics Data System (ADS)

    Bréchignac, C.; Cahuzac, Ph.; Concina, B.; Leygnier, J.; Ruiz, L. F.; Zarour, B.; Hervieux, P. A.; Hanssen, J.; Politis, M. F.; Martín, F.

    2003-12-01

    We present a combined theoretical and experimental study of dissociative charge transfer in collisions of slow Li2+31 clusters with Cs atoms. We provide a direct quantitative comparison between theory and experiment and show that good agreement is only found when the experimental time-of-flight and initial cluster temperature are taken into account in the theoretical modeling. This model explains evaporation as resulting from a collisional energy deposit due to cluster electronic excitation during charge transfer. We discuss in detail the basic mechanisms that are responsible for the charge-transfer reaction and different approximations to evaluate the energy deposit.

  7. An electron energy-loss study of picene and chrysene based charge transfer salts

    SciTech Connect

    Müller, Eric; Mahns, Benjamin; Büchner, Bernd; Knupfer, Martin

    2015-05-14

    The electronic excitation spectra of charge transfer compounds built from the hydrocarbons picene and chrysene, and the strong electron acceptors F{sub 4}TCNQ (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane) and TCNQ (7,7,8,8-tetracyanoquinodimethan) have been investigated using electron energy-loss spectroscopy. The corresponding charge transfer compounds have been prepared by co-evaporation of the pristine constituents. We demonstrate that all investigated combinations support charge transfer, which results in new electronic excitation features at low energy. This might represent a way to synthesize low band gap organic semiconductors.

  8. Molecular dynamics of excited state intramolecular proton transfer: 3-hydroxyflavone in solution

    SciTech Connect

    Bellucci, Michael A.; Coker, David F.

    2012-05-21

    The ultrafast enol-keto photoisomerization in the lowest singlet excited state of 3-hydroxyflavone is investigated using classical molecular dynamics in conjunction with empirical valence bond (EVB) potentials for the description of intramolecular interactions, and a molecular mechanics and variable partial charge model, dependent on transferring proton position, for the description of solute-solvent interactions. A parallel multi-level genetic program was used to accurately fit the EVB potential energy surfaces to high level ab initio data. We have studied the excited state intramolecular proton transfer (ESIPT) reaction in three different solvent environments: methylcyclohexane, acetonitrile, and methanol. The effects of the environment on the proton transfer time and the underlying mechanisms responsible for the varied time scales of the ESIPT reaction rates are analyzed. We find that simulations with our EVB potential energy surfaces accurately reproduce experimentally determined reaction rates, fluorescence spectra, and vibrational frequency spectra in all three solvents. Furthermore, we find that the ultrafast ESIPT process results from a combination of ballistic transfer, and intramolecular vibrational redistribution, which leads to the excitation of a set of low frequency promoting vibrational modes. From this set of promoting modes, we find that an O-O in plane bend and a C-H out of plane bend are present in all three solvents, indicating that they are fundamental to the ultrafast proton transfer. Analysis of the slow proton transfer trajectories reveals a solvent mediated proton transfer mechanism, which is diffusion limited.

  9. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    SciTech Connect

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  10. A molecular shift register based on electron transfer

    NASA Technical Reports Server (NTRS)

    Hopfield, J. J.; Onuchic, Josenelson; Beratan, David N.

    1988-01-01

    An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a 'molecular electronic device' that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.

  11. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    NASA Astrophysics Data System (ADS)

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-02-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices.

  12. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution.

    PubMed

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure - in the presence of Fermi-level pinning - at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction's electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  13. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    PubMed Central

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  14. Radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1992-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.

  15. Robust Topological Interfaces and Charge Transfer in Epitaxial Bi2Se3/II–VI Semiconductor Superlattices

    PubMed Central

    Chen, Zhiyi; Zhao, Lukas; Park, Kyungwha; Garcia, Thor Axtmann; Tamargo, Maria C.; Krusin-Elbaum, Lia

    2015-01-01

    Access to charge transport through Dirac surface states in topological insulators (TIs) can be challenging due to their intermixing with bulk states or nontopological two-dimensional electron gas (2DEG) quantum well states caused by bending of electronic bands near the surface. The band bending arises via charge transfer from surface adatoms or interfaces and, therefore, the choice of layers abutting topological surfaces is critical. Here we report molecular beam epitaxial growth of Bi2Se3/ZnxCd1–xSe superlattices that hold only one topological surface channel per TI layer. The topological nature of conducting channels is supported by π-Berry phase evident from observed Shubnikov de Haas quantum oscillations and by the associated two-dimensional (2D) weak antilocalization quantum interference correction to magnetoresistance. Both density functional theory (DFT) calculations and transport measurements suggest that a single topological Dirac cone per TI layer can be realized by asymmetric interfaces: Se-terminated ZnxCd1–xSe interface with the TI remains “electronically intact”, while charge transfer occurs at the Zn-terminated interface. Our findings indicate that topological transport could be controlled by adjusting charge transfer from nontopological spacers in hybrid structures. PMID:26348593

  16. Robust Topological Interfaces and Charge Transfer in Epitaxial Bi2Se3/II-VI Semiconductor Superlattices.

    PubMed

    Chen, Zhiyi; Zhao, Lukas; Park, Kyungwha; Garcia, Thor Axtmann; Tamargo, Maria C; Krusin-Elbaum, Lia

    2015-10-14

    Access to charge transport through Dirac surface states in topological insulators (TIs) can be challenging due to their intermixing with bulk states or nontopological two-dimensional electron gas (2DEG) quantum well states caused by bending of electronic bands near the surface. The band bending arises via charge transfer from surface adatoms or interfaces and, therefore, the choice of layers abutting topological surfaces is critical. Here we report molecular beam epitaxial growth of Bi2Se3/ZnxCd1-xSe superlattices that hold only one topological surface channel per TI layer. The topological nature of conducting channels is supported by π-Berry phase evident from observed Shubnikov de Haas quantum oscillations and by the associated two-dimensional (2D) weak antilocalization quantum interference correction to magnetoresistance. Both density functional theory (DFT) calculations and transport measurements suggest that a single topological Dirac cone per TI layer can be realized by asymmetric interfaces: Se-terminated ZnxCd1-xSe interface with the TI remains "electronically intact", while charge transfer occurs at the Zn-terminated interface. Our findings indicate that topological transport could be controlled by adjusting charge transfer from nontopological spacers in hybrid structures. PMID:26348593

  17. Ab initio study of charge-transfer dynamics in collisions of C{sup 2+} ions with hydrogen chloride

    SciTech Connect

    Rozsalyi, E.; Vibok, A.; Bene, E.; Halasz, G. J.; Bacchus-Montabonel, M. C.

    2011-05-15

    Ab initio quantum chemistry molecular calculations followed by a semiclassical dynamical treatment in the keV collision energy range have been developed for the study of the charge-transfer process in collisions of C{sup 2+} ions with hydrogen chloride. The mechanism has been investigated in detail in connection with avoided crossings between states involved in the reaction. A simple mechanism driven by a strong nonadiabatic coupling matrix element has been pointed out for this process. A comparative analysis with the halogen fluoride target corresponding to a similar electronic configuration shows a quite different charge-transfer mechanism leading to a very different behavior of the cross sections. Such behavior may be correlated to specific nonadiabatic interactions observed in these collision systems.

  18. Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

    SciTech Connect

    Shavorskiy, Andrey; Hertlein, Marcus; Guo Jinghua; Tyliszczak, Tolek; Cordones, Amy; Vura-Weis, Josh; Siefermann, Katrin; Slaughter, Daniel; Sturm, Felix; Weise, Fabian; Khurmi, Champak; Belkacem, Ali; Weber, Thorsten; Gessner, Oliver; Bluhm, Hendrik; Strader, Matthew; Cho, Hana; Coslovich, Giacomo; Kaindl, Robert A.; Lin, Ming-Fu; and others

    2013-04-19

    X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.

  19. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  20. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  1. Resonant charge transfer of hydrogen Rydberg atoms incident at a metallic sphere

    NASA Astrophysics Data System (ADS)

    Gibbard, J. A.; Softley, T. P.

    2016-06-01

    A wavepacket propagation study is reported for the charge transfer of low principal quantum number (n = 2) hydrogen Rydberg atoms incident at an isolated metallic sphere. Such a sphere acts as a model for a nanoparticle. The three-dimensional confinement of the sphere yields discrete surface-localized ‘well-image’ states, the energies of which vary with sphere radius. When the Rydberg atom energy is degenerate with one of the quantized nanoparticle states, charge transfer is enhanced, whereas for off-resonant cases little to no charge transfer is observed. Greater variation in charge-transfer probability is seen between the resonant and off-resonant examples in this system than for any other Rydberg-surface system theoretically investigated thus far. The results presented here indicate that it may be possible to use Rydberg-surface ionization as a probe of the surface electronic structure of a nanoparticle, and nanostructures in general.

  2. The mechanisms of delayed fluorescence in charge-transfer crystal of tetracyanobenzene-hexamethylbenzene

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.; Prochorow, J.

    1989-08-01

    Fluorescence, phosphorescence and delayed fluorescence emission characteristics of tetracyanobenzene-hexamethylbenzene (TCNB-HMB) charge-transfer crystal have been studied in the 1.7-340 K temperature range. Delayed fluorescence, originating from heterogeneous triplet-triplet annihilation indicates the presence of mobile charge-transfer triplet excitons at a temperature as low as 1.7 K. However, the behaviour of triplet excitons in TCNB-HMB crystal is strongly controlled by a very efficient trapping process in the whole temperature range investigated. It was found that thermally activated delayed fluorescence, which is a dominating emission of the crystal at elevated temperatures (>60 K), has a different origin (a different initial state) at different temperatures. These observations were analysed and interpreted in terms of a photokinetic model, which is considered to be typical for charge-transfer crystals with high charge-transfer character of triplet excitons.

  3. Charge transmission through a molecular wire: the role of terminal sites for the current-voltage behavior.

    PubMed

    Petrov, E G; Zelinskyy, Ya R; May, V; Hänggi, P

    2007-08-28

    The current-voltage and the conductance-voltage characteristics are analyzed for a particular type of molecular wire embedded between two electrodes. The wire is characterized by internal molecular units where the lowest occupied molecular orbital (LUMO) levels are positioned much above the Fermi energy of the electrodes, as well as above the LUMO levels of the terminal wire units. The latter act as specific intermediate donor and acceptor sites which in turn control the current formation via the superexchange and sequential electron transfer mechanisms. According to the chosen wire structure, intramolecular multiphonon processes may block the superexchange component of the interelectrode current, resulting in a negative differential resistance of the molecular wire. A pronounced current rectification appears if (i) the superexchange component dominates the electron transfer between the terminal sites and if (ii) the multiphonon suppression of distant superexchange charge hopping events between those sites is nonsymmetric. PMID:17764286

  4. Molecular controls on kaolinite surface charge and organic acid adsorption

    SciTech Connect

    Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Ward, D.B.

    1996-10-01

    pH-dependent multi-site kaolinite surface charge can be explained by proton donor-acceptor reactions occurring simultaneously on Si and Al sites exposed on edge sites. Si site acidity at the kaolinite-solution interface differs minimally from that of pure SiO{sub 2}, whereas Al sites became appreciably more acidic when a part of the kaolinite matrix. Independent evidence from scanning force microscopy points to a higher percentage of edge surface area due to thicker particles and basal surface steps than previously assumed. Molecular modeling of the proton-relaxed kaolinite structure has been used to establish the elevated acidity of edge Al sites, to independently confirm the crystallochemical controls on surface acidity, and to establish likely bonding geometries for adsorbed organic acids, such as oxalate.

  5. The role of charge-transfer states in energy transfer and dissipation within natural and artificial bacteriochlorophyll-proteins

    PubMed Central

    Wahadoszamen, Md.; Margalit, Iris; Ara, Anjue Mane; van Grondelle, Rienk; Noy, Dror

    2014-01-01

    Understanding how specific protein environments affect the mechanisms of non-radiative energy dissipation within densely assembled chlorophylls in photosynthetic protein complexes is of great interest to the construction of bioinspired solar energy conversion devices. Mixing of charge-transfer and excitonic states in excitonically interacting chlorophylls was implicated in shortening excited states lifetimes but its relevance to active control of energy dissipation in natural systems is under considerable debate. Here we show that the degree of fluorescence quenching in two similar pairs of excitonically interacting bacteriochlorophyll derivatives is directly associated with increasing charge transfer character in the excited state, and that the protein environment may control non-radiative dissipation by affecting the mixing of charge transfer and excitonic states. The capability of local protein environments to determine the fate of excited states, and thereby to confer different functionalities to excitonically coupled dimers substantiates the dimer as the basic functional element of photosynthetic enzymes. PMID:25342121

  6. Molecular Dynamics Simulations of Nanoparticles Coated with Charged Polymers

    NASA Astrophysics Data System (ADS)

    Wen, Chengyuan; Cheng, Shengfeng

    Polymer coating is frequently used to stabilize colloidal and nano-sized particles. We employ molecular dynamics simulations to study nanoparticles coated with polymer chains that contain ionizable groups. In a polar solvent, the chains become charged with counterions dissociated. In the computational model, we treat the solvent as a uniform dielectric background and use the bead-spring model for the polymer chains. Counterions are explicitly included as mobile beads. The nanoparticle is modeled as a layer of sites uniformly distributed on a spherical surface with a certain fraction of sites serving as the tether points of the grafted polymer brush. We vary the grafting density and calculate the distribution of polymer beads and counterions around the nanoparticle. Our results indicate that charged chains adopt extended conformations because of their mutual repulsions. We further study the interactions between two polymer-coated nanoparticles and obtain the potential of mean force. We also find an interesting transition of a confined single layer of such polymer-coated nanoparticles into two layers when the confinement is removed. Results show that the brush-brush contact has a nonuniform distribution and the nanoparticles tend to form dipole-like structures.

  7. Quantum Plasmonics: Optical Monitoring of DNA-Mediated Charge Transfer in Plasmon Rulers.

    PubMed

    Lerch, Sarah; Reinhard, Björn M

    2016-03-01

    Plasmon coupling between DNA-tethered gold nanoparticles is investigated by correlated single-particle spectroscopy and transmission electron microscopy for interparticle separations between 0.5 and 41 nm. Spectral characterization reveals a weakening of the plasmon coupling due to DNA-mediated charge transfer for separations up to 2.8 nm. Electromagnetic simulations indicate a coherent charge transfer across the DNA. PMID:26789736

  8. Laser-plasma ion beams-experiments towards charge transfer x-ray laser

    SciTech Connect

    Crespo Lopez-Urrutia, J.R.; Fill, E.E. ); Bruch, R. ); Schneider, D. )

    1993-06-05

    Laser plasmas produced at intensities of up to 10[sup 14] W/cm[sup 2] expand towards a secondary target a few millimeters away. The intense x-ray emission during the interaction plasma-target was recorded spectrally, spatially and time-resolved. A number of processes, like recombination and charge transfer may account for this strong radiation. The implications of these experiments to the design of a charge transfer x-ray laser are discussed.

  9. Picosecond spectroscopy of charge-transfer processes. Photochemistry of anthracene-tetranitromethane EDA complexes

    NASA Astrophysics Data System (ADS)

    Masnovi, J. M.; Huffman, J. C.; Kochi, J. K.; Hilinski, E. F.; Rentzepis, P. M.

    1984-04-01

    The temporal sequence of events that follow 532 nm excitation of electron donor-acceptor, EDA, complexes of several substituted anthracenes with tetranitromethane is monitored by means of picosecond spectroscopy. Excitation of the charge-transfer band of these EDA complexes produces high yields of 1 : 1 adducts. Absorption spectra and kinetics of the transient species involved in these photochemical reactions provide the basis for elucidation of the reaction mechanism following charge-transfer excitation to the ion pairs.

  10. Photonic switching of photoinduced electron transfer in a dihydropyrene-porphyrin-fullerene molecular triad.

    PubMed

    Liddell, Paul A; Kodis, Gerdenis; Andréasson, Joakim; de la Garza, Linda; Bandyopadhyay, Subhajit; Mitchell, Reginald H; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2004-04-21

    Photonic control of photoinduced electron transfer has been demonstrated in a dimethyldihydropyrene (DHP) porphyrin (P) fullerene (C(60)) molecular triad. In the DHP-P-C(60) form of the triad, excitation of the porphyrin moiety is followed by photoinduced electron transfer to give a DHP-P(*)(+)-C(60)(*)(-) charge-separated state, which evolves by a charge shift reaction to DHP(*)(+)-P-C(60)(*)(-). This final state has a lifetime of 2 micros and is formed in an overall yield of 94%. Visible (>or=300 nm) irradiation of the triad leads to photoisomerization of the DHP moiety to the cyclophanediene (CPD). Excitation of the porphyrin moiety of CPD-P-C(60) produces a short-lived (<10 ns) CPD-P(*)(+)-C(60)(*)(-) state, but charge shift to the CPD moiety does not occur, due to the relatively high oxidation potential of the CPD group. Long-lived charge separation is not observed. Irradiation of CPD-P-C(60) with UV (254 nm) light converts the triad back to the DHP form. Thermal interconversion of the DHP and CPD forms is very slow, photochemical cycling is facile, and in the absence of oxygen, many cycles may be performed without substantial degradation. Thus, light is used to switch long-lived photoinduced charge separation on or off. The principles demonstrated by the triad may be useful for the design of molecule-based optoelectronic systems. PMID:15080684

  11. Spectroscopic investigation and computational analysis of charge transfer hydrogen bonded reaction between 3-aminoquinoline with chloranilic acid in 1:1 stoichiometric ratio

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Alenezi, Maha S.; Habeeb, Moustafa M.

    2015-10-01

    Charge transfer hydrogen bonded reaction between the electron donor (proton acceptor) 3-aminoquinoline with the electron acceptor (proton donor) chloranilic acid (H2CA) has been investigated experimentally and theoretically. The experimental work included the application of UV-vis spectroscopy to identify the charge transfer band of the formed complex, its molecular composition as well as estimating its formation constants in different solvent included acetonitrile (AN), methanol (MeOH), ethanol (EtOH) and chloroform (CHL). It has been recorded the presence of new absorption bands in the range 500-550 nm attributing to the formed complex. The molecular composition of the HBCT complex was found to be 1:1 (donor:acceptor) in all studied solvents based on continuous variation and photometric titration methods. In addition, the calculated formation constants from Benesi-Hildebrand equation recorded high values, especially in chloroform referring to the formation of stable HBCT complex. Infrared spectroscopy has been applied for the solid complex where formation of charge and proton transfer was proven in it. Moreover, 1H and 13C NMR spectroscopies were used to characterize the formed complex where charge and proton transfers were reconfirmed. Computational analysis included the use of GAMESS computations as a package of ChemBio3D Ultr12 program were applied for energy minimization and estimation of the stabilization energy for the produced complex. Also, geometrical parameters (bond lengths and bond angles) of the formed HBCT complex were computed and analyzed. Furthermore, Mullikan atomic charges, molecular potential energy surface, HOMO and LUMO molecular orbitals as well as assignment of the electronic spectra of the formed complex were presented. A full agreement between experimental and computational analysis has been found especially in the existence of the charge and proton transfers and the assignment of HOMO and LUMO molecular orbitals in the formed complex as

  12. Charge transfer effects of ions at the liquid water/vapor interface

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2014-05-14

    Charge transfer (CT), the movement of small amounts of electron density between non-bonded pairs, has been suggested as a driving force for a variety of physical processes. Herein, we examine the effect of CT on ion adsorption to the water liquid-vapor interface. Using a CT force field for molecular dynamics, we construct a potential of mean force (PMF) for Na{sup +}, K{sup +}, Cl{sup −}, and I{sup −}. The PMFs were produced with respect to an average interface and an instantaneous interface. An analysis of the PMF relative to the instantaneous surface reveals that the area in which the anions experience a free energy minimum is quite narrow, and the cations feel a steeply repulsive free energy near the interface. CT is seen to have only minor effects on the overall free energy profiles. However, the long-ranged effects of ions are highlighted by the CT model. Due to CT, the water molecules at the surface become charged, even when the ion is over 15 Å away from the surface.

  13. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Bhargavi, R.; Nair, Geetha G.; Krishna Prasad, S.; Majumdar, R.; Bag, Braja G.

    2014-10-01

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4-5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  14. A charge transfer complex nematic liquid crystalline gel with high electrical conductivity

    SciTech Connect

    Bhargavi, R.; Nair, Geetha G. E-mail: skpras@gmail.com; Krishna Prasad, S. E-mail: skpras@gmail.com; Majumdar, R.; Bag, Braja G.

    2014-10-21

    We describe the rheological, dielectric and elastic properties of a nematic liquid crystal gel created using an anthrylidene derivative of arjunolic acid, a chiral triterpenoid, obtained from the extracts of the wood of Terminalia arjuna. In this novel gel, having the electron-donor and acceptor components as minority constituents, the gelation and strengthening of charge-transfer complex (CTC) formation are seen to be occurring concomitantly. In addition to being mechanically strong with a large storage modulus, the gel with the maximized CTC exhibits Frank bend elastic constant values that approach nanonewton levels. The highlight of the study is the observation of 4–5 orders of magnitude increase in electrical conductivity for this gel, a value that is higher than even in the CT complexes of 2-d ordered columnar structures. A further important advantage of the present system over the columnar complex is that the high conductivity is seen for ac probing also, and owing to the nematic nature can be switched between its anisotropic limits. Some of these features are ascribed to a specific molecular packing architecture, which reduces the trapping of the charge carriers.

  15. Why are the Interaction Energies of Charge-Transfer Complexes Challenging for DFT?

    PubMed

    Steinmann, Stephan N; Piemontesi, Cyril; Delachat, Aurore; Corminboeuf, Clemence

    2012-05-01

    The description of ground state charge-transfer complexes is highly challenging. Illustrative examples include large overestimations of charge-transfer by local and semilocal density functional approximations as well as inaccurate binding energies. It is demonstrated here that standard density functionals fail to accurately describe interaction energies of charge-transfer complexes not only because of the missing long-range exchange as generally assumed but also as a result of the neglect of weak interactions. Thus, accounting for the missing van der Waals interactions is of key importance. These assertions, based on the evaluation of the extent of stabilization due to dispersion using both DFT coupled with our recent density-dependent dispersion correction (dDsC) and high-level ab initio computations, reflect the imperfect error-cancellation between the overestimation of charge-transfer and the missing long-range interactions. An in-depth energy decomposition analysis of an illustrative series of four small ambidentate molecules (HCN, HNC, HF, and ClF) bound together with NF3 provides the main conclusions, which are validated on a prototypical organic charge-transfer complex (i.e., tetrathiafulvalene-tetracyanoquinodimethane, TTF-TCNQ). We establish that the interaction energies for charge-transfer complexes can only be properly described when using well-balanced functionals such as PBE0-dDsC, M06-2X, and LC-BOP-LRD. PMID:26593656

  16. Estimitation of Charge-Transfer Resistivity of Pt Cathode on YSZ Electrolyte Using Patterned Electrodes

    SciTech Connect

    Radhakrishnan, Rajesh; Virkar, Anil V.; Singhal, Subhash C.

    2005-04-01

    YSZ Electrolyte discs with patterned LSM electrodes having different three phase boundary (TPB) lengths but the same electrode-electrolyte interface area, were prepared using photomicrolithography. Impedance spectra for half-cells were obtained under oxygen partial pressures, ranging from 10-3 to 1 atm and temperatures from 650 to 800oC. Area specific charge transfer resistance was found to vary inversely. While the charge transfer resistance is inversely proportional to consistent with the charge transfer reaction occurring mainly at the TPB, at 800oC some transport through LSM also appears to occur. The estimated value of charge transfer resistivity corresponding to the charge transfer reaction occurring at TPB, in air at 800oC is in good agreement with that estimated from actual fuel cell tests using quantitative stereological analysis of LSM-YSZ composite electrodes and were found to decrease with increasing and with increasing temperature. The activation energy for the overall charge transfer reaction was estimated to be ~1.5 eV.

  17. Potential curves for Na2/+/ and resonance charge transfer cross sections.

    NASA Technical Reports Server (NTRS)

    Bottcher, C.; Allison, A. C.; Dalgarno, A.

    1971-01-01

    A mode potential method, applied earlier to the positively charged diatomic lithium molecule Li2(+), is used to calculate the six lowest potential energy curves of Na2(+). Charge transfer cross sections are calculated for Li(+) on Li and for Na(+) on Na and found to be in reasonable agreement with experiment.

  18. Time delay and integration detectors using charge transfer devices

    NASA Technical Reports Server (NTRS)

    Mccann, D. H.; White, M. H.; Turly, A. P.

    1981-01-01

    An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates.

  19. Energy transfer in a molecular motor in the Kramers regime.

    PubMed

    Challis, K J; Jack, Michael W

    2013-10-01

    We present a theoretical treatment of energy transfer in a molecular motor described in terms of overdamped Brownian motion on a multidimensional tilted periodic potential. The tilt represents a thermodynamic force driving the system out of equilibrium and, for nonseparable potentials, energy transfer occurs between degrees of freedom. For deep potential wells, the continuous theory transforms to a discrete master equation that is tractable analytically. We use this master equation to derive formal expressions for the hopping rates, drift and diffusion, and the efficiency and rate of energy transfer in terms of the thermodynamic force. These results span both strong and weak coupling between degrees of freedom, describe the near and far from equilibrium regimes, and are consistent with generalized detailed balance and the Onsager relations. We thereby derive a number of diverse results for molecular motors within a single theoretical framework. PMID:24229123

  20. Energetics of charge transfer reactions in solvents of dipolar and higher order multipolar character. II. Results

    NASA Astrophysics Data System (ADS)

    Perng, Baw-Ching; Newton, Marshall D.; Raineri, Fernando O.; Friedman, Harold L.

    1996-05-01

    porphyrin-quinone (PQ) ``dyad'' recently studied by Mataga and co-workers, we examine the ability of the molecular theories to explain the dependence of charge-transfer energetics on dipolar and nondipolar solvents. We find that the solvatochromic effect on the absorption energy of betaine-30, which forms the basis of the ET(30) empirical solvent polarity scale, is reproduced reasonably well by the RST, RDT, and HXA theories for solvents ranging from carbon tetrachloride to water. In the case of the PQ dyad, we find that the calculated values of λ in dipolar and nondipolar solvents are in good agreement with experimental estimates. Our results indicate that the molecular theories of solvation discussed in this paper can explain the observation that a solvent with vanishing molecular dipole moment, like benzene, can show unmistakable ``polarity,'' as reflected by its influence on the energetics of CT reactions. We also present calculations that corroborate the suggestion (Sec. VII of paper I) that, compared with the behavior in dipolar solvents, in nondipolar solvents the dependence of λ with the donor-acceptor separation distance is practically negligible.

  1. Charge Transfer and Surface Scattering at Cu/C_60 Planar Interfaces

    NASA Astrophysics Data System (ADS)

    Hebard, A. F.; Ruel, R. R.; Eom, C. B.

    1996-03-01

    Thin films of Cu and C_60 have been sequentially deposited onto insulating substrates in high vacuum and studied using in situ resistivity measurements during deposition. Different regimes of behavior, which manifest the transfer of electrons from the Cu metal across the planar interface to the C_60, are identified. For example, in the continuous film limit, in which the Cu is thick enough to have a size-effect resistivity proportional to the reciprocal of the film thickness, the presence of an adjacent C_60 monolayer gives rise to an increase in resistance. This resistance increase is quantitatively described by a scattering model in which the interfacial diffuse scattering cross section is found to be 5Åthe approximate area of a face of the molecular cage. In a second regime of behavior, in which the ultra-thin Cu films have a morphology of coalescing islands, the presence of an adjacent C_60 monolayer, doped by charge transfer from the metal, creates a shunting path with sheet resistance ~8000Ω/Box accompanied by a pronounced decrease in resistance. The inferred room-temperature resistivity is more than a factor of two less than that of the 3-dimensional alkali-metal-doped compounds, A_3C_60 (A=K,Rb).

  2. Ultrafast Charge Transfer in Nickel Phthalocyanine Probed by Femtosecond Raman-Induced Kerr Effect Spectroscopy

    PubMed Central

    2015-01-01

    The recently developed technique of femtosecond stimulated Raman spectroscopy, and its variant, femtosecond Raman-induced Kerr effect spectroscopy (FRIKES), offer access to ultrafast excited-state dynamics via structurally specific vibrational spectra. We have used FRIKES to study the photoexcitation dynamics of nickel(II) phthalocyanine with eight butoxy substituents, NiPc(OBu)8. NiPc(OBu)8 is reported to have a relatively long-lived ligand-to-metal charge-transfer (LMCT) state, an essential characteristic for efficient electron transfer in photocatalysis. Following photoexcitation, vibrational transitions in the FRIKES spectra, assignable to phthalocyanine ring modes, evolve on the femtosecond to picosecond time scales. Correlation of ring core size with the frequency of the ν10 (asymmetric C–N stretching) mode confirms the identity of the LMCT state, which has a ∼500 ps lifetime, as well as that of a precursor d-d excited state. An even earlier (∼0.2 ps) transient is observed and tentatively assigned to a higher-lying Jahn–Teller-active LMCT state. This study illustrates the power of FRIKES spectroscopy in elucidating ultrafast molecular dynamics. PMID:24841906

  3. Counterintuitive issues in the charge transport through molecular junctions.

    PubMed

    Bâldea, Ioan

    2015-12-14

    Whether at phenomenological or microscopic levels, most theoretical approaches to charge transport through molecular junctions postulate or attempt to justify microscopically the existence of a dominant molecular orbital (MO). Within such single level descriptions, experimental current-voltage I-V curves are sometimes/often analyzed by using analytical formulas expressing the current as a cubic expansion in terms of the applied voltage V, and the possible V-driven shifts of the level energy offset relative to the metallic Fermi energy ε0 are related to the asymmetry of molecule-electrode couplings or an asymmetric location of the "center of gravity" of the MO with respect to electrodes. In this paper, we present results demonstrating the failure of these intuitive expectations. For example, we show how typical data processing based on cubic expansions yields a value of ε0 underestimated by a typical factor of about two. When compared to theoretical results of DFT approaches, which typically underestimate the HOMO-LUMO gap by a similar factor, this may create the false impression of "agreement" with experiments in situations where this is actually not the case. Furthermore, such cubic expansions yield model parameter values dependent on the bias range width employed for fitting, which is unacceptable physically. Finally, we present an example demonstrating that, counter-intuitively, the bias-induced change in the energy of an MO located much closer to an electrode can occur in a direction that is opposite to the change in the Fermi energy of that electrode. This is contrary to what one expects based on a "lever rule" argument, according to which the MO "feels" the local value of the electric potential, which is assumed to vary linearly across the junction and is closer to the potential of the closer electrode. This example emphasizes the fact that screening effects in molecular junctions can have a subtle character, contradicting common intuition. PMID:26549325

  4. 33 CFR 127.301 - Persons in charge of shoreside transfer operations: Qualifications and certification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... LNG may not use the services of any person, as a person in charge of shoreside transfer operations, unless that person— (1) Has at least 48 hours of LNG transfer experience; (2) Knows the hazards of LNG... at the waterfront facility handling LNG....

  5. 33 CFR 127.301 - Persons in charge of shoreside transfer operations: Qualifications and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LNG may not use the services of any person, as a person in charge of shoreside transfer operations, unless that person— (1) Has at least 48 hours of LNG transfer experience; (2) Knows the hazards of LNG... at the waterfront facility handling LNG....

  6. Using metal complex-labeled peptides for charge transfer-based biosensing with semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi

    2009-02-01

    Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.

  7. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene.

    PubMed

    Alexander-Webber, J A; Huang, J; Maude, D K; Janssen, T J B M; Tzalenchuk, A; Antonov, V; Yager, T; Lara-Avila, S; Kubatkin, S; Yakimova, R; Nicholas, R J

    2016-01-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology. PMID:27456765

  8. Giant quantum Hall plateaus generated by charge transfer in epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Alexander-Webber, J. A.; Huang, J.; Maude, D. K.; Janssen, T. J. B. M.; Tzalenchuk, A.; Antonov, V.; Yager, T.; Lara-Avila, S.; Kubatkin, S.; Yakimova, R.; Nicholas, R. J.

    2016-07-01

    Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.

  9. Effects of charge transfer on the ESIPT process in methyl 5-R-salicylates.

    PubMed

    Catalán, J

    2015-02-12

    The fluorescent behavior of the methyl-5-R-salicylates is analyzed in media of negligible acidity and basicity so that the methyl-5-R-salicylates may undergo solvent dipolarity changes or not in a controlled manner based on the following guidelines: (i) The molecular forms of these methyl-5-R-salicylates possessing an intramolecular hydrogen bond (IMHB) between their hydroxyl group and ether type oxygen (rotated tautomer) undergo no excited-state intramolecular proton transfer (ESIPT) in their first excited electronic state; (ii) on the other hand, the molecular species with an IMHB between its hydroxyl group and carbonyl oxygen (normal tautomer) exhibits both ESIPT and normal emission when charge transfer (CT) from the R-substituent to the phenol group is slight to moderate, but only normal emission is monitored when CT is strong. The special insensitivity of the first UV absorption band for the normal tautomer of methylsalicylate (MS, with R = H) to the polarity of the solvent is not echoed by the normal forms of methyl-5-R-salicylates containing substituents R with a substantial effect of CT in the IMHB of the compound. These solvatochromic features of MS are shared by the emissions of its derivatives. The photophysical evidence found for the methyl-5-R-salicylates confirms the photophysical model recently reported (Phys. Chem. Chem. Phys. 2012, 14, 8903-8909), which assigns three fluorescent emissions to the methyl-5-R-salicylates: two of them coming from the IMHB normal tautomer, which undergoes ESIPT, and another from the IMHB rotated tautomer, which cannot undergo ESIPT. PMID:24967729

  10. Controllable Quantum State Transfer Between a Josephson Charge Qubit and an Electronic Spin Ensemble

    NASA Astrophysics Data System (ADS)

    Yan, Run-Ying; Wang, Hong-Ling; Feng, Zhi-Bo

    2016-01-01

    We propose a theoretical scheme to implement controllable quantum state transfer between a superconducting charge qubit and an electronic spin ensemble of nitrogen-vacancy centers. By an electro-mechanical resonator acting as a quantum data bus, an effective interaction between the charge qubit and the spin ensemble can be achieved in the dispersive regime, by which state transfers are switchable due to the adjustable electrical coupling. With the accessible experimental parameters, we further numerically analyze the feasibility and robustness. The present scheme could provide a potential approach for transferring quantum states controllably with the hybrid system.

  11. Characterizing reactions to fabricate thin films of charge transfer complexes by synchrotron photoelectron spectroscopy: A case study of DCNQI-Cu

    NASA Astrophysics Data System (ADS)

    Shimada, Toshihiro; Mochida, Michihiro; Koma, Atsushi

    1997-04-01

    Ultraviolet photoelectron spectroscopy with various photon energies using synchrotron radiation was used to characterize chemical reactions associated with thin film growth of organic charge transfer complex (DMe-DCNQI) 2Cu. Other molecular systems H 2Pc, CuPc and C 60 were also studied to clarify the origin of the systematic relation between the spectra and the incident photon energy. Characteristic photon energy dependence of the photo-ionization cross section of molecular orbitals is useful to analyze the intermolecular reactions.

  12. Photophysics of charge transfer in a polyfluorene/violanthrone blend

    NASA Astrophysics Data System (ADS)

    Cabanillas-Gonzalez, J.; Virgili, T.; Lanzani, G.; Yeates, S.; Ariu, M.; Nelson, J.; Bradley, D. D. C.

    2005-01-01

    We present a study of the photophysical and photovoltaic properties of blends of violanthrone in poly[9, 9-bis (2-ethylhexyl)-fluorene-2, 7-diyl ] (PF2/6) . Photoluminescence quenching and photocurrent measurements show moderate efficiencies for charge generation, characteristic of such polymer/dye blends. Pump-probe measurements on blend films suggest that while ˜47% of the total exciton population dissociates within 4ps of photoexcitation, only ˜32% subsequently results in the formation of dye anions. We attribute the discrepancy to the likely formation of complex species with long lifetimes, such as stabilized interface charge pairs or exciplexes. This conclusion is supported by the appearance of a long lifetime component of 2.4ns in the dynamics of the photoinduced absorption signal associated to polarons in photoinduced absorption bands centered at 560nm .

  13. Wire transfer of charge packets for on-chip CCD signal processing

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.

    A structure for the virtual transfer of charge packets across metal wires is described theoretically and is experimentally verified. The structure is a hybrid of charge-coupled device (CCD) and bucket-brigade device (BBD) elements and permits the topological crossing of charge-domain signals in low power signal processing circuits. A test vehicle consisting of 8-, 32- and 96-stage delay lines of various geometries implemented in a double-poly, double-metal foundry process was used to characterize the wire-transfer operation. Transfer efficiency ranging between 0.998 and 0.999 was obtained for surface n-channel devices with clock cycle times in the range from 40 nsec to 0.3 msec. Transfer efficiency as high as 0.9999 was obtained for buried n-channel devices. Good agreement is found between experiment and simulation.

  14. Kinetic-energy transfer in highly-charged-ion collisions with carbon

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Arista, N. R.

    2015-11-01

    We present an accurate theoretical model for the charge dependence of kinetic energy transferred in collisions between slow highly charged ions (HCIs) and the atoms in a carbon solid. The model is in excellent agreement with experimental kinetic-energy-loss data for carbon nanomembrane and thin carbon foil targets. This study fills a notable gap in the literature of charged-particle energy loss in the regime of low incident velocity (vp≲2.188 ×106 m/s) where charge states greatly exceed the equilibrium values.

  15. Charge-transfer complexes formed in the reaction of 1,4,7,10-tetraazacyclododecane with π-electron acceptors

    NASA Astrophysics Data System (ADS)

    AlQaradawi, Siham Y.; Mostafa, Adel; Bazzi, Hassan S.

    2013-04-01

    The reactions of the electron donor 1,4,7,10-tetraazacyclododecane (TACDD) with the π-electron acceptors 7,7,8,8-tetracyanoquinodimethane (TCNQ), tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ), 2,3,5,6-tetrachloro-1,4-benzoquinone (CHL) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) were studied spectrophotometrically in chloroform at room temperature. The electronic and infrared spectra of the formed molecular charge-transfer (CT) complexes were recorded. The obtained results showed that the stoichiometries of the reactions are fixed and depend on the nature of both the donor and the acceptor. Based on the obtained data, the formed charge-transfer complexes were formulated as [(Donor)(Acceptor)2] for the donor (TACDD) and the acceptors TCNQ, TCNE, DDQ, CHL and TBCHD. These CT-complexes were isolated as solids and have been characterized through electronic and infrared spectra as well as elemental and thermal analysis measurements. The formation constants (KCT), charge transfer energy (ECT), molar extinction coefficients (ɛCT), free energy change ΔG0, ionization potential Ip and oscillator strength ƒ of the formed CT-complexes were obtained.

  16. Ultrafast electron transfer at organic semiconductor interfaces: Importance of molecular orientation

    DOE PAGESBeta

    Ayzner, Alexander L.; Nordlund, Dennis; Kim, Do -Hwan; Bao, Zhenan; Toney, Michael F.

    2014-12-04

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximatelymore » 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.« less

  17. Ultrafast electron transfer at organic semiconductor interfaces: Importance of molecular orientation

    SciTech Connect

    Ayzner, Alexander L.; Nordlund, Dennis; Kim, Do -Hwan; Bao, Zhenan; Toney, Michael F.

    2014-12-04

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.

  18. Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation.

    PubMed

    Ayzner, Alexander L; Nordlund, Dennis; Kim, Do-Hwan; Bao, Zhenan; Toney, Michael F

    2015-01-01

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation. PMID:26263084

  19. Spectroscopic analysis and charge transfer interaction studies of 4-benzyloxy-2-nitroaniline insecticide: A density functional theoretical approach

    NASA Astrophysics Data System (ADS)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2015-01-01

    A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.

  20. The lowest-energy charge-transfer state and its role in charge separation in organic photovoltaics.

    PubMed

    Nan, Guangjun; Zhang, Xu; Lu, Gang

    2016-06-29

    Energy independent, yet higher than 90% internal quantum efficiency (IQE), has been observed in many organic photovoltaics (OPVs). However, its physical origin remains largely unknown and controversial. The hypothesis that the lowest charge-transfer (CT) state may be weakly bound at the interface has been proposed to rationalize the experimental observations. In this paper, we study the nature of the lowest-energy CT (CT1) state, and show conclusively that the CT1 state is localized in typical OPVs. The electronic couplings in the donor and acceptor are found to determine the localization of the CT1 state. We examine the geminate recombination of the CT1 state and estimate its lifetime from first principles. We identify the vibrational modes that contribute to the geminate recombination. Using material parameters determined from first principles and experiments, we carry out kinetic Monte Carlo simulations to examine the charge separation of the localized CT1 state. We find that the localized CT1 state can indeed yield efficient charge separation with IQE higher than 90%. Dynamic disorder and configuration entropy can provide the energetic and entropy driving force for charge separation. Charge separation efficiency depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than that normal to the interface. Reorganization energy is found to be the most important material parameter for charge separation, and lowering the reorganization energy of the donor should be pursued in the materials design. PMID:27306609

  1. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    PubMed

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed. PMID:20578764

  2. Charge exchange collisions of slow C6 + with atomic and molecular H

    NASA Astrophysics Data System (ADS)

    Saha, Bidhan C.; Guevara, Nicolais L.; Sabin, John R.; Deumens, Erik; Öhrn, Yngve

    2016-04-01

    Charge exchange in collisions of C6+ ions with H and H2 is investigated theoretically at projectile energies 0.1 < E < 10 keV/amu, using electron nuclear dynamics (END) - a semi-classical approximation which not only includes electron translation factors for avoiding spurious couplings but also employs full dynamical trajectories to treat nuclear motions. Both the total and partial cross sections are reported for the collision of C6+ ions with atomic and molecular hydrogen. A comparison with other theoretical and experimental results shows, in general good agreement except at very low energy, considered here. For H2, the one- and two-electron charge exchange cross sections are calculated and compared with other theoretical and experimental results. Small but non-negligible isotope effects are found at the lowest energy studied in the charge transfer of C6+ with H. In low energy region, it is observed that H2 has larger isotope effects than H atom due to the polarizability effect which is larger than the mass effect.

  3. Toward Fast and Accurate Evaluation of Charge On-Site Energies and Transfer Integrals in Supramolecular Architectures Using Linear Constrained Density Functional Theory (CDFT)-Based Methods.

    PubMed

    Ratcliff, Laura E; Grisanti, Luca; Genovese, Luigi; Deutsch, Thierry; Neumann, Tobias; Danilov, Denis; Wenzel, Wolfgang; Beljonne, David; Cornil, Jérôme

    2015-05-12

    A fast and accurate scheme has been developed to evaluate two key molecular parameters (on-site energies and transfer integrals) that govern charge transport in organic supramolecular architecture devices. The scheme is based on a constrained density functional theory (CDFT) approach implemented in the linear-scaling BigDFT code that exploits a wavelet basis set. The method has been applied to model disordered structures generated by force-field simulations. The role of the environment on the transport parameters has been taken into account by building large clusters around the active molecules involved in the charge transfer. PMID:26574411

  4. Thermodynamic Integration Networks and Their Application to Charge Transfer Reactions within the AauDyPI Fungal Peroxidase.

    PubMed

    Bauß, Anna; Langenmaier, Michael; Strittmatter, Eric; Plattner, Dietmar A; Koslowski, Thorsten

    2016-06-01

    We present a computer simulation study of the thermodynamics and kinetics of charge transfer reactions within the fungal peroxidase AauDyPI from Auricularia auriculae-judae. Driving forces and reorganization energies are obtained from a thermodynamic integration scheme based upon molecular dynamics simulations. To enhance the numerical accuracy, the free energies are analyzed within a least-squares scheme of a closely knit thermodynamic network. We identify Tyr147, Tyr229, and Trp105 as oxidative agents, and find Trp377 to be a long-lived reaction intermediate. The results are compared to recent experimental findings. PMID:27182684

  5. Charge transfers from Na atom in (H2O)n clusters and in water solution

    NASA Astrophysics Data System (ADS)

    Nozue, Takeshi; Hoshino, Junichi; Tsumuraya, Kazuo

    2006-03-01

    The charge state of sodium ions in water is an essential issue in both biophysical and physicochemical areas. Although the nominal charge state of sodium is +1 in water solution, the true charge is less than unity and will depend on the environments. We clarify the true charges states with ab initio density functional methods. There have been several methods to evaluate the charges that belong to each atom in molecules: Bader analysis divides up into regions where the dividing surfaces are at a minimum in the density. [1] The Bader charge analysis [2] has difficulty of finding all the critical points around the atom. Henkelman et al. have proposed a modified partition scheme. [3] We use a modified version of the Henkelman's scheme to integrate the core charge densities separately. The method gives the charge transfer from Na to H2O to be 0.167e and that to (H2O)2 to be 0.522e. The original Bader charge scheme gives 0.156e and 0.596e respectively. We present the transfers surrounded by a large number of water molecules and those in water solution in periodic system. [1]R.F.W.Bader, Atoms in Molecules: A Quantum Theory, Clarendon:Oxford. 1990. [2]C.F.Guerra, et al., J.Comp.Chem. 25, 189(2003). [3]G.Henkelman, et al., Comp. Mat. Sci. in press.

  6. State-to-state dynamics of molecular energy transfer

    SciTech Connect

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  7. Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends

    PubMed Central

    2014-01-01

    Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. PMID:24490650

  8. Ultrafast holography and transient absorption spectroscopy in charge-transfer polymers

    SciTech Connect

    McBranch, D.W.; Maniloff, E.S.; Vacar, D.; Heeger, A.J.

    1997-10-01

    Charge-transfer polymers are a new class of nonlinear optical materials which can be used for generating femtosecond holographic gratings. Using semiconducting polymers sensitized with varying concentrations of C{sub 60}, holographic gratings were recorded by individual ultrafast laser pulses; the diffraction efficiency and time decay of the gratings were measured using non-degenerate four-wave mixing. Using a figure of merit for dynamic data processing, the temporal diffraction efficiency, this new class of materials exhibits between two and 12 orders of magnitude higher response than previous reports. The charge transfer range at polymer/C{sub 60} interfaces was further studied using transient absorption spectroscopy. The fact that charge-transfer occurs in the picosecond-time scale in bilayer structures (thickness 200 {angstrom}) implies that diffusion of localized excitations to the interface is not the dominant mechanism; the charge transfer range is a significant fraction of the film thickness. From analysis of the excited state decay curves, we estimate the charge transfer range to be 80 {angstrom} and interpret that range as resulting from quantum delocalization of the photoexcitations.

  9. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.

    PubMed

    Paulus, Geraldine L C; Wang, Qing Hua; Ulissi, Zachary W; McNicholas, Thomas P; Vijayaraghavan, Aravind; Shih, Chih-Jen; Jin, Zhong; Strano, Michael S

    2013-06-10

    Junctions between a single walled carbon nanotube (SWNT) and a monolayer of graphene are fabricated and studied for the first time. A single layer graphene (SLG) sheet grown by chemical vapor deposition (CVD) is transferred onto a SiO₂/Si wafer with aligned CVD-grown SWNTs. Raman spectroscopy is used to identify metallic-SWNT/SLG junctions, and a method for spectroscopic deconvolution of the overlapping G peaks of the SWNT and the SLG is reported, making use of the polarization dependence of the SWNT. A comparison of the Raman peak positions and intensities of the individual SWNT and graphene to those of the SWNT-graphene junction indicates an electron transfer of 1.12 × 10¹³ cm⁻² from the SWNT to the graphene. This direction of charge transfer is in agreement with the work functions of the SWNT and graphene. The compression of the SWNT by the graphene increases the broadening of the radial breathing mode (RBM) peak from 3.6 ± 0.3 to 4.6 ± 0.5 cm⁻¹ and of the G peak from 13 ± 1 to 18 ± 1 cm⁻¹, in reasonable agreement with molecular dynamics simulations. However, the RBM and G peak position shifts are primarily due to charge transfer with minimal contributions from strain. With this method, the ability to dope graphene with nanometer resolution is demonstrated. PMID:23281165

  10. Tetramethoxybenzene is a Good Building Block for Molecular Wires: Insights from Photoinduced Electron Transfer.

    PubMed

    Heinz, Luisa G; Yushchenko, Oleksandr; Neuburger, Markus; Vauthey, Eric; Wenger, Oliver S

    2015-06-01

    Two donor bridge-acceptor molecules with terminal triarylamine and Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) redox partners were synthesized and investigated by cyclic voltammetry, optical absorption, luminescence, and transient absorption spectroscopy. The two dyads differ only by the central bridging unit, which was tetramethoxybenzene (tmb) in one case and unsubstituted phenylene (ph) in the other case. Photoirradiation of the Ru(bpy)3(2+) complex of the two dyads triggers intramolecular electron transfer from the triarylamine to the (3)MLCT-excited metal complex, and this process occurs with time constants of 1.5 and 6.8 ns for the tmb- and ph-bridged dyads, respectively. Thermal electron transfer in the reverse direction then leads to disappearance of the photoproduct with a time constant of 10 ns in both dyads. The faster rate of photoinduced charge transfer in the tmb-bridged dyad can be understood in the framework of a hole-tunneling model in which the electron-rich tmb bridge imposes a more shallow barrier than the less electron-rich ph spacer. Until now tmb-based molecular wires have received very little attention, and alkoxy substituents have been mostly used for improving the solubility of oligo-p-phenylene vinylene (OPV) and oligo-p-phenylene ethynylene (OPE) wires. Our study illustrates how four alkoxy-substituents on a phenylene backbone can have a significant influence on the charge-transfer properties of a molecular wire, and this is relevant in the greater context of a future molecular electronics technology. PMID:25974891

  11. Differential studies and projectile charge effects in ionization of molecular nitrogen by positron and electron impact

    NASA Astrophysics Data System (ADS)

    de Lucio, O. G.; DuBois, R. D.

    2016-03-01

    Singly, doubly, and triply differential information, obtained from coincidence measurements, are presented for 250-eV positron- and electron-impact ionization of molecular nitrogen. Comparisons of these data as functions of energy loss, scattering, and emission angles illustrate differences associated with the sign of the projectile charge. Via a deconvolution and normalization procedure, the triply differential data are converted to absolute cross sections. By fitting the triply differential cross sections for single ionization with simple functions, the intensities, directions, and peak to background intensities of the binary peaks plus the ratio of recoil to binary interactions are compared for positron and electron impact. Formulas for the binary and recoil intensities plus for the orientation of the binary peak as a function of momentum transfer are extracted from the data. Differences in the relative amount of fragmentation as a function of energy loss are also observed.

  12. Charge transfer and charge conversion of K and N defect centers in Si3N4

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco; Erbetta, Davide

    2000-06-01

    Charge traps in silicon nitride and their interaction have been studied by first principle density functional theory (DFT) calculations. The K0 (N3≡Si•) and N0 (Si2=N•) Si and N dangling bond centers, respectively, are electrically active paramagnetic point defects. They show an amphoteric behavior and convert into the more stable diamagnetic charged centers K- (N3≡Si-), K+ (N3≡Si+), N- (Si2=N-), and N+ (Si2=N+). The overcoordination of K+ and N+ and the electrostatic interaction with the K- or N- counterparts are important contributions to the negative-U character of the defects.

  13. Elasticity, internal excitation, and charge transfer during grazing scattering of keV fullerenes from a LiF(1 0 0) surface

    NASA Astrophysics Data System (ADS)

    Wethekam, S.; Winter, H.

    2011-06-01

    C60+ molecular ions with energies of 5-45 keV are scattered under grazing angles of incidence of 1-3° from a LiF(1 0 0) surface. From the analysis of polar angular distributions, fragment size distributions, and ion fractions for scattered projectiles, information on elastic, internal excitation, and charge transfer processes are derived. The results are compared to classical molecular dynamics simulations, which reproduce the angular distributions on a quantitative level, but the internal excitation only in part. In addition to the transfer of the normal energy loss to internal degrees of freedom of the molecule, an excitation is identified and interpreted as resonant coherent excitation in the oscillating electric field in front of the surface experienced by the moving projectile. The ion fractions are in accord with a complete suppression of charge transfer between fullerene ion and surface.

  14. DNA in a Dissipative Environment: A Charge Transfer Approach

    NASA Astrophysics Data System (ADS)

    Behnia, Sohrab; Fathizadeh, Samira; Akhshani, Afshin

    2015-08-01

    Conductivity properties of DNA molecule is investigated in a simple, chemically specific approach, that is intimately related to the Su-Schrieffer-Heeger (SSH) model. In the SSH model, the non-diagonal matrix element dependent on intersite displacements is considered and there is a coupling between the charge and lattice deformation along DNA helix. In order to study the evolution of the electrical current flowing through DNA in the presence of external electrical field, the electrical current is directly extracted from the dynamical equations. Ranges of electrical field and hopping constant value are estimated using MLE approach. The model is studied by means of I-V characteristic diagrams and the environmental effects is conducted through a phonon bath using different lengths of DNA. The NDR and quasi-Ohmic regions are observed.

  15. Charge transfer and electronic doping in nitrogen-doped graphene

    PubMed Central

    Joucken, Frédéric; Tison, Yann; Le Fèvre, Patrick; Tejeda, Antonio; Taleb-Ibrahimi, Amina; Conrad, Edward; Repain, Vincent; Chacon, Cyril; Bellec, Amandine; Girard, Yann; Rousset, Sylvie; Ghijsen, Jacques; Sporken, Robert; Amara, Hakim; Ducastelle, François; Lagoute, Jérôme

    2015-01-01

    Understanding the modification of the graphene’s electronic structure upon doping is crucial for enlarging its potential applications. We present a study of nitrogen-doped graphene samples on SiC(000) combining angle-resolved photoelectron spectroscopy, scanning tunneling microscopy and spectroscopy and X-ray photoelectron spectroscopy (XPS). The comparison between tunneling and angle-resolved photoelectron spectra reveals the spatial inhomogeneity of the Dirac energy shift and that a phonon correction has to be applied to the tunneling measurements. XPS data demonstrate the dependence of the N 1s binding energy of graphitic nitrogen on the nitrogen concentration. The measure of the Dirac energy for different nitrogen concentrations reveals that the ratio usually computed between the excess charge brought by the dopants and the dopants’ concentration depends on the latter. This is supported by a tight-binding model considering different values for the potentials on the nitrogen site and on its first neighbors. PMID:26411651

  16. Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith

    DOEpatents

    Milleron, Norman

    1983-01-01

    A rotating fiber array molecular driver is disclosed which includes a magnetically suspended and rotated central hub to which is attached a plurality of elongated fibers extending radially therefrom. The hub is rotated so as to straighten and axially extend the fibers and to provide the fibers with a tip speed which exceeds the average molecular velocity of fluid molecules entering between the fibers. Molecules colliding with the sides of the rotating fibers are accelerated to the tip speed of the fiber and given a momentum having a directional orientation within a relatively narrow distribution angle at a point radially outward of the hub, which is centered and peaks at the normal to the fiber sides in the direction of fiber rotation. The rotating fiber array may be used with other like fiber arrays or with other stationary structures to form molecular momentum transfer devices such as vacuum pumps, molecular separators, molecular coaters, or molecular reactors.

  17. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  18. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors.

    PubMed

    Robin, A; Lhuillier, E; Xu, X Z; Ithurria, S; Aubin, H; Ouerghi, A; Dubertret, B

    2016-01-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1-1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413

  19. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    NASA Astrophysics Data System (ADS)

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-05-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties.

  20. Charge transfer and momentum exchange in exospheric D-H(+) and H-D(+) collisions

    NASA Technical Reports Server (NTRS)

    Hodges, R. R., Jr.; Breig, E. L.

    1993-01-01

    Mechanisms that control the escape of deuterium from planetary exospheres include the acceleration of D(+) in the polar wind, and the production of suprathermal D atoms through nonthermal collisions. In this paper we examine the effects of neutral-ion interactions involving deuterium and hydrogen on the velocity distribution of neutral D. A two-center scattering approximation is used as the basis for calculations of the differential cross sections for charge transfer and elastic scatter in collision of H with D(+) and of D with H(+) for ionosphere-exosphere collision energies below 10 e V. These data are used to derive temperature dependent rate coefficients for the charge transfer branches of these interactions, and to determine the effects of ion-neutral temperature differences on the rate of generation of suprathermal D through charge transfer and elastic scatter.

  1. Relation between geometry and charge transfer in low-dimensional organic salts

    SciTech Connect

    Umland, T.C.; Allie, S.; Kuhlmann, T.; Coppens, P.

    1988-11-03

    The Cambridge Data Base has been used to examine the relation between charge transfer and geometry in salts containing the TCNQ (tetracyanoquinodimethanide) anion and the TTF (tetrathiofulvalene), TSF (tetraselenofulvalene), and BEDT-TTF (bis(ethylenedithio)tetrathiofulvalene) cations. The correlation is based on either a bond length ratio or a bond length difference function and is calculated both for an extended data set, including charge transfers based on stoichiometry, and on a more restricted set based on neutral molecules and experimentally measured charge transfers. A two-parameter linear least-squares fit is found to be adequate; inclusion of a third (quadratic) coefficient does not give a significant improvement with the data available. The bond length difference function tends to give somewhat smaller standard deviations in predictions based on the derived equations. The curves for BEDT-TTF are not significantly different from those for the larger TTF set of entries.

  2. Horizontal versus vertical charge and energy transfer in hybrid assemblies of semiconductor nanoparticles

    PubMed Central

    Gotesman, Gilad; Guliamov, Rahamim

    2012-01-01

    Summary We studied the photoluminescence and time-resolved photoluminescence from self-assembled bilayers of donor and acceptor nanoparticles (NPs) adsorbed on a quartz substrate through organic linkers. Charge and energy transfer processes within the assemblies were investigated as a function of the length of the dithiolated linker (DT) between the donors and acceptors. We found an unusual linker-length-dependency in the emission of the donors. This dependency may be explained by charge and energy transfer processes in the vertical direction (from the donors to the acceptors) that depend strongly on charge transfer processes occurring in the horizontal plane (within the monolayer of the acceptor), namely, parallel to the substrate. PMID:23019559

  3. Charge transfer cross sections for Hg + , Xe + , and Cs + in collision with various metals and carbon

    NASA Astrophysics Data System (ADS)

    Rutherford, J. A.; Vroom, D. A.

    1981-01-01

    Cross sections for charge transfer between Hg+, Xe+, and Cs+ and the atomic species Fe, Mo, Al, Ti, Ta, and C have been measured in the ion energy range from 1 to 5000 eV. In general, the cross sections for charge transfer were found to be less than 2×10-15 cm2 for most processes over the total energy range. The one exception is Hg+ in collision with Ti. The reactants are all open shell atomic species and in most cases where the charge transfer process is exothermic, several resonant pathways exist leading to the products. Some discussion of possible reaction paths is given. The techniques used to form neutral beams of the various species studied is included.

  4. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    PubMed Central

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-01-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413

  5. Investigation of energy transfer and charge trapping in dye-doped organic light-emitting diodes by magneto-electroluminescence measurement

    NASA Astrophysics Data System (ADS)

    Peng, Qiming; Gao, Na; Li, Weijun; Chen, Ping; Li, Feng; Ma, Yuguang

    2013-05-01

    We investigated the energy transfer and charge trapping (CT) in dye-doped organic light-emitting devices by using the magneto-electroluminescence as a tool. An intra-molecular charge-transfer fluorescent material N,N-diphenyl-4-(9-phenylnaphtho-[2,3-c][1,2,5]thiadiazol-4-yl)aniline was selected as the guest emitter. The tri-(8-hydroxyquinoline)-aluminum and 1,3-bis(9-carbazolyl)benzene were selected as the hosts. Our results demonstrate that as the energy difference between the HOMO (highest occupied molecular orbital)/LUMO (lowest unoccupied molecular orbital) of the host and the guest (ΔEHOMO/ΔELUMO) increases, the CT becomes more dominant, and the CT cannot be ignored even when the ΔEHOMO/ΔELUMO is small and the emission spectrum of the host overlaps the absorption spectrum of the guest well.

  6. Charge transfer and mobility enhancement at CdO/SnTe heterointerfaces

    SciTech Connect

    Nishitani, Junichi; Yu, Kin Man; Walukiewicz, Wladek

    2014-09-29

    We report a study of the effects of charge transfer on electrical properties of CdO/SnTe heterostructures. A series of structures with variable SnTe thicknesses were deposited by RF magnetron sputtering. Because of an extreme type III band offset with the valence band edge of SnTe located at 1.5 eV above the conduction band edge of CdO, a large charge transfer is expected at the interface of the CdO/SnTe heterostructure. The electrical properties of the heterostructures are analyzed using a multilayer charge transport model. The analysis indicates a large 4-fold enhancement of the CdO electron mobility at the interface with SnTe. The mobility enhancement is attributed to reduction of the charge center scattering through neutralization of the donor-like defects responsible for the Fermi level pinning at the CdO/SnTe interface.

  7. Classical molecular dynamics simulation of the photoinduced electron transfer dynamics of plastocyanin.

    PubMed Central

    Ungar, L W; Scherer, N F; Voth, G A

    1997-01-01

    Classical molecular dynamics simulations are used to investigate the nuclear motions associated with photoinduced electron transfer in plastocyanin. The blue copper protein is modeled using a molecular mechanics potential; potential parameters for the copper-protein interactions are determined using an x-ray crystallographic structure and absorption and resonance Raman spectra. Molecular dynamics simulations yield a variety of information about the ground (oxidized) and optically excited (charge-transfer) states: 1) The probability distribution of the potential difference between the states, which is used to determine the coordinate and energy displacements, places the states well within the Marcus inverted region. 2) The two-time autocorrelation function of the difference potential in the ground state and the average of the difference potential after instantaneous excitation to the excited state are very similar (confirming linear response in this system); their decay indicates that vibrational relaxation occurs in about 1 ps in both states. 3) The spectral densities of various internal coordinates begin to identify the vibrations that affect the optical transition; the spectral density of the difference potential correlation function should also prove useful in quantum simulations of the back electron transfer. 4) Correlation functions of the protein atomic motions with the difference potential show that the nuclear motions are correlated over a distance of more than 20 A, especially along proposed electron transport paths. Images FIGURE 1 FIGURE 7 PMID:8994588

  8. Electric field control of proton-transfer molecular switching: molecular dynamics study on salicylidene aniline.

    PubMed

    Jankowska, Joanna; Sadlej, Joanna; Sobolewski, Andrzej L

    2015-06-14

    In this letter, we propose a novel, ultrafast, efficient molecular switch whose switching mechanism involves the electric field-driven intramolecular proton transfer. By means of ab initio quantum chemical calculations and on-the-fly dynamics simulations, we examine the switching performance of an isolated salicylidene aniline molecule and analyze the perspectives of its possible use as an electric field-controlled molecular electronics unit. PMID:25986469

  9. Gating of single molecule junction conductance by charge transfer complex formation

    NASA Astrophysics Data System (ADS)

    Vezzoli, Andrea; Grace, Iain; Brooke, Carly; Wang, Kun; Lambert, Colin J.; Xu, Bingqian; Nichols, Richard J.; Higgins, Simon J.

    2015-11-01

    The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference.The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contrast, using both theory and experiment, we show here that the conductance of metal |single molecule| metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference. Electronic supplementary information (ESI) available: Synthesis of 1c; experimental details of conductance measurements, formation of charge transfer complexes of 1c and 2 in solution; further details of theoretical methods. See DOI: 10.1039/c5nr04420k

  10. Detection of single-nucleotide variations by monitoring the blinking of fluorescence induced by charge transfer in DNA.

    PubMed

    Kawai, Kiyohiko; Majima, Tetsuro; Maruyama, Atsushi

    2013-08-19

    Charge transfer dynamics in DNA: Photo-induced charge separation and charge-recombination dynamics in DNA was assessed by monitoring the blinking of fluorescence. Single nucleotide variations, mismatch and one base deletion, were differentiated based on the length of the off-time of the blinking, which corresponds to the lifetime of the charge-separated state. PMID:23846860

  11. Charge transfer properties through graphene for applications in gaseous detectors

    NASA Astrophysics Data System (ADS)

    Franchino, S.; Gonzalez-Diaz, D.; Hall-Wilton, R.; Jackman, R. B.; Muller, H.; Nguyen, T. T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.

    2016-07-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2×2 cm2, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.

  12. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS{sub 2}

    SciTech Connect

    Zhou, Changjie; Zhu, Huili; Yang, Weihuang

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS{sub 2} upon adsorption of various gas molecules (H{sub 2}, O{sub 2}, H{sub 2}O, NH{sub 3}, NO, NO{sub 2}, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS{sub 2} with a low degree of charge transfer and accept charge from the monolayer, except for NH{sub 3}, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS{sub 2} are not significantly altered upon adsorption of H{sub 2}, H{sub 2}O, NH{sub 3}, and CO, whereas the lowest unoccupied molecular orbitals of O{sub 2}, NO, and NO{sub 2} are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS{sub 2}. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS{sub 2}. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  13. Tuning the charge transfer plasmon in a metallic nanoparticle dimer bridged by a quantum dot

    NASA Astrophysics Data System (ADS)

    Kulkarni, Vikram; Manjavacas, Alejandro; Nordlander, Peter

    2015-03-01

    Localized surface plasmon resonances (LSPR) are a subject of intense experimental and theoretical research interest. LSPR have found applications in catalysis, solar energy, cancer therapy, and surface enhanced Raman spectroscopy (SERS). This is due to the exceptional light capturing and focusing capabilities of plasmonic nanostructures. An LSPR of particular interest is the charge transfer plasmon (CTP). This mode may be excited when two plasmonic nanoparticles are bridged by a conductive junction. The CTP is extraordinarily sensitive to the conductive properties of the junction. Here we perform a theoretical investigation of the CTP when two plasmonic nanoparticles are bridged by a quantum dot. All simulations are done using the time dependent density functional theory (TDDFT). By modulating the electronic structure of the quantum dot we are able to effectively turn the CTP on and off. Specifically, the CTP emerges only when a quantum dot energy level is resonant with the fermi energy of the plasmonic nanoparticles. We verify that the conductance through the junction is on the order of the quantum unit of conductance. This work is of great interest to the future design of plasmonic and molecular electronic systems. This work was supported in part by the Data Analysis and Visualization Cyberinfrastructure funded by NSF under Grant OCI-0959097.

  14. A zinc phthalocyanine based periodic mesoporous organosilica exhibiting charge transfer to fullerenes.

    PubMed

    Auras, Florian; Li, Yan; Löbermann, Florian; Döblinger, Markus; Schuster, Jörg; Peter, Laurence M; Trauner, Dirk; Bein, Thomas

    2014-11-10

    Periodic mesoporous organosilica (PMO) materials offer a strategy to position molecular semiconductors within a highly defined, porous network. We developed thin films of a new semiconducting zinc phthalocyanine-bridged PMO exhibiting a face-centered orthorhombic pore structure with an average pore diameter of 11 nm. The exceptional degree of order achieved with this PMO enabled us to create thin films consisting of a single porous domain throughout their entire thickness, thus providing maximal accessibility for subsequent incorporation of a complementary phase. The phthalocyanine building blocks inside the pore walls were found to be well-aggregated, enabling electronic conductivity and extending the light-harvesting capabilities to the near IR region. Ordered 3D heterojunctions capable of promoting photo-induced charge transfer were constructed by impregnation of the PMO with a fullerene derivative. When integrated into a photovoltaic device, the infiltrated PMO is capable of producing a high open-circuit voltage and a considerable photocurrent, which represents a significant step towards potential applications of PMOs in optoelectronics. PMID:25293365

  15. Charge transfer interaction using quasiatomic minimal-basis orbitals in the effective fragment potential method

    SciTech Connect

    Xu, Peng; Gordon, Mark S.

    2013-11-21

    The charge transfer (CT) interaction, the most time-consuming term in the general effective fragment potential method, is made much more computationally efficient. This is accomplished by the projection of the quasiatomic minimal-basis-set orbitals (QUAMBOs) as the atomic basis onto the self-consistent field virtual molecular orbital (MO) space to select a subspace of the full virtual space called the valence virtual space. The diagonalization of the Fock matrix in terms of QUAMBOs recovers the canonical occupied orbitals and, more importantly, gives rise to the valence virtual orbitals (VVOs). The CT energies obtained using VVOs are generally as accurate as those obtained with the full virtual space canonical MOs because the QUAMBOs span the valence part of the virtual space, which can generally be regarded as “chemically important.” The number of QUAMBOs is the same as the number of minimal-basis MOs of a molecule. Therefore, the number of VVOs is significantly smaller than the number of canonical virtual MOs, especially for large atomic basis sets. This leads to a dramatic decrease in the computational cost.

  16. Conductive PVDF-HFP nanofibers with embedded TTF-TCNQ charge transfer complex.

    PubMed

    Gal-Oz, Reshef; Patil, Nilesh; Khalfin, Rafail; Cohen, Yachin; Zussman, Eyal

    2013-07-10

    Tetrathiafulvalene-tetracyanoquinodimethane charge-transfer complex (TTF-TCNQ CTC) represents a promising organic conductive system. However, application of this donor-acceptor pair is highly limited, because of its ultrafast crystallization kinetics and very low solubility. In this work, conductive organic nanofibers were generated via a coelectrospinning process of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with embedded TTF and TCNQ in the shell and core solutions, respectively. Upon supply of the polymer solutions, a core-shell droplet was formed at the exit of the spinneret. The electron donor TTF and the electron acceptor TCNQ migrated toward each other, within the compound droplet, to produce conductive CTC crystals. In the presence of a sufficiently strong electric field, jetting set in at the droplet tip, which yielded solidified PVDF-HFP nanofibers embedded with aligned CTC. Fiber diameters ranged between 100 and 500 nm. X-ray analysis showed strong equatorial reflections (110,200) of oriented copolymer PVDF-HFP crystals (β-phase) with copolymer chains oriented along the fiber axis, and of CTC (001), indicating that the CTC molecular planes were aligned parallel to the nanofiber axis. In addition, reflections of unreacted TCNQ (120,220) and TTF (110) crystals were observed. The electrospun nanofibers were collected to form a fiber mat, which was evaluated as a working electrode in a three-electrode cell system, exhibiting differential conductance of 5.23 μmho. PMID:23745509

  17. Charge-transfer complexes of 1-(2-aminoethyl) piperazine with σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    Mostafa, Adel; Bazzi, Hassan S.

    2010-11-01

    The solid charge-transfer (CT) molecular complexes formed in the reaction of 1-(2-aminoethyl) piperazine (AEPIP) with the σ-acceptor iodine and π-acceptors 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), 7,7,8,8-tetracyanoquinodi-methane (TCNQ), 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) and 2,3,5,6-tetrachloro-1,4-benzoquinone (CHL) were studied in chloroform at 25 °C. The products were investigated through electronic and infrared spectra as well as elemental analysis. The obtained results showed that the formed solid CT-complexes have the formulas [(AEPIP) I] +I5-, [(AEPIP)(DDQ) 2], [(AEPIP)(TCNQ) 2], [(AEPIP) 2(TBCHD) 3] and [(AEPIP)(CHL)] which are in full agreement with the known reaction stoichiometries in solution as well as the elemental analysis measurements. The formation constant KCT, molar extinction coefficient ɛCT, free energy change Δ G0 and CT energy ECT have been calculated for the CT-complexes [(AEPIP)(DDQ) 2], [(AEPIP)(TCNQ) 2] and [(AEPIP)(CHL)] as well.

  18. Charge-transfer complexes of 4-methylpiperidine with σ- and π-acceptors

    NASA Astrophysics Data System (ADS)

    AlQaradawi, Siham Y.; Mostafa, Adel; Bazzi, Hassan S.

    2015-01-01

    The solid charge-transfer (CT) molecular complexes formed in the reaction of the electron donor 4-methylpiperidine (4MP) with the σ-electron acceptor iodine and π-acceptors 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 2,4,4,6-tetrabromo-2,5-cyclohexadienone (TBCHD) have been investigated spectrophotometrically in chloroform at 25 °C. These were characterized through electronic and infrared spectra as well as elemental and thermal analysis. The obtained results showed that the formed solid CT-complexes have the formulas [(4MP) I]+I-3, [(4MP)(DDQ)2] and [(4MP)(TBCHD)] and with TCNQ the adduct [TCMPQDM] is obtained through N-substitution reaction in full agreement with the known reaction stoichiometries in solution as well as the elemental measurements. The formation constant KCT, molar extinction coefficient εCT, free energy change ΔG0, CT energy ECT and the ionization potential Ip have been calculated for the CT-complexes [(4MP) I]+I-3, [(4MP)(DDQ)2] and [(4MP)(TBCHD)].

  19. Geometry and quadratic nonlinearity of charge transfer complexes in solution: A theoretical study

    SciTech Connect

    Mukhopadhyay, S.; Ramasesha, S.; Pandey, Ravindra; Das, Puspendu K.

    2011-01-28

    In this paper, we have computed the quadratic nonlinear optical (NLO) properties of a class of weak charge transfer (CT) complexes. These weak complexes are formed when the methyl substituted benzenes (donors) are added to strong acceptors like chloranil (CHL) or di-chloro-di-cyano benzoquinone (DDQ) in chloroform or in dichloromethane. The formation of such complexes is manifested by the presence of a broad absorption maximum in the visible range of the spectrum where neither the donor nor the acceptor absorbs. The appearance of this visible band is due to CT interactions, which result in strong NLO responses. We have employed the semiempirical intermediate neglect of differential overlap (INDO/S) Hamiltonian to calculate the energy levels of these CT complexes using single and double configuration interaction (SDCI). The solvent effects are taken into account by using the self-consistent reaction field (SCRF) scheme. The geometry of the complex is obtained by exploring different relative molecular geometries by rotating the acceptor with respect to the fixed donor about three different axes. The theoretical geometry that best fits the experimental energy gaps, {beta}{sub HRS} and macroscopic depolarization ratios is taken to be the most probable geometry of the complex. Our studies show that the most probable geometry of these complexes in solution is the parallel displaced structure with a significant twist in some cases.

  20. Possibility of vibrationally resolved cross section measurements for low energy charge transfer in H + H2+

    NASA Astrophysics Data System (ADS)

    Guillen, C. I.; Strom, R. A.; Tobar, J. A.; Panchenko, D. I.; Andrianarijaona, V. M.

    2015-04-01

    Charge transfer (CT) in H + H2+--> H+ + H2 has fundamental implications because it involves the smallest atomic ion, atom, molecular ion, and molecule possible. The current merged-beam apparatus at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, can reliably create and access low collision energies; the existing ion-atom merged beams apparatus there is currently able to benchmark the CT of these fundamental systems at energies below 0.1eV/u (Phys. Rev. A 84, 062716, 2011). A strong contribution from vi = 2 is observed, however, the data analysis still suffers from the lack of information on the vibrational state distribution of H2+.We are exploring the possibility of inserting a three-dimensional imaging technique at the end station of the ORNL apparatus in order to measure the vibrational state distribution of H2+that are produced by the electron cyclotron resonance (ECR) ion source. Discussion of our initial design for the insertion of this technique in the aforementioned system will be presented here. Work supported by the National Science Foundation under Grant No. PHY-1068877.

  1. Observation of slow charge redistribution preceding excited-state proton transfer

    SciTech Connect

    Spry, D. B.; Fayer, M. D.

    2007-11-28

    The photoacid 8-hydroxy-N,N,N{sup '},N{sup '},N{sup '},N{sup '}-hexamethylpyrene-1,3,6-trisulfonamide (HPTA) and related compounds are used to investigate the steps involved in excited-state deprotonation in polar solvents using pump-probe spectroscopy and time correlated single photon counting fluorescence spectroscopy. The dynamics show a clear two-step process leading to excited-state proton transfer. The first step after electronic excitation is charge redistribution occurring on a tens of picoseconds time scale followed by proton transfer on a nanosecond time scale. The three states observed in the experiments (initial excited state, charge redistributed state, and proton transfer state) are recognized by distinct features in the time dependence of the pump-probe spectrum and fluorescence spectra. In the charge redistributed state, charge density has transferred from the hydroxyl oxygen to the pyrene ring, but the OH sigma bond is still intact. The experiments indicate that the charge redistribution step is controlled by a specific hydrogen bond donation from HPTA to the accepting base molecule. The second step is the full deprotonation of the photoacid. The full deprotonation is clearly marked by the growth of stimulated emission spectral band in the pump-probe spectrum that is identical to the fluorescence spectrum of the anion.

  2. Charge Transfer and Dissociation in Collisions of Metal Clusters with Atoms

    NASA Astrophysics Data System (ADS)

    Bréchignac, C.; Cahuzac, Ph.; Concina, B.; Leygnier, J.; Ruiz, L. F.; Zarour, B.; Hervieux, P. A.; Hanssen, J.; Politis, M. F.; Martín, F.

    2002-10-01

    We present a combined theoretical and experimental study of charge transfer and dissociation in collisions of slow Li2+31 clusters with Cs atoms. We provide a direct quantitative comparison between theory and experiment and show that good agreement is found only when the exact experimental time of flight and initial cluster temperature are taken into account in the theoretical modeling. We demonstrate the validity of the simple physical image that consists in explaining evaporation as resulting from a collisional energy deposit due to cluster electronic excitation during charge transfer.

  3. Modeling Charge Transfer in Fullerene Collisions via Real-Time Electron Dynamics.

    PubMed

    Jakowski, Jacek; Irle, Stephan; Sumpter, Bobby G; Morokuma, Keiji

    2012-06-01

    An approach for performing real-time dynamics of electron transfer in a prototype redox reaction that occurs in reactive collisions between neutral and ionic fullerenes is discussed. The quantum dynamical simulations show that the electron transfer occurs within 60 fs directly preceding the collision of the fullerenes, followed by structural changes and relaxation of electron charge. The consequences of real-time electron dynamics are fully elucidated for the far from equilibrium processes of collisions between neutral and multiply charged fullerenes. PMID:26285634

  4. Modeling of charge transfer processes to understand photophysical signatures: The case of Rhodamine 110

    NASA Astrophysics Data System (ADS)

    Savarese, Marika; Raucci, Umberto; Netti, Paolo A.; Adamo, Carlo; Ciofini, Ilaria; Rega, Nadia

    2014-08-01

    Photophysical signatures, namely absorption and emission energies, lifetime and quantum yields, have been computed through TD-DFT approaches and compared with experimental counterparts for the Rhodamine 110 dye in aqueous solution. Thanks to a new protocol of analysis, based on the use of very promising electronic based indices, it has been possible to investigate the interplay between Rhodamine 110 dye's structure, degree of charge transfer upon excitation, and fluorescence signatures. This combined analysis is very promising to support the understanding of charge transfer based mechanisms affecting dyes photophysics.

  5. Polarization dependence of charge-transfer excitations in La2CuO4

    NASA Astrophysics Data System (ADS)

    Lu, Li; Chabot-Couture, Guillaume; Hancock, Jason; Vajk, Owen; Yu, Guichuan; Ishii, Kenji; Mizuki, Jun'ichiro; Casa, Diego; Gog, Thomas; Greven, Martin

    2006-03-01

    We have carried out an extensive resonant inelastic x-ray scattering (RIXS) study of La2CuO4 at the Cu K-edge. Multiple charge-transfer excitations have been identified using the incident photon energy dependence of the cross section and studied carefully with polarizations E//c and E //ab. An analysis of the incident photon energy dependence, the polarization dependence, as well as the K-edge absorption spectra, indicates that the RIXS spectra reveal rich physics about the K-edge absorption process and momentum-dependent charge-transfer excitations in cuprates.

  6. Ion-atom charge-transfer reactions and a hot intercloud medium. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    An investigation is conducted concerning the ionization equilibrium of carbon in a hot intercloud medium (ICM), taking into account various charge-transfer reactions. Attention is given to problems related to observations of carbon along the lines of sight to several unreddened stars. It is pointed out that the observed underabundance of C III and overabundance of C I can be consistent with the presence of a hot, partially ionized ICM, provided that two of the charge-transfer reactions considered are rapid at thermal energies.

  7. The origin of delayed fluorescence in charge-transfer crystals: pyromellitic dianhydride-phenanthrene crystal

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.

    1987-03-01

    The temperature dependence of emission spectra and their decay parameters for pyromellitic dianhydride-phenanthrene chargetransfer crystals have been investigated between 1.7 and 300 K. It has been established that the delayed fluorescence originates from triplet-triplet annihilation at temperatures between 30 and 60 K. (activation energy 290 ± 20 cm -1) and from thermal activation of triplet excitons to the singlet excitonic band for temperatures higher than 60 K (activation energy 600 ± 30 cm -1). This mechanism may be considered as typical for charge-transfer crystals characterized by intermediate (50-80%) charge-transfer character of triplet excitons.

  8. Fullerene-Assisted Photoinduced Charge Transfer of Single-Walled Carbon Nanotubes through a Flavin Helix.

    PubMed

    Mollahosseini, Mehdi; Karunaratne, Erandika; Gibson, George N; Gascón, Jose A; Papadimitrakopoulos, Fotios

    2016-05-11

    One of the greatest challenges with single-walled carbon nanotube (SWNT) photovoltaics and nanostructured devices is maintaining the nanotubes in their pristine state (i.e., devoid of aggregation and inhomogeneous doping) so that their unique spectroscopic and transport characteristics are preserved. To this effect, we report on the synthesis and self-assembly of a C60-functionalized flavin (FC60), composed of PCBM and isoalloxazine moieties attached on either ends of a linear, C-12 aliphatic spacer. Small amounts of FC60 (up to 3 molar %) were shown to coassembly with an organic soluble derivative of flavin (FC12) around SWNTs and impart effective dispersion and individualization. A key annealing step was necessary to perfect the isoalloxazine helix and expel the C60 moiety away from the nanotubes. Steady-state and transient absorption spectroscopy illustrate that 1% or higher incorporation of FC60 allows for an effective photoinduced charge transfer quenching of the encased SWNTs through the seamless helical encase. This is enabled via the direct π-π overlap between the graphene sidewalls, isoalloxazine helix, and the C60 cage that facilitates SWNT exciton dissociation and electron transfer to the PCBM moiety. Atomistic molecular simulations indicate that the stability of the complex originates from enhanced van der Waals interactions of the flexible spacer wrapped around the fullerene that brings the C60 in π-π overlap with the isoalloxazine helix. The remarkable spectral purity (in terms of narrow E(S)ii line widths) for the resulting ground-state complex signals a new class of highly organized supramolecular nanotube architecture with profound importance for advanced nanostructured devices. PMID:27127896

  9. Charge-displacement analysis via natural orbitals for chemical valence: Charge transfer effects in coordination chemistry

    NASA Astrophysics Data System (ADS)

    Bistoni, Giovanni; Rampino, Sergio; Tarantelli, Francesco; Belpassi, Leonardo

    2015-02-01

    We recently devised a simple scheme for analyzing on quantitative grounds the Dewar-Chatt-Duncanson donation and back-donation in symmetric coordination complexes. Our approach is based on a symmetry decomposition of the so called Charge-Displacement (CD) function quantifying the charge flow, upon formation of a metal (M)-substrate (S) bond, along the M-S interaction axis and provides clear-cut measures of donation and back-donation charges in correlation with experimental observables [G. Bistoni et al., Angew. Chem., Int. Ed. 52, 11599 (2013)]. The symmetry constraints exclude of course from the analysis most systems of interest in coordination chemistry. In this paper, we show how to entirely overcome this limitation by taking advantage of the properties of the natural orbitals for chemical valence [M. Mitoraj and A. Michalak, J. Mol. Model. 13, 347 (2007)]. A general scheme for disentangling donation and back-donation in the CD function of both symmetric and non-symmetric systems is presented and illustrated through applications to M-ethyne (M = Au, Ni and W) coordination bonds, including an explicative study on substrate activation in a model reaction mechanism.

  10. Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions.

    PubMed

    McCreery, Richard L

    2016-01-01

    Molecular junctions consisting of 2-20 nm thick layers of organic oligomers oriented between a conducting carbon substrate and a carbon/gold top contact have proven to be reproducible and reliable, and will soon enter commercial production in audio processing circuits. The covalent, conjugated bond between one or both sp(2)-hybridized carbon contacts and an aromatic molecular layer is distinct from the more common metal/molecule or silicon/molecule structures in many reported molecular junctions. Theoretical observations based on density functional theory are presented here, which model carbon-based molecular junctions as single molecules and oligomers between fragments of graphene. Electronic coupling between the molecules and the contacts is demonstrated by the formation of hybrid orbitals in the model structure, which have significant electron density on both the graphene and the molecule. The energies of such hybrid orbitals correlate with tunneling barriers determined experimentally, and electronic coupling between the two graphene fragments in the model correlates with experimentally observed attenuation of transport with molecular layer thickness. Electronic coupling is affected significantly by the dihedral angle between the planes of the graphene and the molecular π-systems, but is absent only when the two planes are orthogonal. Coupling also results in partial charge transfer between the graphene contacts and the molecular layer, which results in a shift in electrostatic potential which affects the observed tunneling barrier. Although the degree of partial charge transfer is difficult to calculate accurately, it does provide a basis for the "vacuum level shift" observed in many experiments, including transport and ultraviolet photoelectron spectroscopy of molecular layers on conductors. PMID:26925350

  11. Effects of electronic coupling and electrostatic potential on charge transport in carbon-based molecular electronic junctions

    PubMed Central

    2016-01-01

    Summary Molecular junctions consisting of 2–20 nm thick layers of organic oligomers oriented between a conducting carbon substrate and a carbon/gold top contact have proven to be reproducible and reliable, and will soon enter commercial production in audio processing circuits. The covalent, conjugated bond between one or both sp2-hybridized carbon contacts and an aromatic molecular layer is distinct from the more common metal/molecule or silicon/molecule structures in many reported molecular junctions. Theoretical observations based on density functional theory are presented here, which model carbon-based molecular junctions as single molecules and oligomers between fragments of graphene. Electronic coupling between the molecules and the contacts is demonstrated by the formation of hybrid orbitals in the model structure, which have significant electron density on both the graphene and the molecule. The energies of such hybrid orbitals correlate with tunneling barriers determined experimentally, and electronic coupling between the two graphene fragments in the model correlates with experimentally observed attenuation of transport with molecular layer thickness. Electronic coupling is affected significantly by the dihedral angle between the planes of the graphene and the molecular π-systems, but is absent only when the two planes are orthogonal. Coupling also results in partial charge transfer between the graphene contacts and the molecular layer, which results in a shift in electrostatic potential which affects the observed tunneling barrier. Although the degree of partial charge transfer is difficult to calculate accurately, it does provide a basis for the “vacuum level shift” observed in many experiments, including transport and ultraviolet photoelectron spectroscopy of molecular layers on conductors. PMID:26925350

  12. A 190 by 244 charge-coupled area image sensor with interline transfer organization

    NASA Technical Reports Server (NTRS)

    Walsh, L. R.

    1975-01-01

    A 190 x 244 element charge coupled area image sensor has been designed, fabricated and tested. This sensor employs an interline transfer organization and buried n-channel technology. It features a novel on-chip charge integrator and a distributed floating gate amplifier for high and low light level applications. The X-Y element count has been chosen to establish the capability of producing an NTSC compatible video signal. The array size is also compatible with the Super 8 lens format. The first few sample devices have been successfully operated at full video bandwidth for both high and low light levels with the charge amplifier system.

  13. Ultrafast Charge-Transfer Dynamics at the Boron Subphthalocyanine Chloride/C60 Heterojunction: Comparison between Experiment and Theory.

    PubMed

    Wilcox, Daniel E; Lee, Myeong H; Sykes, Matthew E; Niedringhaus, Andrew; Geva, Eitan; Dunietz, Barry D; Shtein, Max; Ogilvie, Jennifer P

    2015-02-01

    Photoinduced charge-transfer (CT) processes play a key role in many systems, particularly those relevant to organic photovoltaics and photosynthesis. Advancing the understanding of CT processes calls for comparing their rates measured via state-of-the-art time-resolved interface-specific spectroscopic techniques with theoretical predictions based on first-principles molecular models. We measure charge-transfer rates across a boron subphthalocyanine chloride (SubPc)/C60 heterojunction, commonly used in organic photovoltaics, via heterodyne-detected time-resolved second-harmonic generation. We compare these results to theoretical predictions based on a Fermi's golden rule approach, with input parameters obtained using first-principles calculations for two different equilibrium geometries of a molecular donor-acceptor in a dielectric continuum model. The calculated rates (∼2 ps(-1)) overestimate the measured rates (∼0.1 ps(-1)), which is consistent with the expectation that the calculated rates represent an upper bound over the experimental ones. The comparison provides valuable understanding of how the structure of the electron donor-acceptor interface affects the CT kinetics in organic photovoltaic systems. PMID:26261981

  14. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  15. Evidence of Delocalization in Charge-Transfer State Manifold for Donor:Acceptor Organic Photovoltaics.

    PubMed

    Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing

    2016-08-24

    How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs. PMID:27482867

  16. Intramolecular charge transfer photoemission of a silicon-based copolymer containing carbazole and divinylbenzene chromophores. Electron transfer across silicon bridges.

    PubMed

    Bayda, Malgorzata; Ludwiczak, Monika; Hug, Gordon L; Majchrzak, Mariusz; Marciniec, Bogdan; Marciniak, Bronislaw

    2014-07-01

    A new copolymer consisting of N-isopropylcarbazole/dimethylsilylene bridge/divinylbenzene units was synthesized and characterized. Dual fluorescence was observed in this copolymer in polar solvents. The absence of the second band at the lower transition energy of the two emission maxima in nonpolar solvents and the quantitative correlation of the lower-energy emission band maxima with solvent polarity indicate that the lower-energy emission band arises from an intramolecular charge transfer (ICT) state. A series of model compounds was synthesized to investigate the source of the charge transfer. It was found that the Si-bridged dyad with a single N-isopropylcarbazole and a single divinylbenzene was the minimum structure necessary to observe dual luminescence. The lack of dual luminescence in low-temperature glasses indicates that the ICT requires a conformation change in the copolymer. Analogous behavior in the Si-bridged dyad suggests that the ICT in the copolymer is across the silicon bridge. Results from time-resolved luminescence measurements with picosecond and subnanosecond excitation were used to support the thesis that twisted charge-transfer states are the likely source of the observed dual luminescence. PMID:24901805

  17. Camptothecins guanine interactions: mechanism of charge transfer reaction upon photoactivation

    NASA Astrophysics Data System (ADS)

    Steenkeste, K.; Guiot, E.; Tfibel, F.; Pernot, P.; Mérola, F.; Georges, P.; Fontaine-Aupart, M. P.

    2002-01-01

    The potent activity exhibited by the antitumoral camptothecin (CPT) and its analog irinotecan (CPT-11) is known to be related to a close contact between the drug and the nucleic acid base guanine. This specificity of interaction between these two chromophores was examined by following changes in the photophysical properties of the drug using steady-state as well as time-resolved absorption and fluorescence methods. The observed effects on absorption, fluorescence emission and singlet excited state lifetimes give evidence for the occurrence of a stacking complex formation restricted to the quinoline part of CPT or CPT-11 and the guanine base but also with the adenine base. The triplet excited state properties of the drugs have been also characterized in absence and in presence of guanosine monophosphate and reveal the occurrence of an electron transfer from the guanine base to the drug. Support for this conclusion was obtained from the studies of a set of biological targets of various oxido-reduction potentials, adenosine monophosphate, cytidine, cytosine, tryptophan, tyrosine and phenylalanine. This finding gives an interpretation of the CPT-induced guanine photolesions previously reported in the literature. These data taken together are discussed in connection with the drug activity. The stacking complex CPT/guanine is necessary but not sufficient to explain the role of the chirality and of the lactone structure in the function of the drug. A stereospecific interaction with the enzyme topoisomerase I seems necessary to stabilize the stacking complex. The first experiments using time-resolved fluorescence by two-photon excitation confirms that CPT does not bind to the isolated enzyme.

  18. Photophysical studies of metal to ligand charge transfer involving quadruply bonded complexes of molybdenum and tungsten.

    PubMed

    Chisholm, Malcolm H; Brown-Xu, Samantha E; Spilker, Thomas F

    2015-03-17

    Photoinduced metal-to-ligand charge transfer transitions afford numerous applications in terms of photon energy harvesting. The majority of metal complexes studied to date involve diamagnetic systems of d(6), d(8), and d(10) transition metals. These typically have very short-lived, ∼100 fs, singlet metal to ligand charge transfer ((1)MLCT) states that undergo intersystem crossing to triplet metal to ligand charge transfer ((3)MLCT) states that are longer lived and are responsible for much of the photophysical studies. In contrast, the metal-metal quadruply bonded complexes of molybdenum and tungsten supported by carboxylate, O2CR, and related amidinate ligands (RN)2C(R') have relatively long-lived (1)MLCT states arising from M2δ to Lπ* transitions. These have lifetimes in the range 1-20 ps prior to intersystem crossing to T1 states that may be (3)MLCT or (3)MMδδ* with lifetimes of 1-100 ns and 1-100 μs, respectively. The M2 quadruply bonded complexes take the form M2L4 or M2L4-nL'n where n = 1-3. Thus, in their photoexcited MLCT states, these compounds pose the question of how the charge resides on the ligands. This Account reviews the current knowledge of how charge is positioned with time in S1 and T1 states with the aid of active IR reported groups located on the ligands, for example, C≡X multiple bonds (X = C, N, or O). Several examples of localized and delocalized charge distributions are noted along with kinetic barriers to the interconversion of MLCT and δδ* states. On the 50th anniversary of the recognition of the MM quadruple bond, these complexes are revealing some remarkable features in the study of the photophysical properties of metal-ligand charge transfer states. PMID:25695495

  19. Intramolecular electronic energy transfer in bichromophoric molecular macrocyclic systems

    NASA Astrophysics Data System (ADS)

    Speiser, Shammai

    1993-01-01

    The structures and spectral properties of several bichromophoric molecules, suitable for optical data processing, are presented. The bichromophoric molecules are composed of an aromatic ring connected by two methylene chains to an (alpha) -diketone moiety. Both the absorption and emission spectra of these compounds can be attributed to a superposition of the individual spectra of the separate chromophores. The critical transfer radia for electronic energy transfer from the aromatic (donor) chromophore to the (alpha) -diketone (acceptor) chromophore was calculated from the spectral overlap between the fluorescence spectrum of the aromatic ring with the absorption spectrum of the (alpha) -diketone chromophore. The results show that this series of molecules is well suited for a mechanistic study of short-range intramolecular electronic energy transfer (intra-EET). The temperature and the molecular structure dependence of the intra-EET efficiency in this series was measured and analyzed for both singlet-singlet and triplet-triplet routes. The results show that the transfer efficiency is strongly temperature and structure dependent, indicating that exchange interaction is responsible for intra-EET between close chromophores in a bichromophoric molecule. The relative contributions of interchromophoric distance and that of the relative orientation of the two chromophores to exchange interaction are discussed.

  20. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.

    PubMed

    Bazant, Martin Z

    2013-05-21

    the past 7 years, which is capable of answering these questions. The reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials. The theory unifies and extends the Cahn-Hilliard and Allen-Cahn equations through a master equation for nonequilibrium chemical thermodynamics. For electrochemistry, I have also generalized both Marcus and Butler-Volmer kinetics for concentrated solutions and ionic solids. This new theory provides a quantitative description of LFP phase behavior. Concentration gradients and elastic coherency strain enhance the intercalation rate. At low currents, the charge-transfer rate is focused on exposed phase boundaries, which propagate as "intercalation waves", nucleated by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary to other mechanisms, elevated temperatures and currents may enhance battery performance and lifetime by suppressing phase separation. The theory has also been extended to porous electrodes and could be used for battery engineering with multiphase active materials. More broadly, the theory describes nonequilibrium chemical systems at mesoscopic length and time scales, beyond the reach of molecular simulations and bulk continuum models. The reaction rate is consistently defined for inhomogeneous, nonequilibrium states, for example, with phase separation, large electric fields, or mechanical stresses. This research is also potentially applicable to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and electrochemical dynamics in biological cells. PMID:23520980

  1. [Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces

    SciTech Connect

    Not Available

    1992-12-31

    Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.

  2. [Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces

    SciTech Connect

    Not Available

    1992-01-01

    Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.

  3. Charge transfer in a sharply nonuniform electric field mediated by swirling liquid flow with minimal hydraulic resistance

    NASA Astrophysics Data System (ADS)

    Nagorny, V. S.; Smirnovsky, A. A.; Chernyshev, A. S.; Kolodyazhny, D. Yu.

    2015-09-01

    A scheme of a fuel nozzle with "needle-plane" electrode system, the location of which enables one to minimize the imparted hydraulic resistance, is proposed. We consider the processes of charge transfer in a sharply inhomogeneous electric field in order to estimate the amount of charge coming out of the channel. For this purpose, we used the OpenFOAM software package, modified to account for the electrohydrodynamic effects. By using the k-ω SST turbulence model within an axial-symmetrical RANS problem, the vortex liquid flow and charge transfer are calculated. The impact of vorticity degree on the processes of charge transfer is studied. It is found that the charge flowing out of the calculation domain is about 80% of the injected charge. The vorticity degree in the above range of values has little effect on the process of charge transfer.

  4. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    DOE PAGESBeta

    Grisolia, M. N.; Varignon, J.; Barthelemy, A.; Bibes, M.; Sanchez-Santolino, G.; Varela, M.; Santamaria, J.; Arora, A.; Valencia, S.; Abrudan, R.; et al

    2016-01-25

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignmentmore » picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal–oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Furthermore, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.« less

  5. Probing excited state charge transfer dynamics in a heteroleptic ruthenium complex.

    PubMed

    Ghosh, Rajib; Palit, Dipak K

    2014-01-01

    Dynamics of metal to ligand charge transfer in the excited states of ruthenium polypyridyl complexes, which have shown promise as materials for artificial solar energy harvesting, has been of immense interest recently. Mixed ligand complexes are especially important for broader absorption in the visible region. Dynamics of ultrafast vibrational energy relaxation and inter-ligand charge transfer processes in the excited states of a heteroleptic ruthenium complex, [Ru(bpy)2(pap)](ClO4)2 (where bpy is 2,2'-bipyridine and pap is 2-(phenylazo)pyridine) have been investigated using femtosecond to nanosecond time-resolved transient absorption spectroscopic techniques. A good agreement between the TA spectrum of the lowest excited (3)MLCT state of [Ru(bpy)2(pap)](ClO4)2 complex and the anion radical spectrum of the pap ligand, which has been generated using the pulse radiolysis technique, confirmed the charge localization at the pap ligand. While the lifetime of the inter-ligand charge transfer from the bpy to the pap ligand in the (3)MLCT state is about 2.5 ps, vibrational cooling of the pap-localized(3)MLCT state occurs over a much longer time scale with a lifetime of about 35 ps. Ultrafast charge localization dynamics observed here may have important consequences in artificial solar energy harvesting systems, which employ heteroleptic ruthenium complexes. PMID:24247908

  6. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    NASA Astrophysics Data System (ADS)

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2016-05-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  7. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    PubMed Central

    Grisolia, M.N.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J.E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2015-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. PMID:27158255

  8. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    SciTech Connect

    Grisolia, M. N.; Varignon, J.; Barthelemy, A.; Bibes, M.; Sanchez-Santolino, G.; Varela, M.; Santamaria, J.; Arora, A.; Valencia, S.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J. -P.

    2016-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal–oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Furthermore, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  9. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    NASA Technical Reports Server (NTRS)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  10. 46 CFR 35.35-35 - Duties of person in charge of transfer-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR 156.120 and 156.150. ... 46 Shipping 1 2010-10-01 2010-10-01 false Duties of person in charge of transfer-TB/ALL. 35.35-35 Section 35.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS...

  11. Preparation and characterization of DABCO δ+x-C δ-60( y) charge transfer complex

    NASA Astrophysics Data System (ADS)

    Priyadarsini, K. I.; Mohan, H.; Tyagi, A. K.; Mittal, J. P.

    1994-12-01

    A stable complex of C 60 with an organic donor (tertiary amine, DABCO) has been prepared in the solid state at room temperature. The charge transfer complex, DABCO δ+x-C δ-60( y) is characterised by powder X-ray diffraction and FTIR methods. The complex is soluble in an aqueous medium and shows weak paramagnetic properties.

  12. 46 CFR 35.35-35 - Duties of person in charge of transfer-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CFR 156.120 and 156.150. ... 46 Shipping 1 2014-10-01 2014-10-01 false Duties of person in charge of transfer-TB/ALL. 35.35-35 Section 35.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS...

  13. 46 CFR 35.35-35 - Duties of person in charge of transfer-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CFR 156.120 and 156.150. ... 46 Shipping 1 2011-10-01 2011-10-01 false Duties of person in charge of transfer-TB/ALL. 35.35-35 Section 35.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS...

  14. 46 CFR 35.35-35 - Duties of person in charge of transfer-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CFR 156.120 and 156.150. ... 46 Shipping 1 2013-10-01 2013-10-01 false Duties of person in charge of transfer-TB/ALL. 35.35-35 Section 35.35-35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS...

  15. Charge-Transfer Complex of p-Aminodiphenylamine with Maleic Anhydride: Spectroscopic, Electrochemical, and Physical Properties.

    PubMed

    Karaca, Erhan; Kaplan Can, Hatice; Bozkaya, Uğur; Özçiçek Pekmez, Nuran

    2016-07-01

    A new charge-transfer complex and the amide formed by the interaction between the electron donor of the p-aminodiphenylamine and the electron acceptor of maleic anhydride are investigated by spectroscopic methods. The amidation reaction is caused by proton and charge transfer between the maleic anhydride and p-aminodiphenylamine molecules. The Benesi-Hildebrand equation is used to determine the formation constant, the molar extinction coefficient and the standard Gibbs free energy of the complex by using UV/Vis spectroscopy. To reveal the electronic and spectroscopic properties of these molecules, theoretical computations are performed on the structures of maleic anhydride, p-aminodiphenylamine and the conformers of their charge-transfer complex. The charge-transfer complex and amidation reaction mechanism are also confirmed by IR and NMR spectroscopy and HRMS. The nature of the maleic anhydride-p-aminodiphenylamine complex is characterized by cyclic voltammetry, thermogravimetric analysis, XRD and SEM. Solid microribbons of this complex show higher thermal stability than p-aminodiphenylamine. PMID:26990700

  16. Quantum-Classical Path Integral Simulation of Ferrocene-Ferrocenium Charge Transfer in Liquid Hexane.

    PubMed

    Walters, Peter L; Makri, Nancy

    2015-12-17

    We employ the quantum-classical path integral methodology to simulate the outer sphere charge-transfer process of the ferrocene-ferrocenium pair in liquid hexane with unprecedented accuracy. Comparison of the simulation results to those obtained by mapping the solvent on an effective harmonic bath demonstrates the accuracy of linear response theory in this system. PMID:26673195

  17. Electronically and ionically conductive gels of ionic liquids and charge-transfer tetrathiafulvalene-tetracyanoquinodimethane.

    PubMed

    Mei, Xiaoguang; Ouyang, Jianyong

    2011-09-01

    Electronically and ionically conductive gels were fabricated by mixing and mechanically grinding neutral tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) in ionic liquids (ILs) like 3-ethyl-1-methylimidazolium dicyanoamide (EMIDCA), 1-ethyl-3-methylimidazolium thiocyanate (EMISCN), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMITf(2)N), trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide (P(14,6,6,6)Tf(2)N), and methyl-trioctylammonium bis(trifluoromethylsulfonyl)imide (MOATf(2)N). Charge-transfer TTF-TCNQ crystallites were generated during the mechanical grinding as indicated by the UV-visibile-near-infrared (UV-vis-NIR) absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction. The charge-transfer TTF-TCNQ crystallites have a needle-like shape. They form solid networks to gelate the ILs. The gel behavior is confirmed by the dynamic mechanical measurements. It depends on both the anions and cations of the ILs. In addition, when 1-methyl-3-butylimidazolium tetrafluoroborate (BMIBF(4)) and 1-methyl-3-propylimidazolium iodide (PMII) were used, the TTF-TCNQ/IL mixtures did not behave as gels. The TTF-TCNQ/IL gels are both electronically and ionically conductive, because the solid phase formed by the charge-transfer TTF-TCNQ crystallites is electronically conductive, while the ILs are ionically conductive. The gel formation is related to needle-like charge-transfer TTF-TCNQ cyrstallites and the π-π and Coulombic interactions between TTF-TCNQ and ILs. PMID:21800893

  18. Determination of Interfacial Charge-Transfer Rate Constants in Perovskite Solar Cells.

    PubMed

    Pydzińska, Katarzyna; Karolczak, Jerzy; Kosta, Ivet; Tena-Zaera, Ramon; Todinova, Anna; Idígoras, Jesus; Anta, Juan A; Ziółek, Marcin

    2016-07-01

    A simple protocol to study the dynamics of charge transfer to selective contacts in perovskite solar cells, based on time-resolved laser spectroscopy studies, in which the effect of bimolecular electron-hole recombination has been eliminated, is proposed. Through the proposed procedure, the interfacial charge-transfer rate constants from methylammonium lead iodide perovskite to different contact materials can be determined. Hole transfer is faster for CuSCN (rate constant 0.20 ns(-1) ) than that for 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD; 0.06 ns(-1) ), and electron transfer is faster for mesoporous (0.11 ns(-1) ) than that for compact (0.02 ns(-1) ) TiO2 layers. Despite more rapid charge separation, the photovoltaic performance of CuSCN cells is worse than that of spiro-OMeTAD cells; this is explained by faster charge recombination in CuSCN cells, as revealed by impedance spectroscopy. The proposed direction of studies should be one of the key strategies to explore efficient hole-selective contacts as an alternative to spiro-OMeTAD. PMID:27253726

  19. Three component assemblies by orthogonal H-bonding and donor-acceptor charge-transfer interaction.

    PubMed

    Kar, Haridas; Ghosh, Suhrit

    2014-02-01

    Three component supramolecular assemblies from a mixture of an aromatic donor (D), acceptor (A) and external structure directing agent (ESDA) are achieved by orthogonal noncovalent interactions involving two different types of H-bonding and alternate D-A stacking. An ESDA containing amide or urea produces a charge-transfer gel and sol, respectively, owing to their contrasting morphology. PMID:24309620

  20. Solvent-induced reversible solid-state colour change of an intramolecular charge-transfer complex.

    PubMed

    Li, Ping; Maier, Josef M; Hwang, Jungwun; Smith, Mark D; Krause, Jeanette A; Mullis, Brian T; Strickland, Sharon M S; Shimizu, Ken D

    2015-10-11

    A dynamic intramolecular charge-transfer (CT) complex was designed that displayed reversible colour changes in the solid-state when treated with different organic solvents. The origins of the dichromatism were shown to be due to solvent-inclusion, which induced changes in the relative orientations of the donor pyrene and acceptor naphthalenediimide units. PMID:26299357