Science.gov

Sample records for molecular cloning tissue

  1. Molecular cloning, sequence characteristics, and tissue expression analysis of ECE1 gene in Tibetan pig.

    PubMed

    Wang, Yan-Dong; Zhang, Jian; Li, Chuan-Hao; Xu, Hai-Peng; Chen, Wei; Zeng, Yong-Qing; Wang, Hui

    2015-10-25

    Low air pressure and low oxygen partial pressure at high altitude seriously affect the survival and development of human beings and animals. ECE1 is a recently discovered gene that is involved in anti-hypoxia, but the full-length cDNA sequence has not been obtained. For a better understanding of the structure and function of the ECE1 gene and to study its effect in Tibetan pig, the cDNA of the ECE1 gene from the muscle of Tibetan pig was cloned, sequenced and characterized. The ECE1 full-length cDNA sequence consists of 2262 bp coding sequence (CDS) that encodes 753 amino acids with a molecular mass of 85,449 kD, 2 bp 5'UTR and 1507 bp 3'UTR. In addition, the phylogenetic tree analysis revealed that the Tibetan pig ECE1 has a closer genetic relationship and evolution distance with the land mammals ECE1. Furthermore, analysis by qPCR showed that the ECE1 transcript is constitutively expressed in the 10 tissues tested: the liver, subcutaneous fat, kidney, muscle, stomach, heart, brain, spleen, pancreas, and lung. These results serve as a foundation for further insight into the Tibetan pig ECE1 gene. PMID:26115769

  2. Molecular cloning, sequence characterization, and tissue expression analysis of Hi-Line Brown chicken Akirin2.

    PubMed

    Man, Chaolai; Li, Xiang; Lee, Jongeun

    2011-10-01

    Akirins are novel important nuclear proteins able to modulate transcriptional activities in a gene-specific manner. Akirin2 is an important gene related to immune responses, it is necessary to isolate the akirin2 gene from chicken because it may be associated with vaccine and enhancement of immune response. In this study, a Hi-Line Brown chicken homolog of the vertebrate akirin2 gene was cloned, sequenced, and characterized. The akirin2 full-length coding sequence (CDS) consisted of 576nt and encoded 191 amino acids with a molecular weight of 21.58 kD. The COOH-terminal alpha-helix region was well conserved between chicken and other animals. RT-PCR analysis showed that the akirin2 transcripts were constitutively expressed in 16 tissues tested. Several microRNA target sites were predicted in the CDS of chicken akirin2 gene. We presume that Akirin2 protein may be used as a new-type immunopotentiator in poultry immune system in the future. PMID:21858694

  3. Molecular cloning, tissue distribution, and functional analysis of porcine Akirin2.

    PubMed

    Chen, Xiaoling; Huang, Zhiqing; Jia, Gang; Wu, Xiuqun; Wu, Caimei

    2012-04-01

    Akirin2 is a recently discovered gene that is involved in innate immune response. In this study, the porcine Akirin2 gene was cloned. The full-length coding sequence (CDS) of porcine Akirin2 consists of 612 bp and encodes 203 amino acids with a molecular mass of 22493 kD. The homology tree analysis showed that the pig Akirin2 has closer genetic relationships and distance with the known mammalian Akirin2. Real time quantitative PCR analysis showed that the porcine Akirin2 transcript was most abundant in the lung, followed by the skeletal muscle, heart, liver, fat, thymus, lymph node, small intestine, kidney, and spleen. Overexpression of porcine Akirin2 increased expression of IL-6 in porcine jejunal epithelial cell line IPEC-J2 cells. Our data suggest that porcine Akirin2 could play an important role in intestinal immune regulation. PMID:22537061

  4. Molecular cloning, tissue expression pattern, and copy number variation of porcine SCUBE3.

    PubMed

    Liu, X; Wang, L G; Zhang, L C; Yan, H; Zhao, K B; Liang, J; Li, N; Pu, L; Zhang, T; Wang, L X

    2016-01-01

    The signal peptide CUB EGF-like domain-containing protein 3 (SCUBE3) gene is a member of SCUBE gene family and plays important roles in bone cell biology and the determination of limb bone length. In this study, the full-length transcript of porcine SCUBE3 was cloned using reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The full-length sequence of porcine SCUBE3 cDNA was 4131 base pairs and included 21 exons. The SCUBE3 gene contained a 2895-base pair open reading frame that encoded a peptide of 965 amino acids. Comparison of the deduced amino acid sequences of porcine SCUBE3 with those of human, mouse, zebrafish, and rat showed 96, 95, 73, and 95% identities, respectively. Porcine SCUBE3 mRNA expression levels were highest in the backfat, bone marrow, and cartilage tissues. Copy number variation was detected in porcine SCUBE3 and validated by real-time quantitative polymerase chain reaction. Different copy number variations were present in randomly selected individuals and may, therefore, be a good marker for identifying phenotypic traits. Our findings provide a basis for further investigation of the functions and regulatory mechanisms of SCUBE3 in pigs. PMID:26909946

  5. Molecular Cloning and Characterization of a New C-type Lysozyme Gene from Yak Mammary Tissue

    PubMed Central

    Jiang, Ming Feng; Hu, Ming Jun; Ren, Hong Hui; Wang, Li

    2015-01-01

    Milk lysozyme is the ubiquitous enzyme in milk of mammals. In this study, the cDNA sequence of a new chicken-type (c-type) milk lysozyme gene (YML), was cloned from yak mammary gland tissue. A 444 bp open reading frames, which encodes 148 amino acids (16.54 kDa) with a signal peptide of 18 amino acids, was sequenced. Further analysis indicated that the nucleic acid and amino acid sequences identities between yak and cow milk lysozyme were 89.04% and 80.41%, respectively. Recombinant yak milk lysozyme (rYML) was produced by Escherichia coli BL21 and Pichia pastoris X33. The highest lysozyme activity was detected for heterologous protein rYML5 (M = 1,864.24 U/mg, SD = 25.75) which was expressed in P. pastoris with expression vector pPICZαA and it clearly inhibited growth of Staphylococcus aureus. Result of the YML gene expression using quantitative polymerase chain reaction showed that the YML gene was up-regulated to maximum at 30 day postpartum, that is, comparatively high YML can be found in initial milk production. The phylogenetic tree indicated that the amino acid sequence was similar to cow kidney lysozyme, which implied that the YML may have diverged from a different ancestor gene such as cow mammary glands. In our study, we suggest that YML be a new c-type lysozyme expressed in yak mammary glands that plays a role as host immunity. PMID:26580446

  6. Molecular cloning, sequence analysis and tissue-specific expression of Akirin2 gene in Tianfu goat.

    PubMed

    Ma, Jisi; Xu, Gangyi; Wan, Lu; Wang, Nianlu

    2015-01-01

    The Akirin2 gene is a nuclear factor and is considered as a potential functional candidate gene for meat quality. To better understand the structures and functions of Akirin2 gene, the cDNA of the Tianfu goat Akirin2 gene was cloned. Sequence analysis showed that the Tianfu goat Akirin2 cDNA full coding sequence (CDS) contains 579bp nucleotides that encode 192 amino acids. A phylogenic tree of the Akirin2 protein sequence from the Tianfu goat and other species revealed that the Tianfu goat Akirin2 was closely related with cattle and sheep Akirin2. RT-qPCR analysis showed that Akirin2 was expressed in the myocardium, liver, spleen, lung, kidney, leg muscle, abdominal muscle and the longissimus dorsi muscle. Especially, high expression levels of Akirin2 were detected in the spleen, lung, and kidney whereas lower expression levels were seen in the liver, myocardium, leg muscle, abdominal muscle and longissimus dorsi muscle. Temporal mRNA expression showed that Akirin2 expression levels in the longissimus dorsi muscle, first increased then decreased from day 1 to month 12. Western blotting results showed that the Akirin2 protein was only detected in the lung and three skeletal muscle tissues. PMID:25239665

  7. Molecular cloning, structural analysis, and tissue expression of the TNNT3 gene in Guizhou black goat.

    PubMed

    Chen, Haolin; Zhang, Jinhua; Yu, Bo; Li, Liang; Shang, Yishun

    2015-11-15

    The vertebrate fast skeletal troponin T (TNNT3) protein is an important regulatory and structural component of thin filaments in skeletal muscle, which improves meat quality traits of livestock and poultry. In this study, the troponin T isoforms from adult goat (skeletal muscle mRNA) were identified. We isolated the full-length coding sequence of the goat TNNT3 gene (GenBank: KM042888), analyzed its structure, and investigated its expression in different tissues from different aged goats (10, 30, 90, 180, and 360 days old). Real-time quantitative reverse transcription-polymerase chain reaction analyses revealed that Guizhou black goat TNNT3 was highly expressed in the biceps femoris muscle, abdominal muscle, and longissimus dorsi muscle (P<0.01), and lowly expressed in the cardiac muscle, masseter muscle, and rumen tissue (P>0.05). Western blotting confirmed that the TNNT3 protein was expressed in the muscle tissues listed above, with the highest level found in the longissimus dorsi muscle, and the lowest level in the masseter muscle. In the 10 to 360day study period the TNNT3 protein expression level was the highest when the goats were 30 days old. A peptide, ASPPPAEVPEVHEEVH that may contribute to improved goat meat tenderness was identified. This study provides an insight into the molecular structure of the vertebrate TNNT3 gene. PMID:26187066

  8. Molecular cloning, tissue distribution, and pharmacological characterization of melanocortin-4 receptor in spotted scat, Scatophagus argus.

    PubMed

    Li, Jian-Tao; Yang, Zhao; Chen, Hua-Pu; Zhu, Chun-Hua; Deng, Si-Ping; Li, Guang-Li; Tao, Ya-Xiong

    2016-05-01

    Melanocortin-4 receptor (MC4R) plays an important role in the regulation of food intake and energy expenditure in mammals. The functions of the MC4R in fish have not been investigated extensively. We herein reported on the cloning, tissue distribution, and pharmacological characterization of spotted scat (Scatophagus argus) MC4R (SAMC4R). It consisted of a 984bp open reading frame predicted to encode a protein of 327 amino acids. Sequence analysis revealed that SAMC4R was highly homologous (>80%) at amino acid levels to several teleost MC4Rs. Phylogenetic analyses showed that SAMC4R was closely related to piscine MC4R. Using RT-PCR, we showed that in addition to brain, pituitary, and gonads, mc4r mRNA was also widely expressed in peripheral tissues of spotted scat in sexually divergent pattern. With human MC4R (hMC4R) as a control, several agonists including α-melanocyte stimulating hormone (α-MSH), [Nle(4), D-Phe(7)]-α-MSH (NDP-MSH), adrenocorticotropic hormone (ACTH) and THIQ (N-[(3R)-1,2,3,4-tetrahydroisoquinolinium3-ylcarbonyl]-(1R)-1-(4-chlorobenzyl)-2-[4-cyclohexyl-4-(1H-1,2,4-triazol-1-ylmethyl)piperidin-1-yl]-2-oxoethylamine), were used to investigate the binding and signaling properties of SAMC4R. The results showed that SAMC4R bound NDP-MSH with the highest affinity followed by ACTH (1-24) and α-MSH. Similar ranking was also found for hMC4R, although SAMC4R had two to five-fold higher affinities for these ligands. THIQ did not displace NDP-MSH from SAMC4R, different from hMC4R. α-MSH, NDP-MSH, and ACTH (1-24) were identified as potent agonists to stimulate cAMP generation followed by THIQ in SAMC4R. The availability of SAMC4R and its pharmacological characteristics will facilitate the investigation of its function in regulating diverse physiological processes in spotted scat. PMID:27080551

  9. [Advances in Molecular Cloning].

    PubMed

    Ashwini, M; Murugan, S B; Balamurugan, S; Sathishkumar, R

    2016-01-01

    "Molecular cloning" meaning creation of recombinant DNA molecules has impelled advancement throughout life sciences. DNA manipulation has become easy due to powerful tools showing exponential growth in applications and sophistication of recombinant DNA technology. Cloning genes has become simple what led to an explosion in the understanding of gene function by seamlessly stitching together multiple DNA fragments or by the use of swappable gene cassettes, maximizing swiftness and litheness. A novel archetype might materialize in the near future with synthetic biology techniques that will facilitate quicker assembly and iteration of DNA clones, accelerating the progress of gene therapy vectors, recombinant protein production processes and new vaccines by in vitro chemical synthesis of any in silico-specified DNA construct. The advent of innovative cloning techniques has opened the door to more refined applications such as identification and mapping of epigenetic modifications and high-throughput assembly of combinatorial libraries. In this review, we will examine the major breakthroughs in cloning techniques and their applications in various areas of biological research that have evolved mainly due to easy construction of novel expression systems. PMID:27028806

  10. Agouti signalling protein (ASIP) gene: molecular cloning, sequence characterisation and tissue distribution in domestic goose.

    PubMed

    Zhang, J; Wang, C; Liu, Y; Liu, J; Wang, H Y; Liu, A F; He, D Q

    2016-06-01

    Agouti signalling protein (ASIP) is an endogenous antagonist of melanocortin-1 receptor (MC1R) and is involved in the regulation of pigmentation in mammals. The objective of this study was to identify and characterise the ASIP gene in domestic goose. The goose ASIP cDNA consisted of a 44-nucleotide 5'-terminal untranslated region (UTR), a 390-nucleotide open-reading frame (ORF) and a 45-nucleotide 3'-UTR. The length of goose ASIP genomic DNA was 6176 bp, including three coding exons and two introns. Bioinformatic analysis indicated that the ORF encodes a protein of 130 amino-acid residues with a molecular weight of 14.88 kDa and an isoelectric point of 9.73. Multiple sequence alignments and phylogenetic analysis showed that the amino-acid sequence of ASIP was conserved in vertebrates, especially in the avian species. RT-qPCR showed that the goose ASIP mRNA was differentially expressed in the pigment deposition tissues, including eye, foot, feather follicle, skin of the back, as well as in skin of the abdomen. The expression level of the ASIP gene in skin of the abdomen was higher than that in skin of the back. Those findings will contribute to further understanding the functions of the ASIP gene in geese plumage colouring. PMID:26750999

  11. Molecular cloning, tissue expression and association of porcine NR4A1 gene with reproductive traits.

    PubMed

    Liu, L Q; Li, F E; Deng, C Y; Xiong, Y Z

    2011-01-01

    Nuclear receptor subfamily 4, group A, member 1 (NR4A1), other aliase NGFI-B, is an immediate-early gene that encodes an orphan nuclear receptor, which play a potential role in the ovulatory process. In this study, a 4,870 bp fragment covered the complete coding region (CDS) and its unique intron sequences of porcine NR4A1 gene was obtained. The reverse transcriptase-polymerase chain reaction (RT-PCR) indicated that NR4A1 was highly expressed in ovary, uterus, kidney, heart but at very low level in oviduct and not expressed in other tissues. Compared the sequence of CDS and its unique intron of Large White and Meishan pigs, a A/G mutation in intron 5 was found and a PCR-Dde1-RFLP genotyping assay was developed. Association of the SNP and litter size was assessed in two populations [purebred Large White and an experimental synthetic Line (DIV) sows]. Statistical analysis demonstrated that, in the first parity, AG animals in experimental synthetic Line (DIV) sows had 1.805 more piglets born compared to the GG animals (P<0.05). For all parities, in the purebred Large White pigs, those with the GG genotype had an additional 0.877 piglets born and 0.780 piglets born alive compared to the AA animals (P<0.05), those with the AG genotype had additional 0.780 piglets born compared to the AA animals (P<0.05). In addition, significant additive effect of 0.438±0.182 piglets/litter and 0.368±0.165 piglets/litter on piglets born and piglets born alive were detected in the purebred Large White lines (P<0.05), respectively. Therefore, NR4A1 gene was significantly associated with litter size in two populations and could be a useful molecular marker in selection for increasing litter size in pigs. PMID:20333549

  12. Therapeutic cloning and tissue engineering.

    PubMed

    Koh, Chester J; Atala, Anthony

    2004-01-01

    A severe shortage of donor organs available for transplantation in the United States leaves patients suffering from diseased and injured organs with few treatment options. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15094294

  13. Molecular cloning of five individual stage- and tissue-specific mRNA sequences from sea urchin pluteus embryos.

    PubMed Central

    Fregien, N; Dolecki, G J; Mandel, M; Humphreys, T

    1983-01-01

    Five developmentally regulated sea urchin mRNA sequences which increase in abundance between the blastula and pluteus stages of development were isolated by molecular cloning of cDNA. The regulated sequences all appeared in moderately abundant mRNA molecules of pluteus cells and represented 4% of the clones tested. There were no regulated sequences detected in the 40% of the clones which hybridized to the most abundant mRNA, and the screening procedures were inadequate to detect possible regulation in the 20 to 30% of the clones presumably derived from rare-class mRNA. The reaction of 32P[cDNA] from blastula and pluteus mRNA to dots of the cloned DNAs on nitrocellulose filters indicated that the mRNAs complementary to the different cloned pluteus-specific sequences were between 3- and 47-fold more prevalent at the pluteus stage than at the blastula stage. Polyadenylated RNA from different developmental stages was transferred from electrophoretic gels to nitrocellulose filters and reacted to the different cloned sequences. The regulated mRNAs were undetectable in the RNA of 3-h embryos, became evident at the hatching blastula stage, and reached a maximum in abundance by the gastrula or pluteus stage. Certain of the clones reacted to two sizes of mRNA which did not vary coordinately with development. Transfers of RNA isolated from each of the three cell layers of pluteus embryos that were reacted to the cloned sequences revealed that two of the sequences were found in the mRNA of all three layers, two were ectoderm specific, and one was endoderm specific. Four of the regulated sequences were complementary to one or two major bands and one to at least 50 bands on Southern transfers of restriction endonuclease-digested total sea urchin DNA. Images PMID:6688291

  14. Early events in tissues during infection with pathogenic (SIVmac239) and nonpathogenic (SIVmac1A11) molecular clones of simian immunodeficiency virus.

    PubMed Central

    Lackner, A. A.; Vogel, P.; Ramos, R. A.; Kluge, J. D.; Marthas, M.

    1994-01-01

    The extent of virus replication, tissue distribution, localization of virus within tissues, and the presence of pathological lesions was examined early after experimental infection of rhesus monkeys with simian immunodeficiency virus (SIV). Three strains of SIV were used: molecularly cloned pathogenic SIVmac239; molecularly cloned nonpathogenic SIVmac1A11; and uncloned pathogenic SIVmac. The major targets of infection in all animals at 2 weeks postinoculation were the thymus and spleen. The distribution of virus within lymphoid organs varied with the viral inoculum: nonpathogenic SIVmac1A11 was present primarily within lymphoid follicles and in the thymic cortex; SIVmac239 was present primarily within periarteriolar lymphoid sheaths in the spleen, the paracortex of lymph nodes, and the medulla of the thymus; uncloned SIVmac was present in all these areas but tended to parallel the distribution of SIVmac239. Animals inoculated with nonpathogenic SIVmac1A11 had fewer SIV-positive cells by in situ hybridization and after 13 weeks postinoculation, virus was undetectable in any tissue from these animals. No significant pathological abnormalities were recognized in animals inoculated with this nonpathogenic virus. In contrast, nearly half of the animals inoculated with either SIVmac or SIVmac239 developed significant pathological lesions, including opportunistic infections by 13 weeks postinoculation, highlighting the virulence of these viruses. Our results indicate marked differences in tissue distribution between pathogenic and nonpathogenic molecular clones of SIV during the acute phase of infection. The most striking differences were the absence of SIVmac1A11 from the central nervous system and thymic medulla. The prominent early involvement of the thymus suggests that infection of this organ is a key event in the induction of immune suppression by SIV. Images Figure 1 Figure 2 Figure 3 PMID:8053500

  15. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin

    PubMed Central

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  16. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin.

    PubMed

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  17. Molecular cloning, tissue expression of gene Muc2 in blunt snout bream Megalobrama amblycephala and regulation after re-feeding

    NASA Astrophysics Data System (ADS)

    Xue, Chunyu; Xi, Bingwen; Ren, Mingchun; Dong, Jingjing; Xie, Jun; Xu, Pao

    2015-03-01

    Mucins are important components of mucus, which form a natural, physical, biochemical and semipermeable mucosal layer on the epidermis of fish gills, skin, and the gastrointestinal tract. As the first step towards characterizing the function of Muc2, we cloned a partial Megalobrama amblycephala Muc2 cDNA of 2 175 bp, and analyzed its tissue-specific expression pattern by quantitative real-time PCR (qPCR). The obtained sequence comprised 41 bp 5'-untranslated region (5'-UTR), 2 134 bp open reading frame encoding a protein of 711 amino acids. BLAST searching and phylogenetic analysis showed that the predicted protein contained several common secreted mucin-module domains (VWD-C8-TIL-VWD-C8) and had high homology with mucins from other vertebrates. Among four candidate reference genes ( β- Actin, RPI13α, RPII, 18S) for the qPCR, RPII was chosen as an appropriate reference gene because of its lowest variation in different tissues. M. amblycephala Muc2 was mainly expressed in the intestine, in the order (highest to lowest) middle-intestine > fore-intestine > hind-intestine. Muc2 was expressed relatively poorly in other organs (brain, liver, kidney, spleen, skin and gill). Furthermore, after 20-days of starvation, M. amblycephala Muc2 expressions after refeeding for 0 h, 3 h, 16 h, 3 d, and 10 d were significantly decreased in the three intestinal segments ( P<0.05) at 16 h, and were then upregulated to near the initial level at 10 d.

  18. Molecular cloning and tissue expression of the insulin-like growth factor II prohormone in the bony fish Cottus scorpius.

    PubMed

    Loffing-Cueni, D; Schmid, A C; Reinecke, M

    1999-01-01

    The cDNA encoding pro-IGF-II of an advanced teleost fish, Cottus scorpius (Scorpaeniformes), the daddy sculpin, was isolated from liver by RT-PCR and molecular cloning. Like other IGFs, the deduced 168 amino acid peptide contains B-, C-, A-, D-, and E-domains and six cysteine residues (CysB9, CysB21, CysA6, CysA7, CysA11, and CysA20) necessary for the maintenance of tertiary structure. At the amino acid level, the sculpin IGF-II prohormone exhibits 85-92% homology to pro-IGF-II of other bony fish but only 51% homology to human. The mature sculpin IGF-II peptide comprises 70 amino acids. Its A-, B-, and D-domains exhibit homologies as high as 91, 91, and 100%, respectively, when compared with the other bony fish species studied. The high sequence homologies may indicate a particular physiological impact of IGF-II in bony fish. RT-PCR followed by Southern blotting revealed an IGF-II mRNA transcript of the expected size in liver, pyloric and splenic islets, stomach, small and large intestine, kidney, gill, testis, ovary, brain, and heart. The local production of IGF-II in many organs indicates that IGF-II is involved in organ-specific functions in a paracrine/autocrine manner. Furthermore, the results show that all bony fish organs which have been demonstrated to express IGF-I mRNA also express IGF-II mRNA. PMID:9882541

  19. Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone.

    PubMed Central

    Kurosaki, M; Demontis, S; Barzago, M M; Garattini, E; Terao, M

    1999-01-01

    The cDNA coding for mouse aldehyde oxidase (AO), a molybdoflavoprotein, has been isolated and characterized. The cDNA is 4347 nt long and consists of an open reading frame predicting a polypeptide of 1333 amino acid residues, with 5' and 3' untranslated regions of 13 and 335 nt respectively. The apparent molecular mass of the translation product in vitro derived from the corresponding cRNA is consistent with that of the monomeric subunit of the AO holoenzyme. The cDNA codes for a catalytically active form of AO, as demonstrated by transient transfection experiments conducted in the HC11 mouse mammary epithelial cell line. The deduced primary structure of the AO protein contains consensus sequences for two distinct 2Fe-2S redox centres and a molybdopterin-binding site. The amino acid sequence of the mouse AO has a high degree of similarity with the human and bovine counterparts, and a significant degree of relatedness to AO proteins of plant origin. Northern blot and in situ hybridization analyses demonstrate that hepatocytes, cardiocytes, lung endothelial or epithelial cells and oesophagus epithelial cells express high levels of AO mRNA. In the various tissues and organs considered, the level of AO mRNA expression is not strictly correlated with the amount of the corresponding protein, suggesting that the synthesis of the AO enzyme is under translational or post-translational control. In addition, we observed sex-related regulation of AO protein synthesis. In the liver of male animals, despite similar amounts of AO mRNA, the levels of the AO enzyme and corresponding polypeptide are significantly higher than those in female animals. Treatment of female mice with testosterone increases the amounts of AO mRNA and of the relative translation product to levels similar to those in male animals. PMID:10377246

  20. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene.

    PubMed

    Li, YanHua; Li, AiHua; Yang, Z Q

    2016-09-01

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  1. Molecular cloning and tissue expression of uncoupling protein 1, 2 and 3 genes in Chinese perch (Siniperca chuatsi).

    PubMed

    Wen, Zheng-Yong; Liang, Xu-Fang; He, Shan; Li, Ling; Shen, Dan; Tao, Ya-Xiong

    2015-07-01

    Uncoupling proteins (UCPs) are mitochondrial anion carrier proteins, which play important roles in several physiological processes, including thermogenesis, reactive oxygen species generation, growth, lipid metabolism and insulin secretion. Although the roles of UCPs are well understood in mammals, little is known in fish. To investigate the thermogenesis roles in Chinese perch (Siniperca chuatsi), we cloned the UCP1, 2 and 3. The UCP1 consisted of six exons and five introns, and the UCP2 consisted of eight exons and seven introns. The UCP1 was primarily expressed in liver, UCP2 was ubiquitously expressed, and UCP3 was primarily expressed in muscle. The mRNA levels of UCP1 and UCP2 in liver, and UCP3 in muscle were significantly increased after prolonged cold exposure, but did not change after prolonged heat exposure, suggesting that Chinese perch might have a mechanism of response to cold environment, but not to hot environment. The intestinal UCP1 mRNA level was significantly up-regulated after prolonged heat exposure, while the UCP2 mRNA level was significantly up-regulated after prolonged cold exposure, suggesting that the two paralogs might play different roles in intestine of Chinese perch. In addition, the phylogenetic analysis could shed new light on the evolutionary diversification of UCP gene family. PMID:25829150

  2. Molecular cloning and characterization of genes for antibodies generated by orbital tissue-infiltrating B-cells in Graves` ophthalmopathy

    SciTech Connect

    Jaume, J.C.; Portolano, S.; Prummel, M.F.; McLachlan, S.M.; Rapoport, B.

    1994-02-01

    Graves` ophthalmopathy is a distressing autoimmune disease of unknown etiology. Analysis of the genes for antibodies secreted by orbital tissue-infiltrating plasma cells might provide insight into the pathogenesis of this disease. The authors, therefore, constructed an immunoglobulin heavy (H) chain and an immunoglobulin k light (L) chain cDNA library from the orbital tissue of a patient with active Graves` ophthalmopathy. Analysis of 15 H (IgG1) and 15 L (k) chains revealed a restricted spectrum of variable region genes. Fourteen of 15 variable k genes were about 94% homologous to the closest known germline gene, KL012. Thirteen of 15 H chain genes were 91% and 90% homologous to the closest germline genes, DP10 and hv1263, respectively. Remarkably, these germline genes also code for other autoantibodies to striated muscle (KL012) and thyroid peridase (KL012 and hv1263). These studies raise the possibility that particular germline genes may be associated with autoimmunity in humans. Further, the present study opens the way to identifying ocular autoantigens that may be the target of an humoral immune response. 29 refs., 4 figs., 1 tab.

  3. Molecular cloning, sequence identification and tissue expression profile of three novel sheep (Ovis aries) genes - BCKDHA, NAGA and HEXA.

    PubMed

    Liu, G Y; Gao, S Z

    2009-01-01

    The complete coding sequences of three sheep genes- BCKDHA, NAGA and HEXA were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR), based on the conserved sequence information of the mouse or other mammals. The nucleotide sequences of these three genes revealed that the sheep BCKDHA gene encodes a protein of 313 amino acids which has high homology with the BCKDHA gene that encodes a protein of 447 amino acids that has high homology with the Branched chain keto acid dehydrogenase El, alpha polypeptide (BCKDHA) of five species chimpanzee (93%), human (96%), crab-eating macaque (93%), bovine (98%) and mouse (91%). The sheep NAGA gene encodes a protein of 411 amino acids that has high homology with the alpha-N-acetylgalactosaminidase (NAGA) of five species human (85%), bovine (94%), mouse (91%), rat (83%) and chicken (74%). The sheep HEXA gene encodes a protein of 529 amino acids that has high homology with the hexosaminidase A(HEXA) of five species bovine (98%), human (84%), Bornean orangután (84%), rat (80%) and mouse (81%). Finally these three novel sheep genes were assigned to GenelDs: 100145857, 100145858 and 100145856. The phylogenetic tree analysis revealed that the sheep BCKDHA, NAGA, and HEXA all have closer genetic relationships to the BCKDHA, NAGA, and HEXA of bovine. Tissue expression profile analysis was also carried out and results revealed that sheep BCKDHA, NAGA and HEXA genes were differentially expressed in tissues including muscle, heart, liver, fat, kidney, lung, small and large intestine. Our experiment is the first to establish the primary foundation for further research on these three sheep genes. PMID:19621134

  4. Molecular characterization of the gonadal kisspeptin system: Cloning, tissue distribution, gene expression analysis and localization in sablefish (Anoplopoma fimbria).

    PubMed

    Fairgrieve, Marian R; Shibata, Yasushi; Smith, Elizabeth K; Hayman, Edward S; Luckenbach, J Adam

    2016-01-01

    The kisspeptin system plays pivotal roles in the regulation of vertebrate reproduction. Classically, kisspeptin produced in the brain stimulates brain gonadotropin-releasing hormone signaling, which in turn activates the pituitary-gonad axis. Expression of the kisspeptin system has also been documented in peripheral tissues, including gonads of mammals and fishes. However, the fish gonadal kisspeptin system remained uncharacterized. Herein we report identification and characterization of four kisspeptin system mRNAs (kisspeptin 1 (kiss1), kiss2, and G protein-coupled receptor 54-1 (gpr54-1) and gpr54-2) in sablefish, Anoplopoma fimbria. Sablefish predicted protein sequences were highly similar to those of other marine teleosts, but less so to freshwater teleosts. Tissue distribution analyses revealed that all four kisspeptin-system transcripts were expressed in both brain and gonad. However, kiss2 was the predominant transcript in the gonads and the only transcript detected in ovulated eggs. Ontogenetic analysis of kiss2 expression in juvenile sablefish gonads demonstrated that levels were low during sex differentiation but increased with fish size and gonadal development. Dramatic increases in kiss2 mRNA occurred during primary oocyte growth, while levels remained relatively low in testes. In situ hybridization revealed that kiss2 mRNA was localized to cytoplasm of perinucleolus stage oocytes, suggesting it could play a local role in oogenesis or could be synthesized and stored within oocytes as maternal mRNA. This represents the first study to focus on the gonadal kisspeptin system in fishes and provides important tools for further investigation of both the gonadal and brain kisspeptin systems in sablefish. PMID:26386183

  5. Tissue engineering applications of therapeutic cloning.

    PubMed

    Atala, Anthony; Koh, Chester J

    2004-01-01

    Few treatment options are available for patients suffering from diseased and injured organs because of a severe shortage of donor organs available for transplantation. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for replacement therapy. Scientists in the field of tissue engineering apply the principles of cell transplantation, material science, and engineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The present chapter reviews recent advances that have occurred in therapeutic cloning and tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15255761

  6. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression.

    PubMed

    Langbein, L; Heid, H W; Moll, I; Franke, W W

    1993-12-01

    Differentiation of human plantar and palmar epidermis is characterized by the suprabasal synthesis of a major special intermediate-sized filament (IF) protein, the type I (acidic) cytokeratin 9 (CK 9). Using partial amino acid (aa) sequence information obtained by direct Edman sequencing of peptides resulting from proteolytic digestion of purified CK 9, we synthesized several redundant primers by 'back-translation'. Amplification by polymerase chain reaction (PCR) of cDNAs obtained by reverse transcription of mRNAs from human foot sole epidermis, including 5'-primer extension, resulted in multiple overlapping cDNA clones, from which the complete cDNA (2353 bp) could be constructed. This cDNA encoded the CK 9 polypeptide with a calculated molecular weight of 61,987 and an isoelectric point at about pH 5.0. The aa sequence deduced from cDNA was verified in several parts by comparison with the peptide sequences and showed the typical structure of type I CKs, with a head (153 aa), and alpha-helical coiled-coil-forming rod (306 aa), and a tail (163 aa) domain. The protein displayed the highest homology to human CK 10, not only in the highly conserved rod domain but also in large parts of the head and the tail domains. On the other hand, the aa sequence revealed some remarkable differences from CK 10 and other CKs, even in the most conserved segments of the rod domain. The nuclease digestion pattern seen on Southern blot analysis of human genomic DNA indicated the existence of a unique CK 9 gene. Using CK 9-specific riboprobes for hybridization on Northern blots of RNAs from various epithelia, a mRNA of about 2.4 kb in length could be identified only in foot sole epidermis, and a weaker cross-hybridization signal was seen in RNA from bovine heel pad epidermis at about 2.0 kb. A large number of tissues and cell cultures were examined by PCR of mRNA-derived cDNAs, using CK 9-specific primers. But even with this very sensitive signal amplification, only palmar

  7. Cloning

    MedlinePlus

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  8. Molecular cloning and tissue distribution of cholecystokinin-1 receptor (CCK-1R) in yellowtail Seriola quinqueradiata and its response to feeding and in vitro CCK treatment.

    PubMed

    Furutani, Takahiro; Masumoto, Toshiro; Fukada, Haruhisa

    2013-06-01

    In vertebrates, the peptide cholecystokinin (CCK) is one of the most important neuroregulatory digestive hormones. CCK acts via CCK receptors that are classified into two subtypes, CCK-1 receptor (CCK-1R; formally CCK-A) and CCK-2 receptor (formally CCK-B). In particular, the CCK-1R is involved in digestion and is regulated by CCK. However, very little information is known about CCK-1R in fish. Therefore, we performed molecular cloning of CCK-1R cDNA from the digestive tract of yellowtail Seriola quinqueradiata. Phylogenetic tree analysis showed a high sequence identity between the cloned yellowtail CCK receptor cDNA and CCK-1R, which belongs to the CCK-1R cluster. Furthermore, the expression of yellowtail CCK receptor mRNA was observed in gallbladder, pyloric caeca, and intestines, similarly to CCK-1R mRNA expression in mammals, suggesting that the cloned cDNA is of CCK-1R from yellowtail. In in vivo experiments, the CCK-1R mRNA levels increased in the gallbladder and pyloric caeca after feeding, whereas in vitro, mRNA levels of CCK-1R and digestive enzymes in cultured pyloric caeca increased by the addition of CCK. These results suggest that CCK-1R plays an important role in digestion stimulated by CCK in yellowtail. PMID:23467070

  9. Molecular cloning, characterization, tissue distribution and mRNA expression changes during the hibernation and reproductive periods of estrogen receptor alpha (ESR1) in Chinese alligator, Alligator sinensis.

    PubMed

    Zhang, Ruidong; Hu, Yuehong; Wang, Huan; Yan, Peng; Zhou, Yongkang; Wu, Rong; Wu, Xiaobing

    2016-10-01

    Chinese alligator, Alligator sinensis, is a critically endangered reptile species unique to China. Little is known about the mechanism of growth- and reproduction-related hormones gene expression in Chinese alligator. Estrogens play important roles in regulating multiple reproduction- and non-reproduction-related functions by binding to their corresponding receptors. Here, the full-length cDNA of estrogen receptor alpha (ERα/ESR1) was cloned and sequenced from Chinese alligator for the first time, which comprises 1764bp nucleotides and encodes a predicted protein of 587 amino acids. Phylogenetic analysis of ESR1 showed that crocodilians and turtles were the sister-group of birds. The results of real-time quantitative PCR indicated that the ESR1 mRNA was widely expressed in the brain and peripheral tissues. In the brain and pituitary gland, ESR1 was most highly transcribed in the cerebellum. But in other peripheral tissues, ESR1 mRNA expression level was the highest in the ovary. Compared with hibernation period, ESR1 mRNA expression levels were increased significantly in the reproductive period (P<0.05) in cerebellum, pituitary gland, liver, spleen, lung, kidney and ovary, while no significant change in other examined tissues (P>0.05). The ESR1 mRNA expression levels changes during the two periods of different tissues suggested that ESR1 might play an important role in mediation of estrogenic multiple reproductive effects in Chinese alligator. Furthermore, it was the first time to quantify ESR1 mRNA level in the brain of crocodilians, and the distribution and expression of ESR1 mRNA in the midbrain, cerebellum and medulla oblongata was also reported for the first time in reptiles. PMID:27212643

  10. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake.

    PubMed

    Pu, L; Zhang, L C; Zhang, J S; Song, X; Wang, L G; Liang, J; Zhang, Y B; Liu, X; Yan, H; Zhang, T; Yue, J W; Li, N; Wu, Q Q; Wang, L X

    2016-01-01

    Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is essential for apoptosis, proliferation, differentiation, and immune responses, and is a candidate marker for residual feed intake (RFI) in pig. We cloned the full-length cDNA sequence of porcine MAP3K5 by rapid-amplification of cDNA ends. The 5451-bp gene contains a 5'-untranslated region (UTR) (718 bp), a coding region (3738 bp), and a 3'-UTR (995 bp), and encodes a peptide of 1245 amino acids, which shares 97, 99, 97, 93, 91, and 84% sequence identity with cattle, sheep, human, mouse, chicken, and zebrafish MAP3K5, respectively. The deduced MAP3K5 protein sequence contains two conserved domains: a DUF4071 domain and a protein kinase domain. Phylogenetic analysis showed that porcine MAP3K5 forms a separate branch to vicugna and camel MAP3K5. Tissue expression analysis using real-time quantitative polymerase chain reaction (qRT-PCR) revealed that MAP3K5 was expressed in the heart, liver, spleen, lung, kidney, muscle, fat, pancrea, ileum, and stomach tissues. Copy number variation was detected for porcine MAP3K5 and validated by qRT-PCR. Furthermore, a significant increase in average copy number was detected in the low RFI group when compared to the high RFI group in a Duroc pig population. These results provide useful information regarding the influence of MAP3K5 on RFI in pigs. PMID:27525933

  11. Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol.

    PubMed Central

    Gong, Y Z; Everett, E T; Schwartz, D A; Norris, J S; Wilson, F A

    1994-01-01

    A cDNA clone encoding the major intestinal cytosolic 14-kDa bile acid-binding protein (14-kDa I-BABP) was isolated from a rat ileal lambda gt22A library following immunoscreening using a monospecific antiserum raised against a 14-kDa polypeptide found in the rat ileal cytosol. One clone of 516 bp encoded a 128-amino acid protein with a predicted molecular mass of 14,544 Da. The deduced amino acid sequence of 14-kDa I-BABP showed 100% homology to rat intestinal 15-kDa protein (I-15P) and 72% homology to porcine 15-kDa gastrotropin, whereas comparison of I-BABP to rat 14-kDa fatty acid-binding proteins of liver, intestine, and heart revealed homologies of 44%, 25%, and 28%, respectively. Northern blot analysis revealed a single transcript of approximately 0.5 kb in ileum and ovary; however, the abundance of I-BABP mRNA was much greater in ileum than in ovary. No transcript was seen in RNA extracted from stomach, jejunum, colon, liver, adrenal, brain, heart, kidney, or testis. Transfection of the I-BABP cDNA into COS-7 cells resulted in the expression of a 14-kDa protein that was identical to the ileal cytosolic I-BABP as determined by immunoblotting. Photoaffinity labeling of expressed 14-kDa protein was saturable with respect to increasing concentrations of 7,7-azo[3H]taurocholate (Km, 83.3 microM; Vmax, 6.7 pmol/mg per 5 min). Taurocholate inhibited 7,7-azotaurocholate labeling by > 96% with lesser inhibition by taurochenodeoxycholate (83.1%), chenodeoxycholate (74.6%), cholate (50.5%), and progesterone (38.5%), whereas oleic acid and estradiol did not inhibit binding. Images PMID:8197128

  12. Methods in molecular cardiology: in silico cloning

    PubMed Central

    Passier, R.; Doevendans, P.A.

    2004-01-01

    Advancements in sequencing technology have made it possible to obtain more information about the DNA sequence, structure and the transcript products of the genome from different species. This information is collected in DNA databases. These databases contain many genes of which the functions have not yet been discovered. By using online biotechnology tools novel genes and their transcripts can be identified. The identification of novel genes using DNA database analysis is referred to as in silico cloning. In silico cloning may not only provide new information on genes and their biological function, it may also lead to identification of molecular targets for drug discovery activities. In this review we describe the process of in silico cloning and its application in biomedical research. ImagesFigure 1Figure 3 PMID:25696371

  13. Molecular cloning, genomic structure, and tissue distribution of EW135, a novel chicken egg white protein with group B scavenger receptor cysteine-rich domains.

    PubMed

    Yoo, Whayoung; Nakamura, Tomohiro; Asanuma, Hideki; Matsushita, Misao

    2013-11-01

    Approximately 80 proteins are reported to be present in chicken egg white. The major function of egg white proteins isolated so far is to defend the egg yolk against infections. We recently isolated a novel protein termed EW135 from chicken egg white. In this paper, we have determined the complete amino acid sequence of EW135 based on cDNA cloning. EW135 consists of 970 amino acids with a putative signal peptide of 17 amino acids. It is composed exclusively of tandem repeats of nine group B scavenger receptor cysteine-rich (SRCR) domains separated by eight seven-amino acid peptides. The features of consensus sequences found in the group B SRCR domain were well conserved in EW135. The EW135 gene consists of putative 11 exons, with each SRCR domain being encoded by a single exon. Reverse transcription PCR showed that EW135 is expressed in only the oviduct among the 11 types of tissues tested. EW135 is a second soluble protein belonging to the group B SRCR domain superfamily identified in chickens. One of the important functions of proteins belonging to the group B SRCR domain superfamily is to recognize pathogens in innate immunity. It is, therefore, conceivable that EW135 could be involved in host defense in egg white. PMID:23913278

  14. Molecular cloning, mRNA expression and tissue distribution analysis of Slc7a11 gene in alpaca (Lama paco) skins associated with different coat colors.

    PubMed

    Tian, Xue; Meng, Xiaolin; Wang, Liangyan; Song, Yunfei; Zhang, Danli; Ji, Yuankai; Li, Xuejun; Dong, Changsheng

    2015-01-25

    Slc7a11 encoding solute carrier family 7 member 11 (amionic amino acid transporter light chain, xCT), has been identified to be a critical genetic regulator of pheomelanin synthesis in hair and melanocytes. To better understand the molecular characterization of Slc7a11 and the expression patterns in skin of white versus brown alpaca (lama paco), we cloned the full length coding sequence (CDS) of alpaca Slc7a11 gene and analyzed the expression patterns using Real Time PCR, Western blotting and immunohistochemistry. The full length CDS of 1512bp encodes a 503 amino acid polypeptide. Sequence analysis showed that alpaca xCT contains 12 transmembrane regions consistent with the highly conserved amino acid permease (AA_permease_2) domain similar to other vertebrates. Sequence alignment and phylogenetic analysis revealed that alpaca xCT had the highest identity and shared the same branch with Camelus ferus. Real Time PCR and Western blotting suggested that xCT was expressed at significantly high levels in brown alpaca skin, and transcripts and protein possessed the same expression pattern in white and brown alpaca skins. Additionally, immunohistochemical analysis further demonstrated that xCT staining was robustly increased in the matrix and root sheath of brown alpaca skin compared with that of white. These results suggest that Slc7a11 functions in alpaca coat color regulation and offer essential information for further exploration on the role of Slc7a11 in melanogenesis. PMID:25455099

  15. Molecular cloning, tissue distribution and ontogenetic expression of the amino acid transporter b(0,+) cDNA in the small intestine of Tibetan suckling piglets.

    PubMed

    Wang, Wence; Gu, Wanting; Tang, Xiangfang; Geng, Meimei; Fan, M; Li, Tiejun; Chu, Wuying; Shi, Changyou; Huang, Ruilin; Zhang, Hongfu; Yin, Yulong

    2009-09-01

    The small intestine is the main absorption place of peptides and free amino acids in mammals. The amino acid transporter system b(0,+) mediates apical uptake of basic amino acids, especially lysine, arginine and cysteine. The aim of the current study was to clone Tibetan porcine amino acid transporter b(0,+)AT (SLC7A9) for comparing the sequences of Tibetan and common (Sus scrofa) pigs, and investigating the tissue distribution and ontogenetic expression in the small intestine of Tibetan suckling piglets. The Tibetan porcine SLC7A9 gene was first cloned from the porcine small intestine and found to encode the amino acid transporter b(0,+)AT. The entire open reading frame (ORF) of the SLC7A9 is 1464 bp and codes for 487 amino acid residues, with a higher degree of sequence similarity with common pig (99.59%) and horse counterparts (91.2%) than with monkey (89.5%) or human (88.7%). The deduced protein has 12 putative transmembrane domains. In this study, SLC7A9 mRNA was detected in brain, kidney, duodenum, jejunum, ileum, heart, liver, lung and muscle from Tibetan pigs at 7 and 21 days by PCR. We also investigated the age-dependent expression of b(0,+)AT in Tibetan suckling piglets in duodenum, anterior jejunum, posterior jejunum, ileum and kidney from day 1 to 35. The abundance of SLC7A9 mRNA in duodenum and jejunum was highest and lowest, respectively. Expression patterns were similar in duodenum and anterior jejunum, where the mRNA level was decreased before the suckling period and increased until day 35. Posterior jejunum expression was increasing steadily with age, except on day 7. The ileum has the highest expression at day 14 and became steady after day 28. The mRNA abundance in the kidney is opposite to duodenum, increasing until day 14 and reducing thereafter. Our results showed the pattern of b(0,+)AT expressed in small intestine of Tibetan pig and lay the foundation for in depth investigations of the regulation of b(0,+)AT in vivo. PMID:19501668

  16. Cloning

    MedlinePlus

    ... DNA Reproductive cloning, which creates copies of whole animals Therapeutic cloning, which creates embryonic stem cells. Researchers hope to use these cells to grow healthy tissue to replace injured or diseased tissues in the human body. NIH: National Human Genome Research Institute

  17. Molecular cloning of the mouse proteasome subunits MC14 and MECL-1: reciprocally regulated tissue expression of interferon-gamma-modulated proteasome subunits.

    PubMed

    Stohwasser, R; Standera, S; Peters, I; Kloetzel, P M; Groettrup, M

    1997-05-01

    The primary structures of the interferon-gamma-inducible mouse 20S proteasome subunit MECL-1 and its alternate homolog MC14 were determined. Northern analysis of mouse tissues revealed that MECL-1 mRNA predominantly occurred in thymus, lymph nodes, and spleen, whereas small amounts were detected in non-lymphoid tissues such as kidney, muscle, and testis. Unexpectedly, probing RNA blots with MC14 showed that tissues with high MECL-1 expression contained little MC14 and vice versa. A very similar reciprocal tissue expression was subsequently found for the homologous subunit pairs LMP2 and delta as well as LMP7 and MB1. The subunit protein composition of 20S proteasomes purified from liver, thymus, and lung reflected RNA expression. The impact of a regulated reciprocal tissue expression is discussed with respect to thymic selection and the induction of tolerance in potentially autoreactive T cells. PMID:9174609

  18. Molecular cloning and expression analysis on LPL of Coilia nasus.

    PubMed

    Wang, Meiyao; Xu, Dongpo; Liu, Kai; Yang, Jian; Xu, Pao

    2016-06-01

    Coilia nasus is one important commercial anadromous species which mainly distributed in the Yangtze River in China. At present, it has been on the "National Key Protective Species List" because of its severe resource damage. Lipid metabolism is very important during its long-distance migration. To make further research on lipid metabolism of C. nasus, we cloned lipoprotein lipase gene with homologous cloning method. A full-length cDNA of LPL of C. nasus was cloned from liver which covered 3537 bp with a 1519 bp open reading frame encoding 505 deduced amino acids whose molecular mass was 57.5 kDa and theoretical isoelectric point was 7.58. The deduced amino acids had high similarity with the reported LPL sequence of other species. It had typical conserved domain of LPL protein containing catalytic triad, N-linked glycosylation sites and conserved heparin-binding site, etc. We adopted quantitative real-time RT-PCR method to detect the mRNA expression of LPL of C. nasus in ten tissues including mesenteric adipose, liver, muscle, stomach, spleen, heart, head kidney, trunk kidney, gill and brain with β-actin as internal reference. LPL expressed in all the detected tissues. The highest expression was in mesenteric adipose, and followed by liver, muscle, stomach. Lipid expressed lowly in spleen, heart, head kidney, trunk kidney, gill and brain. The research on the cloning and differential expression of LPL of C. nasus will lay foundation for further research on lipid metabolism of C. nasus. PMID:26877109

  19. Molecular cloning, sequencing and tissue expression of vasotocin and isotocin precursor genes from Ostariophysian catfishes: phylogeny and evolutionary considerations in teleosts

    PubMed Central

    Banerjee, Putul; Chaube, Radha; Joy, Keerikkattil P.

    2015-01-01

    Basic and neutral neurohypophyseal (NH) nonapeptides have evolved from vasotocin (VT) by a gene duplication at the base of the gnathostome lineage. In teleosts, VT and IT are the basic and neutral peptides, respectively. In the present study, VT and IT precursor genes of Heteropneustes fossilis and Clarias batrachus (Siluriformes, Ostariophysi) were cloned and sequenced. The channel catfish Icatalurus punctatus NH precursor sequences were obtained from EST database. The catfish NH sequences were used along with the available Acanthopterygii and other vertebrate NH precursor sequences to draw phylogenetic inference on the evolutionary history of the teleost NH peptides. Synteny analysis of the NH gene loci in various teleost species was done to complement the phylogenetic analysis. In H. fossilis, the NH transcripts were also sequenced from the ovary. The cloned genes and the deduced precursor proteins showed conserved characteristics of the NH nonapeptide precursors. The genes are expressed in brain and ovary (follicular envelope) of H. fossilis with higher transcript abundance in the brain. The addition of the catfish sequences in the phylogenetic analysis revealed that the VT and IT precursors of the species-rich superorders of teleosts have a distinct phylogenetic history with the Acanthopterygii VT and IT precursors sharing a less evolutionary distance and the Ostariophysi VT and IT having a greater evolutionary distance. The genomic location of VT and IT precursors, and synteny analysis of the NH loci lend support to the phylogenetic inference and suggest a footprint of fish- specific whole genome duplication (3R) and subsequent diploidization in the NH loci. The VT and IT precursor genes are most likely lineage-specific paralogs resulting from differential losses of the 3R NH paralogs in the two superorders. The independent yet consistent retention of VT and IT in the two superorders might be directed by a stringent ligand-receptor selectivity. PMID:26029040

  20. Molecular cloning of protein-based polymers.

    PubMed

    Mi, Lixin

    2006-07-01

    Protein-based biopolymers have become a promising class of materials for both biomedical and pharmaceutical applications, as they have well-defined molecular weights, monomer compositions, as well as tunable chemical, biological, and mechanical properties. Using standard molecular biology tools, it is possible to design and construct genes encoding artificial proteins or protein-based polymers containing multiple repeats of amino acid sequences. This article reviews some of the traditional methods used for constructing DNA duplexes encoding these repeat-containing genes, including monomer generation, concatemerization, iterative oligomerization, and seamless cloning. A facile and versatile method, called modules of degenerate codons (MDC), which uses PCR and codon degeneracy to overcome some of the disadvantages of traditional methods, is introduced. Re-engineering of the random coil spacer domain of a bioactive protein, WPT2-3R, is used to demonstrate the utility of the MDC method. MDC re-constructed coding sequences facilitate further manipulations, such as insertion, deletion, and swapping of various sequence modules. A summary of some promising emerging techniques for synthesizing repetitive sequence-containing artificial proteins is also provided. PMID:16827576

  1. Should we clone human beings? Cloning as a source of tissue for transplantation.

    PubMed Central

    Savulescu, J

    1999-01-01

    The most publicly justifiable application of human cloning, if there is one at all, is to provide self-compatible cells or tissues for medical use, especially transplantation. Some have argued that this raises no new ethical issues above those raised by any form of embryo experimentation. I argue that this research is less morally problematic than other embryo research. Indeed, it is not merely morally permissible but morally required that we employ cloning to produce embryos or fetuses for the sake of providing cells, tissues or even organs for therapy, followed by abortion of the embryo or fetus. PMID:10226910

  2. Molecular cloning and tissue expression of the fatty acid-binding protein (Es-FABP) gene in female Chinese mitten crab (Eriocheir sinensis)

    PubMed Central

    2010-01-01

    Background Fatty acid-binding proteins (FABPs), small cytosolic proteins that function in the uptake and utilization of fatty acids, have been extensively studied in higher vertebrates while invertebrates have received little attention despite similar nutritional requirements during periods of reproductive activity. Results Therefore, a cDNA encoding Eriocheir sinensis FABP (Es-FABP) was cloned based upon EST analysis of a hepatopancreas cDNA library. The full length cDNA was 750 bp and encoded a 131 aa polypeptide that was highly homologous to related genes reported in shrimp. The 9108 bp Es-FABP gene contained four exons that were interrupted by three introns, a genomic organization common among FABP multigene family members in vertebrates. Gene expression analysis, as determined by RT-PCR, revealed the presence of Es-FABP transcripts in hepatopancreas, hemocytes, ovary, gills, muscle, thoracic ganglia, heart, and intestine, but not stomach or eyestalk. Real-time quantitative RT-PCR analysis revealed that Es-FABP expression in ovary, hemocytes, and hepatopancreas was dependent on the status of ovarian development, with peak expression observed in January. Conclusions Evidence provided in the present report supports a role of Es-FABP in lipid transport during the period of rapid ovarian growth in E. sinensis, and indirectly confirms the participation of the hepatopancreas, ovary, and hemocytes in lipid nutrient absorption and utilization processes. PMID:20846381

  3. Tissue-Culture Method of Cloning Rubber Plants

    NASA Technical Reports Server (NTRS)

    Ball, E. A.

    1983-01-01

    Guayule plant, a high-yield rubber plant cloned by tissue-culture method to produce multiple new plants that mature quickly. By adjusting culture medium, excised shoot tip produces up to 50 identical guayule plants. Varying concentration of cytokinin, single excised tip produces either 1 or several (up to 50) new plants.

  4. Molecular cloning of tissue-specific transcripts of a transketolase-related gene: Implications for the evolution of new vertebrate genes

    SciTech Connect

    Coy, J.F.; Duebel, S.; Kioschis, P.; Delius, H.; Poustka, A.

    1996-03-05

    As part of a systematic search for differentially expressed genes, we have isolated a novel transketolase-related gene (TKR) (HGMW-approved symbol TKT), located between the green color vision pigment gene (GCP) and the ABP-280 filamin gene (FLN1) in Xq28. Transcripts encoding tissue-specific protein isoforms could be isolated. Comparison with known transketolases (TK) demonstrated a TKR-specific deletion mutating one thiamine binding site. Genomic sequencing of the TKR gene revealed the presence of a pseudoexon as well as the acquisition of a tissue-specific spliced exon compared to TK. Since it has been postulated that the vertebrate genome arose by two cycles of tetraploidization from a cephalochordate genome, this could represent an example of the modulation of the function of a preexisting transketolase gene by gene duplication. Thiamine defiency is closely involved with two neurological disorders, Beriberi and Wernicke-Korsakoff syndromes, and in both of these conditions TK with altered activity are found. We discuss the possible involvement of TKR in explaining the observed variant transketolase forms. 34 refs., 4 figs., 1 tab.

  5. Molecular cloning, sequence identification and tissue expression profile of three novel genes Sfxn1, Snai2 and Cno from Black-boned sheep (Ovis aries).

    PubMed

    Xi, Dongmei; He, Yiduo; Sun, Yongke; Gou, Xiao; Yang, Shuli; Mao, Huaming; Deng, Weidong

    2011-03-01

    The complete coding sequences of three of Black-boned sheep (Ovis aries) genes Sfxn1, Snai2 and Cno were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) according to the conserved sequence information of the cattle or other mammals and known highly homologous sheep ESTs. Black-boned sheep Sfxn1 gene encodes a protein of 322 amino acids which has high homology with the Sfxn1 proteins of five species--cattle 98%, pig 95%, human 95%, rat 93%, and mouse 93%. Black-boned sheep Snai2 gene encodes a protein of 268 amino acids that has high identity with the Snai2 proteins of six species--cattle 99%, pig 94%, human 93%, dog 93%, rat 91%, and mouse 90%. Black-boned sheep Cno gene encodes a protein of 214 amino acids that has high homology with the Cno proteins of four species--cattle 97%, human 75%, mouse 67%, and rat 65%. The phylogenetic tree analysis demonstrated that Black-boned sheep Sfxn1, Snai2 and Cno proteins have close relationship with cattle Sfxn1, Snai2 and Cno proteins. The tissue expression analysis indicated that Black-boned sheep Sfxn1, Snai2 and Cno genes were expressed in a range of tissues including leg muscle, kidney, skin, longissimus dorsi muscle, spleen, heart and liver. Our experiment is the first to provide the primary foundation for further insight into these three sheep genes. PMID:20853147

  6. Insulin-like growth factor-binding protein-1 (IGFBP-1) in goldfish, Carassius auratus: molecular cloning, tissue expression, and mRNA expression responses to periprandial changes and cadmium exposure.

    PubMed

    Chen, Wenbo; Zhang, Zhen; Dong, Haiyan; Yan, Fangfang

    2016-06-01

    In this study, the cDNA encoding insulin-like growth factor-binding protein-1 (IGFBP-1) was cloned from the liver of goldfish (Carassius auratus). The obtained goldfish IGFBP-1 cDNA sequence was 1037 bp in length and had an open reading frame of 789 bp encoding a predicted polypeptide of 262 amino acid residues. IGFBP-1 transcript was detected in all tested central nervous and peripheral tissues. The relatively higher levels of IGFBP-1 mRNA were observed in the liver, gill, kidney, heart, spleen, fat and testis, while the lower levels were found in all different regions of brain, muscle and intestine. In the skin, IGFBP-1 mRNA expression level was extremely low. The IGFBP-1 mRNA expression level in liver was significantly elevated after feeding. With cadmium exposure for 24 h, IGFBP-1 mRNA expression levels in spleen and liver were significantly increased at different cadmium concentrations ranging from 0.5 to 10 ppm. The results in this study provided the data regarding molecular characteristics and expression patterns of IGFBP-1 in goldfish and showed that the expression of IGFBP-1 mRNA might be associated with metabolic status and heavy metal stress and regulated by metabolic factors and cadmium in fish. PMID:26753895

  7. Molecular cloning, characterization and tissue distribution of two ostrich β-defensins: AvBD2 and AvBD7.

    PubMed

    Lu, Shun; Peng, Kemei; Gao, Qishuang; Xiang, Min; Liu, Huazhen; Song, Hui; Yang, Keli; Huang, Haibo; Xiao, Ke

    2014-11-15

    Avian β-defensins (AvBDs) are a family of small antimicrobial peptides that play important roles in the innate immunity of birds. Herein, we report on two new ostrich AvBD genes, AvBD2 and AvBD7, which were isolated from the bone marrow of ostriches (Struthio camelus). The coding regions of ostrich AvBD2 and AvBD7 comprised 195 bp and 201bp, which encoded 64 and 66 amino acids, respectively. Homology analysis showed that ostrich AvBD2 had the highest similarity (up to 86%) with the swan goose (Anser cygnoides) AvBD2, while ostrich AvBD7 shared the highest similarity (up to 81%) with chicken AvBD7. Analysis of the codon-usage bias showed that the two ostrich AvBDs had different codon-usage patterns from other AvBDs. The two synthetic AvBD peptides exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria, and these activities decreased significantly in the presence of 100mM NaCl (P<0.01). Real-time reverse transcription-polymerase chain reaction analysis showed that AvBD2 and AvBD7 were widely expressed at different levels in 17 different tissues. This is the first report of the nucleotide sequences of ostrich AvBDs. Further investigations of these two AvBDs may help us to gain new insights into the immune defense system of the ostrich and to make subsequent therapeutic use of ostrich defensins. PMID:25127671

  8. CYTOLOGICAL AND MOLECULAR ANALYSIS OF NORMAL AND CLONED BULLS’ MEIOSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytological and molecular analysis of meiotic cells from two bull clones and three non-clones was performed in order to detect effects of somatic cell nuclear transfer (SNCT) on the meiotic process. Pachytene cells were analyzed by immunohistology using antibodies against the synaptonemal complex pr...

  9. Molecular cloning of chicken aggrecan. Structural analyses.

    PubMed Central

    Chandrasekaran, L; Tanzer, M L

    1992-01-01

    The large, aggregating chondroitin sulphate proteoglycan of cartilage, aggrecan, has served as a generic model of proteoglycan structure. Molecular cloning of aggrecans has further defined their amino acid sequences and domain structures. In this study, we have obtained the complete coding sequence of chicken sternal cartilage aggrecan by a combination of cDNA and genomic DNA sequencing. The composite sequence is 6117 bp in length, encoding 1951 amino acids. Comparison of chicken aggrecan protein primary structure with rat, human and bovine aggrecans has disclosed both similarities and differences. The domains which are most highly conserved at 70-80% identity are the N-terminal domains G1 and G2 and the C-terminal domain G3. The chondroitin sulphate domain of chicken aggrecan is smaller than that of rat and human aggrecans and has very distinctive repeat sequences. It has two separate sections, one comprising 12 consecutive Ser-Gly-Glu repeats of 20 amino acids each, adjacent to the other which has 23 discontinuous Ser-Gly-Glu repeats of 10 amino acids each; this latter region, N-terminal to the former one, appears to be unique to chicken aggrecan. The two regions contain a total of 94 potential chondroitin sulphate attachment sites. Genomic comparison shows that, although chicken exons 11-14 are identical in size to the rat and human exons, chicken exon 10 is the smallest of the three species. This is also reflected in the size of its chondroitin sulphate coding region and in the total number of Ser-Gly pairs. The putative keratan sulphate domain shows 31-45% identity with the other species and lacks the repetitive sequences seen in the others. In summary, while the linear arrangement of specific domains of chicken aggrecan is identical to that in the aggrecans of other species, and while there is considerable identity of three separate domains, chicken aggrecan demonstrates unique features, notably in its chondroitin sulphate domain and its keratan sulphate

  10. Molecular cloning and characterization of canine ICOS.

    PubMed

    Lee, Je-Hwan; Joo, Young-Don; Yim, Daesong; Lee, Richard; Ostrander, Elaine A; Loretz, Carol; Little, Marie-Térèse; Storb, Rainer; Kuhr, Christian S

    2004-10-01

    Inducible costimulatory receptor (ICOS) is one recently identified member of the CD28 family of costimulatory molecules. Evidence suggests ICOS functions as a critical immune regulator and, to evaluate these effects, we employed the canine model system that has been used to develop strategies currently in clinical use for hematopoietic stem cell transplantation. To investigate the effects of blocking the ICOS pathway in the canine hematopoietic cell transplantation model, we tested existing murine and human reagents and cloned the full length of the open reading frame of canine ICOS cDNA to allow the development of reagents specific for the canine ICOS. Canine ICOS contains a major open reading frame of 624 nucleotides, encoding a protein of 208 amino acids, and localizes to chromosome 37. Canine ICOS shares 79% sequence identity with human ICOS, 70% with mouse, and 69% with rat. Canine ICOS expression is limited to stimulated PBMC. PMID:15475250

  11. Molecular cloning and characterization of multidomain xylanase from manure library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene (manf-x10) encoding xylanase from an environmental genomic DNA library was cloned and expressed in Escherichia coli. The encoded enzyme was predicted to be 467 amino acids with a molecular mass of 50.3 kD. The recombinant ManF-X10 was purified by HisTrap affinity column and showed activit...

  12. Molecular cloning, characterization, and expression of sheep FGF5 gene.

    PubMed

    Zhang, Lihua; He, Sangang; Liu, Mingjun; Liu, Guosong; Yuan, Zheng; Liu, Chenxi; Zhang, Xumei; Zhang, Ning; Li, Wenrong

    2015-01-25

    The fibroblast growth factor 5 gene (FGF5) is a member of the FGF gene family, and represents a candidate gene for hair length because of its role in the regulation of the hair follicle growth cycle. In our current study, we cloned, sequenced, and characterized the full-length FGF5 cDNA of Chinese Merino sheep. We obtained the complete genomic sequence of the FGF5 gene from sheep blood samples, and compared it to other FGF5 sequences in GenBank. We found that the FGF5 gene spanned 21,743bp of genomic DNA, and consisted of 3 exons and 2 introns, both of which differed from those of a previously annotated FGF5 genomic sequence from sheep. We also identified a previously undescribed FGF5 mRNA splicing variant, FGF5S, and the western blot analysis showed that the molecular weights of the FGF5 (34kDa) and FGF5s (17kDa) proteins were consistent with the estimates based on the genomic and cDNA sequence data. We examined the expression of both FGF5 mRNAs in various tissues of sheep, and found that the expression of the FGF5S mRNA was restricted to the brain, spleen, and skin tissue. The single-nucleotide polymorphism analysis of the genomic sequence revealed 72 genetic variants of the FGF5 gene. Our findings provide insight into the functions of the FGF5 gene in Chinese Merino. PMID:25445274

  13. Advances and applications of molecular cloning in clinical microbiology.

    PubMed

    Sharma, Kamal; Mishra, Ajay Kumar; Mehraj, Vikram; Duraisamy, Ganesh Selvaraj

    2014-10-01

    Molecular cloning is based on isolation of a DNA sequence of interest to obtain multiple copies of it in vitro. Application of this technique has become an increasingly important tool in clinical microbiology due to its simplicity, cost effectiveness, rapidity, and reliability. This review entails the recent advances in molecular cloning and its application in the clinical microbiology in the context of polymicrobial infections, recombinant antigens, recombinant vaccines, diagnostic probes, antimicrobial peptides, and recombinant cytokines. Culture-based methods in polymicrobial infection have many limitation, which has been overcome by cloning techniques and provide gold standard technique. Recombinant antigens produced by cloning technique are now being used for screening of HIV, HCV, HBV, CMV, Treponema pallidum, and other clinical infectious agents. Recombinant vaccines for hepatitis B, cholera, influenza A, and other diseases also use recombinant antigens which have replaced the use of live vaccines and thus reduce the risk for adverse effects. Gene probes developed by gene cloning have many applications including in early diagnosis of hereditary diseases, forensic investigations, and routine diagnosis. Industrial application of this technology produces new antibiotics in the form of antimicrobial peptides and recombinant cytokines that can be used as therapeutic agents. PMID:25023463

  14. Molecular cloning of mannose-binding lectins from Clivia miniata.

    PubMed

    Van Damme, E J; Smeets, K; Van Leuven, F; Peumans, W J

    1994-03-01

    Screening of a cDNA library constructed from total RNA isolated from young developing ovaries of Clivia miniata Regel with the amaryllis lectin cDNA clone resulted in the isolation of four different isolectin clones which clearly differ from each other in their nucleotide sequences and hence also in their deduced amino acid sequences. Apparently the lectin is translated from an mRNA of ca. 800 nucleotides encoding a precursor polypeptide of 163 amino acids. Northern blot analysis of total RNA isolated from different tissues of Clivia miniata has shown that the lectin is expressed in most plant tissues with very high lectin mRNA concentrations in the ovary and the seed endosperm. PMID:8193308

  15. Molecular cloning and amino acid sequence of human 5-lipoxygenase

    SciTech Connect

    Matsumoto, T.; Funk, C.D.; Radmark, O.; Hoeoeg, J.O.; Joernvall, H.; Samuelsson, B.

    1988-01-01

    5-Lipoxygenase (EC 1.13.11.34), a Ca/sup 2 +/- and ATP-requiring enzyme, catalyzes the first two steps in the biosynthesis of the peptidoleukotrienes and the chemotactic factor leukotriene B/sub 4/. A cDNA clone corresponding to 5-lipoxygenase was isolated from a human lung lambda gt11 expression library by immunoscreening with a polyclonal antibody. Additional clones from a human placenta lambda gt11 cDNA library were obtained by plaque hybridization with the /sup 32/P-labeled lung cDNA clone. Sequence data obtained from several overlapping clones indicate that the composite DNAs contain the complete coding region for the enzyme. From the deduced primary structure, 5-lipoxygenase encodes a 673 amino acid protein with a calculated molecular weight of 77,839. Direct analysis of the native protein and its proteolytic fragments confirmed the deduced composition, the amino-terminal amino acid sequence, and the structure of many internal segments. 5-Lipoxygenase has no apparent sequence homology with leukotriene A/sub 4/ hydrolase or Ca/sup 2 +/-binding proteins. RNA blot analysis indicated substantial amounts of an mRNA species of approx. = 2700 nucleotides in leukocytes, lung, and placenta.

  16. Molecular cloning and physical mapping of murine cytomegalovirus DNA.

    PubMed Central

    Ebeling, A; Keil, G M; Knust, E; Koszinowski, U H

    1983-01-01

    Murine cytomegalovirus (MCMV) Smith strain DNA is cleaved by restriction endonuclease HindIII into 16 fragments, ranging in size from 0.64 to 22.25 megadaltons. Of the 16 HindIII fragments, 15 were cloned in plasmid pACYC177 in Escherichia coli HB101 (recA). The recombinant plasmid clones were characterized by cleavage with the enzymes XbaI and EcoRI. In addition, fragments generated by double digestion of cloned fragments with HindIII and XbaI were inserted into the plasmid vector pACYC184. The results obtained after hybridization of 32P-labeled cloned fragments to Southern blots of MCMV DNA cleaved with HindIII, XbaI, EcoRI, BamHI, ApaI, ClaI, EcoRV, or KpnI allowed us to construct complete physical maps of the viral DNA for the restriction endonucleases HindIII, XbaI, and EcoRI. On the basis of the cloning and mapping experiments, it was calculated that the MCMV genome spans about 235 kilobase pairs, corresponding to a molecular weight of 155,000,000. All fragments were found to be present in equimolar concentrations, and no cross-hybridization between any of the fragments was seen. We conclude that the MCMV DNA molecule consists of a long unique sequence without large terminal or internal repeat regions. Thus, the structural organization of the MCMV genome is fundamentally different from that of the human cytomegalovirus or herpes simplex virus genome. Images PMID:6312075

  17. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    NASA Astrophysics Data System (ADS)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  18. Molecular cloning and transcription expression of 3-dehydroecdysone 3α-reductase (3de 3α-reductase) in the different tissues and the developing stage from the silkworm, Bombyx mori L.

    PubMed

    Yang, Hua-jun; Xin, Hu-hu; Lu, Yan; Cai, Zi-zheng; Wang, Mei-xian; Chen, Rui-Ting; Liang, Shuang; Singh, Chabungbam Orville; Kim, Jong-nam; Miao, Yun-gen

    2013-10-01

    Molting in insects is regulated by molting hormones (ecdysteroids), which are also crucial to insect growth, development, and reproduction etc. The decreased ecdysteroid in titre results from enhanced ecdysteroid inactivation reactions including the formation of 3-epiecdyson under ecdysone oxidase and 3-dehydroecdysone 3α-reductase (3DE 3α-reductase). In this paper, we cloned and characterized 3-dehydroecdysone 3α-reductase (3DE 3α-reductase) in different tissues and developing stage of the silkworm, Bombyx mori L. The B. mori 3DE 3α-reductase cDNA contains an ORF 783 bp and the deduced protein sequence containing 260 amino acid residues. Analysis showed the deduced 3DE 3α-reductase belongs to SDR family, which has the NAD(P)-binding domain. Using the Escherichia coli, a high level expression of a fusion polypeptide band of approx. 33 kDa was observed. High transcription of 3DE 3α-reductase was mainly presented in the midgut and hemolymph in the third day of fifth instar larvae in silkworm. The expression of 3DE 3α-reductase at different stages of larval showed that the activity in the early instar was high, and then reduced in late instar. This is parallel to the changes of molting hormone titer in larval. 3DE 3α-reductase is key enzyme in inactivation path of ecdysteroid. The data elucidate the regulation of 3DE 3α-reductase in ecdyteroid titer of its targeting organs and the relationship between the enzyme and metamorphosis. PMID:24038161

  19. A highly efficient molecular cloning platform that utilises a small bacterial toxin gene.

    PubMed

    Mok, Wendy W K; Li, Yingfu

    2013-04-15

    Molecular cloning technologies that have emerged in recent years are more efficient and simpler to use than traditional strategies, but many have the disadvantages of requiring multiple steps and expensive proprietary enzymes. We have engineered cloning vectors containing variants of IbsC, a 19-residue toxin from Escherichia coli K-12. These toxic peptides offer selectivity to minimise the background, labour, and cost associated with conventional molecular cloning. As demonstrated with the cloning of reporter genes, this "detox cloning" system consistently produced over 95 % positive clones. Purification steps between digestion and ligation are not necessary, and the total time between digestion and plating of transformants can be as little as three hours. Thus, these IbsC-based cloning vectors are as reliable and amenable to high-throughput cloning as commercially available systems, and have the advantage of being more time-efficient and cost-effective. PMID:23512843

  20. Molecular cloning and expression vector construction of bovine TRIM28.

    PubMed

    Ma, X; Zhai, Z C; Zhang, M L; Song, B H; Zhu, Y R; Yang, S B; Dong, X Q; Su, L Y; Wang, C F; Ma, H X; Luan, W M

    2016-01-01

    The bovine TRIM28 gene was amplified from ovary tissue by using RT-PCR. The TRIM28 gene was inserted into the eukaryotic expression vector pIRES2-EGFP and transfected into bovine fetal fibroblasts by using Lipofectamine 3000. TRIM28 mRNA and protein were detected by fluorescence microscope and western blotting. The results showed that the full length of TRIM28 was cloned and pIRES2-EGFP-TRIM28 was constructed successfully. EGFP expression was observed, and the pIRES2-EGFP-TRIM28 transfected group expressed more TRIM28 protein than that by the pIRES2-EGFP group. The TIMR28 gene has been successfully transferred into bovine fetal fibroblasts. PMID:27420979

  1. Molecular cloning of the extracellular endodextranase of Streptococcus salivarius.

    PubMed Central

    Lawman, P; Bleiweis, A S

    1991-01-01

    We report the cloning in Escherichia coli of the gene encoding an extracellular endodextranase (alpha-1,6-glucanhydrolase, EC 3.2.1.11) from Streptococcus salivarius PC-1. Recombinants from a S. salivarius PC-1-Lambda ZAP II genomic library specifying dextranase activity were identified as plaques surrounded by zones of clearing on blue dextran agar. One such clone, PD1, had a 6.3-kb EcoRI fragment insert which encoded a 190-kDa protein with dextranase activity. The recombinant strain also produced two lower-molecular-mass polypeptides (90 and 70 kDa) that had dextranase activity. Native dextranase was recovered from concentrated culture fluids of S. salivarius as a single 110-kDa polypeptide. PD1 phage lysate and PC-1 culture supernatant fluid extract were used to measure substrate specificity of the recombinant and native forms of dextranase, respectively. Analysis of these reaction products by thin-layer chromatography revealed the expected isomaltosaccharide products yielded by the recombinant-specified enzyme but was unable to resolve the larger polysaccharide products of the native enzyme. Furthermore, S. salivarius utilized neither the substrates nor the products of dextran hydrolysis for growth. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:1938938

  2. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  3. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  4. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. PMID:25106573

  5. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students a chance…

  6. Molecular and biological characterization of a neurovirulent molecular clone of simian immunodeficiency virus.

    PubMed Central

    Flaherty, M T; Hauer, D A; Mankowski, J L; Zink, M C; Clements, J E

    1997-01-01

    To identify the molecular determinants of neurovirulence, we constructed an infectious simian immunodeficiency virus (SIV) molecular clone, SIV/17E-Fr, that contained the 3' end of a neurovirulent strain of SIV, SIV/17E-Br, derived by in vivo virus passage. SIV/17E-Fr is macrophage tropic in vitro and neurovirulent in macaques. In contrast, a molecular clone, SIV/17E-Cl, that contains the SU and a portion of the TM sequences of SIV/17E-Br is macrophage tropic but not neurovirulent. To identify the amino acids that accounted for the replication differences between SIV/17E-Fr and SIV/17E-Cl in primary macaque cells in vitro, additional infectious molecular clones were constructed. Analysis of these recombinant viruses revealed that changes in the TM portion of the envelope protein were required for the highest level of replication in primary macaque macrophages and brain cells derived from the microvessel endothelium. In addition, a full-length Nef protein is necessary for optimum virus replication in both of these cell types. Finally, viruses expressing a full-length Nef protein in conjunction with the changes in the TM had the highest specific infectivity in a sMAGI assay. Thus, changes in the TM and nef genes between SIV/17E-Cl and SIV/17E-Fr account for replication differences in vitro and correlate with replication in the central nervous system in vivo. PMID:9223467

  7. Cloning higher plants from aseptically cultured tissues and cells

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  8. Molecular cloning and expression analysis of pig CD138.

    PubMed

    Bae, Joonbeom; Jeong, Seonah; Lee, Ju Yeon; Lee, Hyun-Jeong; Choi, Bong-Hwan; Kim, Ji-Eun; Choi, Inho; Chun, Taehoon

    2013-12-01

    CD138 (syndecan-1) interacts with various components of the extracellular matrix and associates with the actin cytoskeleton. In this study, we cloned pig CD138 cDNA and determined its complete cDNA sequence. Pig CD138 cDNA contained an open reading frame (930 bp) encoding 309 amino acids with five well conserved putative glycosaminoglycan attachment sites, a putative cleavage site for matrix metalloproteinases, and conserved motifs involved in signal transduction among mammalian species. Pig CD138 mRNA was detected in various tissues, including lymphoid and non-lymphoid organs, indicating the multicellular functions of CD138 in pigs. Western blot and flow cytometry analyses detected an approximate 35 kDa pig CD138 protein expressed on the cell surface. Further immunohistochemistry analysis revealed that CD138 expression was mainly observed in submucosa and lamina propria of the pig small intestine. Further study will be necessary to define the functional importance of CD138 during specific infectious diseases in pigs. PMID:24128845

  9. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants.

    PubMed Central

    Gerald, C; Adham, N; Kao, H T; Olsen, M A; Laz, T M; Schechter, L E; Bard, J A; Vaysse, P J; Hartig, P R; Branchek, T A

    1995-01-01

    Molecular cloning efforts have provided primary amino acid sequence and signal transduction data for a large collection of serotonin receptor subtypes. These include five 5-HT1-like receptors, three 5-HT2 receptors, one 5-HT3 receptor, two 5-HT5 receptors, one 5-HT6 receptor and one 5-HT7 receptor. Molecular biological information on the 5-HT4 receptor is notably absent from this list. We now report the cloning of the pharmacologically defined 5-HT4 receptor. Using degenerate oligonucleotide primers, we identified a rat brain PCR fragment which encoded a '5-HT receptor-like' amino acid sequence. The corresponding full length cDNA was isolated from a rat brain cDNA library. Transiently expressed in COS-7 cells, this receptor stimulates adenylyl cyclase activity and is sensitive to the benzamide derivative cisapride. The response is also blocked by ICS-205930. Interestingly, we isolated two splice variants of the receptor, 5-HT4L and 5-HT4S, differing in the length and sequence of their C-termini. In rat brain, the 5-HT4S transcripts are restricted to the striatum, but the 5-HT4L transcripts are expressed throughout the brain, except in the cerebellum where it was barely detectable. In peripheral tissues, differential expression was also observed in the atrium of the heart where only the 5-HT4S isoform was detectable. Images PMID:7796807

  10. Molecular Genetics of Pediatric Soft Tissue Tumors

    PubMed Central

    Chang, Chung-Che; Shidham, Vinod B.

    2003-01-01

    The application of molecular genetics to pediatric soft tissue tumors has grown tremendously over the last decade. It has resulted in the identification of novel genes that have provided us with an increased understanding of oncogenesis. Furthermore, these findings have identified diagnostic and potentially prognostic factors for patient management. Molecular diagnostic techniques, such as reverse transcription PCR (RT-PCR) and fluorescence in situ hybridization (FISH), have become important tools for evaluating pediatric soft tissue tumors. By detecting characteristic fusion genes, these techniques have greatly increased the diagnostic accuracy of histopathological classification. One of the exciting promises of the development of these molecular techniques is their ability to detect micrometastasis and minimal residual disease. Monitoring of minimal residual disease in pediatric soft tissue tumors by quantitative RT-PCR may provide important prognostic information. Furthermore, the potential development of targeted therapy based on the understanding of the molecular pathology of a specific soft tissue tumor may complement existing treatments and improve disease outcome. PMID:12876204

  11. Databasing Molecular Identities of Louisiana, Florida, and Texas Sugarcane Clones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp. hybrids) clones (cultivars and superior breeding lines) are routinely exchanged across geographic locations for field-testing or crossing. It is crucial to maintain the genetic identity of these clones during field collection, shipping, and quarantine. Traditionally, suga...

  12. Identification of Eucalyptus citriodora clones micropropagated in tissue culture.

    PubMed

    Kojima, E; Izumi, M; Tanabe, T; Matsuda, M; Shimizu, T; Murakami, A; Murakami, K

    1997-01-01

    The extent of genetic identity observed in the young individuals which were micropropagated from a single Eucalyptus individual was analyzed by using DNA-fingerprinting. Among 40,000 tissue-cultured-seedings of E.citriodora, 200 plants were randomly chosen so that each total DNA might be extracted from their leaves. Using these DNAs as template, PCR was performed with some primers we found in advance that leads polymorphism for DNA of E. citriodora. In this study, all over the 200 cases, the band pattern formed cDNA fragment on a gel after electrophoresis was the identical one mutually. PMID:9586054

  13. Applications of the Restriction Free (RF) cloning procedure for molecular manipulations and protein expression.

    PubMed

    Unger, Tamar; Jacobovitch, Yossi; Dantes, Ada; Bernheim, Reut; Peleg, Yoav

    2010-10-01

    Molecular manipulations, including DNA cloning and mutagenesis are basic tools used on a routine basis in all life-science disciplines. Over the last decade new methodologies have emerged that facilitated and expanded the applications for DNA cloning and mutagenesis. Ligation-Independent Cloning (LIC) techniques were developed and replaced the classical Ligation Dependent Cloning (LDC) platform. Restriction Free (RF) cloning was originally developed for introduction of foreign DNA into a plasmid at any predetermined position. RF cloning is based on PCR amplification of a DNA fragment, which serves as a mega-primer for the linear amplification of the vector and insert. Here we present several novel applications of the Restriction Free (RF) cloning platform for DNA cloning and mutagenesis. The new applications include simultaneous cloning of several DNA fragments into distinct positions within an expression vector, simultaneous multi-component assembly, and parallel cloning of the same PCR product into a series of different vectors. In addition, we have expanded the application of the RF cloning platform for multiple alterations of the target DNA, including simultaneous multiple-site mutagenesis and simultaneous introduction of deletions and insertions at different positions. We further demonstrate the robustness of the new applications for facilitating recombinant protein expression in the Escherichia coli system. PMID:20600952

  14. Molecular cloning and structural characterization of the R locus of maize: Annual progress report for period September 29, 1986-September 28, 1987

    SciTech Connect

    Dellaporta, S.L.

    1987-07-01

    Last year we reported on the isolation of a molecular clone of the R locus of maize using an Ac transposon tagging strategy. During the past year we have confirmed the identity of this clone and have begun a molecular analysis of several R alleles. Our main focus continues to be on the analysis of R-r, an allele containing both seed (S) and plant (P) components. Genomic blot analysis and gene cloning experiments suggest that the R-r allele may be organized as a triplication. In addition to (P) and (S), there appears to be a third cryptic component we refer to as (Q). We are attempting to clone the complete R-r allele by chromosome walking techniques to determine the molecular organization of R-r. The second objective of our research on R is to understand the mechanism of tissue-specific regulation of anthocyanin. We are characterizing several R alleles that condition different pigmentation patterns in plant and seed tissues. In order to determine the allelic differences among tissue-specific components we have obtained genomic clones and are performing DNA sequence analysis to regions of several tissue-specific components that may be responsible for these allelic differences. 1 ref.

  15. Molecular model for hydrated biological tissues.

    PubMed

    Sato, Erika Tiemi; Rocha, Alexandre Reily; de Carvalho, Luis Felipe das Chagas e Silva; Almeida, Janete Dias; Martinho, Herculano

    2015-06-01

    A density-functional microscopic model for soft tissues (STmod) is presented. The model was based on a prototype molecular structure from experimentally resolved type I collagen peptide residues and water clusters treated in periodic boundary conditions. We obtained the optimized geometry, binding and coupling energies, dipole moments, and vibrational frequencies. The results concerning the stability of the confined water clusters, the water-water, and water-collagen interactions were successfully correlated to some important experimental trends of normal and inflammatory tissues. PMID:26172825

  16. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    PubMed

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering. PMID:23058847

  17. Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish.

    PubMed

    Coskun, Cagil; Purali, Nuhan

    2016-06-01

    Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue. PMID:27032955

  18. Molecular diffusion, tissue microdynamics and microstructure.

    PubMed

    Le Bihan, D

    1995-01-01

    Diffusion NMR is the only method available today that noninvasively provides information on molecular displacements over distances comparable to cell dimensions. This information can be used to infer tissue microstructure and microdynamics. However, data may be fairly difficult to interpret in biological tissues which differ markedly from the theoretical "infinite isotrope medium", as many factors may affect the NMR signal. The object of this paper is to analyze the expected effects of temperature, restriction, hindrance, membrane permeability, anisotropy and tissue inhomogeneity on the diffusion measurements. Powerful methods, such as q-space imaging, diffusion tensor imaging and diffusion spectroscopy of metabolites further enhance the specificity of the information obtained from diffusion NMR experiments. PMID:8739274

  19. Gene expression analysis of the CD4+ T-cell clones derived from gingival tissues of periodontitis patients.

    PubMed

    Ito, H; Honda, T; Domon, H; Oda, T; Okui, T; Amanuma, R; Nakajima, T; Yamazaki, K

    2005-12-01

    The function of T cells infiltrating periodontitis lesions is complex and has not been fully elucidated. Here, we established T-cell clones from the gingival tissues of periodontitis patients and examined their gene expression. A total of 57 and 101 T-cell clones were established by means of immobilized anti-CD3 antibody and IL-2 from gingival tissues and peripheral blood, respectively. The gingival T-cell clones were derived from three patients, and the peripheral blood T-cell clones from two of these patients and a further patient whose gingival T-cell clones were not established. Gingival tissues were also obtained from a further 19 periodontitis patients. The expression of cytokines and molecules related to both regulatory function and tissue destruction were examined by means of reverse-transcription polymerase chain reaction. All the gingival T-cell clones expressed mRNA for TGF-beta1, CTLA-4, and CD25, and all the T-cell clones from peripheral blood expressed IFN-gamma and TGF-beta1 mRNAs. Most but not all the T-cell clones from gingival tissues and peripheral blood expressed mRNA for IFN-gamma and, CD25 and CTLA-4, respectively. The frequency of T-cell clones and gingival tissues expressing FOXP3, a possible master gene for mouse CD4(+)CD25(+) regulatory T cells, was very high (97%, 93%, and 100% for gingival T-cell clones, peripheral blood T-cell clones, and gingival tissues, respectively). Whereas the frequency of IL-4-expressing T-cell clones was lower for gingival T-cell clones (70% vs. 87%), the frequency of the gingival T-cell clones expressing IL-10 and IL-17 was higher than peripheral blood T-cell clones (75% vs. 62% for IL-10, 51% vs. 11% for IL-17). A similar expression profile was observed for gingival T-cell clones compared with gingival tissue samples with the exception of IL-4 expression, where the frequency of positive samples was lower in the gingival tissues (70% vs. 11%). These results suggest that the individual T cells infiltrating

  20. Molecular cloning of viral DNA from human genital warts.

    PubMed Central

    de Villiers, E M; Gissmann, L; zur Hausen, H

    1981-01-01

    The DNA of human papilloma virus type 6 (HPV 6) has been cloned in Escherichia coli K-12 by using pBR322 as vector. The DNA was cloned at the BamHI and EcoRI cleavage sites. This DNA was mapped by employing further restriction endonucleases and by terminal labeling. No major differences were noted as compared to HPV 6 DNA originating directly from a genital wart. The existence of at least two DNA subtypes (HPV 6a and 6b) became apparent. Images PMID:6275126

  1. Cloning, characterization, and tissue expression pattern of mouse Nma/BAMBI during odontogenesis.

    PubMed

    Knight, C; Simmons, D; Gu, T T; Gluhak-Heinrich, J; Pavlin, D; Zeichner-David, M; MacDougall, M

    2001-10-01

    Degenerate oligonucleotides to consensus serine kinase functional domains previously identified a novel, partial rabbit tooth cDNA (Zeichner-David et al., 1992) that was used in this study to identify a full-length mouse clone. A 1390-base-pair cDNA clone was isolated encoding a putative 260-amino-acid open reading frame containing a hydrophobic 25-amino-acid potential transmembrane domain. This clone shares some homology with the TGF-beta type I receptor family, but lacks the intracellular kinase domain. DNA database analysis revealed that this clone has 86% identity to a newly isolated human gene termed non-metastatic gene A and 80% identity to a Xenopus cDNA clone termed BMP and activin membrane bound inhibitor. Here we report the mouse Nma/BAMBI cDNA sequence, the tissue expression pattern, and confirmed expression in dental cell lines. This study demonstrates that Nma/BAMBI is a highly conserved protein across species and is expressed at high levels during odontogenesis. PMID:11706948

  2. Molecular cloning of gluconobacter oxydans DSM 2003 xylitol dehydrogenase gene

    PubMed Central

    Sadeghi, H. Mir Mohammad; Ahmadi, R.; Aghaabdollahian, S.; Mofid, M.R.; Ghaemi, Y.; Abedi, D.

    2011-01-01

    Due to the widespread applications of xylitol dehydrogenase, an enzyme used for the production of xylitol, the present study was designed for the cloning of xylitol dehydrogenase gene from Glcunobacter oxydans DSM 2003. After extraction of genomic DNA from this bacterium, xylitol dehydrogenase gene was replicated using polymerase chain reaction (PCR). The amplified product was entered into pTZ57R cloning vector by T/A cloning method and transformation was performed by heat shocking of the E. coli XL1-blue competent cells. Following plasmid preparation, the cloned gene was digested out and ligated into the expression vector pET-22b(+). Electrophoresis of PCR product showed a 789 bp band. Recombinant plasmid (rpTZ57R) was then constructed. This plasmid was double digested with XhoI and EcoRI resulting in 800 bp and 2900 bp bands. The obtained insert was ligated into pET-22b(+) vector and its orientation was confirmed with XhoI and BamHI restriction enzymes. In conclusion, in the present study the recombinant expression vector containing xylitol dehydrogenase gene has been constructed and can be used for the production of this enzyme in high quantities. PMID:22110522

  3. Molecular cloning and functional characterization of avian interleukin-19

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  4. Molecular cloning and characterization of duck interleukin-17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interleukin-17 (IL-17) belonging to the Th17 family is a proinflammatory cytokine produced by activated T cells. A 1034-bp cDNA encoding duck IL-17 (duIL-17) was cloned from ConA-activated splenic lymphocytes of ducks. The encoded protein, predicted to consisted of 169 amino acids, displayed a molec...

  5. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862

  6. Cloning, expression, and regulation of tissue-specific genes in Drosophila

    SciTech Connect

    Korochkin, L.I.

    1995-08-01

    The family of esterase genes was studied in various Drosophilia species. These genes are classified as tissue-specific and housekeeping ones. The expression of tissue-specific esterases in the male reproductive system of Drosophilia species from the virilis and melanogaster groups was thoroughly examined. Modifier genes controlling activity level, time of synthesis, and distribution in cells of the tissue-specific esterase isozyme from the ejaculatory bulb were revealed. The structural gene coding of this enzyme was isolated, cloned, and sequenced. This gene was shown to be similar in different Drosophilia species; the transcriptional level of tissue specificity of this gene was determined. The possibility of transformating the tissue-specific gene into a housekeeping one was demonstrated. In different Drosophilia species, this gene can be expressed in different parts of the reproductive system. In transgenic males carrying the gene of another species, the foreign gene is expressed as in the donor. 68 refs., 11 figs.

  7. Molecular Cloning and Analysis of a DNA Repetitive Element from the Mouse Genome

    ERIC Educational Resources Information Center

    Geisinger, Adriana; Cossio, Gabriela; Wettstein, Rodolfo

    2006-01-01

    We report the development of a 3-week laboratory activity for an undergraduate molecular biology course. This activity introduces students to the practice of basic molecular techniques such as restriction enzyme digestion, agarose gel electrophoresis, cloning, plasmid DNA purification, Southern blotting, and sequencing. Students learn how to carry…

  8. Molecular cloning, genomic organization, and expression of a testicular isoform of hormone-sensitive lipase

    SciTech Connect

    Holst, L.S.; Laurell, H.; Holm, C.

    1996-08-01

    By catalyzing the rate-limiting step in adipose tissue lipolysis, hormone-sensitive lipase (HSL) is an important regulator of energy homeostasis. The role and importance of HSL in tissues other than adipose are poorly understood. We report here the cloning and expression of a testicular isoform, designated HSL{sub tes}. Due to an addition of amino acids at the NH{sub 2}-termini, rat and human HSL{sub tes} consist of 1068 and 1076 amino acids, respectively, compared to the 768 and 775 amino acids, respectively, of the adipocyte isoform (HSL{sub adi}). A novel exon of 1.2 kb, encoding the human testis-specific amino acids, was isolated and mapped to the HSL gene, 16 kb upstream of the exons encoding HSL{sub adi}. The transcribed mRNA of 3.9 kb was specifically expressed in testis. No significant similarity with other known proteins was found for the testis-specific sequence. The amino acid composition differs from the HSL{sub adi} sequence, with a notable hydrophilic character and a high content of prolines and glutamines. COS cells, transfected by the 3.9-kb human testis cDNA, expressed a protein of the expected molecular mass (M{sub r} {approximately}120,000) that exhibited catalytic activity similar to that of HSL{sub adi}. Immunocytochemistry localized HSL to elongating spermatids and spermatozoa; HSL was not detected in interstitial cells. 34 refs., 5 figs.

  9. Molecular cloning and characterization of the β-catenin gene from fine-wool sheep.

    PubMed

    Cui, Kai; Yang, Zu; Darwish, Hesham; Zhang, Yuanyuan; Ge, Yaqiong; Zhang, Xiyue; Li, Rongni; Deng, Xuemei

    2014-08-10

    β-Catenin is an evolutionarily conserved molecule that functions as a crucial effector in both cell-to-cell adhesion and Wnt signaling. To gain a better understanding of its role in the development of hair follicles, we cloned the cDNA sequence of the β-catenin gene from the skin of Aohan fine-wool sheep and performed a variety of bioinformatics analyses. We obtained the full-length sequence, which was 4573-bp long and contained a 2346-bp open reading frame encoding a protein of 781 amino acids. The protein had a predicted molecular weight of 85.4 kDa and a theoretical isoelectric point of 5.57. Domain architecture analysis of the β-catenin protein revealed an armadillo repeat region, which is a common feature of β-catenin in other species. The ovine β-catenin gene shares 97.91%, 94.25%, 94.59%, 83.89%, and 89.39% sequence identity with its homologs in Bos taurus, Homo sapiens, Sus scrofa, Gallus gallus, and Mus musculus, respectively, while the amino acid sequence is more than 99% identical with each of these species. The expression of β-catenin mRNA was detected in the heart, liver, spleen, lung, kidney, skin, muscle, and adipose tissue. Expression levels were maximal in the lung and minimal in the muscle, and the difference in expression in these tissues was significant (P<0.01). Western blot analysis revealed the presence of the β-catenin protein in all tissues examined; expression was lowest in the skin and adipose tissues. PMID:24881815

  10. Molecular cloning and functional characterization of a putative sulfite oxidase (SO) ortholog from Nicotiana benthamiana.

    PubMed

    Xia, Zongliang; Su, Xinhong; Wu, Jianyu; Wu, Ke; Zhang, Hua

    2012-03-01

    Sulfite oxidase (SO) catalyzes the oxidation of sulfite to sulfate and thus has important roles in diverse metabolic processes. However, systematic molecular and functional investigations on the putative SO from tobacco (Nicotiana benthamiana) have hitherto not been reported. In this work, a full-length cDNA encoding putative sulfite oxidase from N. benthamiana (NbSO) was isolated. The deduced NbSO protein shares high homology and typical structural features with other species SOs. Phylogenetic analysis indicates that NbSO cDNA clone encodes a tobacco SO isoform. Southern blot analysis suggests that NbSO is a single-copy gene in the N. benthamiana genome. The NbSO transcript levels were higher in aerial tissues and were up-regulated in N. benthamiana during sulfite stress. Reducing the SO expression levels through virus-induced gene silencing caused a substantial accumulation in sulfite content and less sulfate accumulation in N. benthamiana leaves when exposed to sulfite stress, and thus resulted in decreased tolerance to sulfite stress. Taken together, this study improves our understanding on the molecular and functional properties of plant SO and provides genetic evidence on the involvement of SO in sulfite detoxification in a sulfite-oxidizing manner in N. benthamiana plants. PMID:21667106

  11. Molecular Cloning and Physical Mapping of the Daptomycin Gene Cluster from Streptomyces roseosporus

    PubMed Central

    Mchenney, Margaret A.; Hosted, Thomas J.; Dehoff, Bradley S.; Rosteck, Paul R.; Baltz, Richard H.

    1998-01-01

    The daptomycin biosynthetic gene cluster of Streptomyces roseosporus was analyzed by Tn5099 mutagenesis, molecular cloning, partial DNA sequencing, and insertional mutagenesis with cloned segments of DNA. The daptomycin biosynthetic gene cluster spans at least 50 kb and is located about 400 to 500 kb from one end of the ∼7,100-kb linear chromosome. We identified two peptide synthetase coding regions interrupted by a 10- to 20-kb region that may encode other functions in lipopeptide biosynthesis. PMID:9422604

  12. Generation of transmissible hepatitis C virions from a molecular clone in chimpanzees.

    PubMed

    Hong, Z; Beaudet-Miller, M; Lanford, R E; Guerra, B; Wright-Minogue, J; Skelton, A; Baroudy, B M; Reyes, G R; Lau, J Y

    1999-03-30

    Multiple alignments of hepatitis C virus (HCV) polyproteins from six different genotypes identified a total of 22 nonconsensus mutations in a clone derived from the Hutchinson (H77) isolate. These mutations, collectively, may have contributed to the failure in generating a "functionally correct" or "infectious" clone in earlier attempts. A consensus clone was constructed after systematic repair of these mutations, which yielded infectious virions in a chimpanzee after direct intrahepatic inoculation of in vitro transcribed RNAs. This RNA-infected chimpanzee has developed hepatitis and remained HCV positive for more than 11 months. To further verify this RNA-derived infectivity, a second naive chimpanzee was injected intravenously with serum collected from the first chimpanzee. Infectivity analysis of the second chimpanzee demonstrated that the HCV infection was successfully transmitted, which validated unequivocally the infectivity of our repaired molecular clone. Amino acid sequence comparisons revealed that our repaired infectious clone had 4 mismatches with the isogenic clone reported by Kolykhalov et al. (1997, Science 277, 570-574) and 8 mismatches with that reported by Yanagi et al. (1997, Proc. Natl. Acad. Sci. USA 94, 8738-8743). At the RNA level, more mismatches (43 and 67, respectively) were identified; most of them were synonymous substitutions. Further comparisons with 16 isolates from different genotypes demonstrated that our repaired clone shares greater consensus than the reported isogenic clones. This approach of generating infectious HCV RNA validates the importance of amino acid sequence consensus in relation to the biology of HCV. PMID:10087224

  13. Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy

    PubMed Central

    Hipp, Jason; Atala, Anthony

    2004-01-01

    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15588286

  14. Grading Breast Cancer Tissues Using Molecular Portraits*

    PubMed Central

    Olsson, Niclas; Carlsson, Petter; James, Peter; Hansson, Karin; Waldemarson, Sofia; Malmström, Per; Fernö, Mårten; Ryden, Lisa; Wingren, Christer; Borrebaeck, Carl A. K.

    2013-01-01

    Tumor progression and prognosis in breast cancer patients are difficult to assess using current clinical and laboratory parameters, where a pathological grading is indicative of tumor aggressiveness. This grading is based on assessments of nuclear grade, tubule formation, and mitotic rate. We report here the first protein signatures associated with histological grades of breast cancer, determined using a novel affinity proteomics approach. We profiled 52 breast cancer tissue samples by combining nine antibodies and label-free LC-MS/MS, which generated detailed quantified proteomic maps representing 1,388 proteins. The results showed that we could define in-depth molecular portraits of histologically graded breast cancer tumors. Consequently, a 49-plex candidate tissue protein signature was defined that discriminated between histological grades 1, 2, and 3 of breast cancer tumors with high accuracy. Highly biologically relevant proteins were identified, and the differentially expressed proteins indicated further support for the current hypothesis regarding remodeling of the tumor microenvironment during tumor progression. The protein signature was corroborated using meta-analysis of transcriptional profiling data from an independent patient cohort. In addition, the potential for using the markers to estimate the likelihood of long-term metastasis-free survival was also indicated. Taken together, these molecular portraits could pave the way for improved classification and prognostication of breast cancer. PMID:23982162

  15. Prototypical Recombinant Multi-Protease Inhibitor Resistant Infectious Molecular Clones of Human Immunodeficiency Virus Type-1.

    PubMed

    Varghese, Vici; Mitsuya, Yumi; Fessel, W Jeffrey; Liu, Tommy F; Melikian, George L; Katzenstein, David A; Schiffer, Celia A; Holmes, Susan P; Shafer, Robert W

    2013-06-24

    The many genetic manifestations of HIV-1 protease inhibitor (PI) resistance present challenges to research into the mechanisms of PI-resistance and the assessment of new PIs. To address these challenges, we created a panel of recombinant multi-PI resistant infectious molecular clones designed to represent the spectrum of clinically relevant multi-PI resistant viruses. To assess the representativeness of this panel, we examined the sequences of the panel's viruses in the context of a correlation network of PI-resistance amino acid substitutions in sequences from more than 10,000 patients. The panel of recombinant infectious molecular clones comprised 29 of 41 study-defined PI-resistance amino acid substitutions and 23 of the 27 tightest amino acid substitution clusters. Based on their phenotypic properties, the clones were classified into four groups with increasing cross-resistance to the PIs most commonly used for salvage therapy: lopinavir (LPV), tipranavir (TPV), and darunavir (DRV). The panel of recombinant infectious molecular clones has been made available without restriction through the NIH AIDS Research and Reference Reagent Program. The public availability of the panel makes it possible to compare the inhibitory activity of different PIs with one another. The diversity of the panel and the high-level PI resistance of its clones suggest that investigational PIs active against the clones in this panel will retain antiviral activity against most, if not all clinically relevant PI-resistant viruses. PMID:23796938

  16. Molecular cloning and bioinformatic analysis of SPATA4 gene.

    PubMed

    Liu, Shang-feng; Ai, Chao; Ge, Zhong-qi; Liu, Hai-luo; Liu, Bo-wen; He, Shan; Wang, Zhao

    2005-11-30

    Full-length cDNA sequences of four novel SPATA4 genes in chimpanzee, cow, chicken and ascidian were identified by bioinformatic analysis using mouse or human SPATA4 cDNA fragment as electronic probe. All these genes have 6 exons and have similar protein molecular weight and do not localize in sex chromosome. The mouse SPATA4 sequence is identified as significantly changed in cryptorchidism, which shares no significant homology with any known protein in swissprot databases except for the homologous genes in various vertebrates. Our searching results showed that all SPATA4 proteins have a putative conserved domain DUF1042. The percentages of putative SPATA4 protein sequence identity ranging from 30 % to 99 %. The high similarity was also found in 1 kb promoter regions of human, mouse and rat SPATA4 gene. The similarities of the sequences upstream of SPATA4 promoter also have a high proportion. The results of searching SymAtlas (http://symatlas.gnf.org/SymAtlas/) showed that human SPATA4 has a high expression in testis, especially in testis interstitial, leydig cell, seminiferous tubule and germ cell. Mouse SPATA4 was observed exclusively in adult mouse testis and almost no signal was detected in other tissues. The pI values of the protein are negative, ranging from 9.44 to 10.15. The subcellular location of the protein is usually in the nucleus. And the signal peptide possibilities for SPATA4 are always zero. Using the SNPs data in NCBI, we found 33 SNPs in human SPATA4 gene genomic DNA region, with the distribution of 29 SNPs in the introns. CpG island searching gives the data about CpG island, which shows that the regions of the CpG island have a high similarity with each other, though the length of the CpG island is different from each other. This research is a fundamental work in the fields of the bioinformational analysis, and also put forward a new way for the bioinformatic analysis of other genes. PMID:16336790

  17. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  18. Purification, molecular cloning, and expression of the mammalian sigma1-binding site.

    PubMed Central

    Hanner, M; Moebius, F F; Flandorfer, A; Knaus, H G; Striessnig, J; Kempner, E; Glossmann, H

    1996-01-01

    Sigma-ligands comprise several chemically unrelated drugs such as haloperidol, pentazocine, and ditolylguanidine, which bind to a family of low molecular mass proteins in the endoplasmic reticulum. These so-called sigma-receptors are believed to mediate various pharmacological effects of sigma-ligands by as yet unknown mechanisms. Based on their opposite enantioselectivity for benzomorphans and different molecular masses, two subtypes are differentiated. We purified the sigma1-binding site as a single 30-kDa protein from guinea pig liver employing the benzomorphan(+)[3H]pentazocine and the arylazide (-)[3H]azidopamil as specific probes. The purified (+)[3H]pentazocine-binding protein retained its high affinity for haloperidol, pentazocine, and ditolylguanidine. Partial amino acid sequence obtained after trypsinolysis revealed no homology to known proteins. Radiation inactivation of the pentazocine-labeled sigma1-binding site yielded a molecular mass of 24 +/- 2 kDa. The corresponding cDNA was cloned using degenerate oligonucleotides and cDNA library screening. Its open reading frame encoded a 25.3-kDa protein with at least one putative transmembrane segment. The protein expressed in yeast cells transformed with the cDNA showed the pharmacological characteristics of the brain and liver sigma1-binding site. The deduced amino acid sequence was structurally unrelated to known mammalian proteins but it shared homology with fungal proteins involved in sterol synthesis. Northern blots showed high densities of the sigma1-binding site mRNA in sterol-producing tissues. This is also in agreement with the known ability of sigma1-binding sites to interact with steroids, such as progesterone. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8755605

  19. Molecular cloning in Escherichia coli of Erwinia chrysanthemi genes encoding multiple forms of pectate lyase.

    PubMed Central

    Collmer, A; Schoedel, C; Roeder, D L; Ried, J L; Rissler, J F

    1985-01-01

    The phytopathogenic enterobacterium Erwinia chrysanthemi excretes multiple isozymes of the plant tissue-disintegrating enzyme, pectate lyase (PL). Genes encoding PL were cloned from E. chrysanthemi CUCPB 1237 into Escherichia coli HB101 by inserting Sau3A-generated DNA fragments into the BamHI site of pBR322 and then screening recombinant transformants for the ability to sink into pectate semisolid agar. Restriction mapping of the cloned DNA in eight pectolytic transformants revealed overlapping portions of a 9.8-kilobase region of the E. chrysanthemi genome. Deletion derivatives of these plasmids were used to localize the pectolytic genotype to a 2.5-kilobase region of the cloned DNA. PL gene expression in E. coli was independent of vector promoters, repressed by glucose, and not induced by galacturonan. PL accumulated largely in the periplasmic space of E. coli. An activity stain used in conjunction with ultrathin-layer isoelectric focusing resolved the PL in E. chrysanthemi culture supernatants and shock fluids of E. coli clones into multiple forms. One isozyme with an apparent pI of 7.8 was produced at a far higher level in E. coli and was common to all of the pectolytic clones. Activity staining of renatured PL in sodium dodecyl sulfate-polyacrylamide gels revealed that this isozyme comigrated with the corresponding isozyme produced by E. chrysanthemi. The PL isozyme profiles produced by different clones and deletion derivative subclones suggest that the cloned region contains at least two PL isozyme structural genes. Pectolytic E. coli clones possessed a limited ability to macerate potato tuber tissues. Images PMID:2982794

  20. Molecular cloning of virulence genes from Erwinia stewartii.

    PubMed Central

    Coplin, D L; Frederick, R D; Majerczak, D R; Haas, E S

    1986-01-01

    A library of Erwinia stewartii DNA was constructed in cosmid pVK100 and used to complement spontaneous and Mu pf7701-induced (designated by the prefix MU) avirulent mutants. Plasmid pES4507 restored water-soaking ability and extracellular polysaccharide (EPS) synthesis to mutants MU14110 and MU2B70 (group I); pES1044 restored water-soaking ability to MU43, MU51, MU136, MU141, and RDF6011 (group II); and pES2144 complemented four spontaneous EPS- mutants (group III). Hybridization of labeled plasmid DNA to Southern blots of genomic DNA from the mutants revealed that a Mu pf7701 insertion was associated with the respective cloned region in all mutants except MU2B70 and MU223. In these strains, the plasmid may be suppressing the avirulent phenotype rather than complementing the mutation. Images PMID:3782017

  1. Cloning, characterization, and tissue distribution of prolactin receptor in the sea bream (Sparus aurata).

    PubMed

    Santos, C R; Ingleton, P M; Cavaco, J E; Kelly, P A; Edery, M; Power, D M

    2001-01-01

    The prolactin receptor (PRLR) was cloned and its tissue distribution characterized in adults of the protandrous hermaphrodite marine teleost, the sea bream (Sparus aurata). An homologous cDNA probe for sea bream PRLR (sbPRLR) was obtained by RT-PCR using gill mRNA. This probe was used to screen intestine and kidney cDNA libraries from which two overlapping clones (1100 and 2425 bp, respectively) were obtained. These clones had 100% sequence identity in the overlapping region (893 bp) and were used to deduce the complete amino acid sequence of sbPRLR. The receptor spans 2640 bp and encodes a protein of 537 amino acids. Features characteristic of PRLR, two pairs of cysteines, WS box, hydrophobic transmembrane domain, box 1, and box 2, were identified and showed a high degree of sequence identity to PRLRs from other vertebrate species. SbPRLR is 29 and 32% identical to tilapia (Oreochromis niloticus) and goldfish (Carassius auratus) PRLRs, respectively. In the sea bream two PRLR transcripts of 2.8 and 3.2 kb were detected in the intestine, kidney, and gills and a single transcript of 2.8 kb was detected in skin and pituitary by Northern blot. Spermiating gonads (more than 95% male tissue; gonado-somatic index of 0.6) contained, in addition to the 2.8-kb transcript, three more transcripts of 1.9, 1.3, and 1.1 kb. RT-PCR, which is a far more sensitive method than Northern blot, detected PRLR mRNA in gills, intestine, brain, pituitary, kidney, liver, gonads, spleen, head-kidney, heart, muscle, and bone. Immunohistochemistry using specific polyclonal antibodies raised against an oligopeptide from the extracellular domain of sbPRLR detected PRLR in several epithelial tissues of juvenile sea bream, including the anterior gut, renal tubule, choroid membrane of the third ventricle, saccus vasculosus, branchial chloride cells, and branchial cartilage. PMID:11161768

  2. Molecular cloning and expression of channel catfish, Ictalurus punctatus, complement membrane attack complex inhibitor CD59

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The channel catfish, Ictalurus punctatus, complement membrane attack complex inhibitor CD59 gene was cloned and analyzed. Total RNA from tissues was isolated and cDNA libraries were constructed by the rapid amplification cDNA end (RACE) method. The gene-specific primers in conjunction with the RAC...

  3. MOLECULAR CLONING AND EXPRESSION OF CHANNEL CATFISH, ICTALURUS PUNCTATUS, COMPLEMENT MEMBRANE ATTACK COMPLEX INHIBITOR CD59

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The channel catfish, Ictalurus punctatus, complement membrane attack complex inhibitor CD59 gene was cloned and analyzed. Total RNA from tissues was isolated and cDNA libraries were constructed by the rapid amplification cDNA end (RACE) method. The gene-specific primers in conjunction with the RAC...

  4. Molecular cloning and characterization of a galectin-1 homolog in orange-spotted grouper, Epinephelus coioides.

    PubMed

    Chen, Xiuli; Wei, Jingguang; Xu, Meng; Yang, Min; Li, Pingfei; Wei, Shina; Huang, Youhua; Qin, Qiwei

    2016-07-01

    As a member of animal lectin family, galectin has the functions of pathogen recognition, anti-bacteria and anti-virus. In the present study, a galectin-1 homolog (EcGel-1) from grouper (Epinephelus coioides) was cloned and its possible role in fish immunity was analyzed. The full length cDNA of EcGel-1 is 504 bp, including a 408 bp open reading frame (ORF) which encodes 135 amino acids with a molecular mass of 15.19 kDa. Quantitative real-time PCR analysis indicated that EcGel-1 was constitutively expressed in all analyzed tissues of healthy grouper. The expression of EcGel-1 in the spleen of grouper was differentially up-regulated challenged with Singapore grouper iridovirus (SGIV), poly (I:C), and LPS. EcGel-1 was abundantly distributed in the cytoplasm in GS cells. Recombinant EcGel-1(rEcGel-1) protein can make chicken erythrocyte aggregation, and combine with gram negative bacteria and gram positive bacteria in the presence of 2-Mercaptoethanol (β-ME). Taken together, the results showed that EcGel-1 may be an important molecule involved in pathogen recognition and pathogen elimination in the innate immunity of grouper. PMID:27109200

  5. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori.

    PubMed

    Fu, Ping; Sun, Wei; Zhang, Ze

    2016-04-10

    Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects. PMID:26778207

  6. Molecular cloning of mannose-6-phosphate reductase and its developmental expression in celery.

    PubMed Central

    Everard, J D; Cantini, C; Grumet, R; Plummer, J; Loescher, W H

    1997-01-01

    Compared with other primary photosynthetic products (e.g. sucrose and starch), little is known about sugar alcohol metabolism, its regulation, and the manner in which it is integrated with other pathways. Mannose-6-phosphate reductase (M6PR) is a key enzyme that is involved in mannitol biosynthesis in celery (Apium graveolens L.). The M6PR gene was cloned from a leaf cDNA library, and clonal authenticity was established by assays of M6PR activity, western blots, and comparisons of the deduced amino acid sequence with a celery M6PR tryptic digestion product. Recombinant M6PR, purified from Escherichia coli, had specific activity, molecular mass, and kinetic characteristics indistinguishable from those of authentic celery M6PR. Sequence analyses showed M6PR to be a member of the aldo-keto reductase superfamily, which includes both animal and plant enzymes. The greatest sequence similarity was with aldose-6-phosphate reductase (EC 1.1.1.200), a key enzyme in sorbitol synthesis in Rosaceae. Developmental studies showed M6PR to be limited to green tissues and to be under tight transcriptional regulation during leaf initiation, expansion, and maturation. These data confirmed a close relationship between the development of photosynthetic capacity, mannitol synthesis, and M6PR activity. PMID:9112783

  7. Molecular cloning and structural characterization of Ecdysis Triggering Hormone from Choristoneura fumiferana.

    PubMed

    P, Bhagath Kumar; K, Kasi Viswanath; S, Tuleshwori Devi; R, Sampath Kumar; Doucet, Daniel; Retnakaran, Arthur; Krell, Peter J; Feng, Qili; Ampasala, Dinakara Rao

    2016-07-01

    At the end of each stadium, insects undergo a precisely orchestrated process known as ecdysis which results in the replacement of the old cuticle with a new one. This physiological event is necessary to accommodate growth in arthropods since they have a rigid chitinous exoskeleton. Ecdysis is initiated by the direct action of Ecdysis Triggering Hormones on the central nervous system. Choristoneura fumiferana is a major defoliator of coniferous forests in Eastern North America. It is assumed that, studies on the ecdysis behavior of this pest might lead to the development of novel pest management strategies. Hence in this study, the cDNA of CfETH was cloned. The open reading frame of the cDNA sequence was found to encode three putative peptides viz., Pre-Ecdysis Triggering Hormone (PETH), Ecdysis Triggering Hormone (ETH), and Ecdysis Triggering Hormone Associated Peptide (ETH-AP). The CfETH transcript was detected in the epidermal tissue of larval and pupal stages, but not in eggs and adults. In order to explore the structural conformation of ETH, ab initio modelling and Molecular Dynamics (MD) Simulations were performed. Further, a library of insecticides was generated and virtual screening was performed to identify the compounds displaying high binding capacity to ETH. PMID:27012894

  8. Molecular cloning and characterization of a Bombyx mori gene encoding the transcription factor Atonal.

    PubMed

    Hu, Ping; Feng, Fan; Xia, Hengchuan; Chen, Liang; Yao, Qin; Chen, Keping

    2014-01-01

    The atonal genes are an evolutionarily conserved group of genes encoding regulatory basic helix-loop-helix (bHLH) transcription factors. These transcription factors have a critical antioncogenic function in the retina, and are necessary for cell fate determination through the regulation of the cell signal pathway. In this study, the atonal gene was cloned from Bombyx mori, and the transcription factor was named BmAtonal. Sequence analysis showed that the BmAtonal protein shares extensive homology with other invertebrate Atonal proteins with the bHLH motif. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that BmAtonal was expressed in all developmental stages of B. mori and various larval tissues. The BmAtonal protein was expressed in Escherichia coli, and polyclonal antibodies were raised against the purified protein. By immunofluorescence, the BmAtonal protein was localized to both the nucleus and cytoplasm of BmN cells. After knocking out nuclear localization signals (NLS), the BmAtonal protein was only detected in the cytoplasm. In addition, using the B. mori nuclear polyhedrosis virus (BmNPV) baculovirus expression system, the recombinant BmAtonal protein was successfully expressed in the B. mori cell line BmN. This work lays the foundation for exploring the biological functions of the BmAtonal protein, such as identifying its potential binding partners and understanding the molecular control of the formation of sensory organs. PMID:24873037

  9. Characterization, molecular cloning, and expression analysis of Ecsit in the spinyhead croaker, Collichthys lucidus.

    PubMed

    Song, W; Jiang, K J; Zhang, F Y; Wang, J; Ma, L B

    2016-01-01

    Evolutionarily conserved signaling intermediate in Toll pathways (Ecsit) is reported to play an essential role in innate immunity, embryogenesis, and assembly or stability of the mitochondrial complex I. In this study, the full-length cDNA of Ecsit was cloned from the spinyhead croaker Collichthys lucidus based on the expressed sequence tags from our cDNA library constructed using the SMART technique. The cDNA was 1669 bp long, including a 5'-terminal untranslated region (UTR) of 121 bp, a 3'-terminal UTR of 183 bp, and an open reading frame of 1365 bp encoding a 454-amino acid polypeptide. The estimated molecular weight of C. lucidus Ecsit (ClEcsit) was 52.50 kDa with an isoelectric point of 6.14, and contained a typical Ecsit domain that is conserved in other Ecsits. Multiple alignment of ClEcsit with other selected Ecsits suggested that some amino acid residues were highly conserved. Phylogenetic analysis indicated that ClEcsit was more similar to its identities in Sciaenidae and grouped with Ecsits from other Perciformes. Quantitative real-time reverse transcription PCR analysis revealed broad expression of ClEcsit and the transcript was strongly expressed in the gill and weakly expressed in other tissues. PMID:26909903

  10. Molecular Cloning, Expression Analysis, and Functional Characterization of the H(+)-Pyrophosphatase from Jatropha curcas.

    PubMed

    Yang, Yumei; Luo, Zhu; Zhang, Mengru; Liu, Chang; Gong, Ming; Zou, Zhurong

    2016-04-01

    H(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any correlated studies pointing to the elite energy plant, Jatropha curcas. Herein, we cloned the full length of J. curcas H(+)-PPase (JcVP1) complementary DNA (cDNA) by reverse transcription PCR, based on the assembled sequence of its ESTs highly matched to Hevea brasiliensis H(+)-PPase. This gene encodes a polypeptide of 765 amino acids that was predicted as a K(+)-dependent H(+)-PPase evolutionarily closest to those of other Euphorbiaceae plants. Many cis-regulatory elements relevant to environmental stresses, molecular signals, or tissue-specificity were identified by promoter prediction within the 1.5-kb region upstream of JcVP1 coding sequence. Meanwhile, the responses of JcVP1 expression to several common abiotic stresses (salt, drought, heat, cold) were characterized with a considerable accordance with the inherent stress tolerance of J. curcas. Moreover, we found that the heterologous expression of JcVP1 could significantly improve the salt tolerance in both recombinant Escherichia coli and Saccharomyces cerevisiae, and this effect could be further fortified in yeast by N-terminal addition of a vacuole-targeting signal peptide from the H(+)-PPase of Trypanosoma cruzi. PMID:26643082

  11. Molecular cloning of a hyaluronidase from Bothrops pauloensis venom gland

    PubMed Central

    2014-01-01

    Background Hyaluronate is one of the major components of extracellular matrix from vertebrates whose breakdown is catalyzed by the enzyme hyaluronidase. These enzymes are widely described in snake venoms, in which they facilitate the spreading of the main toxins in the victim’s body during the envenoming. Snake venoms also present some variants (hyaluronidases-like substances) that are probably originated by alternative splicing, even though their relevance in envenomation is still under investigation. Hyaluronidases-like proteins have not yet been purified from any snake venom, but the cDNA that encodes these toxins was already identified in snake venom glands by transcriptomic analysis. Herein, we report the cloning and in silico analysis of the first hyaluronidase-like proteins from a Brazilian snake venom. Methods The cDNA sequence of hyaluronidase was cloned from the transcriptome of Bothrops pauloensis venom glands. This sequence was submitted to multiple alignment with other related sequences by ClustalW. A phylogenetic analysis was performed using MEGA 4 software by the neighbor joining (NJ) method. Results The cDNA from Bothrops pauloensis venom gland that corresponds to hyaluronidase comprises 1175 bp and codifies a protein containing 194 amino acid residues. The sequence, denominated BpHyase, was identified as hyaluronidase-like since it shows high sequence identities (above 83%) with other described snake venom hyaluronidase-like sequences. Hyaluronidases-like proteins are thought to be products of alternative splicing implicated in deletions of central amino acids, including the catalytic residues. Structure-based sequence alignment of BpHyase to human hyaluronidase hHyal-1 demonstrates a loss of some key secondary structures. The phylogenetic analysis indicates an independent evolution of BpHyal when compared to other hyaluronidases. However, these toxins might share a common ancestor, thus suggesting a broad hyaluronidase-like distribution among

  12. Cloning and characterization of a novel Athspr promoter specifically active in vascular tissue.

    PubMed

    Zhang, Liang; Yang, Tao; Li, Xiaoying; Hao, Hongyan; Xu, Shengtao; Cheng, Wei; Sun, Yingli; Wang, Chongying

    2014-05-01

    The vascular system--xylem, phloem and the cambium--is essential for water supply, nutrient transport, and physical support in higher plants. Although it is known that vascular-specific gene expression is regulated by cis-acting regulatory sequences in promoters, it is largely unknown how many regulatory elements exist and what their roles are in promoters. To understand the regulatory elements of vascular-specific promoters and their roles in vascular development, a T-DNA insertion mutant showing delayed growth and diminished resistance to environmental stress was isolated using promoter trap strategy. The novel gene, Arabidopsis thaliana heat shock protein-related (Athspr), was cloned from Arabidopsis ecotype C24. Strong GUS (β-glucuronidase) staining in the original promoter trap line was found in the vascular tissues of all organs in the mutant. The Athspr promoter was cloned and fused with GUS and eGFP (enhanced green fluorescent protein) reporter genes to verify its vascular-specific expression in Arabidopsis. Further histochemical analysis in transgenic plants demonstrated a similar GUS expression pattern in the vascular tissues. In addition, ATHSPR-eGFP driven by Athspr promoter was observed in vascular bundles of the transgenic seedling roots. Finally, comparative analysis with promoter motifs from 37 genes involved in vascular development revealed that Athspr and all other promoters active in vascular tissues contained regulatory elements responding to phytohormones, light, biotic and abiotic stresses, as well as those regulating tissue-specific expression. These results demonstrated that the Athspr promoter has a vascular tissue-specific activity and Athspr may have multiple functions in vascular development and resistance against various stresses. PMID:24675528

  13. (Molecular cloning and structural characteristics of the R complex of maize)

    SciTech Connect

    Not Available

    1992-01-01

    Studies on the R complex in Maize continued Progress is discussed in the following areas: Establishing identity of R components and cloning of R components; CO allele origin; molecular organization of R-r complex; NCO allele origin; genetic analysis of R-r complex; studies of the Sn locus and reverse paramutation.

  14. [Molecular cloning and structural characteristics of the R complex of maize]. Annual progress report

    SciTech Connect

    Not Available

    1992-07-01

    Studies on the R complex in Maize continued Progress is discussed in the following areas: Establishing identity of R components and cloning of R components; CO allele origin; molecular organization of R-r complex; NCO allele origin; genetic analysis of R-r complex; studies of the Sn locus and reverse paramutation.

  15. Molecular cloning and characterization of Schistosoma japonicum aldose reductase.

    PubMed

    Liu, Jian; Wang, Jipeng; Wang, Shuqi; Xu, Bin; Liu, Xiufeng; Wang, Xiaoning; Hu, Wei

    2013-02-01

    Antioxidant defense is an essential mechanism for schistosomes to cope with damage from host immune-generated reactive oxygen species. The evaluation of the effects of aldose reductase, an important enzyme that may be involved in this system, has long been neglected. In the present study, aldose reductase of Schistosoma japonicum (SjAR) was cloned and characterized. The activity of SjAR was assessed in vitro and was suppressed by the reported inhibitor, epalrestat. RT-PCR analysis revealed that SjAR was expressed at each of the development stages analyzed with increased levels in cercariae. The results also showed that SjAR was expressed at higher levels in adult male worms than in adult female worms. Indirect enzyme-linked immunosorbent assay and western blot analysis indicated that the purified recombinant SjAR (rSjAR) protein displayed a significant level of antigenicity. Immunolocalization analysis revealed that SjAR was mainly distributed in the gynecophoral canal of adult male worms. BALB/c mice immunized with rSjAR induced a 32.91 % worm reduction compared to the adjuvant group (P < 0.01). Moreover, a 28.27 % reduction in egg development in the liver (P > 0.05) and a 42.75 % reduction in egg development in the fecal samples (P < 0.05) were also observed. These results suggested that SjAR may be a potential new drug target or vaccine candidate for schistosomes. PMID:23160889

  16. Molecular cloning of cecropin B responsive endonucleases in Yersinia ruckeri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously demonstrated that Yersinia ruckeri resists cecropin B in an inducible manner. In this study, we sought to identify the molecular changes responsible for the inducible cecropin B resistance of Y. ruckeri. Differences in gene expression associated with the inducible resistance were ...

  17. Biological, molecular, and structural analysis of a cytopathic variant from a molecularly cloned simian immunodeficiency virus.

    PubMed Central

    LaBranche, C C; Sauter, M M; Haggarty, B S; Vance, P J; Romano, J; Hart, T K; Bugelski, P J; Hoxie, J A

    1994-01-01

    Some isolates of simian immunodeficiency virus (SIV) have been shown to infect Sup-T1 cells with slow kinetics and in the absence of cytopathic effects, including cell fusion or CD4 down-modulation (J. A. Hoxie, B. S. Haggarty, S. Bonser, J. Rackowski, H. Shan, and P. Kanki, J. Virol. 62:2557-2568, 1988). In the present study, we describe the isolation and characterization of a SIVmac variant, derived from the BK28 infectious molecular clone, that became highly cytopathic for Sup-T1 cells. This variant, termed CP-MAC, exhibited a number of differences from BK28, including (i) an altered tropism which largely restricted its host range to Sup-T1 cells, (ii) the ability to induce cell fusion and CD4 down-modulation, and (iii) a highly stable interaction of its external (SU) and transmembrane (TM) envelope glycoproteins. In addition, a marked increase in the level of surface envelope glycoproteins was observed both on CP-MAC-infected cells and on virions. The CP-MAC env gene was PCR amplified from infected cells, and sequence analysis identified five amino acid changes in SU and six in TM compared with BK28. The introduction of these changes into BK28 was shown to fully reconstitute the biological and morphological properties of CP-MAC. The limited number of mutations in CP-MAC should enable the molecular determinants to be more precisely defined and help to identify the underlying mechanisms responsible for the striking biological and structural alterations exhibited by this virus. Images PMID:8057433

  18. Molecular cloning and developmental expression of plakophilin 2 in zebrafish

    SciTech Connect

    Moriarty, Miriam A.; Martin, Eva D.; Byrnes, Lucy; Grealy, Maura

    2008-02-29

    Armadillo proteins are involved in providing strength and support to cells and tissues, nuclear transport, and transcriptional activation. In this report, we describe the identification and characterisation of the cDNA of the desmosomal armadillo protein plakophilin 2 in zebrafish. The 2448 bp coding sequence encodes a predicted 815 amino acid protein, with nine armadillo repeats characteristic of the p120-catenin subfamily. It shares conserved N-glycosylation, myristoylation, and glycogen synthase kinase 3, casein kinase 2, and protein kinase C phosphorylation sites with mammalian armadillo proteins including plakoglobin and {beta}-catenin. Semi-quantitative reverse transcription polymerase chain reaction and whole mount in situ hybridisation show that it is expressed both maternally and zygotically. It is ubiquitously expressed during blastula stages but becomes restricted to epidermal and cardiac tissue during gastrulation. These results provide evidence that zebrafish plakophilin 2 is developmentally regulated with potential roles in cell adhesion, signalling, and cardiac and skin development.

  19. Molecular cloning, expression and characterization of pyridoxamine–pyruvate aminotransferase

    PubMed Central

    Yoshikane, Yu; Yokochi, Nana; Ohnishi, Kouhei; Hayashi, Hideyuki; Yagi, Toshiharu

    2006-01-01

    Pyridoxamine–pyruvate aminotransferase is a PLP (pyridoxal 5′-phosphate) (a coenzyme form of vitamin B6)-independent aminotransferase which catalyses a reversible transamination reaction between pyridoxamine and pyruvate to form pyridoxal and L-alanine. The gene encoding the enzyme has been identified, cloned and overexpressed for the first time. The mlr6806 gene on the chromosome of a symbiotic nitrogen-fixing bacterium, Mesorhizobium loti, encoded the enzyme, which consists of 393 amino acid residues. The primary sequence was identical with those of archaeal aspartate aminotransferase and rat serine–pyruvate aminotransferase, which are PLP-dependent aminotransferases. The results of fold-type analysis and the consensus amino acid residues found around the active-site lysine residue identified in the present study showed that the enzyme could be classified into class V aminotransferases of fold type I or the AT IV subfamily of the α family of the PLP-dependent enzymes. Analyses of the absorption and CD spectra of the wild-type and point-mutated enzymes showed that Lys197 was essential for the enzyme activity, and was the active-site lysine residue that corresponded to that found in the PLP-dependent aminotransferases, as had been suggested previously [Hodsdon, Kolb, Snell and Cole (1978) Biochem. J. 169, 429–432]. The Kd value for pyridoxal determined by means of CD was 100-fold lower than the Km value for it, suggesting that Schiff base formation between pyridoxal and the active-site lysine residue is partially rate determining in the catalysis of pyridoxal. The active-site structure and evolutionary aspects of the enzyme are discussed. PMID:16545075

  20. [Cloning and tissue expression of 4-coumarate coenzyme A ligase gene in Angelica sinensis].

    PubMed

    Wen, Sui-chao; Wang, Yin-quan; Luo, Jun; Xia, Qi; Fan, Qin; Li, Shu-nan; Wang, Zhen-heng

    2015-12-01

    4-coumarate coenzyme A ligase is a key enzyme of phenylpropanoid metabolic pathway in higher plant and may regulate the biosynthesis of ferulic acid in Angelica sinensis. In this study, the homology-based cloning and rapid amplification of cDNA ends (RACE) technique were used to clone a full length cDNA encoding 4-coumarate coenzyme A ligase gene (4CL), and then qRT-PCR was taken for analyzing 4CL gene expression levels in the root, stem and root tissue at different growth stages of seedlings of A. sinensis. The results showed that a full-length 4CL cDNA (1,815 bp) was obtained (GenBank accession number: KT880508) which shares an open reading frame (ORF) of 1 632 bp, encodes 544 amino acid polypeptides. We found 4CL gene was expressed in all tissues including leaf, stem and root of seedlings of A. sinensis. The expressions in the leave and stem were increased significantly with the growth of seedlings of A. sinensis (P < 0.05), while it in the root showed little change. It indicates a time-space pattern of 4CL gene expression in seedlings of A. sinensis. These findings will be useful for establishing an experiment basis for studying the structure and function of 4CL gene and elucidating mechanism of ferulic acid biosynthesis and space-time regulation in A. sinensis. PMID:27245029

  1. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    PubMed

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. PMID:25817696

  2. Construction and Characterization of an Infectious Molecular Clone of Koala Retrovirus

    PubMed Central

    Shojima, Takayuki; Hoshino, Shigeki; Abe, Masumi; Yasuda, Jiro; Shogen, Hiroko; Kobayashi, Takeshi

    2013-01-01

    Koala retrovirus (KoRV) is a gammaretrovirus that is currently endogenizing into koalas. Studies on KoRV infection have been hampered by the lack of a replication-competent molecular clone. In this study, we constructed an infectious molecular clone, termed plasmid pKoRV522, of a KoRV isolate (strain Aki) from a koala reared in a Japanese zoo. The virus KoRV522, derived from pKoRV522, grew efficiently in human embryonic kidney (HEK293T) cells, attaining 106 focus-forming units/ml. Several mutations in the Gag (L domain) and Env regions reported to be involved in reduction in viral infection/production in vitro are found in pKoRV522, yet KoRV522 replicated well, suggesting that any effects of these mutations are limited. Indeed, a reporter virus pseudotyped with pKoRV522 Env was found to infect human, feline, and mink cell lines efficiently. Analyses of KoRV L-domain mutants showed that an additional PPXY sequence, PPPY, in Gag plays a critical role in KoRV budding. Altogether, our results demonstrate the construction and characterization of the first infectious molecular clone of KoRV. The infectious clone reported here will be useful for elucidating the mechanism of endogenization of the virus in koalas and screening for antiretroviral drugs for KoRV-infected koalas. PMID:23427161

  3. Molecular cloning, characterization, and expression of pannexin genes in chicken.

    PubMed

    Kwon, Tae-Jun; Kim, Dong-Bin; Bae, Jae Woong; Sagong, Borum; Choi, Soo-Young; Cho, Hyun-Ju; Kim, Un-Kyung; Lee, Kyu-Yup

    2014-09-01

    Pannexins (Panx) are a family of proteins that share sequences with the invertebrate gap junction proteins, innexins, and have a similar structure to that of the vertebrate gap junction proteins, connexins. To date, the Panx family consists of 3 members, but their genetic sequences have only been completely determined in a few vertebrate species. Moreover, expression of the Panx family has been reported in several rodent tissues: Panx1 is ubiquitously expressed in mammals, whereas Panx2 and Panx3 expressions are more restricted. Although members of the Panx family have been detected in mammals, their genetic sequences in avian species have not yet been fully elucidated. Here, we obtained the full-length mRNA sequences of chicken PANX genes and evaluated the homology of the amino acids from these sequences with those of other species. Furthermore, PANX gene expression in several chicken tissues was investigated based on mRNA levels. PANX1 was detected in the brain, cochlea, chondrocytes, eye, lung, skin, and intestine, and PANX2 was expressed in the brain, eye, and intestine. PANX3 was observed in the cochlea, chondrocytes, and bone. In addition, expression of PANX3 was higher than PANX1 in the cochlea. Immunofluorescent staining revealed PANX1 in hair cells, as well as the supporting cells, ganglion neurons, and the tegmentum vasculosum in chickens, whereas PANX3 was only detected in the bone surrounding the cochlea. Overall, the results of this study provide the first identification and characterization of the sequence and expression of the PANX family in an avian species, and fundamental data for confirmation of Panx function. PMID:25002553

  4. Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2012-01-01

    Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970

  5. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    SciTech Connect

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.; Yankovskii, N.K.; Debabov, V.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector /lambda/pSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB/sup +/ clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA/sup +/ transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmids consistently transduced the markers thrB/sup +/ and lysA/sup +/. The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes.

  6. Purification, characterization and cloning of tensilin, the collagen-fibril binding and tissue-stiffening factor from Cucumaria frondosa dermis.

    PubMed

    Tipper, Jennifer P; Lyons-Levy, Gillian; Atkinson, Mark A L; Trotter, John A

    2002-12-01

    The inner dermis of the sea cucumber, Cucumaria frondosa, is a mutable collagenous tissue characterized by rapid and reversible changes in its mechanical properties regulated by one or more protein effectors that are released from neurosecretory cells. One such effector, tensilin, is a collagen-fibril binding protein, named for its ability to induce dermis stiffening. Tensilin was purified using an affinity column constructed from C. frondosa collagen-fibrils. The protein migrates as a single band on SDS-PAGE (Mr approximately 33 kDa) and has an isoelectric point of 5.8. Equilibrium sedimentation experiments suggest a molecular mass of approximately 28.5-29.4 kDa. Carbohydrate analysis of tensilin revealed no measurable sugar content. The molar amount of tensilin was determined to be 0.38% that of collagen and 47% that of stiparin, a constitutive matrix glycoprotein. A full-length cDNA clone for tensilin was obtained from a C. frondosa inner dermis cDNA expression library. Predicted properties derived from the deduced peptide sequence were in agreement with those of the native protein. A noted feature of tensilin's deduced peptide sequence, particularly in its N-terminal domain, is its homology to tissue inhibitor of metalloproteinases. Tensilin's C-terminal tail has no known homology to other proteins but contains a putative collagen-fibril binding site. PMID:12524049

  7. Development and characterization of an in vivo pathogenic molecular clone of equine infectious anemia virus.

    PubMed

    Cook, R F; Leroux, C; Cook, S J; Berger, S L; Lichtenstein, D L; Ghabrial, N N; Montelaro, R C; Issel, C J

    1998-02-01

    An infectious nonpathogenic molecular clone (19-2-6A) of equine infectious anemia virus (EIAV) was modified by substitution of a 3.3-kbp fragment amplified by PCR techniques from a pathogenic variant (EIAV(PV)) of the cell culture-adapted strain of EIAV (EIAV(PR)). This substitution consisted of coding sequences for 77 amino acids at the carboxyl terminus of the integrase, the S1 (encoding the second exon of tat), S2, and S3 (encoding the second exon of rev) open reading frames, the complete env gene (including the first exon of rev), and the 3' long terminal repeat (LTR). Modified 19-2-6A molecular clones were designated EIAV(PV3.3), and infection of a single pony (678) with viruses derived from a mixture of five of these molecular clones induced clinical signs of acute equine infectious anemia (EIA) at 23 days postinfection (dpi). As a consequence of this initial study, a single molecular clone, EIAV(PV3.3#3) (redesignated EIAV(UK)), was selected for further study and inoculated into two ponies (613 and 614) and two horses (700 and 764). Pony 614 and the two horses developed febrile responses by 12 dpi, which was accompanied by a 48 to 64% reduction in platelet number, whereas pony 613 did not develop fever (40.6 degrees C) until 76 dpi. EIAV could be isolated from the plasma of these animals by 5 to 7 dpi, and all became seropositive for antibodies to this virus by 21 dpi. Analysis of the complete nucleotide sequence demonstrated that the 3.3-kbp 3' fragment of EIAV(UK) differed from the consensus sequence of EIAV(PV) by just a single amino acid residue in the second exon of the rev gene. Complete homology with the EIAV(PV) consensus sequence was observed in the hypervariable region of the LTR. However, EIAV(UK) was found to contain an unusual 68-bp nucleotide insertion/duplication in a normally conserved region of the LTR sequence. These results demonstrate that substitution of a 3.3-kbp fragment from the EIAV(PV) strain into the infectious nonpathogenic

  8. Molecular cloning and expression analysis of a F-type lectin gene from Japanese sea perch (Lateolabrax japonicus).

    PubMed

    Qiu, Lihua; Lin, Liansheng; Yang, Keng; Zhang, Hanhua; Li, Jianzhu; Zou, Falin; Jiang, Shigui

    2011-08-01

    The techniques of homology cloning and anchored PCR were used to clone the fucose-binding lectin (F-type lectin) gene from Japanese sea perch (Lateolabrax Japonicus). The full-length cDNA of sea perch F-lectin (JspFL) contained a 5' untranslated region (UTR) of 39 bp, an ORF of 933 bp encoding a polypeptide of 310 amino acids with an estimated molecular mass of 10.82 kDa and a 3' UTR of 332 bp. The searches for nucleotides and protein sequence similarities with BLAST analysis indicated that the deduced amino acid sequence of JspFL was homological to the Fucose-binding lectin in other fish species. In the JspFL deduced amino acid sequence, two tandem domains that exhibit the eel carbohydrate-recognition sequence motif were found. The temporal expressions of gene in the different tissues were measured by real-time PCR. And the mRNA expressions of the gene were constitutively expressed in tissues including spleen, head-kidney, liver, gill, and heart. The JspFL expression in spleen was different during the stimulated time point, 2 h later the expression level became up-regulated, and 6 h later the expression level became down-regulated. The result indicated that JspFL was constitutive and inducible expressed and could play a critical role in the host-pathogen interaction. PMID:21104013

  9. Molecular cloning of estrogen receptor alpha of the Nile crocodile.

    PubMed

    Katsu, Yoshinao; Myburgh, Jan; Kohno, Satomi; Swan, Gerry E; Guillette, Louis J; Iguchi, Taisen

    2006-03-01

    Estrogens are essential for normal reproductive activity in female and male vertebrates. In female reptiles, they are essential for ovarian differentiation during a critical developmental stage. To understand the molecular mechanisms of estrogen action in the Nile crocodile (Crocodylus niloticus), we have isolated cDNA encoding the estrogen receptor alpha (ERalpha) from the ovary. Degenerate PCR primers specific to ER were designed and used to amplify Nile crocodile cDNA from the ovary. The full-length Nile crocodile ERalpha cDNA was obtained using 5' and 3' rapid amplification cDNA ends (RACE). The deduced amino acid sequence of the Nile crocodile ERalpha showed high identity to the American alligator ERalpha (98%), caiman ER (98%), lizard ER (82%) and chicken ERalpha (92%), although phylogenetic analysis suggested profound differences in the rate of sequence evolution for vertebrate ER sequences. Expression of ERalpha was observed in the ovary and testis of juvenile Nile crocodiles. These data provide a novel tool allowing future studies examining the regulation and ontogenic expression of ERalpha in crocodiles and expands our knowledge of estrogen receptor evolution. PMID:16455277

  10. Chondroitin sulfate synthase-3. Molecular cloning and characterization.

    PubMed

    Yada, Toshikazu; Sato, Takashi; Kaseyama, Hiromi; Gotoh, Masanori; Iwasaki, Hiroko; Kikuchi, Norihiro; Kwon, Yeon-Dae; Togayachi, Akira; Kudo, Takashi; Watanabe, Hideto; Narimatsu, Hisashi; Kimata, Koji

    2003-10-10

    Recently, it has become evident that chondroitin sulfate (CS) glycosyltransferases, which transfer glucuronic acid and/or N-acetylgalactosamine residues from each UDP-sugar to the nonreducing terminus of the CS chain, form a gene family. We report here a novel human gene (GenBank trade mark accession number AB086062) that possesses a sequence homologous with the human chondroitin sulfate synthase-1 (CSS1) gene, formerly known as chondroitin synthase. The full-length open reading frame consists of 882 amino acids and encodes a typical type II membrane protein. This enzyme contains a beta 3-glycosyltransferase motif and a beta 4-glycosyltransferase motif similar to that found in CSS1. Both the enzymes were expressed in COS-7 cells as soluble proteins, and their enzymatic natures were characterized. Both glucuronyltransferase and N-acetylgalactosaminyltransferase activities were observed when chondroitin, CS polymer, and their corresponding oligosaccharides were used as the acceptor substrates, but no polymerization reaction was observed as in the case of CSS1. The new enzyme was thus designated chondroitin sulfate synthase-3 (CSS3). However, the specific activity of CSS3 was much lower than that of CSS1. The reaction products were shown to have a GlcUA beta 1-3GalNAc linkage and a GalNAc beta 1-4GlcUA linkage in the nonreducing terminus of chondroitin resulting from glucuronyltransferase activity and N-acetylgalactosaminyltransferase activity, respectively. Quantitative real time PCR analysis revealed that the transcript level of CSS3 was much lower than that of CSS1, although it was ubiquitously expressed in various human tissues. These results indicate that CSS3 is a glycosyltransferase having both glucuronyltransferase and N-acetylgalactosaminyltransferase activities. It may make a contribution to CS biosynthesis that differs from that of CSS1. PMID:12907687

  11. Molecular cloning and characterization of the light-harvesting chlorophyll a/b gene from the pigeon pea (Cajanus cajan).

    PubMed

    Qiao, Guang; Wen, Xiao-Peng; Zhang, Ting

    2015-12-01

    Light-harvesting chlorophyll a/b-binding proteins (LHCB) have been implicated in the stress response. In this study, a gene encoding LHCB in the pigeon pea was cloned and characterized. Based on the sequence of a previously obtained 327 bp Est, a full-length 793 bp cDNA was cloned using the rapid amplification of cDNA ends (RACE) method. It was designated CcLHCB1 and encoded a 262 amino acid protein. The calculated molecular weight of the CcLHCB1 protein was 27.89 kDa, and the theoretical isoelectric point was 5.29. Homology search and sequence multi-alignment demonstrated that the CcLHCB1 protein sequence shared a high identity with LHCB from other plants. Bioinformatics analysis revealed that CcLHCB1 was a hydrophobic protein with three transmembrane domains. By fluorescent quantitative real-time polymerase chain reaction (PCR), CcLHCB1 mRNA transcripts were detectable in different tissues (leaf, stem, and root), with the highest level found in the leaf. The expression of CcLHCB1 mRNA in the leaves was up-regulated by drought stimulation and AM inoculation. Our results provide the basis for a better understanding of the molecular organization of LCHB and might be useful for understanding the interaction between plants and microbes in the future. PMID:26329890

  12. Molecular cloning and characterization of crustin from mud crab Scylla paramamosain.

    PubMed

    Imjongjirak, Chanprapa; Amparyup, Piti; Tassanakajon, Anchalee; Sittipraneed, Siriporn

    2009-05-01

    Antimicrobial peptides (AMPs) are important components of the host innate immune response against microbial invasion. In the present study, we report the identification and characterization of a crustin (CrusSp) from the hemocyte of mud crab, Scylla paramamosain using an expressed sequence tag (EST) and rapid amplification cDNA end (RACE) approaches. Analysis of the nucleotide sequence revealed seven different variances of the CrusSp cDNA in mud crab. The open reading frame encodes a protein of 111 amino acids with 21 residues signal sequence. The predicted molecular mass of the mature protein (90 amino acids) is 10.27 kDa with an estimated pI of 8.54. Analysis of the protein domain features indicated typical conserved cysteine residues containing a single whey acidic protein (WAP) domain at the C-terminus. A neighbour-joining tree showed that S. paramamosain crustin is closely related to other crustin homologues, and displays the highest similarity to crustin antimicrobial peptide in shore crab Carcinus maenas. Four exons and three introns were identified within the 999 bp genomic DNA sequence of CrusSp. Tissue distribution analysis showed that CrusSp was highly expressed in hemocytes, gills, intestines and muscle but it was not expressed in hepatopancreas and eyestalks. To gain insight into the in vitro antimicrobial activities of CrusSp, the mature peptide coding region was cloned into E. coli for heterologous expression. The recombinant CrusSp could inhibit the growth of gram-positive bacteria but had no inhibition activity against gram-negative bacteria. These results indicated the involvement of CrusSp in the innate immunity of S. paramamosain. PMID:18425600

  13. Molecular cloning, characterization and expression profiles of thioredoxin 1 and thioredoxin 2 genes in Mytilus galloprovincialis

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Ning, Xuanxuan; Pei, Dong; Zhao, Jianmin; You, Liping; Wang, Chunyan; Wu, Huifeng

    2013-05-01

    Thioredoxin (Trx) proteins are involved in many biological processes especially the regulation of cellular redox homeostasis. In this study, two Trx cDNAs were cloned from the mussel Mytilus galloprovincialis using rapid amplifi cation of cDNA ends-polymerase chain reaction (RACE-PCR). The two cDNAs were named MgTrx1 and MgTrx2, respectively. The open reading frames of MgTrx1 and MgTrx2 were 318 and 507 base pairs (bp) and they encoded proteins of 105 and 168 amino acids with estimated molecular masses of 11.45 and 18.93 kDa, respectively. Sequence analysis revealed that both proteins possessed the conserved active site dithiol motif Cys-Gly-Pro-Cys. In addition, MgTrx2 also possessed a putative mitochondrial targeting signal suggesting that it is located in the mitochondria. Quantitative real-time polymerase chain reaction (qPCR) revealed that both MgTrx1 and MgTrx2 were constitutively expressed in all tissues examined. The MgTrx1 transcript was most abundant in hemocytes and gills, whereas the MgTrx2 transcript was most abundant in gonad, hepatopancreas, gill and hemocytes. Following Vibrio anguillarum challenge, the expression of MgTrx1 was up-regulated and reached its peak, at a value 10-fold the initial value, at 24 h. Subsequently, expression returned back to the original level. In contrast, the expression level of MgTrx2 was down-regulated following bacterial stimulation, with one fi fth of the control level evident at 12 h post challenge. These results suggest that MgTrx1 and MgTrx2 may play important roles in the response of M. galloprovincialis to bacterial challenge.

  14. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    SciTech Connect

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Hunter, Eric

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  15. Immersing Undergraduate Students in the Research Experience: A Practical Laboratory Module on Molecular Cloning of Microbial Genes

    ERIC Educational Resources Information Center

    Wang, Jack T. H.; Schembri, Mark A.; Ramakrishna, Mathitha; Sagulenko, Evgeny; Fuerst, John A.

    2012-01-01

    Molecular cloning skills are an essential component of biological research, yet students often do not receive this training during their undergraduate studies. This can be attributed to the complexities of the cloning process, which may require many weeks of progressive design and experimentation. To address this issue, we incorporated an…

  16. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis.

    PubMed

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Cimpean, Anca Maria; Nica, Cristian; Raica, Marius

    2016-06-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis. PMID:27382385

  17. Molecular Portrait of the Normal Human Breast Tissue and Its Influence on Breast Carcinogenesis

    PubMed Central

    Margan, Madalin Marius; Jitariu, Andreea Adriana; Nica, Cristian; Raica, Marius

    2016-01-01

    Normal human breast tissue consists of epithelial and nonepithelial cells with different molecular profiles and differentiation grades. This molecular heterogeneity is known to yield abnormal clones that may contribute to the development of breast carcinomas. Stem cells that are found in developing and mature breast tissue are either positive or negative for cytokeratin 19 depending on their subtype. These cells are able to generate carcinogenesis along with mature cells. However, scientific data remains controversial regarding the monoclonal or polyclonal origin of breast carcinomas. The majority of breast carcinomas originate from epithelial cells that normally express BRCA1. The consecutive loss of the BRCA1 gene leads to various abnormalities in epithelial cells. Normal breast epithelial cells also express hypoxia inducible factor (HIF) 1α and HIF-2α that are associated with a high metastatic rate and a poor prognosis for malignant lesions. The nuclear expression of estrogen receptor (ER) and progesterone receptor (PR) in normal human breast tissue is maintained in malignant tissue as well. Several controversies regarding the ability of ER and PR status to predict breast cancer outcome remain. Both ER and PR act as modulators of cell activity in normal human breast tissue. Ki-67 positivity is strongly correlated with tumor grade although its specific role in applied therapy requires further studies. Human epidermal growth factor receptor 2 (HER2) oncoprotein is less expressed in normal human breast specimens but is highly expressed in certain malignant lesions of the breast. Unlike HER2, epidermal growth factor receptor expression is similar in both normal and malignant tissues. Molecular heterogeneity is not only found in breast carcinomas but also in normal breast tissue. Therefore, the molecular mapping of normal human breast tissue might represent a key research area to fully elucidate the mechanisms of breast carcinogenesis. PMID:27382385

  18. Molecular cloning and expression of an Erwinia sp. gene encoding diphenyl ether cleavage in Escherichia coli.

    PubMed Central

    Liaw, H J; Srinivasan, V R

    1989-01-01

    A 2.1-kilobase fragment obtained by restriction enzyme HindIII digestion of Erwinia sp. genomic DNA was cloned into plasmid pUC19 and introduced into Escherichia coli by transformation. The transformants with diphenyl ether cleaving activity (Dpe+) were selected on agar plates with a specially designed medium (LTFN) containing 4-nitrodiphenyl ether. The positive clones showed a clear zone around the colonies. Analysis of mutants obtained by transposon mini-Mu dI(lacZ Kmr) mutagenesis indicated the coding region of the gene (dpe) and the utilization of a lacZ promoter of pUC19 for transcription of dpe. Clones with dpe in the opposite orientation in pUC19 were not expressed, confirming the need for a lacZ promoter. Utilization of a lacZ promoter in pUC19 was further confirmed by the observation that the degradation of 4-nitrodiphenyl ether was enhanced in the presence of isopropyl-beta-D-thiogalactoside. Expression of dpe was also found in pDPE7321, generated from cloning this gene into another plasmid, pSP73. Analysis of the plasmid-encoded proteins by the maxicell technique showed a polypeptide of 21,000 molecular weight as the product of dpe. Images PMID:2679381

  19. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    SciTech Connect

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with /sup 32/P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus.

  20. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  1. A dedicated database program for cataloging recombinant clones and other laboratory products of molecular biology technology.

    PubMed

    Jenson, H B

    1989-06-01

    A novel computer database program dedicated to storing, cataloging, and accessing information about recombinant clones and libraries has been developed for the IBM (or compatible) personal computer. This program, named CLONES, also stores information about bacterial strains and plasmid and bacteriophage vectors used in molecular biology. The advantages of this method are improved organization of data, fast and easy assimilation of new data, automatic association of new data with existing data, and rapid retrieval of desired records using search criteria specified by the user. Individual records are indexed in the database using B-trees, which automatically index new entries and expedite later access. The use of multiple windows, pull-down menus, scrolling pick-lists, and field-input techniques make the program intuitive to understand and easy to use. Daughter databases can be created to include all records of a particular type, or only those records matching user-specified search criteria. Separate databases can also be merged into a larger database. This computer program provides an easy-to-use and accurate means to organize, maintain, access, and share information about recombinant clones and other laboratory products of molecular biology technology. PMID:2631777

  2. Human GluR6 kainate receptor (GRIK2): Molecular cloning, expression, polymorphism, and chromosomal assignment

    SciTech Connect

    Paschen, W.; Blackstone, C.D.; Huganir, R.L. ); Ross, C.A. Max-Planck-Institute for Neurological Research, Koeln )

    1994-04-01

    Glutamate receptors mediate the majority of excitatory neurotransmission in the brain, and molecular cloning studies have revealed several distinct families. Because neuropathological states and possibly human disorders may involve kainate-preferring glutamate receptors, the authors have isolated a cDNA clone for the human GluR6 kainate-preferring receptor. This clone shows a very high sequence similarity with that of the rat, except for a part of the 3[prime] untranslated region in which there is a TAA triplet repeat. When the protein was overexpressed in human embryonic kidney 293 cells, it had a molecular weight, an antibody recognition, and a glutamate ligand-binding profile similar to those of the rate GluR6 receptor. Northern analysis showed expression in both human cerebral and cerebellar cortices. By PCR analysis of rodent-human monochromosomal cell lines, the human GluR6 could be assigned to chromosome 6. The length of the TAA triplet repeat was polymorphic in the normal population, with at least four alleles and an observed heterozygosity of about 45%. These studies should provide the basis for expression or linkage studies of the GluR6 kainate receptor in human disease or neuropathologic states. 53 refs., 7 figs.

  3. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    PubMed Central

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Allen, Susan; Hunter, Eric

    2014-01-01

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that could be universally applied to the study of human viral pathogens. PMID:25243334

  4. Molecular genetics of X-linked retinitis pigmentosa: Progress towards cloning the RP3 gene

    SciTech Connect

    Fujita, R.; Yan, D.; McHenry, C.

    1994-09-01

    Our goal is to identify the X-linked retinitis pigmentosa (XLRP) gene RP3. The location of RP3 is genetically delimited to a region of 1 Mb, distal to DXS140, CYBB and tctex-1-like gene and proximal to the gene OTC. It is currently thought that RP3 is within 40 kb of the proximal deletion breakpoint of a patient BB. However, a more proximal location of the gene, closer to OTC, is not ruled out. We initiated the isolation of the genomic region between DXS140 to OTC in YACs. One of the clones from DXS140 region (55B) is 460 kb and spans about 200 kb at each side of BB patient`s proximal breakpoint. It contains CYBB, tctex-1-like genes and two additional CpG islands. The 55B clone has been covered by cosmid and phage subclones. Another YAC clone from the OTC region (OTCC) spans about 1 Mb and contains at least 5 CpG islands. In situ hybridization performed with OTCC showed its location in Xp21; however, several derivative cosmids map to chromosome 7, indicating that it is a chimeric YAC. No overlap is evident between 55B and OTCC. We have isolated the YAC end-sequences and isolation of clones to close the gap is in progress. Cosmids are being used for screening eye tissue cDNA libraries, mainly from retina. Screening is done by hybridization to replica filters or by cDNA enrichment methods. Several cDNA clones have been isolated and are being characterized. Exon-amplification is also being used with the cosmids and phages. Genetic analysis is being performed to determine RP3 patients from clinically indistinguishable RP2, located in Xp11.23-p11.4, and to reduce the genetic distance of current flanking markers. For this we are analyzing a number of XLRP families with established markers in the region and with new microsatellites.

  5. Molecular Cloning and Gene Expression of Canine Apoptosis Inhibitor of Macrophage

    PubMed Central

    TOMURA, Shintaro; UCHIDA, Mona; YONEZAWA, Tomohiro; KOBAYASHI, Masato; BONKOBARA, Makoto; ARAI, Satoko; MIYAZAKI, Toru; TAMAHARA, Satoshi; MATSUKI, Naoaki

    2014-01-01

    Apoptosis inhibitor of macrophage (AIM) plays roles in survival of macrophages. In this study, we cloned canine AIM cDNA and observed its transcriptional expression levels in various tissues. The coding sequence of canine AIM was 1,023 bp encoding 340 amino acid residues, which had around 65% homology with those of the human, mouse and rat. Transcriptional expression of AIM was observed in the spleen, lung, liver and lymph node, which confirmed the expression of canine AIM in tissue macrophages. Moreover, AIM was highly expressed in one of the canine histiocytic sarcoma cell lines. CD36, the receptor of AIM, was also expressed in various tissues and these cell lines. These findings are useful to reveal the actual functions of canine AIM. PMID:25649949

  6. Molecular characterization of cloned variants of Coxiella burnetii isolated in China.

    PubMed

    Ning, Z; Yu, S R; Quan, Y G; Xue, Z

    1992-03-01

    To study the molecular properties of Coxiella burnetii phase variants we cloned the phase variants of C. burnetii Qiyi (CBQY) strain by the red plaque technique. Three cloned strains, CBQYIC3 (phase I), CBQYIIC7 (phase II) and CBQYIIC5 (semirough-phase) were analysed by SDS-PAGE, immunoblot assay, plasmid isolation and agarose gel electrophoresis of DNA restriction fragments. The results suggest that the unique phase-dependent substance is a lipopolysaccharide and that most protein components of phase I and phase II cells are shared. No significant differences of DNA restriction fragments were found between clonal isolates of phase I and phase II C. burnetii CBQY strains. A plasmid of approximately 56 Kb was isolated from both phase I and phase II variants indicating that phase variation probably could not be attributed to its presence or absence. PMID:1359769

  7. Neuromedin B and Its Receptor: Gene Cloning, Tissue Distribution and Expression Levels of the Reproductive Axis in Pigs

    PubMed Central

    Ma, Zhiyu; Su, Juan; Guo, Tingting; Jin, Mengmeng; Li, Xiang; Lei, Zhihai; Hou, Yuanlong; Li, Xiaoliang; Jia, Cuicui; Zhang, Zheng; Ahmed, Ejlal

    2016-01-01

    Neuromedin B is one member of a family of bombesin-like peptides, which performs a variety of physiological functions via their receptor (NMBR) in most mammals. However, the genes encoding NMB and NMBR and their functions especially reproduction of the pigs are currently not fully understood. To research the physiological functions of NMB, we cloned and analyzed the NMB and NMBR genes, and systematically investigated the expression levels of NMB and NMBR mRNA using relative real-time PCR and the distribution of NMBR by immunohistochemistry (IHC). Experimental results show that the sequences of the amino acid and gene of NMB and NMBR were highly conservative and homology in many species, Significantly, the relative RT-PCR results revealed that NMB was mainly expressed in the central nervous system (CNS), whereas NMBR is highly expressed in peripheral tissues and organs, such as endocrine tissues, glands and reproductive organs. The IHC results show that NMBR positive cells were widely distributed in the body, such as respiratory and circulatory system, digestive system, urogenital system, in lymphatic organs and in the endocrine system. We also systematically investigated expression levels of NMB and NMBR in the reproductive axis using relative real-time PCR. In sow estrous cycle, the hypothalamic levels of both NMB and NMBR mRAN were similar, but the expression levels of the pituitary were negatively correlated. Expression levels in the ovarian system are lowest in metestrus phases and highest in proestrus and estrus phases. In boar post-natal development stages, the hypothalamic, pituitary and testicular levels of NMB and NMBR mRNAs showed developmental changes on postnatal day 30, 60, 90 and 120. Taken together, this study provided molecular and morphological data necessary for further research of physiological function of NMB/NMBR system in the pigs. PMID:27010315

  8. Neuromedin B and Its Receptor: Gene Cloning, Tissue Distribution and Expression Levels of the Reproductive Axis in Pigs.

    PubMed

    Ma, Zhiyu; Su, Juan; Guo, Tingting; Jin, Mengmeng; Li, Xiang; Lei, Zhihai; Hou, Yuanlong; Li, Xiaoliang; Jia, Cuicui; Zhang, Zheng; Ahmed, Ejlal

    2016-01-01

    Neuromedin B is one member of a family of bombesin-like peptides, which performs a variety of physiological functions via their receptor (NMBR) in most mammals. However, the genes encoding NMB and NMBR and their functions especially reproduction of the pigs are currently not fully understood. To research the physiological functions of NMB, we cloned and analyzed the NMB and NMBR genes, and systematically investigated the expression levels of NMB and NMBR mRNA using relative real-time PCR and the distribution of NMBR by immunohistochemistry (IHC). Experimental results show that the sequences of the amino acid and gene of NMB and NMBR were highly conservative and homology in many species, Significantly, the relative RT-PCR results revealed that NMB was mainly expressed in the central nervous system (CNS), whereas NMBR is highly expressed in peripheral tissues and organs, such as endocrine tissues, glands and reproductive organs. The IHC results show that NMBR positive cells were widely distributed in the body, such as respiratory and circulatory system, digestive system, urogenital system, in lymphatic organs and in the endocrine system. We also systematically investigated expression levels of NMB and NMBR in the reproductive axis using relative real-time PCR. In sow estrous cycle, the hypothalamic levels of both NMB and NMBR mRAN were similar, but the expression levels of the pituitary were negatively correlated. Expression levels in the ovarian system are lowest in metestrus phases and highest in proestrus and estrus phases. In boar post-natal development stages, the hypothalamic, pituitary and testicular levels of NMB and NMBR mRNAs showed developmental changes on postnatal day 30, 60, 90 and 120. Taken together, this study provided molecular and morphological data necessary for further research of physiological function of NMB/NMBR system in the pigs. PMID:27010315

  9. Mitochondrial pyruvate dehydrogenase. Molecular cloning of the E1 alpha subunit and expression analysis.

    PubMed Central

    Grof, C P; Winning, B M; Scaysbrook, T P; Hill, S A; Leaver, C J

    1995-01-01

    A polymerase chain reaction-based approach was used to isolate cDNA clones encoding the E1 alpha subunit of the mitochondrial pyruvate dehydrogenase from higher plants. Putative full-length clones were identified on the basis of similarity to E1 alpha sequences from nonplant sources. Southern blot analysis revealed a small family of genes in potato (Solanum tuberosum L.), whereas in cucumber (Cucumis sativus) there are only one or two genes. Tissue-specific variation in the relative amounts of E1 alpha mRNA was observed in northern blot analysis of different potato tissues, with the highest steady-state transcript levels found in floral tissue. Measurement of pyruvate dehydrogenase activity in cucumber cotyledons showed that there is a transient increase to a maximum at 4 to 5 d postimbibition. Western blot analysis revealed that the amount of E1 alpha protein also peaks at this time. Steady-state transcript levels in germinating cucumber cotyledons also show transient accumulation, peaking 2 d postimbibition. These data are consistent with regulation of E1 alpha at the level of transcription and/or mRNA stability in postgerminative cucumber cotyledons. PMID:7659754

  10. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  11. A simple and rapid strategy for the molecular cloning and monitoring of mouse HtrA2 serine protease.

    PubMed

    Kim, Goo-Young; Nam, Min-Kyung; Kim, Sang-Soo; Kim, Ho-Young; Lee, Sang-Kyu; Rhim, Hyangshuk

    2008-03-01

    A simple and rapid strategy for molecular cloning using a gel-free and antibiotic selection method is described which allows for the complete elimination of DNA extraction by gel electrophoresis, and thus has several advantages over gel-based cloning methods, including: (i) a cloning efficiency that is approximately 10-times higher due to the prevention of ethidium bromide ultraviolet-induced DNA damage and contamination with ligase inhibitors; (ii) the amount of plasmid DNA required is approximately five times less; and (iii) the cloning time is several hours less. Once the target gene, such as mouse HtrA2 serine protease, was cloned into the pEGFP-N3 plasmid, the integrity of the kanamycin-resistant molecular clone encoding the GFP fusion protein was verified by immunoblot and immunofluorescence assays. In addition, the integrity of the ampicillin-resistant molecular clone was directly evaluated by analyzing the expression and affinity purification of the GST fusion protein and by measuring its enzymatic activity. Therefore, this method is suitable for the routine construction of a plasmid expressing the gene of interest, and the usefulness of this strategy can be demonstrated by monitoring the expression of the target gene in E. coli and mammalian cells. PMID:17939055

  12. Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.

    PubMed

    Ozturk, Mehmet S; Chen, Chao-Wei; Ji, Robin; Zhao, Lingling; Nguyen, Bao-Ngoc B; Fisher, John P; Chen, Yu; Intes, Xavier

    2016-03-01

    Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications. PMID:26645079

  13. Molecular cloning, sequence characterization and heterologous expression of buffalo (Bubalus bubalis) oviduct-specific glycoprotein in E. coli.

    PubMed

    Janjanam, Jagadeesh; Singh, Surender; Choudhary, Suman; Pradeep, Mangottil A; Kumar, Sudarshan; Kumaresan, A; Das, Subrata K; Kaushik, Jai K; Mohanty, Ashok K

    2012-12-01

    Oviductin is a high molecular weight oviduct-specific glycoprotein secreted by the non-ciliated epithelial cells of oviduct during estrous cycle and early pregnancy. It plays an important role during fertilization and early embryonic development. The oviductin gene from oviductal tissues of buffalo was successfully cloned and sequenced. The sequence analysis revealed that buffalo and cattle oviductin share very high homology between their cDNA sequences. The predicted amino acid sequences of the buffalo oviductin exhibited the highest percent of identity of 97 % with bovine followed by 94 % with goat, 93 % with sheep, 78 % with porcine, 72 % with human, 67 % with hamster and rabbit and 65 % with mouse. Oviductin was also observed to share high similarity with the mammalian chitinase, however oviductins do not show chitinase activity due to Glu→Ile mutation in the active site responsible for chitinase activity. The phylogenetic tree based on amino acid sequences of oviductin indicated that buffalo oviductin was closely related to its cattle counterpart, and this clustering is in accordance with the classic taxonomic relationship. Tissue specific expression of the transcripts for buffalo oviductin revealed a high level expression in oviduct and ovary followed by testis, mammary gland, kidney, while in mammary epithelial cells and liver its expression was very low. The full length matured oviductin and its domains constituting chitinase-like domain and mucin-like domain were cloned into pET and pGEX series of expression vectors and over expressed in E. coli. The soluble recombinant oviductin was successfully purified to homogeneity. Full length recombinant oviductin was expressed partially in soluble form, where as the chitinase-like and mucin-like domains of oviductin were expressed in insoluble form and aggregating to form inclusion bodies at both 37 and 16 °C induction temperatures. PMID:22782592

  14. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis.

    PubMed

    Gou, Jun-Bo; Li, Zhen-Qiu; Li, Chang-Fu; Chen, Fang-Fang; Lv, Shi-You; Zhang, Yan-Sheng

    2016-09-01

    Junenol based-eudesmanolides have been detected in many compositae plant species and were reported to exhibit various pharmacological activities. So far, the gene encoding junenol synthase has never been isolated. Here we report the molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis (designated IhsTPS1). IhsTPS1 converts the substrate farnesyl diphosphate into multiple sesquiterpenes with the product 10-epi-junenol being predominant. The transcript levels of IhsTPS1 correlate well with the accumulation pattern of 10-epi-junenol in I. hupehensis organs, supporting its biochemical roles in vivo. PMID:27231873

  15. Molecular cloning, expression, and characterization of endoglucanase genes from Fibrobacter succinogenes AR1.

    PubMed Central

    Cavicchioli, R; Watson, K

    1991-01-01

    A cosmid gene library was constructed in Escherichia coli from genomic DNA isolated from the ruminal anaerobe Fibrobacter succinogenes AR1. Clones were screened on carboxymethyl cellulose, and 8 colonies that produced large clearing zones and 25 colonies that produced small clearing zones were identified. Southern blot hybridization revealed the existence of at least three separate genes encoding cellulase activity. pRC093, which is representative of cosmid clones that produce large clearing zones, was subcloned in pGem-1, and the resulting hybrid pRCEH directed synthesis of endoglucanase activity localized on a 2.1-kb EcoRI-HindIII insert. Activity was expressed from this fragment when it was cloned in both orientations in pGem-1 and pGem-2, indicating that F. succinogenes promoters functioned successfully in E. coli. A high level of endoglucanase activity was detected on acid-swollen cellulose, ball-milled cellulose, and carboxymethyl cellulose; and a moderate level was detected on filter paper, Avicel, lichenan, and xylan. Most activity (80%) was localized in the periplasm of E. coli, with low but significant levels (16%) being detected in the extracellular medium. The periplasmic endoglucanase had an estimated molecular weight of 46,500, had an optimum temperature of 39 degrees C, and exhibited activity over a broad pH range, with a maximum at pH 5.0. Images PMID:2014986

  16. Molecular cloning, expression, and sequence of the pilin gene from nontypeable Haemophilus influenzae M37.

    PubMed Central

    Coleman, T; Grass, S; Munson, R

    1991-01-01

    Nontypeable Haemophilus influenzae M37 adheres to human buccal epithelial cells and exhibits mannose-resistant hemagglutination of human erythrocytes. An isogenic variant of this strain which was deficient in hemagglutination was isolated. A protein with an apparent molecular weight of 22,000 was present in the sodium dodecyl sulfate-polyacrylamide gel profile of sarcosyl-insoluble proteins from the hemagglutination-proficient strain but was absent from the profile of the isogenic hemagglutination-deficient variant. A monoclonal antibody which reacts with the hemagglutination-proficient isolate but not with the hemagglutination-deficient isolate has been characterized. This monoclonal antibody was employed in an affinity column for purification of the protein as well as to screen a genomic library for recombinant clones expressing the gene. Several clones which contained overlapping genomic fragments were identified by reaction with the monoclonal antibody. The gene for the 22-kDa protein was subcloned and sequenced. The gene for the type b pilin from H. influenzae type b strain MinnA was also cloned and sequenced. The DNA sequence of the strain MinnA gene was identical to that reported previously for two other type b strains. The DNA sequence of the strain M37 gene is 77% identical to that of the type b pilin gene, and the derived amino acid sequence is 68% identical to that of the type b pilin. Images PMID:1673447

  17. Establishment and Characterization of Molecular Clones of Porcine Endogenous Retroviruses Replicating on Human Cells

    PubMed Central

    Czauderna, Frank; Fischer, Nicole; Boller, Klaus; Kurth, Reinhard; Tönjes, Ralf R.

    2000-01-01

    The use of pig xenografts is being considered to alleviate the shortage of allogeneic organs for transplantation. In addition to the problems overcoming immunological and physiological barriers, the existence of numerous porcine microorganisms poses the risk of initiating a xenozoonosis. Recently, different classes of type C porcine endogenous retoviruses (PERV) which are infectious for human cells in vitro have been partially described. We therefore examined whether completely intact proviruses exist that produce infectious and replication-competent virions. Several proviral PERV sequences were cloned and characterized. One molecular PERV class B clone, PERV-B(43), generated infectious particles after transfection into human 293 cells. A second clone, PERV-B(33), which was highly homologous to PERV-B(43), showed a G-to-A mutation in the first start codon (Met to Ile) of the env gene, preventing this provirus from replicating. However, a genetic recombinant, PERV-B(33)/ATG, carrying a restored env start codon, became infectious and could be serially passaged on 293 cells similar to virus clone PERV-B(43). PERV protein expression was detected 24 to 48 h posttransfection (p.t.) using cross-reacting antiserum, and reverse transcriptase activity was found at 12 to 14 days p.t. The transcriptional start and stop sites as well as the splice donor and splice acceptor sites of PERV mRNA were mapped, yielding a subgenomic env transcript of 3.1 kb. PERV-B(33) and PERV-B(43) differ in the number of copies of a 39-bp segment in the U3 region of the long terminal repeat. Strategies to identify and to specifically suppress or eliminate those proviruses from the pig genome might help in the production of PERV-free animals. PMID:10756014

  18. Molecular cloning and functional expression of a brain-specific somatostatin receptor.

    PubMed Central

    Bruno, J F; Xu, Y; Song, J; Berelowitz, M

    1992-01-01

    The PCR and conventional library screening were used to clone the brain-specific somatostatin receptor rSSTR-4 from a rat genomic library. The deduced amino acid sequence encodes a protein of 384 amino acids and displays structural and sequence homologies with members of the G protein-receptor superfamily. The amino acid sequence of rSSTR-4 is 60% and 48% identical to that of somatostatin receptors SSTR-1 and SSTR-2, respectively, two recently cloned subtypes. Competition curve analysis of the binding properties of the receptor transiently expressed in COS-1 cells revealed a higher apparent affinity for somatostatin 14 than for somatostatin 28. In contrast, the somatostatin analogs SMS 201-995, IM 4-28, and MK-678 failed to displace specific binding in transfected cells. These characteristics resemble the pharmacological binding properties of the previously described brain-specific somatostatin-receptor subtype. Examination of the tissue distribution of mRNA for rSSTR-4 revealed expression limited to various brain regions with highest levels in the cortex and hippocampus. Thus, based on the pharmacology and tissue localization of this receptor, we conclude that rSSTR-4 represents a brain-specific somatostatin receptor. Images PMID:1360663

  19. Molecular and cytogenetic characterization of expanded B-cell clones from multiclonal versus monoclonal B-cell chronic lymphoproliferative disorders

    PubMed Central

    Henriques, Ana; Rodríguez-Caballero, Arancha; Criado, Ignacio; Langerak, Anton W.; Nieto, Wendy G.; Lécrevisse, Quentin; González, Marcos; Cortesão, Emília; Paiva, Artur; Almeida, Julia; Orfao, Alberto

    2014-01-01

    Chronic antigen-stimulation has been recurrently involved in the earlier stages of monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The expansion of two or more B-cell clones has frequently been reported in individuals with these conditions; potentially, such coexisting clones have a greater probability of interaction with common immunological determinants. Here, we analyzed the B-cell receptor repertoire and molecular profile, as well as the phenotypic, cytogenetic and hematologic features, of 228 chronic lymphocytic leukemia-like and non-chronic lymphocytic leukemia-like clones comparing multiclonal (n=85 clones from 41 cases) versus monoclonal (n=143 clones) monoclonal B-cell lymphocytosis, chronic lymphocytic leukemia and other B-cell chronic lymphoproliferative disorders. The B-cell receptor of B-cell clones from multiclonal cases showed a slightly higher degree of HCDR3 homology than B-cell clones from mono clonal cases, in association with unique hematologic (e.g. lower B-lymphocyte counts) and cytogenetic (e.g. lower frequency of cytogenetically altered clones) features usually related to earlier stages of the disease. Moreover, a subgroup of coexisting B-cell clones from individual multiclonal cases which were found to be phylogenetically related showed unique molecular and cytogenetic features: they more frequently shared IGHV3 gene usage, shorter HCDR3 sequences with a greater proportion of IGHV mutations and del(13q14.3), than other unrelated B-cell clones. These results would support the antigen-driven nature of such multiclonal B-cell expansions, with potential involvement of multiple antigens/epitopes. PMID:24488564

  20. Molecular cloning and biochemical characterization of carbonic anhydrase from Populus tremula x tremuloides.

    PubMed

    Larsson, S; Björkbacka, H; Forsman, C; Samuelsson, G; Olsson, O

    1997-07-01

    A leaf cDNA library from hybrid aspen, Populus tremula x tremuloides, was constructed. From this two different cDNA clones, denoted CA1a and CA1b, encoding a chloroplastic carbonic anhydrase (CA) were isolated and DNA sequenced. Analysis of the deduced amino acid sequences showed that the isolated CAs belong to the beta-CA family, and have identities around 70% to other dicotyledonous plant CAs. The two hybrid aspen cDNA clones display a high nucleotide sequence identity, only 12 nucleotides differ. Since only one gene copy of this soluble chloroplastic CA is present in the nuclear genome, we postulate that the two isolated cDNA clones are alleles. Northern blot hybridization revealed a CA transcript of ca. 1300 bases, 140 bases shorter than in pea. Western and northern blot hybridizations on crude protein extracts and on total RNA, respectively, isolated from stem and leaves, showed that hybrid aspen CA is expressed specifically in the leaf under the growth conditions used. Based on the deduced amino acid sequence, the mature hybrid aspen CA enzyme subunit has a molecular mass of 24.8 kDa. The enzyme was over-expressed in Escherichia coli, and purified by affinity chromatography. Biochemical characterization showed that the protein structure and the CO2-hydration activity are similar to the pea enzyme. Molecular characterization of a CA from a perennial plant has not previously been performed, and it demonstrates that both the structure and activity of hybrid aspen CA resembles CAs from annual plants. PMID:9247540

  1. From lesions to viral clones: biological and molecular diversity amongst autochthonous Brazilian vaccinia virus.

    PubMed

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Diomedes Neto, José; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-03-01

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

  2. From Lesions to Viral Clones: Biological and Molecular Diversity amongst Autochthonous Brazilian Vaccinia Virus

    PubMed Central

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Neto, José Diomedes; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-01-01

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

  3. Molecular cloning of the structural gene for exopolygalacturonate lyase from Erwinia chrysanthemi EC16 and characterization of the enzyme product.

    PubMed Central

    Brooks, A D; He, S Y; Gold, S; Keen, N T; Collmer, A; Hutcheson, S W

    1990-01-01

    The ability of Erwinia chrysanthemi to cause soft-rot diseases involving tissue maceration in many plants has been linked to the production of endo-pectate lyase E. chrysanthemi EC16 mutant UM1005, however, contains deletions in the pel genes that encode the known endopectate lyases, yet still macerates plant tissues. In an attempt to identify the remaining macerating factor(s), a gene library of UM1005 was constructed in Escherichia coli and screened for pectolytic activity. A clone (pPNL5) was identified in this library that contained the structural gene for an exopolygalacturonate lyase (ExoPL). The gene for ExoPL was localized on a 3.3-kb EcoRV fragment which contained an open reading frame for a 79,500-Da polypeptide. ExoPL was purified to apparent homogeneity from Escherichia coli DH5 alpha (pPNL5) and found to have an apparent molecular weight of 76,000 with an isoelectric point of 8.6. Purified ExoPL had optimal activity between pH 7.5 and 8.0 and could utilize pectate, citrus pectin, and highly methyl-esterified Link pectin as substrates. A PL- ExoPL- mutant of EC16 was constructed that exhibited reduced growth on pectate, but retained pathogenicity on chrysanthemum equivalent to that of UM1005. The results indicate that ExoPL does not contribute to the residual macerating activity of UM1005. Images PMID:2254266

  4. Molecular cloning of the heat shock protein 20 gene from Paphia textile and its expression in response to heat shock

    NASA Astrophysics Data System (ADS)

    Li, Jiakai; Wu, Xiangwei; Tan, Jing; Zhao, Ruixiang; Deng, Lingwei; Liu, Xiande

    2015-07-01

    P. textile is an important aquaculture species in China and is mainly distributed in Fujian, Guangdong, and Guangxi Provinces. In this study, an HSP20 cDNA designated PtHSP20 was cloned from P. textile. The full-length cDNA of PtHSP20 is 1 090 bp long and contains a 5' untranslated region (UTR) of 93 bp, a 3' UTR of 475 bp, and an open reading frame (ORF) of 522 bp. The PtHSP20 cDNA encodes 173 amino acid residues and has a molecular mass of 20.22 kDa and an isoelectric point of 6.2. Its predicted amino acid sequence shows that PtHSP20 contains a typical α-crystallin domain (residues 77-171) and three polyadenylation signal-sequences at the C-terminus. According to an amino acid sequence alignment, PtHSP20 shows moderate homology to other mollusk sHSPs. PtHSP20 mRNA was present in all of the test tissues including the heart, digestive gland, adductor muscle, gonad, gill, and mantle, with the highest concentration found in the gonad. Under the stress of high temperature, the expression of PtHSP20 mRNA was down-regulated in all of the tissues except the adductor muscle and gonad.

  5. Cloning, expression, and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus.

    PubMed

    Gramany, Vashni; Khan, Faez Iqbal; Govender, Algasan; Bisetty, Krishna; Singh, Suren; Permaul, Kugenthiren

    2016-08-01

    The aim of this study was to clone, express, and characterize a β-xylosidase (Tlxyn1) from the thermophilic fungus Thermomyces lanuginosus SSBP in Pichia pastoris GS115 as well as analyze optimal activity and stability using computational and experimental methods. The enzyme was constitutively expressed using the GAP promoter and secreted into the medium due to the alpha-mating factor secretion signal present on the expression vector pBGPI. The 1276 bp gene consists of an open reading frame that does not contain introns. A 12% SDS-PAGE gel revealed a major protein band at an estimated molecular mass of 50 kDa which corresponded to zymogram analysis. The three-dimensional structure of β-xylosidase was predicted, and molecular dynamics simulations at different ranges of temperature and pH were performed in order to predict optimal activity and folding energy. The results suggested a strong conformational temperature and pH dependence. The recombinant enzyme exhibited optimal activity at pH 7 and 50°C and retained 80% activity at 50°C, pH 7 for about 45 min. This is the first report of the cloning, functional expression, and simulations study of a β-xylosidase from Thermomyces species in a fungal host. PMID:26336893

  6. Cloning yeast actin cDNA leads to an investigative approach for the molecular biology laboratory.

    PubMed

    Black, Michael W; Tuan, Alice; Jonasson, Erin

    2008-05-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the classroom because of the preparation, expense, and logistics involved in independent student projects. The authors have designed a 10-week lab series that mimics the research environment by tying separate fundamental lab techniques to a common goal: to build a plasmid with yeast actin cDNA cloned in a particular orientation. In the process of completing this goal, a problem arises in that students are unable to obtain the target plasmid and instead only recover the gene cloned in the opposite orientation. To address this problem, students identify four plausible hypotheses and work in teams to address them by designing and executing experiments. This project reinforces the utility and flexibility of techniques covered earlier in the class and serves to develop their skills in experimental design and analysis. As the project is focused on one problem, the diversity of experimental approaches is limited and may be prepared in advance with little additional expense in reagents or technical support. PMID:21591194

  7. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  8. Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize.

    PubMed Central

    Wu, S; Kriz, A L; Widholm, J M

    1994-01-01

    The cloning and analysis of two different cDNA clones encoding putative maize (Zea mays L.) chitinases obtained by polymerase chain reaction (PCR) and cDNA library screening is described. The cDNA library was made from poly(A)+ RNA from leaves challenged with mercuric chloride for 2 d. The two clones, pCh2 and pCh11, appear to encode class I chitinase isoforms with cysteine-rich domains (not found in pCh11 due to the incomplete sequence) and proline-/glycine-rich or proline-rich hinge domains, respectively. The pCh11 clone resembles a previously reported maize seed chitinase; however, the deduced proteins were found to have acidic isoelectric points. Analysis of all monocot chitinase sequences available to date shows that not all class I chitinases possess the basic isoelectric points usually found in dicotyledonous plants and that monocot class II chitinases do not necessarily exhibit acidic isoelectric points. Based on sequence analysis, the pCh2 protein is apparently synthesized as a precursor polypeptide with a signal peptide. Although these two clones belong to class I chitinases, they share only about 70% amino acid homology in the catalytic domain region. Southern blot analysis showed that pCh2 may be encoded by a small gene family, whereas pCh11 was single copy. Northern blot analysis demonstrated that these genes are differentially regulated by mercuric chloride treatment. Mercuric chloride treatment caused rapid induction of pCh2 from 6 to 48 h, whereas pCh11 responded only slightly to the same treatment. During seed germination, embryos constitutively expressed both chitinase genes and the phytohormone abscisic acid had no effect on the expression. The fungus Aspergillus flavus was able to induce both genes to comparable levels in aleurone layers and embryos but not in endosperm tissue. Maize callus growth on the same plate with A. flavus for 1 week showed induction of the transcripts corresponding to pCh2 but not to pCh11. These studies indicate that

  9. Molecular cloning and expression analysis of Fem1b from oriental river prawn Macrobrachium nipponense.

    PubMed

    Rahman, N M A; Fu, H; Qiao, H; Jin, S; Bai, H; Zhang, W; Jiang, F W; Liang, G; Sun, S; Gong, Y; Jiang, F F; Xiong, Y; Wu, Y

    2016-01-01

    Feminization-1 homolog b (Fem1b) is one of the genes essential for male development and play central roles in sex determination of Caenorhabditis elegans. In this study, we cloned and characterized the full-length Fem1b cDNA from the freshwater prawn Macrobrachium nipponense (MnFem1b) in different tissues and at different developmental stages. Real-time quantitative reverse polymerase chain reaction (RT-qPCR) showed that the MnFem1b gene was expressed in all investigated tissues, with the highest expression level found in the testes. The results revealed that the MnFem1b gene might play roles in aspects of development of the male prawn phenotype. The RT-qPCR also revealed that MnFem1b mRNA expression was significantly increased at 10 days after metamorphosis. The expression levels in all investigated tissues showed a certain degree of sexually dimorphism, the expression levels in males were significantly higher than those in females (P < 0.05). Notably, the highest expression of MnFem1b was found in the testes. The expression of MnFem1b in different tissues indicates that it plays multiple biological functions in M. nipponense. PMID:27323097

  10. Characterization of an infectious molecular clone of human T-cell leukemia virus type I.

    PubMed Central

    Zhao, T M; Robinson, M A; Bowers, F S; Kindt, T J

    1995-01-01

    An infectious molecular clone of human T-cell leukemia virus type I (HTLV-I) was derived from an HTLV-I-transformed rabbit T-cell line, RH/K30, obtained by coculture of rabbit peripheral blood mononuclear cells (PBMC) with the human HTLV-I-transformed cell line MT-2. The RH/K30 cell line contained two integrated proviruses, an intact HTLV-I genome and an apparently defective provirus with an in-frame stop codon in the env gene. A genomic DNA fragment containing the intact HTLV-I provirus was cloned into bacteriophage lambda (K30 phi) and subcloned into a plasmid vector (K30p). HTLV-I p24gag protein was detected in culture supernatants of human and rabbit T-cell and fibroblast lines transfected with these clones, at levels comparable to those of the parental cell line RH/K30. Persistent expression of virus was observed in one of these lines, RL-5/K30p, for more than 24 months. Biologic characterization of this cell line revealed the presence of integrated HTLV-I provirus, spliced and unspliced mRNA transcripts, and typical extracellular type C retrovirus particles. As expected, these virus particles contained HTLV-I RNA and reverse transcriptase activity. The transfected cells also expressed surface major histocompatibility complex class II, whereas no expression of this molecule was detected in the parental RL-5 cell line. Virus was passaged by cocultivation of irradiated RL-5/K30p cells with either rabbit PBMC or human cord blood mononuclear cells, demonstrating in vitro infectivity. The virus produced in these cells was also infectious in vivo, since rabbits injected with RL-5/K30p cells became productively infected, as evidenced by seroconversion, amplification of HTLV-I-specific sequences by PCR from PBMC DNA, and virus isolation from PBMC. Availability of infectious molecular clones will facilitate functional studies of HTLV-I genes and gene products. PMID:7884847

  11. Complementary DNA cloning, messenger RNA expression, and induction of alpha-class glutathione S-transferases in mouse tissues.

    PubMed

    Buetler, T M; Eaton, D L

    1992-01-15

    Glutathione S-transferases (EC 2.5.1.18) are a multigene family of related proteins divided into four classes. Each class has multiple isoforms that exhibit tissue-specific expression, which may be an important determinant of susceptibility of that tissue to toxic injury or cancer. Recent studies have suggested that alpha-class glutathione S-transferase isoforms may play an important role in the development of cancers. Several alpha-class glutathione S-transferase isozymes have been characterized, purified, and cloned from a number of species, including rats, mice, and humans. Here we report on the cloning, sequencing, and mRNA expression of two alpha-class glutathione S-transferases from mouse liver, termed mYa and mYc. While mYa was shown to be identical to the known alpha-class glutathione S-transferase complementary DNA clone pGT41 (W. R. Pearson et al., J. Biol. Chem., 263: 13324-13332, 1988), the other clone, mYc, was demonstrated to be a novel complementary DNA clone encoding a glutathione S-transferase homologous to rat Yc (subunit 2). The mRNA for this novel complementary DNA is expressed constitutively in mouse liver. It also is the major alpha-class glutathione S-transferase isoform expressed in lung. The levels of expression of the butylated hydroxyanisole-inducible form (mYa) are highest in kidney and intestine. Treatment of mice with butylated hydroxyanisole had little effect on the expression levels of mYc but strongly induced mYa expression in liver. Butylated hydroxyanisole treatment increased expression levels for both mYa and mYc to varying degrees in kidney, lung, and intestine. The importance of the novel mouse liver alpha-class glutathione S-transferase isoform (mYc) in the metabolism of aflatoxin B1 and other carcinogens is discussed. PMID:1728405

  12. Cloning of a genetic determinant from Clostridium difficile involved in adherence to tissue culture cells and mucus.

    PubMed Central

    Karjalainen, T; Barc, M C; Collignon, A; Trollé, S; Boureau, H; Cotte-Laffitte, J; Bourlioux, P

    1994-01-01

    Our laboratory has previously shown that Clostridium difficile adherence to Caco-2 cells is greatly enhanced after heat shock at 60 degrees C and that it is mediated by a proteinaceous surface component. The experiments described here show that C. difficile could adhere to several types of tissue culture cells (Vero, HeLa, and KB) after heat shock. The type of culture medium (liquid or solid, with or without blood) had little effect on adhesion. To clone the adhesin gene, polyclonal antibodies against C. difficile heated at 60 degrees C were used to screen a genomic library of C. difficile constructed in lambda ZapII. Ten positive clones were identified in the library, one of which (pCL6) agglutinated several types of erythrocytes in the presence of mannose. In Western blots (immunoblots), this clone expressed in Escherichia coli a 40- and a 27-kDa protein; a 27-kDa protein has been previously identified in the surface extracts of heat-shocked C. difficile as a possible adhesin. The clone adhered to Vero, Caco-2, KB, and HeLa cells; the adherence was blocked by anti-C. difficile antibodies, by a surface extract of C. difficile, and by mucus isolated from axenic mice. Furthermore, the clone could attach ex vivo to intestinal mucus isolated from axenic mice. Preliminary studies on the receptor moieties implicated in C. difficile adhesion revealed that glucose and galactose could partially block adhesion to tissue culture cells, as did di- or trisaccharides containing these sugars, suggesting that the adhesin is a lectin. In addition, N-acetylgalactosamine, a component of mucus, and gelatin partially impeded cell attachment. Images PMID:7927694

  13. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N

    SciTech Connect

    McAllister, G.; Amara, S.G.; Lerner, M.R. )

    1988-07-01

    Sera from some patients with systemic lupus erythematosus and other autoimmune diseases have antibodies against nuclear antigens. An example is anti-Sm sera, which recognize proteins associated with small nuclear RNA molecules (small nuclear ribonucleoprotein (snRNP) particles). In this paper anti-Sm sera were used to probe immunoblots of various rat tissues. A previously unidentified M{sub r} 28,000 polypeptide was recognized by these anti-Sm sera. This polypeptide, referred to as N, is expressed in a tissue-specific manner, being most abundant in rat brain, less so in heart, and undetectable in the other tissues examined. Immunoprecipitation experiments using antibodies directed against the cap structure of small nuclear RNAs have demonstrated that N is a snRNP-associated polypeptide. Anti-Sm serum was also used to isolate a partial cDNA clone ({lambda}rb91) from a rat brain phage {lambda}gt11 cDNA expression library. A longer cDNA clone was obtained by rescreening the library with {lambda}rb91. In vitro transcription and subsequent translation of this subcloned, longer insert (pGMA2) resulted in a protein product with the same electrophoretic and immunological properties as N, confirming that pGMA2 encodes N. The tissue distribution of N and the involvement of snRNP particles in nuclear pre-mRNA processing may imply a role for N in tissue-specific pre-mRNA splicing.

  14. DNA Yield From Tissue Samples in Surgical Pathology and Minimum Tissue Requirements for Molecular Testing.

    PubMed

    Austin, Melissa C; Smith, Christina; Pritchard, Colin C; Tait, Jonathan F

    2016-02-01

    Context .- Complex molecular assays are increasingly used to direct therapy and provide diagnostic and prognostic information but can require relatively large amounts of DNA. Objectives .- To provide data to pathologists to help them assess tissue adequacy and provide prospective guidance on the amount of tissue that should be procured. Design .- We used slide-based measurements to establish a relationship between processed tissue volume and DNA yield by A260 from 366 formalin-fixed, paraffin-embedded tissue samples submitted for the 3 most common molecular assays performed in our laboratory (EGFR, KRAS, and BRAF). We determined the average DNA yield per unit of tissue volume, and we used the distribution of DNA yields to calculate the minimum volume of tissue that should yield sufficient DNA 99% of the time. Results .- All samples with a volume greater than 8 mm(3) yielded at least 1 μg of DNA, and more than 80% of samples producing less than 1 μg were extracted from less than 4 mm(3) of tissue. Nine square millimeters of tissue should produce more than 1 μg of DNA 99% of the time. Conclusions .- We conclude that 2 tissue cores, each 1 cm long and obtained with an 18-gauge needle, will almost always provide enough DNA for complex multigene assays, and our methodology may be readily extrapolated to individual institutional practice. PMID:26098132

  15. Molecular cloning, characterization, and expression analysis of p53 from the oriental river prawn, Macrobrachium nipponense, in response to hypoxia.

    PubMed

    Sun, Shengming; Gu, Zhimin; Fu, Hongtuo; Zhu, Jian; Ge, Xianping; Xuan, Fujun

    2016-07-01

    The tumor suppressor gene p53 plays a critical role in safeguarding the integrity of the genome in mammalian cells. It acts as a sequence-specific transcription factor. Once p53 is activated by a variety of cellular stresses, it transactivates downstream target genes and regulates the cell cycle and apoptosis. However, little is known about the functions of the p53 pathway in prawns in response to hypoxia. In this study, the cDNA of p53 from the oriental river prawn, Macrobrachium nipponense, (Mnp53) was cloned using a combination of homology cloning and rapid amplification of cDNA ends. The full-length cDNA of Mnp53 has 2130 bp, including an open reading frame of 1125 bp that encodes a polypeptide of 374 amino acids with a predicted molecular weight of 41.9 kDa and a theoretical isoelectric point of 6.9. Quantitative real-time (qRT)-PCR assays revealed that Mnp53 was ubiquitously expressed in all examined tissues, but at high levels in the hepatopancreas. In addition, we studied respiratory bursts and reactive oxygen species (ROS) production in the hepatopancreas of M. nipponense. Our results suggest that oxidative stress occurred in prawns in response to hypoxia and that apoptosis was associated with an increase in caspase-3 mRNA expression. qRT-PCR and western blot results confirmed that hypoxic stress induced the upregulation of Mnp53 at mRNA and protein levels. Furthermore, immunohistochemistry showed remarkable changes in immunopositive staining after the same hypoxic treatment. These results suggest that hypoxia-induced oxidative stress may cause apoptosis and cooperatively stimulate the expression of Mnp53. PMID:27044329

  16. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States.

    PubMed

    Sahin, Orhan; Fitzgerald, Collette; Stroika, Steven; Zhao, Shaohua; Sippy, Rachel J; Kwan, Patrick; Plummer, Paul J; Han, Jing; Yaeger, Michael J; Zhang, Qijing

    2012-03-01

    Campylobacter jejuni is a major zoonotic pathogen. A highly virulent, tetracycline-resistant C. jejuni clone (clone SA) has recently emerged in ruminant reservoirs and has become the predominant cause of sheep abortion in the United States. To determine whether clone SA is associated with human disease, we compared the clinical isolates of clone SA from sheep abortions with the human isolates of the PulseNet National Campylobacter databases at the CDC and the FDA using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and serotyping. The combined SmaI and KpnI PFGE pattern designations of clone SA from sheep were indistinguishable from those of 123 (9.03%) human C. jejuni isolates (total, 1,361) in the CDC database, among which 56 were associated with sporadic infections and 67 were associated with outbreaks that occurred in multiple states from 2003 to 2010. Most of the outbreaks were attributed to raw milk, while the sources for most of the sporadic cases were unknown. All clone SA isolates examined, including PFGE-matched human isolates, belong to sequence type 8 (ST-8) by MLST and serotype HS:1,8, further indicating the clonality of the related isolates from different host species. Additionally, C. jejuni clone SA was identified in raw milk, cattle feces, the feces and bile of healthy sheep, and abortion cases of cattle and goats, indicating the broad distribution of this pathogenic clone in ruminants. These results provide strong molecular and epidemiological evidence for zoonotic transmission of this emergent clone from ruminants to humans and indicate that C. jejuni clone SA is an important threat to public health. PMID:22189122

  17. ESTIMATION OF MOLECULAR DIFFUSIVITY IN ISOLATED ANIMAL TISSUES

    EPA Science Inventory

    If molecular transport of a lipophilic toxicant in isolated tissues is truly a diffusion process, then it should be possible to describe the process in terms of mathematical equations commonly used to describe the conduction of heat in homogenous and isotropic solids. The present...

  18. Molecular cloning and expression of the calmodulin gene from guinea pig hearts

    PubMed Central

    FENG, RUI; LIU, YAN; SUN, XUEFEI; WANG, YAN; HU, HUIYUAN; GUO, FENG; ZHAO, JINSHENG; HAO, LIYING

    2015-01-01

    The aim of the present study was to isolate and characterize a complementary DNA (cDNA) clone encoding the calmodulin (CaM; GenBank accession no. FJ012165) gene from guinea pig hearts. The CaM gene was amplified from cDNA collected from guinea pig hearts and inserted into a pGEM®-T Easy vector. Subsequently, CaM nucleotide and protein sequence similarity analysis was conducted between guinea pigs and other species. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to investigate the CaM 3 expression patterns in different guinea pig tissues. Sequence analysis revealed that the CaM gene isolated from the guinea pig heart had ∼90% sequence identity with the CaM 3 genes in humans, mice and rats. Furthermore, the deduced peptide sequences of CaM 3 in the guinea pig showed 100% homology to the CaM proteins from other species. In addition, the RT-PCR results indicated that CaM 3 was widely and differentially expressed in guinea pigs. In conclusion, the current study provided valuable information with regard to the cloning and expression of CaM 3 in guinea pig hearts. These findings may be helpful for understanding the function of CaM3 and the possible role of CaM3 in cardiovascular diseases. PMID:26136979

  19. Molecular cloning and expression of the KIF3A gene in the frog brain and testis.

    PubMed

    Nakajima, T; Miura, I; Kashiwagi, A; Nakamura, M

    1997-12-01

    KIF3A is a member of the kinesin superfamily proteins (KIFs), but its gene has been cloned only in mouse and sea urchin. We have cloned a homolog of KIF3A from the frog, Rana rugosa (rrKIF3A). The sequence encoded a 699 amino acid protein that shares 93% similarity with mouse KIF3A (mKIF3A) and 69% with sea urchin kinesin-related protein (SpKRP85). The putative ATP-binding domain was completely identical to that of mKIF3A and SpKRP85. The level of rrKIF3A mRNA appeared to be high in the brain and testis of adult frogs, but low in the heart, lung and kidney. The results suggest that the rrKIF3A gene is expressed in the brain and testis more than other tissues of adult frogs examined, and that KIF3A is widely distributed in eukaryotic organisms. PMID:9520632

  20. Construction and characterization of a full-length infectious simian T-cell lymphotropic virus type 3 molecular clone.

    PubMed

    Chevalier, Sébastien Alain; Walic, Marine; Calattini, Sara; Mallet, Adeline; Prévost, Marie-Christine; Gessain, Antoine; Mahieux, Renaud

    2007-06-01

    Together with their simian T-cell lymphotropic virus (STLV) equivalent, human T-cell lymphotropic virus type 1 (HTLV-1), HTLV-2, and HTLV-3 form the primate T-cell lymphotropic virus (PTLV) group. Over the years, understanding the biology and pathogenesis of HTLV-1 and HTLV-2 has been widely improved by the creation of molecular clones. In contrast, so far, PTLV-3 experimental studies have been restricted to the overexpression of the tax gene using reporter assays. We have therefore decided to construct an STLV-3 molecular clone. We generated a full-length STLV-3 proviral clone (8,891 bp) by PCR amplification of overlapping fragments. This STLV-3 molecular clone was then transfected into 293T cells. Reverse transcriptase PCR experiments followed by sequence analysis of the amplified products allowed us to establish that both gag and tax/rex mRNAs were transcribed. Western blotting further demonstrated the presence of the STLV-3 p24gag protein in the cell culture supernatant from transfected cells. Transient transfection of 293T cells and of 293T-long terminal repeat-green fluorescent protein cells with the STLV-3 clone promoted syncytium formation, a hallmark of PTLV Env expression, as well as the appearance of fluorescent cells, also demonstrating that the Tax3 protein was expressed. Virus particles were visible by electron microscopy. These particles are infectious, as demonstrated by our cell-free-infection experiments with purified virions. All together, our data demonstrate that the STLV-3 molecular clone is functional and infectious. This clone will give us a unique opportunity to study in vitro the different pX transcripts and the putative presence of antisense transcripts and to evaluate the PTLV-3 pathogenicity in vivo. PMID:17428869

  1. An infectious molecular clone of an unusual macrophage-tropic and highly cytopathic strain of human immunodeficiency virus type 1.

    PubMed Central

    Collman, R; Balliet, J W; Gregory, S A; Friedman, H; Kolson, D L; Nathanson, N; Srinivasan, A

    1992-01-01

    We isolated and molecularly cloned a human immunodeficiency virus type 1 (HIV-1) strain (89.6) which is unusual because it is both macrophage-tropic and extremely cytopathic in lymphocytes. Moreover, this is the first well-characterized infectious molecularly cloned macrophage-tropic HIV-1 strain derived from peripheral blood. HIV-1 89.6 differs markedly from other macrophage-tropic isolates within the envelope V3 region, which is important in determining cell tropism and cytopathicity. HIV-1 89.6 may thus represent a transitional isolate between noncytopathic macrophage-tropic viruses and cytopathic lymphocyte-tropic viruses. Images PMID:1433527

  2. Molecular cloning and primary structure of human glial fibrillary acidic protein

    SciTech Connect

    Reeves, S.A.; Helman, L.J.; Allison, A.; Israel, M.A. )

    1989-07-01

    Glial fibrillary acidic protein (GFAP) is an intermediate-filament (IF) protein that is highly specific for cells of astroglial lineage, although its tissue-specific role is speculative. Determination of the primary structure of this protein should be of importance for understanding the functional role it plays in astroglia. Therefore, the authors isolated a cDNA clone encoding this protein and determined its nucleotide sequence. The predicted amino acid sequence indicates that GFAP shares structural similarities-particularly in the central rod domain and to a lesser degree in the carboxyl-terminal domain-with other IF proteins found in nonepithelial cell types. Considerable sequence divergence in the amino-terminal region of GFAP suggests that the tissue-specific functions of this IF protein might be mediated through this region of the molecule. In contrast, conservation of structural characteristics and a moderate degree of sequence conservation in the carboxyl-terminal region suggest functional similarities. Blot hybridization analysis using the GFAP cDNA as a probe failed to detect GFAP mRNA in both normal and neoplastic human tissues in which IF proteins other than GFAP are known to be expressed.

  3. Molecular cloning and expression profiling of multiple Dof genes of Sorghum bicolor (L) Moench.

    PubMed

    Gupta, Shubhra; Arya, Gulab C; Malviya, Neha; Bisht, Naveen C; Yadav, Dinesh

    2016-08-01

    DNA binding with one finger (Dof) proteins represent a family of plant specific transcription factors associated with diverse biological processes, such as seed maturation and germination, phytohormone and light mediated regulation, and plant responses to biotic and abiotic stresses. In present study, a total of 21 Dof genes from Sorghum bicolor were cloned, sequenced and in silico characterized for homology search, revealing their identity to Dof like proteins. The expression profiling of SbDof genes using quantitative RT-PCR in different tissue types and also under drought and salt stresses was attempted. The SbDof genes displayed differential expression either in their transcript abundance or in their expression patterns under normal growth condition. Two of the SbDof genes namely SbDof8 and SbDof12 showed comparatively high level of transcript abundance in all the tissue types tested; whereas some of the SbDof genes showed a distinct tissue specific expression pattern. Further a total of 13 SbDof genes showed differential expression when subjected to either of the abiotic stress i.e. drought or salinity. Three of the SbDof genes namely SbDof12, SbDof19 and SbDof24 were found to be up-regulated in response to drought and salt stress. Comparative analysis of SbDof genes expression revealed existence of a complex transcriptional and functional diversity across plant growth and developmental stages. PMID:27230576

  4. Molecular cloning and expression analysis of CmMlo1 in melon.

    PubMed

    Cheng, Hong; Kun, Weiping; Liu, Dongshun; Su, Yongquan; He, Qiwei

    2012-02-01

    Mlo gene encodes an important transmembrane protein that is involved in biotic/abiotic stresses. Using the method of homologous, we cloned a Mlo gene from melon, named CmMlo1. The gene is 1551 bp in length, encoding 516 amino acids; it has seven-transmembrane domain topology and is a typical transmembrane protein. Localization analysis in onion epidermal cells showed that CmMlo1-GFP is localized to the plasma membrane. RT-PCR results indicated that CmMlo1 is mainly expressed in melon cotyledon and flower, with a tissue-specific distribution manner. CmMlo1 expression is not obvious under powdery mildew stress, but under cadmium stress, its expression was significantly up-regulated, indicating that CmMlo1 is possibly involved in abiotic stress. PMID:21660472

  5. Cloning, molecular characterization, and expression pattern of FGF5 in Cashmere goat (Capra hircus).

    PubMed

    Bao, W L; Yao, R Y; He, Q; Guo, Z X; Bao, C; Wang, Y F; Wang, Z G

    2015-01-01

    Fibroblast growth factor 5 (FGF5) is a secreted signaling protein that belongs to the FGF family, and was found to be associated with hair growth in humans and other animals. The Inner Mongolia Cashmere goat (Capra hircus) is a goat breed that provides superior cashmere; this breed was formed by spontaneous mutation in China. Here, we report the cloning, molecular characterization, and expression pattern of the Cashmere goat FGF5. The cloned FGF5 cDNA was 813 base pairs (KM596772), including an open reading frame encoding a 270-amino-acid polypeptide. The nucleotide sequence shared 99% homology with Ovis aries FGF5 (NM_001246263.1). Bioinformatic analysis revealed that FGF5 contained a signal peptide, an FGF domain, and a heparin-binding growth factor/FGF family signature. There was 1 cAMP- and cGMP-dependent protein kinase phosphorylation site, 11 protein kinase C phosphorylation sites, 4 casein kinase II phosphorylation sites, 1 amidation site, 1 N-glycosylation site, and 1 tyrosine kinase phosphorylation site in FGF5. Real-time polymerase chain reaction showed that FGF5 mRNA levels were higher in testis than in the pancreas and liver. These data suggest that FGF5 may play a crucial role in Cashmere goat hair growth. PMID:26400346

  6. Raman molecular imaging of brain frozen tissue sections.

    PubMed

    Kast, Rachel E; Auner, Gregory W; Rosenblum, Mark L; Mikkelsen, Tom; Yurgelevic, Sally M; Raghunathan, Aditya; Poisson, Laila M; Kalkanis, Steven N

    2014-10-01

    Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm(-1). Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins. PMID:25038847

  7. Production of Bovine Embryos and Calves Cloned by Nuclear Transfer Using Mesenchymal Stem Cells from Amniotic Fluid and Adipose Tissue.

    PubMed

    da Silva, Carolina Gonzales; Martins, Carlos Frederico; Cardoso, Tereza Cristina; da Cunha, Elisa Ribeiro; Bessler, Heidi Christina; Martins, George Henrique Lima; Pivato, Ivo; Báo, Sônia Nair

    2016-04-01

    The less differentiated the donor cells are used in nuclear transfer (NT), the more easily are they reprogrammed by the recipient cytoplasm. In this context, mesenchymal stem cells (MSCs) appear as an alternative to donor nuclei for NT. The amniotic fluid and adipose tissue are sources of MSCs that have not been tested for the production of cloned embryos in cattle. The objective of this study was to isolate, characterize, and use MSCs derived from amniotic fluid (MSC-AF) and adipose tissue (MSC-AT) to produce cloned calves. Isolation of MSC-AF was performed using in vivo ultrasound-guided transvaginal amniocentesis, and MSC-AT were isolated by explant culture. Cellular phenotypic and genotypic characterization by flow cytometry, immunohistochemistry, and RT-PCR were performed, as well as induction in different cell lineages. The NT was performed using MSC-AF and MSC-AT as nuclear donors. The mesenchymal markers of MSC were expressed in bovine MSC-AF and MSC-AT cultures, as evidenced by flow cytometry, immunohistochemistry, and RT-PCR. When induced, these cells differentiated into osteocytes, chondrocytes, and adipocytes. Embryo production was similar between the cell types, and two calves were born. The calf from MSC-AT was born healthy, and this fact opens a new possibility of using this type of cell to produce cloned cattle by NT. PMID:27055630

  8. Molecular cloning of α-2-macroglobulin from hemocytes of common periwinkle Littorina littorea.

    PubMed

    Borisova, Elena A; Gorbushin, Alexander M

    2014-08-01

    We report the sequence of the proteinase inhibitor with a wide inhibition spectrum, α-2-macroglobulin (α2M), belonging to the thioester superfamily of proteins. This is the first α2M sequence from coenogastropod prosobranch snails. The full-length cDNA was cloned by RACE method, spans 7897 bp and contains an open reading frame of 5460 bp. The ORF encodes a protein of 1819 amino acids. The deduced mature protein contains 1795 amino acids with a molecular weight of 200 kDa and isoelectric point of 5.00. Littorina littorea α2M bears 4 conserved α2M domains and one internal thioester. Phylogenetic analysis showed that the sequence forms well supported cluster with Mollusca species and other representatives of Lophotrochozoa. PMID:24830774

  9. Molecular cloning of an Onchocerca volvulus extracellular Cu-Zn superoxide dismutase.

    PubMed Central

    James, E R; McLean, D C; Perler, F

    1994-01-01

    Onchocerca volvulus, a human parasitic nematode, is the third leading cause of preventable blindness worldwide. This study describes the molecular cloning of a novel superoxide dismutase (SOD) from the parasite. This putative O. volvulus extracellular SOD (OvEcSOD) is 628 nucleotides (nt) long, including a 22-nt 5' spliced leader (SL1) and a portion encoding an N-terminal hydrophobic 42-amino-acid signal peptide. The remainder of the cDNA shares 71% identity with an O. volvulus cytosolic SOD sequence and is 3 nt longer. All residues involved in metal ion binding, active site formation, folding, and dimer formation in SODs are conserved. Data indicate the OvEcSOD and O. volvulus cytosolic SOD are separate gene products and that the OvEcSOD appears to possess the characteristics of a membrane-bound or secreted enzyme which may be involved in the parasite defense against phagocyte-generated reactive oxygen species. Images PMID:8300230

  10. Molecular Cloning and Characterisation of Farnesyl Pyrophosphate Synthase from Tripterygium wilfordii

    PubMed Central

    Zhao, Yu-Jun; Chen, Xin; Zhang, Meng; Su, Ping; Liu, Yu-Jia; Tong, Yu-Ru; Wang, Xiu-Juan; Huang, Lu-Qi; Gao, Wei

    2015-01-01

    Farnesylpyrophosphate synthase (FPS) catalyzes the biosynthesis of farnesyl pyrophosphate (FPP), which is an important precursor of sesquiterpenoids such as artemisinin and wilfordine. In the present study, we report the molecular cloning and characterization of two full-length cDNAs encoding FPSs from Tripterygium wilfordii (TwFPSs). TwFPSs maintained their capability to synthesise FPP in vitro when purified as recombinant proteins from E. coli. Consistent with the endogenous role of FPS in FPP biosynthesis, TwFPSs were highly expressed in T. wilfordii roots, and were up-regulated upon methyl jasmonate (MeJA) treatment. The global gene expression profiles suggested that the TwFPSs might play an important regulatory role interpenoid biosynthesis in T. wilfordii, laying the groundwork for the future study of the synthetic biology of natural terpene products. PMID:25938487

  11. Molecular cloning of the alpha-globin transcription factor CP2.

    PubMed Central

    Lim, L C; Swendeman, S L; Sheffery, M

    1992-01-01

    CP2, a transcription factor that binds the murine alpha-globin promoter, was purified and subjected to amino acid sequence analysis. Oligonucleotide primers derived from the sequence were used to obtain murine and human cDNA clones for the factor. The murine cDNA spans approximately 4 kb and contains two coextensive open reading frames (ORFs) which encode deduced polypeptides of 529 (ORF-1; molecular weight, 59,802) and 502 (ORF-2; molecular weight, 56,957) amino acids, slightly smaller than the purified factor as estimated from its mobility in sodium dodecyl sulfate-polyacrylamide gels (64,000 to 66,000). The human cDNA contains a single ORF of 501 amino acids that is nearly contiguous with murine ORF-2. Indeed, comparison of deduced human and murine amino acid sequences shows that the two polypeptides are 96.4% identical. A strictly conserved region is rich in serine and threonine (17.5%) and in proline (11%) residues (S-T-P domain). This S-T-P domain is immediately amino terminal to a string of 10 glutamines (in the human sequence) or a tract of alternating glutamine and proline residues (in the mouse sequence). Bacterial expression of the full-length (502-amino-acid) murine factor or of a core region comprising amino acids 133 to 395 generated polypeptides with the DNA binding specificity of CP2. These results confirmed the cloning of CP2 and delimited the region sufficient for specific DNA sequence recognition. Antisera produced against the core region recognized polypeptide species with Mrs of 64,000 and 66,000 in immune blots of nuclear extracts prepared from both murine and human cell lines, consistent with the size of the purified factor. Lastly, a data base search revealed that amino acids 63 to 270 of the murine factor are distantly related to a domain in the Drosophila gene regulatory factor Elf-1. Images PMID:1732747

  12. Characterization of nonprimate hepacivirus and construction of a functional molecular clone

    PubMed Central

    Scheel, Troels K. H.; Kapoor, Amit; Nishiuchi, Eiko; Brock, Kenny V.; Yu, Yingpu; Andrus, Linda; Gu, Meigang; Renshaw, Randall W.; Dubovi, Edward J.; McDonough, Sean P.; Van de Walle, Gerlinde R.; Lipkin, W. Ian; Divers, Thomas J.; Tennant, Bud C.; Rice, Charles M.

    2015-01-01

    Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼3% viremic. NPHV natural history and molecular virology remain largely unexplored, however. Here, we show that NPHV, like HCV, can cause persistent infection for over a decade, with high titers and negative strand RNA in the liver. NPHV is a near-universal contaminant of commercial horse sera for cell culture. The complete NPHV 3′-UTR was determined and consists of interspersed homopolymer tracts and an HCV-like 3′-terminal poly(U)-X-tail. NPHV translation is stimulated by miR-122 and the 3′-UTR and, similar to HCV, the NPHV NS3-4A protease can cleave mitochondrial antiviral-signaling protein to inactivate the retinoic acid-inducible gene I pathway. Using an NPHV consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host. PMID:25646476

  13. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    PubMed

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates. PMID:26577600

  14. Molecular cloning and characterization of four caspases members in Apostichopus japonicus.

    PubMed

    Shao, Yina; Li, Chenghua; Zhang, Weiwei; Duan, Xuemei; Li, Ye; Jin, Chunhua; Xiong, Jinbo; Qiu, Qiongfen

    2016-08-01

    The caspase family representing aspartate-specific cysteine proteases have been demonstrated to possess key roles in apoptosis and immune response. We previously demonstrated that LPS challenged Apostichopus japonicus coelomocyte could significantly induced apoptosis in vitro. However, apoptosis related molecules were scarcely investigated in this economic species. In the present work, we cloned and characterized four members caspase family from A. japonicus (designated as Ajcaspase-2, Ajcaspase-3, Ajcaspase-6, and Ajcaspase-8, respectively) by RACE. Multiple sequence alignment and structural analysis revealed that all Ajcaspases contained the conservative CASC domain at C terminal, in which some unique features for each Ajcaspase made them different from each other. These specific domains together with phylogenetic analysis supported that all these four identified proteins belonged to novel members of apoptotic signaling pathway in sea cucumber. Tissue distribution analysis revealed that four Ajcaspase genes were constitutively expressed in all examined tissues. The expression of Ajcaspase-2 was tightly correlated with that of Ajcaspase-8 in each detected tissues. Ajcaspase-3 and Ajcaspase-6 transcripts were both highly expressed in immune tissue of coelomocytes. Furthermore, the Vibrio splendidus challenged sea cucumber coelomocytes could significantly up-regulate the mRNA expressions of four genes. The expression levels of Ajcaspase-2 and Ajcaspase-8 were relative earlier than those of Ajcaspase-6 and Ajcaspase-3, respectively, which could be inferred that Ajcapase-2 might directly modulate Ajcaspase-6, and Ajcaspase-8 initiate the expression of Ajcaspase-3. The induce expressions differed among each Ajcaspase depending upon their roles such as initiator or effector caspase. All our results demonstrated that four Ajcaspases present diversified functions in apoptotic cascade signaling pathway of sea cucumber under immune response. PMID:27245866

  15. Molecular Cloning, Expression Analysis, and Preliminarily Functional Characterization of the Gene Encoding Protein Disulfide Isomerase from Jatropha curcas.

    PubMed

    Wang, Haibo; Zou, Zhurong; Gong, Ming

    2015-05-01

    Reactive oxygen species (ROS) in plants, arising from various environmental stresses, impair the thiol-contained proteins that are susceptible to irregular oxidative formation of disulfide bonds, which might be alleviated by a relatively specific modifier called protein disulfide isomerase (PDI). From our previous data of the transcriptome and digital gene expression of cold-hardened Jatropha curcas, a PDI gene was proposed to be cold-relevant. In this study, its full-length cDNA (JcPDI) was cloned, with the size of 1649 bp containing the entire open reading frame (ORF) of 1515 bp. This ORF encodes a polypeptide of 504 amino acids with theoretical molecular weight of 56.6 kDa and pI value of 4.85. One N-terminal signal peptide (-MASKGSIWSCMFLFSLI VAISAGEG-) and the C-terminal anchoring sequence motif (-KDEL-) specific to the endoplasmic reticulum, as well as two thioredoxin domains (-CGHC-), are also found by predictions. Through semi-quantitative RT-PCR, the expression of JcPDI was characterized to be tissue-differential strongly in leaves and roots, but weakly in stems, and of cold-induced alternations. Furthermore, JcPDI overexpression in yeast could notably enhance the cold resistance of host cells. Conclusively, these results explicitly suggested a considerable association of JcPDI to cold response and a putative application potential for its correlated genetic engineering. PMID:25825250

  16. Molecular cloning and characterization of a lysozyme cDNA from the mole cricket Gryllotalpa orientalis (Orthoptera: Gryllotalpidae).

    PubMed

    Kwon, Hyojung; Bang, Kyeongrin; Lee, Minsup; Cho, Saeyoull

    2014-09-01

    A full-length lysozyme cDNA from Gryllotalpa orientalis was cloned and sequenced. The deduced amino acid sequence of the lysozyme protein was 143 amino acids in length, with a calculated molecular mass of 15.84 kDa and an isoelectric point of 4.74. Sequence motifs, together with alignment and phylogenetic results, confirmed that G. orientalis lysozyme belongs to the C (chicken)-type lysozyme family of proteins. The protein sequence of lysozyme from G. orientalis showed high identity to that of Drosophila melanogaster (51.7 %); however, in contrast to D. melanogaster lysozyme, G. orientalis lysozyme was immune inducible and expressed in a wide range of tissues. Expression of G. orientalis lysozyme mRNA was highest at 8 h post-infection and subsequently decreased with time after bacterial infection. We also expressed G. orientalis lysozyme protein in vitro using the pET expression system. Compared with the negative control, over-expressed G. orientalis lysozyme showed antimicrobial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Bacillus subtilis by radial diffusion assay, with minimal inhibitory concentration values of 30.3 and 7.55 µM, respectively. These results indicate that G. orientalis lysozyme may have stronger antimicrobial activity than other lysozymes against a broad range of microorganisms. PMID:24929538

  17. Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes.

    PubMed Central

    Ohnuki, T; Katoh, T; Imanaka, T; Aiba, S

    1985-01-01

    Two tetracycline resistance genes of Streptomyces rimosus, an oxytetracycline producer, were cloned in Streptomyces griseus by using pOA15 as a vector plasmid. Expression of the cloned genes, designated as tetA and tetB was inducible in S. griseus as well as in the donor strain. The tetracycline resistance directed by tetA and tetB was characterized by examining the uptake of tetracycline and in vitro polyphenylalanine synthesis by the sensitive host and transformants with the resultant hybrid plasmids. Polyphenylalanine synthesis with crude ribosomes and the S150 fraction from S. griseus carrying the tetA plasmid was resistant to tetracycline, and, by a cross-test of ribosomes and S150 fraction coming from both the sensitive host and the resistant transformant, the resistance directed by tetA was revealed to reside mainly in crude ribosomes and slightly in the S150 fraction. However, the resistance in the crude ribosomes disappeared when they were washed with 1 M ammonium chloride. These results suggest that tetA specified the tetracycline resistance of the machinery for protein synthesis not through ribosomal subunits, but via an unidentified cytoplasmic factor. In contrast, S. griseus carrying the tetB plasmid accumulated less intracellular tetracycline than did the host, and the protein synthesis by reconstituting the ribosomes and S150 fraction was sensitive to the drug. Therefore, it is conceivable that tetB coded a tetracycline resistance determinant responsible for the reduced accumulation of tetracycline. Images PMID:2982781

  18. Thermal and molecular investigation of laser tissue welding

    SciTech Connect

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  19. Molecular phylogeny of the other tissue coccidia: Lankesterella and Caryospora.

    PubMed

    Barta, J R; Martin, D S; Carreno, R A; Siddall, M E; Profous-Juchelkat, H; Hozza, M; Powles, M A; Sundermann, C

    2001-02-01

    Nearly complete sequences were obtained from the 18S rDNA genes of Eimeria falciformis (the type species of the genus), Caryospora bigenetica, and Lankesterella minima. Two clones of the rDNA gene from C. higenetica varied slightly in primary structure. Parsimony-based and maximum likelihood phylogenetic reconstructions with a number of other apicomplexan taxa support 2 major clades within the Eucoccidiorida, i.e., the isosporoid coccidia (consisting of Toxoplasma, Neospora, Isospora [in part], and Sarcocystis spp.) and a second clade containing Lankesterella and Caryospora spp., as well as the eimeriid coccidia (Cyclospora, Isospora [in part], and Eimeria spp.). Our observations suggest that Caryospora spp. may not belong in the family Eimeriidae but rather may be allied with the family Lankesterellidae with which they share molecular and life history similarities. This may be a third lineage of coccidian parasites that has independently evolved a unique heteroxenous transmission strategy. PMID:11227876

  20. Molecular cloning, characterization and expression analysis of F-type lectin from pearl oyster Pinctada fucata.

    PubMed

    Anju, A; Jeswin, J; Thomas, P C; Vijayan, K K

    2013-07-01

    F-type lectin is an important type of pattern recognition receptor that can recognize and bind carbohydrate moieties on the surface of potential pathogens through its carbohydrate recognition domains (CRDs). This paper reports the cloning of an F-type lectin (designated as pfF-type lectin) from the pearl oyster (Pinctada fucata) using rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of this pfF-type lectin contains an open reading frame (ORF) of 588 bp coding for196 amino acids. A signal peptide at the N-terminus of the deduced polypeptide was predicted by the signal P program and the cleavage site is located between the positions of Gly(19)and Tyr(20). Conserved domain search at NCBI revealed the pfF-type lectin domain extends from Lys(55)to Val(192). Semi-quantitative analysis in adult tissues showed that the pfF-type lectin mRNA was abundantly expressed in haemocytes and gill and rarely expressed in other tissues tested. After challenge with lipopolysaccharide (LPS), expression of pfF-type lectin mRNA in haemocytes was increased, reaching the highest level at 4 h, then dropping to basal levels at 36 h. These results suggest that F-type lectin play a critical role in the innate immune system of the pearl oyster P. fucata. PMID:23624143

  1. Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet*

    PubMed Central

    Wang, Sheng-ping; Gao, Yun-ling; Liu, Gang; Deng, Dun; Chen, Rong-jun; Zhang, Yu-zhe; Li, Li-li; Wen, Qing-qi; Hou, Yong-qing; Feng, Ze-meng; Guo, Zhao-hui

    2015-01-01

    The energy homeostasis-associated (Enho) gene encodes a secreted protein, adropin, which regulates the expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor γ, a major regulator of lipogenesis. In the present study, the porcine (Sus scrofa) homologue of the Enho gene, which was named pEnho, was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The gene sequence was submitted into the GenBank of NCBI, and the access number is GQ414763. The pEnho encodes a protein of 76 amino acids which shows 75% similarity to Homo sapiens adropin. The expression profile of pEnho in tissues (liver, muscle, anterior jejunum, posterior jejunum, and ileum) was determined by quantitative real-time RT-PCR. pEnho was localized on porcine chromosome 10 and no introns were found. In conclusion, pEnho was cloned and analysed with the aim of increasing knowledge about glucose and lipid metabolism in piglets and helping to promote the health and growth of piglets through adropin regulation. PMID:26055914

  2. Molecular cloning, characterization and expression of the energy homeostasis-associated gene in piglet.

    PubMed

    Wang, Sheng-ping; Gao, Yun-ling; Liu, Gang; Deng, Dun; Chen, Rong-jun; Zhang, Yu-zhe; Li, Li-li; Wen, Qing-qi; Hou, Yong-qing; Feng, Ze-meng; Guo, Zhao-hui

    2015-06-01

    The energy homeostasis-associated (Enho) gene encodes a secreted protein, adropin, which regulates the expression of hepatic lipogenic genes and adipose tissue peroxisome proliferator-activated receptor γ, a major regulator of lipogenesis. In the present study, the porcine (Sus scrofa) homologue of the Enho gene, which was named pEnho, was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The gene sequence was submitted into the GenBank of NCBI, and the access number is GQ414763. The pEnho encodes a protein of 76 amino acids which shows 75% similarity to Homo sapiens adropin. The expression profile of pEnho in tissues (liver, muscle, anterior jejunum, posterior jejunum, and ileum) was determined by quantitative real-time RT-PCR. pEnho was localized on porcine chromosome 10 and no introns were found. In conclusion, pEnho was cloned and analysed with the aim of increasing knowledge about glucose and lipid metabolism in piglets and helping to promote the health and growth of piglets through adropin regulation. PMID:26055914

  3. Molecular cloning, sequence identification, and gene expression analysis of bovine ADCY2 gene.

    PubMed

    Li, Y X; Jin, H G; Yan, C G; Ren, C Y; Jiang, C J; Jin, C D; Seo, K S; Jin, X

    2014-06-01

    Adenylyl cyclase 2 (ADCY2), a class B member of adenylyl cyclases, is important in accelerating phosphor-acidification as well as glycogen synthesis and breakdown. Given its distinct role in flesh tenderization after butchering, we cloned and sequenced the ADCY2 gene from Yanbian cattle and assessed its expression in bovine tissues. A 2947 bp nucleotide sequence representing the full-length cDNA of bovine ADCY2 gene was obtained by 5' and 3' remote analysis computations for gene expression. Analyses of the putative protein sequence showed that ADCY2 had high homology among species, except with the non-mammal Oreochromis niloticus. Gene structural domain analyses in humans and rats indicated that the ADCY2 protein had no flaw; only the transmembrane domain was reduced and the CYCc structure domain was shortened. Assessment of ADCY2 expression in bovine tissues by real-time PCR showed that the highest expression was in the testes, followed by the longissimus dorsi, tensor fasciae latae, and latissimus dorsi. These data will serve as a foundation for further insight into the cattle ADCY2 gene. PMID:24797538

  4. Molecular cloning and functional characterization of duck mitochondrial antiviral-signaling protein (MAVS).

    PubMed

    Li, Huilin; Zhai, Yajun; Fan, Yufang; Chen, Huanchun; Zhang, Anding; Jin, Hui; Luo, Rui

    2016-03-01

    Mitochondrial antiviral-signaling protein (MAVS), also called IPS-1/VISA/Cardif, is an important molecule involved in host defense and triggers a signal for producing type I IFN. Currently the function of MAVS in ducks (duMAVS) remains largely unclear while significant progress has been made in mammals. In this study, the full-length duMAVS cDNA was cloned from duck embryo fibroblasts (DEFs) for the first time. Tissue specificity analysis showed duMAVS was universally expressed in all detected tissues. DEFs transfected with duMAVS were able to induce interferon-β (IFN-β) expression through activating interferon regulatory factor 1 (IRF1) and nuclear factor kappa B (NF-κB). Both the CARD-like domain and transmembrane domain were required for duMAVS signaling via deletion mutant analysis. In addition, poly(I:C)- or Sendai virus (SeV)-induced IFN-β expression in DEFs were significantly decreased by knock-down of duMAVS with siRNA. Altogether, these results indicate that MAVS is a critical immunoregulator in duck innate immune system. PMID:26586642

  5. Molecular cloning and characterization of two hypersensitive induced reaction genes from wheat infected by stripe rust pathogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel gene induced during hypersensitive reaction (HIR) in wheat was identified using in silico cloning and designated as TaHIR2. The TaHIR2 gene was deduced to encode a 284-amino acid protein, whose molecular mass and isoelectric point (pI) were 31.05 kD and 5.18, respectively. Amino acid sequenc...

  6. Use of molecularly cloned avian leukosis virus to study antigenic variation following infection of meat-type chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A molecularly cloned strain of subgroup J avian leukosis virus (ALV-J) termed R5-4 was used to study antigenic variation following infection of meat-type chickens. Chickens were inoculated with R5-4 virus at either 8 days of embryonation or at 1 week of age. Each chicken was housed in a separate is...

  7. RTA, a candidate G protein-coupled receptor: cloning, sequencing, and tissue distribution.

    PubMed Central

    Ross, P C; Figler, R A; Corjay, M H; Barber, C M; Adam, N; Harcus, D R; Lynch, K R

    1990-01-01

    Genomic and cDNA clones, encoding a protein that is a member of the guanine nucleotide-binding regulatory protein (G protein)-coupled receptor superfamily, were isolated by screening rat genomic and thoracic aorta cDNA libraries with an oligonucleotide encoding a highly conserved region of the M1 muscarinic acetylcholine receptor. Sequence analyses of these clones showed that they encode a 343-amino acid protein (named RTA). The RTA gene is single copy, as demonstrated by restriction mapping and Southern blotting of genomic clones and rat genomic DNA. Sequence analysis of the genomic clone further showed that the RTA gene has an intron interrupting the region encoding the amino terminus of the protein. RTA RNA sequences are relatively abundant throughout the gut, vas deferens, uterus, and aorta but are only barely detectable (on Northern blots) in liver, kidney, lung, and salivary gland. In the rat brain, RTA sequences are markedly abundant in the cerebellum. RTA is most closely related to the mas oncogene (34% identity), which has been suggested to be a forebrain angiotensin receptor. We cannot detect angiotensin binding to the RTA protein after introducing the cognate cDNA or mRNA into COS cells or Xenopus oocytes, respectively, nor can we detect an electrophysiologic response in the oocyte after application of angiotensin peptides. We conclude that RTA is not an angiotensin receptor; to date, we have been unable to identify its ligand. Images PMID:2109324

  8. Thermal and molecular investigation of laser tissue welding

    NASA Astrophysics Data System (ADS)

    Small, Ward, IV

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack on both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of the probability of long-term success. Molecular effects induced in the tissue by laser irradiation were investigated by measuring the concentrations of specific collagen covalent crosslinks and measuring the infrared absorption spectra before and after the laser exposure. This investigation yielded results pertaining to both the methods and mechanisms of laser tissue welding. The combination of two-color infrared thermometry to obtain accurate surface temperatures free from emissivity bias and computer modeling illustrated the importance of including evaporation in the simulations, which effectively serves as an inherent cooling mechanism during laser irradiation. Moreover, the hydration state predicted by the model was useful in assessing the role of electrostatic versus covalent bonding in the fusion. These tools also helped elicit differences between dye- enhanced liquid solders and solid-matrix patches in laser-assisted tissue welding, demonstrating the significance of repeatable energy delivery. Surprisingly, covalent bonds

  9. The ethics of cloning and creating embryonic stem cells as a source of tissue for transplantation: time to change the law in Australia.

    PubMed

    Savulescu, J

    2000-08-01

    Every day, people die because there are insufficient tissues available for transplantation. The development of cloning and embryonic stem (ES) cell line technologies offers real hope for developing better sources of tissues for transplantation. Moreover, these new technologies may mean that damaged tissue (for example, after a stroke or heart attack) can be replaced with normal functioning tissue rather than scar tissue. Research into 'therapeutic cloning' and the development of ES cell lines is illegal in several States in Australia. It is time to review that legislation in order to allow destructive embryo research. My argument is that at least research should be allowed on spare embryos from assisted reproduction; that it is only one moral view (of several plausible ones) of the status of the embryo which precludes producing embryos for research; that this view is mistaken and so it is morally permissible to produce embryos for research into therapeutic cloning. PMID:10985516

  10. Molecular cloning and phylogenetic analysis of Clonorchis sinensis elongation factor-1alpha.

    PubMed

    Kim, Tae Yun; Cho, Pyo Yun; Na, Jong Won; Hong, Sung-Jong

    2007-11-01

    Elongation factor-1 (EF-1) plays a primary role in protein synthesis, e.g., in the regulation of cell growth, aging, motility, embryogenesis, and signal transduction. The authors identified a clone CsIH23 by immunoscreening a Clonorchis sinensis cDNA library. The cDNA of CsIH23 was found to have a putative open reading frame containing 461 amino acids with a predicted molecular mass of 50.5 kDa. Its polypeptide sequence was highly homologous with EF-1alpha of parasites and vertebrate animals. CsIH23 polypeptide contained three GTP/GDP-binding sites, one ribosome-binding domain, one actin-binding domain, one tRNA-binding domain, and two glyceryl-phosphoryl-ethanolamine attachment sites. Based on these primary and secondary structural similarities, it was concluded that CsIH23 cDNA encodes C. sinensis EF-1alpha (CsEF-1alpha). In a molecular phylogenic tree, CsEF-1alpha clustered with the EF-1alpha of helminthic parasites. Subsequently, CsEF-1alpha recombinant protein was bacterially overexpressed and purified by Ni-NTA affinity column chromatography. Immunoblotting using CsEF-1alpha recombinant protein produced positive signals for all serum samples tested from clonorchiasis, opisthorchiasis viverinii, and paragonimiasis westermani patients and normal healthy controls. These findings suggest that recombinant CsEF-1alpha is of limited usefulness as serodiagnostic antigen for clonorchiasis. PMID:17674047

  11. Cloning and molecular characterization of telomerase reverse transcriptase (TERT) and telomere length analysis of Peromyscus leucopus

    PubMed Central

    Zhao, Xin; Ueda, Yasutaka; Kajigaya, Sachiko; Alaks, Glen; Desierto, Marie J; Townsley, Danielle M.; Dumitriu, Bogdan; Chen, Jichun; Lacy, Robert C.; Young, Neal S.

    2015-01-01

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase complex that regulates telomerase activity to maintain telomere length for all animals with linear chromosomes. As the Mus musculus (MM) laboratory mouse has very long telomeres compared to humans, a potential alternative animal model for telomere research is the Peromyscus leucopus (PL) mouse that has telomere lengths close to the human range and has the wild counterparts for comparison. We report the full TERT coding sequence (pTERT) from PL mice to use in the telomere research. Comparative analysis with eight other mammalian TERTs revealed a pTERT protein considerably homologous to other TERTs and preserved all TERT specific-sequence signatures, yet with some distinctive features. pTERT displayed the highest nucleotide and amino acid sequence homology with hamster TERT. Unlike human but similar to MM mice, pTERT expression was detected in various adult somatic tissues of PL mice, with the highest expression in testes. Four different captive stocks of PL mice and wild-captured PL mice each displayed group-specific average telomere lengths, with the longest and shortest telomeres in inbred and outbred stock mice, respectively. pTERT showed considerable numbers of synonymous and nonsynonymous mutations. A pTERT proximal promoter region cloned was homologous among PL and MM mice and rat, but with species-specific features. From PL mice, we further cloned and characterized ribosomal protein, large, P0 (pRPLP0) to use as an internal control for various assays. Peromyscus mice have been extensively used for various studies, including human diseases, for which pTERT and pRPLP0 would be useful tools. PMID:25962353

  12. Cloning and molecular characterization of telomerase reverse transcriptase (TERT) and telomere length analysis of Peromyscus leucopus.

    PubMed

    Zhao, Xin; Ueda, Yasutaka; Kajigaya, Sachiko; Alaks, Glen; Desierto, Marie J; Townsley, Danielle M; Dumitriu, Bogdan; Chen, Jichun; Lacy, Robert C; Young, Neal S

    2015-08-15

    Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase complex that regulates telomerase activity to maintain telomere length for all animals with linear chromosomes. As the Mus musculus (MM) laboratory mouse has very long telomeres compared to humans, a potential alternative animal model for telomere research is the Peromyscus leucopus (PL) mouse that has telomere lengths close to the human range and has the wild counterparts for comparison. We report the full TERT coding sequence (pTERT) from PL mice to use in the telomere research. Comparative analysis with eight other mammalian TERTs revealed a pTERT protein considerably homologous to other TERTs and preserved all TERT specific-sequence signatures, yet with some distinctive features. pTERT displayed the highest nucleotide and amino acid sequence homology with hamster TERT. Unlike human but similar to MM mice, pTERT expression was detected in various adult somatic tissues of PL mice, with the highest expression in testes. Four different captive stocks of PL mice and wild-captured PL mice each displayed group-specific average telomere lengths, with the longest and shortest telomeres in inbred and outbred stock mice, respectively. pTERT showed considerable numbers of synonymous and nonsynonymous mutations. A pTERT proximal promoter region cloned was homologous among PL and MM mice and rat, but with species-specific features. From PL mice, we further cloned and characterized ribosomal protein, large, P0 (pRPLP0) to use as an internal control for various assays. Peromyscus mice have been extensively used for various studies, including human diseases, for which pTERT and pRPLP0 would be useful tools. PMID:25962353

  13. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone

    PubMed Central

    Olsson, Per-Erik; Berg, A Håkan; von Hofsten, Jonas; Grahn, Birgitta; Hellqvist, Anna; Larsson, Anders; Karlsson, Johnny; Modig, Carina; Borg, Bertil; Thomas, Peter

    2005-01-01

    Although 11-ketotestosterone is a potent androgen and induces male secondary sex characteristics in many teleosts, androgen receptors with high binding affinity for 11-ketotestosterone or preferential activation by 11-ketotestosterone have not been identified. So, the mechanism by which 11-ketotestosterone exhibits such high potency remains unclear. Recently we cloned the cDNA of an 11-ketotestosterone regulated protein, spiggin, from three-spined stickleback renal tissue. As spiggin is the only identified gene product regulated by 11-ketotestosterone, the stickleback kidney is ideal for determination of the mechanism of 11-ketotestosterone gene regulation. A single androgen receptor gene with two splicing variants, belonging to the androgen receptor-β subfamily was cloned from stickleback kidney. A high affinity, saturable, single class of androgen specific binding sites, with the characteristics of an androgen receptor, was identified in renal cytosolic and nuclear fractions. Measurement of ligand binding moieties in the cytosolic and nuclear fractions as well as to the recombinant receptor revealed lower affinity for 11-ketotestosterone than for dihydrotestosterone. Treatment with different androgens did not up-regulate androgen receptor mRNA level or increase receptor abundance, suggesting that auto-regulation is not involved in differential ligand activation. However, comparison of the trans-activation potential of the stickleback androgen receptor with the human androgen receptor, in both human HepG2 cells and zebrafish ZFL cells, revealed preferential activation by 11-ketotestosterone of the stickleback receptor, but not of the human receptor. These findings demonstrate the presence of a receptor preferentially activated by 11-ketotestosterone in the three-spined stickleback, so far the only one known in any animal. PMID:16107211

  14. Molecular cloning and characterization of a Candida tsukubaensis alpha-glucosidase gene in the yeast Saccharomyces cerevisiae.

    PubMed

    Kinsella, B T; Larkin, A; Bolton, M; Cantwell, B A

    1991-07-01

    The molecular cloning of an alpha-glucosidase gene isolated from a Candida tsukubaensis (CBS 6389) genomic library in Saccharomyces cervisiae is reported. The cloned gene is contained within a 6.2 kb Sau3A DNA fragment and directs the synthesis and secretion of an amylolytic enzyme into the extracellular medium of the recombinant host, S. cerevisiae. The cloned enzyme was found to have an unusually broad substrate specificity and is capable of hydrolysing alpha-1,2, alpha-1,3, alpha-1,4 and alpha-1,6 linked, as well as aryl and alkyl, D-glucosides. On the basis of its substrate specificity profile, the cloned enzyme was classified as an alpha-glucosidase (E.C. 3.2.1.20). It has a pH optimum in the range 4.2-4.6, a temperature optimum of 58 degrees C and is readily inactivated at pasteurization temperature (60 degrees C). Southern blot analysis failed to reveal any homology between the cloned gene and genomic DNA isolated from other well characterized amylolytic yeasts. A rapid plate-assay, based on the utilization of a chromogenic substrate X-alpha-D-glucoside to detect the expression of the cloned alpha-glucosidase in S. cerevisiae transformants, was developed. PMID:1934116

  15. Full-length cDNA cloning, molecular characterization and differential expression analysis of peroxiredoxin 6 from Ovis aries.

    PubMed

    Liu, Nan-Nan; Liu, Zeng-Shan; Lu, Shi-Ying; Hu, Pan; Li, Yan-Song; Feng, Xiao-Li; Zhang, Shou-Yin; Wang, Nan; Meng, Qing-Feng; Yang, Yong-Jie; Tang, Feng; Xu, Yun-Ming; Zhang, Wen-Hui; Guo, Xing; Chen, Xiao-Feng; Zhou, Yu; Ren, Hong-Lin

    2015-04-15

    Peroxiredoxin 6 (Prdx6), an important antioxidant enzyme that can eliminate reactive oxygen species (ROS) to maintain homeostasis, is a bifunctional protein that possesses the activities of both glutathione peroxidase and phospholipase A2. In this study, a novel full-length Prdx6 cDNA (OaPrdx6) was cloned from Sheep (Ovis aries) using rapid amplification of cDNA ends (RACE). The full-length cDNA of OaPrdx6 was 1753bp containing a 5'-untranslated region (UTR) of 93bp, a 3'-UTR of 985bp with a poly(A) tail, and an open reading frame (ORF) of 675bp encoding a protein of 224 amino acid residues with a predicted molecular weight of 25.07kDa. The recombinant protein OaPrdx6 was expressed and purified, and its DNA protection activity was identified. In order to analyze the Prdx6 protein expression in tissues from O. aries, monoclonal antibodies against OaPrdx6 were prepared. Western blotting results indicated that OaPrdx6 protein could be detected in heart, liver, spleen, lung, kidney, stomach, intestine, muscle, lymph node and white blood cells, and the highest expression was found in lung while the lowest expression in muscle. Compared to the normal sheep group, the mRNA transcription level of Prdx6 in buffy coat was up-regulated in the group infected with a virulent field strain of Brucella melitensis, and down-regulated in the group inoculated with a vaccine strain S2 of brucellosis. The results indicated that Prdx6 was likely to be involved in the host immune responses against Brucella infection, and probably regarded as a molecular biomarker for distinguishing between animals infected with virulent Brucella infection and those inoculated with vaccine against brucellosis. PMID:25712755

  16. Molecular cloning and characterization of SoxB2 gene from Zhikong scallop Chlamys farreri

    NASA Astrophysics Data System (ADS)

    He, Yan; Bao, Zhenmin; Guo, Huihui; Zhang, Yueyue; Zhang, Lingling; Wang, Shi; Hu, Jingjie; Hu, Xiaoli

    2013-11-01

    The Sox proteins play critical roles during the development of animals, including sex determination and central nervous system development. In this study, the SoxB2 gene was cloned from a mollusk, the Zhikong scallop ( Chlamys farreri), and characterized with respect to phylogeny and tissue distribution. The full-length cDNA and genomic DNA sequences of C. farreri SoxB2 ( Cf SoxB2) were obtained by rapid amplification of cDNA ends and genome walking, respectively, using a partial cDNA fragment from the highly conserved DNA-binding domain, i.e., the High Mobility Group (HMG) box. The full-length cDNA sequence of Cf SoxB2 was 2 048 bp and encoded 268 amino acids protein. The genomic sequence was 5 551 bp in length with only one exon. Several conserved elements, such as the TATA-box, GC-box, CAAT-box, GATA-box, and Sox/sry-sex/testis-determining and related HMG box factors, were found in the promoter region. Furthermore, real-time quantitative reverse transcription PCR assays were carried out to assess the mRNA expression of Cf SoxB 2 in different tissues. SoxB2 was highly expressed in the mantle, moderately in the digestive gland and gill, and weakly expressed in the gonad, kidney and adductor muscle. In male and female gonads at different developmental stages of reproduction, the expression levels of Cf SoxB2 were similar. Considering the specific expression and roles of SoxB 2 in other animals, in particular vertebrates, and the fact that there are many pallial nerves in the mantle, cerebral ganglia in the digestive gland and gill nerves in gill, we propose a possible essential role in nervous tissue function for Sox B 2 in C. farreri.

  17. Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing

    PubMed Central

    Siala, Mariam; Jaulhac, Benoit; Gdoura, Radhouane; Sibilia, Jean; Fourati, Hela; Younes, Mohamed; Baklouti, Sofien; Bargaoui, Naceur; Sellami, Slaheddine; Znazen, Abir; Barthel, Cathy; Collin, Elody; Hammami, Adnane; Sghir, Abdelghani

    2008-01-01

    Introduction Bacteria and/or their antigens have been implicated in the pathogenesis of reactive arthritis (ReA). Several studies have reported the presence of bacterial antigens and nucleic acids of bacteria other than those specified by diagnostic criteria for ReA in joint specimens from patients with ReA and various arthritides. The present study was conducted to detect any bacterial DNA and identify bacterial species that are present in the synovial tissue of Tunisian patients with reactive arthritis and undifferentiated arthritis (UA) using PCR, cloning and sequencing. Methods We examined synovial tissue samples from 28 patients: six patients with ReA and nine with UA, and a control group consisting of seven patients with rheumatoid arthritis and six with osteoarthritis (OA). Using broad-range bacterial PCR producing a 1,400-base-pair fragment from the 16S rRNA gene, at least 24 clones were sequenced for each synovial tissue sample. To identify the corresponding bacteria, DNA sequences were compared with sequences from the EMBL (European Molecular Biology Laboratory) database. Results Bacterial DNA was detected in 75% of the 28 synovial tissue samples. DNA from 68 various bacterial species were found in ReA and UA samples, whereas DNA from 12 bacteria were detected in control group samples. Most of the bacterial DNAs detected were from skin or intestinal bacteria. DNA from bacteria known to trigger ReA, such as Shigella flexneri and Shigella sonnei, were detected in ReA and UA samples of synovial tissue and not in control samples. DNA from various bacterial species detected in this study have not previously been found in synovial samples. Conclusion This study is the first to use broad-range PCR targeting the full 16S rRNA gene for detection of bacterial DNA in synovial tissue. We detected DNA from a wide spectrum of bacterial species, including those known to be involved in ReA and others not previously associated with ReA or related arthritis. The pathogenic

  18. Molecular cloning and pharmacological characterization of giant panda (Ailuropoda melanoleuca) melanocortin-4 receptor.

    PubMed

    Wang, Zhi-Qiang; Wang, Wei; Shi, Lin; Chai, Ji-Tian; Zhang, Xin-Jun; Tao, Ya-Xiong

    2016-04-01

    The melanocortin-4 receptor (MC4R) is critical in regulating mammalian food intake and energy expenditure. Giant panda (Ailuropoda melanoleuca), famous as the living fossil, is an endangered species endemic to China. We are interested in exploring the functions of the giant panda MC4R (amMC4R) in regulating energy homeostasis and report herein the molecular cloning and pharmacology of the amMC4R. Sequence analysis revealed that amMC4R was highly homologous (>88%) at nucleotide and amino acid sequences to several mammalian MC4Rs. Western blot revealed that the expression construct myc-amMC4R in pcDNA3.1 was successfully constructed and expressed in HEK293T cells. With human MC4R (hMC4R) as a control, pharmacological characteristics of amMC4R were analyzed with binding and signaling assays. Four agonists, including [Nle(4), D-Phe(7)]-α-melanocyte stimulating hormone (NDP-MSH), α- and β-MSH, and a small molecule agonist, THIQ, were used in binding and signaling assays. We showed that amMC4R bound NDP-MSH with the highest affinity followed by THIQ, α-MSH, and β-MSH, with the same ranking order as hMC4R. Treatment of HEK293T cells expressing amMC4R with different concentrations of agonists resulted in dose-dependent increase of intracellular cAMP levels, with similar EC50s for the four agonists. The results suggested that the cloned amMC4R encoded a functional MC4R. The availability of amMC4R and its binding and signaling properties will facilitate the investigation of amMC4R in regulating food intake and energy homeostasis. PMID:26896843

  19. Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley.

    PubMed

    Kwasniewski, Miroslaw; Szarejko, Iwona

    2006-07-01

    Root hairs are specialized epidermal cells that play a role in the uptake of water and nutrients from the rhizosphere and serve as a site of interaction with soil microorganisms. The process of root hair formation is well characterized in Arabidopsis (Arabidopsis thaliana); however, there is a very little information about the genetic and molecular basis of root hair development in monocots. Here, we report on isolation and cloning of the beta-expansin (EXPB) gene HvEXPB1, tightly related to root hair initiation in barley (Hordeum vulgare). Using root transcriptome differentiation in the wild-type/root-hairless mutant system, a cDNA fragment present in roots of wild-type plants only was identified. After cloning of full-length cDNA and genomic sequences flanking the identified fragment, the subsequent bioinformatics analyses revealed homology of the protein coded by the identified gene to the EXPB family. Reverse transcription-PCR showed that expression of HvEXPB1 cosegregated with the root hair phenotype in F2 progeny of the cross between the hairless mutant rhl1.a and the wild-type Karat parent variety. Expression of the HvEXPB1 gene was root specific; it was expressed in roots of wild-type forms, but not in coleoptiles, leaves, tillers, and spikes. The identified gene was active in roots of two other analyzed root hair mutants: rhp1.a developing root hair primordia only and rhs1.a with very short root hairs. Contrary to this, a complete lack of HvEXPB1 expression was observed in roots of the spontaneous root-hairless mutant bald root barley. All these observations suggest a role of the HvEXPB1 gene in the process of root hair formation in barley. PMID:16679418

  20. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    PubMed Central

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R.

    2014-01-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrains fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologs OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. PMID:25218291

  1. Molecular cloning and characterization of genistein 4'-O-glucoside specific glycosyltransferase from Bacopa monniera.

    PubMed

    Ruby; Santosh Kumar, R J; Vishwakarma, Rishi K; Singh, Somesh; Khan, Bashir M

    2014-07-01

    Health related benefits of isoflavones such as genistein are well known. Glycosylation of genistein yields different glycosides like genistein 7-O-glycoside (genistin) and genistein 4'-O-glycoside (sophoricoside). This is the first report on isolation, cloning and functional characterization of a glycosyltransferase specific for genistein 4'-O-glucoside from Bacopa monniera, an important Indian medicinal herb. The glycosyltransferase from B. monniera (UGT74W1) showed 49% identity at amino acid level with the glycosyltransferases from Lycium barbarum. The UGT74W1 sequence contained all the conserved motifs present in plant glycosyltransferases. UGT74W1 was cloned in pET-30b (+) expression vector and transformed into E. coli. The molecular mass of over expressed protein was found to be around 52 kDa. Functional characterization of the enzyme was performed using different substrates. Product analysis was done using LC-MS and HPLC, which confirmed its specificity for genistein 4'-O-glucoside. Immuno-localization studies of the UGT74W1 showed its localization in the vascular bundle. Spatio-temporal expression studies under normal and stressed conditions were also performed. The control B. monniera plant showed maximum expression of UGT74W1 in leaves followed by roots and stem. Salicylic acid treatment causes almost tenfold increase in UGT74W1 expression in roots, while leaves and stem showed decrease in expression. Since salicylic acid is generated at the time of injury or wound caused by pathogens, this increase in UGT74W1 expression under salicylic acid stress might point towards its role in defense mechanism. PMID:24664316

  2. Molecular cloning and functional characterization of a rainbow trout liver Oatp.

    PubMed

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R

    2014-11-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772bp containing a 2115bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9μM and 13.4μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. PMID:25218291

  3. Molecular cloning and expression in Escherichia coli of a cellodextrinase gene from Bacteroides succinogenes S85.

    PubMed Central

    Gong, J H; Lo, R Y; Forsberg, C W

    1989-01-01

    A DNA fragment coding for a cellodextrinase of Bacteroides succinogenes S85 was isolated by screening of a pBR322 gene library in Escherichia coli HB101. Of 100,000 colonies screened on a complex medium with methylumbelliferyl-beta-D-cellobioside as the indicator substrate, two cellodextrinase-positive clones (CB1 and CB2) were isolated. The DNA inserts from the two recombinant plasmids were 7.7 kilobase pairs in size and had similar restriction maps. After subcloning from pCB2, a 2.5-kilobase-pair insert which coded for cellodextrinase activity was isolated. The enzyme was located in the cytoplasm of the E. coli host. It exhibited no activity on carboxymethyl cellulose, Avicel microcrystalline cellulose, acid-swollen cellulose, or cellobiose but hydrolyzed p-nitrophenyl-beta-D-cellobioside and p-nitrophenyl-beta-D-lactoside. The Km (0.1 mM) for the hydrolysis of p-nitrophenyl-cellobioside by the enzyme expressed in E. coli was similar to that reported for the purified enzyme from B. succinogenes. Expression of the cellodextrinase gene was subjected to catabolite repression by glucose and was not induced by cellobiose. The origin of the DNA insert from B. succinogenes was confirmed by Southern blot analysis. Western blotting (immunoblotting) using antibodies raised against the purified B. succinogenes cellodextrinase revealed a protein with a molecular weight of approximately 50,000 in E. coli clones which comigrated with the native enzyme isolated from B. succinogenes. These data indicate that the cellodextrinase gene expressed in E. coli is fully functional and codes for an enzyme with properties similar to those of the native enzyme. Images PMID:2650617

  4. Molecular cloning and functional characterization of a rainbow trout liver Oatp

    SciTech Connect

    Steiner, Konstanze; Hagenbuch, Bruno; Dietrich, Daniel R.

    2014-11-01

    Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772 bp containing a 2115 bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80 kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a K{sub m} value of 13.9 μM and 13.4 μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a K{sub m} value of 103 μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications. - Highlights: • A new Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. • rtOatp1d1 is predominantly expressed in the liver. • rtOatp1d1 displays multi-specific transport of endogenous and xenobiotic substrates. • rtOatp1d1 is a homologue of the OATP1A1, OATP1B1 and OATP1B3. • rtOatp1d1 is a microcystin (MC) transporter.

  5. Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet.

    PubMed Central

    Chiou, T J; Bush, D R

    1996-01-01

    Several plant genes have been cloned that encode members of the sugar transporter subgroup of the major facilitator superfamily of transporters. Here we report the cloning, expression, and membrane localization of one of these porters found in sugar beet (Beta vulgaris L.). This clone, cDNA-1, codes for a protein with 490 amino acids and an estimated molecular mass of 54 kD. The predicted membrane topology and sequence homology suggest that cDNA-1 is a member of the sugar transporter family. RNA gel blot analysis revealed that this putative sugar transporter is expressed in all vegetative tissues and expression increases with development in leaves. DNA gel blot analysis indicated that multiple gene copies exist for this putative sugar transporter in the sugar beet genome. Antibodies directed against small peptides representing the N- and C-terminal domains of the cDNA1 protein identified a 40-kD polypeptide in microsomes isolated from cDNA-1-transformed yeast (Saccharomyces cerevisiae). Moreover, the same protein was identified in sugar beet and transgenic tobacco (Nicotaina tobacum L.) membrane fractions. Detailed analysis of the transporter's distribution across linear sucrose gradients and flotation centrifugations showed that it co-migrates with tonoplast membrane markers. We conclude that this carrier is located on the tonoplast membrane and that it may mediate sugar partitioning between the vacuole and cytoplasmic compartments. PMID:8742332

  6. Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique.

    PubMed

    Das, Soumita; Sen, Monali; Saha, Chinmay; Chakraborty, Debjani; Das, Antara; Banerjee, Manidipa; Seal, Anindita

    2011-07-01

    Heavy metal transporters play a key role in regulating metal accumulation and transport in plants. These are important candidate genes to study in metal tolerant and accumulator plants for their potential use in environmental clean up. We coupled a degenerate primer-based RT-PCR approach with a molecular fingerprinting technique based on amplified rDNA restriction analysis (ARDRA) to identify novel ESTs corresponding to heavy metal transporters from metal accumulator Brassica juncea. We utilized this technique to clone several family members of natural resistance-associated macrophage proteins (NRAMP) and yellow stripe-like proteins (YSL) in a high throughput manner to distinguish between closely related isoforms and/or allelic variants from the allopolyploid B. juncea. Partial clones of 23 Brassica juncea NRAMPs and 27 YSLs were obtained with similarity to known Arabidopsis thaliana and Noccaea (Thlaspi) caerulescens NRAMP and YSL genes. The cloned transporters showed Brassica-specific changes in domains, which can have important functional consequences. Semi-quantitative RT-PCR-based expression analysis of chosen members indicated that even closely related isoforms/allelic variants of BjNRAMP and BjYSL have distinct tissue-specific and metal-dependent expressions which might be essential for adaptive fitness and heavy metal tolerance. Consistent to this, BjYSL6.1 and BjYSL5.8 were found to show elevated expressions specifically in cadmium-treated shoots and lead-treated roots of B. juncea, respectively. PMID:21394470

  7. The human SOX11 gene: Cloning, chromosomal assignment and tissue expression

    SciTech Connect

    Jay, P.; Goze, C.; Marsollier, C.; Taviaux, S.

    1995-09-20

    The mammalian testis determining gene SRY contains an HMG box-related DNA binding motif. By analogy a family of genes related to SRY in the HMG domain have been called SOX (SRY box-related genes). We have cloned and characterized the human SOX11 gene using the partial cloning of both human and mouse SOX11 genes and mapped it to chromosome 2p25. The SOX11 sequence is strongly conserved with the chicken homologue and is related to SOX4. It contains several putative transcriptional either activator or repressor domains. SOX11 expression pattern is consistent with the hypothesis that this gene is important in the developing nervous system. 20 refs., 5 figs.

  8. Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway.

    PubMed

    Paz-Ares, J; Wienand, U; Peterson, P A; Saedler, H

    1986-05-01

    The c locus of Zea mays, involved in the regulation of anthocyanin biosynthesis, has been cloned by transposon tagging. A clone (# 18En) containing a full size En1 element was initially isolated from the En element-induced mutable allele c-m668655. Sequences of clone # 18En flanking the En1 element were used to clone other c mutants, whose structure was predicted genetically. Clone #23En (isolated from c-m668613) contained a full size En1 element, clone #3Ds (isolated from c-m2) a Ds element and clone # 5 (isolated from c+) had no element on the cloned fragment. From these data we conclude that the clones obtained contain at least part of the c locus. Preliminary data on transcript analysis using a 1-kb DNA fragment from wild-type clone # 5 showed that at least three transcripts are encoded by that part of the locus, indicating that c is a complex locus. PMID:15957214

  9. Molecular cloning, sequence analysis and expression of a novel gene induced by near-UV light in Bipolaris oryzae.

    PubMed

    Kihara, J; Sato, A; Okajima, S; Kumagai, T

    2001-09-01

    A cDNA clone derived from a novel gene (uvi-1) that is inducible by near-UV light was isolated by a differential screening procedure from a cDNA library of the fungus Bipolaris oryzae and characterized further. Sequence analysis of the clone revealed that uvi-1 encodes a protein with a putative molecular mass of 17 kDa; the UVI-1 protein shows significant similarity to a putative protein encoded by a cDNA which is expressed during appressorium formation in the rice blast fungus, Magnaporthe grisea. The corresponding genomic clone was also isolated, and Southern analysis of genomic DNA indicated the presence of a single copy of the uvi-1 gene in B. oryzae. Northern analysis showed that the uvi-1 transcripts are induced by exposure to near-UV light, but not by blue or red light. Furthermore, accumulation of uvi-1 transcripts is observed during differentiation of the appressorium. PMID:11589579

  10. The superoxide dismutase from red claw crayfish, Cherax quadricarinatus: molecular cloning and characterization analysis.

    PubMed

    Gu, Wei; Chen, Jing; Hou, Libo; Huang, Yanqing; Xia, Siyao; Meng, Qingguo; Wang, Wen

    2014-11-01

    In the present study, an extracellular copper-zinc superoxide dismutase (ecCuZnSOD) gene and a mitochondrial manganese superoxide dismutase (mtMnSOD) gene were cloned from hemocytes of red claw crayfish, Cherax quadricarinatus. The open reading frame (ORF) of ecCuZnSOD is 498 bp and encodes a 166 amino acids (aa) protein, whereas the ORF of mtMnSOD is 654 bp and encodes a 218 aa protein. The amino acid sequences of C. quadricarinatus ecCuZnSOD and mtMnSOD showed high similarities with those of ecCuZnSODs and mtMnSODs of other crustaceans, respectively. Both ecCuZnSOD and mtMnSOD of C. quadricarinatus were highly expressed in hepatopancreas, hemocytes, intestine, and gill; low transcript levels were seen in other tissues (heart, muscle, and nerve). The immune responses of ecCuZnSOD and mtMnSOD were studied following inoculation with Spiroplasma eriocheiris and Aeromonas hydrophila. After S. eriocheiris or A. hydrophila challenge, mRNA transcription of ecCuZnSOD and mtMnSOD in hemocytes and gill was upregulated. mRNA transcription of ecCuZnSOD in the hepatopancreas was also upregulated after S. eriocheiris or A. hydrophila inoculation. mtMnSOD in hepatopancreas was upregulated after A. hydrophila inoculation, whereas this was down-regulated after S. eriocheiris challenge. After S. eriocheiris and A. hydrophila challenge, total SOD activity and CuZnSOD activity both increased compared to control group. The results showed that these SODs from C. quadricarinatus likely play an important role in protecting some tissues from reactive oxygen intermediates produced during challenge from S. eriocheiris and A. hydrophila. PMID:25366155

  11. Molecular cloning and characterization of three beta-defensins from canine testes.

    PubMed

    Sang, Yongming; Ortega, M Teresa; Blecha, Frank; Prakash, Om; Melgarejo, Tonatiuh

    2005-05-01

    Mammalian beta-defensins are small cationic peptides possessing broad antimicrobial and physiological activities. Because dogs are particularly resilient to sexually transmitted diseases, it has been proposed that their antimicrobial peptide repertoire might provide insight into novel antimicrobial therapeutics and treatment regimens. To investigate this proposal, we cloned the full-length cDNA of three canine beta-defensin isoforms (cBD-1, -2, and -3) from canine testicular tissues. Their predicted peptides share identical N-terminal 65-amino-acid residues, including the beta-defensin consensus six-cysteine motif. The two longer isoforms, cBD-2 and -3, possess 4 and 34 additional amino acids, respectively, at the C terminus. To evaluate the antimicrobial activity of cBD, a 34-amino-acid peptide derived from the shared mature peptide region was synthesized. Canine beta-defensin displayed broad antimicrobial activity against gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus; MICs of 6 and 100 mug/ml, respectively), gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, and Neisseria gonorrhoeae; MICs of 20 to 50, 20, and 50 mug/ml, respectively), and yeast (Candida albicans; MIC of 5 to 50 mug/ml) and lower activity against Ureaplasma urealyticum and U. canigenitalium (MIC of 200 mug/ml). Antimicrobial potency was significantly reduced at salt concentrations higher than 140 mM. All three canine beta-defensins were highly expressed in testis. In situ hybridization indicated that cBD-1 was expressed primarily in Sertoli cells within the seminiferous tubules. In contrast, cBD-2 was located primarily within Leydig cells. The longest isoform, cBD-3, was detected in Sertoli cells and to a lesser extent in the interstitium. The tissue-specific expression and broad antimicrobial activity suggest that canine beta-defensins play an important role in host defense and other physiological functions of the male reproductive system. PMID:15845463

  12. Molecular cloning and sexually dimorphic expression of wnt4 in olive flounder (Paralichthys olivaceus).

    PubMed

    Weng, Shenda; You, Feng; Fan, Zhaofei; Wang, Lijuan; Wu, Zhihao; Zou, Yuxia

    2016-08-01

    WNT4 (wingless-type MMTV integration site family, member 4) is regarded as a key regulator of gonad differentiation in mammalians. However, the potential role of wnt4 in teleosts during gonad differentiation and development is still unclear. The full-length cDNA sequence of wnt4 in olive flounder (Paralichthys olivaceus) was obtained using RACE (rapid amplification of cDNA ends) technique. The wnt4 ORF contains 1059 nucleotides, encoding a protein with a signal peptide domain and a wnt family domain. Expression in tissues of adult flounders was analyzed by real-time RT-PCR. The results showed that wnt4 was widely expressed in multiple tissues of flounders, and the expression level was significantly higher in ovary than in testis. Then wnt4 expression pattern was investigated during gonadal differentiation period and at gonadal development stages (I-V). The results showed the expression levels were significantly higher in testis than in ovary during gonadal differentiation. Notably, wnt4 expression had a very significant increase before testis differentiation. At gonad different developmental stages, there was no expression signal at stage I or stage II, and the expression of wnt4 was much stronger in ovary than in testis at stage III and stage IV, followed by a faint expression in stage V in both sexes. Our results imply that cloned wnt4 could be wnt4a. It is a sex-related gene and its expression pattern in gonadal differentiation period of flounder is different from that in mammalians or other teleosts. Flounder wnt4 might play more important role in testis than in ovary during gonadal differentiation. PMID:26920537

  13. Molecular cloning, characterization, and expression profiles of androgen receptors in spotted scat (Scatophagus argus).

    PubMed

    Chen, H P; Deng, S P; Dai, M L; Zhu, C H; Li, G L

    2016-01-01

    Androgen plays critical roles in vertebrate reproductive systems via androgen receptors (ARs). In the present study, the full-length spotted scat (Scatophagus argus) androgen receptor (sAR) cDNA sequence was cloned from testis. The sAR cDNA measured 2448 bp in length with an open-reading frame of 2289 bp, encoding 763 amino acids. Amino acid alignment analyses showed that the sARs exhibited highly evolutionary conserved functional domains. Phylogenetically, the sARs clustered within the ARβ common vertebrate group. Real-time polymerase chain reaction (RT-PCR) revealed that sAR expression varied in level and distribution throughout the tissues of both females and males. sAR expression was detected during testicular development by quantitative RT-PCR. The results showed that the highest transcription of sARs was observed in the mid-testicular stage, and remained at a high expression level until the late-testicular stage. In addition, the effects of 17α-methyltestosterone (MT) and estrogen (E2) on the expression of sARs in ovaries were determined using quantitative RT-PCR. sAR expression increased at 12 and 24 h post-MT treatment and decreased with E2 treatment. The present study provides preliminary evidence indicating gonadal plasticity of spotted scat under exogenous steroidal hormone treatments. It also provides a theoretical basis for sex reversal and production of artificial pseudo-males for female monosex breeding. PMID:27173207

  14. Molecular cloning of the mouse CCK gene: expression in different brain regions and during cortical development.

    PubMed Central

    Vitale, M; Vashishtha, A; Linzer, E; Powell, D J; Friedman, J M

    1991-01-01

    In this paper we describe experiments that address specific issues concerning the regulation of the mouse cholecystokinin gene in brain and intestine. The mouse cholecystokinin gene was cloned and sequenced. Extensive homology among the mouse, man and rat genes was noted particularly in the three exons and the regions upstream of the RNA start site. RNAse protection assays for each of the three exons were used to demonstrate that CCK is expressed in only a subset of tissues and that the same cap site and splice choices are used in brain, intestine as well as in cerebellum, cortex, midbrain, hypothalamus and hippocampus. CCK RNA was also noted to be detectable in kidney. Thus the same gene using the same promoter is expressed in subsets of cells that differ in their biochemical, morphologic and functional characteristics. The level of expression of CCK was also monitored during mouse cortical development and the appearance of CCK RNA was compared to glutamate decarboxylase (GAD), enkephalin and somatostatin. It was noted that each of these cortical markers was first expressed at different times during cortical development. The appearance of CCK RNA during intestinal development was also measured and found to precede appearance in cortex by several days. Images PMID:2011497

  15. Molecular cloning and characterization of a Spirometra erinacei casein kinase I.

    PubMed

    Liu, Li Na; Wang, Han; Jiang, Peng; Wang, Man; Xu, Ming Guo; Wang, Li Fu; Qi, Xin; Zhang, Xi; Cui, Jing; Wang, Zhong Quan

    2015-12-01

    The Spirometra erinacei casein kinase I (SeCKI) gene was cloned and expressed in Escherichia coli, and its characteristics were investigated in this study. The recombinant SeCP protein (rSeCKI) was purified. The vaccination of mice with rSeCKI induced the Th1/Th2-mixed type of immune response with Th2 predominant (high levels of IgG1). Western blotting analysis showed that rSeCP was recognized by the sera of plerocercoid-infected mice, and anti-rSeCP serum recognized the native SeCP protein of plerocercoid crude antigens. Transcription and expression of SeCP was observed at the plerocercoid and adult stages of S. erinacei. Immunolocalization identified SeCKI in the tegument and parenchymal tissues of plerocercoids and in the teguments of adults. SeCKI appeared to be essential indispensable for the S. erinacei development and survival in host, but its biological functions need to be further investigated. PMID:26437645

  16. Molecular cloning and functional characterization of spexin in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Li, Shuisheng; Liu, Qiongyu; Xiao, Ling; Chen, Huapu; Li, Guangli; Zhang, Yong; Lin, Haoran

    2016-01-01

    Spexin is a newly discovered neuropeptide in vertebrates. Comprehensive comparative studies are required to unveil its biological functions. In order to ascertain the neuroendocrine function of spexin in orange-spotted grouper, its full-length cDNA and genomic DNA sequences were cloned and analyzed. Sequence analyses showed that the spexin gene structure is composed of six exons and five introns, and the amino acids of mature peptide (spexin-14) in grouper are identical to that of other fish. Tissue expression analysis found that grouper spexin is highly expressed in the brain, liver and ovary. Real time-PCR analysis demonstrated that the hypothalamic expression of spexin declined gradually during the ovarian development, and was up-regulated by food deprivation. Intraperitoneal administration of spexin-14 peptides to grouper significantly elevated the mRNA levels of proopiomelanocortin (pomc) and suppressed the orexin expression in the hypothalamus, but could not change the hypothalamic expression of gonadotropin releasing hormone 1 (gnrh1). Both in vivo and in vitro administration of spexin could not significantly influence the expression of follicle-stimulating hormone β (fshβ) and luteinizing hormone β (lhβ) in the pituitary with the exception of an inhibition of gh expression. Our data suggested that the spexin has a significant role in the regulation of energy metabolism and food intake in orange-spotted grouper. PMID:26944307

  17. Molecular cloning and expression of an additional epidermal growth factor receptor-related gene.

    PubMed Central

    Plowman, G D; Whitney, G S; Neubauer, M G; Green, J M; McDonald, V L; Todaro, G J; Shoyab, M

    1990-01-01

    Epidermal growth factor (EGF), transforming growth factor alpha (TGF-alpha), and amphiregulin are structurally and functionally related growth regulatory proteins. These secreted polypeptides all bind to the 170-kDa cell-surface EGF receptor, activating its intrinsic kinase activity. However, amphiregulin exhibits different activities than EGF and TGF-alpha in a number of biological assays. Amphiregulin only partially competes with EGF for binding EGF receptor, and amphiregulin does not induce anchorage-independent growth of normal rat kidney cells (NRK) in the presence of TGF-beta. Amphiregulin also appears to abrogate the stimulatory effect of TGF-alpha on the growth of several aggressive epithelial carcinomas that overexpress EGF receptor. These findings suggest that amphiregulin may interact with a separate receptor in certain cell types. Here we report the cloning of another member of the human EGF receptor (HER) family of receptor tyrosine kinases, which we have named "HER3/ERRB3." The cDNA was isolated from a human carcinoma cell line, and its 6-kilobase transcript was identified in various human tissues. We have generated peptide-specific antisera that recognizes the 160-kDa HER3 protein when transiently expressed in COS cells. These reagents will allow us to determine whether HER3 binds amphiregulin or other growth regulatory proteins and what role HER3 protein plays in the regulation of cell growth. Images PMID:2164210

  18. Molecular cloning of bullfrog saxiphilin: a unique relative of the transferrin family that binds saxitoxin.

    PubMed Central

    Morabito, M A; Moczydlowski, E

    1994-01-01

    Plasma and tissue of certain vertebrates contain a protein called saxiphilin that specifically binds the neurotoxin saxitoxin with nanomolar affinity. We describe the isolation of a cDNA clone of saxiphilin from liver of the North American bullfrog (Rana catesbeiana). The cDNA sequence encodes a protein that is evolutionarily related to members of the transferrin family of Fe(3+)-binding proteins. Pairwise sequence alignment of saxiphilin with various transferrins reveals amino acid identity as high as 51% and predicts 14 disulfide bonds that are highly conserved. The larger size of saxiphilin (91 kDa) versus serum transferrin (approximately 78 kDa) is primarily due to a unique insertion of 144 residues. This insertion contains a 49-residue domain classified as a type 1 repetitive element of thyroglobulin, which is shared by a variety of membrane, secreted, and extracellular matrix proteins. Saxiphilin also differs from transferrins in 9 of 10 highly conserved amino acids in the two homologous Fe3+/HCO3-binding sites of transferrin. Identification of saxiphilin implies that transferrin-like proteins comprise a diverse superfamily with functions other than iron binding. Images PMID:8146142

  19. Molecular cloning, characterization and expression analysis of the complement component C6 gene in grass carp.

    PubMed

    Shen, Yu-Bang; Zhang, Jun-Bin; Xu, Xiao-Yan; Li, Jia-Le

    2011-05-15

    The complement system, as a representative of innate immunity, plays a key role in the host defense against infections. C6 is the member of complement components creating the membrane attack complex (MAC). In this study, we cloned and characterized the grass carp complement component C6 (gcC6) gene. Our data showed that gcC6 gene contained a 2724bp open reading frame (ORF), a 237bp 5'-untranslated region (UTR) and a 219bp 3'-UTR. The deduced amino acid sequence of gcC6 showed 77.6% and 58.9% identity to zebrafish C6 and rainbow trout C6, respectively. GcC6 gene was expressed in a wide range of grass carp tissues, and the highest expression level of gcC6 was detected in the spleen and liver. Upon challenge with Aeromonas hydrophila, its expression was significantly up-regulated in muscle, trunk kidney, liver, head kidney, spleen, heart and intestine, whereas it was down-regulated in the brain and skin. The expression level of gcC6 was high at the unfertilized egg stage. It was significantly increased at 1 day post-hatching, but it was decreased at 10 days post-hatching. This result suggested that the complement C6 transcripts in early embryos were of maternal origin. PMID:21353312

  20. Molecular Cloning and Characterization of Violaxanthin De-Epoxidase (CsVDE) in Cucumber

    PubMed Central

    Huang, Hongyu; Kong, Lingcui; Niu, Dandan; Sui, Xiaolei; Zhang, Zhenxian

    2013-01-01

    Violaxanthin de-epoxidase (VDE) plays an important role in protecting the photosynthetic apparatus from photo-damage by dissipating excessively absorbed light energy as heat, via the conversion of violaxanthin (V) to intermediate product antheraxanthin (A) and final product zeaxanthin (Z) under high light stress. We have cloned a violaxanthin de-epoxidase gene (CsVDE) from cucumber. The amino acid sequence of CsVDE has high homology with VDEs in other plants. RT-PCR analysis and histochemical staining show that CsVDE is expressed in all green tissues in cucumber and Arabidopsis. Using GFP fusion protein and immunogold labeling methods, we show that CsVDE is mainly localized in chloroplasts in cucumber. Under high light stress, relative expression of CsVDE and the de-epoxidation ratio (A+Z)/(V+A+Z) is increased rapidly, and abundance of the gold particles was also increased. Furthermore, CsVDE is quickly induced by cold and drought stress, reaching maximum levels at the 2nd hour and the 9th day, respectively. The ratio of (A+Z)/(V+A+Z) and non-photochemical quenching (NPQ) is reduced in transgenic Arabidopsis down-regulated by the antisense fragment of CsVDE, compared to wild type (WT) Arabidopsis under high light stress. This indicates decreased functionality of the xanthophyll cycle and increased sensitivity to photoinhibition of photosystem II (PSII) in transgenic Arabidopsis under high light stress. PMID:23717606

  1. Molecular cloning, expression, and evolution analysis of type II CHI gene from peanut (Arachis hypogaea L.).

    PubMed

    Liu, Yu; Zhao, Shuzhen; Wang, Jiangshan; Zhao, Chuanzhi; Guan, Hongshan; Hou, Lei; Li, Changsheng; Xia, Han; Wang, Xingjun

    2015-01-01

    Chalcone isomerase (CHI) plays critical roles in plant secondary metabolism, which is important for the interaction between plants and the environment. CHI genes are widely studied in various higher plants. However, little information about CHI genes is available in peanut. Based on conservation of CHI gene family, we cloned the peanut type II CHI gene (AhCHI II) cDNA and genome sequence. The amino acid sequence of peanut CHI II was highly homologous to type II CHI from other plant species. qRT-PCR results showed that peanut CHI II is mainly expressed in roots; however, peanut CHI I is mainly expressed in tissues with high content of anthocyanin. Gene duplication and gene cluster analysis indicated that CHI II was derived from CHI I 65 million years ago approximately. Our gene structure analysis results are not in agreement with the previous hypothesis that CHI II was derived from CHI I by the insertion of an intron into the first exon. Moreover, no positive selection pressure was found in CHIs, while, 32.1 % of sites were under neutral selection, which may lead to mutation accumulation and fixation during great changes of environment. PMID:25608978

  2. Molecular cloning, chromosomal location, and expression analysis of porcine CD14.

    PubMed

    Sanz, Gema; Pérez, Eva; Jiménez-Marín, Angeles; Mompart, Florence; Morera, Luis; Barbancho, Manuel; Llanes, Diego; Garrido, Juan J

    2007-01-01

    CD14 is a membrane-associated glycosylphosphatidylinositol (GPI)-anchored protein that binds lipopolysaccharide (LPS) of Gram-negative bacteria and enables LPS-dependent responses in a variety of cells. In this study a cDNA containing the porcine CD14 coding sequence has been cloned and its complete sequence determined. The amino acid sequence deduced from pig CD14 cDNA encodes a 373 amino acid polypeptide that exhibits 75%, 72%, 69%, 66%, 57% and 56% similarity to CD14 from cow, horse, human, rabbit, mouse and rat, respectively. Structural analysis showed that the porcine CD14 is a membrane glycoprotein with a GPI-anchor site and an extracellular domain containing 11 leucine-rich repeats. In addition, the LPS-binding regions identified in the human CD14 are highly conserved in the N-terminal domain of the porcine sequence. Fluorescence in situ hybridization was used to locate the CD14 gene on the pig chromosome 2, band q28. Expression analysis revealed that porcine CD14 transcripts were detected in all tissues and cells examined, suggesting that the expression of porcine CD14 gene is not restricted to myeloid cell lineage. Finally, we report that LPS stimulation significantly up-regulated CD14 gene expression in porcine alveolar macrophages. PMID:17169425

  3. Molecular Cloning and Characterization of G Alpha Proteins from the Western Tarnished Plant Bug, Lygus hesperus.

    PubMed

    Hull, J Joe; Wang, Meixian

    2014-01-01

    The Gα subunits of heterotrimeric G proteins play critical roles in the activation of diverse signal transduction cascades. However, the role of these genes in chemosensation remains to be fully elucidated. To initiate a comprehensive survey of signal transduction genes, we used homology-based cloning methods and transcriptome data mining to identity Gα subunits in the western tarnished plant bug (Lygus hesperus Knight). Among the nine sequences identified were single variants of the Gαi, Gαo, Gαs, and Gα12 subfamilies and five alternative splice variants of the Gαq subfamily. Sequence alignment and phylogenetic analyses of the putative L. hesperus Gα subunits support initial classifications and are consistent with established evolutionary relationships. End-point PCR-based profiling of the transcripts indicated head specific expression for LhGαq4, and largely ubiquitous expression, albeit at varying levels, for the other LhGα transcripts. All subfamilies were amplified from L. hesperus chemosensory tissues, suggesting potential roles in olfaction and/or gustation. Immunohistochemical staining of cultured insect cells transiently expressing recombinant His-tagged LhGαi, LhGαs, and LhGαq1 revealed plasma membrane targeting, suggesting the respective sequences encode functional G protein subunits. PMID:26463065

  4. Molecular cloning and mRNA expression analysis of sheep MYL3 and MYL4 genes.

    PubMed

    Zhang, Chunlan; Wang, Jianmin; Wang, Guizhi; Ji, Zhibin; Hou, Lei; Liu, Zhaohua; Chao, Tianle

    2016-02-15

    Using longissimus dorsi muscles of Dorper sheep as the experimental materials, the complete cDNAs of ovine MYL3 (Myosin light chain 3) and MYL4 (Myosin light chain 4) genes were cloned using RT-PCR, 5' RACE and 3' RACE. We obtained 925-bp and 869-bp full-length cDNAs and submitted their sequences to GenBank as accession numbers of KJ710703 and KJ768855, respectively. The cDNAs contained 600-bp and 582-bp open reading frames (ORFs) and encoded proteins comprising 199 and 193 amino acid residues, respectively. Neither protein was predicted to have a signal peptide, but both were predicted to have several N-glycosylation, O-glycosylation, and phosphorylation sites. The secondary structures of MYL3 and MYL4 were predicted to be 40.70% and 48.70% α- helical, respectively. Sequence alignment showed that the MYL3 and MYL4 proteins of Ovis aries both shared more than 91% amino acid sequence similarity with those of Mus musculus, Homo sapiens, Rattus norvegicus, Bos taurus, and Sus scrofa. The levels of MYL3 and MYL4 mRNA in various sheep tissues were determined using qRT-PCR. The results showed that both mRNAs were highly expressed in the heart. This study has established a foundation for further investigation of the ovine MYL3 and MYL4 genes. PMID:26656596

  5. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana.

    PubMed

    Villand, P; Olsen, O A; Kleczkowski, L A

    1993-12-01

    PCR amplification of cDNA prepared from poly(A)+ RNA from aerial parts of Arabidopsis thaliana, using degenerate nucleotide primers based on conserved regions between the large and small subunits of ADP-glucose pyrophosphorylase (AGP), yielded four different cDNAs of ca. 550 nucleotides each. Based on derived amino acid sequences, the identities between the clones varied from 49 to 69%. Sequence comparison to previously published cDNAs for AGP from various species and tissues has revealed that three of the amplified cDNAs (ApL1, ApL2 and ApL3) correspond to the large subunit of AGP, and one cDNA (ApS) encodes the small subunit of AGP. Both ApL1 and ApS were subsequently found to be present in a cDNA library made from Arabidopsis leaves. All four PCR products are encoded by single genes, as found by genomic Southern analysis. PMID:8292792

  6. Molecular cloning and functional analysis of duck ubiquitin-specific protease 18 (USP18) gene.

    PubMed

    Qian, Wei; Wei, Xiaoqin; Zhou, Hongbo; Jin, Meilin

    2016-09-01

    In mammals, ubiquitin-specific protease 18 (USP18) is an interferon (IFN)-inducible gene and is a negative regulator of Toll-like receptor-mediated nuclear factor kappa B (NF-κB) activation. The role of USP18 in ducks (duUSP18) remains poorly understood. In the present study, we cloned and characterized the full-length coding sequence of duUSP18 from duck embryo fibroblasts (DEFs). In healthy ducks, duUSP18 transcripts were broadly expressed in different tissues, with higher expression levels in the spleen, lung and kidney. Quantitative real-time PCR (qRT-PCR) analysis revealed that duUSP18 could be induced by treatment with Poly(I:C) or LPS. Overexpression of duUSP18 inhibited NF-κB and IFN-β expression. Furthermore, deletion mutant analysis revealed that the duUSP18 region between aa 75 and 304 was essential for inhibiting NF-κB. In addition, overexpression of duUSP18 also suppressed the secretion of NF-κB-dependent proinflammatory cytokines. Taken together, these results suggest that duUSP18 regulates duck innate immune responses. PMID:27133094

  7. Synaptophysin: molecular organization and mRNA expression as determined from cloned cDNA.

    PubMed Central

    Leube, R E; Kaiser, P; Seiter, A; Zimbelmann, R; Franke, W W; Rehm, H; Knaus, P; Prior, P; Betz, H; Reinke, H

    1987-01-01

    Synaptophysin is a major glycoprotein of Mr approximately 38,000 (in deglycosylated form: Mr approximately 34,000) characteristic of a certain class of small (30-80 nm diameter) neurosecretory vesicles, including presynaptic vesicles, but also vesicles of various neuroendocrine cells of both neuronal and epithelial phenotype. Using synaptophysin-specific antibodies we have isolated cDNA clones from rat nervous tissue libraries, which identify an approximately 2.5-kb mRNA in rat and human cells, including neuroendocrine tumours, that contains a reading frame for a polypeptide of 307 amino acids with a total mol. wt of 33 312. The deduced amino acid sequence, which was partly confirmed by comparison with sequences of two tryptic peptides obtained from purified synaptophysin, revealed four hydrophobic regions of 24 amino acids each, which are characterized, according to conformation prediction analyses, by marked alpha-helicity. The sequence shows a single potential N-glycosylation site, which is assigned to the vesicle interior, and a carboxy-terminal tail of 89 amino acids which contains glycine-rich tetrapeptide repeats, the epitope of monoclonal antibody SY38, and a number of collagenase-sensitive sites accessible on the surface of the intact vesicles. These features suggest that the polypeptide spans the vesicle membrane four times, with both N and C termini located on the outer, i.e. cytoplasmic, surface of the vesicles. Images Fig. 2. Fig. 6. PMID:3123215

  8. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    PubMed

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum. PMID:21127986

  9. Molecular cloning, recombinant expression and antibacterial activity analysis of hepcidin from Simensis crocodile (Crocodylus siamensis).

    PubMed

    Hao, Juan; Li, Yan-Wei; Xie, Ming-Quan; Li, An-Xing

    2012-01-01

    Hepcidin, a cysteine-rich cationic antibacterial peptide, plays an important role in human defense against pathogen infection. However, its role in reptile immune response and whether it is involved in antibacterial immune have not yet been proven. In order to study the antibacterial activity of Crocodylus siamensis hepcidin (Cshepc), a common reptile which lives in topic region of Southeast Asia, a cDNA sequence of Cshepc was cloned, which included an open reading frame (ORF) of 300 bp encoding a 99 amino acid preprohepcidin. Cshepc has eight cysteines formed four conserved disulfide bridges, similarly to that of human's. Sequence analysis showed that Cshepc mature peptide was more conserved than that of preprohepcidin. Tissue expression analysis indicated that Cshepc transcripts were highly expressed in the liver, muscle and heart of C. siamensis. Recombinant expressed hepcidin could significantly inhibit the growth of the Gram-negative bacteria Escherichia coli and Aeromonas sobria as well as the Gram-positive bacterium Staphylococcus aureus, and Bacillus subtilis in vitro, suggesting that Cshepc, like human hepcidin could play a role in the antibacterial function in hosts innate immune response. PMID:22967859

  10. Molecular Changes in the Vasculature of Injured Tissues

    PubMed Central

    Järvinen, Tero A.H.; Ruoslahti, Erkki

    2007-01-01

    We have explored molecular specialization of the vasculature of regenerating wound tissue in the skin and tendons to identify a different repertoire of markers from that obtained by studying tumor vasculature. We screened a phage-displayed peptide library for peptides that home to wounds in mice and identified two peptides that selectively target phage to skin and tendon wounds: CARSKNKDC (CAR) and CRKDKC (CRK). CAR is homologous to heparin-binding sites in various proteins and binds to cell surface heparan sulfate and heparin. CRK is similar to a segment in thrombospondin type 1 repeat. Intravenously injected CAR and CRK phage, as well as fluorescein-labeled CAR and CRK peptides, selectively accumulated at wound sites, where they partially co-localized with blood vessels. The CAR peptide showed a preference for early stages of wound healing, whereas the CRK favored wounds at later stages of healing. The CAR peptide was internalized into the target cells and delivered the fluorescent label into the cell nuclei. These results identify new molecular markers in wound tissues and show that the expression of these markers in wound vasculature changes as healing progresses. The peptides recognizing these markers may be useful in delivering treatments into regenerating tissues. PMID:17600129

  11. Subcellular tissue proteomics of hepatocellular carcinoma for molecular signature discovery.

    PubMed

    Lee, Yong-Yook; McKinney, Kimberly Q; Ghosh, Sriparna; Iannitti, David A; Martinie, John B; Caballes, F Ryan; Russo, Mark W; Ahrens, William A; Lundgren, Deborah H; Han, David K; Bonkovsky, Herbert L; Hwang, Sun-Il

    2011-11-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of mortality from solid organ malignancy worldwide. Because of the complexity of proteins within liver cells and tissues, the discovery of therapeutic targets of HCC has been difficult. To investigate strategies for decreasing the complexity of tissue samples for detecting meaningful protein mediators of HCC, we employed subcellular fractionation combined with 1D-gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis. Moreover, we utilized a statistical method, namely, the Power Law Global Error Model (PLGEM), to distinguish differentially expressed proteins in a duplicate proteomic data set. Mass spectrometric analysis identified 3045 proteins in nontumor and HCC from cytosolic, membrane, nuclear, and cytoskeletal fractions. The final lists of highly differentiated proteins from the targeted fractions were searched for potentially translocated proteins in HCC from soluble compartments to the nuclear or cytoskeletal compartments. This analysis refined our targets of interest to include 21 potential targets of HCC from these fractions. Furthermore, we validated the potential molecular targets of HCC, MATR3, LETM1, ILF2, and IQGAP2 by Western blotting, immunohistochemisty, and immunofluorescent microscopy. Here we demonstrate an efficient strategy of subcellular tissue proteomics toward molecular target discovery of one of the most complicated human disease, HCC. PMID:21913717

  12. Molecular cloning of the human eosinophil-derived neurotoxin: A member of the ribonuclease gene family

    SciTech Connect

    Rosenberg, H.F.; Tenen, D.G.; Ackerman, S.J. )

    1989-06-01

    The authors have isolated a 725-base-pair cDNA clone for human eosinophil-derived neurotoxin (EDN). EDN is a distinct cationic protein of the eosinophil's large specific granule known primarily for its ability to induce ataxia, paralysis, and central nervous system cellular degeneration in experimental animals (Gordon phenomenon). The open reading frame encodes a 134-amino acid mature polypeptide with a molecular mass of 15.5 kDa and a 27-residue amino-terminal hydrophobic leader sequence. The sequence of the mature polypeptide is identical to that reported for human urinary ribonuclease, and to the amino-terminal sequence of human liver ribonuclease; the cDNA encodes a tryptophan in position 7. Both EDN and the related granule protein, eosinophil cationic protein, have ribonucleolytic activity; sequence similarities among EDN, eosinophil cationic protein, ribonucleases from liver, urine, and pancreas, and angiogenin define a ribonuclease multigene family. mRNA encoding EDN was detected in uninduced HL-60 cells and was up-regulated in cells induced toward eosinophilic differentiation with B-cell growth factor 2/interleukin 5 and toward neutrophilic differentiation with dimethyl sulfoxide. EDN mRNA was detected in mature neutrophils even though EDN-like neurotoxic activity is not found neutrophil extracts. These results suggest that neutrophils contain a protein that is closely related or identical to EDN.

  13. Molecular cloning, expression, and characterization of a novel endo-alpha-N-acetylgalactosaminidase from Enterococcus faecalis.

    PubMed

    Goda, Hatsumi M; Ushigusa, Kota; Ito, Hiromi; Okino, Nozomu; Narimatsu, Hisashi; Ito, Makoto

    2008-10-31

    We report here the molecular cloning, expression and characterization of a novel endo-alpha-N-acetylgalactosaminidase, classified into the GH101 family, from Enterococcus faecalis (endo-EF). The recombinant endo-EF was found to catalyze the liberation of core1-disaccharides (Galbeta1-3GalNAc) from core1-pNP (Galbeta1-3GalNAcalpha-pNP) like other GH101 family enzymes. However, endo-EF seems to differ in specificity from the GH101 enzymes reported to date, because it was able to release trisaccharides from core2-pNP (Galbeta1-3[GlcNAcbeta1-6]GalNAcalpha-pNP) and tetrasaccharides from Gal-core2-pNP (Galbeta1-3[Galbeta1-3GlcNAcbeta1-6]GalNAcalpha-pNP). Interestingly, the enzyme could transfer not only core1-disaccharides but also core2-trisaccharides to alkanols generating alkyl-oligosaccharides. Endo-EF should facilitate O-glycoprotein research. PMID:18725192

  14. Simple and versatile molecular method of copy-number measurement using cloned competitors.

    PubMed

    Kim, Hyun-Kyoung; Hwang, Hai-Li; Park, Seong-Yeol; Lee, Kwang Man; Park, Won Cheol; Kim, Han-Seong; Um, Tae-Hyun; Hong, Young Jun; Lee, Jin Kyung; Joo, Sun-Young; Seoh, Ju-Young; Song, Yeong-Wook; Kim, Soo-Youl; Kim, Yong-Nyun; Hong, Kyeong-Man

    2013-01-01

    Variations and alterations of copy numbers (CNVs and CNAs) carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR). First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT), but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes. PMID:23936009

  15. Molecular cloning and characterization of the translationally controlled tumor protein gene in Bombyx mori.

    PubMed

    Lee, Jae Man; Kusakabe, Takahiro; Kawaguchi, Yutaka; Miyagawa, Yoshitaka; Takahashi, Masateru; Mon, Hiroaki; Nho, Si-Kab; Koga, Katsumi

    2004-09-01

    Translationally controlled tumor protein (Tctp/p23) is known to be synthesized preferentially in cells during the early growth phase of tumors, but is also expressed in normal cells. To elucidate its molecular basis of the expression and physiological significance, a cDNA encoding for the Bombyx mori Tctp (BmTctp) was deduced by editing the partial cDNA sequences registered in a Bombyx EST database. RT-PCR analyses indicated that the BmTCTP mRNA was transcribed in all larval organs examined and was present constantly during the cell cycle of BmN4 cells. A genomic clone of 4255 nucloetide residues produced by inverse PCR contained the 5'-flanking region, two introns and three exons of the BmTCTP gene. Sequence analysis of the 5'-flanking region indicated that a putative promoter region contains several canonical transcription elements such as GATA box, CCAAT motif, MEF2, E4BP4.01 and AP-1, but lacks a TATA box element. Luciferase reporter assay of the deletion constructs of the 5'-flanking region revealed that the -676 to +66 region enhanced the promoter activity the most markedly. In addition to this, there were at least two enhancer-like elements and several repressor elements. PMID:15364286

  16. Novel glucose dehydrogenase from Mucor prainii: Purification, characterization, molecular cloning and gene expression in Aspergillus sojae.

    PubMed

    Satake, Ryoko; Ichiyanagi, Atsushi; Ichikawa, Keiichi; Hirokawa, Kozo; Araki, Yasuko; Yoshimura, Taro; Gomi, Keiko

    2015-11-01

    Glucose dehydrogenase (GDH) is of interest for its potential applications in the field of glucose sensors. To improve the performance of glucose sensors, GDH is required to have strict substrate specificity. A novel flavin adenine dinucleotide (FAD)-dependent GDH was isolated from Mucor prainii NISL0103 and its enzymatic properties were characterized. This FAD-dependent GDH (MpGDH) exhibited high specificity toward glucose. High specificity for glucose was also observed even in the presence of saccharides such as maltose, galactose and xylose. The molecular masses of the glycoforms of GDH ranged from 90 to 130 kDa. After deglycosylation, a single 80 kDa band was observed. The gene encoding MpGDH was cloned and expressed in Aspergillus sojae. The apparent kcat and Km values of recombinant enzyme for glucose were found to be 749.7 s(-1) and 28.3 mM, respectively. The results indicated that the characteristics of MpGDH were suitable for assaying blood glucose levels. PMID:25912449

  17. Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice.

    PubMed

    Wang, Dekai; Liu, Heqin; Li, Sujuan; Zhai, Guowei; Shao, Jianfeng; Tao, Yuezhi

    2015-09-01

    Serine hydroxymethyltransferase (SHMT) is important for one carbon metabolism and photorespiration in higher plants for its participation in plant growth and development, and resistance to biotic and abiotic stresses. A rice serine hydroxymethyltransferase gene, OsSHM1, an ortholog of Arabidopsis SHM1, was isolated using map-based cloning. The osshm1 mutant had chlorotic lesions and a considerably smaller, lethal phenotype under natural ambient CO2 concentrations, but could be restored to wild type with normal growth under elevated CO2 levels (0.5% CO2 ), showing a typical photorespiratory phenotype. The data from antioxidant enzymes activity measurement suggested that osshm1 was subjected to significant oxidative stress. Also, OsSHM1 was expressed in all organs tested (root, culm, leaf, and young panicle) but predominantly in leaves. OsSHM1 protein is localized to the mitochondria. Our study suggested that molecular function of the OsSHM1 gene is conserved in rice and Arabidopsis. PMID:25641188

  18. Molecular cloning and characterization of a chlorophyll degradation regulatory gene (ZjSGR) from Zoysia japonica.

    PubMed

    Teng, K; Chang, Z H; Xiao, G Z; Guo, W E; Xu, L X; Chao, Y H; Han, L B

    2016-01-01

    The stay-green gene (SGR) is a key regulatory factor for chlorophyll degradation and senescence. However, to date, little is known about SGR in Zoysia japonica. In this study, ZjSGR was cloned, using rapid amplification of cDNA ends-polymerase chain reaction (PCR). The target sequence is 831 bp in length, corresponding to 276 amino acids. Protein BLAST results showed that ZjSGR belongs to the stay-green superfamily. A phylogenetic analysis implied that ZjSGR is most closely related to ZmSGR1. The subcellular localization of ZjSGR was investigated, using an Agrobacterium-mediated transient expression assay in Nicotiana benthamiana. Our results demonstrated that ZjSGR protein is localized in the chloroplasts. Quantitative real time PCR was carried out to investigate the expression characteristics of ZjSGR. The expression level of ZjSGR was found to be highest in leaves, and could be strongly induced by natural senescence, darkness, abscisic acid (ABA), and methyl jasmonate treatment. Moreover, an in vivo function analysis indicated that transient overexpression of ZjSGR could accelerate chlorophyll degradation, up-regulate the expression of SAG113, and activate ABA biosynthesis. Taken together, these results provide evidence that ZjSGR could play an important regulatory role in leaf chlorophyll degradation and senescence in plants at the molecular level. PMID:27173268

  19. Molecular analysis of Streptococcus pneumoniae clones causing invasive disease in children in Singapore.

    PubMed

    Jefferies, J M C; Tee, W S N; Clarke, S C

    2011-06-01

    Streptococcus pneumoniae remains a leading cause of serious paediatric disease. However, there are few published epidemiological data regarding invasive pneumococcal disease (IPD) in many countries in South East Asia, including Singapore. Baseline data for IPD are essential to inform policy regarding pneumococcal conjugate vaccine (PCV) use in Singapore. To our knowledge, this is the first study to use multilocus sequence typing (MLST) to investigate clonal relationships among Singaporean IPD isolates. We characterized 86 invasive pneumococci isolated from Singaporean children between 2001 and 2006 using serotyping and MLST. The objectives were to compare Singaporean MLST data to worldwide data and to assess serotype distribution in relation to current PCV formulations. We observed 50 sequence types (STs), a high proportion of which (n = 16) were novel STs. Despite the presence of these novel STs, serotype distribution was similar to that observed elsewhere. Serotypes 14, 6B, 19A and 19F accounted for 85 % of IPD cases. PCV7, PCV10 and PCV13 covered 85 %, 86 % and 97 % of IPD isolates, respectively. We have demonstrated a pressing need for larger studies to determine the molecular epidemiology and antibiotic susceptibility of circulating pneumococcal clones from both carriage and disease in Singapore. PMID:21330410

  20. Molecular cloning, characterization, and expression of Cuc m 2, a major allergen in Cucumis melo

    PubMed Central

    Sankian, Mojtaba; Mahmoudi, Mahmoud; Varasteh, Abdol-Reza

    2013-01-01

    Background: Several studies reported the clinical features of IgE-mediated hypersensitivity after ingestion of melon. Melon allergy is a common IgE-mediated fruit allergy in Iran. This prompted us to investigate immunochemical and molecular properties of the major allergen in melon fruit, to compare the IgE-binding capacity of the natural protein with the recombinant allergen, and to determine cross-reactivity of the major allergen with closely-related allergens from other plants displaying clinical cross-reactivity with melon. Methods: Identification and molecular characterization of the major melon allergen were performed using IgE immunoblotting, allergen-specific ELISA, affinity-based purifications, cross-inhibition assays, cloning, and expression of the allergen in Escherichia coli. Results: Melon profilin was identified and isolated as a major IgE-binding component and designated as Cuc m 2. Sequencing corresponding cDNA revealed an open reading frame of 363 bp coding for 131 amino acid residues and two fragments of 171 bp and 383 bps for the 5’and 3’ UTRs, respectively. Significant cross-reactivity was found between melon profilin and Cynodon dactylon, tomato, peach, and grape profilins in cross-inhibition assays. Although the highest degree of amino acid identity was revealed with watermelon profilin, there was no significant cross-reactivity between melon and watermelon profilins. Conclusion: Melon profilin is the major IgE-binding component in melon extract, and the recombinant and natural forms exhibited similar IgE-binding capacities. A part of the fruit-fruit and pollen-fruit cross-reactions could be explained by the presence of this conserved protein; however, sequence homology provides insufficient information to predict IgE cross-reactivity of profilins. PMID:26989709

  1. Molecular Cloning and Expression of Pro J 1: A New Allergen of Prosopis Juliflora Pollen.

    PubMed

    Dousti, Fatemeh; Assarehzadegan, Mohammad-Ali; Morakabati, Payam; Khosravi, Gholam Reza; Akbari, Bahareh

    2016-04-01

    Pollen from mesquite (Prosopis juliflora) is one of the important causes of immediate hypersensitivity reactions in the arid and semi-arid regions of the world. The aim of present study is to produce and purify the recombinant form of allergenic Ole e 1-like protein from the pollen of this allergenic tree. Immunological and cross-inhibition assays were performed for the evaluation of IgE-binding capacity of purified recombinant protein. For molecular cloning, the coding sequence of the mesquite Ole e 1-like protein was inserted into pTZ57R/T vector and expressed in Escherichia coli using the vector pET-21b(+). After purification of the recombinant protein, its immunoreactivity was analysed by in vitro assays using sera from twenty one patients with an allergy to mesquite pollen. The purified recombinant allergen was a member of Ole e 1-like protein family and consisted of 150 amino acid residues, with a predicted molecular mass of 16.5 kDa and a calculated isoelectric point (pI) of 4.75. Twelve patients (57.14%) had significant specific IgE levels for this recombinant allergen. Immunodetection and inhibition assays indicated that the purified recombinant allergen might be the same as that in the crude extract. Herein, we introduce an important new allergen from P. juliflora pollen (Pro j 1), which is a member of the Ole e 1-like protein family and exhibits significant identity and similarity to other allergenic members of this family. PMID:27090365

  2. Mining tissue-specific contigs from peanut (Arachis hypogaea L.) for promoter cloning by deep transcriptome sequencing.

    PubMed

    Geng, Lili; Duan, Xiaohong; Liang, Chun; Shu, Changlong; Song, Fuping; Zhang, Jie

    2014-10-01

    Peanut (Arachis hypogaea L.), one of the most important oil legumes in the world, is heavily damaged by white grubs. Tissue-specific promoters are needed to incorporate insect resistance genes into peanut by genetic transformation to control the subterranean pests. Transcriptome sequencing is the most effective way to analyze differential gene expression in this non-model species and contribute to promoter cloning. The transcriptomes of the roots, seeds and leaves of peanut were sequenced using Illumina technology. A simple digital expression profile was established based on number of transcripts per million clean tags (TPM) from different tissues. Subsequently, 584 root-specific candidate transcript assembly contigs (TACs) and 316 seed-specific candidate TACs were identified. Among these candidate TACs, 55.3% were root-specific and 64.6% were seed-specific by semi-quantitative RT-PCR analysis. Moreover, the consistency of semi-quantitative RT-PCR with the simple digital expression profile was correlated with the length and TPM value of TACs. The results of gene ontology showed that some root-specific TACs are involved in stress resistance and respond to auxin stimulus, whereas, seed-specific candidate TACs are involved in embryo development, lipid storage and long-chain fatty acid biosynthesis. One root-specific promoter was cloned and characterized. We developed a high-yield screening system in peanut by establishing a simple digital expression profile based on Illumina sequencing. The feasible and rapid method presented by this study can be used for other non-model crops to explore tissue-specific or spatially specific promoters. PMID:25231965

  3. Molecular cloning and characterization of Izumo1 gene from sheep and cashmere goat reveal alternative splicing.

    PubMed

    Xing, Wan-Jin; Han, Bao-Da; Wu, Qi; Zhao, Li; Bao, Xiao-Hong; Bou, Shorgan

    2011-03-01

    We cloned the cDNA and genomic DNA encoding for Izumo1 of cashmere goat (Capra hircus) and sheep (Ovis aries). Analysis of 4.6 kb Izumo1 genomic sequences in sheep and goat revealed a canonical open reading frame (ORF) of 963 bp spliced by eight exons. Sheep and goat Izumo1 genes share >99% identity at both DNA and protein levels and are also highly homologous to the orthologues in cattle, mouse, rat and human. Extensive cloning and analysis of Izumo1 cDNA revealed three (del 69, del 182 and del 217) and two (del 69 and ins 30) alternative splicing isoforms in goat and sheep, respectively. All of the isoforms are derived from splicing at typical GT-AG sites leading to partial or complete truncation of the immunoglobulin (Ig)-like domain. Bioinformatics analysis showed that caprine and ovine Izumo1 proteins share similar structure with their murine orthologue. There are a signal peptide at the N-terminus (1-22 aa), a transmembrane domain at the C-terminus (302-319 aa), and an extracellular Ig-like region in the middle (161-252 aa) with a putative N-linked glycosylation site (N(205)-N-S). Alignment of Izumo1 protein sequences among 15 mammalian species displayed several highly conserved regions, including LDC and YRC motifs with cysteine residues for potential disulfide bridge formation, CPNKCG motif upstream of the Ig-like domain, GLTDYSFYRVW motif upstream of the putative N-linked glycosylation site, and a number of scattered cysteine residues. These distinctive features are very informative to pinpoint the important gene motifs and functions. The C-terminal regions, however, are more variable across species. Izumo1 cDNA sequences of goat, sheep, and cow were found to be largely homologous, and the molecular phylogenetic analysis is consistent with their morphological taxonomy. This implies the Izumo1 gene evolves from the same ancestor, and the mechanism of sperm-egg fusion in mammals may be under the same principle in which Izumo1 plays an important role. PMID

  4. [Soft tissue tumors - the view of the molecular biologist].

    PubMed

    Krsková, Lenka; Mrhalová, Marcela; Kalinová, Markéta; Campr, Vít; Capková, Linda; Grega, Marek; Háček, Jaromír; Hornofová, Ludmila; Chadimová, Mária; Chmelová, Renata; Kodetová, Daniela; Zámečník, Josef; Kodet, Roman

    2014-07-01

    Soft tissue tumors (SSTs) constitute a broad spectrum of neoplasms with diverse biological properties. Rare or unusual types are often difficult to classify. Recent studies show, that a significant subset of SSTs including many types of sarcomas are associated with specific genetic changes such as chromosomal translocations producing chimeric genes, which play a role in the pathogenesis of SSTs. Because SSTs represent a diagnostically challenging group of tumors, molecular-genetic techniques (FISH or PCR) are useful as supplementary and/or confirmatory diagnostic tools. In the present paper we demonstrate the usefulness of a combined diagnostic approach using the tools of classical histopathology and immunohistochemistry together with the molecular diagnostic approach in selected nosologic entites. PMID:25186594

  5. Differential gene expression and characterization of tissue-specific cDNA clones in oil palm using mRNA differential display.

    PubMed

    San, Cha Thye; Shah, Farida Habib

    2005-12-01

    The mRNA differential display method was utilized to study the differential expression and regulation of genes in two species of oil palm, the commercially grown variety Elaeis guineensis, var. tenera and the South American species, Elaeis oleifera. We demonstrated the differential expression of genes in the mesocarp and kernel at the week of active oil synthesis (15 week after anthesis) during fruit development as compare to the roots and leaves and the isolation of tissue-specific and species-specific cDNA clones. A total of eight specific cDNA clones were isolated and their specificities were confirmed by Northern hybridization and classified into three groups. Group one contains four clones (KT3, KT4, KT5 and KT6) that are kernel-specific for E. guineensis, tenera and E. oleifera. The second group represents clone FST1, which is mesocarp and kernel-specific for E. guineensis, tenera and E. oleifera. The third group represents clones MLT1, MLT2 and MLO1 that are mesocarp and leaf-specific. Northern analysis showed that their expressions were developmentally regulated. Nucleotide sequencing and homology search in GenBank data revealed that clones KT3 and KT4 encode for the same maturation protein PM3. While clones MLT1 and MLT2 encode for S-ribonuclease binding protein and fibrillin, respectively. The other clones (KT5, KT6, FST1 and MLO1) did not display any significant homology to any known protein. PMID:16328884

  6. Cloning of murine ferrochelatase.

    PubMed Central

    Brenner, D A; Frasier, F

    1991-01-01

    Ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) catalyzes the last step in the heme biosynthetic pathway, the chelation of ferrous iron and protoporphyrin to form heme. The activity of ferrochelatase is deficient in the inherited disease protoporphyria. In this study, murine ferrochelatase cDNAs were obtained by screening cDNA libraries with an oligonucleotide probe. The derived amino acid sequence of murine ferrochelatase has 47% identity with the recently cloned Saccharomyces cerevisiae ferrochelatase, but it is not significantly similar to other published sequences. Results of Southern blotting are consistent with a single murine ferrochelatase gene, while Northern blotting demonstrates two ferrochelatase transcripts in all tissues examined. The ferrochelatase protein and mRNAs have different relative concentrations in different tissues. The cloning of murine ferrochelatase cDNAs provides the basis for future studies on ferrochelatase gene expression and on the identification of the molecular defect in protoporphyria. Images PMID:1704134

  7. Molecular cloning, mRNA expression, and characterization of HSP90 gene from Chinese mitten crab Eriocheir japonica sinensis.

    PubMed

    Li, Peng; Zha, Jie; Zhang, Zhenhua; Huang, Hua; Sun, Hongying; Song, Daxiang; Zhou, Kaiya

    2009-07-01

    HSP90 is a highly conserved molecular chaperone important in the maturation of a broad spectrum of proteins. Using expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques, an HSP90 gene designated as EjsHSP90 was cloned and characterized from the Chinese mitten crab Eriocheir japonica sinensis. The full-length cDNA of EjsHSP90 is 2,517 bp and contains an open reading frame of 2157 bp which encodes a 718 amino acid polypeptide (82.8 kDa) bearing characteristics of the HSP90 family and an ATP binding domain. Sequence alignment shows that EjsHSP90 shared 79%-96% identity with HSP90 sequences reported in other animals, and it shares identical structural features. Fluorescent real-time quantitative RT-PCR approach was performed to examine the expression profiles of EjsHSP90 mRNA by testing its relative level in three types of tissues at three different developmental stages, respectively. We found that EjsHSP90 is expressed throughout the three developmental stages but expression levels varied among different body parts of crabs. EjsHSP90 mRNA expression in the abdomen of the first crab stage is consistently higher than that of the other two stages, suggesting that EjsHSP90 gene is involved in the crabs' early developmental process, especially in the crab brachyurization process. Results from quantitative RT-PCR excluded the possibility that the expression of EjsHSP90 mRNA is induced primarily by osmotic stress. Phylogenetic analyses reveal that HSP90 gene is informative and complementary for reconstruction of arthropod phylogenetic relationships. PMID:19166961

  8. Molecular cloning, expression pattern, and 3D structural prediction of the cold inducible RNA-binding protein (CIRP) in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Gao, Jinning; Ma, Liman; Li, Zan; Wang, Wenji; Wang, Zhongkai; Yu, Haiyang; Qi, Jie; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi

    2015-02-01

    Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.

  9. Molecular cloning of genes related to aflatoxin biosynthesis by differential screening.

    PubMed Central

    Feng, G H; Chu, F S; Leonard, T J

    1992-01-01

    A differential hybridization strategy was used to clone genes associated with aflatoxin biosynthesis. A genomic library, formed between nuclear DNA and the pUC19 plasmid, was screened with three different cDNA probes by the colony hybridization procedure. Nineteen clones were selected; all were positively correlated with and presumably enriched with genes associated with aflatoxin production. Some of these clones were further characterized by using them as probes in Northern (RNA blot) hybridizations. Five clones hybridized strongly with some polyadenylated RNAs formed during the transition to or during idiophase when aflatoxin was produced. However, little or no corresponding hybridization occurred with polyadenylated RNAs formed in early and mid-log growth phase. Two of the clones were further used as probes to hybridize with polyadenylated RNAs formed under aflatoxin-permissive and nonpermissive temperatures. Hybridization occurred with RNA species formed under the permissive temperature only. Images PMID:1610169

  10. Molecular cloning and biochemical characterization of a novel erythrose reductase from Candida magnoliae JH110

    PubMed Central

    2010-01-01

    Background Erythrose reductase (ER) catalyzes the final step of erythritol production, which is reducing erythrose to erythritol using NAD(P)H as a cofactor. ER has gained interest because of its importance in the production of erythritol, which has extremely low digestibility and approved safety for diabetics. Although ERs were purified and characterized from microbial sources, the entire primary structure and the corresponding DNA for ER still remain unknown in most of erythritol-producing yeasts. Candida magnoliae JH110 isolated from honeycombs produces a significant amount of erythritol, suggesting the presence of erythrose metabolizing enzymes. Here we provide the genetic sequence and functional characteristics of a novel NADPH-dependent ER from C. magnoliae JH110. Results The gene encoding a novel ER was isolated from an osmophilic yeast C. magnoliae JH110. The ER gene composed of 849 nucleotides encodes a polypeptide with a calculated molecular mass of 31.4 kDa. The deduced amino acid sequence of ER showed a high degree of similarity to other members of the aldo-keto reductase superfamily including three ER isozymes from Trichosporonoides megachiliensis SNG-42. The intact coding region of ER from C. magnoliae JH110 was cloned, functionally expressed in Escherichia coli using a combined approach of gene fusion and molecular chaperone co-expression, and subsequently purified to homogeneity. The enzyme displayed a temperature and pH optimum at 42°C and 5.5, respectively. Among various aldoses, the C. magnoliae JH110 ER showed high specific activity for reduction of erythrose to the corresponding alcohol, erythritol. To explore the molecular basis of the catalysis of erythrose reduction with NADPH, homology structural modeling was performed. The result suggested that NADPH binding partners are completely conserved in the C. magnoliae JH110 ER. Furthermore, NADPH interacts with the side chains Lys252, Thr255, and Arg258, which could account for the enzyme

  11. The physiology and molecular biology of sponge tissues.

    PubMed

    Leys, Sally P; Hill, April

    2012-01-01

    Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as

  12. Molecular characterization of methicillin-resistant Staphylococcus aureus: characterization of major clones and emergence of epidemic clones of sequence type (ST) 36 and ST 121 in Tehran, Iran.

    PubMed

    Ohadian Moghadam, Solmaz; Pourmand, Mohammad Reza; Mahmoudi, Mahmood; Sadighian, Hooman

    2015-04-01

    Information about the molecular structure of MRSA strains provides significant insights into the epidemiology of this important pathogen. To investigate the molecular characteristics of MRSA isolates, MRSA isolates were subjected to molecular typing by means of spa typing, multilocus sequence typing, Staphylococcal Cassette Chromosome mec (SCCmec) grouping and to phenotypic antimicrobial susceptibility testing by means of disk diffusion assay. Then the presence of pvl genes was evaluated. Cluster analysis by eBURSTv3 showed that MRSA isolates belonged to two major clonal complexes (CC); CC8 (ST239, ST585, ST2732, ST1294) and CC30 (ST30, ST36, ST1163) and four singletons. Subsequent analysis of MRSA isolates revealed that the most prevalent SCCmec type was type III (55.8%) followed by type IV (34.9%) and type II (2.3%). Totally 11 different spa types were discriminated among which types t037 and t030 were predominant. The prevalence of Panton-Valentine leukocidin (PVL)-positive MRSA strains was high (20%), which is a matter of great concern, because the PVL is frequently associated with severe and recurrent SSTIs. ST239-III- t037 represented the most predominant MRSA clone. The presence of sequence type (ST) 36 and ST 121 are being reported for the first time in Iran. PMID:25795589

  13. Molecular imaging of biological tissue using gas cluster ions

    PubMed Central

    Tian, Hua; Wucher, Andreas; Winograd, Nicholas

    2015-01-01

    An Arn+ (n = 1–6000) gas cluster ion source has been utilized to map the chemical distribution of lipids in a mouse brain tissue section. We also show that the signal from high mass species can be further enhanced by doping a small amount of CH4 into the Ar cluster to enhance the ionization of several biologically important molecules. Coupled with secondary ion mass spectrometry instrumentation which utilizes a continuous Ar cluster ion projectile, maximum spatial resolution and maximum mass resolution can be achieved at the same time. With this arrangement, it is possible to achieve chemically resolved molecular ion images at the 4-µm resolution level. The focused Arn+/[Arx(CH4)y]+ beams (4–10 µm) have been applied to the study of untreated mouse brain tissue. A high signal level of molecular ions and salt adducts, mainly from various phosphocholine lipids, has been seen and directly used to map the chemical distribution. The signal intensity obtained using the pure Ar cluster source, the CH4-doped cluster source and C60 is also presented. PMID:26207076

  14. Molecular cloning and characterization of a Mlo gene in rubber tree (Hevea brasiliensis).

    PubMed

    Qin, Bi; Zheng, Fucong; Zhang, Yu

    2015-03-01

    Mlo gene encodes a plant-specific seven-transmembrane domain protein involved in a variety of cellular processes. In this study, a novel Mlo gene from rubber tree (Hevea brasiliensis), designated HbMlo1, was cloned by RT-PCR in rubber tree. The ORF of HbMlo1 was 1551bp in length, encoding a putative protein of 516 amino acids. HbMlo1 was a typical Mlo protein with seven-transmembrane domain. Sequence comparison between HbMlo1 and other Mlo proteins demonstrated that HbMlo1 shared the highest similarity with the Cucumis melo CmMlo1 and Arabidopsis thaliana AtMlo1 with 75.1% and 71.3% sequence identity, respectively. Phylogenetic analysis revealed that HbMlo1, CmMlo1, AtMlo1, AtMlo13, and AtMlo15 formed into the phylogenetic clade II with 100% bootstrap support value. HbMlo1 transcript exhibited tissue specificity, and it was preferentially expressed in leaf. Furthermore, the amount of HbMlo1 transcript was significantly induced by various phytohormones (including ethephon, methyl jasmonate, salicylic acid, abscisic acid, indole-3-acetic acid, and gibberellic acid), H2O2, and wounding treatments. Under drought stress, HbMlo1 exhibited a complex pattern of regulation. However, HbMlo1 expression did not significantly change during powdery mildew infection. These results suggested that HbMlo1 might play a role in phytohormone signaling and abiotic stress response processes in rubber tree. PMID:25506769

  15. Molecular cloning and expression analysis of the STAT1 gene from olive flounder, Paralichthys olivaceus

    PubMed Central

    Park, Eun-Mi; Kang, Jung-Ha; Seo, Jung Soo; Kim, GunDo; Chung, Jongkyeong; Choi, Tae-Jin

    2008-01-01

    Background Signal transducer and activator of transcription 1 (STAT1) is a critical component of interferon (IFN)-alpha/beta and IFN-gamma signaling. Although seven isoforms of STAT proteins have been reported from mammals, limited information is available for the STAT genes in fish. We isolated complementary DNA with high similarity to mammalian STAT1 from the olive flounder, Paralichthys olivaceus. Results A DNA fragment containing the conserved SH2 domain was amplified by RT-PCR using degenerate primers designed based on the highly conserved sequences in the SH2 domains of the zebrafish and mammalian STAT1. The complete cDNA sequence was obtained by 5' and 3' RACE. The flounder STAT1 transcript consisted of 2,909 bp that encoded a polypeptide of 749 amino acids. The overall similarity between flounder STAT1 and other STATs was very high, with the highest amino acid sequence identity to snakehead (89%). Phylogenetic analyses reveal that flounder STAT1 is in the same monophyletic group with snakehead STAT1. Quantitative real time RT-PCR and in situ hybridization revealed that STAT1 was expressed in almost all examined organs and tissues, with high expression in gill, spleen, kidney, and heart. The accumulation of STAT1 mRNA in different developmental stages, as determined by real time RT-PCR, increased with development. Conclusion Recent cloning of various cytokine genes and the STAT1 gene of olive flounder here suggest that fish also use the highly specialized JAK-STAT pathway for cytokine signaling. Identification of other STAT genes will elucidate in detail the signal transduction system in this fish. PMID:18578892

  16. Molecular cloning and characterization of an S-adenosylmethionine synthetase gene from Chorispora bungeana.

    PubMed

    Ding, Chenchen; Chen, Tao; Yang, Yu; Liu, Sha; Yan, Kan; Yue, Xiule; Zhang, Hua; Xiang, Yun; An, Lizhe; Chen, Shuyan

    2015-11-10

    S-adenosylmethionine synthetase (SAMS) catalyzes the formation of S-adenosylmethionine (SAM) which is a molecule essential for polyamines and ethylene biosynthesis, methylation modifications of protein, DNA and lipids. SAMS also plays an important role in abiotic stress response. Chorispora bungeana (C. bungeana) is an alpine subnival plant species which possesses strong tolerance to cold stress. Here, we cloned and characterized an S-adenosylmethionine synthetase gene, CbSAMS (C. bungeana S-adenosylmethionine synthetase), from C. bungeana, which encodes a protein of 393 amino acids containing a methionine binding motif GHPDK, an ATP binding motif GAGDQG and a phosphate binding motif GGGAFSGDK. Furthermore, an NES (nuclear export signal) peptide was identified through bioinformatics analysis. To explore the CbSAMS gene expression regulation, we isolated the promoter region of CbSAMS gene 1919bp upstream the ATG start codon, CbSAMSp, and analyzed its cis-acting elements by bioinformatics method. It was revealed that a transcription start site located at 320 bp upstream the ATG start codon and cis-acting elements related to light, ABA, auxin, ethylene, MeJA, low temperature and drought had been found in the CbSAMSp sequence. The gene expression pattern of CbSAMS was then analyzed by TR-qPCR and GUS assay method. The result showed that CbSAMS is expressed in all examined tissues including callus, roots, petioles, leaves, and flowers with a significant higher expression level in roots and flowers. Furthermore, the expression level of CbSAMS was induced by low temperature, ethylene and NaCl. Subcellular localization revealed that CbSAMS was located in the cytoplasm and nucleus but has a significant higher level in the nucleus. These results indicated a potential role of CbSAMS in abiotic stresses and plant growth in C. bungeana. PMID:26205258

  17. Molecular cloning, primary structure, and expression of the human platelet/erythroleukemia cell 12-lipoxygenase.

    PubMed Central

    Funk, C D; Furci, L; FitzGerald, G A

    1990-01-01

    The major pathway of arachidonic acid metabolism in human platelets proceeds via a 12-lipoxygenase enzyme; however, the biological role of the product of this reaction, 12-hydro(pero)xyeicosatetraenoic acid [12-H(P)ETE], is unknown. Using a combination of the polymerase chain reaction and conventional screening procedures, we have isolated cDNA clones encoding the human platelet/human erythroleukemia (HEL) cell 12-lipoxygenase. From the deduced primary structure, human platelet/HEL 12-lipoxygenase would encode a Mr 75,000 protein consisting of 663 amino acids. The cDNA encoding the full-length protein (pCDNA-121x) under the control of the cytomegalovirus promoter was expressed in simian COS-M6 cells. Intact cells and lysed-cell supernatants were able to synthesize 12-H(P)ETE from arachidonic acid, whereas no 12-H(P)ETE synthesis was detected in mock-transfected cells. A single 2.4-kilobase mRNA was detected in erythroleukemia cells but not in several other tissues and cell lines evaluated by Northern blot analysis. Comparison of the human platelet/HEL 12-lipoxygenase sequence with that of porcine leukocyte 12-lipoxygenase and human reticulocyte 15-lipoxygenase revealed 65% amino acid identity to both enzymes. By contrast, the leukocyte 12-lipoxygenase is 86% identical to human reticulocyte 15-lipoxygenase. Sequence data and previously demonstrated immunochemical and biochemical evidence support the existence of distinct 12-lipoxygenase isoforms. The availability of cDNA probes for human platelet/HEL cell 12-lipoxygenase should facilitate elucidation of the biological role of this pathway. Images PMID:2377602

  18. Molecular and structural preservation of dehydrated bio-tissue for THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Png, Gretel M.; Choi, Jin Wook; Guest, Ian; Ng, Brian W.-H.; Mickan, Samuel P.; Abbott, Derek; Zhang, Xi-Cheng

    2007-12-01

    Terahertz transmission through freshly excised biological tissue is limited by the tissue's high water content. Tissue fixation methods that remove water, such as fixation in Formalin, destroy the structural information of proteins hence are not suitable for THz applications. Dehydration is one possible method for revealing the tissue's underlying molecular structure and components. In this study, we measured the THz responses over time of dehydrating fresh, necrotic and lyophilized rat tissue. Our results show that as expected, THz absorption increases dramatically with drying and tissue freshness can be maintained through lyophilization. Dehydrated biological tissue with retained molecular structure can be useful for future laser-based THz wave molecular analysis.

  19. Molecular cloning and bioinformatic analysis of the Streptococcus agalactiae neuA gene isolated from tilapia.

    PubMed

    Wang, E L; Wang, K Y; Chen, D F; Geng, Y; Huang, L Y; Wang, J; He, Y

    2015-01-01

    Cytidine monophosphate (CMP) N-acetylneuraminic acid (NeuNAc) synthetase, which is encoded by the neuA gene, can catalyze the activation of sialic acid with CMP, and plays an important role in Streptococcus agalactiae infection pathogenesis. To study the structure and function of the S. agalactiae neuA gene, we isolated it from diseased tilapia, amplified it using polymerase chain reaction (PCR) with specific primers, and cloned it into a pMD19-T vector. The recombinant plasmid was confirmed by PCR and restriction enzyme digestion, and identified by sequencing. Molecular characterization analyses of the neuA nucleotide amino acid sequence were performed using bioinformatic tools and an online server. The results showed that the neuA nucleotide sequence contained a complete coding region, which comprised 1242 bp, encoding 413 amino acids (aa). The aa sequence was highly conserved and contained a Glyco_tranf_GTA_type superfamily and an SGNH_hydrolase superfamily conserved domain, which are related to sialic acid activation catalysis. The NeuA protein possessed many important sites related to post-translational modification, including 28 potential phosphorylation sites and 2 potential N-glycosylation sites, had no signal peptides or transmembrane regions, and was predicted to reside in the cytoplasm. Moreover, the protein had some B-cell epitopes, which suggests its potential in development of a vaccine against S. agalactiae infection. The codon usage frequency of neuA differed greatly in Escherichia coli and Homo sapiens genes, and neuA may be more efficiently expressed in eukaryotes (yeast). S. agalactiae neuA from tilapia maintains high structural homology and sequence identity with CMP-NeuNAc synthetases from other bacteria. PMID:26125800

  20. Molecular Cloning and Expression of Cu/Zn-Containing Superoxide Dismutase from Fasciola hepatica

    PubMed Central

    Kim, Tong-Soo; Jung, Younghun; Na, Byoung-Kuk; Kim, Ki-Sun; Chung, Pyung-Rim

    2000-01-01

    The cytosolic superoxide dismutase (SOD) of Fasciola hepatica, a causative agent of fascioliasis, was purified and characterized. The enzyme consists of two identical subunits, each with an apparent molecular mass of 17.5 kDa. An analysis of the enzyme's primary structure and inhibition studies revealed that the enzyme is a copper/zinc-containing SOD (Cu/Zn-SOD). The enzyme activity was relatively stable in a broad pH range, from pH 7.0 to 10.0, and the enzyme showed maximum activity at pH 7.5. This enzyme also displayed strong antigenicity against sera of bovine and human subjects with fascioliasis. The SOD gene fragment was amplified by PCR with degenerate oligonucleotide primers derived from amino acid sequences conserved in the Cu/Zn-SODs of other organisms. An F. hepatica cDNA library was screened with the SOD gene fragment as a probe. As a result, a complete gene encoding the Cu/Zn-SOD was identified, and its nucleotide sequence was determined. The gene had an open reading frame of 438 bp and 146 deduced amino acids. Comparison of the deduced amino acid sequence of the enzyme with previously reported Cu/Zn-SOD amino acid sequences revealed considerably high homologies. The coding region of the F. hepatica Cu/Zn-SOD was cloned and expressed in Escherichia coli. Staining of native polyacrylamide gel for SOD activity of the expressed protein revealed SOD activity that was inactivated by potassium cyanide and hydrogen peroxide but not by sodium azide. This means that the presence of the recombinant fusion protein is indicative of Cu/Zn-SOD. The expressed protein also reacted with sera of bovine and human subjects with fascioliasis, but it did not react with sera of uninfected bovine and human subjects. PMID:10858207

  1. Molecular cloning and structural characterization of the human histidase gene (HAL)

    SciTech Connect

    Suchi, Mariko; Sano, Hirofumi; Mizuno, Haruo; Wada, Yoshiro

    1995-09-01

    Histidase (EC 4.3.1.3) is a cytosolic enzyme that catalyzes the nonoxidative determination of histidine to urocanic acid. Histidinemia, resulting from reduced histidase activity as reported in Cambridge stock his/her mice and in humans, is the most frequent inborn metabolic error in Japan. The histidase chromosomal gene (HAL) was isolated from a {lambda}EMBL-3 human genomic library using the human histidase cDNA as a probe. Restriction mapping and Southern blot analysis of the isolated clones reveal a single-copy gene spanning approximately 25 kb and consisting of 21 exons. Exon 1 encodes only 5{prime} untranslated sequence of liver histidase mRNA, with protein coding beginning in exon 2. A rarely observed 5{prime}GC, similar to that reported in the human P-450(SCC) gene, is present in intron 20. All other splicing junctions adhere to the canonical GT/AG rule. A TATA box sequence is located 25 bp upstream of the liver histidase transcription initiation site determined by S1 nuclease protection analysis. Several liver- and epidermis-specific transcription factor binding sites, including C/EBP, NFIL6, HNF5, AP2/ KER1, MNF, and others, are also identified in the 5{prime} flanking region. Consistent with the hepatic and epidermal expression of histidase, this finding suggests that histidase transcription may be regulated by these factors. We further identify a polymorphism (A to G transition) in the histidase coding region of exon 16. The human histidase genomic structure presented here should facilitate the molecular investigation of symptomatic and asymptomatic forms of histidinemia. 69 refs., 4 figs., 1 tab.

  2. Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene.

    PubMed

    Hirata, M; Kakizuka, A; Aizawa, M; Ushikubi, F; Narumiya, S

    1994-11-01

    Prostanoid receptors belong to the family of G protein-coupled receptors with seven transmembrane domains. By taking advantage of nucleotide sequence homology among the prostanoid receptors, we have isolated and identified a cDNA fragment and its gene encoding a mouse prostaglandin (PG) D receptor by reverse transcription polymerase chain reaction and gene cloning. This gene codes for a polypeptide of 357 amino acids, with a calculated molecular weight of 40,012. The deduced amino acid sequence has a high degree of similarity with the mouse PGI receptor and the EP2 subtype of the PGE receptor, which together form a subgroup of the prostanoid receptors. Chinese hamster ovary cells stably expressing the gene showed a single class of binding sites for [#H]PGD2 with a Kd of 40 nM. This binding was displaced by unlabeled ligands in the following order: PGD2 > BW 245C (a PGD agonist) > BW A868C (a PGD antagonist) > STA2 (a thromboxane A2 agonist). PGE2, PGF2 alpha, and iloprost showed little displacement activity at concentrations up to 10 microM. PGD2 and BW 245C also increased cAMP levels in Chinese hamster ovary cells expressing the receptor, in a concentration-dependent manner. BW A868C showed a partial agonist activity in the cAMP assay. Northern blotting analysis with mouse poly(A)+ RNA identified a major mRNA species of 3.5 kb that was most abundantly expressed in the ileum, followed by lung, stomach, and uterus. PMID:7972033

  3. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster.

    PubMed Central

    Elsinghorst, E A; Mortlock, R P

    1994-01-01

    To metabolize the uncommon pentose D-arabinose, enteric bacteria often recruit the enzymes of the L-fucose pathway by a regulatory mutation. However, Escherichia coli B can grow on D-arabinose without the requirement of a mutation, using some of the L-fucose enzymes and a D-ribulokinase that is distinct from the L-fuculokinase of the L-fucose pathway. To study this naturally occurring D-arabinose pathway, we cloned and partially characterized the E. coli B L-fucose-D-arabinose gene cluster and compared it with the L-fucose gene cluster of E. coli K-12. The order of the fucA, -P, -I, and -K genes was the same in the two E. coli strains. However, the E. coli B gene cluster contained a 5.2-kb segment located between the fucA and fucP genes that was not present in E. coli K-12. This segment carried the darK gene, which encodes the D-ribulokinase needed for growth on D-arabinose by E. coli B. The darK gene was not homologous with any of the L-fucose genes or with chromosomal DNA from other D-arabinose-utilizing bacteria. D-Ribulokinase and L-fuculokinase were purified to apparent homogeneity and partially characterized. The molecular weights, substrate specificities, and kinetic parameters of these two enzymes were very dissimilar, which together with DNA hybridization analysis, suggested that these enzymes are not related. D-Arabinose metabolism by E. coli B appears to be the result of acquisitive evolution, but the source of the darK gene has not been determined. Images PMID:7961494

  4. Mole ghrelin: cDNA cloning, gene expression, and diverse molecular forms in Mogera imaizumii.

    PubMed

    Satou, Motoyasu; Kaiya, Hiroyuki; Nishi, Yoshihiro; Shinohara, Akio; Kawada, Shin-Ichiro; Miyazato, Mikiya; Kangawa, Kenji; Sugimoto, Hiroyuki

    2016-06-01

    Here, we describe cDNA cloning and purification of the ghrelin gene sequences and ghrelin peptides from the Japanese true mole, Mogera imaizumii. The gene spans >2.9kbp, has four exons and three introns, and shares structural similarity with those of terrestrial animals. Mature mole ghrelin peptide was predicted to be 28 amino acids long (GSSFLSPEHQKVQQRKESKKPPSKPQPR) and processed from a prepropeptide of 116 amino acids. To further elucidate molecular characteristics, we purified ghrelin peptides from mole stomach. By mass spectrometry, we found that the mole ghrelin peptides had higher ratios of the odd-number fatty acids (C9 and C11 as much as C8) attached to the third serine residue than other vertebrate ghrelin. Truncated forms of ghrelins such as [1-27], [1-19], [1-16] and [1-15], and that lacked the 14th glutamine residue (des-Gln14 ghrelin) were produced in the stomach. Marked expression of ghrelin mRNA in lung was observed as in stomach and brain. Phylogenetic analysis indicated that the branch of M. imaizumii has slightly higher dN/dS ratios (the nucleotide substitution rates at non-synonymous and synonymous sites) than did other eulipotyphlans. Peptide length was positively correlated with human ghrelin receptor activation, whereas the length of fatty-acyl chains showed no obvious functional correlation. The basal higher luciferase activities of the 5'-proximal promoter region of mole ghrelin were detected in ghrelin-negative C2C12 cells and hypoxic culture conditions impaired transcriptional activity. These results indicated that moles have acquired diverse species of ghrelin probably through distinctive fatty acid metabolism because of their food preferences. The results provide a gateway to understanding ghrelin metabolism in fossorial animals. PMID:27102942

  5. Grading of soft tissue sarcomas: from histological to molecular assessment.

    PubMed

    Neuville, Agnes; Chibon, Frédéric; Coindre, Jean-Michel

    2014-02-01

    Several histological grading systems for soft tissue sarcomas have been described since the early 1980s. Their main objective is to select patients for adjuvant chemotherapy. Two histological grading systems are used in daily practice, the National Cancer Institute (NCI) and the French Federation of Cancer Centers Sarcoma Group (FNCLCC) systems. They have been devised by combining histological parameters: number of mitoses per high-power field, the presence of necrosis, cellular and nuclear morphology and the degree of cellularity for the NCI grading; and tumour differentiation, mitotic index and extent of necrosis for the French system. Histological grading is far more appropriate to assess the risk of metastasis. However, several limitations prevent its use: grade cannot be applied to all histological types, its reproducibility is not perfect, a three-grade system generates an intermediate grade with undetermined prognosis, and finally the core needle biopsy, now widely used for the diagnosis of soft tissue sarcoma, is not the best sample to assess the grade. The development of molecular grading in addition to histological grading probably represents the next step. Molecular signatures based on quantitative evaluation of chromosomal complexity such as CINSARC (complexity index in sarcomas) appear as a strong independent predictive factor for metastasis in several types of sarcoma, and even in several other types of cancer. When they can be instituted in daily practice on formalin fixed, paraffin embedded material, molecular signatures will not only provide information on risk of metastasis, but also better understanding of cancer development, response or resistance to evaluated drugs, and potential targets for future treatments. PMID:24378389

  6. Molecular cloning of the Robl gene from Bombyx mori and studies of its developmental and physicochemical regulation.

    PubMed

    Wei, Hao; Xuling, He; Yusong, Xu

    2012-06-01

    Dynein light chains function as motor acceptor to recruit cargos, which play vital roles in many cellular processes such as intracellular transport and mitosis. In this study, we cloned and expressed the dynein light chain LC7 gene BmRobl in silkworm. The full-length cDNA of the dynein light chain LC7 gene BmRobl is 757 bp and encoded 97 aa polypeptide. Its molecular weight was ~11 kDa confirmed by western blotting. The tissue and stage expression profile of BmRobl drafted by real time PCR revealed that presence of BmRobl transcript was examined in all tissue but prominent expression level was found in brain, wing disc, ovary and testis. In metamorphosis wing disc, BmRobl reached to peak during the prepupae stage compared with the larval and pupal stages. This indicated BmRobl might involve in wing discs development during metamorphosis. Besides, in vitro wing discs 20E cultivation was performed and BmRobl expression profile was detected. The results demonstrated that the BmRobl gene was significantly up-regulated with increase of 20E concentration; the mRNA level peaked at 2 μg/ml of 20E. However, the BmRobl expression nearly has no change cultivated by 20 μg/ml 20E compared with 0.02 μg/ml 20E. These indicated that BmRobl expression might directly or indirectly induced by 20E, besides, high concentration 20E was far too inducible, suggesting that low concentrations of ecdysteroid induce cell proliferation, whereas high concentrations inhibit cell proliferation. Moreover, the transport role of BmRobl was clarified by UV challenge and vanadate cultivation. Both the real time PCR and western blotting results showed that the BmRobl gene was degraded with increase in the concentration of sodium vanadate combined with elongation in the time of UV challenge. Interestingly, compared with the single treatment group and non-treatment group, the group treated by both sodium vanadate and UV have severe degradation. This indicated that UV and vanadate might down

  7. Purification, characterization and molecular cloning of alpha-2-macroglobulin in cobia, Rachycentron canadum.

    PubMed

    Chuang, Wen-Hsiao; Liu, Ping-Chung; Hung, Chia-Yu; Lee, Kuo-Kau

    2014-12-01

    Alpha-2-macroglobulin (α-2-M) is a broad spectrum protease inhibitor which is abundant in the plasma of vertebrates and several invertebrates. The α-2-M was purified from cobia (Rachycentron canadum) plasma by a four-step procedure: poly ethylene glycol fractionation, affinity chromatography, hydrophobic interaction chromatography and ion exchange chromatography on Fast Protein liquid chromatography system in the present study. It migrated as one protein band with a molecular mass of about 360 kDa in the native state, whereas in SDS-PAGE it was about 180 kDa under non-reducing condition. This result revealed that the native protein was a dimer. In addition, it was cleaved into two different fragments of molecular mass about 93 and 87 kDa when reduced by dithiothreitol (DTT). The anti-protease activity of the purified α-2-M was apparently decreased as temperature elevated above 50 °C. The α-2-M exhibited highest protease inhibitory activity at pH 9. The results indicate that the α-2-M is a heat-labile and alkaline protease inhibitor. The purified α-2-M exhibited more than 50% protease inhibitory activity against extracellular products (ECP) of Vibrio alginolytius isolated from diseased cobia. It seems that the protease activities in ECP may be affected by the plasma α-2-M. The protease inhibitory activities of cobia plasma or purified α-2-M were decreased when incubated with 10 mM methylamine for 30 min. The α-2-M cDNA consisted of 4611 bp with an open reading frame of 4374 bp had been cloned from cobia liver. This sequence contained thioester domain (GCGEQ) and thirteen predicted N-linked glycosylation sites. In addition, the amino acid sequence of thioester domain and genes of adjacent regions of cobia α-2-M were further compared with sequences of known fish species in GenBank. The unweighted pair group method using arithmetic average (UPGMA) was employed to construct the phylogenetic trees of α-2-M among different fish species (freshwater fish, sea

  8. Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah.

    PubMed

    Zeng, Lin; Sun, Qian-Yun; Jin, Yang; Zhang, Yong; Lee, Wen-Hui; Zhang, Yun

    2012-09-01

    Cobra venom factor (CVF) is an anti-complement factor existing in cobra venom. CVF proteins have been purified from the venoms of Naja haje, Naja siamensis, Naja atra, Naja kaouthia, Naja naja, Naja melanoleuca and Austrelaps superbus, but only three full-length cDNA sequences of CVF are available. In the present work, a cobra venom factor termed OVF was purified from the crude venom of Ophiophagus hannah by successive gel filtration, ion-exchange and heparin affinity chromatography steps. The purified OVF was homogenous on the SDS-PAGE gel with an apparent molecular weight of 140 kDa under non-reducing conditions. Under reducing conditions, OVF was divided into three bands with apparent molecular weight of 72 kDa (α chain), 45 kDa (β chain) and 32 kDa (γ chain), respectively. OVF consumed complement components with anti-complement activity of 154 units per mg. By using Reverse transcription-PCR and 5'-RACE assay, the open reading frame of OVF was obtained. MALDI-TOF and protein sequencing assays confirmed the cloned cDNA coding for OVF protein. The cDNA sequence of OVF is conservative when aligned with that of other CVFs. Phylogenetic analysis revealed OVF is closer to CVF from N. kaouthia than to AVF-1 and AVF-2 from A. superbus. Our results demonstrated that OVF has its unique features as following: 1) The N-terminal amino acid sequence of OVF γ chain is different from that of other known CVFs, suggesting that the OVF γ chain might be further processed; 2) Unlike N. kaouthia CVF and A. superbus AVF-1, which have potential N-linked glycosylation sites located in both α and β chain, OVF only has N-linked glycosylation site in its α chain as revealed by Schiff's reagent staining and protein sequence analysis; 3) In addition to the 27 well conserved cysteine residues in all known CVFs, OVF have an additional cysteine residue in its γ chain. Understanding the importance of above mentioned specific characteristics might provide useful information on structure

  9. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus.

    PubMed

    Ewis, Hosam E; Abdelal, Ahmed T; Lu, Chung-Dar

    2004-03-31

    Screening of the genomic libraries of Geobacillus stearothermophilus ATCC12980 and ATCC7954 for esterase/lipase activity led to the isolation of two positive clones. The results of subclonings and sequence analyses identified two genes, est30 and est55, encoding two different carboxylesterases, and genetic rearrangement in the est55 locus was revealed from genomic comparison. The est30 gene encodes a polypeptide of 248 amino acids with a calculated molecular mass of 28338 Da, and the est55 gene encodes a polypeptide of 499 amino acids with a calculated molecular mass of 54867 Da. Both enzymes were purified to near homogeneity from recombinant strains of Escherichia coli. The results of enzyme characterization showed that while both enzymes possess optimal activities with short chain acyl derivatives, Est55 has a broader pH tolerance (pH 8-9) and optimal temperature range (30-60 degrees C) than Est30. The activation energy of Est55 (35.7 kJ/mol) was found to be significantly lower than that of Est30 (101.9 kJ/mol). Both enzymes were stable at 60 degrees C for more than 2 h; at 70 degrees C, the half-life for thermal inactivation was 40 and 180 min for Est55 and Est30, respectively. With p-nitrophenyl caproate as the substrate and assayed at 60 degrees C, Est55 had K(m) and k(cat) values of 0.5 microM and 39758 s(-1) while Est30 exhibited values of 2.16 microM and 38 s(-1). Inhibition studies indicated that both Est30 and Est55 were strongly inhibited by phenylmethanesulfonyl fluoride, p-hydroxymercuribenzoate, and tosyl-l-phenylalanine, consistent with the proposed presence of Ser-His-Glu catalytic triad of the alpha/beta hydrolase family. The enzymatic properties of Est30 and Est55 reported here warrant the potential applications of these enzymes in biotechnological industries. PMID:15033540

  10. cDNA cloning, identification, tissue localisation, and transcription profile of a transglutaminase from white shrimp, Litopenaeus vannamei, after infection by Vibrio alginolyticus.

    PubMed

    Yeh, Maw-Sheng; Liu, Chun-Hung; Hung, Chia-Wen; Cheng, Winton

    2009-12-01

    Complementary (c)DNA encoding transglutaminase (TG) messenger (m)RNA of white shrimp, Litopenaeus vannamei, was cloned from haemocytes by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) using oligonucleotide primers based on the TG sequence of the horseshoe crab, Tachypleus tridentatus (accession no.: BAA02134); tiger shrimp, Penaeus monodon (AAL78166); and Pacifastacus leniusculus (AF336805). The 2638-bp cDNA contained an open reading frame (ORF) of 2172 bp, a 55-bp 5'-untranslated region (UTR), and a 411-bp 3'-UTR containing a poly A tail. The molecular mass of the deduced amino acid (aa) sequence (757 aa) was 84.9 kDa with an estimated pI of 5.2. The L. vannamei TG (abbreviated LvTG) contains a typical transglutaminase-like homologue, a putative integrin-binding motif (RGD), and four calcium-binding sites; a catalytic triad is present as in arthropod TG. Sequence comparison and phylogenetic analysis revealed that shrimp TG can be separated into two subgroups, STGS1 and STGS2, and LvTG is more closely related to STGS1 than to STGS2. LvTG mRNA and TG activities were detected in all tested tissues of L. vannamei, with LvTG mainly being synthesised in haemocytes. However, the pattern of LvTG mRNA expression was not directly correlated with TG activity. The haemocytes of L. vannamei injected with Vibrio alginolyticus showed a significant decrease of TG activity at 3 h and a significant increase of LvTG mRNA expression at 6 h followed by a notable decrease from 12 to 24 h, which indicated that cloned LvTG was involved in the immune response of shrimp. The results also imply that more than one type of TG may be involved in the defense response in L. vannamei. PMID:19782141

  11. Molecular cloning and expression analysis of small ubiquitin-like modifier (SUMO) genes from grouper (Epinephelus coioides).

    PubMed

    Xu, Meng; Wei, Jingguang; Chen, Xiuli; Gao, Pin; Zhou, Yongcan; Qin, Qiwei

    2016-01-01

    Small ubiquitin-like modifier (SUMO) is a group of proteins binding to lysine residues of target proteins and thereby modifying their stability, activity and subcellular localization. In the present study, two SUMO homolog genes (EcSUMO1 and EcSUMO2) from grouper (Epinephelus coioides) were cloned and characterized. The full-length sequence of EcSUMO1 was 749 bp in length and contained a predicted open reading frame of 306 bp encoding 101 amino acids with a molecular mass of 11.34 kDa. The full-length sequence of EcSUMO2 was 822 bp in length and contained a predicted open reading frame of 291 bp encoding 96 amino acids with a molecular mass of 10.88 kDa EcSUMO1 shares 44.55% identity with EcSUMO2. EcSUMO1 shares 99%, 90%, and 88% identity with those from Oreochromis niloticus, Danio rerio, and Homo sapiens, respectively. EcSUMO2 shares 98%, 93%, and 96% identity with those from Anoplopoma fimbria, D.rerio, and H. sapiens, respectively. Quantitative real-time PCR analysis indicated that EcSUMO1 and EcSUMO2 were constitutively expressed in all of the analyzed tissues in healthy grouper, but the expression of EcSUMO2 was higher than that of EcSUMO1. EcSUMO1 and EcSUMO2 were identified as a remarkably (P < 0.01) up-regulated responding to poly(I:C) and Singapore grouper iridovirus (SGIV) stimulation in head kidney of groupers. EcSUMO1 and EcSUMO2 were distributed in both cytoplasm and nucleus in GS cells. Over-expressed EcSUMO1 and EcSUMO2 enhanced SGIV and Red-spotted grouper nervous necrosis virus (RGNNV) replication during viral infection in vitro. Our study was an important attempt to understand the SUMO pathway in fish, which may provide insights into the regulatory mechanism of viral infection in E.coioides under farmed conditions. PMID:26616235

  12. Utility of epirubicin-incorporating micelles tagged with anti-tissue factor antibody clone with no anticoagulant effect.

    PubMed

    Sugaya, Akinori; Hyodo, Ichinosuke; Koga, Yoshikatsu; Yamamoto, Yoshiyuki; Takashima, Hiroki; Sato, Ryuta; Tsumura, Ryo; Furuya, Fumiaki; Yasunaga, Masahiro; Harada, Mitsunori; Tanaka, Ryosuke; Matsumura, Yasuhiro

    2016-03-01

    Tissue factor (TF), an initiator of the extrinsic blood coagulation cascade, is overexpressed in different types of cancer. Tissue factor overexpression is also known as a poor prognostic factor in pancreatic cancer. We recently developed anti-TF antibody (clone1849)-conjugated epirubicin-incorporating micelles (NC-6300), and reported that this anti-TF1849-NC-6300 showed enhanced antitumor activity against TF-high expressed human pancreatic cancer cells, when compared with NC-6300 alone. However, clone 1849 antibody inhibited TF-associated blood coagulation activity. We studied another anti-TF antibody, clone 1859, which had no effect on blood coagulation and prepared anti-TF1859-NC-6300. In addition, to determine the optimum size of the antibody fragment to conjugate with NC-6300, three forms of the 1859 antibody (whole IgG, F[ab']2 , and Fab') were conjugated to NC-6300. The antitumor effect of each anti-TF1859-NC-6300 was studied in vitro and in vivo, using two human pancreatic cancer cell lines, BxPC3 with high-expressed TF, and SUIT2 with low levels of TF. In vitro, all forms of anti-TF1859-NC-6300 showed higher cytocidal effects than NC-6300 in BxPC3, whereas this enhanced effect was not observed in SUIT2. Likewise, all forms of anti-TF1859-NC-6300 significantly suppressed tumor growth when compared to NC-6300 in the BxPC3, but not in the SUIT2, xenograft model. Among the three forms of conjugates, anti-TF1859-IgG-NC-6300 had a higher antitumor tendency in TF-high expressed cells. Thus, we have confirmed an enhanced antitumor effect of anti-TF1859-NC-6300 in a TF-high expressing tumor; anti-TF1859-IgG-NC-6300 could be used to simplify the manufacturing process of the antibody-micelle conjugation for future clinical studies. PMID:26676840

  13. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    PubMed Central

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  14. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    PubMed

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones. PMID:27555864

  15. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    SciTech Connect

    Woon, J. S. K. Murad, A. M. A. Abu Bakar, F. D.

    2015-09-25

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  16. Molecular cloning and sequence analysis of the X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subsp. cremoris.

    PubMed Central

    Mayo, B; Kok, J; Venema, K; Bockelmann, W; Teuber, M; Reinke, H; Venema, G

    1991-01-01

    Lactococcus lactis subsp. cremoris P8-2-47 contains an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). A mixed-oligonucleotide probe prepared on the basis of the N-terminal amino acid sequence of the purified protein was made and used to screen a partial chromosomal DNA bank in Escherichia coli. A partial XbaI fragment cloned in pUC18 specified X-PDAP activity in E. coli clones. The fragment was also able to confer X-PDAP activity on Bacillus subtilis. The fact that none of these organisms contain this enzymatic activity indicated that the structural gene for X-PDAP had been cloned. The cloned fragment fully restored X-PDAP activity in X-PDAP-deficient mutants of L. lactis. We have sequenced a 3.8-kb fragment that includes the X-PDAP gene and its expression signals. The X-PDAP gene, designated pepXP, comprises 2,289 nucleotide residues encoding a protein of 763 amino acids with a predicted molecular weight of 87,787. No homology was detected between pepXP and genes that had been previously sequenced. A second open reading frame, divergently transcribed, was present in the sequenced fragment; the function or relationship to pepXP of this open reading frame is unknown. Images PMID:1674655

  17. Isolation, molecular cloning and expression of cellobiohydrolase B (CbhB) from Aspergillus niger in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Woon, J. S. K.; Murad, A. M. A.; Abu Bakar, F. D.

    2015-09-01

    A cellobiohydrolase B (CbhB) from Aspergillus niger ATCC 10574 was cloned and expressed in E. coli. CbhB has an open reading frame of 1611 bp encoding a putative polypeptide of 536 amino acids. Analysis of the encoded polypeptide predicted a molecular mass of 56.2 kDa, a cellulose binding module (CBM) and a catalytic module. In order to obtain the mRNA of cbhB, total RNA was extracted from A. niger cells induced by 1% Avicel. First strand cDNA was synthesized from total RNA via reverse transcription. The full length cDNA of cbhB was amplified by PCR and cloned into the cloning vector, pGEM-T Easy. A comparison between genomic DNA and cDNA sequences of cbhB revealed that the gene is intronless. Upon the removal of the signal peptide, the cDNA of cbhB was cloned into the expression vector pET-32b. However, the recombinant CbhB was expressed in Escherichia coli Origami DE3 as an insoluble protein. A homology model of CbhB predicted the presence of nine disulfide bonds in the protein structure which may have contributed to the improper folding of the protein and thus, resulting in inclusion bodies in E. coli.

  18. Cloning, expression, and tissue localisation of prolactin in adult sea bream (Sparus aurata).

    PubMed

    Santos, C R; Brinca, L; Ingleton, P M; Power, D M

    1999-04-01

    A major action of prolactin (PRL) in teleost fish is the maintenance of hydromineral balance in euryhaline species in fresh water. The function of PRL in marine teleosts is less certain and unlike euryhaline teleosts, such as tilapia and salmon, there is relatively little information about protein or gene structure. Associated with studies to determine potential functions of PRL, pituitary prolactin cDNA has been cloned and sequenced from sea bream (Sparus aurata), a marine teleost. The sequence obtained spanned 1349 bp and contained an open reading frame encoding a protein of 212 amino acids composed of a putative signal peptide of 24 residues and a mature protein of 188 amino acids. N-terminal sequencing of the native protein confirmed unambiguously the cleavage site, Ala24, Val25, predicted from alignments of the sea bream PRL cDNA with that of other teleosts. The presence of only one form of PRL in sea bream was supported by identification using Northern blots of only a single transcript of 1.35 kb. Reverse transcription and polymerase chain reaction techniques coupled with Southern blot analysis resulted in the detection of PRL in the pituitary but also in the intestine, liver, ovary, and testes. PMID:10094859

  19. Cloning and tissue distribution of appetite-regulating peptides in pirapitinga (Piaractus brachypomus).

    PubMed

    Volkoff, H

    2015-10-01

    Pirapitinga (or red-bellied pacu, Piaractus brachypomus, Characiforme, Serrasalmidae) is an economically important South American fish for which the endocrine mechanism of the regulation of feeding has never been examined. To better understand these mechanisms, cDNAs encoding the appetite-regulating peptides orexin, cocaine- and amphetamine-regulated transcript (CART), apelin, cholecystokinin (CCK), peptide YY (PYY), leptin and ghrelin were isolated in pirapitinga and their mRNA distributions examined in peripheral tissues and brain. When compared to other fish, the sequences obtained for all peptides were most similar to those of other Characiforme fish (i.e. Mexican cavefish) and Siluriformes (catfish) as well as Cypriniformes (i.e. goldfish, zebrafish). All peptides were widely expressed within the brain. With the exception of CART, which was only expressed in brain, the mRNAs of all peptides were present in several peripheral tissues, including gastrointestinal tract, kidneys and gills. The widespread and peptide-specific distributions suggest that each peptide might have distinct physiological actions in the brain and on peripheral tissues, in particular on the gastrointestinal tract, which include feeding regulation. This preliminary study opens new avenues for further functional studies on the endocrine regulation of feeding in Serrasalmidae fish, including pirapitinga. PMID:25846408

  20. RNA Extraction from Xenopus Auditory and Vestibular Organs for Molecular Cloning and Expression Profiling with RNA-Seq and Microarrays.

    PubMed

    Trujillo-Provencio, Casilda; Powers, TuShun R; Sultemeier, David R; Ramirez-Gordillo, Daniel; Serrano, Elba E

    2016-01-01

    The amphibian Xenopus offers a unique model system for uncovering the genetic basis of auditory and vestibular function in an organism that is well-suited for experimental manipulation during animal development. However, many procedures for analyzing gene expression in the peripheral auditory and vestibular systems mandate the ability to isolate intact RNA from inner ear tissue. Methods presented here facilitate preparation of high-quality inner ear RNA from larval and post-metamorphic Xenopus specimens that can be used for a variety of purposes. We demonstrate that RNA isolated with these protocols is suitable for microarray analysis and Illumina-Solexa sequencing (RNA-Seq) of inner ear organs, and for cloning of large transcripts, such as those for ion channels. Genetic sequences cloned with these procedures can be used for transient transfection of Xenopus kidney cell lines with fluorescent protein fusion constructs. PMID:27259922

  1. Molecular cloning and characterisation of a pattern recognition protein, lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) from Chinese shrimp Fenneropenaeus chinensis.

    PubMed

    Liu, Fengsong; Li, Fuhua; Dong, Bo; Wang, Xiaomei; Xiang, Jianhai

    2009-03-01

    A pattern recognition protein (PRP), lipopolysaccharide and beta-1,3-glucan binding protein (LGBP) cDNA was cloned from the haemocyte of Chinese shrimp Fenneropenaeus chinensis by the techniques of homology cloning and RACE. Analysis of nucleotide sequence revealed that the full-length cDNA of 1,275 bp has an open reading frame of 1,098 bp encoding a protein of 366 amino acids including a 17 amino acid signal peptide. Sequence comparison of the deduced amino acid sequence of F. chinensis LGBP showed a high identity of 94%, 90%, 87%, 72% and 63% with Penaeus monodon BGBP, Litopenaeus stylirostris LGBP, Marsupenaeu japonicus BGBP, Homarus gammarus BGBP and Pacifastacus leniusculus LGBP, respectively. The calculated molecular mass of the mature protein is 39,857 Da with a deduced pI of 4.39. Two putative integrin binding motifs, RGD (Arg-Gly-Asp) and a potential recognition motif for beta-1,3-linkage of polysaccharides were observed in LGBP sequence. RT-PCR analysis showed that LGBP gene expresses in haemocyte and hepatopancreas only, but not in other tissues. Capillary electrophoresis RT-PCR method was used to quantify the variation of mRNA transcription level during artificial infection with heat-killed Vibrio anguillarum and Staphylococcus aureusin. A significant enhancement of LGBP transcription was appeared at 6 h post-injection in response to bacterial infection. These results have provided useful information to understand the function of LGBP in shrimp. PMID:18163220

  2. Cloning, characterization and tissue specific expression of Amur tiger (Panthera tigris altaica) IGF-I.

    PubMed

    Hu, Xi-Lian; Zhu, Mu-Yuan; Zhang, Zhi-He; Hou, Rong; Shen, Fu-Jun; Li, Fu-Zhen; Zhang, An-Ju

    2006-08-01

    Insulin-like growth factor I (IGF-I) plays an important role in regulating gonad function, which is essential for normal reproduction in animals, especially in sexual receptivity and reproductive behavior. In this study, a cDNA encoding Amur tiger (Panthera tigris altaica) IGF-I was isolated from liver total RNA using RT-PCR. The IGF-I cDNA of Amur tiger (ATIGF-I) was highly homologous to that of other animals, 84.8% to rat, 93.7% to human and horse. Alignment analysis showed that the cysteine residues and many amino acid residues of putative mature ATIGF-I are highly conserved in mammalian species, confirming the high sequence homology observed in other species. DNA encoding the mature ATIGF-I peptide was ligated with pET-DsbA expression vector and highly expressed in Escherichia coli BL21 with IPTG induction. The recombinant proteins expressed existed mostly in the soluble protein fraction, and were purified with metal affinity resins. Western blotting confirmed that the recombinant proteins reacted with antibodies against IGF-I. The results obtained here should be useful for large-scale production of biological active ATIGF-I protein, as well as for further research on growth, development, and reproduction in the Amur tiger. Tissue specific expression of ATIGF-I mRNA in the Amur tiger was examined by reverse transcription-polymerase chain reaction (RT-PCR), The major ATIGF-I mRNA expression tissue was the liver, while medium signals were found in the uterus, ovary, and pituitary, and minor signals were detected in various tissues including the heart, spleen, pancreas, and kidney. The results indicate that IGF-I might play an important role in the reproductive system and in cub development in the Amur tiger. PMID:16926496

  3. Toward a Molecular Cytogenetic Map for Cultivated Sunflower (Helianthus annuus L.) by Landed BAC/BIBAC Clones

    PubMed Central

    Feng, Jiuhuan; Liu, Zhao; Cai, Xiwen; Jan, Chao-Chien

    2013-01-01

    Conventional karyotypes and various genetic linkage maps have been established in sunflower (Helianthus annuus L., 2n = 34). However, the relationship between linkage groups and individual chromosomes of sunflower remains unknown and has considerable relevance for the sunflower research community. Recently, a set of linkage group-specific bacterial /binary bacterial artificial chromosome (BAC/BIBAC) clones was identified from two complementary BAC and BIBAC libraries constructed for cultivated sunflower cv. HA89. In the present study, we used these linkage group-specific clones (∼100 kb in size) as probes to in situ hybridize to HA89 mitotic chromosomes at metaphase using the BAC- fluorescence in situ hybridization (FISH) technique. Because a characteristic of the sunflower genome is the abundance of repetitive DNA sequences, a high ratio of blocking DNA to probe DNA was applied to hybridization reactions to minimize the background noise. As a result, all sunflower chromosomes were anchored by one or two BAC/BIBAC clones with specific FISH signals. FISH analysis based on tandem repetitive sequences, such as rRNA genes, has been previously reported; however, the BAC-FISH technique developed here using restriction fragment length polymorphism (RFLP)−derived BAC/BIBAC clones as probes to apply genome-wide analysis is new for sunflower. As chromosome-specific cytogenetic markers, the selected BAC/BIBAC clones that encompass the 17 linkage groups provide a valuable tool for identifying sunflower cytogenetic stocks (such as trisomics) and tracking alien chromosomes in interspecific crosses. This work also demonstrates the potential of using a large-insert DNA library for the development of molecular cytogenetic resources. PMID:23316437

  4. Molecular cloning and analysis of Ancylostoma ceylanicum glutamate-cysteine ligase.

    PubMed

    Wiśniewski, Marcin; Lapiński, Maciej; Zdziarska, Anna; Długosz, Ewa; Bąska, Piotr

    2014-08-01

    Glutamate-cysteine ligase (GCL) is a heterodimer enzyme composed of a catalytic subunit (GCLC) and a modifier subunit (GCLM). This enzyme catalyses the synthesis of γ-glutamylcysteine, a precursor of glutathione. cDNAs of the putative glutamate-cysteine ligase catalytic (Ace-GCLC) and modifier subunits (Ace-GCLM) of Ancylostoma ceylanicum were cloned using the RACE-PCR amplification method. The Ace-gclc and Ace-gclm cDNAs encode proteins with 655 and 254 amino acids and calculated molecular masses of 74.76 and 28.51kDa, respectively. The Ace-GCLC amino acid sequence shares about 70% identity and 80% sequence similarity with orthologs in Loa loa, Onchocerca volvulus, Brugia malayi, and Ascaris suum, whereas the Ace-GCLM amino acid sequence has only about 30% sequence identity and 50% similarity to homologous proteins in those species. Real-time PCR analysis of mRNA expression in L3, serum stimulated L3 and adult stages of A. ceylanicum showed the highest level of Ace-GCLC and Ace-GCLM expression occurred in adult worms. No differences were detected among adult hookworms harvested 21 and 35dpi indicating expression of Ace-gclc and Ace-gclm in adult worms is constant during the course of infection. Positive interaction between two subunits of glutamate-cysteine ligase was detected using the yeast two-hybrid system, and by specific enzymatic reaction. Ace-GCL is an intracellular enzyme and is not exposed to the host immune system. Thus, as expected, we did not detect IgG antibodies against Ace-GCLC or Ace-GCLM on days 21, 60 and 120 of A. ceylanicum infection in hamsters. Furthermore, vaccination with one or both antigens did not reduce worm burdens, and resulted in no improvement of clinical parameters (hematocrit and hemoglobin) of infected hamsters. Therefore, due to the significant role of the enzyme in parasite metabolism, our analyses raises hope for the development of a successful new drug against ancylostomiasis based on the specific GCL inhibitor. PMID

  5. Molecular Cloning, Nucleotide Sequence, and Expression of Genes Encoding a Polycyclic Aromatic Ring Dioxygenase from Mycobacterium sp. Strain PYR-1

    PubMed Central

    Khan, Ashraf A.; Wang, Rong-Fu; Cao, Wei-Wen; Doerge, Daniel R.; Wennerstrom, David; Cerniglia, Carl E.

    2001-01-01

    Mycobacterium sp. strain PYR-1 degrades high-molecular-weight polycyclic hydrocarbons (PAHs) primarily through the introduction of both atoms of molecular oxygen by a dioxygenase. To clone the dioxygenase genes involved in PAH degradation, two-dimensional (2D) gel electrophoresis of PAH-induced proteins from cultures of Mycobacterium sp. strain PYR-1 was used to detect proteins that increased after phenanthrene, dibenzothiophene, and pyrene exposure. Comparison of proteins from induced and uninduced cultures on 2D gels indicated that at least six major proteins were expressed (105, 81, 52, 50, 43, and 13 kDa). The N-terminal sequence of the 50-kDa protein was similar to those of other dioxygenases. A digoxigenin-labeled oligonucleotide probe designed from this protein sequence was used to screen dioxygenase-positive clones from a genomic library of Mycobacterium sp. strain PYR-1. Three clones, each containing a 5,288-bp DNA insert with three genes of the dioxygenase system, were obtained. The genes in the DNA insert, from the 5′ to the 3′ direction, were a dehydrogenase, the dioxygenase small (β)-subunit, and the dioxygenase large (α)-subunit genes, arranged in a sequence different from those of genes encoding other bacterial dioxygenase systems. Phylogenetic analysis showed that the large α subunit did not cluster with most of the known α-subunit sequences but rather with three newly described α subunits of dioxygenases from Rhodococcus spp. and Nocardioides spp. The genes from Mycobacterium sp. strain PYR-1 were subcloned and overexpressed in Escherichia coli with the pBAD/ThioFusion system. The functionality of the genes for PAH degradation was confirmed in a phagemid clone containing all three genes, as well as in plasmid subclones containing the two genes encoding the dioxygenase subunits. PMID:11472934

  6. Molecular cloning and characterization of potato spindle tuber viroid cDNA sequences

    PubMed Central

    Owens, Robert A.; Cress, Dean E.

    1980-01-01

    Double-stranded cDNA has been synthesized from a polyadenylylated potato spindle tuber viroid (PSTV) template and inserted in the Pst I endonuclease site of plasmid pBR322 by using the oligo(dC)·oligo(dG)-tailing procedure. Tetracycline-resistant ampicillin-sensitive transformants contained sequences complementary to PSTV [32P]cDNA, and one recombinant clone (pDC-29) contains a 460-base-pair insert. This cloned double-stranded PSTV cDNA contains the cleavage sites for six restriction endonucleases predicted by the published primary sequence of PSTV as well as one additional site each for Ava I, Hae III, Hpa II, and Sma I. The additional Ava I, Hpa II, and Sma I sites are explained by the presence of a second C-C-C-G-G-G sequence in the cloned double-stranded cDNA. The largest fragment released by Hae III digestion contains approximately 360 base pairs. These results suggest that we have cloned almost the entire sequence of PSTV, but the sequence cloned differs slightly from that published. Hybridization probes derived from pDC-29 insert have allowed detection and preliminary characterization of RNA molecules having the same size as PSTV but the opposite polarity. This RNA is present during PSTV replication in infected tomato cells. Images PMID:16592877

  7. Molecular cloning and characterization of a novel Y-box gene from Sepiella maindroni.

    PubMed

    Si, H P; Wang, C L; Zhang, Y Y; Mu, C K; Zhan, P P; Li, R H; Song, W W

    2015-01-01

    Y-box proteins are a family of highly conserved nucleic acid binding proteins that interact with genome and transcription product to modulate the transcriptional and translational processes. In the present study, a complete mRNA of Y-box binding protein (designated SmYB) was obtained from Sepiella maindroni by amplification of flanking sequences. The full size of SmYB cDNA was 1502 bp, including 99 bp at the 5ꞌ untranslated region (UTR), a 3ꞌ UTR of 821 bp with a poly (A) tail, and an open reading frame of 582 bp, encoding a polypeptide of 193 amino acids with the predicted molecular weight of 16.48 kDa. The conserved cold-shock domain and two known RNA binding motifs identified in SmYB strongly suggested that SmYB was a new member of Y-box proteins. Quantitative real-time PCR was performed to examine the expression of SmYB mRNA in various tissues, embryos, and its temporal expression in liver after cold shock. The mRNA transcript of SmYB was detected in all examined tissues, with the highest expression level in testis and ovary. SmYB was abundant in early developmental stages of S. maindroni embryos but diminished in the late post-embryonic development. In addition, cold-shock treatment upregulated the transcription of SmYB mRNA in liver. These results demonstrated that SmYB is involved in embryonic development of S. maindroni and its tolerance to acute low temperatures. PMID:26125774

  8. Molecular cloning and functional analysis of SUT-1, a sulfate transporter from human high endothelial venules

    PubMed Central

    Girard, Jean-Philippe; Baekkevold, Espen S.; Feliu, Jacques; Brandtzaeg, Per; Amalric, François

    1999-01-01

    High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV. PMID:10535998

  9. Molecular cloning, characterization and predicted structure of a putative copper-zinc SOD from the camel, Camelus dromedarius.

    PubMed

    Ataya, Farid S; Fouad, Dalia; Al-Olayan, Ebtsam; Malik, Ajamaluddin

    2012-01-01

    Superoxide dismutase (SOD) is the first line of defense against oxidative stress induced by endogenous and/or exogenous factors and thus helps in maintaining the cellular integrity. Its activity is related to many diseases; so, it is of importance to study the structure and expression of SOD gene in an animal naturally exposed most of its life to the direct sunlight as a cause of oxidative stress. Arabian camel (one humped camel, Camelus dromedarius) is adapted to the widely varying desert climatic conditions that extremely changes during daily life in the Arabian Gulf. Studying the cSOD1 in C. dromedarius could help understand the impact of exposure to direct sunlight and desert life on the health status of such mammal. The full coding region of a putative CuZnSOD gene of C. dromedarius (cSOD1) was amplified by reverse transcription PCR and cloned for the first time (gene bank accession number for nucleotides and amino acids are JF758876 and AEF32527, respectively). The cDNA sequencing revealed an open reading frame of 459 nucleotides encoding a protein of 153 amino acids which is equal to the coding region of SOD1 gene and protein from many organisms. The calculated molecular weight and isoelectric point of cSOD1 was 15.7 kDa and 6.2, respectively. The level of expression of cSOD1 in different camel tissues (liver, kidney, spleen, lung and testis) was examined using Real Time-PCR. The highest level of cSOD1 transcript was found in the camel liver (represented as 100%) followed by testis (45%), kidney (13%), lung (11%) and spleen (10%), using 18S ribosomal subunit as endogenous control. The deduced amino acid sequence exhibited high similarity with Cebus apella (90%), Sus scrofa (88%), Cavia porcellus (88%), Mus musculus (88%), Macaca mulatta (87%), Pan troglodytes (87%), Homo sapiens (87%), Canis familiaris (86%), Bos taurus (86%), Pongo abelii (85%) and Equus caballus (82%). Phylogenetic analysis revealed that cSOD1 is grouped together with S. scrofa. The

  10. Molecular cloning and chromosomal mapping of the mouse cyclin-dependent kinase 5 gene

    SciTech Connect

    Ohshima, Toshio; Nagle, J.W.; Brady, R.O.; Kozak, C.A.

    1995-08-10

    Cyclin-dependent kinase 5 (Cdk5) is predominantly expressed in neurons. In vitro, Cdk5 purified from the nervous tissue phosphorylates both high-molecular-weight neurofilament and microtubule-associated tau. The mouse gene encoding Cdk5 (Cdk5) was found to be 5 kb in length and divided into 12 exons. All of the exon-intron junctions matched the expected consensus sequence with the exception of the splice junction for intron 9, which has AT and AC dinucleotides instead of the usual GT and AG bordering sequence. In the 5{prime}-flanking region of mouse Cdk5, several putative promoter elements were present, including AP1, Sp1, PuF, and TATA motifs. A metal regulatory element was also identified at position -207 to -201. Nucleotide sequence analysis of mouse Cdk5 showed high identity to the homologues of other vertebrate species, indicating that this kinase is highly conserved during evolution. Mouse Cdk5 was mapped to the centromeric region of mouse chromosome 5. 20 refs., 2 figs., 1 tab.

  11. Catalase from the white shrimp Penaeus (Litopenaeus) vannamei: molecular cloning and protein detection.

    PubMed

    Tavares-Sánchez, Olga L; Gómez-Anduro, Gracia A; Felipe-Ortega, Ximena; Islas-Osuna, Maria A; Sotelo-Mundo, Rogerio R; Barillas-Mury, Carolina; Yepiz-Plascencia, Gloria

    2004-08-01

    Catalase is an antioxidant enzyme that plays a very important role in the protection against oxidative damage by breaking down hydrogen peroxide. It is a very highly conserved enzyme that has been identified from numerous species including bacteria, fungi, plants and animals, but the information about catalase in crustaceans is very limited. A cDNA containing the complete coding sequence for catalase from the shrimp Penaeus (Litopenaeus) vannamei was sequenced and the mRNA was detected by RT-PCR in selected tissues. Catalase was detected in hepatopancreas crude extracts by Western blot analysis with anti-human catalase polyclonal antibodies. The nucleotide sequence is 1692 bp long, including a 72-bp 5'-UTR, a coding sequence of 1515 bp and a 104-bp 3'-UTR. The deduced amino acid sequence corresponds to 505 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases and contains the catalytic residues His71, Asn144, and Tyr354. The predicted protein has a calculated molecular mass of 57 kDa; which coincides with the size of the subunit (approximately 55 kDa) and the tetrameric protein (approximately 230 kDa) detected in hepatopancreas extracts under native conditions. Catalase mRNA level was higher in hepatopancreas, followed by gills and was not detected in muscle. PMID:15325332

  12. Molecular Cloning and Sequencing of Hemoglobin-Beta Gene of Channel Catfish, Ictalurus Punctatus Rafinesque

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Hemoglobin-y gene of channel catfish , lctalurus punctatus, was cloned and sequenced . Total RNA from head kidneys was isolated, reverse transcribed and amplified . The sequence of the channel catfish hemoglobin-y gene consists of 600 nucleotides . Analysis of the nucleotide sequence reveals one o...

  13. Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform.

    PubMed Central

    Rogart, R B; Cribbs, L L; Muglia, L K; Kephart, D D; Kaiser, M W

    1989-01-01

    Voltage-gated Na+ channels in mammalian heart differ from those in nerve and skeletal muscle. One major difference is that tetrodotoxin (TTX)-resistant cardiac Na+ channels are blocked by 1-10 microM TTX, whereas TTX-sensitive nerve Na+ channels are blocked by nanomolar TTX concentrations. We constructed a cDNA library from 6-day-old rat hearts, where only low-affinity [3H]saxitoxin receptors, corresponding to TTX-resistant Na+ channels, were detected. We isolated several overlapping cDNA clones encompassing 7542 nucleotides and encoding the entire alpha subunit of a cardiac-specific Na+ channel isoform (designated rat heart I) as well as several rat brain I Na+ channel cDNA clones. The derived amino acid sequence of rat heart I was highly homologous to, but distinct from, previous Na+ channel clones. RNase protection studies showed that the corresponding mRNA species is abundant in newborn and adult rat hearts, but not detectable in brain or innervated skeletal muscle. The same mRNA species appears upon denervation of skeletal muscle, likely accounting for expression of new TTX-resistant Na+ channels. Thus, this cardiac-specific Na+ channel clone appears to encode a distinct TTX-resistant isoform and is another member of the mammalian Na+ channel multigene family, found in newborn heart and denervated skeletal muscles. Images PMID:2554302

  14. Molecular Cloning and Characterisation of Heparanase mRNA in Porcine Placenta Throughout Gestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The placenta contains a complex extracellular matrix composed of several glycosaminoglycans including heparan sulfate (HS). Heparanase (HPSE) is an endoglycosidase that specifically degrades HS. The objective of this study was to clone cDNA encoding porcine HPSE and characterize the expression lev...

  15. Molecular cloning and transcriptional analysis of the Aspergillus terreus gla1 gene encoding a glucoamylase.

    PubMed Central

    Ventura, L; González-Candelas, L; Pérez-González, J A; Ramón, D

    1995-01-01

    The Aspergillus terreus gla1 gene, coding for a glucoamylase, has been cloned by heterologous hybridization. The gene is interrupted by four introns and encodes a protein with an N-terminal catalytic domain and a C-terminal starch-binding domain. The expression of the gene is induced by starch and maltose and repressed by glucose. PMID:7534054

  16. Molecular Characterization of Kastamonu Garlic: An Economically Important Garlic Clone in Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to assess genetic relationship of Kastamonu garlic, which is very popular in Turkey due to its high quality features, along with some previously characterized garlic clones collected from different regions of the world using AFLP and locus specific DNA markers. UPGMA cluste...

  17. Molecular cloning of Reteplase and its expression in E. coli using tac promoter

    PubMed Central

    Aghaabdollahian, Safieh; Rabbani, Mohammad; Ghaedi, Kamran; Sadeghi, Hamid Mir Mohammad

    2014-01-01

    Background and Aims: This study aimed to clone and express the reteplase cDNA, a thrombolytic agent used for the treatment of acute myocardial infarction and stroke, in E. coli, utilizing tac promoter for its expression. Materials and Methods: Reteplase cDNA was amplified by polymerase chain reaction (PCR) with designed primers. The product was then cloned into pTZ57R plasmid. The cloned cDNA was digested out and ligated into pGEX-5x-1 expression vector. The presence of the insert was confirmed by restriction digestion. By using 0.2, 0.5 and 1 mM isopropyl beta-D thiogalactopyranoside (IPTG), expression of reteplase was induced in E. coli TOP10 cells and analyzed by SDS-PAGE. Results: Electrophoresis of PCR product and also double digested recombinant pTZ57R plasmid, also, pGEX-5x-1 vector, showed a 1068bp band of reteplase. SDS-PAGE analysis showed a 60 KDa band of protein product induced with different concentrations of IPTG. Conclusion: In the present study, reteplase cDNA was successfully cloned and expressed using tac promoter. This vector will be used for the optimization of the expression of reteplase in E. coli. PMID:25298959

  18. Molecular Cloning, Expression and Genome Organization of Channel Catfish (Ictalurus punctatus) Matrix Metalloproteinase-9

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned, sequenced using the RACE (rapid amplification of cDNA ends) method and cha...

  19. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  20. Molecular cloning of a cDNA for a putative choline co-transporter from Limulus CNS.

    PubMed

    Wang, Y; Cao, Z; Newkirk, R F; Ivy, M T; Townsel, J G

    2001-05-01

    It is well documented that the sodium dependent, hemicholinium-3 sensitive, high affinity choline co-transporter is rate limiting in the biosynthesis of acetylcholine and is essential to cholinergic transmission. Until recently this transporter had eluded cloning. Okuda et al. (2000. Nature Neurosci. 3, 120-125) recently reported the successful cloning of the choline co-transporter in Caenorhabditis elegans (CHO-1) and rat (CHT1). We report herein the cloning of the choline co-transporter in the horseshoe crab, Limulus polyphemus. Through the use of a series of degenerate primers selected from consensus sequences of CHO-1 and CHT1, we generated two probes that were used to search a Limulus cDNA library produced from central nervous system (CNS) tissue. The full length nucleotide sequence of the Limulus homolog consists of 3368 bp which includes an open reading frame (ORF) that predicts a protein of 579 amino acids and two non-translation regions (NTR), one at the 3' end and the other at the 5' end. The amino acid sequence has 46% identity with rat CHT1 and 50% identity with both CHO-1 in C. elegans and the recently cloned human co-transporter (hCHT; Apparsundaram et al., 2000. Biochem. Biophys. Res. Commun. 276, 862-867; Okuda and Haga, 2000. FEBS Lett. 484, 92-97). Hydropathy plot analysis predicts the Limulus choline co-transporter (LChCoT) to have thirteen transmembrane domains (TMD), with the N-terminus oriented extracellularly and the C-terminus oriented intracellularly. Northern blot analyses using cDNA probes designed from LChCoT cDNA sequences revealed its distribution specifically in central nervous system structures. On the other hand it was not found in non-nervous tissues. The successful cloning of LChCoT, which was shown to be a member of the sodium-dependent glucose transporter family (SLGT), should prove useful in the determination of its physiological regulation, including its intracellular trafficking. PMID:11368908

  1. GENE EXPRESSION PROFILING OF ACCESSIBLE SURROGATE TISSUES TO MONITOR MOLECULAR CHANGES IN INACCESSIBLE TARGET TISSUES FOLLOWING TOXICANT EXPOSURE

    EPA Science Inventory

    Gene Expression Profiling Of Accessible Surrogate Tissues To Monitor Molecular Changes In Inaccessible Target Tissues Following Toxicant Exposure
    John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Judith E. Schmid and David J. Dix
    Reproductive Toxicology ...

  2. Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.

    PubMed

    Zhao, C Z; Li, Y H; Dong, H T; Geng, M M; Liu, W H; Li, F; Ni, Z F; Wang, X J; Xie, C J; Sun, Q X

    2016-01-01

    Powdery mildew (Pm) is one of the most harmful diseases in wheat. Three Pm-resistance genes, Pm3, Pm21, and Pm8, have been cloned but most Pm3/Pm8 alleles have lost their resistance to Pm in hexaploid wheat. In this study, a new Pm3 homolog gene (TmPm3) was isolated from Triticum monococcum L. using a homology-based cloning strategy, being the first report of a functional Pm3 homolog gene from a diploid wheat species. The transient expression of TmPm3 in leaf epidermal cells showed that over-expressed TmPm3 could significantly inhibit the penetration of Blumeria graminis f. sp tritici conidia spores and the formation of haustoria. Sequence analysis of Pm3 alleles shed new light on the evolution of Pm3 genes, providing a better understanding of the molecular basis of disease resistance. This study also suggested that homology-based cloning of resistance genes is a feasible method for the isolation of functional resistance genes from wheat germplasm. PMID:27173250

  3. Molecular cloning, genomic analysis, and biological properties of rat leukemia virus and the onc sequences of Rasheed rat sarcoma virus.

    PubMed Central

    Gonda, M A; Young, H A; Elser, J E; Rasheed, S; Talmadge, C B; Nagashima, K; Li, C C; Gilden, R V

    1982-01-01

    Rasheed rat sarcoma virus (RaSV) has been shown to code for a protein of 29,000 Mr not present in replication-competent rat type C helper virus (RaLV)-infected cells. This protein is a fused gene product consisting of a portion of the RaLV p15 gag protein and the transformation-specific 21,000 Mr (p21) ras protein, which is also found in Harvey murine sarcoma virus. We now report the molecular cloning of both the SD-1 (Sprague-Dawley) strain of RaLV and the transforming ras sequences of RaSV. Heteroduplex analysis of these cloned DNAs demonstrated that the RaSV ras gene (v-Ra-ras) was inserted into the rat type C viral genome with a small deletion of RaLV genetic information in the 5' region of the gag gene and that the v-Ra-ras gene (0.72 kilobase pair) is homologous to and colinear with the p21 ras gene of Harvey murine sarcoma virus (v-Ha-ras). Restriction enzyme mapping confirmed the homology demonstrated by heteroduplex mapping, showing strong site conservation of restriction endonucleases known to cleave v-Ha-ras. Cloned v-Ra-ras DNA transformed NIH 3T3 cells, inducing the synthesis of the p29 RaSVgag-ras protein. Images PMID:6292516

  4. Molecular characterization, tissue distribution, and immune reaction expression of karyopherins in the domestic silkworm (Bombyx mori).

    PubMed

    Li, J; Wang, L; Qian, C; Zhang, C F; Dai, L S; Liu, Q N; Wei, G Q; Sun, Y; Liu, D R; Zhu, B J; Liu, C L

    2015-01-01

    Karyopherins, including alpha and beta types, are transport proteins in the eukaryotic cell that carry cargoes across nuclear pore complexes into or out of the nucleus. In this study, full open reading frames of one beta and three alpha types of karyopherin were cloned from cDNA of the domestic silkworm (Bombyx mori). The one beta and three alpha types' open reading frames were 2661, 1563, 1515, and 1551 base pairs long, respectively, and coded 886, 520, 504, and 516 amino acids, respectively. The alphas all had one importin-beta-binding (IBB) domain, and eight, four, or seven armadillo/beta-catenin-like repeats. The beta had 19 HEAT repeat domains, which constructed one importin-beta-N-terminal domain and one IBB domain. The recombinant proteins were expressed in Escherichia coli cells. The molecular weight of the beta type was approximately 100 kDa, and the alphas weighed approximately 60 kDa. Phylogenic tree construction revealed that the alphas could be classified into three known karyopherin-alpha subfamilies. We detected mRNA of the four karyopherins in normal 3rd day of 5th instar larvae, and in larvae injected with Gram-positive bacteria, Gram-negative bacteria, viruses, and fungi using real-time fluorescence quantitative reverse transcriptase-polymerase chain reaction, and found that the four karyopherins were widely distributed, but their expression levels were related to tissues type, the microbe injected, and the time point. PMID:26535618

  5. Molecular cloning and characterization of transgelin-like proteins mainly transcribed in newborn larvae of Trichinella spp.

    PubMed

    Nagano, Isao; Wu, Zhiliang; Asano, Kazunobu; Takahashi, Yuzo

    2011-05-31

    A cDNA library was constructed from Trichinella pseudospiralis muscle larvae. One cDNA clone, designated Tp4, contained a cDNA transcript of 783 bp in length, with a single open reading frame that encoded 153 amino acids (16,793 Da as the estimated molecular mass). The predicted amino acid sequence of Tp4 showed that the clone had a calponin homology domain and was approximately 50% identical to the transgelin-like proteins (calponin-family members) present in Bombyx mori or Tribolium castaneum. A homologue of the Tp4 clone was also present in cDNA from Trichinella spiralis, and this clone was designated Ts4. A comparison of the amino acid sequence of the transgelin-like proteins from T. spiralis (Ts4 protein) with the Tp4 protein indicated that the two proteins are very similar (about 94% homology). Real time quantitative polymerase chain reaction results showed that the transcription level of the Tp4 and Ts4 genes was highest in newborn larvae. On Western blot, the recombinant Tp4 and Ts4 proteins migrated at 20 kDa when reacted to an antibody against the recombinant Tp4 and Ts4 proteins, respectively. An antibody against the recombinant Tp4 and Ts4 proteins strongly stained two bands migrating at approximately 9 and 8 kDa in the crude extracts from adult worms and newborn larvae, but only weakly stained proteins in muscle larvae. However, an immunocytochemical study showed that the Tp4 protein was present within the muscle of the muscle larvae of T. pseudospiralis. The antibody level against the recombinant Tp4 antigens in infected mice began to increase from 8 days post-infection, was highest in 13 days post-infection, and then slowly decreased. PMID:21242032

  6. cDNA cloning, tissue distribution, and chromosomal localization of myelodysplasia/Myeloid Leukemia Factor 2 (MLF2)

    SciTech Connect

    Kuefer, M.U.; Valentine, V.; Behm, F.G.

    1996-07-15

    A fusion gene between nucleophosmin (NPM) and myelodysplasia/myeloid leukemia factor 1 (MLF1) and myelodysplasia/myeloid leukemia factor 1 (MLF1) is formed by a recurrent t(3;5)(q25.1;q34) in myelodysplastic syndrome and acute myeloid leukemia. Here we report the identification of a novel gene, MLF2, which contains an open reading frame of 744 bp encoding a 248-amino-acid protein highly related to the previously identified MLF1 protein (63% similarity, 40% identity). In contrast to the tissue-restricted expression pattern of MLF1, and MLF2 messenger RNA is expressed ubiquitously. The MLF2 gene locus was mapped by fluorescence in situ hybridization to human chromosome 12p13, a chromosomal region frequently involved in translocations and deletions in acute leukemias of lymphoid or myeloid lineage. In a physical map of chromosome 12, MLF2 was found to reside on the yeast artificial chromosome clone 765b9. Southern blotting analysis of malignant cell DNAs prepared from a series of acute lymphoblastic leukemia cases with translocations involving chromosome arm 12p, as well as a group of acute myeloid leukemias with various cytogenetic abnormalities, failed to reveal MLF2 gene rearrangements. 19 refs., 2 figs.

  7. Sugar accumulation in grape berries. Cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues.

    PubMed Central

    Davies, C; Robinson, S P

    1996-01-01

    During grape berry (Vitis vinifera L.) ripening, sucrose transported from the leaves is accumulated in the berry vacuoles as glucose and fructose. To study the involvement of invertase in grape berry ripening, we have cloned two cDNAs (GIN1 and GIN2) from berries. The cDNAs encode translation products that are 62% identical to each other and both appear to be vacuolar forms of invertase. Both genes are expressed in a variety of tissues, including berries, leaves, roots, seeds, and flowers, but the two genes have distinct patterns of expression. In grape berries, hexose accumulation began 8 weeks postflowering and continued until the fruit was ripe at 16 weeks. Invertase activity increased from flowering, was maximal 8 weeks postflowering, and remained constant on a per berry basis throughout ripening. Expression of GIN1 and GIN2 in berries, which was high early in berry development, declined greatly at the commencement of hexose accumulation. The results suggest that although vacuolar invertases are involved in hexose accumulation in grape berries, the expression of the genes and the synthesis of the enzymes precedes the onset of hexose accumulation by some weeks, so other mechanisms must be involved in regulating this process. PMID:8685267

  8. Tissue expression analysis, cloning and characterization of the 5'-regulatory region of the bovine FABP3 gene.

    PubMed

    Li, Anning; Wu, Lijuan; Wang, Xiaoyu; Xin, Yaping; Zan, Linsen

    2016-09-01

    Fatty acid binding protein 3 (FABP3) is a member of the FABP family which bind fatty acids and have an important role in fatty acid metabolism. A large number of studies have shown that the genetic polymorphisms of FABP3 are positively correlated with intramuscular fat (IMF) content in domestic animals, however, the function and transcriptional characteristics of FABP3 in cattle remain unclear. Real-time PCR analysis revealed that bovine FABP3 was highly expressed in cardiac tissue. The 5'-regulatory region of bovine FABP3 was cloned and its transcription initiation sites were identified. Sequence analysis showed that many transcriptional factor binding sites including TATA-box and CCAAT-box were present on the 5'-flanking region of bovine FABP3, and four CpG islands were found on nucleotides from -891 to +118. Seven serial deletion constructs of the 5'-regulatory region evaluated in dual-luciferase reporter assay indicated that its core promoter was 384 base pairs upstream from the transcription initiation site. The transcriptional factor binding sites RXRα, KLF15, CREB and Sp1 were conserved in the core promoter of cattle, sheep, pigs and dogs. These results provide further understanding of the function and regulation mechanism of bovine FABP3. PMID:27270359

  9. Molecular cloning and characterization of cDNAs encoding hemoglobin from wheat (Triticum aestivum) and potato (Solanum tuberosum).

    PubMed

    Larsen, Knud

    2003-06-11

    Hemoglobins (Hbs) are heme proteins encountered in all five kingdoms of living organisms. In plants, two different classes of Hbs have been identified: nonsymbiotic (class I) from both monocot and dicot species and symbiotic (class II) Hbs from nitrogen-fixing plants. This work reports the cloning and analysis of three nonsymbiotic Hb genes from wheat (Triticum aestivum) and potato (Solanum tuberosum). The Hb cDNAs were amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using consensus oligonucleotide primers for nonsymbiotic Hbs.A wheat Hb cDNA (TaHb1) was isolated and shows a very high similarity to nonsymbiotic Hbs from Hordeum vulgare (98%) and Zea mays (83%). Another wheat Hb cDNA, designated TaHb2, exhibited strong similarity to truncated bacterial Hbs, the so-called 2-on-2 Hbs. In addition, a third Hb was cloned from potato, StHb. Expression analysis by RT-PCR demonstrated a very high expression level of the TaHb1 gene only in wheat roots. In contrast, the other wheat hemoglobin gene, TaHb2, was demonstrated to be constitutively expressed although differences in expression level in different tissues were observed. The expression of the TaHb1 gene is induced in wheat roots exposed to microaerobic conditions. The potato Hb gene, StHb, was highly expressed in roots and also in tubers and stem tissue although at much reduced levels. PMID:12787929

  10. Molecular cloning of the canine c-Met/HGF receptor and its expression in normal and regenerated liver.

    PubMed

    Neo, Sakurako; Kansaku, Norio; Furuichi, Mitsuru; Watanabe, Masashi; Hisamatsu, Sin; Ohno, Koichi; Hisasue, Masaharu; Tsuchiya, Ryo; Yamada, Takatsugu

    2005-05-01

    The c-Met proto-oncogene is the receptor for hepatocyte growth factor (HGF), which is a member of the tyrosine kinase family. Activation of the HGF/c-Met signal pathway leads to cell proliferation, motility, regeneration, and morphogenesis. In this study, the complete nucleotide sequence of complementary DNA (cDNA) of canine c-Met was cloned, and its distribution was determined in tissues. The canine c-Met cDNA clone had an open reading frame of 4419 bp that encoded a putative polypeptide of 1383 amino acids. The c-Met mRNA was expressed in a variety of canine tissues including peripheral blood mononuclear cells (PBMC), bone marrow, liver, kidney, lung, stomach, uterus, testis, thymus, lymph node, small intestine, colon, adrenal gland, thyroid gland, heart, muscle, skin, pancreas, ovary, prostate, spleen, fat, cerebrum, and cerebellum. In addition, the c-Met mRNA expression in normal and regenerated liver was examined. The levels of the mRNA increased 2-fold in regenerated liver compared to that found in normal liver, indicating that c-Met is involved in various functions including remodeling of canine hepatocytes. PMID:15942139

  11. Molecular cloning of cDNA encoding a novel platelet-endothelial cell tetra-span antigen, PETA-3.

    PubMed

    Fitter, S; Tetaz, T J; Berndt, M C; Ashman, L K

    1995-08-15

    Platelet-endothelial cell tetra-span antigen (PETA-3) was originally identified as a novel human platelet surface glycoprotein, gp27, which was detected by a monoclonal antibody (MoAb), 14A2.H1. Although this glycoprotein is present in low abundance on the platelet surface, MoAb 14A2.H1 stimulates platelet aggregation and mediator release. We now report isolation of a cDNA clone encoding PETA-3 from a library derived from the megakaryoblastic leukemia cell line MO7e. The clone encodes an open reading frame of 253 amino acids that displays 25% to 30% amino acid sequence identity with several members of the newly defined Tetraspan, or Transmembrane 4 superfamily. These proteins consist of four conserved putative transmembrane domains with a large divergent extracellular loop between the third and fourth membrane-spanning regions. PETA-3 has a single consensus sequence for N-linked glycosylation located in this extracellular loop. A single PETA-3 RNA transcript (1.6 kb) was detected in RNA isolated from MO7e cells, bone marrow stromal cells, the C11 endothelial cell line, and several myeloid leukemia cell lines. No transcript was detected in the lymphoblastoid cell lines MOLT-4 and BALM-1. This pattern correlates well with previous protein expression data. Northern blot analysis of RNA from a range of human tissues indicated that the transcript was present in most tissues, the notable exception being brain. PMID:7632941

  12. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  13. Molecular clock integration of brown adipose tissue formation and function.

    PubMed

    Nam, Deokhwa; Yechoor, Vijay K; Ma, Ke

    2016-01-01

    The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  14. Molecular cloning and characterization of annexin genes in peanut (Arachis hypogaea L.).

    PubMed

    He, MeiJing; Yang, XinLei; Cui, ShunLi; Mu, GuoJun; Hou, MingYu; Chen, HuanYing; Liu, LiFeng

    2015-08-15

    Annexin, Ca(2+) or phospholipid binding proteins, with many family members are distributed throughout all tissues during plant growth and development. Annexins participate in a number of physiological processes, such as exocytosis, cell elongation, nodule formation in legumes, maturation and stress response. Six different full-length cDNAs and two partial-length cDNAs of peanut, (AnnAh1, AnnAh2, AnnAh3, AnnAh5, AnnAh6, AnnAh7, AnnAh4 and AnnAh8) encoding annexin proteins, were isolated and characterized using a RT-PCR/RACE-PCR based strategy. The predicted molecular masses of these annexins were 36.0kDa with acidic pIs of 5.97-8.81. ANNAh1, ANNAh2, ANNAh3, ANNAh5, ANNAh6 and ANNAh7 shared sequence similarity from 35.76 to 66.35% at amino acid level. Phylogenetic analysis revealed their evolutionary relationships with corresponding orthologous sequences in soybean and deduced proteins in various plant species. Real-time quantitative assays indicated that these genes were differentially expressed in various organs. Transcript level analysis for six annexin genes under stress conditions showed that these genes were regulated by drought, salinity, heavy metal stress, low temperature and hormone. Additionally, the prediction of cis-regulatory element suggested that different cis-responsive elements including stress- and hormone-responsive-related elements could respond to various stress conditions. These results indicated that members of AnnAhs family may play important roles in the adaptation of peanut to various environmental stresses. PMID:25958350

  15. Molecular cloning, characterization and expression analysis of woodchuck retinoic acid-inducible gene I.

    PubMed

    Yan, Qi; Liu, Qin; Li, Meng-Meng; Li, Fang-Hui; Zhu, Bin; Wang, Jun-Zhong; Lu, Yin-Ping; Liu, Jia; Wu, Jun; Zheng, Xin; Lu, Meng-Ji; Wang, Bao-Ju; Yang, Dong-Liang

    2016-06-01

    Cytosolic retinoic acid-inducible gene I (RIG-I) is an important innate immune RNA sensor and can induce antiviral cytokines, e.g., interferon-β (IFN-β). Innate immune response to hepatitis B virus (HBV) plays a pivotal role in viral clearance and persistence. However, knowledge of the role that RIG-I plays in HBV infection is limited. The woodchuck is a valuable model for studying HBV infection. To characterize the molecular basis of woodchuck RIG-I (wRIG-I), we analyzed the complete coding sequences (CDSs) of wRIG-I, containing 2778 base pairs that encode 925 amino acids. The deduced wRIG-I protein was 106.847 kD with a theoretical isoelectric point (pI) of 6.07, and contained three important functional structures [caspase activation and recruitment domains (CARDs), DExD/H-box helicases, and a repressor domain (RD)]. In woodchuck fibroblastoma cell line (WH12/6), wRIG-I-targeted small interfering RNA (siRNA) down-regulated RIG-I and its downstrean effector-IFN-β transcripts under RIG-I' ligand, 5'-ppp double stranded RNA (dsRNA) stimulation. We also measured mRNA levels of wRIG-I in different tissues from healthy woodchucks and in the livers from woodchuck hepatitis virus (WHV)-infected woodchucks. The basal expression levels of wRIG-I were abundant in the kidney and liver. Importantly, wRIG-I was significantly up-regulated in acutely infected woodchuck livers, suggesting that RIG-I might be involved in WHV infection. These results may characterize RIG-I in the woodchuck model, providing a strong basis for further study on RIG-I-mediated innate immunity in HBV infection. PMID:27376800

  16. Molecular cloning and characterisation of a Rab-binding GDP-dissociation inhibitor from Medicago truncatula.

    PubMed

    Yaneva, Ivanka Asparuhova; Niehaus, Karsten

    2005-03-01

    We have isolated and sequenced the full-length cDNA of a GDP-dissociation inhibitor (GDI) from the model legume Medicago truncatula L. The cDNA (MtGDI) contains an open reading frame of 1335 bp, coding for a protein of 444 amino acids with a calculated molecular mass of 49,785 kDa. The deduced amino acid sequence shows significant homology to other plant GDIs, the highest homology being found to GDI from the legume Cicer arietinum (96% identity). The MtGDI was expressed as a N-terminal FLAG-fusion protein in Escherichia coli BL21 (DE3). Its direct interaction with a small G protein of Rab type from Medicago sativa, MsRab11f, was demonstrated in vitro by co-immunoprecipitation using a peptide-specific antibody raised against MtGDI. The dissociation constant of the MtGDI-MsRab11f complex (4 muM) was determined by a surface plasmon resonance (SPR) assay. Real-time RT-PCR and Western blot analyses suggested that MtGDI is ubiquitously expressed in M. truncatula. High levels of MtGDI mRNA were detected in uninfected roots, leaves and root nodules. In etiolated seedlings and cell cultures, the amount of MtGDI mRNA was much lower. In all tissues tested, the peptide-specific anti-MtGDI antibody detected the expected 50 kDa protein in the total protein extracts. MtGDI was found in the cytosol; however, a significant fraction was associated with the intracellular membranes in seedlings and roots indicating a membrane localisation of the protein. A second immunoreactive band was detected in leaves suggesting that more than one GDI isoform exist in M. truncatula. PMID:15854828

  17. A Swordless Knight: Epidemiology and Molecular Characteristics of the blaKPC-Negative Sequence Type 258 Klebsiella pneumoniae Clone

    PubMed Central

    Paikin, Svetlana; Sterlin, Yelena; Glick, Josef; Edgar, Rotem; Aronov, Rima; Schwaber, Mitchell J.; Carmeli, Yehuda

    2012-01-01

    In June 2010, a blaKPC-negative, ertapenem-resistant ST-258 Klebsiella pneumoniae strain was isolated from a patient in the Laniado Medical Center (LMC). Our aims were (i) to describe its molecular characteristics and resistance mechanisms and (ii) to assess whether the blaKPC-negative ST-258 K. pneumoniae clone spreads as efficiently as its KPC-producing isogenic strain. In a prospective study, surveillance of all ertapenem-resistant, carbapenemase-negative K. pneumoniae (ERCNKP) isolates was conducted from June 2010 to May 2011 at LMC (314 beds) and from July 2008 to December 2010 at the Tel Aviv Sourasky Medical Center (TASMC) (1,200 beds). Molecular typing was done by arbitrarily primed PCR, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). A total of 8 of 42 (19%) ERCNKP isolates in LMC and 1 of 32 (3.1%) in TASMC belonged to the ST-258 clone. These strains carried the blaCTX-M-2 or the blaCTX-M-25 extended-spectrum β-lactamase (ESBL) gene. Sequencing of the ompK genes showed a frameshift mutation in the ompK35 gene. The fate of the blaKPC-carrying plasmid, pKpQIL, was determined by S1 analysis and by PCR of the Tn4401 transposon, repA, and the truncated blaOXA-9. Plasmid analysis of the ERCNKP ST-258 isolates showed variability in plasmid composition and absence of the Tn4401 transposon and the pKpQIL plasmid. In addition, the ST-258 clone was identified in 35/35 (100%) of KPC-producing K. pneumoniae isolates but in none of 62 ertapenem-susceptible K. pneumoniae isolates collected in the two centers. Our results suggest that ERCNKP ST-258 evolved by loss of the blaKPC-carrying plasmid pKpQIL. ERCNKP ST-258 appears to have low epidemic potential. PMID:22814467

  18. Molecular cloning and characterisation of two kinds of proteins in excretory-secretory products of Trichinella pseudospiralis.

    PubMed

    Nagano, Isao; Wu, Zhiliang; Boonmars, Thidarut; Takahashi, Yuzo

    2004-03-29

    Two genes encoding Trichinella pseudospiralis excretory-secretory proteins related to the Trichinella spiralis glycoproteins were cloned and the excretory-secretory proteins were characterised. A cloned gene, designated Tp38 (Ts43), contained a cDNA transcript of 1035 bp, and the predicted amino acid sequence of the Tp38 (Ts43) pro-protein had a similarity of about 84% to that of the T. spiralis 43 kDa glycoprotein. A cloned gene, designated Tp53 (Ts53), contained a cDNA transcript of 1239 bp, and the predicted amino acid sequence of the Tp53 (Ts53) pro-protein had a similarity of about 68% to that of the T. spiralis 53 kDa glycoprotein. Southern blots indicated that the Tp38 (Ts43) and Tp53 (Ts53) genes were encoded in a single copy within the T. pseudospiralis genome. Western blots showed that T. pseudospiralis-infected sera recognised the Tp53 (Ts53) recombinant protein, but did not recognise the Tp38 (Ts43) recombinant protein. The Tp38 (Ts43) and Tp53 (Ts53) proteins in the excretory-secretory product were 3 and 9 kDa greater than the expected molecular mass, respectively, and had three isoforms with a similar molecular size. Reverse transcription polymerase chain reaction results showed that the production of the mRNA transcript for the Tp38 (Ts43) or Tp53 (Ts53) gene was restricted predominantly to muscle larvae. Western blots confirmed that the gene products were predominantly expressed by muscle-stage larvae. An immunolocalisation study showed the Tp38 (Ts43) and Tp53 (Ts53) proteins were present within the alpha-stichocyte and the beta-stichocyte of muscle larvae, respectively. PMID:15013739

  19. Molecular cloning and expression of a human heat shock factor, HSF1

    SciTech Connect

    Rabindran, S.K.; Giorgi, G.; Clos, J.; Wu, C. )

    1991-08-15

    Human cells respond to heat stress by inducing the binding of a preexisting transcriptional activator (heat shock factor, HSF) to DNA. The authors isolated recombinant DNA clones for a human cDNA fragment. The human HSF1 probe was produced by the PCR with primers deduced from conserved amino acids in the Drosophila and yeast HSF sequences. The human HSF1 mRNA is constitutively expressed in HeLa cells under nonshock conditions and encodes a protein with four conserved leucine zipper motifs. Like its counterpart in Drosophila, human HSF1 produced in Escherichia coli in the absence of heat shock is active as a DNA binding transcription factor, suggesting that the intrinsic activity of HSF is under negative control in human cells. Surprisingly, an independently isolated human HSF clone, HSF2, is related to but significantly different from HSF.

  20. Cloning and molecular analysis of voraxin-α gene of Rhipicephalus (Boophilus) microplus.

    PubMed

    Kumar, Binod; Ghosh, Srikanta

    2016-03-01

    To identify suitable targets for development of cross-protective tick vaccine, in silico analysis was attempted and male tick derived molecule, voraxin-α was targeted. The voraxin-α homologue of Rhipicephalus (Boophilus) microplus was cloned, sequenced and analyzed employing standard methods. The deduced amino acids sequence analysis of the 419 bp cloned voraxin-α gene of R. (B.) microplus indicated very high (94.6 %) similarity with voraxin-α of the R. appendiculatus and moderate to low identity with Amblyomma hebraeum, Dermacentor silvarum and Haemaphysalis longicornis. The results suggest that recombinant voraxin-α might be a good candidate as cross-protective anti-tick vaccine. PMID:27065622

  1. Molecular cloning of a human protein that binds to the retinoblastoma protein and chromosomal mapping

    SciTech Connect

    Saijo, M.; Sakai, Y.; Taya, Y.

    1995-06-10

    We have isolated distinct clones for cellular proteins that bind to the retinoblastoma protein by direct screening of cDNA expression libraries using purified pRB as a probe. The total nucleotide sequence of one of these clones, RBQ-3, was determined and found to encode a protein of 66 kDa localized in the nucleus. The RBQ-3 preferentially binds to underphosphory-lated pRB. The region used for binding to this protein was mapped to the E1A-binding pocket B of pRB, which has sequence similarity to the general transcription factor TFIIB. We have mapped the gene to 1q32 using polymerase chain reaction analysis on a human-hamster hybrid cell panel and chromosomal fluorescence in situ hybridization. 64 refs., 7 figs.

  2. Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride

    PubMed Central

    Matroudi, S.; Zamani, M.R.; Motallebi, M.

    2008-01-01

    In this study Trichoderma atroviride was selected as over producer of chitinase enzyme among 30 different isolates of Trichoderma sp. on the basis of chitinase specific activity. From this isolate the genomic and cDNA clones encoding chit33 have been isolated and sequenced. Comparison of genomic and cDNA sequences for defining gene structure indicates that this gene contains three short introns and also an open reading frame coding for a protein of 321 amino acids. The deduced amino acid sequence includes a 19 aa putative signal peptide. Homology between this sequence and other reported Trichoderma Chit33 proteins are discussed. The coding sequence of chit33 gene was cloned in pEt26b(+) expression vector and expressed in E. coli. PMID:24031242

  3. Molecular Cloning and Heterologous Expression of the Dehydrophos Biosynthetic Gene Cluster

    PubMed Central

    Circello, Benjamin T.; Eliot, Andrew C.; Lee, Jin-Hee; van der Donk, Wilfred A.; Metcalf, William W.

    2010-01-01

    Summary Dehydrophos is a vinyl phosphonate tripeptide produced by Streptomyces luridus with demonstrated broad spectrum antibiotic activity. To identify genes necessary for biosynthesis of this unusual compound we screened a fosmid library of S. luridus for the presence of the phosphoenolpyruvate mutase gene, which is required for biosynthesis of most phosphonates. Integration of one such fosmid clone into the chromosome of Streptomyces lividans led to heterologous production of dehydrophos. Deletion analysis of this clone allowed identification of the minimal contiguous dehydrophos cluster, which contained 17 open reading frames (ORFs). Bioinformatic analyses of these ORFs are consistent with a proposed biosynthetic pathway that generates dehydrophos from phosphoenolpyruvate. The early steps of this pathway are supported by analysis of intermediates accumulated by blocked mutants and in vitro biochemical experiments. PMID:20416511

  4. Molecular cloning and sequencing of a novel human P2 nucleotide receptor.

    PubMed

    Southey, M C; Hammet, F; Hutchins, A M; Paidhungat, M; Somers, G R; Venter, D J

    1996-11-11

    A novel human P2 nucleotide receptor has been cloned from a T-cell cDNA library. The predicted amino acid sequence shows characteristics of a G-protein-coupled receptor, and shares 88% homology with a recently characterised rat P2 nucleotide receptor sequence. Distinctive features include an extremely short cytoplasmic tail with only one putative protein kinase C phosphorylation site. Northern blot analysis revealed a 1.9 kb transcript expressed in the placenta. PMID:8950181

  5. Molecular tracking of antigen-specific T cell clones in neurological immune-mediated disorders

    PubMed Central

    Muraro, Paolo A.; Wandinger, Klaus-Peter; Bielekova, Bibiana; Gran, Bruno; Marques, Adriana; Utz, Ursula; McFarland, Henry F.; Jacobson, Steve; Martin, Roland

    2016-01-01

    Summary T cells recognizing self or microbial antigens may trigger or reactivate immune-mediated diseases. Monitoring the frequency of specific T cell clonotypes to assess a possible link with the course of disease has been a difficult task with currently available technology. Our goal was to track individual candidate pathogenic T cell clones, selected on the basis of previous extensive studies from patients with immune-mediated disorders of the CNS, including multiple sclerosis, HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/ TSP) and chronic Lyme neuroborreliosis. We developed and applied a highly specific and sensitive technique to track single CD4+ and CD8+ T cell clones through the detection and quantification of T cell receptor (TCR) α or β chain complementarity-determining region 3 transcripts by real-time reverse transcriptase (RT)-PCR. We examined the frequency of the candidate pathogenic T cell clones in the peripheral blood and CSF during the course of neurological disease. Using this approach, we detected variations of clonal frequencies that appeared to be related to clinical course, significant enrichment in the CSF, or both. By integrating clono-type tracking with direct visualization of antigen-specific staining, we showed that a single T cell clone contributed substantially to the overall recognition of the viral peptide/MHC complex in a patient with HAM/ TSP. T cell clonotype tracking is a powerful new technology enabling further elucidation of the dynamics of expansion of autoreactive or pathogen-specific T cells that mediate pathological or protective immune responses in neurological disorders. PMID:12477694

  6. Molecular cloning of the human nucleotide-excision-repair gene ERCC4

    SciTech Connect

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Reardon, J.T.; Sancar, A.; Deng, Z.; Siciliano, M.J.

    1994-07-19

    ERCC4 was previously identified in somatic cell hybrids as a human gene that corrects the nucleotide-excision-repair deficiency in mutant hamster cells. The cloning strategy for ERCC4 involved transfection of the repair-deficient hamster cell line UV41 with a human sCos-1 cosmid library derived from chromosome 16. Enhanced UV resistance was seen with one cosmid-library transformant and two secondary transformants of UV41. Cosmid clones carrying a functional ERCC4 gene were isolated from a library of a second transformant by selecting in Escherichia coli for expression of a linked neomycin-resistance gene that was present in the sCos-1 vector. The cosmids mapped to 16p13.13-p13.2, the location assigned to ERCC4 by using somatic cell hybrids. Upon transfection into UV41, six cosmid clones gave partial correction ranging from 30% to 64%, although all appeared to contain the complete gene. The capacity for in vitro excision of thymine dimers from a plasmid by transformant cell extracts correlated qualitatively with enhanced UV resistance.

  7. Molecular cloning of the human CTP synthetase gene by functional complementation with purified human metaphase chromosomes.

    PubMed

    Yamauchi, M; Yamauchi, N; Meuth, M

    1990-07-01

    Successive rounds of chromosome-mediated gene transfer were used to complement a hamster cytidine auxotroph deficient in CTP synthetase activity and eventually to clone human genomic and cDNA fragments coding for the structural gene. Our approach was to isolate human Alu+ fragments from a tertiary transfectant and to utilize these fragments to screen a panel of primary transfectants. In this manner two DNA fragments, both mapping within the structural gene, were identified and used to clone a partial length cDNA. The remaining portion of the open reading frame was obtained through the RACE polymerase chain reaction technique. The open reading frame encodes 591 amino acids having a striking degree of similarity to the Escherichia coli structural gene (48% identical amino acids with 76% overall similarity including conservative substitutions) with the glutamine amide transfer domain being particularly conserved. As regulatory mutations of CTP synthetase confer both multi-drug resistance to agents widely used in cancer chemotherapy and a mutator phenotype, the cloning of the structural gene will be important in assessing the relevance of such phenotypes to the development of cellular drug resistance. PMID:2113467

  8. Molecular cloning and comparative sequence analysis of fungal β-Xylosidases.

    PubMed

    Mustafa, Ghulam; Kousar, Sumaira; Rajoka, Muhammad Ibrahim; Jamil, Amer

    2016-12-01

    Commercial scale degradation of hemicelluloses into easily accessible sugar residues is practically crucial in industrial as well as biochemical processes. Xylanolytic enzymes have a great number of possible applications in many biotechnological processes and therefore, these enzymes are continuously attracting the attention of scientists. Due to this fact, different β-Xylosidases have been isolated, purified and characterized from several bacteria and fungi. Microorganisms in this respect have gained much momentum for production of these significant biocatalysts with remarkable features. It is difficult to propagate microorganisms for efficient and cost-competitive production of β-Xylosidase from hemicelluloses due to expensive conditions of fermentation. The screening of new organisms with an enhanced production of β-Xylosidases has been made possible with the help of recombinant DNA technology. β-Xylosidase genes haven been cloned and expressed on large scale in both homologous and heterologous hosts with the advent of genetic engineering. Therefore, we have reviewed the literature regarding cloning of β-Xylosidase genes into various hosts for their heterologous production along with sequence similarities among different β-Xylosidases. The study provides insight into the current status of cloning, expression and sequence analysis of β-Xylosidases for industrial applications. PMID:27080227

  9. Molecular cloning and expression of the human deoxythymidylate kinase gene in yeast.

    PubMed Central

    Su, J Y; Sclafani, R A

    1991-01-01

    (Deoxy)thymidylate (dTMP) kinase is an enzyme which phosphorylates dTMP to dTDP in the presence of ATP and magnesium. This enzyme is important in cellular DNA synthesis because the synthesis of dTTP, either via the de novo pathway or through the exogenous supply of thymidine, requires the activity of this enzyme. It has been suggested that the activities of the enzymes involved in DNA precursor biosynthesis, such as thymidine kinase, thymidylate synthase, thymidylate kinase, and dihydrofolate reductase, are subjected to cell cycle regulation. Here we describe the cloning of a human dTMP kinase cDNA by functional complementation of a yeast dTMP kinase temperature-sensitive mutant at the non-permissive temperature. The nucleotide sequence of the cloned human cDNA is predicted to encode a 24 KD protein that shows considerable homology with the yeast and vaccinia virus dTMP kinase enzymes. The human enzyme activity has been investigated by expressing it in yeast. In this work, we demonstrate that the cloned human cDNA, when expressed in yeast, produces dTMP kinase activity. Images PMID:2017365

  10. Molecular cloning of starch synthase I from maize (W64) endosperm and expression in Escherichia coli.

    PubMed

    Knight, M E; Harn, C; Lilley, C E; Guan, H; Singletary, G W; MuForster, C; Wasserman, B P; Keeling, P L

    1998-06-01

    A full length cDNA clone encoding a starch synthase (zSS) from maize endosperm (inbred line W64) was isolated and characterized. The cDNA clone (Ss1) is 2907 bp in length and contains an open reading frame of 1866 bp corresponding to a polypeptide of 622 amino acid residues including a transit peptide of 39 amino acids. The Ss1 cDNA clone was identified as zSSI by its direct alignment with sequences to: (i) the N-terminus obtained from the granule-associated form of the zSSI polypeptide, (ii) four internal peptide fragments obtained from the granule-associated form of the zSSI protein, and (iii) one internal fragment from the soluble form of the zSSI protein. The deduced amino acid sequence of Ss1 shares 75.7% sequence identity with rice soluble Ss and contains the highly conserved KSGGLGDV putative ADP-Glc binding site. Moreover, Ss1 exhibited significant activity when expressed in E. coli and the expressed protein is recognized by the antibody raised against the granule associated zSSI protein. Ss1 transcripts were detected in endosperm beginning at 15 days after pollination, but were not found in embryo, leaf or root. Maize contains a single copy of the Ss1 gene, which maps close to the Waxy locus of chromosome 9. PMID:9675904

  11. Molecular cloning and high-level expression of a bromoperoxidase gene from Streptomyces aureofaciens Tü24.

    PubMed Central

    van Pée, K H

    1988-01-01

    A bromoperoxidase gene was cloned from Streptomyces aureofaciens Tü24 into Streptomyces lividans TK64 by using the promoter-probe vector pIJ486. Subcloning of DNA from the original, unstable clone allowed the gene to be localized to a 1.7-kilobase (kb) fragment of DNA. Southern blotting showed that the cloned 1.7-kb insert hybridized to a 4.3-kb fragment in an SstI digest of S. aureofaciens Tü24 total DNA. The 1.7-kb insert was shown to code for a protein with the electrophoretic properties of the subunits of the nonheme bromoperoxidase isolated from S. aureofaciens Tü24. The protein produced by S. lividans TK64 transformed with pHM621, which contained an 8.0-kb insert, was shown to be identical to the S. aureofaciens Tü24 bromoperoxidase in terms of its electrophoretic mobility on denaturing and nondenaturing polyacrylamide gels and its NH2-terminal amino acid sequence. The bromoperoxidase was overproduced (up to 180 times) by S. lividans TK64 containing pHM621. Based on the heat stability of the S. aureofaciens Tü24 bromoperoxidase, a new and simple purification procedure with very high yields was developed. Images PMID:3142859

  12. Building a human kinase gene repository: Bioinformatics, molecular cloning, and functional validation

    PubMed Central

    Park, Jaehong; Hu, Yanhui; Murthy, T. V. S.; Vannberg, Fredrik; Shen, Binghua; Rolfs, Andreas; Hutti, Jessica E.; Cantley, Lewis C.; LaBaer, Joshua; Harlow, Ed; Brizuela, Leonardo

    2005-01-01

    Kinases catalyze the phosphorylation of proteins, lipids, sugars, nucleosides, and other important cellular metabolites and play key regulatory roles in all aspects of eukaryotic cell physiology. Here, we describe the mining of public databases to collect the sequence information of all identified human kinase genes and the cloning of the corresponding ORFs. We identified 663 genes, 511 encoding protein kinases, and 152 encoding nonprotein kinases. We describe the successful cloning and sequence verification of 270 of these genes. Subcloning of this gene set in mammalian expression vectors and their use in high-throughput cell-based screens allowed the validation of the clones at the level of expression and the identification of previously uncharacterized modulators of the survivin promoter. Moreover, expressions of the kinase genes in bacteria, followed by autophosphorylation assays, identified 21 protein kinases that showed autocatalytic activity. The work described here will facilitate the functional assaying of this important gene family in phenotypic screens and their use in biochemical and structural studies. PMID:15928075

  13. Transfection of Arabidopsis protoplasts with a Plum pox virus (PPV) infectious clone for studying early molecular events associated with PPV infection.

    PubMed

    Raghupathy, Mohan B; Griffiths, Jonathan S; Stobbs, Lorne W; Brown, Daniel C W; Brandle, James E; Wang, Aiming

    2006-09-01

    The development of novel strategies against plant viral diseases relies on a better understanding of molecular virus-host interactions. Here, we report an easy, efficient and reproducible protocol for Arabidopsis protoplast isolation and transfection to study the infection and replication of a potyvirus, Plum pox virus (PPV). Macerozyme and cellulose were used to release protoplasts from Arabidopsis leaf tissues, and polyethylene glycol-mediated DNA uptake was employed for transfection of a PPV infectious clone. Protoplast viability was monitored by fluorescein diacetate staining, and transfection efficiency was estimated by transient expression of the green fluorescent protein. The protocol allowed production of 95% viable mesophyll protoplasts and a successful transfection rate of 35%. The system was used further in a time-course experiment to investigate PPV viral RNA accumulation. It was found that 3 h post-transfection (hpt) in the transfected protoplasts viral RNA increased by about 150-fold and progressively accumulated to reach the maximum at 12 hpt. Viral RNA then decreased dramatically at 24 hpt reaching 40% of its peak level. Considering the availability of the whole genome microarrays, and other genomic resources of Arabidopsis, the synchronized single-cell (protoplast) infection system will be useful for elucidating early molecular events associated with PPV infection. PMID:16777241

  14. Molecular cloning and sexually dimorphic expression of DMRT4 gene in Oreochromis aureus.

    PubMed

    Cao, Jinling; Chen, Jianjie; Wu, Tingting; Gan, Xi; Luo, Yongju

    2010-07-01

    The DM-domain gene family has at least eight members with conserved DNA-binding DM-domain, which encodes putative transcription factors related to the sexual regulator Dsx of Drosophila and Mab-3 of C. elegans. Although some of the DM genes are involved in sexual development, the function of most of these genes remains unclear. In this study, rapid amplification cDNA ends (RACE) was used for the isolation of DMRT4 full-length cDNA from the ovary of the blue tilapia Oreochromis aureus. The full-length of DMRT4 cDNA was 1,571 bp, containing the 148 bp 5'-untranslated region, 193 bp 3'-untranslated region and 1,230 bp open reading frame. The deduced amino acid sequence of the open reading frame (ORF) encoded a protein of 409 amino acids with a theoretical pI of 8.492 and a calculated molecular weight of 44.12 kDa. One conserved functional domain, DM-domain was identified in blue tilapia DMRT4. The DMRT4 full-length gene obtained from the blood was 1,741 bp, containing a 156 bp intron. Phylogenetic analysis indicated that the amino acid sequences encoded by DMRT4 genes from different species had a high degree of sequence identity as revealed in phylogenetic tree constructed. Real-time quantitative Reverse-Transcription Polymerase Chain Reaction (RT-PCR) was used to analyze the expression patterns of DMRT4 in different developmental stages and different tissues in Oreochromis aureus. DMRT4 mRNA was detected from early gastrulae stage during embryonic development, and maintained a considerable high level until 1 day post hatching. With the increase of age, enhanced DMRT4 mRNA was observed in ovary and brain. After 15 and 30 days, fries treated with 17beta-estradiol had a significant increase in DMRT4 mRNA levels compared with the control fries (P < 0.05). DMRT4 was found to be expressed in the ovary and endbrain, thalamencephalon, pituitary, not detected in the liver, kidney, spleen, heart and muscle of adult fish. These results showed that the DMRT4 gene have

  15. Molecular cloning and characterization of the full-length Hsp90 gene from Matricaria recutita.

    PubMed

    Ling, S P; Su, S S; Zhang, H M; Zhang, X S; Liu, X Y; Pan, G F; Yuan, Y

    2014-01-01

    Heat shock protein 90 (Hsp90) is one of the most abundant and conserved chaperone proteins and plays important roles in plant growth and responses to environmental stimuli. However, little is known regarding the sequence and function of Hsp90s in Matricaria recutita. In the present study, we cloned the full-length cDNA sequence of the hsp90 gene from this species. Using rapid amplification of cDNA ends technologies with 2 degenerate primers that were designed based on the hsp90 gene sequence from other members of Asteraceae, we isolated and characterized an Hsp90 homolog gene from M. recutita (Mr-Hsp90). The full-length Mr-hsp90 cDNA sequence, containing 2097 base pairs, encodes a protein of 698 amino acids. Based on amino acid sequence identity, Mr-Hsp90 showed high similarity to other cloned Hsp90 proteins. The Mr-Hsp90 protein was closely clustered with the Lactuca sativa in a phylogenetic tree. These results indicate that the cloned sequence of Mr-Hsp90 is a member of the Hsp90 family, which is reported for the first time in M. recutita. Next, we conducted a salt stress experiment to determine the protein's function under salt stress conditions. Survival of chamomile seedlings subjected to heat-shock pretreatment was significantly increased compared with groups that had not undergone heat-shock pretreatment in a salt stress environment. This indicates that Mr-Hsp90 plays an important role in the salt resistance of chamomile seedlings. PMID:25526220

  16. Molecular cloning and characterization of mutant and wild-type human. beta. -actin genes

    SciTech Connect

    Leavitt, J.; Gunning, P.; Porreca, P.; Ng, S.Y.; Lin, C.H.; Kedes, L.

    1984-10-01

    There are more than 20 ..beta..-actin-specific sequences in the human genome, many of which are pseudogenes. To facilitate the isolation of potentially functional ..beta..-actin genes, they used the new method of B. Seed for selecting genomic clones by homologous recombination. A derivative of the ..pi..VX miniplasmid, ..pi..AN7..beta..1, was constructed by insertion of the 600-base-pair 3' untranslated region of the ..beta..-actin mRNA expressed in human fibroblasts. Five clones containing ..beta..-actin sequences were selected from an amplified human fetal gene library by homologous recombination between library phage and the miniplasmid. One of these clones contained a complete ..beta..-actin gene with a coding sequence identical to that determined for the mRNA of human fibroblasts. A DNA fragment consisting of mostly intervening sequences from this gene was then use to identify 13 independent recombinant copies of the analogous gene from two specially constructed gene libraries, each containing one of the two types of mutant ..beta..-actin genes found in a line of neoplastic human fibroblasts. The amino acid and nucleotide sequences encoded by the unmutated gene predict that a guanine-to-adenine transition is responsible for the glycine-to-aspartic acid mutation at codon 244 and would also result in the loss of a HaeIII site. Detection of this HaeIII polymorphism among the fibroblast-derived closed verified the identity of the ..beta..-actin gene expressed in human fibroblasts.

  17. Hypoxically inducible barley lactate dehydrogenase: cDNA cloning and molecular analysis

    SciTech Connect

    Hondred, D. ); Hanson, A.D. Univ. de Montreal, Quebec )

    1990-09-01

    In the roots of barley and other cereals, hypoxia induces a set of five isozymes of L-lactate dehydrogenase (LDH; (S)-lactate:NADH oxidoreductase, EC 1.1.1.27). Biochemical and genetic data indicate that the five LDH isozymes are tetramers that arise from random association of the products of two Ldh loci. To investigate this system, cDNA clones of LDH were isolated from a {lambda}gt11 cDNA library derived from hypoxically treated barley roots. The library was screened with antiserum raised against barley LDH purified {approx}3,000-fold by an improved three-step procedure. Immunopositive clones were rescreened with a cDNA probe synthesized by the polymerase chain reaction using primers modeled from the amino acid sequences of two tryptic LDH peptides. Two types of LDH clones were found. Nucleotide sequence analysis of one representative insert of each type (respectively, 1,305 and 1,166 base pairs) revealed open reading framed encoding 10 peptide fragments of LDH. The 1,305-base-pair insert included the entire coding region of a 356-residue LDH monomer. The nucleotide sequences of the two LDH cDNAs were 92% identical in the coding region, but highly divergent in the 3{prime} noncoding region, and thus probably correspond to the two postulated Ldh loci. The deduced amino acid sequences of the two barley LDHs were 96% identical to each other and very similar to those from vertebrate and bacterial LDHs. RNA blot hybridization showed a single mRNA band of 1.5 kilobases whose level rose about 8-fold in roots during hypoxic induction, as did the level of translatable LDH message.

  18. Molecular cloning and regulatory analysis of the arylsulfatase structural gene of Neurospora crassa.

    PubMed Central

    Paietta, J V

    1989-01-01

    The ars-1+ gene of Neurospora crassa encodes the enzyme arylsulfatase. ars-1+ is in a group of highly regulated sulfur-related structural genes that are expressed under conditions of sulfur limitation and are under coordinate control of the cys-3+ and scon+ regulatory genes. The ars-1+ gene was cloned by chromosome walking from the qa gene cluster, using a lambda library. Cotransformation of an N. crassa ars-1 mutant with the isolated lambda clones and the benomyl resistance gene, followed by assay for arylsulfatase activity, was used to screen for the ars-1+ gene. Further confirmation that the cloned segment mapped to the ars-1+ locus was obtained by restriction-fragment-length polymorphism analysis. Northern (RNA) blot analysis showed that the ars-1+ gene was transcribed to give an mRNA of 2.3 kilobases. In wild-type cells, the ars-1+ transcript was abundant under sulfur-derepressing conditions but absent under repressing conditions. Time course analysis showed that the appearance of ars-1+ message in sulfur-derepressed cultures paralleled the appearance of arylsulfatase enzyme activity. In addition, transcription of ars-1+ was detected only under derepressing conditions in a nuclear transcription assay. In a cys-3 regulatory mutant that was unable to synthesize arylsulfatase (or other sulfur-controlled enzymes), there was no ars-1+ transcript under repressing or derepressing conditions. In a temperature-sensitive cys-3 mutant, the ars-1+ transcript was present only at the permissive growth temperature and under sulfur derepression. A negative regulatory mutant, sconc, displayed both constitutive expression of arylsulfatase enzyme activity and content of ars-1+ message. Images PMID:2528685

  19. Molecular cloning and characterization of a calreticulin cDNA from the pinewood nematode Bursaphelenchus xylophilus.

    PubMed

    Li, Xundong; Zhuo, Kan; Luo, Mei; Sun, Longhua; Liao, Jinling

    2011-06-01

    The cloning and characterization of a cDNA encoding a calreticulin from the pinewood nematode Bursaphelenchus xylophilus is described herein. The full-length cDNA (Bx-crt-1) contained a 1200 bp open reading frame that could be translated to a 399 amino acid polypeptide. The deduced protein contained highly conserved regions of a calreticulin gene and had 66.2-70.1% amino acid sequence identity to other calreticulin sequences from nematodes. RNAi, RT-PCR amplification, and southern blot suggest that Bx-crt-1 may be important for the development of B. xylophilus. PMID:21371475

  20. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein

    PubMed Central

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon

    2016-01-01

    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis. PMID:27051349

  1. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein.

    PubMed

    Reyes, Alisha Wehdnesday Bernardo; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Arayan, Lauren Togonon; Kim, Suk

    2016-03-01

    The Brucella mdh gene was successfully cloned and expressed in E. coli. The purified recombinant malate dehydrogenase protein (rMDH) was reactive to Brucella-positive bovine serum in the early stage, but not reactive in the middle or late stage, and was reactive to Brucella-positive mouse serum in the late stage, but not in the early or middle stage of infection. In addition, rMDH did not react with Brucella-negative bovine or mouse sera. These results suggest that rMDH has the potential for use as a specific antigen in serological diagnosis for early detection of bovine brucellosis. PMID:27051349

  2. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae)

    PubMed Central

    Flores-Fernández, José Miguel; Gutiérrez-Ortega, Abel; Padilla-Camberos, Eduardo; Rosario-Cruz, Rodrigo; Hernández-Gutiérrez, Rodolfo; Martínez-Velázquez, Moisés

    2014-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR) gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus. PMID:25174962

  3. Molecular cloning and characterization of a glycine-like receptor gene from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Flores-Fernández, José Miguel; Gutiérrez-Ortega, Abel; Padilla-Camberos, Eduardo; Rosario-Cruz, Rodrigo; Hernández-Gutiérrez, Rodolfo; Martínez-Velázquez, Moisés

    2014-01-01

    The cattle tick Rhipicephalus (Boophilus) microplus is the most economically important ectoparasite affecting the cattle industry in tropical and subtropical areas around the world. The principal method of tick control has relied mainly on the use of chemical acaricides, including ivermectin; however, cattle tick populations resistant to ivermectin have recently been reported in Brazil, Mexico, and Uruguay. Currently, the molecular basis for ivermectin susceptibility and resistance are not well understood in R. microplus. This prompted us to search for potential molecular targets for ivermectin. Here, we report the cloning and molecular characterization of a R. microplus glycine-like receptor (RmGlyR) gene. The characterized mRNA encodes for a 464-amino acid polypeptide, which contains features common to ligand-gated ion channels, such as a large N-terminal extracellular domain, four transmembrane domains, a large intracellular loop and a short C-terminal extracellular domain. The deduced amino acid sequence showed around 30% identity to GlyRs from some invertebrate and vertebrate organisms. The polypeptide also contains the PAR motif, which is important for forming anion channels, and a conserved glycine residue at the third transmembrane domain, which is essential for high ivermectin sensitivity. PCR analyses showed that RmGlyR is expressed at egg, larval and adult developmental stages. Our findings suggest that the deduced receptor is an additional molecular target to ivermectin and it might be involved in ivermectin resistance in R. microplus. PMID:25174962

  4. Cloning, tissue distribution and effects of fasting on pituitary adenylate cyclase-activating polypeptide in largemouth bass

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Han, Linqiang; Bai, Junjie; Ma, Dongmei; Quan, Yingchun; Fan, Jiajia; Jiang, Peng; Yu, Lingyun

    2015-03-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) has a wide range of biological functions. We cloned the full-length cDNAs encoding PACAP and PACAP-related peptide (PRP) from the brain of largemouth bass ( Micropterus salmoides) and used real-time quantitative PCR to detect PRP-PACAP mRNA expression. The PRP-PACAP cDNA has two variants expressed via alternative splicing: a long form, which encodes both PRP and PACAP, and a short form, which encodes only PACAP. Sequence analysis results are consistent with a higher conservation of PACAP than PRP peptide sequences. The expression of PACAP-long and PACAP-short transcripts was highest in the forebrain, followed by the medulla, midbrain, pituitary, stomach, cerebellum, intestine, and kidney; however, these transcripts were either absent or were weakly expressed in the muscle, spleen, gill, heart, fatty tissue, and liver. The level of PACAP-short transcript expression was significantly higher than expression of the long transcript in the forebrain, cerebella, pituitary and intestine, but lower than that of the long transcript in the stomach. PACAP-long and PACAP-short transcripts were first detected at the blastula stage of embryogenesis, and the level of expression increased markedly between the muscular contraction stage and 3 d post hatch (dph). The expression of PACAP-long and PACAP-short transcripts decreased significantly in the brain following 4 d fasting compared with the control diet group. The down-regulation effect was enhanced as fasting continued. Conversely, expression levels increased significantly after 3 d of re-feeding. Our results suggest that PRP-PACAP acts as an important factor in appetite regulation in largemouth bass.

  5. Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu(2+) and malachite green.

    PubMed

    Zhang, Zhanhui; Zhang, Qizhong

    2012-04-15

    Heat shock protein 70 (HSP70) acts mostly as a molecular chaperone and plays a key role in the process of protecting cells by facilitating the folding of nascent peptides and the cellular stress response. The cDNA of the oyster Crassostrea hongkongensis hsp70 (designated chhsp70) was cloned with the techniques of homological cloning and rapid amplification of cDNA ends (RACE). The full-length chhsp70 cDNA was 2251bp, consisting of a 130bp 5'-UTR, 216bp 3'-UTR with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1905bp, which encoded a polypeptide of 634 amino acids. Three classical HSP signature motifs were detected in ChHSP70, i.e., DLGTT-S-V, IFDLGGGTFDVSIL and VVLVGGSTRIPKIQK. BLAST analysis revealed that the ChHSP70 shared high identity with other bivalve HSP70. The phylogenetic analysis indicated that the ChHSP70 was a member of the HSP70 family. The chhsp70 mRNA transcripts were quantified by fluorescent real time RT-PCR under both unstressed and stressed conditions, i. e., heat shock and exposure to Cu(2+) and malachite green. Basal expression level was similar in mantle, gill, digestive gland, and heart, but higher in muscle than that in the others. A similar trend showed that the chhsp70 mRNA expression significantly increased at 3-6h, then dropped and returned to control level at 24h in the five tissues and organs mentioned above after heat shock. A clearly time-dependent expression pattern of chhsp70 mRNA in digestive gland and gill of the oyster was observed after exposure of Cu(2+) and malachite green. In the two tissues, the chhsp70 mRNA level reached the maximum at 6h after malachite green exposure and on day 4 after Cu(2+) exposure, and then decreased progressively to the control level. The results indicated that ChHSP70 of the oyster is an inducible protein, and plays an important role in response to the Cu(2+) and malachite green polluted stress, so chhsp70 might be used as a potential molecular

  6. Molecular cloning and expression analysis of cDNAs encoding androgenic gland hormone precursors from two porcellionidae species, Porcellio scaber and P. dilatatus.

    PubMed

    Ohira, Tsuyoshi; Hasegawa, Yuriko; Tominaga, Satoshi; Okuno, Atsuro; Nagasawa, Hiromichi

    2003-01-01

    Male sexual characteristics in Crustacea are induced by androgenic gland hormone (AGH), which is produced by the male-specific androgenic gland. Recently, AGH in the terrestrial isopod Armadillidium vulgare was characterized and its cDNA cloned, the first example in which the structure of AGH was elucidated. We report here the molecular cloning of cDNAs encoding AGH precursors from two additional terrestrial isopods, Porcellio scaber and P. dilatatus. cDNA fragments encoding Porcellio scaber AGH (Pos-AGH) and P. dilatatus AGH (Pod-AGH) were amplified by RT-PCR using degenerate oligonucleotide primers designed based on the amino acid sequence of A. vulgare AGH (Arv-AGH). Subsequently, full length cDNAs were obtained by 5'- and 3'-RACE. Both AGH precursors consisted of a signal peptide, B chain, C peptide and A chain, and exhibited the same organization as that of Arv-AGH. The amino acid sequences of the A and B chains, which comprise mature AGH peptide, were highly conserved among the three species, while that of the C peptide showed only low sequence similarity. In Northern blot analysis, each cDNA fragment used as a probe specifically hybridized with a single band (0.75 kb) in mRNA extracted from whole male reproductive organs. In analysis of the tissue-specific gene expression of these two AGHs by RT-PCR, it was revealed that both AGH transcripts were detected only in cDNA synthesized using total RNA from the testis carrying the androgenic glands, but not in that from testis only, seminal vesicle, vas deferens, or hepatopancreas. PMID:12560604

  7. Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis.

    PubMed Central

    Charles, I G; Dougan, G; Pickard, D; Chatfield, S; Smith, M; Novotny, P; Morrissey, P; Fairweather, N F

    1989-01-01

    Protein P.69 is localized on the outer membrane of Bordetella pertussis and is one of the virulence factors believed to contribute to the disease state of whooping cough. We demonstrate that protein synthesis of P.69 is under genetic control of the vir locus. Using oligonucleotide probes derived from the protein sequence of a cyanogen bromide fragment, we have cloned the gene for P.69 from B. pertussis CN2992. Analysis of the DNA sequence reveals a G + C-rich gene capable of encoding a protein of 910 amino acids with a Mr of 93,478, suggesting that P.69 is a processed form of a larger precursor. In common with some of the genes in the pertussis toxin operon, the sequence CCTGG was found 5' to the ATG initiation codon. At the 3' end, 29 bases after the TAA stop codon, the sequence GTTTTTCCT was found and may have some function in transcription termination. A full-length clone of the gene for P.69 carried by the cosmid pBPI69 was unable to direct the expression of P.69 protein in an Escherichia coli host. The generation of P.69-fusion products allowed the detection of P.69-specific protein products synthesized in E. coli. Images PMID:2542937

  8. Molecular cloning of a cDNA encoding the human Sm-D autoantigen

    SciTech Connect

    Rokeach, L.A.; Haselby, J.A.; Hoch, S.O. )

    1988-07-01

    Antibodies to the Sm-D polypeptide antigen are closely associated with the rheumatic disease systemic lupus erythematosus. Sm-D exists in the cell as one of the core proteins of the small nuclear ribonucleoprotein complexes implicated in RNA processing. The authors have isolated a cDNA clone, D45-2, coding for the Sm-D human nuclear antigen by screening a human B-lymphocyte cDNA library with synthetic oligonucleotide probes. The 1633-base-pair clone contains an open reading frame (ORF) 357 nucleotides long, capable of encoding a 13,282-dalton polypeptide. The Sm-D coding region is initiated at an AUG codon downstream from a sequence with excellent match to the consensus for the eukaryotic ribosome-binding site. The Sm-D ORF is preceded by a 150-nucleotide-long untranslated leader and followed by a 1126-nucleotide-long untranslated region containing four putative poly(A) signals. The predicted amino acid sequence reveals a (Gly-Arg){sub 9} repeated motif at the C terminus, which may constitute one of the Sm-D immunoreactive determinants. Moreover, this C terminus shows interesting features: (i) a good homology to protamines as expected for a nucleic acid binding protein and (ii) a striking similarity to a region in the Epstein-Barr nuclear antigen.

  9. Molecular cloning and expression analysis of a novel BCCP subunit gene from Aleurites moluccana.

    PubMed

    Xuan, W Y; Zhang, Y; Liu, Z Q; Feng, D; Luo, M Y

    2015-01-01

    Aleurites moluccana L. is grown as a roadside tree in southern China and the oil content of its seed is higher than other oil plants, such as Jatropha curcas and Camellia oleifera. A. moluccana is considered a promising energy plant because its seed oil could be used to produce biodiesel and bio-jet fuel. In addition, the bark, leaves, and kernels of A. moluccana have various medical and commercial uses. Here, a novel gene coding the biotin carboxyl carrier protein subunit (BCCP) was cloned from A. moluccana L. using the homology cloning method combined with rapid amplification of cDNA end (RACE) technology. The isolated full-length cDNA sequence (designated AM-accB) was 1188 bp, containing a 795-bp open reading frame coding for 265 amino acids. The deduced amino acid sequence of AM-accB contained a biotinylated domain located between amino acids 190 and 263. A. moluccana BCCP shows high identity at the amino acid level to its homologues in other higher plants, such as Vernicia fordii, J. curcas, and Ricinus communis (86, 77, and 70%, respectively), which all contain conserved domains for ACCase activity. The expression of the AM-accB gene during the middle stage of development and maturation in A. moluccana seeds was higher than that in early and later stages. The expression pattern of the AM-accB gene is very similar to that of the oil accumulation rate. PMID:26345927

  10. Molecular cloning and expression of bovine kappa-casein in Escherichia coli

    SciTech Connect

    Kang, Y.C.; Richardson, T.

    1988-01-01

    A cDNA library was constructed using poly(A)/sup +/RNA from bovine mammary gland. This cDNA library of 6000 clones was screened employing colony hybridization using /sup 32/P-labelled oligonucleotide probes and restriction endonuclease mapping. The cDNA from the selected plasmid, pKR76, was sequenced using the dideoxy-chain termination method. The cDNA insert of pKR76 carries the full-length sequence, which codes for mature kappa-casein protein. The amino acid sequence deduced from the cDNA sequence fits the published amino acid sequence with three exceptions; the reported pyroglutamic acid at position 1, tyrosine at position 35, and aspartic acid at position 81 are, respectively, a glutamine, a histidine, and an asparagine in the clone containing pKR76. The MspI-, NlaIV-cleaved fragment (630 base pair) from the kappa-casein cDNA insert has been subcloned into expression vectors pUC18 and pKK233-2, which contain a lac promoter and a trc promoter, respectively. Escherichia coli cells carrying the recombinant expression plasmids were shown to produce kappa-casein protein having the expected mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and being recognized by specific antibodies raised against natural bovine kappa-casein.

  11. Cysteine-rich venom proteins from the snakes of Viperinae subfamily - molecular cloning and phylogenetic relationship.

    PubMed

    Ramazanova, Anna S; Starkov, Vladislav G; Osipov, Alexey V; Ziganshin, Rustam H; Filkin, Sergey Yu; Tsetlin, Victor I; Utkin, Yuri N

    2009-01-01

    Cysteine-rich proteins found in animal venoms (CRISP-Vs) are members of a large family of cysteine-rich secretory proteins (CRISPs). CRISP-Vs acting on different ion channels were found in venoms or mRNA (cDNA) encoding CRISP-Vs were cloned from snakes of three main families (Elapidae, Colubridae and Viperidae). About thirty snake CRISP-Vs were sequenced so far, however no complete sequence for CRISP-V from Viperinae subfamily was reported. We have cloned and sequenced for the first time cDNAs encoding CRISP-Vs from Vipera nikolskii and Vipera berus vipers (Viperinae). The deduced mature CRISP-V amino acid sequences consist of 220 amino acid residues. Phylogenetic analysis showed that viper proteins are closely related to those of Crotalinae snakes. The presence of CRISP-V in the V. berus venom was revealed using a combination of gel-filtration chromatography, electrophoresis and MALDI mass spectrometry. The finding of the putative channel blocker in viper venom may indicate its action on prey nervous system. PMID:19041663

  12. Molecular cloning and characterization of copper amine oxidase from Huperzia serrata.

    PubMed

    Sun, Jieyin; Morita, Hiroyuki; Chen, Guoshen; Noguchi, Hiroshi; Abe, Ikuro

    2012-09-15

    A cDNA encoding a novel copper amine oxidase (CAO) was cloned and sequenced from the Chinese club moss Huperzia serrata (Huperziaceae), which produces the Lycopodium alkaloid huperzine A. A 2043-bp open reading frame encoded an Mr 76,854 protein with 681 amino acids. The deduced amino acid sequence shared 44-56% identity with the known CAOs of plant origin, and contained the active site consensus sequence of Asn-Tyr-Asp/Glu. The phylogenetic tree analysis revealed that HsCAO from the primitive vascular plant H. serrata is closely related to Physcomitrella patens subsp CAO. The recombinant enzyme, heterologously expressed in Escherichia coli, catalyzed the oxidative deamination of aliphatic and aromatic amines. Among them, the enzyme accepted cadaverine as the best substrate to catalyze the oxidative deamination to Δ(1)-piperideine, which is the precursor of the Lycopodium alkaloids. Furthermore, a homology modeling and site-directed mutagenesis studies predicted the active site architecture, which suggested the crucial active site residues for the observed substrate preference. This is the first report of the cloning and characterization of a CAO enzyme from the primitive Lycopodium plant. PMID:22901898

  13. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    SciTech Connect

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  14. Cloning and molecular analysis of poly(3-hydroxyalkanoate) biosynthesis genes in Pseudomonas aureofaciens.

    PubMed

    Nishikawa, Tomohiro; Ogawa, Keiko; Kohda, Ryoko; Zhixiong, Wang; Miyasaka, Hitoshi; Umeda, Fusako; Maeda, Isamu; Kawase, Masaya; Yagi, Kiyohito

    2002-02-01

    Pseudomonas aureofaciens grown on octanoate or gluconate synthesized medium-chain-length polyhydroxyalkanoates (mcl-PHAs). To clone the PHA synthase gene(s) (phaC), the genomic library of P. aureofaciens was constructed using a cosmid vector. The recombinant cosmids that clone phaC were detected by the complementation with a PHA-negative mutant, P. putida GPp104. The resulting recombinant cosmid, named pVK6, contained a 13-kbp DNA insert. Genetic analysis of the pha locus in pVK6 revealed the presence of six ORFs, genes encoding two PHA synthases, 1 and 2 (phaC1 and phaC2), PHA depolymerase (phaZ), two PHA granule-associated proteins (phaF and phaI), and an unknown protein (phaD). The heterologous expression of pha genes from P. aureofaciens was confirmed. P. putida GPp104 regained the ability to accumulate PHA on introduction of pVK6. Wild-type strains P. oleovorans and P. fluorescens, which were unable to accumulate PHA when grown on gluconate, acquired the ability to accumulate PHA from gluconate when they possessed pVK6. PMID:11815858

  15. Molecular cloning and expression of the ilvGEDAY genes from Salmonella typhimurium.

    PubMed

    Blazey, D L; Kim, R; Burns, R O

    1981-08-01

    The ilvGEDAY genes of Salmonella typhimurium were cloned in Escherichia coli K-12 by in vitro recombination techniques. A single species of recombinant plasmid, designated pDU1, was obtained by selecting for Valr Ampr transformants of strain SK1592. pDU1 was shown to contain a 14-kilobase EcoRI partial digestion product of the S. typhimurium chromosome inserted into the EcoRI site of the pVH2124 cloning vector. The ilvGEDAY genes were found to occupy a maximum length of 7.5 kilobases. Restriction endonuclease analysis of the S. typhimurium ilv gene cluster provided another demonstration of the gene order as well as established the location of ilv Y between ilvA and ilvC. The presence of a ribosomal ribonucleic acid operon on the pDU1 insert, about 3 kilobases from the 5' end of ilvG, was shown by Southern hybridization. The expression of the ilvGEDA operon from pDU1 was found to be elevated, reflecting the increased gene dosage of the multicopy plasmid. A polarity was observed with respect to ilvEDA expression which is discussed in terms of the possible translational effects of the two internal promoter sequences, one located proximal to ilvE and the other located proximal to ilvD. PMID:6167564

  16. A molecular approach to identify active microbes in environmental eukaryote clone libraries.

    PubMed

    Stoeck, Thorsten; Zuendorf, Alexandra; Breiner, Hans-Werner; Behnke, Anke

    2007-02-01

    A rapid method for the simultaneous extraction of RNA and DNA from eukaryote plankton samples was developed in order to discriminate between indigenous active cells and signals from inactive or even dead organisms. The method was tested using samples from below the chemocline of an anoxic Danish fjord. The simple protocol yielded RNA and DNA of a purity suitable for amplification by reverse transcription-polymerase chain reaction (RT-PCR) and PCR, respectively. We constructed an rRNA-derived and an rDNA-derived clone library to assess the composition of the microeukaryote assemblage under study and to identify physiologically active constituents of the community. We retrieved nearly 600 protistan target clones, which grouped into 84 different phylotypes (98% sequence similarity). Of these phylotypes, 27% occurred in both libraries, 25% exclusively in the rRNA library, and 48% exclusively in the rDNA library. Both libraries revealed good correspondence of the general community composition in terms of higher taxonomic ranks. They were dominated by anaerobic ciliates and heterotrophic stramenopile flagellates thriving below the fjord's chemocline. The high abundance of these bacterivore organisms points out their role as a major trophic link in anoxic marine systems. A comparison of the two libraries identified phototrophic dinoflagellates, "uncultured marine alveolates group I," and different parasites, which were exclusively detected with the rDNA-derived library, as nonindigenous members of the anoxic microeukaryote community under study. PMID:17264997

  17. Molecular characterization of tobacco sulfite reductase: enzyme purification, gene cloning, and gene expression analysis.

    PubMed

    Yonekura-Sakakibara, K; Ashikari, T; Tanaka, Y; Kusumi, T a; Hase, T

    1998-09-01

    A cDNA clone, NtSiR1, that encodes the precursor of ferredoxin-dependent sulfite reductase (Fd-SiR) has been isolated from a cDNA library of tobacco (Nicotiana tabacum cv. SR1). The identity of the cDNA was established by comparison of the purified protein and the predicted structure with the nucleotide sequence. The amino terminus of the purified enzyme was Thr62 of the precursor protein, and the mature region of NtSiR1 consisted of 632 amino acids. Tobacco Fd-SiR is 82, 77, and 48% identical with Fd-SiRs from Zea mays, Arabidopsis thaliana, and a cyanobacterium, respectively. Significant similarity was also found with Escherichia coli NADPH-SiR in the region involved in ligation of siroheme and the [4Fe-4S] cluster. On Northern blot analysis, a transcript of NtSiR1 was detected in leaves, stems, roots, and petals in similar amounts. We also isolated a genomic SiR clone named gNtSiR1. It consists of 8 exons and 7 introns. Genomic Southern blot analysis indicated that at least two SiR genes are present in the tobacco genome. PMID:9722674

  18. Molecular cloning and sequencing analysis of the interferon β from Coturnix.

    PubMed

    Zheng, Bei; Chang, Wei-Shan

    2014-01-01

    One pair of primers was designed according to Gallus and Meleagris gallopavo interferon β (IFN-β) sequences published in GenBank. The primers and RNA extraction from the spleen of Coturnix were used to amplify Coturnix IFN-β cDNA by real-time polymerase chain reaction (RT-PCR). The product was cloned into pEasy-T1 vector. Evaluating recombinant plasmid by PCR and restriction enzyme digestion. Sequence the cloning sequences, comparing the sequencing results by NCBI. We successfully got a Coturnix IFN-β partial sequence. The sequence was subtyped and put to homologous analysis. The results suggested the homology of IFN-β gene of Coturnix and gene of Coturnix and chicken (88.7%), the homology of IFN-β gene of Coturnix and chicken (88.7%), the homology of IFN-β gene of Coturnix and Anas platyrhynchos (72.5%), the homology of IFN-β sequence registered in GenBank. The analysis of the genetic tree showed that the relationship of Coturnix and chicken IFN-β had a high homology. It can be seen that in this study we successfully got a partial sequence of IFN-β of quail. PMID:26155095

  19. Molecular cloning, sequencing and expression of a serine proteinase inhibitor gene from Toxoplasma gondii.

    PubMed

    Pszenny, V; Angel, S O; Duschak, V G; Paulino, M; Ledesma, B; Yabo, M I; Guarnera, E; Ruiz, A M; Bontempi, E J

    2000-04-15

    A cDNA clone from a Toxoplasma gondii tachyzoite cDNA library encoding a serine proteinase inhibitor (serpin) was isolated. The 1376 bp cDNA sequence encodes a 294 amino acid protein with a putative signal peptide of 23 amino acids resulting in a mature protein with a predicted mass of 30,190 Da and a pI of 4.86. This protein has internal sequence similarity of residues 30-66, 114-150, 181-217 and 247-283 indicating a four-domain structure. The four domains exhibit high identity to serine proteinase inhibitors belonging to the non-classical Kazal-type family. The gene is single copy in the tachyzoite haploid genome of RH strain and was amplified by polymerase chain reaction (PCR). Several introns were identified. The sequence encoding the mature protein was amplified by PCR, cloned into the pQE30 vector and expressed in Escherichia coli. Specific antiserum generated against the recombinant protein was used in immunoblot assay and two bands of 38 and 42 kDa were detected in a whole parasite homogenate. The recombinant protein showed trypsin-inhibitory activity, one of the two potential specificities. We discuss the possible roles that T. gondii serpin(s) may play in the survival of the tachyzoites in the host. PMID:10779600

  20. Molecular cloning and characterization of the Dicer-like 2 gene from Brassica rapa.

    PubMed

    Yan, Fei; Peng, Jiejun; Lu, Yuwen; Lin, Lin; Zheng, Hongying; Chen, Hairu; Chen, Jianping; Adams, Michael J

    2009-07-01

    Dicer-like proteins (DCLs) are involved in small RNA-mediated development and viral defense in plants. In model plants, at least four DCLs have been found and a number of studies have helped to understand their function. However, the function of the Dicer or DCLs in other plants is still unclear. Here, we report the full-length cDNA sequence of Brassica rapa ssp. chinensis DCL2 (BrDCL2) gene, which contains a 4,179 bp open reading frame (ORF) encoding a protein of 1,392 amino acids. At the 3' end of BrDCL2, clones with three different lengths of 3' untranslated region were found. An alternative splice variant of BrDCL2, BrDCL2sv, in which one intron was retained between exon9 and exon10, was also cloned. Because of a change in the coding sequence resulting in a premature terminal codon, BrDCL2sv was expected to translate a short peptide containing the whole DEXHc domain. PMID:18607769

  1. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    ERIC Educational Resources Information Center

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  2. Cloning, molecular modeling, and docking analysis of alkali-thermostable β-mannanase from Bacillus nealsonii PN-11.

    PubMed

    Chauhan, Prakram Singh; Tripathi, Satya Prakash; Sangamwar, Abhays T; Puri, Neena; Sharma, Prince; Gupta, Naveen

    2015-11-01

    An alkali-thermostable β-mannanase gene from Bacillus nealsonii PN-11 was cloned by functional screening of E. coli cells transformed with pSMART/HaeIII genomic library. The ORF encoding mannanase consisted of 1100 bp, corresponding to protein of 369 amino acids and has a catalytic domain belonging to glycoside hydrolase family 5. Cloned mannanase was smaller in size than the native mannanase by 10 kDa. This change in molecular mass could be because of difference in the glycosylation. The tertiary structure of the β-mannanase (MANPN11) was designed and it showed a classical (α/β) TIM-like barrel motif. Active site of MANPN11 was represented by 8 amino acid residues viz., Glu152, Trp189, His217, Tyr219, Glu247, Trp276, Trp285, and Tyr287. Model surface charge of MANPN11 predicted that surface near active site was mostly negative, and the opposite side was positive which might be responsible for the stability of the enzymes at high pH. Stability of MANPN11 at alkaline pH was further supported by the formation of a hydrophobic pocket near active site of the enzyme. To understand the ability of MANPN11 to bind with different substrates, docking studies were performed and found that mannopentose fitted properly into active site and form stable enzyme substrate complex. PMID:25967652

  3. Molecular cloning, sequence analysis, and characterization of a new cell wall hydrolase, CwlL, of Bacillus licheniformis.

    PubMed

    Oda, Y; Nakayama, R; Kuroda, A; Sekiguchi, J

    1993-11-01

    We have cloned a DNA fragment containing the gene for a cell wall hydrolase from Bacillus licheniformis FD0120 into Escherichia coli. Sequencing of the fragment showed the presence of an open reading frame (ORF; designated as cwlL), which is different from the B. licheniformis cell wall hydrolase gene cwlM, and encodes a polypeptide of 360 amino acids with a molecular mass of 38,994. The enzyme purified from the E. coli clone is an N-acetylmuramoyl-L-alanine amidase, which has a M(r) value of 41 kDa as determined by SDS-polyacrylamide gel electrophoresis, and is able to digest B. licheniformis, B. subtilis and Micrococcus luteus cell walls. The nucleotide and deduced amino acid sequences of cwlL are very similar to those of ORF3 in the putative operon xpaL1-xpaL2-ORF3 in B. licheniformis MC14. Moreover, the amino acid sequence homology of CwlL with the B. subtilis amidase CwlA indicates two evolutionarily distinguishable regions in CwlL. The sequence homology of CwlL with other cell wall hydrolases and the regulation of cwlL are discussed. PMID:7902527

  4. Molecular cloning and characterization of an Rcd1-like protein in excretory-secretory products of Trichinella pseudospiralis.

    PubMed

    Nagano, I; Wu, Z; Takahashi, Y

    2006-12-01

    A cDNA library was constructed from muscle larvae of Trichinella pseudospiralis. A cDNA clone, designated as Tp8 contained a cDNA transcript of 1326 bp length with a single open reading frame, which encoded 303 amino acid residues (34,187 Da, estimated molecular mass). The predicted amino acid sequence of the clone had an identity of approximately 60% to the Rcd1 (Required cell differentiation 1) -like proteins among a wide range of organisms. Real-time quantitative polymerase chain reaction results showed that the transcription level of Tp8 gene reached the highest value in adult worms, and that the transcription level in muscle larvae before stichosome formation was higher than in muscle larvae after stichosome formation. The recombinant Tp8 protein migrated at 37 kDa and reacted to antibody against T. pseudospiralis excretory-secretory (E-S) products and sera from mice infected with T. pseudospiralis. An antibody against the Tp8 recombinant protein could stain proteins migrating at approximately 34 kDa (which is the expected size from the sequence) on Western blotting of E-S products from muscle larvae. An immunocytochemical study showed that the Tp8 protein was present within the stichocyte of muscle larvae and adults worms. PMID:16899141

  5. Applications of molecular self-assembly in tissue engineering

    NASA Astrophysics Data System (ADS)

    Harrington, Daniel Anton

    This thesis studied the application of three self-assembling molecular systems, as potential biomaterials for tissue engineering applications. Cholesteryl-(L-lactic acid)n molecules form thermotropic liquid crystals, which could be coated onto the inner and outer pores of biodegradable PLLA scaffolds, while retaining the lamellar order of the neat material. Primary bovine chondrocytes were cultured on these structures, demonstrating improved attachment and extended retention of phenotype on the C-LA-coated scaffolds. No difference in fibronectin adsorption to C-LA and PLLA surfaces was observed, suggesting a strong role for cholesterol in influencing cell phenotype. A family of peptide-amphiphiles, bearing the "RGD" adhesion sequence from fibronectin, was also assessed in the contexts of cartilage and bladder repair. These molecules self-assemble into one-dimensional fibers, with diameters of 6--8 nm, and lengths of 500 nm or greater. Chondrocytes were seeded and cultured on covalently-crosslinked PA gels and embedded within calcium-triggered PA gels. Cells became dormant over time, but remained viable, suggesting an inappropriate display of the adhesion sequence to cells. A family of "branched" PA molecules with lysine dendron headgroups was designed, in an effort to increase the spatial separation between molecules in the assembled state, and to theoretically improve epitope accessibility. These molecules coated reliably onto PGA fiber scaffolds, and dramatically increased the attachment of human bladder smooth muscle cells, possibly through better epitope display or electrostatic attraction. They also formed strong gels with several negatively-charged biologically-relevant macromolecules. In a third system, amphiphilic segmented dendrimers based on phenylene vinylene and L-lysine entered cells through an endocytic pathway with no discernible toxic effect on cell proliferation or morphology. These amphiphiles formed complex aggregates in aqueous solution, likely

  6. Molecular cloning and expression of a unique rabbit osteoclastic phosphotyrosyl phosphatase.

    PubMed Central

    Wu, L W; Baylink, D J; Lau, K H

    1996-01-01

    Tyrosyl phosphorylation plays an important regulatory role in osteoclast formation and activity. Phosphotyrosyl phosphatases (PTPs), in addition to tyrosyl kinases, are key determinants of intracellular tyrosyl phosphorylation levels. To identify the PTP that might play an important regulatory role in osteoclasts, we sought to clone an osteoclast-specific PTP. A putative full-length clone encoding a unique PTP (referred to as PTP-oc) was isolated from a 10-day-old rabbit osteoclastic cDNA library and sequenced. A single open reading frame predicts a protein with 405 amino acid residues containing a putative extracellular domain, a single transmembrane region, and an intracellular portion. PTP-oc is structurally unique in that, unlike most known transmembrane PTPs, it has a short extracellular region (eight residues), lacks a signal peptide proximal to the N-terminus, and contains only a single 'PTP catalytic domain'. The PTP catalytic domain shows 45-50% sequence identity with the catalytic domain of human HPTP beta and with the first catalytic domain of LCA. The PTP-oc gene exists as a single copy in the rabbit genome. The corresponding mRNA (3.8 kb) is expressed in osteoclasts but not in other bone-derived cells (e.g. osteoblasts and stromal cells). The 3.8 kb PTP-oc mRNA transcript was also expressed in the rabbit brain, kidney and spleen. However, the brain and kidney, but not osteoclasts or spleen, also expressed a larger transcript (6.5 kb). The PTP catalytic domain of PTP-oc was expressed as a GST-cPTP-oc fusion protein. In vitro phosphatase assays indicated that the purified fusion protein exhibited phosphatase activities at neutral pH values toward p-nitrophenyl phosphate, phosphotyrosyl Raytide, and phosphotyrosyl histone, whereas it had no appreciable activity toward phosphoseryl casein. In summary, we have: (a) cloned and sequenced the putative full-length cDNA of a unique PTP (PTP-oc) from rabbit osteoclasts; (b) shown that the mature 3.8 kb PTP-oc m

  7. Three slow skeletal muscle troponin genes in small-tailed Han sheep (Ovis aries): molecular cloning, characterization and expression analysis.

    PubMed

    Sun, Yan; Wang, Guizhi; Ji, Zhibin; Chao, Tianle; Liu, Zhaohua; Wang, Xiaolong; Liu, Guanqing; Wu, Changhao; Wang, Jianmin

    2016-09-01

    To explore the basic characteristics and expressing profile of the three slow skeletal muscle troponin genes TNNC1 (Troponin C type 1), TNNI1 (troponin I type 1) and TNNT1 (troponin T type 1). Three purebred Dorper sheep and another three purebred small-tailed Han sheep were selected. The sequence of the genes from the small-tailed Han sheep was cloned using rapid amplification of cDNA ends and reverse transcription-polymerase chain reaction; The characteristics of the predicted amino acids sequences were analyzed using bioinformatics analysis software; Gene expression analyses were performed using quantitative reverse transcription PCR. The full-length cDNA sequences of the genes were 707, 898, and 1001 bp, respectively, and were submitted to GenBank under accession numbers KR153938, KT218688 and KT218690. The three predicted proteins were predicted to be hydrophilic, non-secretory proteins and contain several phosphorylation sites. Multiple alignments and phylogenetic tree analyses showed that the predicted proteins were relatively conserved in mammals. The expression results of the three genes in eight tissues of Dorper and small-tailed Han sheep revealed that the three genes had a similar mRNA expression pattern, whereas distinct differences were observed among the eight tissues of the two sheep species. We cloned the full-length cDNA of the three genes, analyzed the amino acid sequences, and determined the expression levels of the genes. These results might play important roles in facilitating the future research of the three genes. PMID:27295221

  8. cDNA Cloning and Molecular Modeling of Procerain B, a Novel Cysteine Endopeptidase Isolated from Calotropis procera

    PubMed Central

    Singh, Abhay Narayan; Yadav, Prity; Dubey, Vikash Kumar

    2013-01-01

    Procerain B, a novel cysteine protease (endopeptidase) isolated from Calotropis procera belongs to Asclepiadaceae family. Purification of the enzyme, biochemical characterization and potential applications are already published by our group. Here, we report cDNA cloning, complete amino acid sequencing and molecular modeling of procerain B. The derived amino acid sequence showed high sequence homology with other papain like plant cysteine proteases of peptidase C1A superfamily. The three dimensional structure of active procerain B was modeled by homology modeling using X-ray crystal structure of actinidin (PDB ID: 3P5U), a cysteine protease from the fruits of Actinidia arguta. The structural aspect of the enzyme is also discussed. PMID:23527269

  9. Molecular cloning and expression of an isomalto-dextranase gene from Arthrobacter globiformis T6.

    PubMed Central

    Iwai, A; Ito, H; Mizuno, T; Mori, H; Matsui, H; Honma, M; Okada, G; Chiba, S

    1994-01-01

    The gene encoding an extracellular isomalto-dextranase, designated imd, was isolated from the chromosomal DNA of Arthrobacter globiformis T6 and cloned and expressed in Escherichia coli. A single open reading frame consisting of 1,926 base pairs that encoded a polypeptide composed of a signal peptide of 39 amino acids and a mature protein of 602 amino acids (M(r), 65,900) was found. The primary structure had no significant homology with the structures of any other reported carbohydrases, including two other dextranases. Transformed E. coli cells carrying the 2.3-kb fragment overproduced isomalto-dextranase into the periplasmic space under control of the promoter of the imd gene itself. Images PMID:8002600

  10. Molecular Characterization of the Multidrug Resistant Escherichia coli ST131 Clone

    PubMed Central

    Schembri, Mark A.; Ben Zakour, Nouri L.; Phan, Minh-Duy; Forde, Brian M.; Stanton-Cook, Mitchell; Beatson, Scott A.

    2015-01-01

    Escherichia coli ST131 is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections in both community and clinical settings. The most common group of ST131 strains are defined by resistance to fluoroquinolones and possession of the type 1 fimbriae fimH30 allele. Here we provide an update on our recent work describing the globally epidemiology of ST131. We review the phylogeny of ST131 based on whole genome sequence data and highlight the important role of recombination in the evolution of this clonal lineage. We also summarize our findings on the virulence of the ST131 reference strain EC958, and highlight the use of transposon directed insertion-site sequencing to define genes associated with serum resistance and essential features of its large antibiotic resistance plasmid pEC958. PMID:26131613

  11. Molecular cloning, expression, purification and crystallographic analysis of PRRSV 3CL protease

    SciTech Connect

    Tian, Xinsheng; Feng, Youjun; Zhao, Tiezhu; Peng, Hao; Yan, Jinghua; Qi, Jianxun; Jiang, Fan; Tian, Kegong; Gao, Feng

    2007-08-01

    Recombinant PRRSV 3CL protease was crystallized and the crystals diffracted to 2.1 Å resolution. 3CL protease, a viral chymotrypsin-like proteolytic enzyme, plays a pivotal role in the transcription and replication machinery of many RNA viruses, including porcine reproductive and respiratory syndrome virus (PRRSV). In this study, the full-length 3CL protease from PRRSV was cloned and overexpressed in Escherichia coli. Crystallization experiments yielded crystals that diffracted to 2.1 Å resolution and belong to space group C2, with unit-cell parameters a = 112.31, b = 48.34, c = 42.88 Å, β = 109.83°. The Matthews coefficient and the solvent content were calculated to be 2.49 Å{sup 3} Da{sup −1} and 50.61%, respectively, for one molecule in the asymmetric unit.

  12. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma.

    PubMed Central

    Gissmann, L; Diehl, V; Schultz-Coulon, H J; zur Hausen, H

    1982-01-01

    Papilloma virus DNA from a laryngeal papilloma was cloned in phage lambda L 47 and characterized after cleavage with different restriction enzymes. Hybridization with the DNAs of human papilloma virus types 1, 2, 3, 4, 5, and 8 showed no homology under stringent hybridization conditions. Human papilloma virus type 6 DNA, however, was partially identical to laryngeal papilloma virus DNA; different restriction enzyme fragments hybridizing with the other DNA were identified on each genome. The degree of homology was determined by reassociation kinetics to be 25%. According to the present nomenclature, laryngeal papilloma virus therefore represents a different type of human papilloma virus and is tentatively designated as human papilloma virus type 11. Sequences homologous to laryngeal papilloma virus DNA were also found in four of nine additional laryngeal papillomas. Attempt to detect homologous DNA in 12 carcinomas of the larynx were negative. Images PMID:6292500

  13. Molecular cloning, genomic organization, and chromosomal localization of the human pancreatitis-associated protein (PAP) gene

    SciTech Connect

    Dusetti, N.J.; Frigerio, J.M.; Dagorn, J.C.; Iovanna, J.L. ); Fox, M.F.; Swallow, D.M. )

    1994-01-01

    Pancreatitis-associated protein (PAP) is a secretory pancreatic protein present in small amounts in normal pancreas and overexpressed during the acute phase of pancreatitis. In this paper, the authors describe the cloning, characterization, and chromosomal mapping of the human PAP gene. The gene spans 2748 bp and contains six exons interrupted by five introns. The gene has a typical promoter containing the sequences TATAAA and CCAAT 28 and 52 bp upstream of the cap site, respectively. They found striking similarities in genomic organization as well as in the promoter sequences between the human and rat PAP genes. The human PAP gene was mapped to chromosome 2p12 using rodent-human hybrid cells and in situ chromosomal hybridization. This localization coincides with that of the reg/lithostathine gene, which encodes a pancreatic secretory protein structurally related to PAP, suggesting that both genes derived from the same ancestral gene by duplication. 35 refs., 4 figs., 1 tab.

  14. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene.

    PubMed Central

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1987-01-01

    Genomic DNA clones that coded for the bifunctional dihydrofolate reductase (DHFR) and thymidylate synthase (TS) (DHFR-TS) activities from a pyrimethamine-sensitive strain of Plasmodium falciparum were isolated and sequenced. The deduced DHFR-TS protein contained 608 amino acids (71,682 Da). The coding region for DHFR-TS contained no intervening sequences and had a high A + T content (75%). The DHFR domain, in the amino-terminal portion of the protein, was joined by a 94-amino acid junction sequence to the TS domain in the carboxyl-terminal portion of the protein. The TS domain was more conserved than the DHFR domain and both P. falciparum domains were more homologous to eukaryotic than to prokaryotic forms of the enzymes. Predicted secondary structures of the DHFR and TS domains were nearly identical to the structures identified in other DHFR and TS enzymes. PMID:2825189

  15. Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene.

    PubMed

    Bzik, D J; Li, W B; Horii, T; Inselburg, J

    1987-12-01

    Genomic DNA clones that coded for the bifunctional dihydrofolate reductase (DHFR) and thymidylate synthase (TS) (DHFR-TS) activities from a pyrimethamine-sensitive strain of Plasmodium falciparum were isolated and sequenced. The deduced DHFR-TS protein contained 608 amino acids (71,682 Da). The coding region for DHFR-TS contained no intervening sequences and had a high A + T content (75%). The DHFR domain, in the amino-terminal portion of the protein, was joined by a 94-amino acid junction sequence to the TS domain in the carboxyl-terminal portion of the protein. The TS domain was more conserved than the DHFR domain and both P. falciparum domains were more homologous to eukaryotic than to prokaryotic forms of the enzymes. Predicted secondary structures of the DHFR and TS domains were nearly identical to the structures identified in other DHFR and TS enzymes. PMID:2825189

  16. Molecular cloning and characterization of a threonine/serine protein kinase lvakt from Litopenaeus vannamei

    NASA Astrophysics Data System (ADS)

    Ruan, Lingwei; Liu, Rongdiao; Xu, Xun; Shi, Hong

    2014-07-01

    The phosphatidylinositol 3-kinase (PI3K)-AKT pathway is involved in various cellular functions, including anti-apoptosis, protein synthesis, glucose metabolism and cell cycling. However, the role of the PI3K-AKT pathway in crustaceans remains unclear. In the present study, we cloned and characterized the AKT gene lvakt from Litopenaeus vannamei. The 511-residue LVAKT was highly conserved; contained a PH domain, a catalytic domain and a hydrophobic domain; and was highly expressed in the heart and gills of L. vannamei. We found, using Real-Time Quantitative PCR (Q-PCR) analysis, that lvakt was up-regulated during early white spot syndrome virus (WSSV) infection. Moreover, the PI3K-specific inhibitor, LY294002, reduced viral gene transcription, implying that the PI3K-AKT pathway might be hijacked by WSSV. Our results therefore suggest that LVAKT may play an important role in the shrimp immune response against WSSV.

  17. Molecular cloning of a recA-like gene from the cyanobacterium Anabaena variabilis

    SciTech Connect

    Owttrim, G.W.; Coleman, J.R.

    1987-05-01

    A recA-like gene isolated from the cyanobacterium Anabaena variabilis was cloned and partially characterized. When introduced into Escherichia coli recA mutants, the 7.5-kilobase-pair plasmid-borne DNA insert restored resistance to methyl methanesulfonate and UV irradiation, as well as recombination proficiency when measured by Hfr-mediated conjugation. The cyanobacterial recA gene restored spontaneous but not mitomycin C-induced prophage production. Restriction analysis and subcloning yielded a 1.5-kilobase-pair Sau3A fragment which also restored methylmethane sulfonate resistance and coded for a 38- to 40-kilodalton polypeptide when expressed in an in vitro transcription-translation system.

  18. Aristotle and headless clones.

    PubMed

    Mosteller, Timothy

    2005-01-01

    Cloned organisms can be genetically altered so that they do not exhibit higher brain functioning. This form of therapeutic cloning allows for genetically identical organs and tissues to be harvested from the clone for the use of the organism that is cloned. "Spare parts" cloning promises many opportunities for future medical advances. What is the ontological and ethical status of spare parts, headless clones? This paper attempts to answer this question from the perspective of Aristotle's view of the soul. Aristotle's metaphysics as applied to his view of biological essences generates an ethic that can contribute to moral reasoning regarding the use of headless spare parts clones. The task of this paper is to show the implications that Aristotle's view of the soul, if it is true, would have on the ethics of headless, spare parts cloning. PMID:16180113

  19. Linoleic acid isomerase from Propionibacterium acnes: purification, characterization, molecular cloning, and heterologous expression.

    PubMed

    Deng, Ming-De; Grund, Alan D; Schneider, Kenneth J; Langley, Kim M; Wassink, Sarah L; Peng, Susan S; Rosson, Reinhardt A

    2007-12-01

    Propionibacterium acnes strain ATCC 6919 catalyzes the isomerization of the double bond at the C9 position in linoleic acid (c9,c12, 18:2) to form t10,c12 conjugated linoleic acid (CLA, 18:2). CLA has significant health benefits in animal and human. The linoleic acid C9 isomerase was purified to an apparent homogeneity by successive chromatography on diethylaminoethyl (DEAE) anion exchange, hydrophobic interaction, and chromatofocusing columns. Two degenerated oligonucleotide primers were synthesized according to the N-terminal peptide sequence to clone, by polymerase chain reaction (PCR), a short nucleotide sequence (62 bp) of the isomerase gene. The linoleic acid isomerase gene (lai) was subsequently cloned by inverse PCR. The amino acid sequence deduced from the lai coding sequence predicts a protein of 424 amino acid residues (48 kDa), excluding the N-terminal methionine, which was absent in the polypeptide purified from the native host. The isomerase shares no significant sequence homology to other enzymes except a flavin-binding domain in the N-terminal region. The recombinant isomerase purified from Escherichia coli showed a typical ultraviolet spectrum for FAD-bound proteins. The recombinant enzyme produced a single isomer of t10,c12-CLA from linoleic acid, as demonstrated by gas chromatography and gas chromatography-mass spectrum analysis. The recombinant isomerase protein was expressed at high levels in E. coli, but it was almost totally sequestered in inclusion bodies. The level of active isomerase was increased 376-fold by medium and process optimization in bench-scale fermentors. PMID:18057448

  20. Molecular cloning and characterization of a 20q13.2 amplicon in breast carcinoma

    SciTech Connect

    Collins, C.; Froula, J.; Kowbel, D.

    1994-09-01

    Comparative genomic hybridization (CGH) has identified an amplification event involving chromosome band 20q13.2 in 15-20% of primary breast carcinomas. The application of FISH to the study of tumor interphase nuclei using 33 locus specific cosmid and P1 probes revealed amplification of band 20q13.2 in 35% of breast cancer cell lines and 8% of primary tumors. Moreover, this study localized the amplification event to the 1.5Mb interval defined by (Flpter 0.80-0.84.) and excluded all known genes in the region as candidates for the putative oncogene(s). To both identify the putative oncogene(s) and characterize the amplicon, a 12 member 4Mb YAC contig has been assembled by STS mapping that spans the core of the amplicon. The YAC contig is now being converted to a P1 contig to facilitate sequencing, exon trapping and direct selection of cDNAs. This is being accomplished by performing interAlu PCR reactions on individual YACs and sequencing the reaction products to create 5-10 new STSs per megaYAC. The DuPont P1 library is then screened for these STSs by the PCR. To date 21 P1 clones, forming 6 contigs, have been isolated by screening the DuPont P1 library for existing and/or newly created STSs. The ends of the 21 P1 clones are being sequenced to facilitate contig alignment and to enable chromosome walking. In collaboration with the Human Genome Center at the Lawrence Berkeley Laboratory we have initiated the directed sequencing of two P1 contigs, localized within the amplicon core, and ultimately will sequence the entire 1-2Mb amplicon.

  1. Molecular cloning, expression, and hormonal regulation of the chicken microsomal triglyceride transfer protein.

    PubMed

    Ivessa, N Erwin; Rehberg, Edward; Kienzle, Bernadette; Seif, Fridolin; Hermann, Robert; Hermann, Marcela; Schneider, Wolfgang J; Gordon, David A

    2013-07-01

    During an egg-laying cycle, oviparous animals transfer massive amounts of triglycerides, the major lipid component of very low density lipoprotein (VLDL), from the liver to the developing oocytes. A major stimulus for this process is the rise in estrogen associated with the onset of an egg-laying cycle. In mammals, the microsomal triglyceride transfer protein (MTP) is required for VLDL assembly and secretion. To enable studies to determine if MTP plays a role in basal and estrogen-stimulated VLDL assembly and secretion in an oviparous vertebrate, we have cloned and sequenced the chicken MTP cDNA. This cDNA encodes a protein of 893 amino acids with an N-terminal signal sequence. The primary sequence of chicken MTP is, on average, 65% identical to that of mammalian homologs, and 23% identical to the Drosophila melanogaster protein. We have obtained a clone of chicken embryo fibroblast cells that stably express the avian MTP cDNA and show that these cells display MTP activity as measured by the transfer of a fluorescently labeled neutral lipid. As in mammals, chicken MTP is localized to the endoplasmic reticulum as revealed by indirect immunofluorescence and by the fact that its N-linked oligosaccharide moiety remains sensitive to endoglycosidase H. Endogenous, enzymatically active MTP is also expressed in an estrogen receptor-expressing chicken hepatoma cell line that secretes apolipoprotein B-containing lipoproteins. In this cell line and in vivo, the expression and activity of MTP are not influenced by estrogen. Therefore, up-regulation of MTP in the liver is not required for the increased VLDL assembly during egg production in the chicken. This indicates that MTP is not rate-limiting, even for the massive estrogen-induced secretion of VLDL accompanying an egg-laying cycle. PMID:23542778

  2. Molecular cloning, expression and bioactivity of B cell activating factor (BAFF) in African ostrich.

    PubMed

    Yang, Keli; Xiao, Ke; Huang, Haibo; Lu, Shun; Zhong, Juming; Ansari, Abdur Rahman; Khaliq, Haseeb; Song, Hui; Liu, Huazhen; Peng, Kemei

    2015-09-01

    B cell activating factor (BAFF), which belongs to the tumor necrosis factor (TNF) family, is testified to play a critical role in B cell survival, proliferation, maturation and immunoglobulin secretion. In the present study, the cDNA of open reading frame (ORF) in African ostrich (Struthio camelus) BAFF (designated OsBAFF) was cloned by reverse transcription-PCR (RT-PCR). The OsBAFF gene encodes a 288-amino acid protein containing a predicted transmembrane domain and a putative furin protease cleavage site like BAFFs from chicken (cBAFF), quail (qBAFF), duck (dBAFF), goose (gBAFF) and dove (doBAFF). RT-PCR analysis showed that the OsBAFF gene is strongly expressed in the bursa of Fabricius, thymus, spleen, and bone marrow. The soluble OsBAFF had been cloned into pET28a. SDS-PAGE and Western blotting analysis confirmed that the soluble fusion protein His-OsBAFF was efficiently expressed in Escherichia coli Rosset (DE3). In vitro, purified OsBAFF was not only able to promote the survival of African ostrich bursal lymphocytes, but also able to co-stimulate proliferation of mouse splenic B cells. The expression of OsBAFF in lymphocyte cells was higher than the control after LPS stimulation. These findings indicated that OsBAFF plays an important role in survival and proliferation of African ostrich bursal lymphocytes, which may provide valuable information for research into the immune system of African ostrich and OsBAFF may serve as a potential immunologic factor for enhancing immunological efficacy in African ostrich and any other birds. PMID:26256697

  3. Molecular Cloning and Expression of cor (Cold-Regulated) Genes in Arabidopsis thaliana1

    PubMed Central

    Hajela, Ravindra K.; Horvath, David P.; Gilmour, Sarah J.; Thomashow, Michael F.

    1990-01-01

    We have previously shown that changes in gene expression occur in Arabidopsis thaliana. L. (Heyn) during cold acclimation (SJ Gilmour, RK Hajela, MF Thomashow [1988] Plant Physiol 87: 745-750). Here we report the isolation of cDNA clones of four cold-regulated (cor) genes from Arabidopsis and examine their expression in response to low temperature, abscisic acid (ABA), water stress, and heat shock. The results of Northern analysis indicated that the transcript levels for the four cor genes, represented by clones pHH7.2, pHH28, pHH29, and pHH67, increased markedly between 1 and 4 hours of cold treatment, reached a maximum at about 8 to 12 hours, and remained at elevated levels for as long as the plants were kept in the cold (up to 2 weeks). Returning cold acclimated plants to control temperature resulted in the levels of the cor transcripts falling rapidly to those found in nonacclimated plants; this occurred within 4 hours for the transcripts represented by pHH7.2 and pHH28, and 8 hours for those represented by pHH29 and pHH67. Nuclear run-on transcription assays indicated that the temperature-regulated expression of the cor genes represented by pHH7.2, pHH28, and pHH29 was controlled primarily at the posttranscriptional level while the cor gene represented by pHH67 was regulated largely at the transcriptional level. Northern analysis also indicated that the levels of cor gene transcripts increased in response to both ABA application and water stress, but not to heat shock. The possible significance of cor genes being regulated by both low temperature and water stress is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667586

  4. Molecular cloning and analysis of the scon-2 negative regulatory gene of Neurospora crassa.

    PubMed Central

    Paietta, J V

    1990-01-01

    The sulfur regulatory system of Neurospora crassa is composed of a group of highly regulated structural genes (e.g., the gene encoding arylsulfatase) that are under coordinate control of scon+ (sulfur controller) negative and cys-3+ positive regulatory genes. In scon-1 (previously designated sconC) and scon-2 mutants, there is constitutive expression of sulfur structural genes regardless of the sulfur level available to the cells. The scon-2+ gene was cloned by sib selection screening of a cosmid-based gene library. The screening was based on the use of chromate, a toxic sulfate analog, which is transported into scon-2 cells grown on high sulfur but is not transported into cells that have regained normal sulfur regulation. Restriction fragment length polymorphism analysis was used to confirm that the cloned segment mapped to the proper chromosomal location. In wild-type cells, Northern (RNA) blot analysis showed that a 2.6-kilobase scon-2+ transcript was present at a substantial level only under sulfur-derepressing conditions. Kinetic analysis showed that scon-2+ mRNA content increased as the cells became sulfur starved. Further, scon-2+ RNA was detectable in a nuclear transcription assay only under derepressing conditions. In scon-1, the levels of scon-2+ mRNA were found to be constitutive. In the cys-3 regulatory mutant, there was a reduced level of scon-2+ transcript. cys-3+ and ars-1+ mRNAs were present under both derepressing and repressing conditions in the scon-2 mutant. Repeat-induced point mutation-generated scon-2 mutants were identical in phenotype to the known mutant. Images PMID:1975945

  5. Molecular cloning and characterization of novel cathelicidin-derived myeloid antimicrobial peptide from Phasianus colchicus.

    PubMed

    Wang, Yipeng; Lu, Zekuan; Feng, Feifei; Zhu, Wei; Guang, Huijuan; Liu, Jingze; He, Weiyu; Chi, Lianli; Li, Zheng; Yu, Haining

    2011-03-01

    Cathelicidins were initially characterized as a family of antimicrobial peptides. Now it is clear that they fulfill several immune functions in addition to their antimicrobial activity. In the current work, three cDNA sequences encoding pheasant cathelicidins were cloned from a constructed bone marrow cDNA library of Phasianus colchicus, using a nested-PCR-based cloning strategy. The three deduced mature antimicrobial peptides, Pc-CATH1, 2 and 3 are composed of 26, 32, and 29 amino acid residues, respectively. Unlike the mammalian cathelicidins that are highly divergent even within the same genus, Pc-CATHs are remarkably conserved with chicken fowlicidins with only a few of residues mutated according to the phylogenetic analysis result. Synthetic Pc-CATH1 exerted strong antimicrobial activity against most of bacteria and fungi tested, including the clinically isolated (IS) drug-resistant strains. Most MIC values against Gram-positive bacteria were in the range of 0.09-2.95 μM in the presence of 100mM NaCl. Pc-CATH1 displayed a negligible hemolytic activity against human erythrocytes, lysing 3.6% of erythrocytes at 3.15 μM (10 μg/ml), significantly higher than the corresponding MIC. Pc-CATH1 was stable in the human serum for up to 72 h, revealing its extraordinary serum stability. These specific features of Pc-CATH1 may make its applications much wider given the potency and breadth of the peptide's bacteriocidal capacity and its resistance towards serum and high-salt environments. PMID:20955730

  6. Molecular cloning, sequence analysis and expression in Escherichia coli of Camelus dromedarius glucose-6-phosphate dehydrogenase cDNA.

    PubMed

    Saeed, Hesham Mahmoud; Alanazi, Mohammad Saud; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Khan, Zahid

    2012-06-01

    This study determined the full length sequence of glucose-6-phosphate dehydrogenase cDNA (G6PD) from the Arabian camel Camelus dromedarius using reverse transcription polymerase chain reaction. The C. dromedarius G6PD has an open reading frame of 1545 bp, and the cDNA encodes a protein of 515 amino acid residues with a molecular weight of 59.0 KDa. The amino acid sequence showed the highest identity with Equus caballus (92%) and Homo sapiens (92%). The G6PD cDNA was cloned and expressed into Escherichia coli as a fusion protein and was purified in a single chromatographic step using nickel affinity gel column. The purity and the molecular weight of the enzyme were checked on SDS-PAGE and the purified enzyme showed a single band on the gel with a molecular weight of 63.0 KDa. The specific activity of G6PD was determined to be 289.6 EU/mg protein with a fold purification of 95.45 and yield of 56.8%. PMID:22538316

  7. An Entry/Gateway® cloning system for general expression of genes with molecular tags in Drosophila melanogaster

    PubMed Central

    Akbari, Omar S; Oliver, Daniel; Eyer, Katie; Pai, Chi-Yun

    2009-01-01

    Background Tagged fusion proteins are priceless tools for monitoring the activities of biomolecules in living cells. However, over-expression of fusion proteins sometimes leads to the unwanted lethality or developmental defects. Therefore, vectors that can express tagged proteins at physiological levels are desirable tools for studying dosage-sensitive proteins. We developed a set of Entry/Gateway® vectors for expressing fluorescent fusion proteins in Drosophila melanogaster. The vectors were used to generate fluorescent CP190 which is a component of the gypsy chromatin insulator. We used the fluorescent CP190 to study the dynamic movement of related chromatin insulators in living cells. Results The Entry/Gateway® system is a timesaving technique for quickly generating expression constructs of tagged fusion proteins. We described in this study an Entry/Gateway® based system, which includes six P-element destination vectors (P-DEST) for expressing tagged proteins (eGFP, mRFP, or myc) in Drosophila melanogaster and a TA-based cloning vector for generating entry clones from unstable DNA sequences. We used the P-DEST vectors to express fluorecent CP190 at tolerable levels. Expression of CP190 using the UAS/Gal4 system, instead, led to either lethality or underdeveloped tissues. The expressed eGFP- or mRFP-tagged CP190 proteins are fully functional and rescued the lethality of the homozygous CP190 mutation. We visualized a wide range of CP190 distribution patterns in living cell nuclei, from thousands of tiny particles to less than ten giant ones, which likely reflects diverse organization of higher-order chromatin structures. We also visualized the fusion of multiple smaller insulator bodies into larger aggregates in living cells, which is likely reflective of the dynamic activities of reorganization of chromatin in living nuclei. Conclusion We have developed an efficient cloning system for expressing dosage-sensitive proteins in Drosophila melanogaster. This system

  8. Molecular cloning of the perilipin gene and its association with carcass and fat traits in Chinese ducks.

    PubMed

    Zhang, H L; Fan, H J; Liu, X L; Wu, Y; Hou, S S

    2013-01-01

    The perilipin (PLIN) gene is a candidate gene of carcass and fat traits in ducks. In order to study the molecular character of the PLIN gene and its function in different breeds of Chinese ducks, samples were obtained from the Chinese Academy of Agricultural Sciences Research Center for Birds, including 95 Peking ducks of the Z2 series, 91 Peking ducks of the Z4 series, 82 hybrid systems (Z2 x Z4), and 93 Cherry Valley ducks. We used RT-PCR and 3'-RACE to clone the duck PLIN gene, detect SNPs and analyze their associations with carcass and fat traits. A 2212-bp sequence was cloned with the complete coding region and a 3'-untranslated region. We found a nucleotide mutation (C → T) in exon 2 of the PLIN gene. There were no significant correlations between the 3 genotypes (CC, CT, TT) in breast muscle weight (BMW), leg muscle weight (LMW), subcutaneous fat weight (SFW), and intramuscular fat (IMF) in the Cherry Valley duck. The CC and CT genotypes had significant differences in carcass weight (CW), carcass net weight (CNW), and percentage of abdominal fat weight (AFW); there were significant differences in AFW and percentage of SFW. In Z4, there were no significant correlations between the 3 genotypes (TT, CC, and CT) in CW, BMW, LMW, SFW, AFW, the percentage of SFW and AFW, and IMF. CNW was significantly different between TT, CC, and CT genotypes. In Z2 x Z4, there were no significant correlations between the 3 genotypes in CW, BMW, LMW, SFW, AFW, the percentage of SFW and AFW, and IMF, while the CC and CT genotypes had significant differences in CNW. In Z2, there were no significant differences between the 3 genotypes in all traits. We deduced that the PLIN gene is a potential major gene. It is linked to a major gene affecting meat quality traits. This SNP has potential as a molecular marker for marker-assisted selection. PMID:23765965

  9. Ex situ conservation of Ruscus aculeatus L. – ruscogenin biosynthesis, genome-size stability and propagation traits of tissue-cultured clones

    PubMed Central

    Ivanova, Teodora; Dimitrova, Dessislava; Gussev, Chavdar; Bosseva, Yulia; Stoeva, Tatyana

    2015-01-01

    Ruscus aculeatus L. is a perennial semi-shrub with distinctive leaf-like branches (cladodes). Rhizomes and roots contain steroidal saponins (ruscogenins) that are used in medicine and cosmetics for their anti-inflammatory, venotonic and antihaemorroidal activity. Problematic cultivation of the species causes in many countries unsustainable over-collection from the wild. Tissue culture propagation of R. aculeatus was carried out for conservation and propagation purposes. The impact of the clonal origin (genotype) on the ruscogenin biosynthesis, genome-size stability and propagation traits and morpho-physiological response to long-term cultivation in vitro was studied. Production of ruscogenins in fully developed regenerants was quantified by high-performance liquid chromatography (HPLC). Genome-size stability of the clones was assessed by flow cytometry. Slow growth and prolonged lag-phase were characteristic for the whole propagation cycle. Produced plantlets with well-defined organs were suitable for direct ex vitro planting. Genome DNA content of all clones was stable and comparable to native plants. Ruscogenin biosynthesis was clone-specific, presenting distinctive profiles of the cultures. Our results imply that clone origin and culture type might influence saponin biosynthesis in Ruscus. These traits should be considered in the ex situ conservation of the genetic diversity of this species and by production of planting material as well. PMID:26019616

  10. Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections in patients from Malakand, Pakistan.

    PubMed

    Madzgalla, S; Syed, M A; Khan, M A; Rehman, S S; Müller, E; Reissig, A; Ehricht, R; Monecke, S

    2016-09-01

    Comparatively few studies have been published describing Staphylococcus aureus/MRSA epidemiology in Central Asia including Pakistan. Here, we report the genotyping of Staphylococcus aureus strains (that include both methicillin-susceptible and methicillin-resistant Staphylococcus aureus) from community- and hospital-acquired skin and soft-tissue infections in a tertiary care hospital in the Malakand district of the Khyber Pakhtunkhwa Province of Pakistan. Forty-five isolates of Staphylococcus aureus were characterized by microarray hybridization. Twenty isolates (44 %) were MRSA, whereas 22 (49 %) were PVL-positive. Fourteen isolates (31 %) harboured both mecA and PVL genes. The dominant clones were CC121-MSSA (n = 15, 33 %) and the PVL-positive "Bengal Bay Clone" (ST772-MRSA-V; n = 13, 29 %). The PVL-positive CC8-MRSA-IV strain "USA300" was found once. The pandemic ST239-MRSA-III strain was absent, although it has previously been observed in Pakistan. These observations require a re-assessment of schemes for initial antibiotic therapy to cover MRSA and they emphasise the need for a rapid and non-molecular test for PVL. PMID:27262852

  11. Antimicrobial susceptibility, virulence determinant carriage and molecular characteristics of Staphylococcus aureus isolates associated with skin and soft tissue infections.

    PubMed

    Yu, Fangyou; Liu, Yunling; Lv, Jinnan; Qi, Xiuqin; Lu, Chaohui; Ding, Yu; Li, Dan; Liu, Huanle; Wang, Liangxing

    2015-01-01

    A better understanding of the antimicrobial susceptibility, carriage of virulence determinants and molecular characteristics of Staphylococcus aureus isolates associated with skin and soft tissue infections (SSTIs) may provide further insights related to clinical outcomes with these infections. From January 2012 to September 2013, a total of 128 non-duplicate S. aureus isolates were recovered from patients with SSTIs. All 128 S. aureus SSTI isolates carried at least five virulence genes tested. Virulence genes detected among at least 70% of all tested isolates included hld (100%), hla (95.3%), icaA (96.9%), clf (99.2%), sdrC (79.7%), sdrD (70.3%), and sdrE (72.7%). The prevalence of MRSA isolates with 10 virulence genes tested (54.4%, 31/56) was significantly higher than that among MSSA isolates (35.2%, 25/71) (p<0.05). The positive rates of seb, sen, sem, sdrE and pvl among MRSA isolates were significantly higher than among MSSA isolates (p<0.05). ST7 and ST630 accounting for 10.9% were found to be the predominant STs. The most prevalent spa type was t091 (8.6%). MRSA-ST59-SCCmec IV was the most common clone (12.3%) among MRSA isolates whereas among MSSA isolates the dominant clone was MSSA-ST7 (15.5%). Six main clonal complexes (CCs) were found, including CC5 (52.3%), CC7 (11.7%), CC59 (8.6%), CC88 (6.3%), CC398 (4.7%), and CC121 (3.1%). A higher carriage of seb and sec was found among CC59 isolates. In comparison to CC5 and CC7 isolates, those with the highest carriage rates (>80.0%) of sdrC and sdrD, CC59 isolates had lower prevalence of these two virulence genes. All CC59 isolates were susceptible to gentamicin and trimethoprim/sulfamethoxazole, while CC5 and CC7 isolates had resistance rates to these two antimicrobials of 25.4% and 20.9%, and 40.0% and 40.0%, respectively. The resistance rates for tetracycline, clindamycin, and erythromycin among CC5 isolates were lower than among CC7 and CC59 isolates. In conclusion, the molecular typing of S. aureus SSTI

  12. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt.

    PubMed

    Yang, Jun; Ma, Qing; Zhang, Yan; Wang, Xingfen; Zhang, Guiyin; Ma, Zhiying

    2016-01-10

    Most of the disease resistance genes already characterized in plants encode nucleotide-binding site-leucine rich repeat (NBS-LRR) proteins that have key roles in resistance to Verticillium dahliae. Using a cDNA library and RACE protocols, we cloned a coiled-coil (CC)-NBS-LRR-type gene, GbRVd, from a resistant tetraploid cotton species, Gossypium barbadense (RVd=Resistance to V. dahliae). We also applied RT-qPCR and VIGS technologies to analyze how expression of GbRVd was induced upon attack by V. dahliae. Its 2862-bp ORF encodes a predicted protein containing 953 amino acid residues, with a predicted molecular weight of 110.17kDa and an isoelectric point of 5.87. GbRVd has three domains - CC, NBS, and LRR - and is most closely related to Gossypium raimondii RVd (88% amino acid identity). Profiling demonstrated that GbRVd is constitutively expressed in all tested tissues, and transcript levels are especially high in the leaves. In plants inoculated with V. dahliae, GbRVd was significantly up-regulated when compared with the control, with expression peaking at 48h post-inoculation. Silencing of GbRVd in cotton through VIGS dramatically down-regulated SA, NO, and H2O2 production, resulting in greater susceptibility to V. dahliae. Taken together, these results suggest that GbRVd has an important role in protecting G. barbadense against infection by V. dahliae. PMID:26407869

  13. Molecular cloning and mRNA expression analysis of myosin heavy chain (MyHC) from fast skeletal muscle of grass carp, Ctenopharyngodon idella

    NASA Astrophysics Data System (ADS)

    Chu, Wuying; Fu, Guihong; Bing, Shiyu; Meng, Tao; Zhou, Ruixue; Cheng, Jia; Zhao, Falan; Zhang, Hongfang; Zhang, Jianshe

    2010-03-01

    The myosin heavy chain (MyHC) is one of the major structural and contracting proteins of muscle. We have isolated the cDNA clone encoding MyHC of the grass carp, Ctenopharyngodon idella. The sequence comprises 5 934 bp, including a 5 814 bp open reading frame encoding an amino acid sequence of 1 937 residues. The deduced amino acid sequence showed 69% homology to rabbit fast skeletal MyHC and 73%-76% homology to the MyHCs from the mandarin fish, walleye pollack, white croaker, chum salmon, and carp. The putative sequences of subfragment-1 and the light meromyosin region showed 61.4%-80% homology to the corresponding regions of other fish MyHCs. The tissue-specific and developmental stage-specific expressions of the MyHC gene were analyzed by quantitative real-time PCR. The MyHC gene showed the highest expression in the muscles compared with the kidney, spleen and intestine. Developmentally, there was a gradual increase in MyHC mRNA expression from the neural formation stage to the tail bud stage. The highest expression was detected in hatching larva. Our work on the MyHC gene from the grass carp has provided useful information for fish molecular biology and fish genomics.

  14. Human placental Na/sup +/, K/sup +/-ATPase. cap alpha. subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    SciTech Connect

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-11-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na/sup +/, K/sup +/-ATPase ..cap alpha.. subunit was cloned from human placenta and its sequence was identical to that encoding the ..cap alpha.. subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na/sup +/, K/sup +/-ATPase gene from various human tissues and cell lines revealed only one band (approx. = 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) lambdagt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the ..cap alpha.. subunit is on the short is on the short arm (band p11-p13) of chromosome 1.

  15. Visualizing molecular polar order in tissues via electromechanical coupling

    PubMed Central

    Denning, Denise; Alilat, Sofiane; Habelitz, Stefan; Fertala, Andrzej; Rodriguez, Brian J.

    2015-01-01

    Electron microscopy (EM) and atomic force microscopy (AFM) techniques have long been used to characterize collagen fibril ordering and alignment in connective tissues. These techniques, however, are unable to map collagen fibril polarity, i.e., the polar orientation that is directed from the amine to the carboxyl termini. Using a voltage modulated AFM-based technique called piezoresponse force microscopy (PFM), we show it is possible to visualize both the alignment of collagen fibrils within a tissue and the polar orientation of the fibrils with minimal sample preparation. We demonstrate the technique on rat tail tendon and porcine eye tissues in ambient conditions. In each sample, fibrils are arranged into domains whereby neighboring domains exhibit opposite polarizations, which in some cases extend to the individual fibrillar level. Uniform polarity has not been observed in any of the tissues studied. Evidence of anti-parallel ordering of the amine to carboxyl polarity in bundles of fibrils or in individual fibrils is found in all tissues, which has relevance for understanding mechanical and biofunctional properties and the formation of connective tissues. The technique can be applied to any biological material containing piezoelectric biopolymers or polysaccharides. PMID:22985991

  16. Molecular Cloning and Sequencing of Channel Catfish, Ictalurus punctatus, Cathepsin H and L cDNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cathepsin H and L, a lysosomal cysteine endopeptidase of the papain family, are ubiquitously expressed and involve in antigen processing. In this communication, the channel catfish cathepsin H and L transcripts were sequenced and analyzed. Total RNA from tissues was extracted and cDNA libraries we...

  17. Molecular Cloning and Biochemical Characterization of Indole-3-acetic Acid Methyltransferase from Poplar (Populus trichocarpa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Indole-3-acetic acid (IAA) is the most active endogenous auxin involved in various physiological processes in higher plants. Concentrations of IAA in plant tissues are regulated at multiple levels including de novo biosynthesis, degradation, and conjugation/deconjugation. In this paper, we report id...

  18. Molecular cloning of paired related homeobox 2 (prx2) as a novel pituitary transcription factor.

    PubMed

    Susa, Takao; Ishikawa, Akio; Kato, Takako; Nakayama, Michie; Kato, Yukio

    2009-10-01

    This study aimed to identify protein(s) that bind(s) to the highly AT-rich sequence of porcine Fshb promoter region -852/-746 (named Fd2) by the Yeast One-Hybrid Cloning System and finally a paired related homeodomain transcription factor, Prx2, known as a key factor for skeletogenesis was cloned. RT-PCR analysis of fetal and postnatal porcine pituitaries demonstrated that Prx2 starts to be expressed at around fetal days 40-50 just before the beginning of Lhb-expression and that the level of Prx2 increases after birth. Immunohistochemical analysis of the prepubertal porcine pituitary revealed that some Prx2-positive cells overlap some Lh beta-positive cells. Transient transfection assay using non-pituitary CHO cells and pituitary tumor-derived LbetaT2 cells revealed that Prx2 plays a cell-type dependent role in modulation of the Fshb promoter, showing stimulation in CHO cells and repression in LbetaT2 cells via the regions of Fd2 and -596/-239. The binding ability of Prx2 to the regions of Fd2 and -596/-239 was confirmed by electrophoretic mobility shift assay. DNase I footprinting revealed that broad regions of Fd2 were bound by Prx2 and that -596/-239 contained seven Prx2-binding sites. The SELEX method using a random N15-mer oligonucleotide pool demonstrated that Prx2 monomer binds to a TAATT motif, which is present in Fd2 and -596/-239. However, the binding of Prx2 to TAATT with a single molecule and its inverted repeat with two molecules could not induce transcriptional activation, indicating that the Prx2-dependent transcriptional modulation demonstrated in cultured cells is not introduced by Prx2 alone. Thus, this study demonstrated for the first time that Prx2 is expressed in the pituitary gland and at least in a part of gonadotropes in which Prx2 may play a role in repression of the Fshb gene. PMID:19550106

  19. Molecular cloning, characterization and expression analysis of cytoplasmic Cu/Zn-superoxide dismutase (SOD) from pearl oyster Pinctada fucata.

    PubMed

    Anju, A; Jeswin, J; Thomas, P C; Paulton, M P; Vijayan, K K

    2013-03-01

    Because of its capacity to rapidly convert superoxide to hydrogen peroxide, superoxide dismutase (SOD) is crucial in both intracellular signalling and regulation of oxidative stress. In this paper we report the cloning of a Cu/Zn SOD (designated as pfSOD) from the pearl oyster (Pinctada fucata) using rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of this Cu/Zn SOD contains an open reading frame (ORF) of 471 bp coding for 156 amino acids. No signal peptide was identified at the N-terminal amino acid sequence of Cu/Zn SOD indicating that this pfSOD encodes a cytoplasmic Cu/Zn SOD. This is supported by the presence of conserved amino acids required for binding copper and zinc. Semi-quantitative analysis in adult tissues showed that the pfSOD mRNA was abundantly expressed in haemocytes and gill and scarcely expressed in other tissues tested. After challenge with lipopolysaccharide (LPS), expression of pfSOD mRNA in haemocytes was increased, reaching the highest level at 8 h, then dropping to basal levels at 36 h. These results suggest that Cu/Zn SOD might be used as a bioindicator of the aquatic environmental pollution and cellular stress in pearl oyster. PMID:23318997

  20. Molecular cloning and analysis of a receptor-like promoter of Gbvdr3 gene in sea island cotton.

    PubMed

    Zhang, B-J; Zhang, H-P; Chen, Q-Z; Tang, N; Wang, L-K; Wang, R-F; Zhang, B-L

    2016-01-01

    Verticillium wilt caused by soil borne fungus Verticillium dahliae could significantly reduce cotton yield. The Ve1 homologous gene Gbvdr3 is resistant to Verticillium wilt. In order to understand of the function of the promoter Gbvdr3 in Gossypium barbadense, the promoter region of the receptor-like gene Gbvdr3 was obtained by genome walking, and the cis-element in the promoter was identified using the PLACE software in this study. The sequence analysis showed that the promoter contained elements related to stress resistance and light regulation. The cloned promoter was fused to the GUS reporter gene and transformed into Arabidopsis. GUS expression was specifically detected in roots, flowers, and seeds, suggesting that the expression of Gbvdr3 is tissue-specific. Separation and characterization analysis of the promoter of Gbvdr3 provides a platform for further research and application of this gene. Thorough understanding of the function of the Gbvdr3 promoter is important for better understanding of Gbvdr3 function. These results indicated that the promoter of Gbvdr3 was a tissue-specific promoter. PMID:27323087

  1. Molecular cloning of two paralytogenic, temperature-sensitive mutants, ts1 and ts7, and the parental wild-type Moloney murine leukemia virus.

    PubMed Central

    Yuen, P H; Malehorn, D; Nau, C; Soong, M M; Wong, P K

    1985-01-01

    ts1 and ts7, the paralytogenic, temperature-sensitive mutants of Moloney murine leukemia virus (MoMuLV), together with their wild-type parent, MoMuLV-TB, were molecularly cloned. ts1-19, ts7-22, and wt-25, the infectious viruses obtained on transfection to NIH/3T3 cells of the lambda Charon 21A recombinants of ts1, ts7, and wt, were found to have retained the characteristics of their non-molecularly cloned parents. In contrast to the wt virus, ts1-19 and ts7-22 are temperature-sensitive, inefficient in the intracellular processing of Pr80env at the restrictive temperature, and able to induce paralysis in CFW/D mice. Like the non-molecularly cloned ts7, the ts7-22 virion was also shown to be heat labile. The heat lability of the ts7 virion distinguishes it from ts1. Endonuclease restriction mapping with 11 endonucleases demonstrated that the base composition of MoMuLV-TB differs from that of the standard MoMuLV, but no difference was detected between the molecularly cloned ts1 and ts7 genomes. However, ts1 and ts7 differ from MoMuLV in the loss or acquisition of four different restriction sites, whereas they differ from MoMuLV-TB in the loss or acquisition of three different restriction sites. Images PMID:2983112

  2. Molecular cloning and characterization of lactate dehydrogenase gene from Eimeria tenella.

    PubMed

    Dong, Hui; Wang, Yange; Zhao, Qiping; Han, Hongyu; Zhu, Shunhai; Li, Liujia; Wu, Youling; Huang, Bing

    2014-08-01

    Lactate dehydrogenase (LDH) is a key enzyme in the glycolytic pathway and is crucial for parasite survival. In this study, we cloned and expressed the LDH of Eimeria tenella (EtLDH). Real-time polymerase chain reaction and Western blot analysis revealed that the expression of EtLDH was developmentally regulated at the messenger RNA (mRNA) and protein levels. EtLDH mRNA levels were higher in second-generation merozoites than in other developmental stages (unsporulated oocysts, sporulated oocysts, and sporozoites). EtLDH protein expression levels were most prominent in second-generation merozoites, moderately expressed in unsporulated oocysts and sporulated oocysts, and weakly detected in sporozoites. Immunostaining with anti-recombinant EtLDH (rEtLDH) antibody indicated that EtLDH was mainly located in the anterior region in free sporozoites and became concentrated in the anterior region of intracellular sporozoites except for the apex after invasion into DF-1 cells. Specific staining of EtLDH protein was more intense in trophozoites and immature first-generation schizonts, but decreased in mature first-generation schizonts. Inhibition of EtLDH function using specific antibodies cannot efficiently reduce the ability of E. tenella sporozoites to invade host cells. These results suggest that EtLDH may be involved in glycolysis during the first-generation merogony stage in E. tenella and has little role in host invasion. PMID:24906988

  3. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans.

    PubMed Central

    Chernin, L S; De la Fuente, L; Sobolev, V; Haran, S; Vorgias, C E; Oppenheim, A B; Chet, I

    1997-01-01

    The gene chiA, which codes for endochitinase, was cloned from a soilborne Enterobacter agglomerans. Its complete sequence was determined, and the deduced amino acid sequence of the enzyme designated Chia_Entag yielded an open reading frame coding for 562 amino acids of a 61-kDa precursor protein with a putative leader peptide at its N terminus. The nucleotide and polypeptide sequences of Chia_Entag showed 86.8 and 87.7% identity with the corresponding gene and enzyme, Chia_Serma, of Serratia marcescens, respectively. Homology modeling of Chia_Entag's three-dimensional structure demonstrated that most amino acid substitutions are at solvent-accessible sites. Escherichia coli JM109 carrying the E. agglomerans chiA gene produced and secreted Chia_Entag. The antifungal activity of the secreted endochitinase was demonstrated in vitro by inhibition of Fusarium oxysporum spore germination. The transformed strain inhibited Rhizoctonia solani growth on plates and the root rot disease caused by this fungus in cotton seedlings under greenhouse conditions. PMID:9055404

  4. Molecular cloning and characterization analysis of immunoglobulin M heavy chain gene in European eel (Anguilla anguilla).

    PubMed

    Feng, Jianjun; Guan, Ruizhang; Lin, Peng; Guo, Songlin

    2009-01-15

    In this study, the immunoglobulin M heavy chain gene of European eel (Anguilla anguilla) was cloned and analyzed. The full-length cDNA of the IgM heavy chain gene (GenBank accession no. EF062515) has 2089 nucleotides encoding a putative protein of 581 amino acids. The IgM heavy chain was composed of leader peptide (L), variable domain (VH), CH1, CH2, Hinge, CH3, CH4, and C-terminus and two novel continuous putative N-glycosylation sites were found close to the second cysteine of CH3 in A. anguilla-H1 and A. anguilla-H2. The deduced amino acid sequence of the European eel IgM heavy chain constant region shared similarities to that of the Ladyfish (Elops saurus), Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), Grass carp (Ctenopharingodon idella), Common carp (Cyprinus carpio), Channel catfish (Ictalurus punctatus), and the orange-spotted grouper (Epinephelus coioides) with the identity of 46.1%, 39.7%, 38.9%, 32.4%, 32.3%, 31.7%, and 30.7%, respectively. The highest level of IgM gene expression was observed in the kidney, followed by the spleen, gills, liver, muscle and heart in the apparently healthy European eels. PMID:19013650

  5. Purification, characterization, and molecular gene cloning of an antifungal protein from Ginkgo biloba seeds.

    PubMed

    Sawano, Yoriko; Miyakawa, Takuya; Yamazaki, Hiroshi; Tanokura, Masaru; Hatano, Ken-ichi

    2007-03-01

    A novel basic protein with antifungal activity was isolated from the seeds of Ginkgo biloba and purified to homogeneity. The protein inhibited the growth of some fungi (Fusarium oxysporum, Trichoderma reesei, and Candida albicans) but did not exhibit antibacterial action against Escherichia coli. Furthermore, this protein showed weak inhibitory activity against the aspartic protease pepsin. To design primers for gene amplification, the NH(2)-terminal and partial internal amino acid sequences were determined using peptides obtained from a tryptic digest of the oxidized protein. The full-length cDNA of the antifungal protein was cloned and sequenced by RT-PCR and rapid amplification of cDNA ends (RACE). The cDNA contained a 402-bp open reading frame encoding a 134-aa protein with a potential signal peptide (26 residues), suggesting that this protein is synthesized as a preprotein and secreted outside the cells. The antifungal protein shows approximately 85% identity with embryo-abundant proteins from Picea abies and Picea glauca at the amino acid level; however, there is no homology between this protein and other plant antifungal proteins, such as defensin, and cyclophilin-, miraculin- and thaumatin-like proteins. PMID:17338634

  6. [Molecular cloning and characterization of a novel ice gene from Capsella bursapastoris].

    PubMed

    Wang, Xinglong; Sun, Xiaoqing; Liu, Sixiu; Liu, Li; Liu, Xiaojun; Sun, Xiaofen; Tang, Kexuan

    2005-01-01

    A new ice gene (designated as Cbice53, an inducer of CBF expression) was cloned from Capsella bursa-pastoris by rapid amplification of cDNA ends (RACE). The full-length cDNA of Cbice53 was 1811 bp long with a 1476 bp open reading frame (ORF) encoding a Myc-like protein of 492 amino acids. The predicted CbICE53 protein contained a potential basic helix-loop-helix, a nuclear localization signal (NLS), a RNA-binding regions RGG box, N-glycosylation and kinase phosphorylation sites. Bioinformatic analysis revealed that CbICE53 was highly homologous to ICE1 from Arabidopsis thaliana. Transcription of Cbice53 gene was induced transiently during salt and cold treatments, suggesting that it was involved in someway in cold-acclimation process. Our study implies that the Cbice53 gene is a new member of the ice gene family and may exert functions in cold- and salt-responsiveness in C. bursa-pastoris. PMID:15773544

  7. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling.

    PubMed

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder

    2015-11-25

    A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine. PMID:26537436

  8. Enolase from the ectomycorrhizal fungus Tuber borchii Vittad.: biochemical characterization, molecular cloning, and localization.

    PubMed

    Polidori, Emanuela; Saltarelli, Roberta; Ceccaroli, Paola; Buffalini, Michele; Pierleoni, Raffaella; Palma, Francesco; Bonfante, Paola; Stocchi, Vilberto

    2004-02-01

    Enolase from Tuber borchii mycelium was purified to electrophoretical homogeneity using an anion-exchange and a gel permeation chromatography. Furthermore, the corresponding gene (eno-1) was cloned and characterized. The purified enzyme showed a higher affinity for 2-PGA (0.26 mM) with respect to PEP; the stability and activity of enolase were dependent of the divalent cation Mg2+. T. borchii eno-1 has an ORF of 1323 bp coding for a putative protein of 440 amino acids and Southern blotting analysis revealed that the gene is present as a single copy in T. borchii. The enzymatic activity and the mRNA expression level evaluated in mycelia grown either in different carbon sources, in pyruvate or during starvation were the same in all the conditions tested, while biochemical and Northern blotting analyses performed with mycelia at different days of growth showed T. borchii eno-1 regulation in response to the growth phase. Finally, Western blotting analysis demonstrated that enolase is localized only in the cytosolic fraction confirming its important role in glycolysis. PMID:14732262

  9. Bacterial phytoene synthase: molecular cloning, expression, and characterization of Erwinia herbicola phytoene synthase.

    PubMed

    Iwata-Reuyl, Dirk; Math, Shivanand K; Desai, Shrivallabh B; Poulter, C Dale

    2003-03-25

    Phytoene synthase (PSase) catalyzes the condensation of two molecules of geranylgeranyl diphosphate (GGPP) to give prephytoene diphosphate (PPPP) and the subsequent rearrangement of the cyclopropylcarbinyl intermediate to phytoene. These reactions constitute the first pathway specific step in carotenoid biosynthesis. The crtB gene encoding phytoene synthase was isolated from a plasmid containing the carotenoid gene cluster in Erwinia herbicola and cloned into an Escherichia coli expression system. Upon induction, recombinant phytoene synthase constituted 5-10% of total soluble protein. To facilitate purification of the recombinant enzyme, the structural gene for PSase was modified by site-directed mutagenesis to incorporate a C-terminal Glu-Glu-Phe (EEF) tripepetide to allow purification by immunoaffinity chromatography on an immobilized monoclonal anti-alpha-tubulin antibody YL1/2 column. Purified recombinant PSase-EEF gave a band at 34.5 kDa upon SDS-PAGE. Recombinant PSase-EEF was then purified to >90% homogeneity in two steps by ion-exchange and immunoaffinity chromatography. The enzyme required Mn(2+) for activity, had a pH optimum of 8.2, and was strongly stimulated by detergent. The concentration of GGPP needed for half-maximal activity was approximately 35 microM, and a significant inhibition of activity was seen at GGPP concentrations above 100 microM. The sole product of the reaction was 15,15'-Z-phytoene. PMID:12641468

  10. Molecular cloning of a pepper gene that is homologous to SELF-PRUNING.

    PubMed

    Kim, Dong Hwan; Han, Myeong Suk; Cho, Hyun Wooh; Jo, Yeong Deuk; Cho, Myeong Cheoul; Kim, Byung-Dong

    2006-08-31

    "Determinate" and "indeterminate" inflorescences in plants are controlled by a single recessive gene, for example, SELF-PRUNING (SP) in Solanum lycopersicum, TERMINAL FLOWER1 in Arabidopsis, CENTRORADI-ALIS in Antirrhinum, and CENTRORADIALIS-like gene in tobacco. Pepper (Capsicum annuum L.) is an indeterminate species in which shoots grow indefinitely. In this study, we cloned and characterized the pepper SP-like gene (CaSP). RT-PCR revealed that the CaSP transcript accumulates to higher levels in floral buds than in other organs. Comparison of genomic DNA and cDNA sequences from indeterminate and determinate pepper plants revealed the insertion of a single base in the first exon of CaSP in the determinate pepper plants. CaSP is annotated in linkage group 8 (chromosome 6) of the SNU2 pepper genetic map and showed similar synteny to SP in tomato. Transgenic tobacco plants overexpressing CaSP displayed late-flowering phenotypes similar to the phenotypes caused by overexpression of CaSP orthologs in other plants. Collectively, these results suggest that pepper CaSP is an ortholog of SP in tomato. PMID:16951555

  11. Molecular cloning of copper resistance genes from Pseudomonas syringae pv. tomato

    SciTech Connect

    Bender, C.L.; Cooksey, D.A.

    1987-02-01

    A cosmid library of copper-resistant (Cu/sup r/) Psuedomonas syringe pv. tomato PT23 plasmid DNA was constructed and mobilized into the copper-sensitive recipient P. syringae pv. syringae PS61. One resultant cosmid clone, pCOP1 (46 kilobases), conferred copper resistance. The PT23 Cu/sup r/ gene(s) was located on pCOP1 by subcloning PstI restriction endonuclease fragments of pCOP1 in the broad-host-range vector pRK404. A subclone containing a 4.4-kilobase PstI fragment conferred Cu/sup r/ on PS61. The Cu/sup r/ gene(s0 was further located by insertional inactivation with Tn5. A subcloned fragment internal to the Cu/sup r/ determinant on pCOP2 was probed to plasmid and chromosomal DNA of four copper-resistant and three copper-sensitive strains of P. syringae pv. tomato. The probe hybridized to plasmids in resistant strains, but showed no detectable homology to copper-sensitive strains.

  12. Molecular cloning, characterization, and expression studies of water buffalo (Bubalus bubalis) somatotropin.

    PubMed

    Sadaf, S; Khan, M A; Wilson, D B; Akhtar, M W

    2007-02-01

    Cloning, high-level expression, and characterization of the somatotropin (ST) gene of an indigenous Nili-Ravi breed of water buffalo Bubalus bubalis (BbST) are described. Coding, non-coding, and promoter regions of BbST were amplified and sequenced. Sequence analysis revealed several silent and two interesting point mutations on comparison with STs of other vertebrate species. One interesting variation in the BbST sequence was the replacement of a conserved glutamine residue by arginine. A plasmid was also constructed for the production of BbST in Escherichia coli BL21 (RIPL) CodonPlus, under the control of IPTG-inducible T7-lac promoter. High-level expression could be obtained by synthesizing a codon-optimized ST gene and expressing it in the form of inclusion bodies. The inclusion bodies represented over 20% of the E. coli cellular proteins. The biologically active conformation of purified BbST was confirmed by its efficient growth promoting activity in Nb2 cell proliferation assay. The expression system and purification strategy employed promise to be a useful approach to produce BbST for further use in structure-function studies and livestock industry. PMID:17367293

  13. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    PubMed Central

    Jiang, Hongbo; Wei, Zhaojun; Nachman, Ronald J.; Park, Yoonseong

    2013-01-01

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested its ligand specificities in a heterologous reporter system. HzDHr was expressed in Chinese Hamster Ovary (CHO) cells, which were co-transfected with the aequorin reporter, and was used to measure the ligand activities. A total of 68 chemicals, including natural DH analogs and structurally similar peptide mimetics, were tested for agonistic and antagonistic activities. Several peptide mimetics with a 2-amino-7-bromofluorene-succinoyl (2Abf-Suc) N-terminal modification showed strong agonistic activities; these mimetics included 2Abf-Suc-F[dA]PRLamide, 2Abf-Suc-F[dR]PRLamide, 2Abf-Suc-FKPRLamide and 2Abf-Suc-FGPRLamide. Antagonistic activity was found in the ecdysis triggering hormone in Drosophila melanogaster (FFLKITKNVPRLamide). Interestingly, HzDHr does not discriminate between DH (WFGPRLamide C-terminal motif) and another closely related endogenous peptide, pyrokinin 1 (FXPRXamide; a C-terminal motif that is separate from WFGPRLamide). We provide large-scale in vitro data that serve as a reference for the development of agonists and antagonists to disrupt the DH signaling pathway. PMID:24257143

  14. Molecular cloning and sequencing analysis of the interferon receptor (IFNAR-1) from Columba livia

    PubMed Central

    Chang, Wei Shan

    2014-01-01

    Objective Partial sequence cloning of interferon receptor (IFNAR-1) of Columba livia. Material and methods In order to obtain a certain length (630 bp) of gene, a pair of primers was designed according to the conserved nucleotide sequence of Gallus (EU477527.1) and Taeniopygia guttata (XM_002189232.1) IFNAR-1 gene fragment that was published by GenBank. Special primers were designed by the Race method to amplify the 3'terminal cDNA. Results The Columba livia IFNAR-1 displayed 88.5%, 80.5% and 73.8% nucleotide identity to Falco peregrinus, Gallus and Taeniopygia guttata, respectively. Phylogenetic analysis of the IFNAR1 gene showed that the relationship of Columba livia, Falco peregrinus and chicken had high homology. Conclusions We successfully obtained a Columba livia IFNAR-1 gene partial sequence. Analysis of the genetic tree showed that the relationship of Columba livia and Falco peregrinus IFNAR-1 had high homology. This result can be used as reference for further research and practical application. PMID:26155117

  15. Molecular cloning, purification, and properties of a plasmid-encoded chloramphenicol acetyltransferase from Staphylococcus haemolyticus.

    PubMed Central

    Schwarz, S; Cardoso, M

    1991-01-01

    A small chloramphenicol resistance (Cmr) plasmid of approximately 3.75 kb, designated pSCS5, was isolated from Staphylococcus haemolyticus. This plasmid encoded an inducible chloramphenicol acetyltransferase (CAT; EC 2.3.1.28). The cat gene of pSCS5 was cloned into the Escherichia coli plasmid vector pBluescript SKII+. It differed in its nucleotide sequence and deduced amino acid sequence from the cat genes described previously in staphylococci and other gram-positive bacteria. The CAT enzyme was purified from cell-free lysates by ammonium sulfate precipitation, ion-exchange chromatography, and fast protein liquid chromatography. The native enzyme had an Mr of 70,000 and was composed of three identical subunits, each with an Mr of approximately 23,000. Its isoelectric point was at pH 6.15. CAT from pSCS5 exhibited Km values of 2.81 and 51.8 microM for chloramphenicol and acetyl coenzyme A, respectively. The optimum pH for activity was 7.8. CAT encoded by pSCS5 proved to be relatively heat stable, but sensitive to mercury ions. The observed differences in the nucleotide sequence and the biochemical characteristics of the enzyme allowed the identification of the pSCS5-encoded CAT from S. haemolyticus as a CAT variant different from those described previously in gram-positive bacteria. Images PMID:1929282

  16. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  17. Cloning and molecular characterization of the Chinese hamster ERCC2 nucleotide excision repair gene

    SciTech Connect

    Kirchner, J.M.; Salazar, E.P.; Lamerdin, J.E.

    1994-10-01

    The Chinese hamster ERCC2 nucleotide excision repair gene, encoding a presumed ATP-dependent DNA helicase, was cloned from the V79 cell line, and its nucleotide sequence was determined. The {approximately}15-kb gene comprises 23 exons with a 2283-base open reading frame. The predicted 760-amino-acid protein is 98% identical to the human ERCC2/EXP (760 amino acids), 51% identical to the Saccharomyces cerevisiae RAD3 (778 amino acids), and 54% identical to the Schizosaccharomyces pombe rad15 (772 amino acids) proteins. The promoter region of the hamster ERCC2 gene contains a pyrimidine-rich stretch (42 nucleotides, 88% C+T) similar to sequences found in the promoter regions of two other nucleotide excision repair genes, a GC box, a putative {alpha}-Pal transcription factor binding site, and two CAAT boxes. There is no apparent TAATA box. No consensus polyadenylation sequence (AATAAA or its variants) was found with 663 bases 3{prime} of the translation termination codon. 54 refs., 2 figs., 2 tabs.

  18. Molecular cloning and function characterization of a new macrophage-activating protein from Tremella fuciformis.

    PubMed

    Hung, Chih-Liang; Chang, An-Ju; Kuo, Xhao-Kai; Sheu, Fuu

    2014-02-19

    Silver ear mushroom ( Tremella fuciformis ) is an edible fungus with health benefits. In this study, we purified a new T. fuciformis protein (TFP) and demonstrated its ability to activate primary murine macrophages. The isolation procedure involved ammonium sulfate fractionation and ion exchange chromatography. TFP naturally formed a 24 kDa homodimeric protein and did not contain glycan residues. The TFP gene was cloned using the rapid amplification of cDNA ends method, and the cDNA sequence of TFP was composed of 408 nucleotides with a 336 nucleotide open reading frame encoding a 112 amino acid protein. TFP was capable of stimulating TNF-α, IL-1β, IL-1ra, and IL-12 production in addition to CD86/MHC class II expression, mRNA expression of M1-type chemokines, and nuclear NF-κB accumulation in murine peritoneal macrophage cells. Furthermore, TFP failed to stimulate TLR4-neutralized and TLR4-knockout macrophages, suggesting that TLR4 is a required receptor for TFP signaling on macrophages. Taken together, these results indicate that TFP may be an important bioactive compound from T. fuciformis that induces M1-polarized activation through a TLR4-dependent NF-κB signaling pathway. PMID:24400969

  19. Molecular cloning and expression analysis of a dorsal homologue from Eriocheir sinensis.

    PubMed

    Yu, Ai-Qing; Jin, Xing-Kun; Li, Shuang; Guo, Xiao-Nv; Wu, Min-Hao; Li, Wei-Wei; Wang, Qun

    2013-12-01

    Dorsal as a crucial component of Toll signaling pathway, played important roles in induction and regulation of innate immune responses. In this study, we cloned a NF-κB-like transcription factor Dorsal from Eriocheir sinensis and designated it as EsDorsal. The full-length cDNA of EsDorsal was 2493 bp with a 2022-bp open reading frame (ORF) encoding a 673-amino acid protein. This protein contained a 171-residue conserved Rel homology domain (RHD) and a 102-residue Ig-like, plexins and transcription factors domain (IPT). By phylogenetic analysis, EsDorsal was clustered into one group together with other invertebrate Dorsals or NF-κBs, and then clustered with vertebrate NF-κBs. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis results showed that (a) EsDorsal had higher expression level in immune organs; (b) EsDorsal differentially induced after injection of lipopolysaccharides (LPS), peptidoglycan (PG) or zymosan (GLU). Importantly, EsDorsal was more responsive to LPS than GLU and PG. Collectively, EsDorsal was differentially inducibility in response to various PAMPs, suggesting its involvement in a specific innate immune regulation in E. sinensis. PMID:23981326

  20. Molecular cloning and expression analysis of mannose receptor C type 1 in grass carp (Ctenopharyngodon idella).

    PubMed

    Wang, Li; Liu, Lichun; Zhou, Yang; Zhao, Xiaoheng; Xi, Mingjun; Wei, Shun; Fang, Rui; Ji, Wei; Chen, Nan; Gu, Zemao; Liu, Xueqin; Wang, Weimin; Asim, Muhammad; Liu, Xiaoling; Lin, Li

    2014-03-01

    Mannose receptor C type 1 (MRC1) is a pattern-recognition receptor (PRR) which plays a significant role in immune responses. Much work on MRC1 has been done in mammals and birds while little in fish. In this study, we cloned and characterized MRC1 in grass carp (gcMR). The full-length gcMR contained 5291bp encoding a putative protein of 1432 amino acids. The predicted amino acid sequences showed that gcMR contained a signal peptide, a cysteine-rich (CR) domain, a fibronectin type II (FN II) domain, eight C-type lectin-like domains (CTLDs), a transmembrane domain and a short cytoplasmic domain. gcMR were constitutively expressed in different organs with the higher expression in spleen and head kidney. During embryonic development, gcMR transcript levels were highest at cleavage stage. The up-regulation expression of gcMR, IL-1β and TNF-α in liver, spleen, head kidney and intestine after Aeromonas hydrophila infection indicating it involved in innate immune regulation during bacterial infections. PMID:24184700

  1. Molecular Cloning, Overexpression and Characterization of a Novel Water Channel Protein from Rhodobacter sphaeroides

    PubMed Central

    Erbakan, Mustafa; Shen, Yue-xiao; Grzelakowski, Mariusz; Butler, Peter J.; Kumar, Manish; Curtis, Wayne R.

    2014-01-01

    Aquaporins are highly selective water channel proteins integrated into plasma membranes of single cell organisms; plant roots and stromae; eye lenses, renal and red blood cells in vertebrates. To date, only a few microbial aquaporins have been characterized and their physiological importance is not well understood. Here we report on the cloning, expression and characterization of a novel aquaporin, RsAqpZ, from a purple photosynthetic bacterium, Rhodobacter sphaeroides ATCC 17023. The protein was expressed homologously at a high yield (∼20 mg/L culture) under anaerobic photoheterotrophic growth conditions. Stopped-flow light scattering experiments demonstrated its high water permeability (0.17±0.05 cm/s) and low energy of activation for water transport (2.93±0.60 kcal/mol) in reconstituted proteoliposomes at a protein to lipid ratio (w/w) of 0.04. We developed a fluorescence correlation spectroscopy based technique and utilized a fluorescent protein fusion of RsAqpZ, to estimate the single channel water permeability of RsAqpZ as 1.24 (±0.41) x 10−12 cm3/s or 4.17 (±1.38)×1010 H2O molecules/s, which is among the highest single channel permeability reported for aquaporins. Towards application to water purification technologies, we also demonstrated functional incorporation of RsAqpZ in amphiphilic block copolymer membranes. PMID:24497982

  2. The cloning and molecular analysis of pawn-B in Paramecium tetraurelia.

    PubMed Central

    Haynes, W J; Ling, K Y; Preston, R R; Saimi, Y; Kung, C

    2000-01-01

    Pawn mutants of Paramecium tetraurelia lack a depolarization-activated Ca(2+) current and do not swim backward. Using the method of microinjection and sorting a genomic library, we have cloned a DNA fragment that complements pawn-B (pwB/pwB). The minimal complementing fragment is a 798-bp open reading frame (ORF) that restores the Ca(2+) current and the backward swimming when expressed. This ORF contains a 29-bp intron and is transcribed and translated. The translated product has two putative transmembrane domains but no clear matches in current databases. Mutations in the available pwB alleles were found within this ORF. The d4-95 and d4-96 alleles are single base substitutions, while d4-662 (previously pawn-D) harbors a 44-bp insertion that matches an internal eliminated sequence (IES) found in the wild-type germline DNA except for a single C-to-T transition. Northern hybridizations and RT-PCR indicate that d4-662 transcripts are rapidly degraded or not produced. A second 155-bp IES in the wild-type germline ORF excises at two alternative sites spanning three asparagine codons. The pwB ORF appears to be separated from a 5' neighboring ORF by only 36 bp. The close proximity of the two ORFs and the location of the pwB protein as indicated by GFP-fusion constructs are discussed. PMID:10880473

  3. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae).

    PubMed

    Lufrano, Daniela; Faro, Rosário; Castanheira, Pedro; Parisi, Gustavo; Veríssimo, Paula; Vairo-Cavalli, Sandra; Simões, Isaura; Faro, Carlos

    2012-09-01

    Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet. The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases. PMID:22727116

  4. Molecular cloning and characterization of a trehalose-6-phosphate synthase/phosphatase from Dunaliella viridis.

    PubMed

    Zhang, Nan; Wang, Fei; Meng, Xiangzong; Luo, Saifan; Li, Qiyun; Dong, Hongyun; Xu, Zhengkai; Song, Rentao

    2011-04-01

    Dunaliella is a group of green algae with exceptional stress tolerance capability, and is considered as an important model organism for stress tolerance study. Here we cloned a TPS (trehalose-6-phosphate synthase) gene from Dunaliella viridis and designated it as DvTPS (D. viridis trehalose-6-phosphate synthase/phosphatase).The DvTPS cDNA contained an ORF of 2793 bp encoding 930 aa. DvTPS had both TPS and TPP domain and belonged to the Group II TPS/TPP fusion gene family. Southern blots showed it has a single copy in the genome. Genome sequence analysis revealed that it has 18 exons and 17 introns. DvTPS had a constitutive high expression level under various NaCl culture conditions, however, could be induced by salt shock. Promoter analysis indicated there were ten STREs (stress response element) in its promoter region, giving a possible explanation of its inducible expression pattern upon salt shock. Yeast functional complementation analysis showed that DvTPS had neither TPS nor TPP activity. However, DvTPS could improve the salt tolerance of yeast salt sensitive mutant G19. Our results indicated that despite DvTPS showed significant similarity with TPS/TPP, its real biological function is still remained to be revealed. PMID:20878239

  5. Molecular cloning, expression and characterization of the porcine β defensin 2 in E. coli.

    PubMed

    Li, Chun-li; Zhao, Yan-cong; Song, Xiao-yan; Huang, Xian-xian; Zhao, Wei-dong

    2013-06-01

    Porcine β defensin 2(pBD2)is a cationic 37-amino acid antimicrobial peptide with disulfide bonds. Synthetic pBD2 had broad antimicrobial activity against pathogenic bacteria, and thus pBD2 could be a good candidate as a bactericidal agent for pigs. This study reported the successful recombinant expression of pBD2 in Escherichia coli and analysis of its antimicrobial activity, its hemolytic activity, salt-tolerance and thermal stability as well. The pBD2 gene, obtained by RT-PCR using the tongue total RNA as a template and cloned into pET30a expression vector, was transformed into E. coli BL21 (DE3) plysS. The recombinant pBD2 was expressed after induction by IPTG and purified by His tag affinity column with 95% purity. The recombinant pBD2 exhibited antimicrobial activity against both Gram-positive S. aureus and Gram-negative E. coli including the multi-resistant E. coli. The minimum inhibitory concentration (MIC) of recombinant pBD2 against tested bacteria was 10 μg/mL, and the recombinant pBD2 could kill 50% E. coli at 14.39 μg/mL and S. aureus at 21.1 μg/mL. In addition, pBD2 showed low hemolytic activity, salt-tolerance and thermal stability, the properties would be important for its application in practice. PMID:22973850

  6. Molecular cloning and functional analysis of Photobacterium damselae subsp. piscicida haem receptor gene.

    PubMed

    Naka, H; Hirono, I; Aoki, T

    2005-02-01

    A haem receptor gene from Photobacterium damselae subsp. piscicida (formerly known as Pasteurella piscicida) has been cloned, sequenced and analysed for its function. The gene, designated as pph, has an open reading frame consisting of 2154 bp, a predicted 718 amino acid residues and exists as a single copy. It is homologous with the haem receptors of Vibrio anguillarum hupA, V. cholerae hutA, V. mimicus mhuA and V. vulnificus hupA at 32.7, 32.7, 45.6 and 30.9%, respectively, and is highly conserved, consisting of a Phe-Arg-Ala-Pro sequence (FRAP), an iron transport related molecule (TonB) and a Asn-Pron-Asn-Leu sequence (NPNL), binding motifs associated with haem receptors. As a single gene knockout mutant P. damselae subsp. piscicida was able to bind haem in the absence of pph, suggesting that other receptors may be involved in its iron transport system. This study shows that the P. damselae subsp. piscicida pph belongs to the haem receptor family, is conserved and that its iron-binding system may involve more than one receptor. PMID:15705153

  7. Analysis and molecular cloning of genes involved in thiophene and furan oxidation by Escherichia coli

    SciTech Connect

    Alam, K.Y.; Worland, M.J.; Clark, D.P.

    1989-01-01

    Alternative methods for the desulfurization of coal are currently needed. The microbial removal of organic sulfur from coal is addressed in this issue by attempting to construct by genetic means, strains of bacteria which can degrade thiophenes and related organic sulfur compounds. Our first attempts in this direction have resulted in the isolation of a series of mutant strains of Escherchia coli with successively increased oxidizing ability towards furan and thiophene compounds. Three novel genes involved in thiophene oxidation, thdA, thdC, and thdD, were identified and mapped on the E. coli chromosome. In addition, mutations in two previously known regulatory genes fadR and atoC were also required. Further work resulted in more accurate mapping of thdA and thdD relative to known chromosomal genes and the isolation of a further mutation, thdE, so far unmapped. This conference presentation reviews some more recent findings, including the cloning of several genes involved in thiophene metabolism. 23 refs., 2 figs., 5 tabs.

  8. Molecular Characterization of Mycoplasma agalactiae Reveals the Presence of an Endemic Clone in Spain

    PubMed Central

    Ariza-Miguel, Jaime

    2013-01-01

    Mycoplasma agalactiae isolates from Spain were genetically characterized to investigate their genomic diversity and to better understand their relationship to isolates from other countries. Molecular typing revealed a high genomic homogeneity in Spanish M. agalactiae isolates, which clearly shows the circulation of one endemic clonal population. PMID:23224102

  9. Cloning and characterization of resistance gene candidate sequences and molecular marker development in gerbera (Gerbera hybrida)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving disease resistance has become an important breeding objective in gerbera, one of the most important floricultural crops in the world. Development and application of molecular markers are expected to assist selection of gerberas with improved disease resistance. The availability of resistan...

  10. Molecular Cloning and Characterization of AltSB, A Major Aluminum Tolerance Gene in Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity on acid soils represents a major constraint for crop production as ~ 50% of the potentially arable soils worldwide are acidic. Therefore, understanding the genetic and molecular mechanisms underlying plant Al tolerance has been a major focus for a number of laboratories aroun...

  11. Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum.

    PubMed

    Karppinen, Katja; Derzsó, Emese; Jaakola, Laura; Hohtola, Anja

    2016-01-01

    Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a phenolic coupling protein that has earlier been suggested to participate in biosynthesis and binding/transportation of hypericin. The PR-10 genes showed constitutive but variable expression patterns in different H. perforatum tissues. They were all expressed at relatively high levels in leaves, variably in roots and low levels in stem and reproductive parts of the plant with no specific association with dark glands. The gene expression was up-regulated in leaves after salicylic acid, abscisic acid and wounding treatments but with variable levels. To study exact location of the gene expression, in situ hybridization of hyp-1 transcripts was performed and the accumulation of the Hyp-1 protein was examined in various tissues. The presence of Hyp-1 protein in H. perforatum tissues mostly paralleled with the mRNA levels. In situ RNA hybridization localized the hyp-1 transcripts predominantly in vascular tissues in root and stem, while in leaf the mRNA levels were high also in mesophyll cells in addition to vasculature. Our results indicate that the studied PR-10 genes are likely to contribute to the defense responses in H. perforatum. Furthermore, despite the location of the hyp-1 transcripts in vasculature, no support for the transportation of the Hyp-1 protein to dark glands was found in the current study. The present results together with earlier data question the role of the hyp-1 as a key gene responsible for the hypericin biosynthesis in dark glands of H. perforatum. PMID:27148343

  12. Type 3 iodothyronine deiodinase in neonatal goats: molecular cloning, expression, localization, and methylation signature.

    PubMed

    Zhong, Tao; Jin, Peng-Fei; Zhao, Wei; Wang, Lin-Jie; Li, Li; Zhang, Hong-Ping

    2016-07-01

    Type 3 iodothyronine deiodinase (DIO3) is an important enzyme in the metabolism of thyroid hormones. It plays critical roles in fetal development and neonatal growth and is especially important for brain development in mammals. In the present study, we profiled the expression pattern and methylation signature of the DIO3 gene in goats. The complete coding sequence of caprine DIO3 encoded a protein of 301 amino acids and harbored an internal selenocysteine-encoding TGA codon. The DIO3 messenger RNA (mRNA) was predominantly expressed in the neonatal goat liver (P < 0.01), while expression in other tissues was quite low, with the lowest levels in the lung. In in situ hybridization, the DIO3 mRNA was predominantly localized in the liver and the lowest content was detected in the lung. The DIO3 transcript was widely localized in neurons and the neuropil. Methylation profiling of the DIO3 CpG island showed a significant difference between the 5' region (CpGs_1∼24) and the 3' region (CpG_25∼51) of the coding region. Furthermore, no significant difference in methylation status was observed among the six tested tissues with levels in the range of 29.11-33.12 %. The CpG islands in the intergenic-differentially methylated region (IG-DMR) showed significantly different methylated levels among tissues, and the highest methylated level was observed in lung (CpG island 1, 69.34 %) and longissimus dorsi (LD) (CpG island 2, 52.62 %) tissues. Our study lays a foundation for understanding DIO3 function and the diseases caused by altered methylation profiles of the DIO3 gene. PMID:27108114

  13. Molecular Cloning and Expression Analysis of hyp-1 Type PR-10 Family Genes in Hypericum perforatum

    PubMed Central

    Karppinen, Katja; Derzsó, Emese; Jaakola, Laura; Hohtola, Anja

    2016-01-01

    Hypericum perforatum L. is an important medicinal plant for the treatment of depression. The plant contains bioactive hypericins that accumulate in dark glands present especially in reproductive parts of the plant. In this study, pathogenesis-related class 10 (PR-10) family genes were identified in H. perforatum, including three previously unidentified members with sequence homology to hyp-1, a phenolic coupling protein that has earlier been suggested to participate in biosynthesis and binding/transportation of hypericin. The PR-10 genes showed constitutive but variable expression patterns in different H. perforatum tissues. They were all expressed at relatively high levels in leaves, variably in roots and low levels in stem and reproductive parts of the plant with no specific association with dark glands. The gene expression was up-regulated in leaves after salicylic acid, abscisic acid and wounding treatments but with variable levels. To study exact location of the gene expression, in situ hybridization of hyp-1 transcripts was performed and the accumulation of the Hyp-1 protein was examined in various tissues. The presence of Hyp-1 protein in H. perforatum tissues mostly paralleled with the mRNA levels. In situ RNA hybridization localized the hyp-1 transcripts predominantly in vascular tissues in root and stem, while in leaf the mRNA levels were high also in mesophyll cells in addition to vasculature. Our results indicate that the studied PR-10 genes are likely to contribute to the defense responses in H. perforatum. Furthermore, despite the location of the hyp-1 transcripts in vasculature, no support for the transportation of the Hyp-1 protein to dark glands was found in the current study. The present results together with earlier data question the role of the hyp-1 as a key gene responsible for the hypericin biosynthesis in dark glands of H. perforatum. PMID:27148343

  14. Molecular cloning, polymorphisms, and expression analysis of the RERG gene in indigenous Chinese goats.

    PubMed

    Sui, M X; Wang, H H; Wang, Z W

    2015-01-01

    The current study aimed to investigate the coding sequence, polymorphisms, and expression of the RERG gene in indigenous Chinese goats. cDNA of RERG, obtained through reverse transcription PCR was analyzed using bioinformatic techniques. Polymorphisms in the exon regions of the RERG gene were identified and their associations with growth traits in three varieties of indigenous Chinese goats were investigated. Expression of the RERG gene in three goat breeds of the same age was detected using real-time quantitative PCR. The results revealed that the cDNA of RERG, which contained a complete open reading frame of 20-620 bp, was 629 bp in length. The associated accession numbers in GenBank are JN672576, JQ917222, and JN580309 for the QianBei Ma goat, the GuiZhou white goat, and the GuiZhou black goat, respectively. Four consistent SNP sites were found in the exon regions of the RERG gene for the three goat breeds. mRNA expression of the RERG gene differed between different tissues in adult goats of same age. The highest expression was observed in lung and spleen tissues, while the lowest expression was recorded in thymus gland tissue. In addition, the expression of the RERG gene in the muscle of Guizhou white goat, GuiZhou black goat, and QianBei Ma goat decreased sequentially. Our results lay the foundations for further investigation into the role of the RERG gene in goat growth traits. PMID:26634455

  15. The gene controlling marijuana psychoactivity: molecular cloning and heterologous expression of Delta1-tetrahydrocannabinolic acid synthase from Cannabis sativa L.

    PubMed

    Sirikantaramas, Supaart; Morimoto, Satoshi; Shoyama, Yoshinari; Ishikawa, Yu; Wada, Yoshiko; Shoyama, Yukihiro; Taura, Futoshi

    2004-09-17

    Delta(1)-tetrahydrocannabinolic acid (THCA) synthase is the enzyme that catalyzes oxidative cyclization of cannabigerolic acid into THCA, the precursor of Delta(1)-tetrahydrocannabinol. We cloned a novel cDNA (GenBank trade mark accession number AB057805) encoding THCA synthase by reverse transcription and polymerase chain reactions from rapidly expanding leaves of Cannabis sativa. This gene consists of a 1635-nucleotide open reading frame, encoding a 545-amino acid polypeptide of which the first 28 amino acid residues constitute the signal peptide. The predicted molecular weight of the 517-amino acid mature polypeptide is 58,597 Da. Interestingly, the deduced amino acid sequence exhibited high homology to berberine bridge enzyme from Eschscholtzia californica, which is involved in alkaloid biosynthesis. The liquid culture of transgenic tobacco hairy roots harboring the cDNA produced THCA upon feeding of cannabigerolic acid, demonstrating unequivocally that this gene encodes an active THCA synthase. Overexpression of the recombinant THCA synthase was achieved using a baculovirus-insect expression system. The purified recombinant enzyme contained covalently attached FAD cofactor at a molar ratio of FAD to protein of 1:1. The mutant enzyme constructed by changing His-114 of the wild-type enzyme to Ala-114 exhibited neither absorption characteristics of flavoproteins nor THCA synthase activity. Thus, we concluded that the FAD binding residue is His-114 and that the THCA synthase reaction is FAD-dependent. This is the first report on molecular characterization of an enzyme specific to cannabinoid biosynthesis. PMID:15190053

  16. Accessory subunit of mitochondrial DNA polymerase from Drosophila embryos. Cloning, molecular analysis, and association in the native enzyme.

    PubMed

    Wang, Y; Farr, C L; Kaguni, L S

    1997-05-23

    A full-length cDNA of the accessory (beta) subunit of mitochondrial DNA polymerase from Drosophila embryos has been obtained, and its nucleotide sequence was determined. The cDNA clone encodes a polypeptide with a deduced amino acid sequence of 361 residues and a predicted molecular mass of 41 kDa. The gene encoding the beta subunit lies within 4 kilobase pairs of that for the catalytic subunit in the Drosophila genome, on the left arm of chromosome 2. The two genes have similar structural features and share several common DNA sequence elements in their upstream regions, suggesting the possibility of coordinate regulation. A human cDNA homolog of the accessory subunit was identified, and its nucleotide sequence was determined. The human sequence encodes a polypeptide with a predicted molecular mass of 43 kDa that shows a high degree of amino acid sequence similarity to the Drosophila beta subunit. Subunit-specific rabbit antisera, directed against the recombinant catalytic and accessory subunit polypeptides overexpressed and purified from Escherichia coli, recognize specifically and immunoprecipitate the native enzyme from Drosophila embryos. Demonstration of the physical association of the two subunits in the Drosophila enzyme and identification of a human accessory subunit homolog provide evidence for a common heterodimeric structure for animal mitochondrial DNA polymerases. PMID:9153213

  17. Molecular cloning and characterization of amh, dax1 and cyp19a1a genes and their response to 17α-methyltestosterone in Pengze crucian carp.

    PubMed

    Li, Meng; Wang, Lihong; Wang, Houpeng; Liang, Hongwei; Zheng, Yao; Qin, Fang; Liu, Shaozhen; Zhang, Yingying; Wang, Zaizhao

    2013-05-01

    The proteins encoded by amh, dax1 and cyp19a1a play important roles in gonad differentiation. Their functions have been far less studied in teleosts. In this study, the full-length cDNAs of amh, dax1 and cyp19a1a were cloned and characterized in a triploid gynogenic fish, the Pengze crucian carp. Their expression profilings in juvenile development, adult tissues and juveniles exposed to 100 ng/L 17α-methyltestosterone (MT) were investigated. Results showed that their putative proteins shared high identities to their counterparts in cyprinid fish species, respectively. The tissue distribution results indicated that amh and cyp19a1a were predominantly expressed in the ovary and dax1 was dominantly expressed in the liver. Gene profiling in the developmental stages showed that all the three target genes had a consistent highest expression at 48 days post hatching (dph). The period of 48 dph appeared to be a key time during the process of the gonad development of Pengze crucian carp. 100 ng/L MT significantly increased the mRNA expression of amh at 2- and 4-week exposures and enhanced dax1 and cyp19a1a at 6-week exposure. The present study indicated that MT could influence the gonad development in Pengze crucian carp by disturbing sex-differentiation associated gene expression. Furthermore, the present study will be of great significance to broaden the understanding of molecular mechanisms of the physiological processes of reproduction in fish. PMID:23528270

  18. Molecular and Biochemical Analysis of Two cDNA Clones Encoding Dihydroflavonol-4-Reductase from Medicago truncatula1

    PubMed Central

    Xie, De-Yu; Jackson, Lisa A.; Cooper, John D.; Ferreira, Daneel; Paiva, Nancy L.

    2004-01-01

    Dihydroflavonol-4-reductase (DFR; EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids important to plant survival and human nutrition. Two DFR cDNA clones (MtDFR1 and MtDFR2) were isolated from the model legume Medicago truncatula cv Jemalong. Both clones were functionally expressed in Escherichia coli, confirming that both encode active DFR proteins that readily reduce taxifolin (dihydroquercetin) to leucocyanidin. M. truncatula leaf anthocyanins were shown to be cyanidin-glucoside derivatives, and the seed coat proanthocyanidins are known catechin and epicatechin derivatives, all biosynthesized from leucocyanidin. Despite high amino acid similarity (79% identical), the recombinant DFR proteins exhibited differing pH and temperature profiles and differing relative substrate preferences. Although no pelargonidin derivatives were identified in M. truncatula, MtDFR1 readily reduced dihydrokaempferol, consistent with the presence of an asparagine residue at a location known to determine substrate specificity in other DFRs, whereas MtDFR2 contained an aspartate residue at the same site and was only marginally active on dihydrokaempferol. Both recombinant DFR proteins very efficiently reduced 5-deoxydihydroflavonol substrates fustin and dihydrorobinetin, substances not previously reported as constituents of M. truncatula. Transcript accumulation for both genes was highest in young seeds and flowers, consistent with accumulation of condensed tannins and leucoanthocyanidins in these tissues. MtDFR1 transcript levels in developing leaves closely paralleled leaf anthocyanin accumulation. Overexpression of MtDFR1 in transgenic tobacco (Nicotiana tabacum) resulted in visible increases in anthocyanin accumulation in flowers, whereas MtDFR2 did not. The data reveal unexpected properties and differences in two DFR proteins from a single species. PMID:14976232

  19. Molecular Cloning and Characterization of Spermine Synthesis Gene Associated with Cold Tolerance in Tea Plant (Camellia sinensis).

    PubMed

    Zhu, Xujun; Li, Qinghui; Hu, Jingyan; Wang, Mingle; Li, Xinghui

    2015-11-01

    Spermine synthase (SPMS, EC 2.5.1.22), enzyme of spermine (Spm) biosynthesis, has been shown to be related to stress response. In this study, attempts were made to clone and characterize a gene encoding SPMS from tea plant (Camellia sinensis). The effect of exogenous application of Spm in C. sinensis subjected to low-temperature stress was also investigated. A full-length SPMS complementary DNA (cDNA) (CsSPMS) with an open reading frame of 1113 bp was cloned using reverse transcription-PCR and rapid amplification of cDNA ends (RACE) techniques from cultivar "Yingshuang". The CsSPMS gene, which encoded a 371 amino acid polypeptide, in four cultivars is highly homologous. Quantitative real-time PCR indicated that the CsSPMS gene shows tissue-specific expression, mainly in the leaf and root of tea plant. The expression analysis demonstrated that the CsSPMS gene is quickly induced by cold stress and had similar trends in four cultivars. Spm-supplemented "Baicha" cultivar contains higher endogenous polyamines compared to the control, coupling with higher expression levels of ADC and SPMS. In addition, activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), as well as free proline content in the Spm-supplemented samples were higher than the control during the experiment course or at a given time point, indicating that Spm exerted a positive effect on antioxidant systems. Moreover, Agrobacterium-mediated expression of CsSPMS in tobacco leaves showed relatively higher cold tolerance. Taken together, these findings will enhance the understanding of the relationships among CsSPMS gene regulatory, polyamines accumulation, and cold tolerance in tea plant. PMID:26276446

  20. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis.

    PubMed

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination. PMID:26135744

  1. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis

    PubMed Central

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination. PMID:26135744

  2. Molecular cloning and pharmacological characterization of rat multidrug resistance protein 1 (mrp1).

    PubMed

    Nunoya, Kenichi; Grant, Caroline E; Zhang, Dawei; Cole, Susan P C; Deeley, Roger G

    2003-08-01

    Multidrug resistance protein 1 (MRP1) transports a wide range of structurally diverse conjugated and nonconjugated organic anions and some peptides, including oxidized and reduced glutathione (GSH). The protein confers resistance to certain heavy metal oxyanions and a variety of natural product-type chemotherapeutic agents. Elevated levels of MRP1 have been detected in many human tumors, and the protein is a candidate therapeutic target for drug resistance reversing agents. Previously, we have shown that human MRP1 (hMRP1) and murine MRP1 (mMRP1) differ in their substrate specificity despite a high degree of structural conservation. Since rat models are widely used in the drug discovery and development stage, we have cloned and functionally characterized rat MRP1 (rMRP1). Like mMRP1 and in contrast to hMRP1, rMRP1 confers no, or very low, resistance to anthracyclines and transports the two estrogen conjugates, 17beta-estradiol-17-(beta-d-glucuronide) (E217betaG) and estrone 3-sulfate, relatively poorly. Mutational studies combined with vesicle transport assays identified several amino acids conserved between rat and mouse, but not hMRP1, that make major contributions to these differences in substrate specificity. Despite the fact that the rodent proteins transport E217betaG poorly and the GSH-stimulated transport of estrone 3-sulfate is low compared with hMRP1, site-directed mutagenesis studies indicate that different nonconserved amino acids are involved in the low efficiency with which each of the two estrogen conjugates is transported. Our studies also suggest that although rMRP1 and mMRP1 are 95% identical in primary structure, their substrate specificities may be influenced by amino acids that are not conserved between the two rodent proteins. PMID:12867490

  3. Molecular cloning and expression characterization of ApoC-I in the orange-spotted grouper.

    PubMed

    Wang, Y; Zhou, L; Li, Z; Gui, J F

    2008-12-01

    Endogenous yolk nutrients are crucial for embryo and larval development in fish, but developmental behavior of the genes that control yolk utilization remains unknown. Apolipoproteins have been shown to play important roles in lipid transport and uptake through the circulation system. In this study, EcApoC-I, the first cloned ApoC-I in teleosts, has been screened from pituitary cDNA library of female orange-spotted grouper (Epinephelus coioides), and the deduced amino acid sequence shows 43.5% identity to one zebrafish (Danio rerio) hypothetical protein similar to ApoC-I, and 21.2%, 21.7%, 22.5%, 20%, and 22.5% identities to Apo C-I of human (Homo sapiens), house mouse (Mus musculus), common tree shrew (Tupaia glis), dog (Canis lupus familiaris) and hamadryas baboon (Papio hamadryas), respectively. Although the sequence identity is low, amphipathic alpha-helices with the potential to bind to lipid were predicted to exist in the EcApoC-I. RT-PCR analysis revealed that it was first transcribed in gastrula embryos and maintained a relatively stable expression level during the following embryogenesis. During embryonic and early larval development, a very high level of EcApoC-I expression was in the yolk syncytial layer, indicating that it plays a significant role in yolk degradation and transfers nutrition to the embryo and early larva. By the day 7 after hatching, EcApoC-I transcripts were observed in brain. In adult, EcApoC-I mRNA was detected abundantly in brain and gonad. In transitional gonads, the EcApoC-I expression is restricted to the germ cells. The data suggested that EcApoC-I might play an important role in brain and gonad morphogenesis and growth. PMID:18958591

  4. Molecular Cloning and Characterization of Taurocyamine Kinase from Clonorchis sinensis: A Candidate Chemotherapeutic Target

    PubMed Central

    Tokuhiro, Shinji; Nagataki, Mitsuru; Jarilla, Blanca R.; Nomura, Haruka; Kim, Tae Im; Hong, Sung-Jong; Agatsuma, Takeshi

    2013-01-01

    Background Adult Clonorchis sinensis lives in the bile duct and causes endemic clonorchiasis in East Asian countries. Phosphagen kinases (PK) constitute a highly conserved family of enzymes, which play a role in ATP buffering in cells, and are potential targets for chemotherapeutic agents, since variants of PK are found only in invertebrate animals, including helminthic parasites. This work is conducted to characterize a PK from C. sinensis and to address further investigation for future drug development. Methology/Principal findings A cDNA clone encoding a putative polypeptide of 717 amino acids was retrieved from a C. sinensis transcriptome. This polypeptide was homologous to taurocyamine kinase (TK) of the invertebrate animals and consisted of two contiguous domains. C. sinensis TK (CsTK) gene was reported and found consist of 13 exons intercalated with 12 introns. This suggested an evolutionary pathway originating from an arginine kinase gene group, and distinguished annelid TK from the general CK phylogenetic group. CsTK was found not to have a homologous counterpart in sequences analysis of its mammalian hosts from public databases. Individual domains of CsTK, as well as the whole two-domain enzyme, showed enzymatic activity and specificity toward taurocyamine substrate. Of the CsTK residues, R58, I60 and Y84 of domain 1, and H60, I63 and Y87 of domain 2 were found to participate in binding taurocyamine. CsTK expression was distributed in locomotive and reproductive organs of adult C. sinensis. Developmentally, CsTK was stably expressed in both the adult and metacercariae stages. Recombinant CsTK protein was found to have low sensitivity and specificity toward C. sinensis and platyhelminth-infected human sera on ELISA. Conclusion CsTK is a promising anti-C. sinensis drug target since the enzyme is found only in the C. sinensis and has a substrate specificity for taurocyamine, which is different from its mammalian counterpart, creatine. PMID:24278491

  5. Molecular Cloning and Analysis of a Putative Siderophore ABC Transporter from Staphylococcus aureus

    PubMed Central

    Morrissey, Julie A.; Cockayne, Alan; Hill, Philip J.; Williams, Paul

    2000-01-01

    From a mass-excised Staphylococcus aureus λZapII expression library, we cloned an operon encoding a novel ABC transporter with significant homology to bacterial siderophore transporter systems. The operon encodes four genes designated sstA, -B, -C, and -D encoding two putative cytoplasmic membrane proteins (sstA and sstB), an ATPase (sstC), and a membrane-bound 38-kDa lipoprotein (sstD). The sst operon is preceded by two putative Fur boxes, which indicated that expression of the sst operon was likely to be iron dependent. SstD was overexpressed in Escherichia coli, purified by Triton X-114 phase partitioning, and used to generate monospecific antisera in rats. Immunoblotting studies located SstD in the membrane fraction of S. aureus and showed that expression of the lipoprotein was reduced under iron-rich growth conditions. Triton X-114 partitioning studies on isolated membranes provided additional biochemical evidence that SstD in S. aureus is a lipoprotein. Immunoreactive polypeptides of approximately 38 kDa were detected in a wide range of staphylococcal species, but no antigenic homolog was detected in Bacillus subtilis. Expression of SstD in vivo was confirmed by immunoblotting studies with S. aureus recovered from a rat intraperitoneal chamber implant model. To further define the contribution of SstD in promoting growth of S. aureus in vitro and in vivo, we used antisense RNA technology to modulate expression of SstD. Expression of antisense sstD RNA in S. aureus resulted in a decrease in SstD expression under both iron-rich and iron-restricted growth conditions. However, this reduction in SstD levels did not affect the growth of S. aureus in vitro in an iron-limited growth medium or when grown in an intraperitoneal rat chamber implant model in vivo. PMID:11035736

  6. Molecular Cloning and Expression of a New Allergen of Acacia farnesiana (Aca f 2).

    PubMed

    Sepahi, Najmeh; Khodadadi, Ali; Assarehzadegan, Mohammad-Ali; Amini, Akram; Zarinhadideh, Farnoosh; Ali-Sadeghi, Hosein

    2015-08-01

    Inhalation of pollens from different species of Acacia is a common cause of respiratory allergy in tropical areas of the world. Acacia farnesiana is commonly used as street trees in towns and ornamental shade trees in parks and gardens throughout arid and semi-arid regions of Asia. This study aimed to produce and purify the A. farnesiana pollen profilin (Aca f 2) and evaluate its nucleotide sequence homology with profilins of common allergenic plants to predict allergenic cross-reactivity. Thirty-nine patients who were allergic to Acacia pollens were included in the study. Cloning of Acacia profilin-coding sequence was performed by polymerase chain reaction using primers from Acacia pollen RNA. The cDNA of Acacia pollen profilin was then expressed in Escherichia coli using pET-21b(+) vector and purified by metal affinity chromatography. Immunoreactivity of the recombinant Acacia profilin (rAca f 2) was evaluated by specific ELISA, immunoblotting, and inhibition assays. The coding sequence of the Acacia profilin cDNA was recognized as a 399-bp open reading frame encoding 133 amino acid residues. Eighteen patients (18/39, 46.15%) had significant specific IgE levels against Aca f 2. Immunodetection and inhibition assays indicated that purified Aca f 2 might be the same as that in the crude extract. Aca f2, the first allergen from A. farnesiana pollen, was identified as belonging to the family of profilins. The amino acid sequence homology analysis showed high cross-reactivity between Aca f 2 and other profilins from botanically unrelated common allergenic plants. PMID:26547704

  7. The newt (Cynops pyrrhogaster) RPE65 promoter: molecular cloning, characterization and functional analysis.

    PubMed

    Casco-Robles, Martin Miguel; Miura, Tomoya; Chiba, Chikafumi

    2015-06-01

    The adult newt has the ability to regenerate the neural retina following injury, a process achieved primarily by the retinal pigment epithelium (RPE). To deliver exogenous genes to the RPE for genetic manipulation of regenerative events, we isolated the newt RPE65 promoter region by genome walking. First, we cloned the 2.8 kb RPE65 promoter from the newt, Cynops pyrrhogaster. Sequence analysis revealed several conserved regulatory elements described previously in mouse and human RPE65 promoters. Second, having previously established an I-SceI-mediated transgenic protocol for the newt, we used it here to examine the -657 bp proximal promoter of RPE65. The promoter assay used with F0 transgenic newts confirmed transgene expression of mCherry fluorescent protein in the RPE. Using bioinformatic tools and the TRANSFAC database, we identified a 340 bp CpG island located between -635 and -296 bp in the promoter; this region contains response elements for the microphthalmia-associated transcription factor known as MITF (CACGTG, CATGTG), and E-boxes (CANNTG). Sex-determining region box 9 (or SOX9) response element previously reported in the regulation of RPE genes (including RPE65) was also identified in the newt RPE65 promoter. Third, we identified DNA motif boxes in the newt RPE65 promoter that are conserved among other vertebrates. The newt RPE65 promoter is an invaluable tool for site-specific delivery of exogenous genes or genetic manipulation systems for the study of retinal regeneration in this animal. PMID:25490979

  8. Molecular Cloning and Functional Analysis of Squalene Synthase 2(SQS2) in Salvia miltiorrhiza Bunge

    PubMed Central

    Rong, Qixian; Jiang, Dan; Chen, Yijun; Shen, Ye; Yuan, Qingjun; Lin, Huixin; Zha, Liangping; Zhang, Yan; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag+ treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge. PMID:27605932

  9. Molecular Cloning and Functional Analysis of Squalene Synthase 2(SQS2) in Salvia miltiorrhiza Bunge.

    PubMed

    Rong, Qixian; Jiang, Dan; Chen, Yijun; Shen, Ye; Yuan, Qingjun; Lin, Huixin; Zha, Liangping; Zhang, Yan; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge, which is also known as a traditional Chinese herbal medicine, is widely studied for its ability to accumulate the diterpene quinone Tanshinones. In addition to producing a variety of diterpene quinone, S. miltiorrhiza Bunge also accumulates sterol, brassinosteroid and triterpenoids. During their biosynthesis, squalene synthase (SQS, EC 2.5.1.21) converts two molecules of the hydrophilic substrate farnesyl diphosphate (FPP) into a hydrophobic product, squalene. In the present study, cloning and characterization of S. miltiorrhiza Bunge squalene synthase 2 (SmSQS2, Genbank Accession Number: KM408605) cDNA was investigated subsequently followed by its recombinant expression and preliminary enzyme activity. The full-length cDNA of SmSQS2 was 1 597 bp in length, with an open reading frame of 1 245 bp encoding 414 amino acids. The deduced amino acid sequence of SmSQS2 shared high similarity with those of SQSs from other plants. To obtain soluble recombinant enzymes, the truncated SmSQS2 in which 28 amino acids were deleted from the carboxy terminus was expressed as GST-Tag fusion protein in Escherichia coli BL21 (DE3) and confirmed by SDS-PAGE and Western Blot analysis, and the resultant bacterial crude extract was incubated with FPP and NADPH. Gas chromatograph-mass spectrometer analysis showed that squalene was detected in the in vitro reaction mixture. The gene expression level was analyzed through Quantitative real-time PCR, and was found to be higher in roots as compared to the leaves, and was up-regulated upon YE+ Ag(+) treatment. These results could serve as an important to understand the function of the SQS family. In addition, the identification of SmSQS2 is important for further studies of terpenoid and sterol biosynthesis in S. miltiorrhiza Bunge. PMID:27605932

  10. Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum.

    PubMed

    Rather, Irshad Ahmad; Awasthi, Praveen; Mahajan, Vidushi; Bedi, Yashbir S; Vishwakarma, Ram A; Gandhi, Sumit G

    2015-03-01

    Pathogenesis-related (PR) proteins are involved in biotic and abiotic stress responses of plants and are grouped into 17 families (PR-1 to PR-17). PR-5 family includes proteins related to thaumatin and osmotin, with several members possessing antimicrobial properties. In this study, a PR-5 gene showing a high degree of homology with osmotin-like protein was isolated from sweet basil (Ocimum basilicum L.). A complete open reading frame consisting of 675 nucleotides, coding for a precursor protein, was obtained by PCR amplification. Based on sequence comparisons with tobacco osmotin and other osmotin-like proteins (OLPs), this protein was named ObOLP. The predicted mature protein is 225 amino acids in length and contains 16 cysteine residues that may potentially form eight disulfide bonds, a signature common to most PR-5 proteins. Among the various abiotic stress treatments tested, including high salt, mechanical wounding and exogenous phytohormone/elicitor treatments; methyl jasmonate (MeJA) and mechanical wounding significantly induced the expression of ObOLP gene. The coding sequence of ObOLP was cloned and expressed in a bacterial host resulting in a 25kDa recombinant-HIS tagged protein, displaying antifungal activity. The ObOLP protein sequence appears to contain an N-terminal signal peptide with signatures of secretory pathway. Further, our experimental data shows that ObOLP expression is regulated transcriptionally and in silico analysis suggests that it may be post-transcriptionally and post-translationally regulated through microRNAs and post-translational protein modifications, respectively. This study appears to be the first report of isolation and characterization of osmotin-like protein gene from O. basilicum. PMID:25550044

  11. Molecular cloning, expression and evaluation of phosphohydrolases for phytate-degrading activity.

    PubMed

    Moore, E; Helly, V R; Conneely, O M; Ward, P P; Power, R F; Headon, D R

    1995-05-01

    Four acid phosphatase (phosphomonoesterase E.C.3.1.3.2) genes were cloned by polymerase chain reaction (PCR). These were pho3, pho5 and pho11 from Saccharomyces cerevisiae and the gene for a phosphate-respressible acid phosphatase from Aspergillus niger. The individual genes were subcloned into an A. oryzae expression vector downstream from a starch-inducible alpha-amylase promoter and the resulting expression constructs were transformed into a mutant strain of A. oryzae, AO7. Southern hybridization analysis confirmed that the acid phosphatase genes had been integrated into the host genome with estimates of integrated copy numbers ranging from 2 to 20 for individual transformants. Northern hybridization analysis of total RNA from individual transformants revealed the presence of a single transcript of the expected size of 1.8 kb. Production of recombinant protein was induced by the addition of 30 g L-1 of soluble starch in the fermentation media. Active acid phosphatases, not present in control cultures, were detected in the supernatant fractions of transformant cultures by acid phosphatase activity staining of non-denaturing polyacrylamide gels. The ability of the recombinant acid phosphatases to hydrolyze phytate was assessed by referenced phytase (myoinositol hexakisphosphate phosphohydrolase E.C. 3.1.3.8) activity assay procedures. A two- to six-fold increase in phytase activity was measured in transformants compared to control, untransformed A. oryzae. Sufficient quantities of A. niger and pho5 recombinant acid phosphatases were generated from large-scale fermentations to assess the efficacy of these enzymes as phytate-degrading enzymes when included in poultry diets.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7612216

  12. Arginine kinase from the Tardigrade, Macrobiotus occidentalis: molecular cloning, phylogenetic analysis and enzymatic properties.

    PubMed

    Uda, Kouji; Ishida, Mikako; Matsui, Tohru; Suzuki, Tomohiko

    2010-10-01

    Arginine kinase (AK), which catalyzes the reversible transfer of phosphate from ATP to arginine to yield phosphoarginine and ADP, is widely distributed throughout the invertebrates. We determined the cDNA sequence of AK from the tardigrade (water bear) Macrobiotus occidentalis, cloned the sequence into pET30b plasmid, and expressed it in Escherichia coli as a 6x His-tag—fused protein. The cDNA is 1377 bp, has an open reading frame of 1080 bp, and has 5′- and 3′-untranslated regions of 116 and 297 bp, respectively. The open reading frame encodes a 359-amino acid protein containing the 12 residues considered necessary for substrate binding in Limulus AK. This is the first AK sequence from a tardigrade. From fragmented and non-annotated sequences available from DNA databases, we assembled 46 complete AK sequences: 26 from arthropods (including 19 from Insecta), 11 from nematodes, 4 from mollusks, 2 from cnidarians and 2 from onychophorans. No onychophoran sequences have been reported previously. The phylogenetic trees of 104 AKs indicated clearly that Macrobiotus AK (from the phylum Tardigrada) shows close affinity with Epiperipatus and Euperipatoides AKs (from the phylum Onychophora), and therefore forms a sister group with the arthropod AKs. Recombinant 6x His-tagged Macrobiotus AK was successfully expressed as a soluble protein, and the kinetic constants (K(m), K(d), V(ma) and k(cat)) were determined for the forward reaction. Comparison of these kinetic constants with those of AKs from other sources (arthropods, mollusks and nematodes) indicated that Macrobiotus AK is unique in that it has the highest values for k(cat) and K(d)K(m) (indicative of synergistic substrate binding) of all characterized AKs. PMID:20887177

  13. Molecular cloning, characterization, and bioactivity analysis of interleukin 18 in giant panda (Ailuropoda melanoleuca).

    PubMed

    Yan, Y; Wang, Q; Niu, L L; Deng, J B; Yu, J Q; Zhang J X Wang, Y Z; Yin, M M; Tan, X M

    2014-01-01

    Interleukin 18 (IL-18), as a member of IL-1 superfamily, is an important pleiotropic cytokine that modulates Th1 immune responses. In this report, we cloned and identified a homolog of IL-18 in giant panda (Ailuropoda melanoleuca) (designated as AmIL-18) from peripheral blood mononuclear cells stimulated with lipopolysaccharide. The open readin g frame of AmIL-18 cDNA is 579 bp encoding a deduced protein of 192 amino acids. AmIL-18 gDNA fragments contained 5 exons and 4 introns. The amino acid sequence of AmIL-18 shared 23.9 to 87.0% identity with other species. To evaluate the effects of AmIL-18 on the immune response, we expressed the recombinant AmIL-18 in Escherichia coli BL21 (DE3). The fusion protein PET-AmIL-18 was purified by nickel affinity column chromatography and verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis. The biological function of purified PET-AmIL-18 was determined on mouse splenocytes by quantitative real-time polymerase chain reaction. INF-γ and other cytokines were increased when stimulated by PET-AmIL-18, particularly when combined with recombinant human interleukin 12, while a Th2-type cytokine, interleukin-4, was strikingly suppressed. These results will provide information for the potential use of recombinant proteins to manipulate the immune response in giant pandas and facilitate the study to protect this treasured species. PMID:25501180

  14. Partial molecular cloning of the JHK retrovirus using gammaretrovirus consensus PCR primers

    PubMed Central

    Halligan, Brian D; Sun, Hai-Yuan; Kushnaryov, Vladimir M; Grossberg, Sidney E

    2013-01-01

    The JHK virus (JHKV) was previously described as a type C retrovirus that has some distinctive ultrastructural features and replicates constitutively in a human B-lymphoblastoid cell line, JHK-3. In order to facilitate the cloning of sequences from JHKV, a series of partially degenerate consensus retroviral PCR primers were created by a data-driven design approach based on an alignment of 14 diverse gammaretroviral genomes. These primers were used in the PCR amplification of purified JHK virion cDNA, and ana lysis of the resulting amplified sequence indicates that the JHKV is in the murine leukemia virus (MLV) family. The JHK sequence is nearly identical to the corresponding region of the Bxv-1 endogenous mouse retrovirus (GenBank accession AC115959) and distinct from XMRV. JHKV gag-specific amplification was demonstrated with nucleic acids from uncultivated, frozen, peripheral blood mononuclear cells (PBMCs) of the index patient, but not in PBMCs from nine healthy blood donors. Unlike earlier reports, in which MLV-like sequences were identified in human source material, which may have been due to murine contamination, budding retrovirions were demonstrated repeatedly by electron microscopy in uncultivated lymphocytes of the index patient that were morphologically identical in their development to the virions in the JHK-3 cells, and immunological evidence was obtained that the index patient produced IgG antibodies that bound to the budding viral particles in patient PBMCs and in the JHK-3 cells. These data indicate that the patient had been infected by JHKV, lending significance to the demonstration of JHKV amplicons in nucleic acids of the patient’s PBMCs. In future studies, the PCR primer sets described herein may expand the detection of an amplifiable subset of viruses related to MLV. PMID:24159361

  15. Molecular cloning, expression and functional analysis of ISG15 in orange-spotted grouper, Epinephelus coioides.

    PubMed

    Huang, Xiaohong; Huang, Youhua; Cai, Jia; Wei, Shina; Ouyang, Zhengliang; Qin, Qiwei

    2013-05-01

    Interferon-stimulated gene 15 (ISG15) is an ubiquitin homolog that is significantly induced by type I interferons or viral infections. Groupers, Epinephelus spp. being maricultured in China and Southeast Asian countries, always suffer from virus infection, including iridovirus and nodavirus. To date, the roles of grouper genes, especially interferon related genes in virus infection remained largely unknown. Here, the ISG15 homolog (EcISG15) was cloned from grouper Epinephelus coioides and its immune response to Singapore grouper iridovirus (SGIV) and grouper nervous necrosis virus (GNNV) was investigated. The full-length EcISG15 cDNA was composed of 948 bp and encoded a polypeptide of 155 amino acids with 37-68% identity with the known ISG15 homologs from other fish species. Amino acid alignment analysis indicated that EcISG15 contained two ubiquitin-like (UBL) domains and an Ub-conjugation domain (LRGG). Expressional analysis showed that EcISG15 was dramatically induced by GNNV infection, poly I:C or poly dA-dT treatment, but no obvious changes were observed during SGIV infection. Immunofluorescence assay showed that EcISG15 localized mainly in the cytoplasm of grouper cells in response to poly I:C stimulation or GNNV infection, but not in mock or SGIV infected cells. Western blot analysis indicated that the ISGylation was absent in SGIV-infected cells, but significantly enhanced in GNNV-infected or poly I:C transfected cells, suggesting that EcISG15 might play different roles in SGIV and GNNV infection. Furthermore, overexpression of EcISG15 in vitro inhibited the transcription of GNNV genes significantly. Taken together, the results indicated that fish ISG15 might exert important roles against RNA virus infection. PMID:23403156

  16. Molecular cloning and gene expression of mummichog (Fundulus heteroclitus) Runx2 during embryogenesis.

    PubMed

    Amano, Haruna; Mochida, Kazuhiko; Onduka, Toshimitsu; Fujii, Kazunori

    2013-12-01

    In our previous study, we clarified the toxicity of 2,2'-dipyridyldisulfide [(PS)2], one of photodegradation products of a metal pyrithione that is used as an alternative antifouling paint biocides to organotin compounds in Japan. In early life stage toxicity tests, we exposed the mummichog, (Fundulus heteroclitus) to (PS)2, and the hatched larvae subsequently displayed notochord undulations and skeletal deformities ( Mochida et al., 2012 ). Runx2, a transcription factor of the runt family, is a key regulator in skeletal development in mammals. It is possible that (PS)2 inhibits Runx2 gene expression, inducing the skeletal deformities in mummichog. In the present study, we cloned two Runx2 cDNAs (type I and type II) from mummichog embryos. The deduced amino acid sequences of type I and type II contain an open reading frame encoding 450 and 464 amino acid residues, respectively. The derived amino acid sequence of Fundulus Runx2 type I showed the highest identity (93.8%) with Takifugu Runx2 type I, and Fundulus Runx2 type II showed 94.6% homology with medaka Runx2. The expression level of Runx2 mRNA in the early stage series was measured using a real-time quantitative PCR assay. Expression levels tended to increase in both the blastula-gastrula and the retinal pigmentation stage. To examine the effect of toxic compounds on skeletal formation, mummichog embryos in the late blastula to retinal pigmentation stage were exposed to (PS)2. After exposure to (PS)2 for one week, the expression level of Runx2 mRNA was unchanged. These results suggest that there is no inhibition of Runx2 gene expression due to (PS)2 exposure. PMID:24320183

  17. Serial Next Generation Sequencing of Circulating Cell Free DNA Evaluating Tumour Clone Response To Molecularly Targeted Drug Administration

    PubMed Central

    Frenel, Jean Sebastien; Carreira, Suzanne; Goodall, Jane; Roda, Desam; Perez-Lopez, Raquel; Tunariu, Nina; Riisnaes, Ruth; Miranda, Susana; Figueiredo, Ines; NavaRodrigues, Daniel; Smith, Alan; Leux, Christophe; Garcia-Murillas, Isaac; Ferraldeschi, Roberta; Lorente, David; Mateo, Joaquin; Ong, Michael; Yap, Timothy A; Banerji, Udai; Tandefelt, Delila Gasi; Turner, Nick; Attard, Gerhardt; de Bono, Johann S

    2015-01-01

    Background We evaluated whether next generation sequencing (NGS) of cfDNA could be used for patient selection and as a tumor clone response biomarker in patients with advanced cancers participating in early phase clinical trials of targeted drugs. Methods Plasma samples from patients with known tumor mutations who completed at least 2 courses of investigational targeted therapy were collected monthly, until disease progression. NGS was performed sequentially on the Ion Torrent PGM platform. Results cfDNA was extracted from 39 patients with various tumor types. Treatments administered targeted mailnly the PI3K-AKT-mTOR pathway (n=28) or MEK (n=7). Overall 159 plasma samples were sequenced with a mean sequencing coverage achieved of 1,685X across experiments. At trial initiation (C1D1), 23 of 39 (59%) patients had at least one mutation identified in cfDNA (mean 2, range 1-5). TP53, PIK3CA and KRAS were the top 3 mutated genes identified, with 16 (39%), 9 (22%) and 8 (17%) different mutations, respectively. Out of these 23 patients, 13 received a targeted drug matching their tumor profile. For the 23 patients with cfDNA mutation at C1D1, the monitoring of mutation allele frequency (AF) in consecutive plasma samples during treatment with targeted drugs demonstrated potential treatment associated clonal responses. Longitudinal monitoring of cfDNA samples with multiple mutations indicated the presence of separate clones behaving discordantly. Molecular changes at cfDNA mutation level were associated with time to disease progression by RECIST criteria. Conclusion Targeted NGS of cfDNA has potential clinical utility to monitor the delivery of targeted therapies. PMID:26085511

  18. Molecular cloning and heterologous expression of laccase from Aeromonas hydrophila NIU01 in Escherichia coli with parameters optimization in production.

    PubMed

    Ng, I-Son; Zhang, Xia; Zhang, Yu; Lu, Yinghua

    2013-04-01

    Prior studies disclosed that Aeromonas hydrophila NIU01 was a biodecolorization and bioelectricity bacterium which was isolated from a cross-strait of Taiwan. However, enzymatic function, laccase, involved in this strain had never been reported. This first attempt is to explore its laccase activity, the molecular cloning and heterologous recombinant expression in Escherichia coli. A full-length novel gene of 1,647 bp, LacA, encoding of 549 amino acids was successfully cloned by polymerase chain reaction. The recombinant pET-15b(+)-NIU-LacA expression was compared in different E. coli strains. By applying Taguchi's L9 in culture optimization, the soluble laccase increased to 22.7 %, in which the conditions were obtained at 22 °C with initial shaking speed at 200 rpm, addition of lactose of 0.2 mM and CuSO4 of 0.5 mM to the medium, and shaking off while cell mass reached to OD(600nm) of 1.5. NIU-LacA was strongly inhibited by chloride ion. The optimal temperature was 60 °C and the optimum pH for ABTS (2,2'-azino-bis (3-ethylbenzthiazolinesulfonic acid) and 2,6-DMP (2,6-dimethoxyphenol) were pH 2.1 and pH 7.5 which enzymatic activity was 274.6 and 44.8 U/L, respectively. Further study in structural modeling of NIU-LacA showed the C terminal domain was the major variance in the three most closely A. hydrophila strains. PMID:23423657

  19. Molecular cloning, structural analysis and functional expression of the proline-rich focal adhesion and microfilament-associated protein VASP.

    PubMed Central

    Haffner, C; Jarchau, T; Reinhard, M; Hoppe, J; Lohmann, S M; Walter, U

    1995-01-01

    The vasodilator-stimulated phosphoprotein (VASP), a substrate for cAMP- and cGMP-dependent protein kinases in vitro and in intact cells, is associated with actin filaments, focal adhesions and dynamic membrane regions. VASP, cloned here from human HL-60 and canine MDCK cells, is organized into three distinct domains. A central proline-rich domain contains a GPPPPP motif as a single copy and as a 3-fold tandem repeat, as well as three conserved phosphorylation sites for cyclic nucleotide-dependent protein kinases. A C-terminal domain contains a repetitive mixed-charge cluster which is predicted to form an alpha-helix. The hydrodynamic properties of purified human VASP together with the calculated molecular mass of cloned VASP suggest that the native protein is a homotetramer with an elongated structure. VASP over-expressed in transiently transfected BHK21 cells was predominantly detected at stress fibres, at focal adhesions and in F-actin-containing cell surface protrusions, whereas truncated VASP lacking the C-terminal domain was no longer concentrated at focal adhesions. These data indicate that the C-terminal domain is required for anchoring VASP at focal adhesion sites, whereas the central domain is suggested to mediate VASP interaction with profilin. Our results provide evidence for the structural basis by which VASP, both a target of the cAMP and cGMP signal transduction pathways and a component of the actin-based cytoskeleton, including the cytoskeleton-membrane interface, may be able to exchange signals between these networks. Images PMID:7828592

  20. Molecular cloning and expression analysis of interferon stimulated gene 15 (ISG15) in turbot, Scophthalmus maximus.

    PubMed

    Lin, Jing-Yun; Hu, Guo-Bin; Liu, Da-Hai; Li, Song; Liu, Qiu-Ming; Zhang, Shi-Cui

    2015-08-01

    The interferon stimulated gene 15 (ISG15) is strongly induced in many cell types by double-stranded RNA (polyinosinic: polycytidylic acid, poly I:C) and viral infection. In this study, we described the nucleotide, mRNA tissue distribution and regulation of an ISG15 gene from turbot, Scophthalmus maximus (SmISG15). SmISG15 gene is 862 bp in length, composed of two exons and one intron, and encodes 158 amino acids. The deduced protein exhibits the highest homology (44.7-71.2% identity) with ISG15s from other fishes and possesses two conserved tandem ubiquitin-like (UBL) domains and a C-terminal RLRGG conjugating motif known to be important for the functions of ISG15s in vertebrates. Phylogenetic analysis grouped SmISG15 into fish ISG15. SmISG15 mRNA was constitutively expressed in all tissues examined, with higher levels observed in immune organs. Gene expression analysis was performed for SmISG15 in the spleen, head kidney, gills and muscle of turbots challenged with poly I:C or turbot reddish body iridovirus (TRBIV) over a 7-day time course. The result showed that SmISG15 was upregulated by both stimuli in all four tissues, with induction by poly I:C apparently stronger and initiated more quickly. A two-wave induced expression of SmISG15 was seen in the spleen, head kidney and gills, suggesting an induction of SmISG15 either by IFN-dependent or -independent pathway. These results provide insights into the roles of fish ISG15 in antiviral immunity. PMID:26095010

  1. Molecular cloning and characterization, and prokaryotic expression of the GnRH1 gene obtained from Jinghai yellow chicken.

    PubMed

    Zhang, T; Zhang, G X; Han, K P; Tang, Y; Wang, J Y; Fan, Q C; Chen, X S; Wei, Y; Wang, Y J

    2015-01-01

    The gonadotropin-releasing hormone (GnRH) plays an important role in the control of reproductive functions. Recent studies have reported the occurrence of GnRH molecular variants in numerous species. In this study, the GnRH1 gene from Jinghai yellow chicken was cloned by reverse transcriptase-polymerase chain reaction and transformed into BL21 (DE3) competent cells. The GnRH1 gene and amino acid sequences were subjected to bioinformatic analyses. The GnRH1 gene nucleotide sequence was discovered to be 352 bp long, containing a coding, promoter, and section of the 3'-regions. The GnRH1 gene shared 93, 81, 54, 58, 61, 76, 76, 59, 76, and 66% sequence identity with Meleagris gallopavo, Columba livia, Homo sapiens, Bos taurus, swines, Capra hircus, Ovis aries, Pantholops hodgsonii, Equus caballus, and Rattus norvegicus, respectively. The GnRH1 gene showed conserved domains. The GnRH1 protein was a secreted protein comprising 92 amino acids, with a molecular weight of 10205.6 Da and a theoretical pI of 5.67. Most of the amino acid residues were observed to be hydrophilic, indicating water solubility. The predicted secondary structures of proteins included α-helices (h; 23.08%), β-extensions (e; 10.92%), and random coils (c; 66.0%). The successful construction of prokaryotic expression vector pET32a-GnRH1 was confirmed by restriction and sequence analysis. SDS-PAGE analysis showed the successful expression of recombinant plasmid in Escherichia coli BL21 (molecular weight = 25-28 kDa). Larger quantities of protein were expressed in supernatant, indicating greater expression in soluble form. Western blot analysis confirmed the expression of the target protein. PMID:25867433

  2. Molecular cloning and characterization of the promoter region of the porcine apolipoprotein E gene.

    PubMed

    Xia, Jihan; Hu, Bingjun; Mu, Yulian; Xin, Leilei; Yang, Shulin; Li, Kui

    2014-05-01

    Apolipoprotein E (APOE), a component of lipoproteins plays an important role in the transport and metabolism of cholesterol, and is associated with hyperlipoproteinemia and Alzheimer's disease. In order to further understand the characterization of APOE gene, the promoter of APOE gene of Landrace pigs was analyzed in the present study. The genomic structure and amino acid sequence in pigs were analyzed and found to share high similarity in those of human but low similarity in promoter region. Real-time PCR revealed the APOE gene expression pattern of pigs in diverse tissues. The highest expression level was observed in liver, relatively low expression in other tissues, especially in stomach and muscle. Furthermore, the promoter expressing in Hepa 1-6 was significantly better at driving luciferase expression compared with C2C12 cell. After analysis of porcine APOE gene promoter regions, potential transcription factor binding sites were predicted and two GC signals, a TATA box were indicated. Results of promoter activity analysis indicated that one of potential regulatory elements was located in the region -669 to -259, which was essential for a high expression of the APOE gene. Promoter mutation and deletion analysis further suggested that the C/EBPA binding site within the APOE promoter was responsible for the regulation of APOE transcription. Electrophoretic mobility shift assays also showed the binding site of the transcription factor C/EBPA. This study advances our knowledge of the promoter of the porcine APOE gene. PMID:24464129

  3. Molecular cloning and expression analysis of FTZ-F1 in the GIFT tilapia, Oreochromis niloticus.

    PubMed

    Cao, Jinling; Chen, Jianjie; Jiang, Zhongliang; Luo, Yongju; Gan, Xi

    2012-08-01

    The FTZ-F1 genes encode orphan receptors of the nuclear receptor superfamily and in mammals have been found to play important roles in the proper development of the adrenal-gonadal axis and sex-determination. We isolated the homologue of FTZ-F1 in genetically improved farmed tilapia (gfFTZ-F1). The full-length cDNA was isolated from the ovary, which included an open reading frame encoding a predicted protein of 486 amino acids. Sequence, tissue distribution and phylogenic analysis of the FTZ-F1 showed that the gfFTZ-F1 belonged to SF-1/Ad4BP group and that gfFTZ-F1 transcripts were only expressed in the gonads and kidney but not in other tissues. Likewise our data suggests that the gfFTZ-F1 gene may share similar functions with other fish and mammalian counterparts, though further study is needed to make any definitive conclusions. PMID:22855453

  4. Molecular cloning and expression of a novel MYB transcription factor gene in rubber tree.

    PubMed

    Qin, Bi; Zhang, Yu; Wang, Meng

    2014-12-01

    MYB family proteins regulate a variety of cellular processes in plants. Tapping panel dryness (TPD) in rubber tree (Hevea brasiliensis Muell. Arg.) affects latex biosynthesis and causes serious losses to rubber producers. In this study, a novel SANT/MYB transcription factor gene down-regulated in TPD rubber tree, named as HbSM1, was isolated from rubber tree. The complete HbSM1 open reading frame (ORF) was 948 bp in length. The deduced HbSM1 protein is 315 amino acids. HbSM1 belonged to 1RMYB subfamily with a single SANT domain. Sequence alignment revealed that HbSM1 had high homology with MYB members from Ricinus communis and Manihot esculenta, with 72 and 78 % identity, respectively. Moreover, HbSM1 shared 56 % identity with Glycine max GmMYB176. Phylogenetic analysis revealed that HbSM1, GmMYB176, rice OsMYBS2, and OsMYBS3 fell into the same cluster with 93 % bootstrap support value. Comparing expression among different tissues demonstrated that HbSM1 was ubiquitously expressed in all tissues, but it appeared to be preferentially expressed in leaf and latex. Furthermore, HbSM1 transcripts were significantly induced by various phytohormones (including gibberellic acid, ethephon, methyl jasmonate, salicylic acid, and abscisic acid) and wounding treatments. These results suggested that HbSM1 might play multiple roles in plant development via different phytohormones signaling pathways. PMID:25195053

  5. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    PubMed Central

    2013-01-01

    green algae and higher plants. Protein domain structures and expression analyses in green alga H. pluvialis indicate that various chy genes are in different manners response to light. The knowledge of evolution of chy genes in photosynthetic eukaryotes provided information of gene cloning and functional investigation of chy genes in algae in the future. PMID:23834441

  6. Molecular cloning, characterization and expression analysis of melanotransferrin from the sea cucumber Apostichopus japonicus.

    PubMed

    Qiu, Xuemei; Li, Dong; Cui, Jun; Liu, Yang; Wang, Xiuli

    2014-06-01

    Melanotransferrin (MTf), a member of the transferrin families, plays an important role in immune response. But the research about MTf in sea cucumber is limited till now. In this study, the Melanotransferrin (Aj-MTf) gene was firstly cloned and characterized from the sea cucumber Apostichoupus japonicus by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends. The full-length cDNA of Aj-MTf is 2,840 bp in length and contains a 2,184 bp open reading frame that encodes a polypeptide of 727 amino acids. An iron-responsive element-like structure is located at the 5'-UTR of Aj-MTf cDNA. Sequence analysis shows that the Aj-MTf contains two conserved domains, and the binding-iron (III) sites, including eight amino acid residues (D81,Y109,Y215,H283,D425,Y454,Y565 and H634) and three N-linked glycosylation sites (N121V122S123,N173A174S175 and N673S674T675). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses suggested that the Aj-MTf expressions in the coelomic fluid, body cavity wall and respiratory trees were significantly changed from 4 to 24 h post lipopolysaccharide (LPS) injection. The mRNA levels of Aj-MTf in coelomic fluid was significantly up-regulated at 12 and 24 h in treatment group, and Aj-MTf shared a similar expression pattern with C-type lectin in coelomic fluid, while both genes appears to gradually increase after 4 h of LPS injection. These results indicate that the Aj-MTf plays a pivotal role in immune responses to the LPS challenge in sea cucumber, and provide new information that it is complementary to the sea cucumber immune genes and initiate new researches concerning the genetic basis of the holothurian immune response. PMID:24535270