Science.gov

Sample records for molecular da mama

  1. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 13149, as Cycle 20.

  2. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold distribution procedure. The fold distribution provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of change in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Distribution, Proposal 12778, as Cycle 19.

  3. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis {11863} during Cycle 17.

  4. STIS MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2011-10-01

    The performance of MAMA microchannel plates can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the STIS MAMA Fold Analysis, Proposal 12416, as Cycle 18.

  5. Music Activities for "Mama", "Mama" and "Papa", "Papa"

    ERIC Educational Resources Information Center

    Cardany, Audrey Berger

    2011-01-01

    Jean Marzollo creates two beautiful texts using a child's first words, "Mama, Mama" and "Papa, Papa" as a recurring theme. Wildlife artist, Laura Regan, illustrates Marzollo's poetry with loving images of parents and children in the animal kingdom. Poetry and illustrations highlight the tenderness and care of Mama and Papa as they bond with their…

  6. Imaging MAMA detector systems

    NASA Astrophysics Data System (ADS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-07-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  7. MAMA NUV Flats

    NASA Astrophysics Data System (ADS)

    Sana, Hugues

    2013-10-01

    This program is aimed at obtaining NUV-MAMA flat-field observations for the construction of pixel-to-pixel flats {p-flats} with a SNR of 100 per binned pixel. The flats are obtained with the DEUTERIUM-lamp and the MR grisms G230M. The actual choice of central wavelength and slit combination depends on the observed count level within each exposure.Note that STIS NUV-MAMA flats are taken every other cycles{i.e. during odd number cycles} in order to not drain the DEUTERIUMlamp lifetime.

  8. MAMA NUV Flats

    NASA Astrophysics Data System (ADS)

    Mason, Elena

    2011-10-01

    This program is aimed at obtaining NUV-MAMA flat-field observations for the construction of pixel-to-pixel flats {p-flats} with a SNR of 100 per binned pixel. The flats are obtained with the DEUTERIUM-lamp and the MR grisms G230M. The actual choice of central wavelength and slit combination depends on the observed count level within each exposure.Note that STIS NUV-MAMA flats are taken every other cycles{i.e. during odd number cycles} in order to not drain the DEUTERIUMlamp lifetime.

  9. MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2011-10-01

    This proposal monitors the behavior of the dark current in each of the MAMA detectors, to look for evidence of change in the dark rate, indicative of detector problems developing.The basic monitor takes two 1300s TIME-TAG darks bi-weekly with each detector. The pairs of exposures for each detector are linked so that they are taken at opposite ends of the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.For both detectors, additional blocks of exposures are taken once a year. These are groups of three 1314 s TIME-TAG darks for each of the MAMA detectors, distributed over a single SAA free interval. This will give more information on the brightness of the FUV MAMA dark current as a function of the amount of time that the HV has been on, and for the NUV MAMA will give a better measure of the short term temperature dependence.

  10. MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2010-09-01

    This proposal monitors the behavior of the dark current in each of the MAMA detectors, to look for evidence of change in the dark rate, indicative of detector problems developing.The basic monitor takes two 1300s TIME-TAG darks bi-weekly with each detector. The pairs of exposures for each detector are linked so that they are taken at opposite ends of the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.For both detectors, additional blocks of exposures are taken once a year. These are groups of three 1314 s TIME-TAG darks for each of the MAMA detectors, distributed over a single SAA free interval. This will give more information on the brightness of the FUV MAMA dark current as a function of the amount of time that the HV has been on, and for the NUV MAMA will give a better measure of the short term temperature dependence.

  11. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2010-09-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {11891} during Cycle 17.

  12. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {12723} during Cycle 19.

  13. MAMA FUV Flats

    NASA Astrophysics Data System (ADS)

    Mason, Elena

    2012-10-01

    This program aims at obtaining FUV-MAMA flat-field observations to create a new p-flats with a SNR of 100 per {low resolution} pixel. The flats are obtained with the Krypton-lamp and the MR grating G140M, similarly to the cycle 17 and 18 programs. However the exact instrument setup {slit width and central wavelength} might change depending on the desired count level {which will be close to the internally allowed global rate limit}.

  14. COS NUV MAMA Fold Distribution

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as Cycle 20 proposal 13128.

  15. COS Side 2 NUV MAMA Fold Test

    NASA Astrophysics Data System (ADS)

    Bacinski, John

    2013-10-01

    The performance of the MAMA microchannel plate can be monitored using a MAMA fold analysis procedure. The fold analysis provides a measurement of the distribution of charge cloud sizes incident upon the anode giving some measure of changes in the pulse-height distribution of the MCP and, therefore, MCP gain. This proposal executes the same steps as the COS MAMA Fold Analysis {13128} during Cycle 20.This proposal is an exact duplication of nominal COS MAMA Fold Analysis {proposal 13128, Cycle 20}. Any changes 13128 or subsequent cycle submissions should be reflected in this proposal and vice versa.

  16. MAMA Software Features: Quantification Verification Documentation-1

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-21

    This document reviews the verification of the basic shape quantification attributes in the MAMA software against hand calculations in order to show that the calculations are implemented mathematically correctly and give the expected quantification results.

  17. MAMA- User Feedback and Training Summary

    SciTech Connect

    Porter, Reid B.; Ruggiero, Christy E.

    2014-05-21

    This document describes the current state of the MAMA (Morphological Analysis of Materials) software user identified bugs, issues, and requests for improvements. It also lists Current users and current training methods.

  18. Parental Reports of "MAMA" Sounds in Infants: An Exploratory Study.

    ERIC Educational Resources Information Center

    Goldman, Herbert I.

    2001-01-01

    Investigated the use of "mama" or similar sounds referred to as "mama" by 75 infants less than 6 months of age. Parents were directed to listen for "mama" sounds and to note the sounds made, the age of onset, whether the sounds appeared to be directed to any person or persons, or whether they appeared to have a purpose. (Author/VWL)

  19. STIS MAMA Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2013-10-01

    This proposal is designed to permit a safe and orderly recovery of the STIS FUV MAMA or NUV MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flags are used to prevent inadvertent MAMA usage.The recovery procedure consists of three separate tests {i.e. visits} to check the MAMA's health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high voltage ramp-up, and 3} ramp-up to full operating voltage followed by a fold analysis test {See STIS ISR 98-02R}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 20 proposal 13150.

  20. MAMA detector systems - A status report

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn; Morgan, Jeffrey S.; Slater, David C.; Kasle, David B.; Bybee, Richard L.

    1989-01-01

    Third-generation, 224 x 960 and 360 x 1024-pixel multianode microchannel (MAMA) detectors are under development for satellite-borne FUV and EUV observations, using pixel dimensions of 25 x 25 microns. An account is presently given of the configurations, modes of operation, and recent performance data of these systems. At UV and visible wavelengths, these MAMAs employ a semitransparent, proximity-focused photocathode structure. At FUV and EUV wavelengths below about 1500 A, opaque alkali-halide photocathodes deposited directly on the front surface of the MCP furnish the best detective quantum efficiencies.

  1. STIS MAMA Recovery from Anomalous Shutdown

    NASA Astrophysics Data System (ADS)

    Wheeler, Thomas

    2012-10-01

    This proposal is designed to permit a safe and orderly recovery of the STIS FUV MAMA or NUV MAMA detector after an anomalous shutdown. This is accomplished by using slower-than-normal MCP high-voltage ramp-ups and diagnostics. Anomalous shutdowns can occur because of bright object violations, which trigger the Global Hardware Monitor or the Global Software Monitor. Anomalous shutdowns can also occur because of MAMA hardware anomalies or failures. The cause of the shutdown should be thoroughly investigated and understood prior to recovery. Twenty-four hour wait intervals are required after each test for MCP gas desorption and data analysis. Event flags are used to prevent inadvertent MAMA usage.The recovery procedure consists of three separate tests {i.e. visits} to check the MAMAâ_Ts health after an anomalous shutdown: 1} signal processing electronics check, 2} slow, intermediate voltage high voltage ramp-up, and 3} ramp-up to full operating voltage followed by a fold analysis test {See STIS ISR 98-02R}. Each must be successfully completed before proceeding onto the next. This proposal executes the same steps as Cycle 19 proposal 12779.

  2. "Mama's Boy; Preacher's Son": A Memoir

    ERIC Educational Resources Information Center

    Whitlock, Reta Ugena

    2010-01-01

    "Mama's Boy; Preacher's Son" is Kevin Jennings's autobiographical account of growing up gay in the Southern United States. In his memoir, Jennings shares formative experiences relating to his impoverished childhood and his career as teacher and social activist. His rich description of the influence of family relationships on his personal and…

  3. The STIS MAMA status: Current detector performance

    NASA Technical Reports Server (NTRS)

    Danks, A. C.; Joseph, C.; Bybee, R.; Argebright, V.; Abraham, J.; Kimble, R.; Woodgate, B.

    1992-01-01

    The STIS (Space Telescope Imaging Spectrograph) is a second generation Hubble instrument scheduled to fly in 1997. Through a variety of modes, the instrument will provide spectral resolutions from R approximately 50 in the objective spectroscopy mode to 100,000 in the high resolution echelle mode in the wavelength region from 115 to 1000 nm. In the UV the instrument employs two MAMA (Multimode Anode Microchannel plate Arrays) 1024 by 1024 pixel detectors, which provide high DQE (Detective Quantum Efficiency), and good dynamic range and resolution. The current progress and performance of these detectors are reported, illustrating that the technology is mature and that the performance is very close to flight requirements.

  4. Dark count rates in the STIS MAMA

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2013-06-01

    The dark count rates in the STIS MAMA detectors have been monitored. This report covers the period since the Servicing Mission 4 of May 2009. We find both long-term and short-term variations which for the NUV side we express as a function of date and temperature. The NUV dark rate has declined significantly from its surprisingly high initial rate of 0.014 counts/pixel/s that was seen immediately after SM4. By October, 2012 it had dropped to an average value of about 0.002 counts/pixel/sec The behavior and characteristics of the FUV dark rate remain very similar to that seen in 2004, prior to the STIS side-2 failure and subsequent repair.

  5. Characterization of the 105-kDa molecular chaperone. Identification, biochemical properties, and localization.

    PubMed

    Matsumori, Mika; Itoh, Hideaki; Toyoshima, Itaru; Komatsuda, Atsushi; Sawada, Ken-Ichi; Fukuda, Jun; Tanaka, Toshinobu; Okubo, Atsuya; Kinouchi, Hiroyuki; Mizoi, Kazuo; Hama, Tokiko; Suzuki, Akira; Hamada, Fumio; Otaka, Michiro; Shoji, Yutaka; Takada, Goro

    2002-11-01

    We have characterized the biochemical properties of the testis and brain-specific 105-kDa protein which is cross-reacted with an anti-bovine HSP90 antibody. The protein was induced in germ cells by heat stress, resulting in a protein which is one of the heat shock proteins [Kumagai, J., Fukuda, J., Kodama, H., Murata, M., Kawamura, K., Itoh, H. & Tanaka, T. (2000) Eur. J. Biochem.267, 3073-3078]. In the present study, we characterized the biochemical properties of the protein. The 105-kDa protein inhibited the aggregation of citrate synthase as a molecular chaperone in vitro. ATP/MgCl2 has a slight influence of the suppression of the citrate synthase aggregation by the 105-kDa protein. The protein possessed chaperone activity. The protein was able to bind to ATP-Sepharose like the other molecular chaperone HSP70. A partial amino-acid sequence (24 amino-acid residues) of the protein was determined and coincided with those of the mouse testis- and brain-specific APG-1 and osmotic stress protein 94 (OSP94). The 105-kDa protein was detected only in the medulla of the rat kidney sections similar to OSP94 upon immunoblotting. The purified 105-kDa protein was cross-reacted with an antibody against APG-1. These results suggested that APG-1 and OSP94 are both identical to the 105-kDa protein. There were highly homologous regions between the 105-kDa protein/APG-1/OSP94 and HSP90. The region of HSP90 was also an immunoreactive site. An anti-bovine HSP90 antibody may cross-react with the 105-kDa protein similar to HSP90 in the rat testis and brain. We have investigated the localization and developmental induction of the protein in the rat brain. In the immunohistochemical analysis, the protein was mainly detected in the cytoplasm of the nerve and glial cells of the rat brain. Although the 105-kDa protein was localized in all rat brain segments, the expression pattern was fast in the cerebral cortex and hippocampus and slow in the cerebellum. PMID:12423363

  6. Identification of sequence similarity between 60 kDa and 70 kDa molecular chaperones: evidence for a common evolutionary background?

    PubMed Central

    Flores, A I; Cuezva, J M

    1997-01-01

    Recent findings support the premise that chaperonins (60 kDa stress-proteins) and alpha-subunits of F-type ATPases (alpha-ATPase) are evolutionary related protein families. Two-dimensional gel patterns of synthesized proteins in unstressed and heat-shocked embryonic Drosophila melanogaster SL2 cells revealed that antibodies raised against the alpha-subunit of the F1-ATPase complex from rat liver recognize an inducible p71 member of the 70 kDa stress-responsive protein family. Molecular recognition of this stress-responsive 70 kDa protein by antibodies raised against the F1-ATPase alpha-subunit suggests the possibility of partial sequence similarity within these ATP-binding protein families. A multiple sequence alignment between alpha-ATPases and 60 kDa and 70 kDa molecular chaperones is presented. Statistical evaluation of sequence similarity reveals a significant degree of sequence conservation within the three protein families. The finding suggests a common evolutionary origin for the ATPases and molecular chaperone protein families of 60 kDa and 70 kDa, despite the lack of obvious structural resemblance between them. PMID:9065788

  7. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  8. Agarose and Polyacrylamide Gel Electrophoresis Methods for Molecular Mass Analysis of 5–500 kDa Hyaluronan

    PubMed Central

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K.

    2011-01-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample, and calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa, at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150 kDa HA standard. PMID:21684248

  9. M S MOLECULARES Rumo aos limites da miniaturiza o - (Molecular Magnets - towards the limits of miniaturization)

    SciTech Connect

    Reis, Mario S; Moreira Dos Santos, Antonio F

    2010-01-01

    Por s culos, acreditou-se que o magnetismo s se manifestava em metais, como aqueles contendo ferro; hoje, a imagem mais comum de um m talvez seja a daquelas plaquinhas flex veis coladas geladeira com propagandas dos mais diversos tipos. O leitor conseguiria imaginar um material puramente org nico daqueles que formam os seres vivos como magn tico? E m s do tamanho de mol culas? fato: ambos existem. Esses novos materiais, conhecidos como magnetos moleculares, descobertos e desenvolvidos em v rios laborat rios do mundo, j re nem longa lista de aplica es, do tratamento do c ncer a refrigeradores ecol gicos, passando pela transmiss o de eletricidade sem perda de calor e a fabrica o de computadores extremamente velozes.

  10. STIS Bright Object Protection Observing for the MAMA Detectors

    NASA Astrophysics Data System (ADS)

    Leitherer, C.; Baum, S.; Clampin, M.

    1996-08-01

    STScI will perform screening of all STIS MAMA science observations prior to their scheduling. Observations (target plus configuration combinations) which exceed defined limits will be disallowed. In this memo, we summarize STScI's policy for screening of GO and GTO STIS science observations for Bright Object Protection (BOP).

  11. METHODS ADVANCEMENT FOR MILK ANALYSIS: THE MAMA STUDY

    EPA Science Inventory

    The Methods Advancement for Milk Analysis (MAMA) study was designed by US EPA and CDC investigators to provide data to support the technological and study design needs of the proposed National Children=s Study (NCS). The NCS is a multi-Agency-sponsored study, authorized under the...

  12. STIS MAMA Full-Field Sensitivity Monitor C18

    NASA Astrophysics Data System (ADS)

    Dixon, W.

    2010-09-01

    The purpose of this program is to monitor the sensitivity of the MAMA detectors over the full field. This is achieved by observing the globular cluster NGC6681 once during Cycle 18. The data can be directly compared with similar data obtained in Cycles 7, 8, 9, 10, 11, 12, and 17.

  13. Dark count rates in the STIS FUV MAMA

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2015-09-01

    Dark count rates in the STIS FUV MAMA are regularly monitored. The observation sequence was altered from an earlier method to measure the rate as a function of time and temperature shortly after the instrument is turned on. The dark rate exhibits an approximately quadratic de-pendence on temperature. A recommendation for estimating the observation-specific dark rate is given.

  14. STIS MAMA Full-Field Sensitivity Monitor C20

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia

    2012-10-01

    The purpose of this program is to monitor the sensitivity of the MAMA detectors over the full field. This is achieved by observing the globular cluster NGC6681 once during Cycle 19. The data can be directly compared with similar data obtained in Cycles 7, 8, 9, 10, 11, 12, 17, and 18.

  15. High time-resolution imaging with the MAMA detector systems

    NASA Technical Reports Server (NTRS)

    Morgan, Jeffrey S.; Timothy, J. Gethyn; Smith, Andrew M.; Hill, Bob; Kasle, David B.

    1990-01-01

    Current uses of the MAMA detector which utilize the photon time-tagging capabilities of these detectors are reported. These applications currently include image stabilization by means of post-processing corrections of platform drift and speckle interferometry. The initial results of a sounding rocket experiment to obtain UV images of NGC 6240 and results from speckle interferometry of Neptune's moon Triton are presented.

  16. STIS MAMA Full-Field Sensitivity Monitor C21

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia

    2013-10-01

    The purpose of this program is to monitor the sensitivity of the MAMA detectors over the full field. This is achieved by observing the globular cluster NGC6681 once during Cycle 21. The data can be directly compared with similar data obtained in previous cycles.

  17. STIS MAMA Full-Field Sensitivity Monitor C19

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia

    2011-10-01

    The purpose of this program is to monitor the sensitivity of the MAMA detectors over the full field. This is achieved by observing the globular cluster NGC6681 once during Cycle 19. The data can be directly compared with similar data obtained in Cycles 7, 8, 9, 10, 11, 12, 17, and 18.

  18. Position sensitivity of MAMA detectors. [Multi-Anode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Morgan, J. S.; Slater, D. S.; Timothy, J. G.; Jenkins, E. B.

    1988-01-01

    The results of laboratory and telescopic measurements of the position sensitivity of a visible MAMA detector utilizing a 'coarse-fine' array are presented. The photometric accuracy of this detector was determined under point source illumination. It was found that computed centroid positions are accurate across the entire array to within 0.04 pixels.

  19. Monolithic integrated circuit charge amplifier and comparator for MAMA readout

    NASA Technical Reports Server (NTRS)

    Cole, Edward H.; Smeins, Larry G.

    1991-01-01

    Prototype ICs for the Solar Heliospheric Observatory's Multi-Anode Microchannel Array (MAMA) have been developed; these ICs' charge-amplifier and comparator components were then tested with a view to pulse response and noise performance. All model performance predictions have been exceeded. Electrostatic discharge protection has been included on all IC connections; device operation over temperature has been consistent with model predictions.

  20. SOHO MAMA openable cover/vacuum seal mechanism

    NASA Technical Reports Server (NTRS)

    Wiens, Mitchell T.

    1992-01-01

    The requirements, design, and test results of an openable cover mechanism with a high-vacuum seal developed for the Multi-Anode Microchannel Array (MAMA) Detectors, aboard the Solar and Heliospheric Observatory (SOHO) spacecraft. The mechanism, tested in summer/fall of 1991, has completed 1000 test cycles in an inert atmosphere at room temperature and pressure. Measured mechanism performance included: vacuum seal less than 5 x 10 exp -10 torr-liter/second, 103 degree angular range of travel, 20-minute cycle time, and successful latching functions. An openable cover mechanism that provides a clean, high-vacuum seal is vital to the success of a MAMA Detector operating over a full wavelength coverage from 500 to 1600 A.

  1. MAMA Spectroscopic Sensitivity and Focus Monitor Cycle 21

    NASA Astrophysics Data System (ADS)

    Sana, Hugues

    2013-10-01

    Monitor sensitivity of each MAMA grating mode to detect any change due tocontamination or other causes. Also monitor the STIS focus in a spectroscopic and animaging mode.Obtain exposures in each of the 2 low-resolution MAMA spectroscopic modes every 4 months, in each of the 2 medium-resolution modes once a year, and in each of the 4 echelle modes every 3 months,using unique calibration standards for each mode, and ratio the results to the firstobservations to detect any trends. In addition, each L-mode sequence will be preceded by twospectroscopic ACQ/PEAKs with the CCD/G230LB and crossed linear patterns, with the purpose of measuringthe focus {PSF across the dispersion as a function of UV wavelength}; and each M-mode sequence will be preceded by aCCD/F28X50OII direct image also to monitor the focus.Whenever possible, obtain parallel airglow spectra with COS.

  2. MAMA Spectroscopic Sensitivity and Focus Monitor Cycle 19

    NASA Astrophysics Data System (ADS)

    Bostroem, Azalee

    2011-10-01

    Monitor sensitivity of each MAMA grating mode to detect any change due tocontamination or other causes. Also monitor the STIS focus in a spectroscopic and animaging mode.Obtain exposures in each of the 2 low-resolution MAMA spectroscopic modes every 4 months, in each of the 2 medium-resolution modes once a year, and in each of the 4 echelle modes every 3 months,using unique calibration standards for each mode, and ratio the results to the firstobservations to detect any trends. In addition, each L-mode sequence will be preceded by twospectroscopic ACQ/PEAKs with the CCD/G230LB and crossed linear patterns, with the purpose of measuringthe focus {PSF across the dispersion as a function of UV wavelength}; and each M-mode sequence will be preceded by aCCD/F28X50OII direct image also to monitor the focus.Whenever possible, obtain parallel airglow spectra with COS.

  3. MAMA Spectroscopic Sensitivity and Focus Monitor Cycle 18

    NASA Astrophysics Data System (ADS)

    Osten, Rachel

    2010-09-01

    Monitor sensitivity of each MAMA grating mode to detect any change due tocontamination or other causes. Also monitor the STIS focus in a spectroscopic and animaging mode.Obtain exposures in each of the 2 low-resolution MAMA spectroscopic modes every 4 months, in each of the 2 medium-resolution modes once a year, and in each of the 4 echelle modes every 3 months,using unique calibration standards for each mode, and ratio the results to the firstobservations to detect any trends. In addition, each L-mode sequence will be preceded by twospectroscopic ACQ/PEAKs with the CCD/G230LB and crossed linear patterns, with the purpose of measuringthe focus {PSF across the dispersion as a function of UV wavelength}; and each M-mode sequence will be preceded by aCCD/F28X50OII direct image also to monitor the focus.Whenever possible, obtain parallel airglow spectra with COS.

  4. MAMA Spectroscopic Sensitivity and Focus Monitor Cycle 20

    NASA Astrophysics Data System (ADS)

    Holland, Stephen

    2012-10-01

    Monitor sensitivity of each MAMA grating mode to detect any change due tocontamination or other causes. Also monitor the STIS focus in a spectroscopic and animaging mode.Obtain exposures in each of the 2 low-resolution MAMA spectroscopic modes every 4 months, in each of the 2 medium-resolution modes once a year, and in each of the 4 echelle modes every 3 months,using unique calibration standards for each mode, and ratio the results to the firstobservations to detect any trends. In addition, each L-mode sequence will be preceded by twospectroscopic ACQ/PEAKs with the CCD/G230LB and crossed linear patterns, with the purpose of measuringthe focus {PSF across the dispersion as a function of UV wavelength}; and each M-mode sequence will be preceded by aCCD/F28X50OII direct image also to monitor the focus.Whenever possible, obtain parallel airglow spectra with COS.

  5. Preliminary results from the MAMA detectors for the SOHO mission

    NASA Technical Reports Server (NTRS)

    Slater, David C.; Bergamini, Paolo; Bumala, Robert W.; Timothy, J. G.

    1993-01-01

    Multi-Anode Microchannel Array (MAMA) detector systems are being fabricated and tested for use in the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) and the Ultraviolet Coronagraph Spectrometer (UVCS) instruments on the ESA/NASA Solar and Heliospheric Observatory (SOHO) mission. The SOHO MAMA detector systems have formats of 360 x 1024 pixels and pixel dimensions of 25 x 25 sq microns and are optimized for operation at Extreme Ultraviolet (EUV) wavelengths between 40 and 160 nm. In this paper we report on the initial results of measurements of the performance characteristics of the first flight-configuration detector system employing the new custom Application Specific Integrated Circuits (ASICs) which are designed to improve both the dynamic range and the uniformity of response. The performance characteristics of this detector system are compared with those of earlier breadboard systems employing discrete-component electronics circuits.

  6. Wavelength Calibration Accuracy for the STIS CCD and MAMA Modes

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria; Hodge, Phil; Proffitt, Charles R.; Ayres, T.

    2011-03-01

    Two calibration programs were carried out to determine the accuracy of the wavelength solutions for the most used STIS CCD and MAMA modes after Servicing Mission 4. We report here on the analysis of this dataset and show that the STIS wavelength solution has not changed after SM4. We also show that a typical accuracy for the absolute wavelength zero-points is 0.1 pixels while the relative wavelength accuracy is 0.2 pixels.

  7. Can thiolation render a low molecular weight polymer of just 20-kDa mucoadhesive?

    PubMed

    Mahmood, Arshad; Bonengel, Sonja; Laffleur, Flavia; Ijaz, Muhammad; Idrees, Muneeb Ahmad; Hussain, Shah; Huck, Christian W; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-05-01

    The objective was to investigate whether even low-molecular weight polymers (LMWPs) can be rendered mucoadhesive due to thiolation. Interceded by the double catalytic system carbodiimide/N-hydroxysuccinimide, cysteamine was covalently attached to a copolymer, poly(4-styrenesulfonic acid-co-maleic acid) (PSSA-MA) exhibiting a molecular weight of just 20 kDa. Depending on the amount of added N-hydroxysuccinimide and cysteamine, the resulting PSSA-MA-cysteamine (PC) conjugates exhibited increasing degree of thiolation, highest being "PC 2300" exhibiting 2300.16 ± 149.86 μmol thiol groups per gram of polymer (mean ± SD; n = 3). This newly developed thiolated polymer was evaluated regarding mucoadhesive, rheological and drug release properties as well from the toxicological point of view. Swelling behavior in 100 mM phosphate buffer pH 6.8 was improved up to 180-fold. Furthermore, due to thiolation, the mucoadhesive properties of the polymer were 240-fold improved. Rheological measurements of polymer/mucus mixtures confirmed results obtained by mucoadhesion studies. In comparison to unmodified polymer, PC 2300 showed 2.3-, 2.3- and 2.4-fold increase in dynamic viscosity, elastic modulus and viscous modulus, respectively. Sustained release of the model drug codeine HCl out of the thiomer was provided for 2.5 h (p < 0.05), whereas the drug was immediately released from the unmodified polymer. Moreover, the thiomer was found non-toxic over Caco-2 cells for a period of 6- and 24-h exposure. Findings of the present study provide evidence that due to thiolation LMWPs can be rendered highly mucoadhesive as well as cohesive and that a controlled drug release out of such polymers can be provided. PMID:26133081

  8. Translocator Protein 18kDA (TSPO): Molecular Sensor of Brain Injury & Repair

    PubMed Central

    Chen, Ming-Kai; Guilarte, Tomás R.

    2008-01-01

    For over 15 years, the peripheral benzodiazepine receptor (PBR), recently named translocator protein 18kDa (TSPO) has been studied as a biomarker of reactive gliosis and inflammation associated with a variety of neuropathological conditions. Early studies documented that in the brain parenchyma, TSPO is exclusively localized in glial cells. Under normal physiological conditions, TSPO levels are low in the brain neuropil but they markedly increase at sites of brain injury and inflammation making it uniquely suited for assessing active gliosis. This research has generated significant efforts from multiple research groups throughout the world to apply TSPO as a marker of “active” brain pathology using in vivo imaging modalities such as Positron Emission Tomography (PET) in experimental animals and humans. Further, in the last few years, there has been an increased interest in understanding the molecular and cellular function(s) of TSPO in glial cells. The latest evidence suggests that TSPO may not only serve as a biomarker of active brain disease but also the use of TSPO-specific ligands may have therapeutic implications in brain injury and repair. This review presents an overview of the history and function of TSPO focusing on studies related to its use as a sensor of active brain disease in experimental animals and in human studies. PMID:18374421

  9. Speckle imaging with the MAMA detector: Preliminary results

    NASA Technical Reports Server (NTRS)

    Horch, E.; Heanue, J. F.; Morgan, J. S.; Timothy, J. G.

    1994-01-01

    We report on the first successful speckle imaging studies using the Stanford University speckle interferometry system, an instrument that uses a multianode microchannel array (MAMA) detector as the imaging device. The method of producing high-resolution images is based on the analysis of so-called 'near-axis' bispectral subplanes and follows the work of Lohmann et al. (1983). In order to improve the signal-to-noise ratio in the bispectrum, the frame-oversampling technique of Nakajima et al. (1989) is also employed. We present speckle imaging results of binary stars and other objects from V magnitude 5.5 to 11, and the quality of these images is studied. While the Stanford system is capable of good speckle imaging results, it is limited by the overall quantum efficiency of the current MAMA detector (which is due to the response of the photocathode at visible wavelengths and other detector properties) and by channel saturation of the microchannel plate. Both affect the signal-to-noise ratio of the power spectrum and bispectrum.

  10. Development of the MAMA Detectors for the Hubble Space Telescope Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Timothy, J. Gethyn

    1997-01-01

    The development of the Multi-Anode Microchannel Array (MAMA) detector systems started in the early 1970's in order to produce multi-element detector arrays for use in spectrographs for solar studies from the Skylab-B mission. Development of the MAMA detectors for spectrographs on the Hubble Space Telescope (HST) began in the late 1970's, and reached its culmination with the successful installation of the Space Telescope Imaging Spectrograph (STIS) on the second HST servicing mission (STS-82 launched 11 February 1997). Under NASA Contract NAS5-29389 from December 1986 through June 1994 we supported the development of the MAMA detectors for STIS, including complementary sounding rocket and ground-based research programs. This final report describes the results of the MAMA detector development program for STIS.

  11. A new-speckle interferometry system for the MAMA detector

    NASA Technical Reports Server (NTRS)

    Horch, E.; Morgan, J. S.; Giaretta, G.; Kasle, D. B.

    1992-01-01

    We have developed a new system for making speckle observations with the multianode microchannel array (MAMA) detector. This system is a true photon-counting imaging device which records the arrival time of every detected photon and allows for reconstruction of image features near the diffraction limit of the telescope. We present a description of the system and summary of observational results obtained at the Lick Observatory 1-m reflector in 1991 September. The diffraction limit of the 1-m telescope at 5029 A is about 0.125 arcsec and we have successfully resolved the catalogued interferometric binary HD 202582 with a separation of 0.157 +/- 0.031 arcsec. A pair of stars in the open cluster Chi Persei separated by 2.65 +/- 0.22 arcsec with approximate V magnitudes 8.6 and 11.5 has also been successfully analyzed with the speckle technique.

  12. Laboratory test data on the stability of the STIS MAMAs

    NASA Technical Reports Server (NTRS)

    Joseph, Charles L.

    1997-01-01

    STIS has two MAMA detectors systems with distinctly different tube configurations. The first (designated BAND 1) has an opaque CsI photocathode deposited on the microchannel plate (MCP) providing wavelength coverage from 1150A to 1700A. The other MAMA (designated BAND 2) has a semitransparent CS2Te photocathode deposited on the faceplate in close proximity to the input of the MCP. It covers the 1650A to 3100A bandpass and serves as a backup for the short wavelength detector. Laboratory test data indicate that both of these detectors have good sensitivity, have good uniformity and provide stable response, making each capable of collecting data with a signal-to-noise ratio in excess of 100 per Space Telescope Imaging Spectrograph (STIS) optical resolution element. Over a multiyear development effort, a substantial body of laboratory test data (more than 6 GBytes spanning more than 6 years of collection) has accumulated on more than a dozen fabricated tubes. These tests even included a few destructive evaluations to examine the limitations and operating life. In addition, analyses where conducted regarding impact caused by the specified electronic tolerances and expected changes in the Hubble Space Telescope (HST) thermal environment. Perhaps the simplest test of stability is to collect a sequence of images, each with a uniform illumination, and use these individual "flat fields" to remove the pixel-to-pixel sensitivity in the other flat fields. These sequences typically spanned 3-5 weeks of time. The detectors are very stable, allowing the pixel-to-pixel sensitivity to be removed with good precision. The STIS specification for stability is 1% (sufficient for data with a S/N = 100) over a 1 week period and 2% over 30 days. All Engineering Model Units as well as Flight Detectors tested exceeded this specification.

  13. Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

    NASA Astrophysics Data System (ADS)

    Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.

    2014-04-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.

  14. Full-field sensitivity and its time-dependence for the STIS CCD and MAMAs

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Proffitt, Charles

    2013-07-01

    The three STIS detectors - CCD, NUV-MAMA, FUV-MAMA - are subject to temperature- and time-dependent sensitivity changes. These temporal sensitivity variations are cal- ibrated as part of routine calibration monitoring programs, and corrected for in the standard CALSTIS pipeline. In order to determine whether the correction algorithms, developed based on spectroscopic observations prior to the 2004 failure of STIS, are adequate for pre- and post-SM4 STIS imaging data, we examine the photometry of stan- dard stellar fields (NGC5139 for the CCD, NGC6681 for the MAMAs) obtained between 1997 and 2012 as part of the routine full-field sensitivity calibration programs. For the CCD, we include a correction for CTE effects. We find statistically significant residual temporal variations in the full-field sensitivity of 0.5 mmag/year, 0.04 mmag/year, and 0.54 mmag/year for the CCD, NUV-MAMA, and FUV-MAMA respectively. However, these residual trends are small: they do not incur flux changes exceeding 1% over a 15 year time period.

  15. Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

    PubMed Central

    Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.

    2014-01-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597

  16. Protected amine labels: a versatile molecular scaffold for multiplexed nominal mass and sub-Da isotopologue quantitative proteomic reagents.

    PubMed

    Ficarro, Scott B; Biagi, Jessica M; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I; Card, Joseph D; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G; Young, Nicolas L; Gray, Nathanael S; Marto, Jarrod A

    2014-04-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597

  17. Molecular cloning, tissue distribution, and expression of a 14-kDa bile acid-binding protein from rat ileal cytosol.

    PubMed Central

    Gong, Y Z; Everett, E T; Schwartz, D A; Norris, J S; Wilson, F A

    1994-01-01

    A cDNA clone encoding the major intestinal cytosolic 14-kDa bile acid-binding protein (14-kDa I-BABP) was isolated from a rat ileal lambda gt22A library following immunoscreening using a monospecific antiserum raised against a 14-kDa polypeptide found in the rat ileal cytosol. One clone of 516 bp encoded a 128-amino acid protein with a predicted molecular mass of 14,544 Da. The deduced amino acid sequence of 14-kDa I-BABP showed 100% homology to rat intestinal 15-kDa protein (I-15P) and 72% homology to porcine 15-kDa gastrotropin, whereas comparison of I-BABP to rat 14-kDa fatty acid-binding proteins of liver, intestine, and heart revealed homologies of 44%, 25%, and 28%, respectively. Northern blot analysis revealed a single transcript of approximately 0.5 kb in ileum and ovary; however, the abundance of I-BABP mRNA was much greater in ileum than in ovary. No transcript was seen in RNA extracted from stomach, jejunum, colon, liver, adrenal, brain, heart, kidney, or testis. Transfection of the I-BABP cDNA into COS-7 cells resulted in the expression of a 14-kDa protein that was identical to the ileal cytosolic I-BABP as determined by immunoblotting. Photoaffinity labeling of expressed 14-kDa protein was saturable with respect to increasing concentrations of 7,7-azo[3H]taurocholate (Km, 83.3 microM; Vmax, 6.7 pmol/mg per 5 min). Taurocholate inhibited 7,7-azotaurocholate labeling by > 96% with lesser inhibition by taurochenodeoxycholate (83.1%), chenodeoxycholate (74.6%), cholate (50.5%), and progesterone (38.5%), whereas oleic acid and estradiol did not inhibit binding. Images PMID:8197128

  18. Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly.

    PubMed

    Zeytuni, Natalie; Ozyamak, Ertan; Ben-Harush, Kfir; Davidov, Geula; Levin, Maxim; Gat, Yair; Moyal, Tal; Brik, Ashraf; Komeili, Arash; Zarivach, Raz

    2011-08-16

    The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, the assembly and biomineralization of magnetosomes are controlled by magnetosome-associated proteins. Here, we describe the crystal structures of the magnetosome-associated protein, MamA, from Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. MamA folds as a sequential tetra-trico-peptide repeat (TPR) protein with a unique hook-like shape. Analysis of the MamA structures indicates two distinct domains that can undergo conformational changes. Furthermore, structural analysis of seven crystal forms verified that the core of MamA is not affected by crystallization conditions and identified three protein-protein interaction sites, namely a concave site, a convex site, and a putative TPR repeat. Additionally, relying on transmission electron microscopy and size exclusion chromatography, we show that highly stable complexes form upon MamA homooligomerization. Disruption of the MamA putative TPR motif or N-terminal domain led to protein mislocalization in vivo and prevented MamA oligomerization in vitro. We, therefore, propose that MamA self-assembles through its putative TPR motif and its concave site to create a large homooligomeric scaffold which can interact with other magnetosome-associated proteins via the MamA convex site. We discuss the structural basis for TPR homooligomerization that allows the proper function of a prokaryotic organelle. PMID:21784982

  19. Amid the possible causes of a very famous foxing: molecular and microscopic insight into Leonardo da Vinci's self‐portrait

    PubMed Central

    Tafer, Hakim; Sterflinger, Katja; Pinzari, Flavia

    2015-01-01

    Summary Leonardo da Vinci's self‐portrait is affected by foxing spots. The portrait has no fungal or bacterial infections in place, but is contaminated with airborne spores and fungal material that could play a role in its disfigurement. The knowledge of the nature of the stains is of great concern because future conservation treatments should be derived from scientific investigations. The lack of reliable scientific data, due to the non‐culturability of the microorganisms inhabiting the portrait, prompted the investigation of the drawing using non‐invasive and micro‐invasive sampling, in combination with scanning electron microscope (SEM) imaging and molecular techniques. The fungus E urotium halophilicum was found in foxing spots using SEM analyses. Oxalates of fungal origin were also documented. Both findings are consistent with the hypothesis that tonophilic fungi germinate on paper metabolizing organic acids, oligosaccharides and proteic compounds, which react chemically with the material at a low water activity, forming brown products and oxidative reactions resulting in foxing spots. Additionally, molecular techniques enabled a screening of the fungi inhabiting the portrait and showed differences when different sampling techniques were employed. Swabs samples showed a high abundance of lichenized Ascomycota, while the membrane filters showed a dominance of A cremonium sp. colonizing the drawing. PMID:26111623

  20. Instantánea del cáncer de seno (mama)

    Cancer.gov

    Información sobre las tendencias de incidencia, mortalidad y financiamiento del NCI sobre el cáncer de seno (mama); así como ejemplos de actividades del NCI y adelantos en la investigación de este tipo de cáncer.

  1. Performance characteristics of the imaging MAMA detector systems for SOHO, STIS, and FUSE/Lyman

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1991-01-01

    Imaging Extreme Ultraviolet (EUV) Multi-Anode Microchannel Array (MAMA) detector systems with formats of 360 x 1024 pixels and pixel dimensions of 25 x 25 sq microns are being fabricated and tested for flight in two instruments on the ESA/NASA Solar and Heliospheric Observatory (SOHO). In addition, very-large-format (1024 x 1024)- and (2048 x 2048)-pixel Far Ultraviolet (FUV) and EUV MAMA detectors with pixel dimensions of 25 x 25 sq microns are being fabricated and tested for use in the NASA Goddard Space Flight Center's Hubble Space Telescope Imaging Spectrograph (STIS), a second-generation instrument scheduled for in-orbit installation in 1997. Finally, FUV MAMA detectors with formats of 224 x 960 pixels and pixel dimensions of 14 x 14 sq microns are being evaluated as prototypes of the detector for the prime FUV spectrograph of the Far Ultraviolet Spectroscopic Explorer (FUSE/Lyman) mission. The configurations and performance characteristics of the different detector systems are described, and the plans for further development of the Advanced Technology MAMA detector system discussed.

  2. Side 2: MSM Positioning of STIS MAMA Modes

    NASA Astrophysics Data System (ADS)

    Sahu, Kailash

    2000-07-01

    The MSM positions for different STIS modes are slightly different when the STIS is run through side 2 than when it is run from side 1. These MSM positions for various STIS prime MAMA modes shall be confirmed by taking images with the IM Pt/Cr/Ne calibration lamp. For first order long-slit modes, the exposures shall be made through 52x0.1arcsec slit. For the echelle modes, the exposures shall be made through echelle slits of the nominal height, to avoid order confusion. One exposure shall be taken for each prime mode except for the medium dispersion{M}, long slit modes. For the medium dispersion, long-slit modes, additional exposures shall be taken at the long and short wavelength settings of the nominal scan range. Exposures shall be sufficiently long to bring out enough line features to confirm wavelength identifications, with sufficient signal to noise to reveal the shadows of the fiducials in the long slit images to confirm spatial pointing. This activity will test all primary modes and test the extremes of the MSM scanning cylinders by observing the extreme settings of the modes. RESULTS: All images will be downlinked and analyzed. The results are confirmation of the standard MSM encoder values for each mode. If the wavelength shifts are less than the budgeted value, the changes will be handled through updating the siaf files. If excess shifts are seen, new MSM positions will be derived and uplinked to the onboard MSM pointing table. Any modes for which revised MSM positions are uplinked will have to be re-observed for confirmation that the correct offsets were applied.

  3. MamA as a Model Protein for Structure-Based Insight into the Evolutionary Origins of Magnetotactic Bacteria

    PubMed Central

    Lefèvre, Christopher T.; Arnoux, Pascal; Baran, Dror; Shtein, Zvi; Davidov, Geula; Zarivach, Raz

    2015-01-01

    MamA is a highly conserved protein found in magnetotactic bacteria (MTB), a diverse group of prokaryotes capable of navigating according to magnetic fields – an ability known as magnetotaxis. Questions surround the acquisition of this magnetic navigation ability; namely, whether it arose through horizontal or vertical gene transfer. Though its exact function is unknown, MamA surrounds the magnetosome, the magnetic organelle embedding a biomineralised nanoparticle and responsible for magnetotaxis. Several structures for MamA from a variety of species have been determined and show a high degree of structural similarity. By determining the structure of MamA from Desulfovibrio magneticus RS-1 using X-ray crystallography, we have opened up the structure-sequence landscape. As such, this allows us to perform structural- and phylogenetic-based analyses using a variety of previously determined MamA from a diverse range of MTB species across various phylogenetic groups. We found that MamA has remained remarkably constant throughout evolution with minimal change between different taxa despite sequence variations. These findings, coupled with the generation of phylogenetic trees using both amino acid sequences and 16S rRNA, indicate that magnetotaxis likely did not spread via horizontal gene transfer and instead has a significantly earlier, primordial origin. PMID:26114501

  4. Inter-phylum structural conservation of the magnetosome-associated TPR-containing protein, MamA.

    PubMed

    Zeytuni, Natalie; Baran, Dror; Davidov, Geula; Zarivach, Raz

    2012-12-01

    Magnetotactic bacteria enclose the magnetosome, a unique prokaryotic sub-cellular organelle that allows the biomineralization of magnetic nano-crystals. Membrane-coated magnetosomes are arranged into a linear chain that permits magnetotactic bacteria to navigate geomagnetic fields. Magnetosome assembly and biomineralization are controlled by conserved magnetosome-associated proteins, including MamA, a tetra-trico-peptide repeat (TPR)-containing protein that was shown to coat the magnetosome membrane. In this study, two MamA structures from Candidatus Magnetobacterium bavaricum (Mbav) were determined via X-ray crystallography. These structures confirm that Mbav MamA folds as a sequential TPR protein and shares a high degree of structural similarity with homologous MamA proteins from Magnetospirillum species. Furthermore, the two TPR-containing domains of MamA are separated by an interphylum-conserved region containing a flexible hinge that is involved in ligand binding and recognition. Finally, substantial differences were found in the local stabilization of the MamA N-terminal domain as a result of the loss of an evolutionary conserved salt bridge. PMID:22917855

  5. Cáncer de seno (mama)—Versión para pacientes

    Cancer.gov

    Información del Instituto Nacional del Cáncer sobre el tratamiento, la prevención, la genética, las causas y los exámenes de detección del cáncer de seno (mama), así como referencias a estudios clínicos, investigación, estadísticas y temas relacionados.

  6. Photometry with Multi-anode Microchannel Arrays (mamas) and Charge Injection Devices (cids)

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1984-01-01

    The characteristics of two kinds of detectors are summarized with emphasis on those aspects that would affect their use in high accuracy astronomical photometry. The first type, the multianode microchannel arrays (MAMA), are a family of pulse counting array detectors. Components and operation principles are reviewed and quantum efficiency, noise characteristics, and dynamic range characteristics are described. The second type, charge injection devices (CID), are discussed in reference to their applicability to photometric detection at optical wavelengths.

  7. Sissies, Mama's Boys, and Tomboys: Is Children's Gender Nonconformity More Acceptable When Nonconforming Traits Are Positive?

    PubMed

    Coyle, Emily F; Fulcher, Megan; Trübutschek, Darinka

    2016-10-01

    The evaluation of gender nonconformity in children was examined in two studies. In Study 1, 48 young adults evaluated the positivity of culturally popular labels for gender nonconformity, including "tomboy," "sissy," and two new labels generated in a pilot study, "mama's boy" and "brat." The "mama's boy" was described as a boy who has positive feminine traits (gentle and well-mannered) as opposed to the "sissy" who was described as having negative feminine traits (crying and easily frightened). In Study 2, 161 young adults read descriptions of gender-typical and nonconforming children, evaluating them in several domains. The label "mama's boy" was considered negative in Study 1 but an unlabeled positive nonconforming boy was rated as likable and competent in Study 2. However, participants worried about nonconforming boys, saying they would encourage them to behave differently and describing such children with derogatory sexual orientation slurs. "Tomboy" was generally considered a positive label in Study 1. In Study 2, gender nonconforming girls were considered neither likable nor dislikeable, and neither competent nor incompetent, reflecting ambivalence about girls' nonconformity. It may be that we use gender nonconformity labels as indicators of sexual orientation, even in young children. Therefore, even when an individual displays objectively positive traits, the stigma associated with homosexuality taints judgments about their nonconforming behavior. PMID:26951493

  8. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  9. The influence of low-molecular fraction from cord blood (below 5 kDa) on functional and biochemical parameters of cells in vitro.

    PubMed

    Gulevsky, A K; Moisieieva, N N; Gorina, O L; Akhatova, J S; Lavrik, A A; Trifonova, A V

    2014-01-01

    The influence of a low-molecular fraction (below 5 kDa) from the cattle cord blood (CBF) on functional activity of phagocytes, human embryonic fibroblasts, mesenchymal stromal cells and BHK-21 clone 13/04 and PK-15 cells was studied. The low-molecular fraction added to culture medium increases the growth rate of cell cultures. The incubation of leukoconcentrate in the CBF-containing medium results in an increase in phagocytic indices ofneutrophils in the presence of a phagocytosis inhibitor--sodium iodoacetate, leading to a significant increase in intracellular glucose content and alkaline phosphatase activity as compared to the control and the reference drug Actovegin®. PMID:25816617

  10. Purification, characterization and antioxidant properties of low molecular weight collagenous polypeptide (37 kDa) prepared from whale shark cartilage (Rhincodon typus).

    PubMed

    Jeevithan, Elango; Bao, Bin; Zhang, Jingyi; Hong, Shaotong; Wu, Wenhui

    2015-10-01

    A low molecular weight type-II collagenous polypeptide (CIIp) from whale shark (WS) cartilage was prepared by thermolysin digestion; and examined for their physico-functional and antioxidant properties. The purified collagen was composed of an identical (α1)3 chains and was characterized as type-II. After hydrolysis with thermolysin, the α-chain of the WS collagen was degraded into smaller peptides with molecular weight ranging from 70 to 20KDa. CIIp was successfully separated from the hydrolysates with molecular weight of approximately 37 kDa. Amino acid analysis of CII, and CIIp indicated imino acid contents of 155 and 121 amino acid residues per 1000 residues, respectively. Differing Fourier transform infrared (FTIR) spectra of CII and CIIp were observed, which suggested that the hydrolysis process by thermolysin affected the secondary structure and molecular order of collagen, particularly the triple-helical structure. The denaturation temperature of CII (34 °C) was higher than that of CIIp. Low content of glycoprotein was observed in CII than CIIp due to removal of some polypeptides by thermolysin digestion. The antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl radicals and the reducing power of CIIp was greater than that of CII. The results proposed that the purified CIIp from WS cartilage with excellent antioxidant activities could be the suitable biomaterial for therapeutic applications. PMID:26396376

  11. Far-ultraviolet MAMA detector imagery and emission-line CCD imagery of NGC 6240

    NASA Technical Reports Server (NTRS)

    Smith, Andrew M.; Hill, Robert S.; Vrba, Frederick J.; Timothy, J. G.

    1992-01-01

    An image of the luminous infrared galaxy NGC 6240 at 1480 A was obtained using a multianode microchannel array (MAMA) detector with a rocket-borne telescope. At distances greater than 12 arcsec from the nucleus, the measured ultraviolet luminosity implies intensive star formation activity equal to 2-3 times that of a spiral galaxy such as M83. Optical images in the H-beta and forbidden O III 5007 A emission lines reveal a region of high excitation east of the nucleus between the centers of disks 1 and 2 as described by Bland-Hawthorn et al.

  12. Prevention of Postpartum Depression in Low-Income Women: Development of the "Mamas y Bebes"/Mothers and Babies Course

    ERIC Educational Resources Information Center

    Munoz, Ricardo F.; Le, Huynh-Nhu; Ippen, Chandra Ghosh; Diaz, Manuela A.; Urizar, Guido G., Jr.; Soto, Jose; Mendelson, Tamar; Delucchi, Kevin; Lieberman, Alicia F.

    2007-01-01

    A prenatal intervention designed to prevent the onset of major depressive episodes (MDEs) during pregnancy and postpartum was pilot tested at a public sector women's clinic. The "Mamas y Bebes"/Mothers and Babies Course is an intervention developed in Spanish and English that uses a cognitive-behavioral mood management framework, and incorporates…

  13. The Funky Mamas: Learning to Create and Perform Music for Young Children within a Community of Practice

    ERIC Educational Resources Information Center

    Bolden, Benjamin

    2012-01-01

    This article reports a case study examining the music learning and making of the Funky Mamas--five professional mother-musicians who create and perform music for young children at festivals, fairs, theatres and community events across Canada. Data were collected through interviews with the band members and field observations of rehearsals and live…

  14. The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization

    PubMed Central

    Choresh, Omer; Loya, Yossi; Müller, Werner E.G.; Wiedenmann, Jörg; Azem, Abdussalam

    2004-01-01

    Sessile marine invertebrates undergo constant direct exposure to the surrounding environmental conditions, including local and global environmental fluctuations that may lead to fatal protein damage. Induction of heat shock proteins (Hsps) constitutes an important defense mechanism that protects these organisms from deleterious stress conditions. In a previous study, we reported the immunological detection of a 60-kDa Hsp (Hsp60) in the sea anemone Anemonia viridis (formerly called Anemonia sulcata) and studied its expression under a variety of stress conditions. In the present study, we show that the sponge Tetilla sp. from tidal habitats with a highly variable temperature regime is characterized by an increased level of Hsp60. Moreover, we show the expression of Hsp60 in various species among Porifera and Cnidaria, suggesting a general importance of this protein among marine invertebrates. We further cloned the hsp60 gene from A viridis, using a combination of conventional protein isolation methods and screening of a complementary deoxyribonucleic acid library by polymerase chain reaction. The cloned sequence (1764 bp) encodes for a protein of 62.8 kDa (588 amino acids). The 62.8-kDa protein, which contains an amino terminal extension that may serve as a mitochondrial targeting signal, shares a significant identity with mitochondrial Hsp60s from several animals but less identity with Hsp60s from either bacteria or plants. PMID:15270076

  15. MAMA: an algebraic map for the secular dynamics of planetesimals in tight binary systems

    NASA Astrophysics Data System (ADS)

    Leiva, A. M.; Correa-Otto, J. A.; Beaugé, C.

    2013-12-01

    We present an algebraic map (MAMA) for the dynamical and collisional evolution of a planetesimal swarm orbiting the main star of a tight binary system. The orbital evolution of each planetesimal is dictated by the secular perturbations of the secondary star and gas drag due to interactions with a protoplanetary disc. The gas disc is assumed eccentric with a constant precession rate. Gravitational interactions between the planetesimals are ignored. All bodies are assumed coplanar. A comparison with full N-body simulations shows that the map is of the order of 102 times faster, while preserving all the main characteristics of the full system. In a second part of the work, we apply multiparticle algebraic map for accretion (MAMA) to the γ-Cephei, searching for friendly scenarios that may explain the formation of the giant planet detected in this system. For low-mass protoplanetary discs, we find that a low-eccentricity static disc aligned with the binary yields impact velocities between planetesimals below the disruption threshold. All other scenarios appear hostile to planetary formation.

  16. Utility of Translocator Protein (18 kDa) as a Molecular Imaging Biomarker to Monitor the Progression of Liver Fibrosis

    PubMed Central

    Hatori, Akiko; Yui, Joji; Xie, Lin; Kumata, Katsushi; Yamasaki, Tomoteru; Fujinaga, Masayuki; Wakizaka, Hidekatsu; Ogawa, Masanao; Nengaki, Nobuki; Kawamura, Kazunori; Wang, Feng; Zhang, Ming-Rong

    2015-01-01

    Hepatic fibrosis is the wound healing response to chronic hepatic injury caused by various factors. In this study, we aimed to evaluate the utility of translocator protein (18 kDa) (TSPO) as a molecular imaging biomarker for monitoring the progression of hepatic fibrosis to cirrhosis. Model rats were induced by carbon tetrachloride (CCl4), and liver fibrosis was assessed. Positron emission tomography (PET) with N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[18F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]-acetamide ([18F]FEDAC), a radioprobe specific for TSPO, was used for noninvasive visualisation in vivo. PET scanning, immunohistochemical staining, ex vivo autoradiography, and quantitative reverse-transcription polymerase chain reaction were performed to elucidate the relationships among radioactivity uptake, TSPO levels, and cellular sources enriching TSPO expression in damaged livers. PET showed that uptake of radioactivity in livers increased significantly after 2, 4, 6, and 8 weeks of CCl4 treatment. Immunohistochemistry demonstrated that TSPO was mainly expressed in macrophages and hepatic stellate cells (HSCs). TSPO-expressing macrophages and HSCs increased with the progression of liver fibrosis. Interestingly, the distribution of radioactivity from [18F]FEDAC was well correlated with TSPO expression, and TSPO mRNA levels increased with the severity of liver damage. TSPO was a useful molecular imaging biomarker and could be used to track the progression of hepatic fibrosis to cirrhosis with PET. PMID:26612465

  17. Utility of Translocator Protein (18 kDa) as a Molecular Imaging Biomarker to Monitor the Progression of Liver Fibrosis.

    PubMed

    Hatori, Akiko; Yui, Joji; Xie, Lin; Kumata, Katsushi; Yamasaki, Tomoteru; Fujinaga, Masayuki; Wakizaka, Hidekatsu; Ogawa, Masanao; Nengaki, Nobuki; Kawamura, Kazunori; Wang, Feng; Zhang, Ming-Rong

    2015-01-01

    Hepatic fibrosis is the wound healing response to chronic hepatic injury caused by various factors. In this study, we aimed to evaluate the utility of translocator protein (18 kDa) (TSPO) as a molecular imaging biomarker for monitoring the progression of hepatic fibrosis to cirrhosis. Model rats were induced by carbon tetrachloride (CCl4), and liver fibrosis was assessed. Positron emission tomography (PET) with N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[(18)F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]-acetamide ([(18)F]FEDAC), a radioprobe specific for TSPO, was used for noninvasive visualisation in vivo. PET scanning, immunohistochemical staining, ex vivo autoradiography, and quantitative reverse-transcription polymerase chain reaction were performed to elucidate the relationships among radioactivity uptake, TSPO levels, and cellular sources enriching TSPO expression in damaged livers. PET showed that uptake of radioactivity in livers increased significantly after 2, 4, 6, and 8 weeks of CCl4 treatment. Immunohistochemistry demonstrated that TSPO was mainly expressed in macrophages and hepatic stellate cells (HSCs). TSPO-expressing macrophages and HSCs increased with the progression of liver fibrosis. Interestingly, the distribution of radioactivity from [(18)F]FEDAC was well correlated with TSPO expression, and TSPO mRNA levels increased with the severity of liver damage. TSPO was a useful molecular imaging biomarker and could be used to track the progression of hepatic fibrosis to cirrhosis with PET. PMID:26612465

  18. The proteolytic fragments of the Alzheimer's disease-associated presenilin-1 form heterodimers and occur as a 100-150-kDa molecular mass complex.

    PubMed

    Capell, A; Grünberg, J; Pesold, B; Diehlmann, A; Citron, M; Nixon, R; Beyreuther, K; Selkoe, D J; Haass, C

    1998-02-01

    Mutations in the presenilin (PS) genes are linked to early onset familial Alzheimer's disease (FAD). PS-1 proteins are proteolytically processed by an unknown protease to two stable fragments of approximately 30 kDa (N-terminal fragment (NTF)) and approximately 20 kDa (C-terminal fragment (CTF)) (Thinakaran, G., Borchelt, D. R., Lee, M. K., Slunt, H. H., Spitzer, L., Kim, G., Ratovitsky, T., Davenport, F., Nordstedt, C., Seeger, M., Hardy, J., Levey, A. I., Gandy, S. E., Jenkins, N. A., Copeland, N. G., Price, D. L., and Sisodia, S. S. (1996) Neuron 17, 181-190). Here we show that the CTF and NTF of PS-1 bind to each other. Fractionating proteins from 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid-extracted membrane preparations by velocity sedimentation reveal a high molecular mass SDS and Triton X-100-sensitive complex of approximately 100-150 kDa. To prove if both proteolytic fragments of PS-1 are bound to the same complex, we performed co-immunoprecipitations using multiple antibodies specific to the CTF and NTF of PS-1. These experiments revealed that both fragments of PS-1 occur as a tightly bound non-covalent complex. Upon overexpression, unclipped wild type PS-1 sediments at a lower molecular weight in glycerol velocity gradients than the endogenous fragments. In contrast, the non-cleavable, FAD-associated PS-1 Deltaexon 9 sediments at a molecular weight similar to that observed for the endogenous proteolytic fragments. This result may indicate that the Deltaexon 9 mutation generates a mutant protein that exhibits biophysical properties similar to the naturally occurring PS-1 fragments. This could explain the surprising finding that the Deltaexon 9 mutation is functionally active, although it cannot be proteolytically processed (Baumeister, R., Leimer, U., Zweckbronner, I., Jakubek, C., Grünberg, J., and Haass, C. (1997) Genes & Function 1, 149-159; Levitan, D., Doyle, T., Brousseau, D., Lee, M., Thinakaran, G., Slunt, H., Sisodia, S., and

  19. The first echinoderm poly-U-binding factor 60 kDa (PUF60) from sea cucumber (Stichopus monotuberculatus): Molecular characterization, inducible expression and involvement of apoptosis.

    PubMed

    Ren, Chunhua; Chen, Ting; Sun, Hongyan; Jiang, Xiao; Hu, Chaoqun; Qian, Jing; Wang, Yanhong

    2015-11-01

    Poly-U-binding factor 60 kDa (PUF60), also known as Ro RNA binding protein (RoBPI) and FBP interacting repressor (FIR), is a multifunctional protein that is involved in a variety of nuclear processes including pre-mRNA splicing, apoptosis and transcription regulation. In this study, the first echinoderm PUF60 named StmPUF60 was identified from sea cucumber (Stichopus monotuberculatus). The StmPUF60 cDNA is 4503 bp in length, containing a 5'-untranslated region (UTR) of 34 bp, a 3'-UTR of 2963 bp and an open reading frame (ORF) of 1506 bp that encoding a protein of 501 amino acids with a deduced molecular weight of 54.15 kDa and a predicted isoelectric point of 5.15. The putative StmPUF60 protein possesses all the main characteristics of known PUF60 proteins, including two RNA recognition motifs (RRM1 and RRM2), a C-terminal PUMP domain and two conserved nucleic acid-binding ribonucleoprotein sequences (RNP1 and RNP2). For the gene structure, StmPUF60 contains nine exons separated by eight introns. In addition, the highest level of StmPUF60 mRNA expression was noticed in the gonad, followed by coelomocytes, intestine, respiratory tree and body wall. In in vivo experiments, the expression of StmPUF60 mRNA in coelomocytes and intestine was significantly up-regulated by lipopolysaccharides (LPS) challenge, suggesting that the sea cucumber PUF60 might play critical roles in the innate immune defense against bacterial infections. Moreover, we further confirmed that overexpressed StmPUF60 could induce apoptosis, and this function of StmPUF60 may be one of the innate immune defense mechanisms for sea cucumber against pathogen infections. PMID:26362209

  20. Expression of a low-molecular-weight (10 kDa) calcium binding protein in glial cells of the brain of the trout (Teleostei).

    PubMed

    Manso, M J; Becerra, M; Becerra, M; Anadón, R

    1997-11-01

    Calcium-binding proteins of the EF-hand family are widely distributed in the vertebrate central nervous system. In the present study of the trout brain, immunocytochemistry with a monoclonal antibody against chick gut calbindin-28k and a polyclonal antibody against bovine S100 protein specifically stained ependymocytes and radial glia cells with identical patterns. Western blot analysis of trout brain extracts with the antibodies to S100 and calbindin stained the same low-molecular-weight (10 kDa) protein band. In rat brain extracts, however, the monoclonal antibody to calbindin recognized a major protein band with molecular weight corresponding to that of calbindin-28k. This indicates that the trout protein is a new calcium-binding-like (calbindin-like) molecule that is immunologically related to both S100 and calbindin. Immunocytochemical studies of the trout brain using the antibodies to CaB and S100 showed that ependymocytes were stained in most ventricular regions, except in a few specialized ependymal areas of the ventral telencephalon, epithalamus, hypothalamus (including the paraventricular organ and saccus vasculosus) and brain stem. Immunocytochemistry also indicated the presence of calbindin-like protein in radial glia cells of several regions of the brain (thalamus, pretectal region, optic tectum, and rhombencephalon). Differences in immunoreactivity between neighbouring ependymal areas suggest that this protein may be a useful marker of different territories. All immunoreactive glial cells were nicotin-adenin-dinucleotide-phosphate diaphorase-positive, although this enzymohistochemical reaction is not specific for these glial cells since it reveals oligodendrocytes and some neurons. Immunoreactivity appears at different developmental stages in the different brain regions, with a broadly caudorostral gradient, suggesting that the expression of this protein is developmentally regulated. Comparison of the distribution of the calbindin-like protein with

  1. Fibroblast Growth Factor-2 Isoform (Low Molecular Weight/18 kDa) Overexpression in Preosteoblast Cells Promotes Bone Regeneration in Critical Size Calvarial Defects in Male Mice

    PubMed Central

    Xiao, Liping; Ueno, Daisuke; Catros, Sylvain; Homer-Bouthiette, Collin; Charles, Lyndon; Kuhn, Liisa

    2014-01-01

    Repair of bone defects remains a significant clinical problem. Bone morphogenetic protein 2 (BMP2) is US Food and Drug Administration–approved for fracture healing but is expensive and has associated morbidity. Studies have shown that targeted overexpression of the 18-kDa low-molecular-weight fibroblast growth factor 2 isoform (LMW) by the osteoblastic lineage of transgenic mice increased bone mass. This study tested the hypotheses that overexpression of LMW would directly enhance healing of a critical size calvarial bone defect in mice and that this overexpression would have a synergistic effect with low-dose administration of BMP2 on critical size calvarial bone defect healing. Bilateral calvarial defects were created in LMW transgenic male mice and control/vector transgenic (Vector) male mice and scaffold with or without BMP2 was placed into the defects. New bone formation was assessed by VIVA-computed tomography of live animals over a 27-week period. Radiographic and computed tomography analysis revealed that at all time points, healing of the defect was enhanced in LMW mice compared with that in Vector mice. Although the very low concentration of BMP2 did not heal the defect in Vector mice, it resulted in complete healing of the defect in LMW mice. Histomorphometric and gene analysis revealed that targeted overexpression of LMW in osteoblast precursors resulted in enhanced calvarial defect healing due to increased osteoblast activity and increased canonical Wnt signaling. PMID:24424065

  2. MAMA Detector

    NASA Technical Reports Server (NTRS)

    Bowyer, Stuart

    1998-01-01

    Work carried out under this grant led to fundamental discoveries and over one hundred publications in the scientific literature. Fundamental developments in instrumentation were made including all the instrumentation on the EUVE satellite, the invention of a whole new type of grazing instrument spectrometer and the development of fundamentally new photon counting detectors including the Wedge and Strip used on EUVE and many other missions and the Time Delay detector used on OREFUS and FUSE. The Wedge and Strip and Time Delay detectors were developed under this grant for less than two million dollars and have been used in numerous missions most recently for the FUSE mission. In addition, a fundamentally new type of diffuse spectrometer has been developed under this grant which has been used in instrumentation on the MMSAT spacecraft and the Lewis spacecraft. Plans are underway to use this instrumentation on several other missions as well.

  3. Sequence Analysis and Molecular Characterization of Clonorchis sinensis Hexokinase, an Unusual Trimeric 50-kDa Glucose-6-Phosphate-Sensitive Allosteric Enzyme

    PubMed Central

    Chen, Tingjin; Ning, Dan; Sun, Hengchang; Li, Ran; Shang, Mei; Li, Xuerong; Wang, Xiaoyun; Chen, Wenjun; Liang, Chi; Li, Wenfang; Mao, Qiang; Li, Ye; Deng, Chuanhuan; Wang, Lexun; Wu, Zhongdao; Huang, Yan; Xu, Jin; Yu, Xinbing

    2014-01-01

    Clonorchiasis, which is induced by the infection of Clonorchis sinensis (C. sinensis), is highly associated with cholangiocarcinoma. Because the available examination, treatment and interrupting transmission provide limited opportunities to prevent infection, it is urgent to develop integrated strategies to prevent and control clonorchiasis. Glycolytic enzymes are crucial molecules for trematode survival and have been targeted for drug development. Hexokinase of C. sinensis (CsHK), the first key regulatory enzyme of the glycolytic pathway, was characterized in this study. The calculated molecular mass (Mr) of CsHK was 50.0 kDa. The obtained recombinant CsHK (rCsHK) was a homotrimer with an Mr of approximately 164 kDa, as determined using native PAGE and gel filtration. The highest activity was obtained with 50 mM glycine-NaOH at pH 10 and 100 mM Tris-HCl at pH 8.5 and 10. The kinetics of rCsHK has a moderate thermal stability. Compared to that of the corresponding negative control, the enzymatic activity was significantly inhibited by praziquantel (PZQ) and anti-rCsHK serum. rCsHK was homotropically and allosterically activated by its substrates, including glucose, mannose, fructose, and ATP. ADP exhibited mixed allosteric effect on rCsHK with respect to ATP, while inorganic pyrophosphate (PPi) displayed net allosteric activation with various allosteric systems. Fructose behaved as a dose-dependent V activator with the substrate glucose. Glucose-6-phosphate (G6P) displayed net allosteric inhibition on rCsHK with respect to ATP or glucose with various allosteric systems in a dose-independent manner. There were differences in both mRNA and protein levels of CsHK among the life stages of adult worm, metacercaria, excysted metacercaria and egg of C. sinensis, suggesting different energy requirements during different development stages. Our study furthers the understanding of the biological functions of CsHK and supports the need to screen for small molecule inhibitors

  4. Trend of Dark Rates of the COS and STIS NUV MAMA Detectors

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Proffitt, C. R.; Sahnow, D.; Ake, T. B.; Keyes, C.; Goudfrooij, P.; Hodge, P.; Oliveira, C.; Bostroem, A.; Long, C.; Aloisi, A.

    2010-07-01

    The dark rate of the STIS NUV MAMA detector was about an order of magnitude higher after SM4 repair than anticipated, with an initial rate of 0.01 count sec^-1 pixel^-1. Measurements over the past year show a dual-component exponential decline with e-folding timescales of o 30 and 300 days. The most recent measurements show a rate of 2.8 × 10^-3 count sec^-1 pixel^-1. The dark rate of the COS NUV detector started at a very low value of 6 × 10^-5 count sec^-1 pixel^-1, and has displayed a steady increase, approaching the ground-tested level of 3.7 × 10^-4 count sec^-1 pixel^-1. Still, the rate of COS NUV detector is considerably lower than that of its STIS counterpart. The rates for both detectors are sensitive to detector and tube temperatures, and the rate fluctuations can be fit with an empirical model.

  5. The flat fielding and achievable signal-to-noise of the MAMA detectors

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary Elizabeth; Lindler, Don J.; Bohlin, Ralph C.

    1997-01-01

    The Space Telescope Imaging Spectrograph (STIS) was designed to achieve a signal-to-noise (S/N) of at least 100:1 per resolution element. Multi-Anode Microchannel Arrays (MAMA) observations during Servicing Mission Orbital Verification (SMOV) confirm that this specification can be met. From analysis of a single spectrum of GD153, with counting statistics of approximately 165 a S/N of approximately 125 is achieved per spectral resolution element in the far ultraviolet (FUV) over the spectral range of 1280A to 1455A. Co-adding spectra of GRW+7OD5824 to increase the counting statistics to approximately 300 yields a S/N of approximately 190 per spectral resolution element over the region extending from 1347A to 1480A in the FUV. In the near ultraviolet (NUV), a single spectrum of GRW+7OD5824 with counting statistics of approximately 200 yields a S/N of approximately 150 per spectral resolution element over the spectral region extending from 2167 to 2520A. Details of the flat field construction, the spectral extraction, and the definition of a spectral resolution element will be described in the text.

  6. Genetic analysis of quartz from pegmatites of the Mama-Chuya mica belt based on distribuition of isomorphic impurities, Russia

    NASA Astrophysics Data System (ADS)

    Rakov, L. T.; Tkachev, A. V.; Sakhnov, A. A.

    2013-02-01

    The effect of the formation conditions of pegmatites in the Mama-Chuya mica belt on the distribution of isomorphic Al, Ti, and Ge impurities in quartz detected by electron paramagnetic resonance (EPR) has been estimated using the isogen method, which takes into account the relationship between this distribution and geological time. It has been revealed that each of the studied types of pegmatite veins is described by special isogens that reflect interrelations between concentrations of various isomorphic impurities. The typification of veins, enrichment of parental melt in water, and other factors affect the isogens. New potentialities of the isogen method for genetic analysis of quartz have been established.

  7. Un nuevo fármaco puede ser una opción de tratamiento para algunos cánceres de mama

    Cancer.gov

    Los resultados de un estudio clínico internacional permiten suponer que, en poco tiempo, habrá otra opción de tratamiento para las mujeres con cáncer de mama metastásico HER2 positivo que deja de responder a los tratamientos dirigidos con trastuzumab.

  8. A common structure for concepts of individuals, stuffs, and real kinds: more Mama, more milk, and more mouse.

    PubMed

    Millikan, R G

    1998-02-01

    Concepts are highly theoretical entities. One cannot study them empirically without committing oneself to substantial preliminary assumptions. Among the competing theories of concepts and categorization developed by psychologists in the last thirty years, the implicit theoretical assumption that what falls under a concept is determined by description ("descriptionism") has never been seriously challenged. I present a nondescriptionist theory of our most basic concepts, "substances," which include (1) stuffs (gold, milk), (2) real kinds (cat, chair), and (3) individuals (Mama, Bill Clinton, the Empire State Building). On the basis of something important that all three have in common, our earliest and most basic concepts of substances are identical in structure. The membership of the category "cat," like that of "Mama," is a natural unit in nature, to which the concept "cat" does something like pointing, and continues to point despite large changes in the properties the thinker represents the unit as having. For example, large changes can occur in the way a child identifies cats and the things it is willing to call "cat" without affecting the extension of its word "cat." The difficulty is to cash in the metaphor of "pointing" in this context. Having substance concepts need not depend on knowing words, but language interacts with substance concepts, completely transforming the conceptual repertoire. I will discuss how public language plays a crucial role in both the acquisition of substance concepts and their completed structure. PMID:10097011

  9. Electrospray ionization mass spectrometric determination of the molecular mass of the approximately 200-kDa globin dodecamer subassemblies in hexagonal bilayer hemoglobins.

    PubMed

    Green, B N; Bordoli, R S; Hanin, L G; Lallier, F H; Toulmond, A; Vinogradov, S N

    1999-10-01

    Hexagonal bilayer hemoglobins (Hbs) are approximately 3.6-MDa complexes of approximately 17-kDa globin chains and 24-32-kDa, nonglobin linker chains in a approximately 2:1 mass ratio found in annelids and related species. Studies of the dissociation and reassembly of Lumbricus terrestris Hb have provided ample evidence for the presence of a approximately 200-kDa linker-free subassembly consisting of monomer (M) and disulfide-bonded trimer (T) subunits. Electrospray ionization mass spectrometry (ESI-MS) of the subassemblies obtained by gel filtration of partially dissociated L. terrestris and Arenicola marina Hbs showed the presence of noncovalent complexes of M and T subunits with masses in the 213. 3-215.4 and 204.6-205.6 kDa ranges, respectively. The observed mass of the L. terrestris subassembly decreased linearly with an increase in de-clustering voltage from approximately 215,400 Da at 60 V to approximately 213,300 Da at 200 V. In contrast, the mass of the A. marina complex decreased linearly from 60 to 120 V and reached an asymptote at approximately 204,600 Da (180-200 V). The decrease in mass was probably due to the progressive removal of complexed water and alkali metal cations. ESI-MS at an acidic pH showed both subassemblies to consist of only M and T subunits, and the experimental masses demonstrated them to have the composition M(3)T(3). Because there are three isoforms of M and four isoforms of T in Lumbricus and two isoforms of M and 5 isoforms of T in Arenicola, the masses of the M(3)T(3) subassemblies are not unique. A random assembly model was used to calculate the mass distributions of the subassemblies, using the known ESI-MS masses and relative intensities of the M and T subunit isforms. The expected mass of randomly assembled subassemblies was 213,436 Da for Lumbricus Hb and 204,342 Da for Arenicola Hb, in good agreement with the experimental values. PMID:10497174

  10. Complementary study of molecular dynamics and domain sizes in heterogenous nanocomposites PBT/DA-C{sub 60} and PBT/TCNEO-C{sub 60}

    SciTech Connect

    Woźniak-Braszak, A. Baranowski, M.; Jurga, K.; Hołderna-Natkaniec, K.; Jurga, J.; Brycki, B.; Mikuli, E.

    2014-05-28

    A comprehensive study of molecular dynamics and structure in new heterogenous nanocomposites based on poly(butylene terephthalate) and nanoparticles C{sub 60} modified by n-decylamine or tetracyanoethylene oxide has been performed. The domain structure of new nanocomposites has been investigated by Fourier transform infrared spectroscopy, wide-angle X-ray scattering, and differential scanning calorimetry techniques. Solid-state {sup 1}H NMR techniques were used to study molecular dynamics and domain sizes in new nanocomposites. Information about the electronic properties of these nanocomposites was obtained by means of electron paramagnetic resonance method. It was shown that the structure and molecular dynamics of new nanocomposites were strongly dependent on the properties and concentration of fullerene derivates.

  11. Opposing actions of the synapse-associated protein of 97-kDa molecular weight (SAP97) and Disrupted in Schizophrenia 1 (DISC1) on Wnt/β-catenin signaling.

    PubMed

    Boccitto, M; Doshi, S; Newton, I P; Nathke, I; Neve, R; Dong, F; Mao, Y; Zhai, J; Zhang, L; Kalb, R

    2016-06-21

    It has been suggested that synapse-associated protein of 97-kDa molecular weight (SAP97) is a susceptibility factor for childhood and adult neuropsychiatric disorders. SAP97 is a scaffolding protein that shares direct and indirect binding partners with the Disrupted in Schizophrenia 1 (DISC1) gene product, a gene with strong association with neuropsychiatric disorders. Here we investigated the possibility that these two proteins converge upon a common molecular pathway. Since DISC1 modifies Wnt/β-catenin signaling via changes in glycogen synthase kinase 3 beta (GSK3β) phosphorylation, we asked if SAP97 impacts Wnt/β-catenin signaling and GSK3β phosphorylation. We find that SAP97 acts as inhibitor of Wnt signaling activity and can suppress the stimulatory effects of DISC1 on β-catenin transcriptional activity. Reductions in SAP97 abundance also decrease GSK3β phosphorylation. In addition, we find that over expression of DISC1 leads to an increase in the abundance of SAP97, by inhibiting its proteasomal degradation. Our findings suggest that SAP97 and DISC1 contribute to maintaining Wnt/β-catenin signaling activity within a homeostatic range by regulating GSK3β phosphorylation. PMID:27026592

  12. Expression of the 35kDa and low molecular weight surfactant-associated proteins in the lungs of infants dying with respiratory distress syndrome.

    PubMed

    deMello, D E; Phelps, D S; Patel, G; Floros, J; Lagunoff, D

    1989-06-01

    Newborn respiratory distress syndrome (RDS) results from a deficiency of pulmonary surfactant. Surfactant has three ultrastructural forms: lamellar bodies, which, when secreted from Type II pneumocytes, transform into tubular myelin; tubular myelin in turn gives rise to the phospholipid monolayer at the air-fluid interface in the alveolus that constitutes functional surfactant. It has been shown previously that the lungs of infants dying from RDS lacked tubular myelin despite the presence of abundant lamellar bodies, whereas the lungs of control infants dying from other causes had both tubular myelin and lamellar bodies. An abnormality in the conversion of lamellar bodies to tubular myelin in RDS was proposed as a possible explanation for this finding. To evaluate the role of surfactant proteins (SPs) in this conversion, the authors re-examined the lungs of 11 RDS infants and 10 control infants for reactivity with antisera to high and low molecular weight SPs. In control infants, abundant intense staining with antisera to both types of SPs was found, but in the RDS lungs, staining was weaker than that in controls and less intense for high molecular weight compared to low molecular weight SPs. In lungs from patients with RDS, although staining increased with increasing gestational and post-natal ages, the intensity was less than control levels at all ages. The correlation of deficiency of SPs in RDS with lack of tubular myelin suggests that SPs may be involved in the conversion of normal lamellar bodies to tubular myelin and that the deficiency of SPs could explain the persistent respiratory distress in the presence of surfactant phospholipid synthesis. PMID:2757118

  13. Molecular identification and bioinformatics analysis of a potential anti-vector vaccine candidate, 15-kDa salivary gland protein (Salp15), from Ixodes affinis ticks.

    PubMed

    Sultana, Hameeda; Patel, Unnati; Toliver, Marcée; Maggi, Ricardo G; Neelakanta, Girish

    2016-02-01

    Salp15, a 15-kDa salivary gland protein plays an important role in tick blood-feeding and transmission of Borrelia burgdorferi, the causative agent of Lyme borreliosis. The comparative studies reveal that Salp15 is a genetically conserved protein across various Ixodes species. In this study, we have identified a Salp15 homolog, designated as Iaff15, from Ixodes affinis ticks that are the principal enzootic vectors of B. burgdorferi sensu stricto in the southeastern part of the United States. Comparison of the annotated amino acid sequences showed that Iaff15 share 81% homology with I. sinensis Salp15 homolog and 64% homology with I. scapularis Salp15. Phylogenetic analysis revealed that Iaff15 come within the same clade with I. sinensis, I. scapularis, and I. pacificus Salp15 homologs. The bioinformatics analysis of the posttranslational modifications prediction revealed that all the Salp15 family members contain glycosylation sites. In addition, Iaff15 carried a higher number of Casein Kinase II phosphorylation sites in comparison to the other Salp15 family members. Collectively, high sequence conservation distributed over the entire amino acids sequence not only suggests an important role for Iaff15 in I. affinis blood feeding and vector-pathogen interactions but may also lead to the development of an anti-vector vaccine against this group of ticks. PMID:26296588

  14. Molecular cloning and sequence analysis of the gene coding for the 57-kDa major soluble antigen of the salmonid fish pathogen Renibacterium salmoninarum.

    PubMed

    Chien, M S; Gilbert, T L; Huang, C; Landolt, M L; O'Hara, P J; Winton, J R

    1992-09-15

    The complete sequence coding for the 57-kDa major soluble antigen of the salmonid fish pathogen, Renibacterium salmoninarum, was determined. The gene contained an opening reading frame of 1671 nucleotides coding for a protein of 557 amino acids with a calculated M(r) value of 57,190. The first 26 amino acids constituted a signal peptide. The deduced sequence for amino acid residues 27-61 was in agreement with the 35 N-terminal amino acid residues determined by microsequencing, suggesting the protein is synthesized as a 557-amino acid precursor and processed to produce a mature protein of M(r) 54,505. Two regions of the protein contained imperfect direct repeats. The first region contained two copies of an 81-residue repeat, the second contained five copies of an unrelated 25-residue repeat. Also, a perfect inverted repeat (including three in-frame UAA stop codons) was observed at the carboxyl-terminus of the gene. PMID:1383085

  15. Crosslinked self-assemblies of lipoid acid-substituted low molecular weight (1800 Da) polyethylenimine as reductive-sensitive non-viral gene vectors

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojiao; Yuan, Zhefan; Yi, Xiaoqing; Zhuo, Renxi; Li, Feng

    2012-10-01

    In this study, amphiphilic polyethylenimine-graft-thioctic acid (PEI-TA) and polyethylenimine-graft-lauric acid (PEI-LA) were synthesized. Both PEI-TA and PEI-LA could self-assemble into micelles. Due to the existence of disulfide-linked rings at the end of hydrophobic moieties, PEI-TA could form stable micelles with disulfide crosslinked cores (PEI-TA-SS). In comparison with the PEI-LA micelle, PEI-TA-SS possessed higher DNA binding ability according to the gel retardation assay and heparin replacement assay. In vitro transfection experiments indicated that PEI-TA-SS showed comparably high transfection efficiency as compared to 25 kDa PEI. More interestingly, the luciferase expression of PEI-TA-SS was superior to that of PEI-LA at low N/P ratio, which might be ascribed to the stronger binding capacity of PEI-TA-SS facilitating the entering of PEI-TA-SS/pDNA complexes into cells.

  16. Star formation in NGC 4449: MAMA-detector UV imagery and Fabry-Perot Balmer-line imagery

    NASA Technical Reports Server (NTRS)

    Hill, Robert S.; Home, Allen T.; Smith, Andrew M.; Bruhweiler, Fred C.; Cheng, K.P.; Hintzen, Paul M. N.; Oliversen, Ronald J.

    1994-01-01

    Using far-ultraviolet (FUV) and Balmer-line imagery, we investigate the star formation history of 22 large OB complexes in the Magellanic irregular galaxy NGC 4449. The FUV luminosity of NGC 4449 is comparable to those of late-type spirals and is greater than that of the LMC by approximately 2.4 mag, indicating substantial star formation in the last 10(exp 8) yr. FUV data were taken using a sounding-rocket telescope with a Multianode Microchannel Array (MAMA) detector, and Balmer-line data were taken using the Goddard Fabry-Perot Imager. The resulting imagery shows bright, roughly coincident FUV and H alpha sources throughout the extent of the visible galaxy. We model these sources using cluster-evolution codes. Although all sources are a few Myr old, clear age differences are found. In particular, several of the most recently active star formation regions are located together in the galaxy's northern periphery, which is apparently coincident with a large H I reservoir. The brightest and most massive OB complexes are found along the northeast-southwest surface brightness ridgeline (the 'bar'). Over the entire galaxy, star formation rates are consistent on timescales of 10(exp 6), 10(exp 8), and 10(exp 9) yr. A history of recent star formation is suggested with two main episodes, one predominantly in the bar ending approximately 5 Myr ago, and an ongoing one associated with an observed H I cloud.

  17. Identification of the main quinolone resistance determinant in Campylobacter jejuni and Campylobacter coli by MAMA-DEG PCR.

    PubMed

    Hormeño, Lorena; Palomo, Gonzalo; Ugarte-Ruiz, María; Porrero, M Concepción; Borge, Carmen; Vadillo, Santiago; Píriz, Segundo; Domínguez, Lucas; Campos, Maria J; Quesada, Alberto

    2016-03-01

    Among zoonotic diseases, campylobacteriosis stands out as the major bacterial infection producing human gastroenteritis. Antimicrobial therapy, only recommended in critical cases, is challenged by resistance mechanisms that should be unambiguously detected for achievement of effective treatments. Quinolone (ciprofloxacin) resistance of Campylobacter jejuni and Campylobacter coli, the 2 main Campylobacter detected in humans, is conferred by the mutation gyrA C-257-T, which can be genotyped by several methods that require a previous identification of the pathogen species to circumvent the sequence polymorphism of the gene. A multiplex PCR, based on degenerated oligonucleotides, has been designed for unambiguous identification of the quinolone resistance determinant in Campylobacter spp. isolates. The method was verified with 249 Campylobacter strains isolated from humans (141 isolates) and from the 3 most important animal sources for this zoonosis: poultry (34 isolates), swine (38 isolates), and cattle (36 isolates). High resistance to ciprofloxacin, MIC above 4μg/mL, linked to the mutated genotype predicted by MAMA-DEG PCR (mismatch amplification mutation assay PCR with degenerated primers) was found frequently among isolates from the different hosts. PMID:26658311

  18. Molecular cloning, sequencing and expression in Escherichia coli of the 25-kDa growth-related protein of Ehrlich ascites tumor and its homology to mammalian stress proteins.

    PubMed

    Gaestel, M; Gross, B; Benndorf, R; Strauss, M; Schunk, W H; Kraft, R; Otto, A; Böhm, H; Stahl, J; Drabsch, H

    1989-01-15

    The growth-related 25-kDa protein (p25) of Ehrlich ascites tumor (EAT) has been characterized by molecular cloning and sequencing of cDNA clones detected by hybridization with oligonucleotide probes synthesized according to the amino acid sequence of a tryptic peptide of p25. Detection of p25 mRNA in EAT of the exponential growth phase and of the stationary phase using cDNA-derived RNA probes demonstrated that the abundance of p25 mRNA is also growth-related. High-level expression of p25 in Escherichia coli has been established by oligonucleotide-directed mutagenesis of cDNA and insertion of the mutated cDNA into a T7-promoter expression vector. Recombinant p25 from the expressed cDNA sequence has been shown to comigrate with EAT p25 in electrophoresis and to react with antibodies against the EAT p25. On the amino acid level, p25 shows about 80% sequence homology to the human stress protein hsp27. Furthermore, p25 has similar isoforms of phosphorylation as demonstrated for small mammalian stress proteins from rat and human. From the results obtained, it is concluded that p25 is a mammalian stress protein, the abundance of which is related to growth characteristics of the Ehrlich ascites tumor. PMID:2645135

  19. Identification, recombinant expression, and characterization of the 100 kDa high molecular weight Hymenoptera venom allergens Api m 5 and Ves v 3.

    PubMed

    Blank, Simon; Seismann, Henning; Bockisch, Benjamin; Braren, Ingke; Cifuentes, Liliana; McIntyre, Mareike; Rühl, Dana; Ring, Johannes; Bredehorst, Reinhard; Ollert, Markus W; Grunwald, Thomas; Spillner, Edzard

    2010-05-01

    Insect stings can cause life-threatening IgE-mediated anaphylactic reactions in venom-allergic patients. Although several compounds have already been described as venom allergens, prominent allergen candidates especially in the higher m.w. range have still remained elusive. Tandem mass spectrometry-based sequencing assigned a candidate gene to the most prominent putative high m.w. allergen Api m 5 (allergen C) in honeybee (Apis mellifera) venom and also allowed identification of its homologue Ves v 3 in yellow jacket (Vespula vulgaris) venom. Both proteins exhibit a pronounced sequence identity to human dipeptidyl peptidase IV or CD26. Reactivity of a human IgE mAb verified the presence of these proteins in the venoms. Both proteins were produced in insect cells and characterized for their enzymatic activity as well as their allergenic potential using sera and basophils from insect venom-allergic patients. Both Api m 5 and Ves v 3 were recognized by specific IgE of the majority of patients even in the absence of cross-reactive carbohydrate determinants. Serologic IgE reactivity closely matched activation of human basophils by Api m 5 or Ves v 3, thus underlining their relevance in functional assays. With Api m 5 and Ves v 3, a new pair of homologous allergens becomes available for future clinical applications in diagnosis and therapy that may also contribute to the understanding of molecular mechanisms of insect venoms. Moreover, the patient IgE reactivity together with the cellular activation demonstrates for the first time the relevance of high m.w. allergens in the context of hymenoptera venom allergy. PMID:20348419

  20. In vivo click reaction between Tc-99m-labeled azadibenzocyclooctyne-MAMA and 2-nitroimidazole-azide for tumor hypoxia targeting.

    PubMed

    Sun, Wenjing; Chu, Taiwei

    2015-10-15

    The bioactivity of nitroimidazole in Tc-99m-labeled 2-nitroimidazole, a traditional solid tumor hypoxia-imaging agent for single photon emission computed tomography (SPECT), is reduced by the presence of large ligand and metallic radionuclide, exhibiting lower tumor-to-nontumor ratios. In an effort to solve this general problem, a pretargeting strategy based on click chemistry (strain-promoted cyclooctyne-azide cycloaddition) was applied. The functional click synthons were synthesized as pretargeting components: an azide group linked to 2-nitroimidazole (2NIM-Az) serves for tumor hypoxia-targeting and azadibenzocyclooctyne conjugated with monoamine monoamide dithiol ligand (AM) functions as radiolabeling and binding group to azides in vivo. 2NIM-triazole-MAMA was obtained from in vitro click reaction with a reaction rate constant of 0.98M(-1)s(-1). AM and 2NIM-triazole-MAMA were radiolabeled with Tc-99m. The hypoxia-pretargeting biodistribution was studied in Kunming mice bearing S180 tumor; (99m)Tc-AM and (99m)Tc-triazole-2NIM were used as blank control and conventional control. Compared to the control groups, the pretargeting experiment exhibits the best radio-uptake and retention in tumor, with higher tumor-to-muscle and tumor-to-blood ratios (up to 8.55 and 1.44 at 8h post-(99m)Tc-complex-injection, respectively). To some extent, the pretargeting strategy protects the bioactivity of nitroimidazole and therefore provides an innovative approach for the development of tumor hypoxia-SPECT imaging agents. PMID:26358160

  1. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice, the staple food of South and East Asian counties, is considered to be hypoallergenic. However, several clinical studies have documented rice-induced allergy in sensitive patients. Rice proteins with molecular weights of 14-16 kDa, 26 kDa, 33 kDa and 56 kDa have been identified as allergens. Re...

  2. MAMA Dispersion Solutions

    NASA Astrophysics Data System (ADS)

    Pascucci, Ilaria

    2010-09-01

    Internal wavecals will be obtained at primary and secondary central wavelengths chosen to cover Cycle 17 use. There is also overlap with choices of configurations used with previous calibration programs which will enable long-term monitoring. This program uses the LINE lamp for a total of approximately 1.5 hours, typically at a lamp current of 10 mA.

  3. NUV MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2012-10-01

    The basic monitor takes two 1300s TIME-TAG darks bi-weekly.. The pairs of exposures are linked so that they are taken about 6 hours apart in the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.

  4. FUV MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2012-10-01

    The monitor takes six 1300s TIME-TAG darks every six weeks. The exposures are distributed over about six hours from initial turn-on to characterize the rate increase as a function of turn-on time and temperature. The frequency has been reduced from bi-weekly to once every six weeks to stay within a reasonable orbit count.

  5. MAMA Dispersion Solutions

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule

    2012-10-01

    Internal wavecals will be obtained at primary and secondary central wavelengths chosen to cover Cycle 20 use. There is also overlap with choices of configurations used with previous calibration programs which will enable long-term monitoring. This program uses the LINE lamp for a total of approximately 1.5 hours, typically at a lamp current of 10 mA.

  6. MAMA Dispersion Solutions

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule

    2011-10-01

    Internal wavecals will be obtained at primary and secondary central wavelengths chosen to cover Cycle 17 use. There is also overlap with choices of configurations used with previous calibration programs which will enable long-term monitoring. This program uses the LINE lamp for a total of approximately 1.5 hours, typically at a lamp current of 10 mA.

  7. NUV MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2013-10-01

    The basic monitor takes two 1300s TIME-TAG darks bi-weekly.. The pairs of exposures are linked so that they are taken about 6 hours apart in the same SAA free interval. This pairing of exposures will make it easier to separate long and short term temporal variability from temperature dependent changes.

  8. FUV MAMA Dark Monitor

    NASA Astrophysics Data System (ADS)

    Cox, Colin

    2013-10-01

    The monitor takes six 1300s TIME-TAG darks every six weeks. The exposures are distributed over about six hours from initial turn-on to characterize the rate increase as a function of turn-on time and temperature.

  9. Magnetismo Molecular (Molecular Magentism)

    SciTech Connect

    Reis, Mario S; Moreira Dos Santos, Antonio F

    2010-07-01

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  10. Molecular Plasmonics.

    PubMed

    Wilson, Andrew J; Willets, Katherine A

    2016-06-12

    In this review, we survey recent advances in the field of molecular plasmonics beyond the traditional sensing modality. Molecular plasmonics is explored in the context of the complex interaction between plasmon resonances and molecules and the ability of molecules to support plasmons self-consistently. First, spectroscopic changes induced by the interaction between molecular and plasmonic resonances are discussed, followed by examples of how tuning molecular properties leads to active molecular plasmonic systems. Next, the role of the position and polarizability of a molecular adsorbate on surface-enhanced Raman scattering signals is examined experimentally and theoretically. Finally, we introduce recent research focused on using molecules as plasmonic materials. Each of these examples is intended to highlight the role of molecules as integral components in coupled molecule-plasmon systems, as well as to show the diversity of applications in molecular plasmonics. PMID:27049633

  11. Molecular dynamics

    SciTech Connect

    Ladd, A.J.C.

    1988-08-01

    The basic methodology of equilibrium molecular dynamics is described. Examples from the literature are used to illustrate how molecular dynamics has been used to resolve theoretical controversies, provide data to test theories, and occasionally to discover new phenomena. The emphasis is on the application of molecular dynamics to an understanding of the microscopic physics underlying the transport properties of simple fluids. 98 refs., 4 figs.

  12. Molecular motors

    NASA Astrophysics Data System (ADS)

    Allemand, Jean François Desbiolles, Pierre

    2015-10-01

    How do we move? More precisely, what are the molecular mechanisms that can explain that our muscles, made of very small components can move at a osopic scale? To answer these questions we must introduce molecular motors. Those motors are proteins, or small protein assemblies that, in our cells, transform chemical energy into mechanical work. Then, like we could do for a oscopic motor, used in a car or in a fan, we are going to study the basic behavior of these molecular machines, present what are their energy sources, calculate their power, their yield. If molecular motors are crucial for our oscopic movements, we are going to see that they are also essential to cellular transport and that considering the activity of some enzymes as molecular motors bring some interesting new insights on their activity.

  13. Molecular Descriptors

    NASA Astrophysics Data System (ADS)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in

  14. Molecular Haeckel.

    PubMed

    Elinson, Richard P; Kezmoh, Lorren

    2010-07-01

    More than a century ago, Ernst Haeckel created embryo drawings to illustrate the morphological similarity of vertebrate early embryos. These drawings have been both widely presented and frequently criticized. At the same time that the idea of morphological similarity was recently attacked, there has been a growing realization of molecular similarities in the development of tissues and organs. We have surveyed genes expressed in vertebrate embryos, and we have used them to construct drawings that we call Molecular Haeckels. The Molecular Haeckels emphasize that, based on gene expression, there is a greater similarity among vertebrate embryos than even Haeckel might have imagined. PMID:20549737

  15. Molecular printing

    PubMed Central

    Braunschweig, Adam B.; Huo, Fengwei; Mirkin, Chad A.

    2014-01-01

    Molecular printing techniques, which involve the direct transfer of molecules to a substrate with submicrometre resolution, have been extensively developed over the past decade and have enabled many applications. Arrays of features on this scale have been used to direct materials assembly, in nanoelectronics, and as tools for genetic analysis and disease detection. The past decade has witnessed the maturation of molecular printing led by two synergistic technologies: dip-pen nanolithography and soft lithography. Both are characterized by material and substrate flexibility, but dip-pen nanolithography has unlimited pattern design whereas soft lithography has limited pattern flexibility but is low in cost and has high throughput. Advances in DPN tip arrays and inking methods have increased the throughput and enabled applications such as multiplexed arrays. A new approach to molecular printing, polymer-pen lithography, achieves low-cost, high-throughput and pattern flexibility. This Perspective discusses the evolution and future directions of molecular printing. PMID:21378889

  16. Molecular Astrophysics

    NASA Astrophysics Data System (ADS)

    Hartquist, T. W.

    2005-07-01

    Part I. Molecular Clouds and the Distribution of Molecules in the Milky Way and Other Galaxies: 1. Molecular clouds in the Milky Way P. Friberg and A. Hjalmarson; 2. Molecules in galaxies L. Blitz; Part II. Diffuse Molecular Clouds: 3. Diffuse cloud chemistry E. F. Van Dishoeck; 4. Observations of velocity and density structure in diffuse clouds W. D. Langer; 5. Shock chemistry in diffuse clouds T. W. Hartquist, D. R. Flower and G. Pineau des Forets; Part III. Quiescent Dense Clouds: 6. Chemical modelling of quiescent dense interstellar clouds T. J. Millar; 7. Interstellar grain chemistry V. Buch; 8. Large molecules and small grains in astrophysics S. H. Lepp; Part IV. Studies of Molecular Processes: 9. Molecular photoabsorption processes K. P. Kirby; 10. Interstellar ion chemistry: laboratory studies D. Smith, N. G. Adams and E. E. Ferguson; 11. Theoretical considerations on some collisional processes D. R. Bates; 12. Collisional excitation processes E. Roueff; 13. Neutral reactions at Low and High Temperatures M. M. Graff; Part V. Atomic Species in Dense Clouds: 14. Observations of atomic species in dense clouds G. J. Melnick; 15. Ultraviolet radiation in molecular clouds W. G. Roberge; 16. Cosmic ray induced photodissociation and photoionization of interstellar molecules R. Gredel; 17. Chemistry in the molecular cloud Barnard 5 S. B. Charnley and D. A. Williams; 18. Molecular cloud structure, motions, and evolution P. C. Myers; Part VI. H in Regions of Massive Star Formation: 19. Infrared observations of line emission from molecular hydrogen T. R. Geballe; 20. Shocks in dense molecular clouds D. F. Chernoff and C. F. McKee; 21. Dissociative shocks D. A. Neufeld; 22. Infrared molecular hydrogen emission from interstellar photodissociation regions A. Sternberg; Part VII. Molecules Near Stars and in Stellar Ejecta: 23. Masers J. M. Moran; 24. Chemistry in the circumstellar envelopes around mass-losing red giants M. Jura; 25. Atoms and molecules in supernova 1987a R

  17. Molecular Spintronics using Molecular Nanomagnets

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, Wolfgang

    2009-03-01

    A revolution in electronics is in view, with the contemporary evolution of two novel disciplines, spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets [1], which combine the classic macroscale properties of a magnet with the quantum properties of a nanoscale entity. The resulting field, molecular spintronics aims at manipulating spins and charges in electronic devices containing one or more molecules. In this context, we want to fabricate, characterize and study molecular devices (molecular spin-transistor, molecular spin-valve and spin filter, molecular double-dot devices, carbon nanotube nano-SQUIDs, etc.) in order to read and manipulate the spin states of the molecule and to perform basic quantum operations. The talk will discuss this--still largely unexplored--field and present our the first important results [2,3].[4pt] [1] L. Bogani & W. Wernsdorfer, Nature Mat. 7, 179 (2008).[0pt] [2] J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, M. Monthioux, Nature Nanotech. 1, 53-59 (2006).[0pt] [3] N. Roch, S. Florens, V. Bouchiat, W. Wernsdorfer, F. Balestro, Nature 453, 633 (2008).

  18. Molecular fountain.

    SciTech Connect

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  19. Molecular Electronics

    NASA Astrophysics Data System (ADS)

    Petty, Michael

    The prospects of using organic materials in electronics and optoelectronics applications have attracted scientists and technologists since the 1970s. This field has become known as molecular electronics. Some successes have already been achieved, for example the liquid-crystal display. Other products such as organic light-emitting displays, chemical sensors and plastic transistors are developing fast. There is also a keen interest in exploiting technologies at the molecular scale that might eventually replace silicon devices. This chapter provides some of the background physics and chemistry to the interdisciplinary subject of molecular electronics. A review of some of the possible application areas for organic materials is presented and some speculation is provided regarding future directions.

  20. Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Wright, John D.

    1995-02-01

    This book describes the chemical and physical structure of molecular crystals, their optical and electronic properties, and the reactions between neighboring molecules in crystals. In the second edition, the author has taken into account research that has undergone extremely rapid development since the first edition was published in 1987. For instance, he gives extensive coverage to the applications of molecular materials in high-technology devices (e.g. optical communications, laser printers, photocopiers, liquid crystal displays, solar cells, and more). There is also an entirely new chapter on the recently discovered Buckminsterfullerene carbon molecule (C60) and organic non-linear optic materials.

  1. Mama Software Features: Uncertainty Testing

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-30

    This document reviews how the uncertainty in the calculations is being determined with test image data. The results of this testing give an ‘initial uncertainty’ number than can be used to estimate the ‘back end’ uncertainty in digital image quantification in images. Statisticians are refining these numbers as part of a UQ effort.

  2. Molecular gastronomy

    NASA Astrophysics Data System (ADS)

    This, Hervé

    2005-01-01

    For centuries, cooks have been applying recipes without looking for the mechanisms of the culinary transformations. A scientific discipline that explores these changes from raw ingredients to eating the final dish, is developing into its own field, termed molecular gastronomy. Here, one of the founders of the discipline discusses its aims and importance.

  3. [Molecular imaging in neurological diseases].

    PubMed

    Reimold, M; la Fougère, C

    2016-07-01

    In neurodegeneration and in neuro-oncology, the standard imaging procedure, magnetic resonance imaging (MRI), shows limited sensitivity and specificity. Molecular imaging with specific positron-emission tomography (PET) and single-photon emission computed tomography (SPECT) tracers allows various molecular targets and metabolic processes to be assessed and is thus a valuable adjunct to MRI. Two important examples are referred to here: amino acid transport for neuro-oncological issues, and the recently approved PET tracers for detecting amyloid depositions during the preclinical stage of Alzheimer's disease. This review discusses the clinical relevance and indications for the following nuclear medicine imaging procedures: amyloid PET, (18)F-fluorodeoxyglucose (FDG)-PET, and dopamine transporter (DaT)-SPECT for the diagnosis of dementia and the differential diagnosis of Parkinson's disease, in addition to amino acid PET for the diagnosis of brain tumors and somatostatin receptor imaging in meningioma. PMID:27306201

  4. Molecular astrophysics

    NASA Astrophysics Data System (ADS)

    Herzberg, G.

    1989-01-01

    A brief history of Molecular Astrophysics is presented. The first molecules in space were identified in the 1920s in comets followed soon after by those in planetary atmospheres. The recent identification by MCKELLAR of the dimer of H 2, that is, (H 2) 2 in the atmosphere of Jupiter as well as the discovery, by DROSSART, MAILLARD, WATSON and others, of the H 3+ ion in the auroral zone of Jupiter are described. In this laboratory there is a continuing interest in interstellar molecules. Several molecules and molecular ions were observed by collaboration of laboratory spectroscopists and astronomers. Only the most recent ones are discussed. Also a few of the molecules not yet observed but likely to be observed are mentioned.

  5. Molecular Thermometry

    PubMed Central

    McCabe, Kevin M.; Hernandez, Mark

    2010-01-01

    Conventional temperature measurements rely on material responses to heat, which can be detected visually. When Galileo developed an air expansion based device to detect temperature changes, Santorio, a contemporary physician, added a scale to create the first thermometer. With this instrument, patients’ temperatures could be measured, recorded and related to changing health conditions. Today, advances in materials science and bioengineering provide new ways to report temperature at the molecular level in real time. In this review the scientific foundations and history of thermometry underpin a discussion of the discoveries emerging from the field of molecular thermometry. Intracellular nanogels and heat sensing biomolecules have been shown to accurately report temperature changes at the nano-scale. Various systems will soon provide the ability to accurately measure temperature changes at the tissue, cellular, and even sub-cellular level, allowing for detection and monitoring of very small changes in local temperature. In the clinic this will lead to enhanced detection of tumors and localized infection, and accurate and precise monitoring of hyperthermia based therapies. Some nanomaterial systems have even demonstrated a theranostic capacity for heat-sensitive, local delivery of chemotherapeutics. Just as early thermometry moved into the clinic, so too will these molecular thermometers. PMID:20139796

  6. Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-06-01

    Molecular modeling has trickled down from the realm of pharmaceutical and research laboratories into the realm of undergraduate chemistry instruction. It has opened avenues for the visualization of chemical concepts that previously were difficult or impossible to convey. I am sure that many of you have developed exercises using the various molecular modeling tools. It is the desire of this Journal to become an avenue for you to share these exercises among your colleagues. It is to this end that Ron Starkey has agreed to edit such a column and to publish not only the description of such exercises, but also the software documents they use. The WWW is the obvious medium to distribute this combination and so accepted submissions will appear online as a feature of JCE Internet. Typical molecular modeling exercise: finding conformation energies. Molecular Modeling Exercises and Experiments is the latest feature column of JCE Internet, joining Conceptual Questions and Challenge Problems, Hal's Picks, and Mathcad in the Chemistry Curriculum. JCE Internet continues to seek submissions in these areas of interest and submissions of general interest. If you have developed materials and would like to submit them, please see our Guide to Submissions for more information. The Chemical Education Resource Shelf, Equipment Buyers Guide, and WWW Site Review would also like to hear about chemistry textbooks and software, equipment, and WWW sites, respectively. Please consult JCE Internet Features to learn more about these resources at JCE Online. Email Announcements Would you like to be informed by email when the latest issue of the Journal is available online? when a new JCE Software title is shipping? when a new JCE Internet article has been published or is available for Open Review? when your subscription is about to expire? A new feature of JCE Online makes this possible. Visit our Guestbook to learn how. When

  7. Molecular clocks.

    PubMed

    Lee, Michael S Y; Ho, Simon Y W

    2016-05-23

    In the 1960s, several groups of scientists, including Emile Zuckerkandl and Linus Pauling, had noted that proteins experience amino acid replacements at a surprisingly consistent rate across very different species. This presumed single, uniform rate of genetic evolution was subsequently described using the term 'molecular clock'. Biologists quickly realised that such a universal pacemaker could be used as a yardstick for measuring the timescale of evolutionary divergences: estimating the rate of amino acid exchanges per unit of time and applying it to protein differences across a range of organisms would allow deduction of the divergence times of their respective lineages (Figure 1). PMID:27218841

  8. Molecular Mechanics

    PubMed Central

    Vanommeslaeghe, Kenno; Guvench, Olgun; MacKerell, Alexander D.

    2014-01-01

    Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and weaknesses. Variations and recent developments such as polarizable force fields are discussed. The section ends with a brief overview of common force fields in CSBDD. PMID:23947650

  9. Molecular replacement.

    PubMed

    Toth, Eric A

    2007-01-01

    As more protein structures are solved, the likelihood that current structural investigations will involve proteins for which there exists no homologous structure continually decreases. The extraction of phase information from diffraction experiments is one of several great barriers that crystallographers must overcome on the path to structure solution. One means to overcome this obstacle, the technique of molecular replacement, uses the structural similarity between proteins with similar sequences to give a good first estimate of the phases for the diffraction data of the protein of interest. The programs that execute this technique currently come in many flavors, from traditional Patterson-based methods, to stochastic searches in greater than three dimensions, to maximum likelihood-enhanced molecular replacement, each possessing unique advantages that can shake loose a recalcitrant solution. As crystallographers aim to solve larger macromolecular complexes that more faithfully depict the actors in cellular events, having existing phase information for parts of those biological machines will reinforce the technological advancements in data collection and structure solution that have already produced mammoth structures like the ribosome, yielding an ever-clearer picture of the inner workings of biology. PMID:17172763

  10. Henrique da Rocha Lima.

    PubMed

    Bernardes Filho, Fred; Avelleira, João Carlos Regazzi

    2015-01-01

    Brazilian physician and researcher Henrique da Rocha Lima was born in 1879 in the city of Rio de Janeiro, where he studied medicine and obtained the degree of M.D. in 1901. He specialized in Clinical Medicine in Germany and was the ambassador in European countries of the scientific medicine that emerged from the Oswaldo Cruz Institute in the early twentieth century. Rocha Lima has discovered the causative agent of typhus and had a major contribution to the studies of yellow fever, Chagas disease, Carrión's disease and histoplasmosis. His genius, his research and his discoveries projected his name, and, with it, the image of Brazil in the international scientific scene. PMID:26131867

  11. Henrique da Rocha Lima*

    PubMed Central

    Bernardes Filho, Fred; Avelleira, João Carlos Regazzi

    2015-01-01

    Brazilian physician and researcher Henrique da Rocha Lima was born in 1879 in the city of Rio de Janeiro, where he studied medicine and obtained the degree of M.D. in 1901. He specialized in Clinical Medicine in Germany and was the ambassador in European countries of the scientific medicine that emerged from the Oswaldo Cruz Institute in the early twentieth century. Rocha Lima has discovered the causative agent of typhus and had a major contribution to the studies of yellow fever, Chagas disease, Carrión’s disease and histoplasmosis. His genius, his research and his discoveries projected his name, and, with it, the image of Brazil in the international scientific scene. PMID:26131867

  12. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element.

    PubMed

    Mao, Yan; Bao, Yu; Gan, Shiyu; Li, Fenghua; Niu, Li

    2011-10-15

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film, and as a result, DA could be rapidly and completely removed by this way. With regard to the traditional MIPs, the GSCR-MIPs not only possessed a faster desorption and adsorption dynamics, but also exhibited a higher selectivity and binding capacity toward DA molecule. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DA was successfully constructed as demonstration based on the synthesized GSCR-MIPs nanocomposites. Under experimental conditions, selective detection of DA in a linear concentration range of 1.0 × 10(-7)-8.3 × 10(-4)M was obtained, which revealed a lower limit of detection and wider linear response compared to some previously reported DA electrochemical MIPs sensors. The new DA electrochemical sensor based on GSCR-MIPs composites also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 20 μM DA. PMID:21824760

  13. Phagocytosis of hybrid molecular nanosomal compositions containing oxidized dextrans conjugated with isonicotinic acid hydrazide by macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Troitsky, A V; Luzgina, N G; Zaikovskaja, M V; Ufimceva, E G; Iljine, D A; Akhramenko, E S; Gulyaeva, E P; Bistrova, T N

    2009-12-01

    We studied phagocytic activity of macrophages towards hybrid molecular nanosomal compositions consisting of 150-800-nm nanoliposomes containing oxidized dextrans with a molecular weight of 35 and 60 kDa obtained by chemical ("permanganate") and radiochemical oxidation of dextran conjugated with isonicotinic acid hydrazide (dextrazides, intracellular prolonged antituberculous drugs). Phagocytic activity of macrophages towards hybrid molecular nanosomal compositions containing dextrazides obtained by chemical oxidation of dextrans is higher than activity towards hybrid molecular nanosomal compositions containing dextrazides prepared by radiochemical oxidation and depends on the size of hybrid molecular nanosomal compositions and molecular weight of oxidized dextrans. PMID:21116494

  14. Muscle Giants: Molecular Scaffolds in Sarcomerogenesis

    PubMed Central

    KONTROGIANNI-KONSTANTOPOULOS, AIKATERINI; ACKERMANN, MAEGEN A.; BOWMAN, AMBER L.; YAP, SOLOMON V.; BLOCH, ROBERT J.

    2011-01-01

    Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each sarcomere. Three giant, muscle-specific proteins, titin (3–4 MDa), nebulin (600–800 kDa), and obscurin (~720–900 kDa), have been proposed to play important roles in the assembly and stabilization of sarcomeres. There is a large amount of data showing that each of these molecules interacts with several to many different protein ligands, regulating their activity and localizing them to particular sites within or surrounding sarcomeres. Consistent with this, mutations in each of these proteins have been linked to skeletal and cardiac myopathies or to muscular dystrophies. The evidence that any of them plays a role as a “molecular template,” “molecular blueprint,” or “molecular ruler” is less definitive, however. Here we review the structure and function of titin, nebulin, and obscurin, with the literature supporting a role for them as scaffolding molecules and the contradictory evidence regarding their roles as molecular guides in sarcomerogenesis. PMID:19789381

  15. Part I---Evaluating Effects of Oligomer Formation on Cytochrome P450 2C9 Electron Transfer and Drug Metabolism, Part II---Utilizing Molecular Modeling Techniques to Study the Src-Interacting Proteins Actin Filament Associated Protein of 110 kDa (AFAP-110) and Cortactin

    NASA Astrophysics Data System (ADS)

    Jett, John Edward, Jr.

    nanopillars, the immobilization of CYP2C9 enzymes to those nanopillars, and the utilization of the array to perform conductive probe atomic force microscopy experiments examining the electron transfer process of CYP2C9 in the absence and presence of substrate molecules. Part II. The Src protein has been known to play a role in cancer cell progression for over 30 years. The function of a non-receptor tyrosine kinase such as Src is to relay extracellular signals through intracellular tyrosine phosphorylation. As a tyrosine kinase, Src and the cellular signaling pathways it is involved in play many functional roles in the cell, both in cellular proliferation and in cytoskeletal dynamics, cell adhesion, motility and invasion. Two of the many proteins comprising Src cellular signaling pathways are actin filament associated protein of 110 kDa (AFAP-110) and cortactin. AFAP-110 is a known activator of Src; one mechanism to abrogate the AFAP-110-induced activation of Src is to inhibit their colocalization within the cell. This colocalization is expected to occur when the pleckstrin homology (PH1 and PH2) domains of AFAP-110 are allowed to interact with membrane-bound phospholipids. Cortactin, on the other hand, is a cytosolic protein capable of being phosphorylated on various tyrosine residues, activating it and allowing it to interact with actin. The Src homology 2 (SH2) domain of Src has been shown to be capable of interacting with cortactin, an association which will be probed here. This section of the dissertation will discuss the use of molecular modeling techniques to develop structural models of the AFAP-110 PH1 and PH2 domains and use them to make predictions about how the protein interacts with phospholipids in the plasma membrane and how they might be stabilized to interact with other proteins. Structural models were designed using homology modeling methods, docking programs were used to predict key residues of AFAP-110 involved in binding to phospholipids and mutational

  16. Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter

    NASA Astrophysics Data System (ADS)

    Abad, Lucille V.; Aurigue, Fernando B.; Relleve, Lorna S.; Montefalcon, Djowel Recto V.; Lopez, Girlie Eunice P.

    2016-01-01

    Radiation degraded κ-carrageenan (1% solution at absorbed doses of 20 kGy and 30 kGy) were tested for its plant growth promoter (PGP) effect on pechay plants under hydroponics condition. Results revealed that higher PGP effects were found in κ-carrageenan irradiated at an absorbed dose of 30 kGy. Mw of irradiated κ-carrageenan as measured by GPC were determined to be 7362 Da and 6762 Da for 20 kGy and 30 kGy, respectively. Fractionation of the irradiated κ-carrageenan (30 kGy) was done to separate different Mw fractions using Mw cut-off filters of 1 kDa, 3 kDa, and 5 kDa. The PGP effect of the different retentates showed that biological activity in plants followed the order of 5 kDa>3 kDa>1 kDa using hydroponics condition but the reverse was observed in the order of 1 kDa>3 kDa>5 kDa when absorbed in plants by foliar spraying. GPC chromatogram indicated at least three (3) low molecular weight (LMW) fragments from radiation modified κ-carrageenan solution with an Mw<2000 Da. A fragment has also been identified with an Mw of as low as 160 Da which was produced under acidic (un-neutralized) condition. This may be attributed to the formation of 5-hydroxymethylfurfural (5-HMF).

  17. The molecular matching problem

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1993-01-01

    Molecular chemistry contains many difficult optimization problems that have begun to attract the attention of optimizers in the Operations Research community. Problems including protein folding, molecular conformation, molecular similarity, and molecular matching have been addressed. Minimum energy conformations for simple molecular structures such as water clusters, Lennard-Jones microclusters, and short polypeptides have dominated the literature to date. However, a variety of interesting problems exist and we focus here on a molecular structure matching (MSM) problem.

  18. Effect of protein molecular weight on the mass transfer in protein mixing

    NASA Astrophysics Data System (ADS)

    Asad, Ahmed; Chai, Chuan; Wu, JiangTao

    2012-03-01

    The mixing of protein solutions with that of precipitating agents is very important in protein crystallization experiments. In this work, the interferometry images were recorded during the mixing of two proteins with different molecular weights: lysozyme of ˜14.6 kDa, trypsin of ˜23.3 kDa and pepsin of ˜34.8 kDa were placed in a Mach-Zehnder interferometer. The protein molecular weight dependence on the competition of the transport process and kinetics at the interface was studied. The concentration profiles of protein solutions were calculated to analyze the mass transfer during the mixing process. It was observed that the mass transfer process is more efficient during the mixing of proteins with higher molecular weights. In addition, the more rapid concentration changes above the interface suggest that convection may dominate the diffusion. The phenomenon of convection is higher in the protein solutions with higher molecular weight.

  19. High Efficiency Diffusion Molecular Retention Tumor Targeting

    PubMed Central

    Guo, Yanyan; Yuan, Hushan; Cho, Hoonsung; Kuruppu, Darshini; Jokivarsi, Kimmo; Agarwal, Aayush; Shah, Khalid; Josephson, Lee

    2013-01-01

    Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for 111 In3+), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or IV methods was assessed by surface fluorescence, biodistribution of [111In] RGD and [111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by IV). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light. PMID:23505478

  20. Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update

    PubMed Central

    Brichta, Lars; Greengard, Paul

    2014-01-01

    Numerous disorders of the central nervous system (CNS) are attributed to the selective death of distinct neuronal cell populations. Interestingly, in many of these conditions, a specific subset of neurons is extremely prone to degeneration while other, very similar neurons are less affected or even spared for many years. In Parkinson’s disease (PD), the motor manifestations are primarily linked to the selective, progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). In contrast, the very similar DA neurons in the ventral tegmental area (VTA) demonstrate a much lower degree of degeneration. Elucidating the molecular mechanisms underlying the phenomenon of differential DA vulnerability in PD has proven extremely challenging. Moreover, an increasing number of studies demonstrate that considerable molecular and electrophysiologic heterogeneity exists among the DA neurons within the SNpc as well as those within the VTA, adding yet another layer of complexity to the selective DA vulnerability observed in PD. The discovery of key pathways that regulate this differential susceptibility of DA neurons to degeneration holds great potential for the discovery of novel drug targets and the development of promising neuroprotective treatment strategies. This review provides an update on the molecular basis of the differential vulnerability of midbrain DA neurons in PD and highlights the most recent developments in this field. PMID:25565977

  1. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples.

    PubMed

    Kiss, Laszlo; David, Vasile; David, Iulia Gabriela; Lazăr, Paul; Mihailciuc, Constantin; Stamatin, Ioan; Ciobanu, Adela; Ştefănescu, Cristian Dragoş; Nagy, Livia; Nagy, Géza; Ciucu, Anton Alexandru

    2016-11-01

    A simple and reliable method for preparing a selective dopamine (DA) sensor based on a molecularly imprinted polymer of ethacridine was proposed. The molecularly imprinted polymer electrode was prepared through electrodepositing polyethacridine-dopamine film on the glassy carbon electrode and then removing DA from the film via chemical induced elution. The molecular imprinted sensor was tested by cyclic voltammetry as well as by differential pulse voltammetry (DPV) to verify the changes in oxidative currents of DA. In optimized DPV conditions the oxidation peak current was well-proportional to the concentration of DA in the range from 2.0×10(-8)M up to 1×10(-6)M. The limit of detection (3σ) of DA was found to be as low as 4.4nM, by the proposed sensor that could be considered a sensitive marker of DA depletion in Parkinson's disease. Good reproducibility with relative standard deviation of 1.4% and long term stability within two weeks were also observed. The modified sensor was validated for the analysis of DA in deproteinized human serum samples using differential pulse voltammetric technique. PMID:27591643

  2. Leonardo da Vinci and the Downburst.

    NASA Astrophysics Data System (ADS)

    Gedzelman, Stanley David

    1990-05-01

    Evidence from the drawings, experiments, and writings of Leonardo da Vinci are presented to demonstrate that da Vinci recognized and, possibly, discovered the downburst and understood its associated airflow. Other early references to vortex flows resembling downbursts are mentioned.

  3. Molecular implementation of molecular shift register memories

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)

    1991-01-01

    An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.

  4. The Ubiquitin Receptor DA1 Regulates Seed and Organ Size by Modulating the Stability of the Ubiquitin-Specific Protease UBP15/SOD2 in Arabidopsis[W

    PubMed Central

    Du, Liang; Li, Na; Chen, Liangliang; Xu, Yingxiu; Li, Yu; Zhang, Yueying; Li, Chuanyou; Li, Yunhai

    2014-01-01

    Although the control of organ size is a fundamental question in developmental biology, little is known about the genetic and molecular mechanisms that determine the final size of seeds in plants. We previously demonstrated that the ubiquitin receptor DA1 acts synergistically with the E3 ubiquitin ligases DA2 and ENHANCER1 OF DA1 (EOD1)/BIG BROTHER to restrict seed growth in Arabidopsis thaliana. Here, we describe UBIQUITIN-SPECIFIC PROTEASE15 (UBP15), encoded by SUPPRESSOR2 OF DA1 (SOD2), which acts maternally to regulate seed size by promoting cell proliferation in the integuments of ovules and developing seeds. The sod2/ubp15 mutants form small seeds, while overexpression of UBP15 increases seed size of wild-type plants. Genetic analyses indicate that UBP15 functions antagonistically in a common pathway with DA1 to influence seed size, but does so independently of DA2 and EOD1. Further results reveal that DA1 physically associates with UBP15 in vitro and in vivo and modulates the stability of UBP15. Therefore, our findings establish a genetic and molecular framework for the regulation of seed size by four ubiquitin-related proteins DA1, DA2, EOD1, and UBP15 and suggest that they are promising targets for increasing seed size in crops. PMID:24585836

  5. Determination of hyaluronan molecular mass distribution in human breast milk.

    PubMed

    Yuan, Han; Amin, Ripal; Ye, Xin; de la Motte, Carol A; Cowman, Mary K

    2015-04-01

    Hyaluronan (HA) in human milk mediates host responses to microbial infection via TLR4- and CD44-dependent signaling. Signaling by HA is generally size specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low-M component. Here we report the size distribution of HA in human milk samples from 20 unique donors. A new method for HA analysis, employing ion exchange (IEX) chromatography to fractionate HA by size and specific quantification of each size fraction by competitive enzyme-linked sorbent assay (ELSA), was developed. When separated into four fractions, milk HA with M⩽20 kDa, M∼20 to 60 kDa, and M∼60 to 110 kDa comprised averages of 1.5, 1.4, and 2.0% of the total HA, respectively. The remaining 95% was HA with M⩾110 kDa. Electrophoretic analysis of the higher M HA from 13 samples showed nearly identical M distributions, with an average M of approximately 440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low-M HA components. PMID:25579786

  6. Determination of Hyaluronan Molecular Mass Distribution in Human Breast Milk

    PubMed Central

    Yuan, Han; Amin, Ripal; Ye, Xin; De La Motte, Carol A.; Cowman, Mary K.

    2015-01-01

    Hyaluronan (HA) in human milk mediates host responses to microbial infection, via TLR4- and CD44-dependent signaling. Signaling by HA is generally size-specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low M component. Here we report the size distribution of HA in human milk samples from twenty unique donors. A new method for HA analysis, employingion exchange (IEX) chromatography to fractionate HA by size, and specific quantification of each size fraction by competitive Enzyme Linked Sorbent Assay (ELSA), was developed. When separated into four fractions, milk HA with M ≤ 20 kDa, M ≈20-60 kDa, and M ≈ 60-110 kDa comprised an average of 1.5%, 1.4% and 2% of the total HA, respectively. The remaining 95% was HA with M≥110 kDa. Electrophoretic analysis of the higher M HA from thirteen samples showed nearly identical M distributions, with an average M of ∼440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low M HA components. PMID:25579786

  7. Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron.

    PubMed

    Shen, Hung-Chang; Wei, Jia-Yi; Chu, Sao-Yu; Chung, Pei-Chi; Hsu, Tsai-Chi; Yu, Hung-Hsiang

    2016-01-01

    In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry. PMID:27163287

  8. Morphogenetic Studies of the Drosophila DA1 Ventral Olfactory Projection Neuron

    PubMed Central

    Yu, Hung-Hsiang

    2016-01-01

    In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry. PMID:27163287

  9. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    PubMed

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. PMID:25861730

  10. Progress in molecular SIMS

    SciTech Connect

    Borman, S.

    1987-04-15

    A review of sputtering and molecular ion emission is presented. New derivatization techniques have produced lower detection limits for molecular secondary ion mass spectrometry (SIMS). Spectra of representative organic compounds are presented.

  11. Fluorescent properties of low-molecular-weight fractions from chernozem humic acids

    NASA Astrophysics Data System (ADS)

    Trubetskoi, O. A.; Demin, D. V.; Trubetskaya, O. E.

    2013-10-01

    The polyacrylamide gel electrophoresis of chernozem humic acids (HAs) followed by ultraviolet detection (λ = 312 nm) has revealed a new highly fluorescent fraction that has the highest electrophoretic mobility and the lowest nominal molecular weight (NMW). The preparative isolation of the fraction has been performed using the multiple microfiltration of the same HA sample in a 7 M carbamide solution on a membrane with a nominal pore size of 5 kDa. Thirty ultrafiltrates with NMW < 5 kDa and different fluorescence maximums in the region of 475-505 nm have been prepared, as well as a nonfluorescent concentrate with NMW > 5 kDa. Fluorescence maximums at and below 490 nm have been noted only in the first four ultrafiltrates. All the ultrafiltrates have been combined into the fraction with NMW < 5 kDa, which has been successively passed through membranes of 3 and 1 kDa. Solutions of subfractions F 3-5 kDa, F 1-3 kDa, and F < 1 kDa with fluorescence maximums at 505, 488, and 465 nm, respectively, have been prepared. The F < 1 kDa subfraction with the lowest NMW had the highest fluorescence intensity. The distribution of the fluorescence maximums in the ultrafiltrates has indicated the presence of at least two groups of fluorophores and has confirmed the supramolecular organization of the extracted soil HAs.

  12. Molecular electronics: Observation of molecular rectification

    SciTech Connect

    Waldeck, D.H.; Beratan, D.N. )

    1993-07-30

    The authors review some experiments in molecular rectification and their implication for commercial uses of molecular electronic devices. Two of the cases involve rectification by single molecules which consist of an electron donor on one side, an electron acceptor on the other side, and a bridge in between, coupled to electrodes. The third case involves rectification at a graphite electrode derivatized with a Cu phthalocyanine derivative, and probed with a Pt/Ir scanning tunneling microscope tip. Some potential applications of molecular devices are in high-density memory storage of holographic memory devices, neural networks, cellular automata, and chemical and biochemical sensors.

  13. Molecular Research in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular research and biotechnology have long been fields of study with applications useful to aquaculture and other animal sciences. Molecular Research in Aquaculture looks to provide an understanding of molecular research and its applications to the aquaculture industry in a format that allows in...

  14. Molecular Graphics and Chemistry.

    ERIC Educational Resources Information Center

    Weber, Jacques; And Others

    1992-01-01

    Explains molecular graphics, i.e., the application of computer graphics techniques to investigate molecular structure, function, and interaction. Structural models and molecular surfaces are discussed, and a theoretical model that can be used for the evaluation of intermolecular interaction energies for organometallics is described. (45…

  15. Neospora caninum: identification of 19-, 38-, and 40-kDa surface antigens and a 33-kDa dense granule antigen using monoclonal antibodies.

    PubMed

    Schares, G; Dubremetz, J F; Dubey, J P; Bärwald, A; Loyens, A; Conraths, F J

    1999-06-01

    Neospora caninum, a coccidian parasite closely related to Toxoplasma gondii, can infect a broad host range and is regarded as an important cause of bovine abortion worldwide. In the present study, four antigens of N. caninum were partially characterized using monoclonal antibodies. Immunofluorescence of viable tachyzoites as well as the immunoprecipitation of antigens extracted from tachyzoites previously labeled by surface biotinylation revealed that three of these antigens with apparent molecular weights of 40, 38, and 19 kDa are located in the outer surface membrane of this parasite stage. Further evidence for the surface localization of the 38-kDa antigen was obtained by immunoelectron microscopy. In addition to the surface molecules, an antigen located in dense granules and in the tubular network of the parasitophorous vacuole was detected by another monoclonal antibody. When tachyzoite antigens separated under nonreducing conditions were probed on Western blots, this antibody reacted mainly with a 33-kDa antigen. Immunohistochemical analysis of infected tissue sections indicated that the 33-kDa dense granule antigen is present in both tachyzoites and bradyzoites, while the 38-kDa surface antigen from tachyzoites seems to be absent in bradyzoites. PMID:10366536

  16. Molecular electrostatic potentials by systematic molecular fragmentation

    SciTech Connect

    Reid, David M.; Collins, Michael A.

    2013-11-14

    A simple method is presented for estimating the molecular electrostatic potential in and around molecules using systematic molecular fragmentation. This approach estimates the potential directly from the electron density. The accuracy of the method is established for a set of organic molecules and ions. The utility of the approach is demonstrated by estimating the binding energy of a water molecule in an internal cavity in the protein ubiquitin.

  17. Engineering molecular machines

    NASA Astrophysics Data System (ADS)

    Erman, Burak

    2016-04-01

    Biological molecular motors use chemical energy, mostly in the form of ATP hydrolysis, and convert it to mechanical energy. Correlated thermal fluctuations are essential for the function of a molecular machine and it is the hydrolysis of ATP that modifies the correlated fluctuations of the system. Correlations are consequences of the molecular architecture of the protein. The idea that synthetic molecular machines may be constructed by designing the proper molecular architecture is challenging. In their paper, Sarkar et al (2016 New J. Phys. 18 043006) propose a synthetic molecular motor based on the coarse grained elastic network model of proteins and show by numerical simulations that motor function is realized, ranging from deterministic to thermal, depending on temperature. This work opens up a new range of possibilities of molecular architecture based engine design.

  18. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients.

    PubMed

    Banchereau, Romain; Hong, Seunghee; Cantarel, Brandi; Baldwin, Nicole; Baisch, Jeanine; Edens, Michelle; Cepika, Alma-Martina; Acs, Peter; Turner, Jacob; Anguiano, Esperanza; Vinod, Parvathi; Kahn, Shaheen; Obermoser, Gerlinde; Blankenship, Derek; Wakeland, Edward; Nassi, Lorien; Gotte, Alisa; Punaro, Marilynn; Liu, Yong-Jun; Banchereau, Jacques; Rossello-Urgell, Jose; Wright, Tracey; Pascual, Virginia

    2016-04-21

    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to nucleic acids and highly diverse clinical manifestations. To assess its molecular heterogeneity, we longitudinally profiled the blood transcriptome of 158 pediatric patients. Using mixed models accounting for repeated measurements, demographics, treatment, disease activity (DA), and nephritis class, we confirmed a prevalent IFN signature and identified a plasmablast signature as the most robust biomarker of DA. We detected gradual enrichment of neutrophil transcripts during progression to active nephritis and distinct signatures in response to treatment in different nephritis subclasses. Importantly, personalized immunomonitoring uncovered individual correlates of disease activity that enabled patient stratification into seven groups, supported by patient genotypes. Our study uncovers the molecular heterogeneity of SLE and provides an explanation for the failure of clinical trials. This approach may improve trial design and implementation of tailored therapies in genetically and clinically complex autoimmune diseases. PAPERCLIP. PMID:27040498

  19. Influence of Molecular Weight and Degree of Deacetylation of Low Molecular Weight Chitosan on the Bioactivity of Oral Insulin Preparations

    PubMed Central

    Qinna, Nidal A.; Karwi, Qutuba G.; Al-Jbour, Nawzat; Al-Remawi, Mayyas A.; Alhussainy, Tawfiq M.; Al-So’ud, Khaldoun A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems. PMID:25826718

  20. Influence of molecular weight and degree of deacetylation of low molecular weight chitosan on the bioactivity of oral insulin preparations.

    PubMed

    Qinna, Nidal A; Karwi, Qutuba G; Al-Jbour, Nawzat; Al-Remawi, Mayyas A; Alhussainy, Tawfiq M; Al-So'ud, Khaldoun A; Al Omari, Mahmoud M H; Badwan, Adnan A

    2015-04-01

    The objective of the present study was to prepare and characterize low molecular weight chitosan (LMWC) with different molecular weight and degrees of deacetylation (DDA) and to optimize their use in oral insulin nano delivery systems. Water in oil nanosized systems containing LMWC-insulin polyelectrolyte complexes were constructed and their ability to reduce blood glucose was assessed in vivo on diabetic rats. Upon acid depolymerization and testing by viscosity method, three molecular weights of LMWC namely, 1.3, 13 and 18 kDa were obtained. As for the DDA, three LMWCs of 55%, 80% and 100% DDA were prepared and characterized by spectroscopic methods for each molecular weight. The obtained LMWCs showed different morphological and in silico patterns. Following complexation of LMWCs with insulin, different aggregation sizes were obtained. Moreover, the in vivo tested formulations showed different activities of blood glucose reduction. The highest glucose reduction was achieved with 1.3 kDa LMWC of 55% DDA. The current study emphasizes the importance of optimizing the molecular weight along with the DDA of the incorporated LMWC in oral insulin delivery preparations in order to ensure the highest performance of such delivery systems. PMID:25826718

  1. Deconstructing honeybee vitellogenin: novel 40 kDa fragment assigned to its N terminus

    PubMed Central

    Havukainen, Heli; Halskau, Øyvind; Skjaerven, Lars; Smedal, Bente; Amdam, Gro V.

    2011-01-01

    Vitellogenin, an egg-yolk protein precursor common to oviparous animals, is found abundantly in honeybee workers – a caste of helpers that do not usually lay eggs. Instead, honeybee vitellogenin (180 kDa) participates in processes other than reproduction: it influences hormone signaling, food-related behavior, immunity, stress resistance and longevity. The molecular basis of these functions is largely unknown. Here, we establish and compare the molecular properties of vitellogenin from honeybee hemolymph (blood) and abdominal fat body, two compartments that are linked to vitellogenin functions. Our results reveal a novel 40 kDa vitellogenin fragment in abdominal fat body tissue, the main site for vitellogenin synthesis and storage. Using MALDI-TOF combined with MS/MS mass-spectroscopy, we assign the 40 kDa fragment to the N terminus of vitellogenin, whereas a previously observed 150 kDa fragment corresponded to the remainder of the protein. We show that both protein units are N glycosylated and phosphorylated. Focusing on the novel 40 kDa fragment, we present a homology model based on the structure of lamprey lipovitellin that includes a conserved β-barrel-like shape, with a lipophilic cavity in the interior and two insect-specific loops that have not been described before. Our data indicate that the honeybee fat body vitellogenin experiences cleavage unlike hemolymph vitellogenin, a pattern that can suggest a tissue-specific role. Our experiments advance the molecular understanding of vitellogenin, of which the multiple physiological and behavioral effects in honeybees are well established. PMID:21270306

  2. Fluorine substitution enhanced photovoltaic performance of a D-A(1)-D-A(2) copolymer.

    PubMed

    Dang, Dongfeng; Chen, Weichao; Yang, Renqiang; Zhu, Weiguo; Mammo, Wendimagegn; Wang, Ergang

    2013-10-18

    A new alternating donor-acceptor (D-A1-D-A2) copolymer containing two electron-deficient moieties, isoindigo and quinoxaline, was synthesized. The photovoltaic performance of this polymer could be improved by incorporating fluorine atoms into the quinoxaline units, resulting in an efficiency of 6.32%. This result highlights the attractive promise of D-A1-D-A2 copolymers for high-performance bulk heterojunction solar cells. PMID:24000353

  3. Myelin management by the 18.5–kDa and 21.5–kDa classic myelin basic protein isoforms

    PubMed Central

    Harauz, George; Boggs, Joan M.

    2013-01-01

    The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP’s protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation. PMID:23398367

  4. Standardized molecular typing.

    PubMed

    Müller, F M; Lischewski, A; Harmsen, D; Hacker, J

    1999-01-01

    Molecular typing methods are useful tools in molecular mycology. The results of these biotyping procedures may help to identify pathogenic strains in order to detect sources of nosocomial infection and for the investigation of epidemiological relationships. With respect to the facultative pathogen, Candida albicans, various methods such as pulse-field gel electrophoresis (PFGE), restriction fragment length polymorphism (RFLP), DNA fingerprinting methods and hybridization with repetitive DNA elements have been described as useful tools in molecular epidemiology. The previously described hybridization method with the Candida albicans specific CARE-2 probe and subsequent rehybridization with a molecular size marker is a standardized reproducible typing method for comparison of results obtained in different laboratories. In a larger epidemiological study conducted at the University Hospital of Würzburg analysing clinical C. albicans isolates, we were able to describe relationships between sequential patient isolates. These findings demonstrate that standardized molecular typing methods are a powerful tool in molecular mycology studies. PMID:10865907

  5. Atomic and molecular supernovae

    SciTech Connect

    Liu, W.

    1997-12-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  6. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  7. Evidence for Complex Molecular Architectures for Solvent-Extracted Lignins

    SciTech Connect

    Rials, Timothy G; Urban, Volker S; Langan, Paul

    2012-01-01

    Lignin, an abundant, naturally occurring biopolymer, is often considered 'waste' and used as a simple fuel source in the paper-making process. However, lignin has emerged as a promising renewable resource for engineering materials, such as carbon fibers. Unfortunately, the molecular architecture of lignin (in vivo and extracted) is still elusive, with numerous conflicting reports in the literature, and knowledge of this structure is extremely important, not only for materials technologies, but also for production of biofuels such as cellulosic ethanol due to biomass recalcitrance. As such, the molecular structures of solvent-extracted (sulfur-free) lignins, which have been modified using various acyl chlorides, have been probed using small-angle X-ray (SAXS) and neutron (SANS) scattering in tetrahydrofuran (THF) solution along with hydrodynamic characterization using dilute solution viscometry and gel permeation chromatography (GPC) in THF. Mass spectrometry shows an absolute molecular weight {approx}18-30 kDa ({approx}80-140 monomers), while GPC shows a relative molecular weight {approx}3 kDa. A linear styrene oligomer (2.5 kDa) was also analyzed in THF using SANS. Results clearly show that lignin molecular architectures are somewhat rigid and complex, ranging from nanogels to hyperbranched macromolecules, not linear oligomers or physical assemblies of oligomers, which is consistent with previously proposed delignification (extraction) mechanisms. Future characterization using the methods discussed here can be used to guide extraction processes as well as genetic engineering technologies to convert lignin into value added materials with the potential for high positive impact on global sustainability.

  8. Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign.

    PubMed

    Sliwoski, Gregory; Mendenhall, Jeffrey; Meiler, Jens

    2016-03-01

    Quantitative structure-activity relationship (QSAR) is a branch of computer aided drug discovery that relates chemical structures to biological activity. Two well established and related QSAR descriptors are two- and three-dimensional autocorrelation (2DA and 3DA). These descriptors encode the relative position of atoms or atom properties by calculating the separation between atom pairs in terms of number of bonds (2DA) or Euclidean distance (3DA). The sums of all values computed for a given small molecule are collected in a histogram. Atom properties can be added with a coefficient that is the product of atom properties for each pair. This procedure can lead to information loss when signed atom properties are considered such as partial charge. For example, the product of two positive charges is indistinguishable from the product of two equivalent negative charges. In this paper, we present variations of 2DA and 3DA called 2DA_Sign and 3DA_Sign that avoid information loss by splitting unique sign pairs into individual histograms. We evaluate these variations with models trained on nine datasets spanning a range of drug target classes. Both 2DA_Sign and 3DA_Sign significantly increase model performance across all datasets when compared with traditional 2DA and 3DA. Lastly, we find that limiting 3DA_Sign to maximum atom pair distances of 6 Å instead of 12 Å further increases model performance, suggesting that conformational flexibility may hinder performance with longer 3DA descriptors. Consistent with this finding, limiting the number of bonds in 2DA_Sign from 11 to 5 fails to improve performance. PMID:26721261

  9. Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase

    SciTech Connect

    Shoseyov, O.; Doi, R.H. )

    1990-03-01

    The cellulase complex from Clostridium cellulovorans has been purified and its subunit composition determined. The complex exhibits cellulase activity against crystalline cellulose as well as carboxymethylcellulase (CMCase) and cellobiohydrolase activities. Three major subunits are present with molecular masses of 170, 100, and 70 kDa. The 100-kDa subunit is the major CMCase, although at least four other, minor subunits show CMCase activity. The 170-kDa subunit has the highest affinity for cellulose, does not have detectable enzymatic activity, but is necessary for cellulase activity. Immunological studies indicate that the 170-kDa subunit is not required for binding of the catalytic subunits to cellulose and therefore does not function solely as an anchor protein. Thus this core subunit must have multiple functions. The authors propose a working hypothesis that the binding of the 170-kDa subunit converts the crystalline cellulose to a form that is capable of being hydrolyzed in a cooperative fashion by the associated catalytic subunits.

  10. Descriptive Morphology Terms For MAMA software

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-21

    The table on the following pages lists a set of morphology terms for describing materials. We have organized these terms by categories. Software uses are welcome to suggest other terms that are needed to accurately describe materials. This list is intended as a initial starting point to generating a consensus terminology list.

  11. MAMA Software Features: Visual Examples of Quantification

    SciTech Connect

    Ruggiero, Christy E.; Porter, Reid B.

    2014-05-20

    This document shows examples of the results from quantifying objects of certain sizes and types in the software. It is intended to give users a better feel for some of the quantification calculations, and, more importantly, to help users understand the challenges with using a small set of ‘shape’ quantification calculations for objects that can vary widely in shapes and features. We will add more examples to this in the coming year.

  12. "Mama Talking to Papa Under the Tree."

    ERIC Educational Resources Information Center

    Fitchue, Leah Gaskin

    Among blacks of low socioeconomic status, mothers have a particularly important role to play in determining the academic paths of their children in public schools. In research conducted by Dr. Virginia Shipman, key indices for minority student academic achievement have been shown to be (1) the extent of maternal encouragement and involvement with…

  13. "Mama" and "Papa" in Child Language

    ERIC Educational Resources Information Center

    Ruke-Dravina, Velta

    1976-01-01

    This case study of two Latvian children attempts to show how the parental terms for"mummy" and "daddy" in Latvian are acquired, paying particular attention to the changing relationship between the input and output forms during the acquisition process. (Author/RM)

  14. The Phonetics of "Cat" and "Mama."

    ERIC Educational Resources Information Center

    Labov, William; Labov, Teresa

    1978-01-01

    A detailed analysis of a six-month period in a child's acquisition of phonetic and phonological capacities indicates that the apparent plateau of the second year is a site of intensive language learning, which is not reflected in the growth of vocabulary or mean length of utterance. (Author/EJS)

  15. STIS MAMA Dispersion SolutionsMonitor

    NASA Astrophysics Data System (ADS)

    Sonnentrucker, Paule

    2013-10-01

    Internal wavecals will be obtained at primary and secondary central wavelengths chosen to cover Cycle 21 use. There is also overlap with choices of configurations used with previous calibration programs which will enable long-term monitoring. This program uses the LINE lamp for a total of approximately 1.5 hours, typically at a lamp current of 10 mA.

  16. Molecular Typing and Differentiation

    EPA Science Inventory

    In this chapter, general background and bench protocols are provided for a number of molecular typing techniques in common use today. Methods for the molecular typing and differentiation of microorganisms began to be widely adopted following the development of the polymerase chai...

  17. Molecular Beacons in Diagnostics

    PubMed Central

    Kramer, Fred Russell

    2012-01-01

    Recent technical advances have begun to realize the potential of molecular beacons to test for diverse infections in clinical diagnostic laboratories. These include the ability to test for, and quantify, multiple pathogens in the same clinical sample, and to detect antibiotic resistant strains within hours. The design principles of molecular beacons have also spawned a variety of allied technologies. PMID:22619695

  18. Molecular biology of development

    SciTech Connect

    Davidson, E.H.; Firtel, R.A.

    1984-01-01

    This book is a compilation of papers presented at a symposium on the molecular biology of development. Topics discussed include: cytoplasmic localizations and pattern formations, gene expression during oogenesis and early development, developmental expression of gene families molecular aspects of plant development and transformation in whole organisms and cells.

  19. [Stimulation of cell cultures recovery after cryopreservation by the cattle cord blood FRACTION (below 5 kDa) or Actovegin].

    PubMed

    2013-01-01

    The capacities of the cattle cord blood low-molecular fraction (below 5 kDa) and Actovegin (the vealer blood fraction (below 5 kDa)) for recovering functions of cell cultures after cryopreservation compared. Their influence proliferation of the flozen-thawed cell cultures, certain stages of their growth, cell attachment, rate of cell spreading, and mitotic regiment has been studied. Both the cord blood low-molecular fraction and Actovegin were shown to stimulate growth of the cell cultures after cryopreservation more efficiently at the concentration of 224 μg/ml. However, despite the stimulating effect discovered, their application did not bring proliferative indices on the 1st passage after cryopreservation to the values of the native culture. The effects of the cord blood low-molecular fraction and Actovegin on the human fibroblast culture were identical by the following parameters: cell attachment, rates of cell spreading and proliferation. In culture BHK-21 clone 13/04 the efficiency of Actovegin was low, while the cord blood low-molecular fraction has a conspicuous stimulating effect on its adhesion and proliferation. The investigations carried out can serve as a basis for the development of regenerative media containing the cattle cord blood low-molecular fraction (below 5 kDa) or Actovegin as active components at the concentration of 224 μg/ml with the purpose of fast recovery of culture prolifetative properties after cryopreservation. PMID:25508566

  20. [Stimulation of cell cultures recovery after cryopreservation by the cattle cord blood FRACTION (below 5 kDa) or Actovegin].

    PubMed

    Gulevskiĭ, A K; Trifonova, A V; Lavrik, A A

    2013-01-01

    The capacities of the cattle cord blood low-molecular fraction (below 5 kDa) and Actovegin (the vealer blood fraction (below 5 kDa)) for recovering functions of cell cultures after cryopreservation compared. Their influence proliferation of the flozen-thawed cell cultures, certain stages of their growth, cell attachment, rate of cell spreading, and mitotic regiment has been studied. Both the cord blood low-molecular fraction and Actovegin were shown to stimulate growth of the cell cultures after cryopreservation more efficiently at the concentration of 224 μg/ml. However, despite the stimulating effect discovered, their application did not bring proliferative indices on the 1st passage after cryopreservation to the values of the native culture. The effects of the cord blood low-molecular fraction and Actovegin on the human fibroblast culture were identical by the following parameters: cell attachment, rates of cell spreading and proliferation. In culture BHK-21 clone 13/04 the efficiency of Actovegin was low, while the cord blood low-molecular fraction has a conspicuous stimulating effect on its adhesion and proliferation. The investigations carried out can serve as a basis for the development of regenerative media containing the cattle cord blood low-molecular fraction (below 5 kDa) or Actovegin as active components at the concentration of 224 μg/ml with the purpose of fast recovery of culture prolifetative properties after cryopreservation. PMID:25470939

  1. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. PMID:26095144

  2. Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    PubMed Central

    Kingsley, James W.; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J.; Langridge, Sean; Thompson, Richard L.; Cadby, Ashley J.; Pearson, Andrew J.; Lidzey, David G.; Jones, Richard A. L.; Parnell, Andrew J.

    2014-01-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer. PMID:24924096

  3. Molecular weight dependent vertical composition profiles of PCDTBT:PC71BM blends for organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Kingsley, James W.; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J.; Langridge, Sean; Thompson, Richard L.; Cadby, Ashley J.; Pearson, Andrew J.; Lidzey, David G.; Jones, Richard A. L.; Parnell, Andrew J.

    2014-06-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC71BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC71BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer.

  4. Characterization of Molecular Transport in Ultrathin Hydrogel Coatings for Cellular Immunoprotection

    PubMed Central

    Lilly, Jacob L.; Romero, Gabriela; Xu, Weijie; Shin, Hainsworth Y.; Berron, Brad J.

    2015-01-01

    PEG hydrogels are routinely used in immunoprotection applications to hide foreign cells from a host immune system. Size dependent transport is typically exploited in these systems to prevent access by macromolecular elements of the immune system while allowing the transport of low molecular weight nutrients. This work studies a nanoscale hydrogel coating for improved transport of beneficial low molecular weight materials across thicker hydrogel coatings while completely blocking transport of undesired larger molecular weight materials. Coatings composed of PEG diacrylate of molecular weight 575 Da and 3500 Da were studied by tracking the transport of fluorescently-labeled dextrans across the coatings. The molecular weight of dextran at which the transport is blocked by these coatings are consistent with cutoff values in analogous bulk PEG materials. Additionally, the diffusion constants of 4 kDa dextrans across PEG 575 coatings (9.5×10−10 – 2.0×10−9 cm2/s) was lower than across PEG 3500 coatings (5.9 – 9.8×10−9 cm2/s), and these trends and magnitudes agree with bulk scale models. Overall, these nanoscale thin PEG diacrylate films offer the same size selective transport behavior of bulk PEG diacrylate materials, while the lower thickness translates directly to increased flux of beneficial low molecular weight materials. PMID:25592156

  5. Molecular weight dependent vertical composition profiles of PCDTBT:PC₇₁BM blends for organic photovoltaics.

    PubMed

    Kingsley, James W; Marchisio, Pier Paolo; Yi, Hunan; Iraqi, Ahmed; Kinane, Christy J; Langridge, Sean; Thompson, Richard L; Cadby, Ashley J; Pearson, Andrew J; Lidzey, David G; Jones, Richard A L; Parnell, Andrew J

    2014-01-01

    We have used Soxhlet solvent purification to fractionate a broad molecular weight distribution of the polycarbazole polymer PCDTBT into three lower polydispersity molecular weight fractions. Organic photovoltaic devices were made using a blend of the fullerene acceptor PC₇₁BM with the molecular weight fractions. An average power conversion efficiency of 5.89% (peak efficiency of 6.15%) was measured for PCDTBT blend devices with a number average molecular weight of Mn = 25.5 kDa. There was significant variation between the molecular weight fractions with low (Mn = 15.0 kDa) and high (Mn = 34.9 kDa) fractions producing devices with average efficiencies of 5.02% and 3.70% respectively. Neutron reflectivity measurements on these polymer:PC₇₁BM blend layers showed that larger molecular weights leads to an increase in the polymer enrichment layer thickness at the anode interface, this improves efficiency up to a limiting point where the polymer solubility causes a reduction of the PCDTBT concentration in the active layer. PMID:24924096

  6. Negative regulation of human immunodeficiency virus type 1 expression in monocytes: role of the 65-kDa plus 50-kDa NF-kappa B dimer.

    PubMed

    Raziuddin; Mikovits, J A; Calvert, I; Ghosh, S; Kung, H F; Ruscetti, F W

    1991-11-01

    Although monocytic cells can provide a reservoir for viral production in vivo, their regulation of human immunodeficiency virus type 1 (HIV-1) transcription can be either latent, restricted, or productive. These differences in gene expression have not been molecularly defined. In THP-1 cells with restricted HIV expression, there is an absence of DNA-protein binding complex formation with the HIV-1 promoter-enhancer associated with markedly less viral RNA production. This absence of binding was localized to the NF-kappa B region of the HIV-1 enhancer; the 65-kDa plus 50-kDa NF-kappa B heterodimer was preferentially lost. Adding purified NF-kappa B protein to nuclear extracts from cells with restricted expression overcomes this lack of binding. In addition, treatment of these nuclear extracts with sodium deoxycholate restored their ability to form the heterodimer, suggesting the presence of an inhibitor of NF-kappa B activity. Furthermore, treatment of nuclear extracts from these cells that had restricted expression with lipopolysaccharide increased viral production and NF-kappa B activity. Antiserum specific for NF-kappa B binding proteins, but not c-rel-specific antiserum, disrupted heterodimer complex formation. Thus, both NF-kappa B-binding complexes are needed for optimal viral transcription. Binding of the 65-kDa plus 50-kDa heterodimer to the HIV-1 enhancer can be negatively regulated in monocytes, providing one mechanism restricting HIV-1 gene expression. PMID:1946356

  7. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  8. Fragment oriented molecular shapes.

    PubMed

    Hain, Ethan; Camacho, Carlos J; Koes, David Ryan

    2016-05-01

    Molecular shape is an important concept in drug design and virtual screening. Shape similarity typically uses either alignment methods, which dynamically optimize molecular poses with respect to the query molecular shape, or feature vector methods, which are computationally less demanding but less accurate. The computational cost of alignment can be reduced by pre-aligning shapes, as is done with the Volumetric-Aligned Molecular Shapes (VAMS) method. Here, we introduce and evaluate fragment oriented molecular shapes (FOMS), where shapes are aligned based on molecular fragments. FOMS enables the use of shape constraints, a novel method for precisely specifying molecular shape queries that provides the ability to perform partial shape matching and supports search algorithms that function on an interactive time scale. When evaluated using the challenging Maximum Unbiased Validation dataset, shape constraints were able to extract significantly enriched subsets of compounds for the majority of targets, and FOMS matched or exceeded the performance of both VAMS and an optimizing alignment method of shape similarity search. PMID:27085751

  9. Magnetomotive Molecular Nanoprobes

    PubMed Central

    John, Renu; Boppart, Stephen A.

    2012-01-01

    Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766

  10. Potential molecular wires and molecular alligator clips

    NASA Astrophysics Data System (ADS)

    Schumm, Jeffry S.; Pearson, Darren L.; Jones, LeRoy, II; Hara, Ryuichiro; Tour, James M.

    1996-12-01

    The synthesis of oligo(2-ethylphenylene-ethynylene)s, oligo(2-(0957-4484/7/4/023/img1-ethylheptyl)phenylene-ethynylene)s, and oligo(3-ethylthiophene-ethynylene)s is described via an iterative divergent convergent approach. Synthesized were the monomer, dimer, tetramer, octamer and 16-mer of the oligo(3-ethylthiophene-ethynylene)s and oligo(2-0957-4484/7/4/023/img1-ethylheptyl)phenylene-ethynylene)s. The 16-mers are 100 Å and 128 Å long, respectively. At each stage in the iteration, the length of the framework doubles. Only three sets of reaction conditions are needed for the entire iterative synthetic sequence; an iodination, a protodesilylation, and a Pd/Cu-catalyzed cross coupling. The oligomers were characterized spectroscopically and by mass spectrometry. The optical properties are presented which show the stage of optical absorbance saturation. The size exclusion chromatography values for the number average weights, relative to polystyrene, illustrate the tremendous differences in the hydrodynamic volume of these rigid rod oligomers versus the random coils of polystyrene. These differences become quite apparent at the octamer stage. The preparation of thiol-protected end groups is described. These may serve as molecular alligator clips for adhesion to gold surfaces. These oligomers may act as molecular wires in molecular electronic devices and they also serve as useful models for understanding related bulk polymers.

  11. Rapid, Simple and Cost-Effective Molecular Method to Differentiate the Temperature Sensitive (ts+) MS-H Vaccine Strain and Wild-Type Mycoplasma synoviae Isolates.

    PubMed

    Kreizinger, Zsuzsa; Sulyok, Kinga Mária; Pásztor, Alexandra; Erdélyi, Károly; Felde, Orsolya; Povazsán, János; Kőrösi, László; Gyuranecz, Miklós

    2015-01-01

    Mycoplasma synoviae infection in chickens and turkeys can cause respiratory disease, infectious synovitis and eggshell apex abnormality; thus it is an economically important pathogen. Control of M. synoviae infection comprises eradication, medication or vaccination. The differentiation of the temperature sensitive (ts+) MS-H vaccine strain from field isolates is crucial during vaccination programs. Melt-curve and agarose gel based mismatch amplification mutation assays (MAMA) are provided in the present study to distinguish between the ts+ MS-H vaccine strain, its non-temperature sensitive re-isolates and wild-type M. synoviae isolates based on the single nucleotide polymorphisms at nt367 and nt629 of the obg gene. The two melt-MAMAs and the two agarose-MAMAs clearly distinguish the ts+ MS-H vaccine strain genotype from its non-temperature sensitive re-isolate genotype and wild-type M. synoviae isolate genotype, and no cross-reactions with other Mycoplasma species infecting birds occur. The sensitivity of the melt-MAMAs and agarose-MAMAs was 103 and 104 copy numbers, respectively. The assays can be performed directly on clinical samples and they can be run simultaneously at the same annealing temperature. The assays can be performed in laboratories with limited facilities, using basic real-time PCR machine or conventional thermocycler coupled with agarose gel electrophoresis. The advantages of the described assays compared with previously used methods are simplicity, sufficient sensitivity, time and cost effectiveness and specificity. PMID:26207635

  12. Rapid, Simple and Cost-Effective Molecular Method to Differentiate the Temperature Sensitive (ts+) MS-H Vaccine Strain and Wild-Type Mycoplasma synoviae Isolates

    PubMed Central

    Kreizinger, Zsuzsa; Sulyok, Kinga Mária; Pásztor, Alexandra; Erdélyi, Károly; Felde, Orsolya; Povazsán, János; Kőrösi, László; Gyuranecz, Miklós

    2015-01-01

    Mycoplasma synoviae infection in chickens and turkeys can cause respiratory disease, infectious synovitis and eggshell apex abnormality; thus it is an economically important pathogen. Control of M. synoviae infection comprises eradication, medication or vaccination. The differentiation of the temperature sensitive (ts+) MS-H vaccine strain from field isolates is crucial during vaccination programs. Melt-curve and agarose gel based mismatch amplification mutation assays (MAMA) are provided in the present study to distinguish between the ts+ MS-H vaccine strain, its non-temperature sensitive re-isolates and wild-type M. synoviae isolates based on the single nucleotide polymorphisms at nt367 and nt629 of the obg gene. The two melt-MAMAs and the two agarose-MAMAs clearly distinguish the ts+ MS-H vaccine strain genotype from its non-temperature sensitive re-isolate genotype and wild-type M. synoviae isolate genotype, and no cross-reactions with other Mycoplasma species infecting birds occur. The sensitivity of the melt-MAMAs and agarose-MAMAs was 103 and 104 copy numbers, respectively. The assays can be performed directly on clinical samples and they can be run simultaneously at the same annealing temperature. The assays can be performed in laboratories with limited facilities, using basic real-time PCR machine or conventional thermocycler coupled with agarose gel electrophoresis. The advantages of the described assays compared with previously used methods are simplicity, sufficient sensitivity, time and cost effectiveness and specificity. PMID:26207635

  13. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  14. Molecularly Imprinted Membranes

    PubMed Central

    Trotta, Francesco; Biasizzo, Miriam; Caldera, Fabrizio

    2012-01-01

    Although the roots of molecularly imprinted polymers lie in the beginning of 1930s in the past century, they have had an exponential growth only 40–50 years later by the works of Wulff and especially by Mosbach. More recently, it was also proved that molecular imprinted membranes (i.e., polymer thin films) that show recognition properties at molecular level of the template molecule are used in their formation. Different procedures and potential application in separation processes and catalysis are reported. The influences of different parameters on the discrimination abilities are also discussed. PMID:24958291

  15. Correlation between phosphorylation level of a hippocampal 86kDa protein and extinction of a behaviour in a model of Wernicke-Korsakoff syndrome.

    PubMed

    Pires, Rita G W; Pereira, Sílvia R C; Carvalho, Fabiana M; Oliveira-Silva, Ieda F; Ferraz, Vany P; Ribeiro, Angela M

    2007-06-01

    The effects of chronic ethanol and thiamine deficiency, alone or associated, on hippocampal protein phosphorylation profiles ranging in molecular weight from 30 to 250kDa molecular weight, in stimulated (high K(+) concentration) and unstimulated (basal) conditions were investigated. These treatments significantly changed the phosphorylation level of an 86kDa phosphoprotein. Thiamine deficiency, but not chronic ethanol, induced a decrease in a behavioural extinction index, which is significantly correlated to the phosphorylation level of the p86 protein. These data add to and extend previous findings by our laboratory implicating the involvement of hippocampal neurotransmission components in extinction of a behaviour which involves learning of environmental spatial cues. PMID:17395279

  16. Characterization of the low-molecular-mass proteins of virulent Treponema pallidum.

    PubMed Central

    Stamm, L V; Parrish, E A

    1994-01-01

    We previously demonstrated that Treponema pallidum cells incubated in vitro in the presence of heat-inactivated normal rabbit serum (HINRS) synthesize, in very small quantities, several pathogen-specific, low-molecular-mass proteins that appear to be localized extracellularly. In this study, we have taken advantage of our ability to metabolically radiolabel T. pallidum cells to high specific activity to further characterize these antigens. We found that the low-molecular-mass proteins are not related to the 15- and 17-kDa detergent-phase proteins (J. D. Radolf, N. R. Chamberlain, A. Clausell, and M. V. Norgard, Infect. Immun. 56:490-498, 1988). The low-molecular-mass proteins did not incorporate 3H-labeled fatty acids and were not precipitated by rabbit immunoglobulin G (IgG) antibodies directed against glutathione S-transferase fusions to the nonlipidated 15- and 17-kDa proteins. We prepared polyclonal antisera to the low-molecular-mass proteins by immunizing two rabbits with the concentrated supernatant of T. pallidum cells. IgG antibodies present in the sera of both rabbits precipitated a 21.5-kDa protein from solubilized extracts of T. pallidum supernatant and cells. IgG antibodies in the serum of the second rabbit precipitated an additional 15.5-kDa low-molecular-mass protein only from solubilized extracts of supernatant. While investigating the effect of eliminating HINRS from the extraction medium, we observed that the low-molecular-mass proteins remained associated with treponemal cells that were incubated in the absence of HINRS. These proteins could be eluted from the cells by the addition of HINRS or rabbit serum albumin, suggesting that they are located on or near the treponemal cell surface. The 15.5- and 21.5-kDa low-molecular-mass proteins were not washed off treponemal cells with buffer containing 1 M KCl. Experiments employing selective solubilization of the T. pallidum outer membrane with 0.1% Triton X-114 and proteinase K accessibility indicated

  17. Virtual observatory publishing with DaCHS

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Neves, M. C.; Rothmaier, F.; Wambsganss, J.

    2014-11-01

    The Data Center Helper Suite DaCHS is an integrated publication package for building VO and Web services, supporting the entire workflow from ingestion to data mapping to service definition. It implements all major data discovery, data access, and registry protocols defined by the VO. DaCHS in this sense works as glue between data produced by the data providers and the standard protocols and formats defined by the VO. This paper discusses central elements of the design of the package and gives two case studies of how VO protocols are implemented using DaCHS' concepts.

  18. Hyaluronic Acid Molecular Weight Determines Lung Clearance and Biodistribution after Instillation.

    PubMed

    Kuehl, Christopher; Zhang, Ti; Kaminskas, Lisa M; Porter, Christopher J H; Davies, Neal M; Forrest, Laird; Berkland, Cory

    2016-06-01

    Hyaluronic acid (HA) has emerged as a versatile polymer for drug delivery. Multiple commercial products utilize HA, it can be obtained in a variety of molecular weights, and it offers chemical handles for cross-linkers, drugs, or imaging agents. Previous studies have investigated multiple administration routes, but the absorption, biodistribution, and pharmacokinetics of HA after delivery to the lung is relatively unknown. Here, pharmacokinetic parameters were investigated by delivering different molecular weights of HA (between 7 and 741 kDa) to the lungs of mice. HA was labeled with either a near-infrared dye or with iodine-125 conjugated to HA using a tyrosine linker. In initial studies, dye-labeled HA was instilled into the lungs and fluorescent images of organs were collected at 1, 8, and 24 h post administration. Data suggested longer lung persistence of higher molecular weight HA, but signal diminished for all molecular weights at 8 h. To better quantitate pharmacokinetic parameters, different molecular weights of iodine-125 labeled HA were instilled and organ radioactivity was determined after 1, 2, 4, 6, and 8 h. The data showed that, after instillation, the lungs contained the highest levels of HA, as expected, followed by the gastrointestinal tract. Smaller molecular weights of HA showed more rapid systemic distribution, while 67 and 215 kDa HA showed longer persistence in the lungs. Lung exposure appeared to be optimum in this size range due to the rapid absorption of <67 kDa HA and the poor lung penetration and mucociliary clearance of viscous solutions of HA > 215 kDa. The versatility of HA molecular weight and conjugation chemistries may, therefore, provide new opportunities to extend pulmonary drug exposure and potentially facilitate access to lymph nodes draining the pulmonary bed. PMID:27157508

  19. Molecular dissection of TDP-43 proteinopathies.

    PubMed

    Hasegawa, Masato; Nonaka, Takashi; Tsuji, Hiroshi; Tamaoka, Akira; Yamashita, Makiko; Kametani, Fuyuki; Yoshida, Mari; Arai, Tetsuaki; Akiyama, Haruhiko

    2011-11-01

    TDP-43 has been identified as a major component of ubiquitin-positive tau-negative cytoplasmic inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and in amyotrophic lateral sclerosis (ALS). We raised antibodies to phosphopeptides representing 36 out of 64 candidate phosphorylation sites of human TDP-43 and showed that the antibodies to pS379, pS403/404, pS409, pS410 and pS409/410 labeled the inclusions, but not the nuclei. Immunoblot analyses demonstrated that the antibodies recognized TDP-43 at ~45 kDa, smearing substances and 18-26 kDa C-terminal fragments. Furthermore, the band patterns of the C-terminal fragments differed between neuropathological subtypes, but were indistinguishable between brain regions and spinal cord in each individual patient. Protease treatment of Sarkosyl-insoluble TDP-43 suggests that the different band patterns of the C-terminal fragments reflect different conformations of abnormal TDP-43 molecules between the diseases. These results suggest that molecular species of abnormal TDP-43 are different between the diseases and that they propagate from affected cells to other cells during disease progression and determine the clinicopathological phenotypes of the diseases. PMID:21678031

  20. Molecular characterization of two plant flavonol sulfotransferases.

    PubMed Central

    Varin, L; DeLuca, V; Ibrahim, R K; Brisson, N

    1992-01-01

    cDNA clones coding for flavonol 3- and 4'-sulfotransferases (STs) were isolated by antibody screening of a cDNA expression library produced from poly(A)+ RNA extracted from terminal buds of Flaveria chloraefolia. Sequence analysis revealed full-length cDNA clones with open reading frames of 933 and 960 base pairs, which encode polypeptides containing 311 and 320 amino acids, respectively. This corresponds to a molecular mass of 36,442 Da for the 3-ST and 37,212 Da for the 4'-ST. Expression of these clones in Escherichia coli led to the synthesis of beta-galactosidase-ST fusion proteins having the same substrate and position specificities as those for the 3- and 4'-flavonol ST enzymes isolated from the plant. Comparison of the deduced amino acid sequence of the two clones revealed an overall identity of 69% in 311 amino acid residues. The two flavonol STs of F. chloraefolia also shared significant sequence similarities with steroid and aryl STs found in animal tissues and with the senescence marker protein 2 isolated from rat liver, suggesting an evolutionary link between plant and animal STs. Images PMID:1741382

  1. [Molecular diagnosis of mycobacteria].

    PubMed

    Kessler, Harald H

    2003-01-01

    Tuberculosis is one of the leading infectious diseases in the world. Using conventional methods, the isolation, identification, and drug susceptibility testing of Mycobacterium tuberculosis and other clinically important mycobacteria can take several weeks. During the past several years, molecular methods have been developed for direct detection, species identification, and drug susceptibility testing of mycobacteria. These methods can potentially reduce the diagnostic time from weeks to hours. For direct detection of Mycobacterium tuberculosis from clinical specimens, several molecular assays are commercially available today. They have been shown useful for the routine diagnostic laboratory. DNA probes and polymerase chain reaction-based sequencing have been widely used to identify mycobacterial species. Molecular methods have also been applied for the detection of mutations that confer drug resistance in mycobacteria. All in all, the future of clinical mycobacteriology appears to be heading toward direct detection, species identification and drug resistance determination using molecular methods. PMID:13677254

  2. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  3. Molecular photoionization dynamics

    SciTech Connect

    Dehmer, Joseph L.

    1982-05-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed. (WHK)

  4. Appendix II. Molecular Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of crop evolution, origins, and conservation entails the assessment of genetic variability with and between populations and species at different genetic, evolutionary, and taxonomic hierarchical levels. Molecular biology has greatly increased the amount of data and computational intensity...

  5. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  6. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  7. Ontologies for molecular biology.

    PubMed

    Schulze-Kremer, S

    1998-01-01

    Molecular biology has a communication problem. There are many databases using their own labels and categories for storing data objects and some using identical labels and categories but with a different meaning. A prominent example is the concept "gene" which is used with different semantics by major international genomic databases. Ontologies are one means to provide a semantic repository to systematically order relevant concepts in molecular biology and to bridge the different notions in various databases by explicitly specifying the meaning of and relation between the fundamental concepts in an application domain. Here, the upper level and a database branch of a prospective ontology for molecular biology (OMB) is presented and compared to other ontologies with respect to suitability for molecular biology (http:/(/)igd.rz-berlin.mpg.de/approximately www/oe/mbo.html). PMID:9697223

  8. Atomic & Molecular Interactions

    SciTech Connect

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  9. THE DARK MOLECULAR GAS

    SciTech Connect

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic-ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  10. Molecular Electronic Shift Registers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose N.

    1990-01-01

    Molecular-scale shift registers eventually constructed as parts of high-density integrated memory circuits. In principle, variety of organic molecules makes possible large number of different configurations and modes of operation for such shift-register devices. Several classes of devices and implementations in some specific types of molecules proposed. All based on transfer of electrons or holes along chains of repeating molecular units.

  11. Introductory molecular genetics

    SciTech Connect

    Edwards-Moulds, J.

    1986-01-01

    This book begins with an overview of the current principles of genetics and molecular genetics. Over this foundation, it adds detailed and specialized information: a description of the translation, transcription, expression and regulation of DNA and RNA; a description of the manipulation of genetic material via promoters, enhancers, and gene splicing; and a description of cloning techniques, especially those for blood group genes. The last chapter looks to the impact of molecular genetics on transfusion medicine.

  12. Workshop on Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Cummings, Michael P.

    2004-01-01

    Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.

  13. Molecular classification of gliomas.

    PubMed

    Masui, Kenta; Mischel, Paul S; Reifenberger, Guido

    2016-01-01

    The identification of distinct genetic and epigenetic profiles in different types of gliomas has revealed novel diagnostic, prognostic, and predictive molecular biomarkers for refinement of glioma classification and improved prediction of therapy response and outcome. Therefore, the new (2016) World Health Organization (WHO) classification of tumors of the central nervous system breaks with the traditional principle of diagnosis based on histologic criteria only and incorporates molecular markers. This will involve a multilayered approach combining histologic features and molecular information in an "integrated diagnosis". We review the current state of diagnostic molecular markers for gliomas, focusing on isocitrate dehydrogenase 1 or 2 (IDH1/IDH2) gene mutation, α-thalassemia/mental retardation syndrome X-linked (ATRX) gene mutation, 1p/19q co-deletion and telomerase reverse transcriptase (TERT) promoter mutation in adult tumors, as well as v-raf murine sarcoma viral oncogene homolog B1 (BRAF) and H3 histone family 3A (H3F3A) aberrations in pediatric gliomas. We also outline prognostic and predictive molecular markers, including O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and discuss the potential clinical relevance of biologic glioblastoma subtypes defined by integration of multiomics data. Commonly used methods for individual marker detection as well as novel large-scale DNA methylation profiling and next-generation sequencing approaches are discussed. Finally, we illustrate how advances in molecular diagnostics affect novel strategies of targeted therapy, thereby raising new challenges and identifying new leads for personalized treatment of glioma patients. PMID:26948350

  14. Origin of the DA and non-DA white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.

    1989-01-01

    Various proposals for the bifurcation of the white dwarf cooling sequence are reviewed. 'Primordial' theories, in which the basic bifurcation of the white dwarf sequence is rooted in events predating the white dwarf stage of stellar evolution, are discussed, along with the competing 'mixing' theories in which processes occurring during the white dwarf stage are responsible for the existence of DA or non-DA stars. A new proposal is suggested, representing a two-channel scenario. In the DA channel, some process reduces the hydrogen layer mass to the value of less than 10 to the -7th. The non-DA channel is similar to that in the primordial scenario. These considerations suggest that some mechanism operates in both channels to reduce the thickness of the outermost layer of the white dwarf. It is also noted that accretion from the interstellar medium has little to do with whether a particular white dwarf becomes a DA or a non-DA star.

  15. Nanobody: The “Magic Bullet” for Molecular Imaging?

    PubMed Central

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases. PMID:24578722

  16. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut.

    PubMed

    BenFarhat-Touzri, Dalel; Saadaoui, Marwa; Abdelkefi-Mesrati, Lobna; Saadaoui, Imen; Azzouz, Hichem; Tounsi, Slim

    2013-02-01

    Bacillus thuringiensis subsp. aizawai strain HD133, known by its effectiveness against Spodoptera species, produces many insecticidal proteins including Cry1Ab, Cry1Ca and Cry1Da. In the present study, the insecticidal activity of Cry1Da against Spodoptera littoralis was investigated. It showed toxicity with an LC(50) of 224.4 ng/cm(2) with 95% confidence limits of (178.61-270.19) and an LC(90) of 467.77 ng/cm(2) with 95% confidence limits of (392.89-542.65). The midgut histopathology of Cry1Da fed larvae showed vesicle formation in the apical region, vacuolization and destruction of epithelial cells. Biotinylated-activated Cry1Da toxin bound protein of about 65 kDa on blots of S. littoralis brush border membrane preparations. This putative receptor differs in molecular size from those recognized by Cry1C and Vip3A which are active against this polyphagous insect. This difference in midgut receptors strongly supports the use of Cry1Da as insecticidal agent, particularly in case of Cry and/or Vip-resistance management. PMID:23220238

  17. Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells.

    PubMed Central

    Sirito, M; Lin, Q; Maity, T; Sawadogo, M

    1994-01-01

    USF is a helix-loop-helix transcription factor that, like Myc, recognizes the DNA binding motif CACGTG. Two different forms of USF, characterized by apparent molecular weights of 43,000 and 44,000, were originally identified in HeLa cells by biochemical analysis. Clones for the 43-kDa USF were first characterized, but only partial clones for the human 44-kDa USF (USF2, or FIP) have been reported. Here we describe a complete cDNA for the 44-kDa USF from murine cells. Analysis of this clone has revealed that the various USF family members are quite divergent in their N-terminal amino acid sequences, while a high degree of conservation characterizes their dimerization and DNA-binding domains. Interestingly, the 3' noncoding region of the 44-kDa USF cDNAs displayed an unusual degree of conservation between human and mouse. In vitro transcription/translation experiments indicated a possible role for this region in translation regulation. Alternative splicing forms of the 44-kDa USF messages exist in both mouse and human. Examination of the tissue and cell-type distribution of USF by Northern blot and gel retardation assays revealed that while expression of both the 43- and 44-kDa USF species is ubiquitous, different ratios of USF homo- and heterodimers are found in different cells. Images PMID:8127680

  18. The human 64-kDa polyadenylylation factor contains a ribonucleoprotein-type RNA binding domain and unusual auxiliary motifs.

    PubMed Central

    Takagaki, Y; MacDonald, C C; Shenk, T; Manley, J L

    1992-01-01

    Cleavage stimulation factor is one of the multiple factors required for 3'-end cleavage of mammalian pre-mRNAs. We have shown previously that this factor is composed of three subunits with estimated molecular masses of 77, 64, and 50 kDa and that the 64-kDa subunit can be UV-crosslinked to RNA in a polyadenylylation signal (AAUAAA)-dependent manner. We have now isolated cDNAs encoding the 64-kDa subunit of human cleavage stimulation factor. The 64-kDa subunit contains a ribonucleoprotein-type RNA binding domain in the N-terminal region and a repeat structure in the C-terminal region in which a pentapeptide sequence (consensus MEARA/G) is repeated 12 times and the formation of a long alpha-helix stabilized by salt bridges is predicted. An approximately 270-amino acid segment surrounding this repeat structure is highly enriched in proline and glycine residues (approximately 20% for each). When cloned 64-kDa subunit was expressed in Escherichia coli, an N-terminal fragment containing the RNA binding domain bound to RNAs in a polyadenylylation-signal-independent manner, suggesting that the RNA binding domain is directly involved in the binding of the 64-kDa subunit to pre-mRNAs. Images PMID:1741396

  19. Nanotechnology Review: Molecular Electronics to Molecular Motors

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  20. Artificial Molecular Machines.

    PubMed

    Balzani; Credi; Raymo; Stoddart

    2000-10-01

    The miniaturization of components used in the construction of working devices is being pursued currently by the large-downward (top-down) fabrication. This approach, however, which obliges solid-state physicists and electronic engineers to manipulate progressively smaller and smaller pieces of matter, has its intrinsic limitations. An alternative approach is a small-upward (bottom-up) one, starting from the smallest compositions of matter that have distinct shapes and unique properties-namely molecules. In the context of this particular challenge, chemists have been extending the concept of a macroscopic machine to the molecular level. A molecular-level machine can be defined as an assembly of a distinct number of molecular components that are designed to perform machinelike movements (output) as a result of an appropriate external stimulation (input). In common with their macroscopic counterparts, a molecular machine is characterized by 1) the kind of energy input supplied to make it work, 2) the nature of the movements of its component parts, 3) the way in which its operation can be monitored and controlled, 4) the ability to make it repeat its operation in a cyclic fashion, 5) the timescale needed to complete a full cycle of movements, and 6) the purpose of its operation. Undoubtedly, the best energy inputs to make molecular machines work are photons or electrons. Indeed, with appropriately chosen photochemically and electrochemically driven reactions, it is possible to design and synthesize molecular machines that do work. Moreover, the dramatic increase in our fundamental understanding of self-assembly and self-organizational processes in chemical synthesis has aided and abetted the construction of artificial molecular machines through the development of new methods of noncovalent synthesis and the emergence of supramolecular assistance to covalent synthesis as a uniquely powerful synthetic tool. The aim of this review is to present a unified view of the field

  1. Ultrafast electron transfer at organic semiconductor interfaces: Importance of molecular orientation

    DOE PAGESBeta

    Ayzner, Alexander L.; Nordlund, Dennis; Kim, Do -Hwan; Bao, Zhenan; Toney, Michael F.

    2014-12-04

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximatelymore » 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.« less

  2. Ultrafast electron transfer at organic semiconductor interfaces: Importance of molecular orientation

    SciTech Connect

    Ayzner, Alexander L.; Nordlund, Dennis; Kim, Do -Hwan; Bao, Zhenan; Toney, Michael F.

    2014-12-04

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation.

  3. Ultrafast Electron Transfer at Organic Semiconductor Interfaces: Importance of Molecular Orientation.

    PubMed

    Ayzner, Alexander L; Nordlund, Dennis; Kim, Do-Hwan; Bao, Zhenan; Toney, Michael F

    2015-01-01

    Much is known about the rate of photoexcited charge generation in at organic donor/acceptor (D/A) heterojunctions overaged over all relative arrangements. However, there has been very little experimental work investigating how the photoexcited electron transfer (ET) rate depends on the precise relative molecular orientation between D and A in thin solid films. This is the question that we address in this work. We find that the ET rate depends strongly on the relative molecular arrangement: The interface where the model donor compound copper phthalocyanine is oriented face-on with respect to the fullerene C60 acceptor yields a rate that is approximately 4 times faster than that of the edge-on oriented interface. Our results suggest that the D/A electronic coupling is significantly enhanced in the face-on case, which agrees well with theoretical predictions, underscoring the importance of controlling the relative interfacial molecular orientation. PMID:26263084

  4. Detection of Diverse and High Molecular Weight Nesprin-1 and Nesprin-2 Isoforms Using Western Blotting.

    PubMed

    Carthew, James; Karakesisoglou, Iakowos

    2016-01-01

    Heavily utilized in cell and molecular biology, western blotting is considered a crucial technique for the detection and quantification of proteins within complex mixtures. In particular, the detection of members of the nesprin (nuclear envelope spectrin repeat protein) family has proven difficult to analyze due to their substantial isoform diversity, molecular weight variation, and the sheer size of both nesprin-1 and nesprin-2 giant protein variants (>800 kDa). Nesprin isoforms contain distinct domain signatures, perform differential cytoskeletal associations, occupy different subcellular compartments, and vary in their tissue expression profiles. This structural and functional variance highlights the need to distinguish between the full range of proteins within the nesprin protein family, allowing for greater understanding of their specific roles in cell biology and disease. Herein, we describe a western blotting protocol modified for the detection of low to high molecular weight (50-1000 kDa) nesprin proteins. PMID:27147045

  5. Giant Molecular Magnetocapacitance

    SciTech Connect

    Wu, Yuning; Zhang, Xiaoguang; Cheng, Hai-Ping

    2013-01-01

    Capacitance of a nanoscale system is usually thought of having two contributions, a classical electrostatic contribution and a quantum contribution dependent on the density of states and/or molecular orbitals close to the Fermi energy. In this letter we demonstrate that in molecular nano-magnets and other magnetic nanoscale systems, the quantum part of the capacitance becomes spin-dependent, and is tunable by an external magnetic field. This molecular magnetocapacitance can be realized using single molecule nano-magnets and/or other nano-structures that have antiferromagnetic ground states. As a proof of principle, first-principles calculation of the nano-magnet [Mn3O(sao)3(O2CMe)(H2O)(py)3] shows that the charging energy of the high-spin state is 260 meV lower than that of the low-spin state, yielding a 6% difference in capacitance. A magnetic field of ~40T can switch the spin state, thus changing the molecular capacitance. A smaller switching field may be achieved using nanostructures with a larger moment. Molecular magnetocapacitance may lead to revolutionary device designs, e.g., by exploiting the Coulomb blockade magnetoresistance whereby a small change in capacitance can lead to a huge change in resistance.

  6. Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds.

    PubMed

    Momma, M; Haraguchi, K; Saito, M; Chikuni, K; Harada, K

    1997-08-01

    Whey proteins from soybean seeds of Japanese varieties were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Among 11 varieties of soybean, three green and one black soybeans lacked a 26-kDa band that was found in all yellow soybeans. In this paper, the 26-kDa protein was named AS26k (acid soluble 26-kDa protein) temporarily. The AS26k protein was purified from Glycine max cv. Nattosyoryu, which is yellow soybean, through four purification steps: 30-35% saturated ammonium sulfate fractionation, ion exchange chromatography on S Sepharose Fast Flow, gel filtration on Sephadex G-100, and hydrophobic chromatography on phenyl Sepharose CL-4B. Purified AS26k was cleaved with V8 proteinase from Staphylococcus aureus or CNBr. The cleaved polypeptide contained two typical dehydrin motif sequences: DEYGNPV and (M)DKIKEKLPG, and a 19 amino acids sequence similar to a pea dehydrin. Native AS26k had a molecular mass of 32 kDa on gel filtration and a pl of 7.2 on two-dimensional PAGE. Similarly to other dehydrins and late embryogenesis abundant (LEA) proteins, AS26k was rich in hydrophilic amino acids, and highly heat stable. These results showed that AS26k was a dehydrin, a group II LEA protein in soybean seeds. PMID:9301109

  7. GS32, a novel Golgi SNARE of 32 kDa, interacts preferentially with syntaxin 6.

    PubMed

    Wong, S H; Xu, Y; Zhang, T; Griffiths, G; Lowe, S L; Subramaniam, V N; Seow, K T; Hong, W

    1999-01-01

    Syntaxin 1, synaptobrevins or vesicle-associated membrane proteins, and the synaptosome-associated protein of 25 kDa (SNAP-25) are key molecules involved in the docking and fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, cell biological, and biochemical characterization of a 32-kDa protein homologous to both SNAP-25 (20% amino acid sequence identity) and the recently identified SNAP-23 (19% amino acid sequence identity). Northern blot analysis shows that the mRNA for this protein is widely expressed. Polyclonal antibodies against this protein detect a 32-kDa protein present in both cytosol and membrane fractions. The membrane-bound form of this protein is revealed to be primarily localized to the Golgi apparatus by indirect immunofluorescence microscopy, a finding that is further established by electron microscopy immunogold labeling showing that this protein is present in tubular-vesicular structures of the Golgi apparatus. Biochemical characterizations establish that this protein behaves like a SNAP receptor and is thus named Golgi SNARE of 32 kDa (GS32). GS32 in the Golgi extract is preferentially retained by the immobilized GST-syntaxin 6 fusion protein. The coimmunoprecipitation of syntaxin 6 but not syntaxin 5 or GS28 from the Golgi extract by antibodies against GS32 further sustains the preferential interaction of GS32 with Golgi syntaxin 6. PMID:9880331

  8. Translocation of an 89-kDa periplasmic protein is associated with Holospora infection

    SciTech Connect

    Iwatani, Koichi; Dohra, Hideo; Lang, B. Franz; Burger, Gertraud; Hori, Manabu; Fujishima, Masahiro . E-mail: fujishim@yamaguchi-u.ac.jp

    2005-12-02

    The symbiotic bacterium Holospora obtusa infects the macronucleus of the ciliate Paramecium caudatum. After ingestion by its host, an infectious form of Holospora with an electron-translucent tip passes through the host digestive vacuole and penetrates the macronuclear envelope with this tip. To investigate the underlying molecular mechanism of this process, we raised a monoclonal antibody against the tip-specific 89-kDa protein, sequenced this partially, and identified the corresponding complete gene. The deduced protein sequence carries two actin-binding motifs. Indirect immunofluorescence microscopy shows that during escape from the host digestive vacuole, the 89-kDa proteins translocates from the inside to the outside of the tip. When the bacterium invades the macronucleus, the 89-kDa protein is left behind at the entry point of the nuclear envelope. Transmission electron microscopy shows the formation of fine fibrous structures that co-localize with the antibody-labeled regions of the bacterium. Our findings suggest that the 89-kDa protein plays a role in Holospora's escape from the host digestive vacuole, the migration through the host cytoplasm, and the invasion into the macronucleus.

  9. Comprehensive Characterization of Molecular Interactions Based on Nanomechanics

    PubMed Central

    Lang, Hans-Peter; Gerber, Christoph; Hegner, Martin

    2008-01-01

    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (∼748*106 Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions. PMID:18978938

  10. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  11. Stueckelberg and Molecular Physics

    NASA Astrophysics Data System (ADS)

    Lacki, Jan

    The first period of E. C. G. Stueckelberg's scientific career was marked by important contributions he made to molecular physics.1 After publishing his thesis in 1927 in Basel [1] Stueckelberg joined the prestigious Palmer Physical Laboratory in Princeton where he worked under the guidance of Karl Taylor Compton, brother of Arthur Holly Compton. Stueckelberg owed this position devoted several papers to problems of molecular physics. Stueckelberg had the benefit at Princeton of exchanges with other gifted members of the Palmer Physical Laboratory, Philip M. Morse and E. U. Condon among others.3 to a recommendation by A. Sommerfeld.2 In this stimulating environment, he devoted several papers to problems of molecular physics. Stueckelberg had the benefit at Princeton of exchanges with other gifted members of the Palmer Physical Laboratory, Philip M. Morse and E. U. Condon among others.3

  12. Primate molecular divergence dates.

    PubMed

    Steiper, Michael E; Young, Nathan M

    2006-11-01

    With genomic data, alignments can be assembled that greatly increase the number of informative sites for analysis of molecular divergence dates. Here, we present an estimate of the molecular divergence dates for all of the major primate groups. These date estimates are based on a Bayesian analysis of approximately 59.8 kbp of genomic data from 13 primates and 6 mammalian outgroups, using a range of paleontologically supported calibration estimates. Results support a Cretaceous last common ancestor of extant primates (approximately 77 mya), an Eocene divergence between platyrrhine and catarrhine primates (approximately 43 mya), an Oligocene origin of apes and Old World monkeys (approximately 31 mya), and an early Miocene (approximately 18 mya) divergence of Asian and African great apes. These dates are examined in the context of other molecular clock studies. PMID:16815047

  13. Molecular psychiatry of zebrafish.

    PubMed

    Stewart, A M; Ullmann, J F P; Norton, W H J; Parker, M O; Brennan, C H; Gerlai, R; Kalueff, A V

    2015-02-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research. PMID:25349164

  14. Porous Organic Molecular Materials

    SciTech Connect

    Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-01-01

    Most nanoporous materials with molecular-scale pores are extended frameworks composed of directional covalent or coordination bonding, such as porous metal-organic frameworks and organic network polymers. By contrast, nanoporous materials comprised of discrete organic molecules, between which there are only weak non-covalent interactions, are seldom encountered. Indeed, most organic molecules pack efficiently in the solid state to minimize the void volume, leading to non-porous materials. In recent years, a significant number of nanoporous organic molecular materials, which may be either crystalline or amorphous, have been confirmed by the studies of gas adsorption and they are surveyed in this Highlight. In addition, the possible advantages of porous organic molecular materials over porous networks are discussed.

  15. High-molecular-mass multicatalytic proteinase complexes produced by the nitrogen-fixing actinomycete Frankia strain BR.

    PubMed Central

    Benoist, P; Müller, A; Diem, H G; Schwencke, J

    1992-01-01

    A major-high-molecular mass proteinase and seven latent minor proteinases were found in cell extracts and in concentrates of culture medium from Frankia sp. strain BR after nondenaturing electrophoresis in mixed gelatin-polyacrylamide gels. All of these complexes showed multicatalytic properties. Their molecular masses and their sedimentation coefficients varied from 1,300 kDa (28S) to 270 kDa (12S). The electroeluted 1,300-kDa proteinase complex dissociated into 11 low-molecular-mass proteinases (40 to 19 kDa) after sodium dodecyl sulfate activation at 30 degrees C and electrophoresis under denaturing conditions. All of these electroeluted proteinases hydrolyzed N-carbobenzoxy-Pro-Ala-Gly-Pro-4-methoxy-beta- naphthylamide, D-Val-Leu-Arg-4-methoxy-beta-naphthylamide, and Boc-Val-Pro-Arg-4-methyl-7-coumarylamide, whereas Suc-Leu-Leu-Val-Tyr-4-methyl-7-coumarylamide was cleaved only by the six lower-molecular-mass proteinases (27.5 to 19 kDa). Examination by electron microscopy of uranyl acetate-stained, electroeluted 1,300- and 650-kDa intracellular and extracellular proteinase complexes showed ring-shaped and cylindrical particles (10 to 11 nm in diameter, 15 to 16 nm long) similar to those of eukaryotic prosomes and proteasomes. Polyclonal antibodies raised against rat skeletal muscle proteasomes cross-reacted with all of the high-molecular-mass proteinase complexes and, after denaturation of the electroeluted 1,300-kDa band, with polypeptides of 35 to 38, 65, and 90 kDa. Electrophoresis of the activated cell extracts under denaturing conditions revealed 11 to 17 gelatinases from 40 to 19 kDa, including the 11 proteinases of the 1,300-kDa proteinase complex. The inhibition pattern of these proteinases is complex. Thiol-reactive compounds and 1-10-phenanthroline strongly inhibited all of the proteinases, but inhibitors against serine-type proteinases were also effective for most of them. Images PMID:1537794

  16. Purification and characterization of novel antioxidant peptides of different molecular weights from mackerel Pneumatophorus japonicus protein hydrolysate

    NASA Astrophysics Data System (ADS)

    Wang, Xueqin; Xing, Ronge; Liu, Song; Yu, Huahua; Li, Kecheng; Chen, Zuoyuan; Li, Pengcheng

    2015-01-01

    Mackerel ( Pneumatophorus japonic u s) proteins were hydrolyzed by five proteases: trypsin, papain, neutrase, acid protease, and flavourzyme. The hydrolysate treated by neutrase exhibited the highest antioxidant activity. Response surface methodology (RSM) was employed to optimize the hydrolysis conditions in an effort to obtain a mackerel protein hydrolysate (MPH) with the highest DPPH radical scavenging activity. The MPH was fractioned using a series of ultrafiltration membranes and five fractions, namely, MPH-I (>10 kDa), MPH-II (10-2.5 kDa), MPH-III (1-2.5 kDa), MPH-IV (0.4-1 kDa), and MPH-V (below 0.4 kDa), were obtained. DPPH radical scavenging activity, reducing power, hydroxyl radical scavenging activity, and the lipid peroxidation inhibition capability of these fractions were evaluated. The fractions in molecular weights <2.5 kDa (MPH-III, MPH-IV, and MPH-V), which occupied 93.4% of the total fractions, showed the strongest antioxidant activity; and the antioxidant activities of the three fractions are similar to each other. Using SP Sephadex C-25 and Sephadex G-25 columns, eight fractions were obtained from the MPH (<2.5 kDa). The isolated peptide I (1 664 kDa) displayed the highest DPPH radical scavenging activity. Therefore, MPH is a potential source of antioxidant peptides.

  17. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the

  18. Molecular subgroups of medulloblastoma

    PubMed Central

    Northcott, Paul A; Dubuc, Adrian M; Pfister, Stefan; Taylor, Michael D

    2014-01-01

    Recent efforts at stratifying medulloblastomas based on their molecular features have revolutionized our understanding of this morbidity. Collective efforts by multiple independent groups have subdivided medulloblastoma from a single disease into four distinct molecular subgroups characterized by disparate transcriptional signatures, mutational spectra, copy number profiles and, most importantly, clinical features. We present a summary of recent studies that have contributed to our understanding of the core medulloblastoma subgroups, focusing largely on clinically relevant discoveries that have already, and will continue to, shape research. PMID:22853794

  19. Molecular Umbrella Transport

    PubMed Central

    Mehiri, Mohamed; Chen, Wen-Hua; Janout, Vaclav; Regen, Steven L.

    2009-01-01

    The ability of a series of molecular umbrellas, derived from cholic acid, L-lysine, spermidine and Cascade Blue, to cross fluid liposomal membranes made from 1-palmitoyl-2-oleyol-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) (95/5, mol/mol) has been determined. In sharp contrast to the clasic “size/lipophilicity” rule of membrane transport, those molecular umbrellas that were larger in size and less lipophilic crossed these liposomal membranes more readily. The likely origin for this unusual behavior is briefly discussed. PMID:19140686

  20. Circumstellar radio molecular lines

    NASA Technical Reports Server (NTRS)

    NGUYEN-QUANG-RIEU

    1987-01-01

    Radio molecular lines appear to be useful probes into the stellar environment. Silicon oxide masers provide information on the physical conditions in the immediate vicinity of the stellar photosphere. Valuable information on the physics operating in the envelope of IRC + 10216 was recently obtained by high sensitivity observations and detailed theoretical analyses. Infrared speckle interferometry in the molecular lines and in the continuum is helpful in the investigation of the inner region of the envelope. These techniques are discussed in terms of late-type star mass loss.

  1. Synthetic mechanochemical molecular swimmer.

    PubMed

    Golestanian, Ramin

    2010-07-01

    A minimal design for a molecular swimmer is proposed that is based on a mechanochemical propulsion mechanism. Conformational changes are induced by electrostatic actuation when specific parts of the molecule temporarily acquire net charges through catalyzed chemical reactions involving ionic components. The mechanochemical cycle is designed such that the resulting conformational changes would be sufficient for achieving low Reynolds number propulsion. The system is analyzed within the recently developed framework of stochastic swimmers to take account of the noisy environment at the molecular scale. The swimming velocity of the device is found to depend on the concentration of the fuel molecule according to the Michaelis-Menten rule in enzymatic reactions. PMID:20867483

  2. Molecular Pathology Informatics.

    PubMed

    Roy, Somak

    2015-06-01

    Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. PMID:26065793

  3. Substructured multibody molecular dynamics.

    SciTech Connect

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  4. Molecular Engineering of DNA: Molecular Beacons

    PubMed Central

    Tang, Zhiwen; Yang, Chaoyong James; Kim, Youngmi; Fang, Xiaohong; Li, Wei; Wu, Yanrong; Medley, Colin D.; Cao, Zehui; Li, Jun; Colon, Patrick; Lin, Hui

    2009-01-01

    Molecular beacons (MBs) are specifically designed DNA hairpin structures that are widely used as fluorescent probes. Applications of MBs range from genetic screening, biosensor development, biochip construction, and the detection of single-nucleotide polymorphisms to mRNA monitoring in living cells. The inherent signal-transduction mechanism of MBs enables the analysis of target oligonucleotides without the separation of unbound probes. The MB stem–loop structure holds the fluorescence-donor and fluorescence-acceptor moieties in close proximity to one another, which results in resonant energy transfer. A spontaneous conformation change occurs upon hybridization to separate the two moieties and restore the fluorescence of the donor. Recent research has focused on the improvement of probe composition, intracellular gene quantitation, protein–DNA interaction studies, and protein recognition. PMID:19065690

  5. Microfluidic Western Blotting of Low-Molecular-Mass Proteins

    PubMed Central

    2015-01-01

    We describe a microfluidic Western blot assay (μWestern) using a Tris tricine discontinuous buffer system suitable for analyses of a wide molecular mass range (6.5–116 kDa). The Tris tricine μWestern is completed in an enclosed, straight glass microfluidic channel housing a photopatterned polyacrylamide gel that incorporates a photoactive benzophenone methacrylamide monomer. Upon brief ultraviolet (UV) light exposure, the hydrogel toggles from molecular sieving for size-based separation to a covalent immobilization scaffold for in situ antibody probing. Electrophoresis controls all assay stages, affording purely electronic operation with no pumps or valves needed for fluid control. Electrophoretic introduction of antibody into and along the molecular sieving gel requires that the probe must traverse through (i) a discontinuous gel interface central to the transient isotachophoresis used to achieve high-performance separations and (ii) the full axial length of the separation gel. In-channel antibody probing of small molecular mass species is especially challenging, since the gel must effectively sieve small proteins while permitting effective probing with large-molecular-mass antibodies. To create a well-controlled gel interface, we introduce a fabrication method that relies on a hydrostatic pressure mismatch between the buffer and polymer precursor solution to eliminate the interfacial pore-size control issues that arise when a polymerizing polymer abuts a nonpolymerizing polymer solution. Combined with a new swept antibody probe plug delivery scheme, the Tris tricine μWestern blot enables 40% higher separation resolution as compared to a Tris glycine system, destacking of proteins down to 6.5 kDa, and a 100-fold better signal-to-noise ratio (SNR) for small pore gels, expanding the range of applicable biological targets. PMID:25268977

  6. Microfluidic Western blotting of low-molecular-mass proteins.

    PubMed

    Gerver, Rachel E; Herr, Amy E

    2014-11-01

    We describe a microfluidic Western blot assay (μWestern) using a Tris tricine discontinuous buffer system suitable for analyses of a wide molecular mass range (6.5-116 kDa). The Tris tricine μWestern is completed in an enclosed, straight glass microfluidic channel housing a photopatterned polyacrylamide gel that incorporates a photoactive benzophenone methacrylamide monomer. Upon brief ultraviolet (UV) light exposure, the hydrogel toggles from molecular sieving for size-based separation to a covalent immobilization scaffold for in situ antibody probing. Electrophoresis controls all assay stages, affording purely electronic operation with no pumps or valves needed for fluid control. Electrophoretic introduction of antibody into and along the molecular sieving gel requires that the probe must traverse through (i) a discontinuous gel interface central to the transient isotachophoresis used to achieve high-performance separations and (ii) the full axial length of the separation gel. In-channel antibody probing of small molecular mass species is especially challenging, since the gel must effectively sieve small proteins while permitting effective probing with large-molecular-mass antibodies. To create a well-controlled gel interface, we introduce a fabrication method that relies on a hydrostatic pressure mismatch between the buffer and polymer precursor solution to eliminate the interfacial pore-size control issues that arise when a polymerizing polymer abuts a nonpolymerizing polymer solution. Combined with a new swept antibody probe plug delivery scheme, the Tris tricine μWestern blot enables 40% higher separation resolution as compared to a Tris glycine system, destacking of proteins down to 6.5 kDa, and a 100-fold better signal-to-noise ratio (SNR) for small pore gels, expanding the range of applicable biological targets. PMID:25268977

  7. PSI-O, a new 10-kDa subunit of eukaryotic photosystem I.

    PubMed

    Knoetzel, Jürgen; Mant, Alexandra; Haldrup, Anna; Jensen, Poul Erik; Scheller, Henrik Vibe

    2002-01-16

    A novel polypeptide with an apparent molecular mass of 9 kDa was detected after sodium dodecyl sulphate-polyacrylamide gel electrophoresis of Arabidopsis photosystem I (PSI) and was N-terminally sequenced. Corresponding cDNA clones encode a precursor protein of 140 amino acid residues which was imported into isolated intact chloroplasts and processed to the mature protein, designated PSI-O. The mature protein has two transmembrane helices and a calculated mass of 10104 Da. The PSI-O protein was also shown to be present in PSI isolated from barley and spinach, and was essentially absent in chloroplast grana. Expressed sequences encoding similar proteins are available from many species of plants and green algae. PMID:11801243

  8. Effects of membrane molecular weight cutoff on performance of a novel bioartificial liver.

    PubMed

    Shi, Xiao-lei; Zhang, Yue; Han, Bing; Gu, Jin-yang; Chu, Xue-hui; Xiao, Jiang-qiang; Ren, Hao-zhen; Tan, Jiao-jun; Ding, Yi-tao

    2011-03-01

    Immunoisolation using semipermeable membranes has been incorporated into bioartificial liver (BAL) devices to separate cellular components of the recipient's immune system from the cells within the BAL device. This study was designed to explore the influence of membrane molecular weight cutoff on performance of the multilayer radial-flow BAL using porcine hepatocytes cocultured with mesenchymal stem cells. In this study, healthy beagles underwent 6-h treatment with a BAL containing membrane with 200 kDa retention rating or 1200 kDa retention rating. Functional markers of BAL performance were monitored before and after treatment, as well as cytotoxic immune response to BAL therapy. The results showed that hepatocyte performance levels such as albumin secretion, urea synthesis, and viability were all significantly higher in 200 kDa retention rating group compared with the 1200 kDa retention rating group after treatment (P <  0.05). Significant levels of canine proteins were detected in BAL medium from the 1200 kDa retention rating group. Fluorescence microscopy further verified that heavy deposition of canine IgG, IgM, and complement (C3) on coculture cells was obtained after BAL treatment in the 1200 kDa retention rating group. However, only trace deposits of canine immunoproteins were observed on coculture cells obtained from BAL in the 200 kDa retention rating group. Small membrane molecular weight cutoff of the BAL could reduce the transfer of xenoreactive antibodies into the BAL medium and improve the performance of the BAL. PMID:21371057

  9. Biophysics of molecular gastronomy.

    PubMed

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP. PMID:25815978

  10. [Ortho-molecular nutrition].

    PubMed

    Martínez Bradshaw, Alejandro

    2005-03-01

    Ortho-molecular nutrition contemplates the deficiency of certain nutrients, not their deprivation, as the generator of short-term and long-term pathologies. By means of supplying these nutrients, an organism recovers. This method consists in building up an organism's functions by following the guides and indications provided by the organism itself. PMID:15871343

  11. Molecular Adsorber Coating

    NASA Technical Reports Server (NTRS)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  12. Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2005-01-01

    A symposium on atomic and molecular physics was held on November 18, 2005 at Goddard Space Flight Center. There were a number of talks through the day on various topics such as threshold law of ionization, scattering of electrons from atoms and molecules, muonic physics, positron physics, Rydberg states etc. The conference was attended by a number of physicists from all over the world.

  13. Molecular Detection of Sarcocystis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When people eat undercooked beef or pork containing viable Sarcocystis hominis or Sarcocystis suihominis, they can contract acute gastro-intestinal infections that culminate, about two weeks later, with the excretion of parasites infectious for cattle or swine, respectively. Molecular methods can p...

  14. Molecular contributions to conservation

    USGS Publications Warehouse

    Haig, Susan M.

    1998-01-01

    Recent advances in molecular technology have opened a new chapter in species conservation efforts, as well as population biology. DNA sequencing, MHC (major histocompatibility complex), minisatellite, microsatellite, and RAPD (random amplified polymorphic DNA) procedures allow for identification of parentage, more distant relatives, founders to new populations, unidentified individuals, population structure, effective population size, population-specific markers, etc. PCR (polymerase chain reaction) amplification of mitochondrial DNA, nuclear DNA, ribosomal DNA, chloroplast DNA, and other systems provide for more sophisticated analyses of metapopulation structure, hybridization events, and delineation of species, subspecies, and races, all of which aid in setting species recovery priorities. Each technique can be powerful in its own right but is most credible when used in conjunction with other molecular techniques and, most importantly, with ecological and demographic data collected from the field. Surprisingly few taxa of concern have been assayed with any molecular technique. Thus, rather than showcasing exhaustive details from a few well-known examples, this paper attempts to present a broad range of cases in which molecular techniques have been used to provide insight into conservation efforts.

  15. Molecular ion photofragment spectroscopy

    SciTech Connect

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  16. Caroviologens: Towards molecular wires

    NASA Astrophysics Data System (ADS)

    Blanchard-Desce, M.; Arrhenius, T. S.; Dvolaïtzky, M.; Kugimiya, S.-I.; Lazrak, T.; Lehn, J.-M.

    1992-07-01

    Bispyridinium conjugated polyenes of different lengths and charges have been synthesized. Since they combine the features of carotenoids and of viologens, they have been termed caroviologens. Such molecules, possessing an extended conjugated chain fitted with polar electroactive endgroups, and having a length sufficient to span a lipid membrane could function as transmembrane electron channels, i.e., as molecular wires.

  17. Molecular Models in Biology

    ERIC Educational Resources Information Center

    Goodman, Richard E.

    1970-01-01

    Describes types of molecular models (ball-and-stick, framework, and space-filling) and evaluates commercially available kits. Gives instructions for constructive models from polystyrene balls and pipe-cleaners. Models are useful for class demonstrations although not sufficiently accurate for research use. Illustrations show biologically important…

  18. Making Molecular Borromean Rings

    ERIC Educational Resources Information Center

    Pentecost, Cari D.; Tangchaivang, Nichol; Cantrill, Stuart J.; Chichak, Kelly S.; Peters, Andrea J.; Stoddart, Fraser J.

    2007-01-01

    A procedure that requires seven 4-hour blocks of time to allow undergraduate students to prepare the molecular Borromean rings (BRs) on a gram-scale in 90% yield is described. The experiment would serve as a nice capstone project to culminate any comprehensive organic laboratory course and expose students to fundamental concepts, symmetry point…

  19. Gymnastics of molecular chaperones.

    PubMed

    Mayer, Matthias P

    2010-08-13

    Molecular chaperones assist folding processes and conformational changes in many proteins. In order to do so, they progress through complex conformational cycles themselves. In this review, I discuss the diverse conformational dynamics of the ATP-dependent chaperones of the Hsp60, Hsp70, Hsp90, and Hsp100 families. PMID:20705236

  20. Molecular Stiffness of Selectins*

    PubMed Central

    Sarangapani, Krishna K.; Marshall, Bryan T.; McEver, Rodger P.; Zhu, Cheng

    2011-01-01

    During inflammation, selectin-ligand interactions provide forces for circulating leukocytes to adhere to vascular surfaces, which stretch the interacting molecules, suggesting that mechanical properties may be pertinent to their biological function. From mechanical measurements with atomic force microscopy, we analyzed the molecular characteristics of selectins complexed with ligands and antibodies. Respective stiffness of L-, E-, and P-selectins (4.2, 1.4, and 0.85 piconewton/nm) correlated inversely with the number (2, 6, and 9) of consensus repeats in the selectin structures that acted as springs in series to dominate their compliance. After reconstitution into a lipid bilayer, purified membrane P-selectin remained a dimer, capable of forming dimeric bonds with P-selectin glycoprotein ligand (PSGL)-1, endoglycan-Ig, and a dimeric form of a glycosulfopeptide modeled after the N terminus of PSGL-1. By comparison, purified membrane L- and E-selectin formed only monomeric bonds under identical conditions. Ligands and antibodies were much less stretchable than selectins. The length of endoglycan-Ig was found to be 51 ± 12 nm. These results provide a comprehensive characterization of the molecular stiffness of selectins and illustrate how mechanical measurements can be utilized for molecular analysis, e.g. evaluating the multimericity of selectins and determining the molecular length of endoglycan. PMID:21216951

  1. Soybean Molecular Genetic Diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A history of the various DNA marker types used in the assessment of molecular genetic diversity in soybean [Glycine max (L.) Merr.] is followed by a description of a number of studies on the assessment of genetic diversity. These studies include a review of reports on 1) the quantification and comp...

  2. Reading the Molecular Clock.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Suggesting that the evolutionary record may be written in proteins and genes, discusses research in which species are compared by immunology, DNA, and radioimmunoassay. Molecular studies show that DNA from humans and chimps is 98 percent identical, a degree of similarity usually occurring only among animals of the same genus. (JN)

  3. Chlorophyll antenna proteins of photosystem I: topology, synthesis, and regulation of the 20-kDa subunit of Chlamydomonas light-harvesting complex of photosystem I

    SciTech Connect

    Herrin, D.L.; Plumley, F.G.; Ikeuchi, M.; Michaels, A.S.; Schmidt, G.W.

    1987-05-01

    The light-harvesting complex of photosystem I (LHCI) was isolated from wild-type cells of Chlamydomonas reinhardtii; the Chl a/b-protein complex contains four major polypeptides of approximately 27, 26, 24, and 20 kDa (polypeptides 14, 15, 17.2, and 22, respectively, in the nomenclature for Chlamydomonas thylakoid proteins). Antiserum against the 20-kDa subunit of LHCI was prepared and used to determine the membrane topology, subcellular site of synthesis, and cell-cycle regulation of this polypeptide. The results indicate that the 20-kDa subunit as well as the other major LHCI polypeptides are integral membrane proteins. Moreover, protease digestion experiments reveal that the 20-kDa polypeptide is completely protected by the membrane bilayer but the 27- and 26-kDa LHCI polypeptides are exposed at the membrane surface. In vivo synthesis of the 20-kDa polypeptide is sensitive to cycloheximide but not to chloramphenicol; the form of the polypeptide recovered from in vitro translations of polyadenylated RNA is approximately 24 kDa, 4 kDa larger than the mature polypeptide. It is concluded that this LHCI polypeptide is nuclear encoded and synthesized in the cytoplasm as a higher molecular weight precursor. Synthesis of the 20-kDa polypeptide is restricted to the light period in light-dark synchronized cells. Translatable mRNA for this polypeptide accumulates during the light but levels are dramatically reduced during the dark period. Thus, synthesis of the 20-kDa subunit of LHCI appears to be transcriptionally regulated during the cell cycle.

  4. Chlorophyll antenna proteins of photosystem I: topology, synthesis, and regulation of the 20-kDa subunit of Chlamydomonas light-harvesting complex of photosystem I.

    PubMed

    Herrin, D L; Plumley, F G; Ikeuchi, M; Michaels, A S; Schmidt, G W

    1987-05-01

    The light-harvesting complex of photosystem I (LHCI) was isolated from wild-type cells of Chlamydomonas reinhardtii; the Chl a/b-protein complex contains four major polypeptides of approximately 27, 26, 24, and 20 kDa (polypeptides 14, 15, 17.2, and 22, respectively, in the nomenclature for Chlamydomonas thylakoid proteins). Antiserum against the 20-kDa subunit of LHCI was prepared and used to determine the membrane topology, subcellular site of synthesis, and cell-cycle regulation of this polypeptide. The results indicate that the 20-kDa subunit as well as the other major LHCI polypeptides are integral membrane proteins. Moreover, protease digestion experiments reveal that the 20-kDa polypeptide is completely protected by the membrane bilayer but the 27- and 26-kDa LHCI polypeptides are exposed at the membrane surface. In vivo synthesis of the 20-kDa polypeptide is sensitive to cycloheximide but not to chloramphenicol; the form of the polypeptide recovered from in vitro translations of polyadenylated RNA is approximately 24 kDa, 4 kDa larger than the mature polypeptide. It is concluded that this LHCI polypeptide is nuclear encoded and synthesized in the cytoplasm as a higher molecular weight precursor. Synthesis of the 20-kDa polypeptide is restricted to the light period in light-dark synchronized cells. Translatable mRNA for this polypeptide accumulates during the light but levels are dramatically reduced during the dark period. Thus, synthesis of the 20-kDa subunit of LHCI appears to be transcriptionally regulated during the cell cycle. PMID:3555343

  5. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    PubMed

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-01

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population. PMID:26598961

  6. Purification and properties of an oestrogen-stimulated mouse uterine glycoprotein (approx. 70 kDa).

    PubMed Central

    Teng, C T; Walker, M P; Bhattacharyya, S N; Klapper, D G; DiAugustine, R P; McLachlan, J A

    1986-01-01

    An oestrogen-induced secretory protein from mouse uterine luminal fluid was purified by CM-Affi-Gel Blue chromatography and reverse-phase h.p.l.c. This protein has an apparent molecular mass of approx. 70 kDa both by SDS/polyacrylamide-gel electrophoresis (with or without 2-mercaptoethanol) and by gel-filtration column chromatography, indicating that it exists as a single-chain polypeptide. Further analysis of the protein revealed that it is highly basic (pI greater than or equal to 10) and is a glycoprotein. The N-terminus appears to be blocked to Edman degradation. The partial amino acid sequence of a fragment was obtained by cleavage with CNBr; no sequence homology was apparent between the analysed fragment and other known sequences. The incorporation of [35S]methionine into uterine proteins in vitro revealed that oestrogen treatment of immature mice stimulates both synthesis and secretion of the 70 kDa protein. An enzyme-linked immunosorbent assay with polyclonal antibody was used to determine the tissue distribution of the protein. Tissues such as lung, brain, spleen, muscle, intestine, liver, kidney and ovary of oestrogen-treated mice did not have detectable amounts of the 70 kDa protein. Immunoreactivity was present in uterine and vaginal tissues from oestrogen-treated animals. The 70 kDa protein was not induced by testosterone or progesterone. Although the function of this protein is unknown, it is useful as a marker for the study of oestrogen action in the mammalian uterus as well as regulation of gene expression at the molecular level. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 6. PMID:3814091

  7. A molecular electrostatic potential analysis of hydrogen, halogen, and dihydrogen bonds.

    PubMed

    Mohan, Neetha; Suresh, Cherumuttathu H

    2014-03-01

    Hydrogen, halogen, and dihydrogen bonds in weak, medium and strong regimes (<1 to ∼ 60 kcal/mol) have been investigated for several intermolecular donor-acceptor (D-A) complexes at ab initio MP4//MP2 method coupled with atoms-in-molecules and molecular electrostatic potential (MESP) approaches. Electron density ρ at bond critical point correlates well with interaction energy (Enb) for each homogeneous sample of complexes, but its applicability to the entire set of complexes is not satisfactory. Analysis of MESP minimum (V(min)) and MESP at the nuclei (Vn) shows that in all D-A complexes, MESP of A becomes more negative and that of D becomes less negative suggesting donation of electrons from D to A leading to electron donor-acceptor (eDA) interaction between A and D. MESP based parameter ΔΔVn measures donor-acceptor strength of the eDA interactions as it shows a good linear correlation with Enb for all D-A complexes (R(2) = 0.976) except the strongly bound bridged structures. The bridged structures are classified as donor-acceptor-donor complexes. MESP provides a clear evidence for hydrogen, halogen, and dihydrogen bond formation and defines them as eDA interactions in which hydrogen acts as electron acceptor in hydrogen and dihydrogen bonds while halogen acts as electron acceptor in halogen bonds. PMID:24506527

  8. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori

    PubMed Central

    Son, Mina; Lee, June Yong

    2016-01-01

    Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm. PMID:26770033

  9. Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.

    PubMed

    Jeong, Kyoung Yong; Son, Mina; Lee, June Yong; Park, Kyung Hee; Lee, Jae-Hyun; Park, Jung-Won

    2016-01-01

    Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm. PMID:26770033

  10. Some Stereochemical Principles from Polymers: Molecular Symmetry and Molecular Flexibility

    ERIC Educational Resources Information Center

    Price, Charles C.

    1973-01-01

    Discusses the use of the properties of polyethylene, polypropylene, polyisobutylene, and their three epoxides to illustrate the relationships of entropy to molecular properties and the concepts of molecular chirality, geometry, and flexibility. (CC)

  11. Effect of Molecular Weight on Load Transfer in Nanotube / Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mu, Minfang; Du, Fangming; Haggenmueller, Reto; Winey, Karen

    2006-03-01

    The tensile moduli of nanocomposite fibers are being investigated with attention to the molecular weight of the polymer. Nanocomposites composed of single wall carbon nanotube (SWNT) and poly(methyl methacrylate) (PMMA) were prepared by our coagulation method and processed into composite fibers using melt fiber spinning. SWNT in the fibers are aligned and the nanotube - nanotube interactions are diminished, so that, the mechanical load on SWNT is mainly from polymer - SWNT interactions. The tensile moduli along the direction parallel to the SWNT were characterized at 1.0 mm / sec with the fiber length of 25.4 mm. At a weight-average molecular weight (Mw) 25 kDa, the tensile moduli of PMMA are the same with the composites. However, when the Mw is increased to 100kDa, the tensile moduli are improved greatly by adding SWNT. This indicates that the load in the composites is transferred to the SWNT more efficiently at 100 kDa molecular weight. A micromechanics model was used to relate the elastic shear stress on the polymer - SWNT interface to the polymer chain length. It showed that with increasing polymer chain length, the interfacial shear stress was enhanced. This study demonstrates the importance of the molecular weight of the polymer matrix to the load transfer in nanocomposites.

  12. High-molecular-mass multi-c-heme cytochromes from Methylococcus capsulatus bath.

    PubMed

    Bergmann, D J; Zahn, J A; DiSpirito, A A

    1999-02-01

    The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6. 0. The heme c concentration was estimated to be 8.2 +/- 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118, 620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94, 000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome. PMID:9922265

  13. High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; DiSpirito, Alan A.

    1999-01-01

    The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6.0. The heme c concentration was estimated to be 8.2 ± 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118,620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94,000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome. PMID:9922265

  14. Measurement of D->A Momentum Aperture and Test of D->A Field Qualities

    SciTech Connect

    Halling, Mike

    1992-02-27

    The data presented here were taken during two shifts dedicated to D->A studies. The goal during both of these study periods was a test of the field quality of the D->A channel devices, but for the first study period on 10/21/91 the TBT system was not operational so we simply measured the transfer efficiency as a function of momentum. The conclusion from these measurements is as follows: (1) The momentum aperture of the D->A channel is smaller than expected. (2) The restriction is in physical space is somewhere near A:IKIK. (3) The field quality of the injection channel devices is adequate.

  15. Molecular symmetry with quaternions.

    PubMed

    Fritzer, H P

    2001-09-01

    A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with both the Cayley-Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given. Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples applied to icosahedral symmetry. PMID:11666072

  16. Carbyne: The Molecular Approach.

    PubMed

    Tykwinski, Rik R

    2015-12-01

    For the last 60+ years, the synthesis and study of cumulenes and polyynes have been the focus of a small, but dedicated, group of researchers. Many of the remarkable electronic, optical, and structural properties of cumulenes and polyynes had already been identified in the earliest reports. The molecular lengths achievable by the initial syntheses were, unfortunately, somewhat limited by synthetic methods available. For the past 15 years, we have worked toward expanding on the synthesis of cumulenes and polyynes through the development of new methods and stabilization motifs. As new compounds have become available, homologous series of cumulenes and polyynes have then been examined as a function of molecular length. While we are not yet there, we would like to eventually provide a general description of the sp-carbon allotrope carbyne, and this account presents some of our efforts toward this goal. PMID:26200096

  17. An Artificial Molecular Transporter

    PubMed Central

    Schäfer, Christian; Ragazzon, Giulio; Colasson, Benoit; La Rosa, Marcello; Silvi, Serena

    2015-01-01

    Abstract The transport of substrates is one of the main tasks of biomolecular machines in living organisms. We report a synthetic small‐molecule system designed to catch, displace, and release molecular cargo in solution under external control. The system consists of a bistable rotaxane that behaves as an acid–base controlled molecular shuttle, whose ring component bears a tether ending with a nitrile group. The latter can be coordinated to a ruthenium complex that acts as the load, and dissociated upon irradiation with visible light. The cargo loading/unloading and ring transfer/return processes are reversible and can be controlled independently. The robust coordination bond ensures that the cargo remains attached to the device while the transport takes place. PMID:27308223

  18. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  19. Molecular inversion probe assay.

    PubMed

    Absalan, Farnaz; Ronaghi, Mostafa

    2007-01-01

    We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach. PMID:18025701

  20. Welding Molecular Crystals.

    PubMed

    Adolf, Cyril R R; Ferlay, Sylvie; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-12-16

    Both for fundamental and applied sciences, the design of complex molecular systems in the crystalline phase with strict control of order and periodicity at both microscopic and macroscopic levels is of prime importance for development of new solid-state materials and devices. The design and fabrication of complex crystalline systems as networks of crystals displaying task-specific properties is a step toward smart materials. Here we report on isostructural and almost isometric molecular crystals of different colors, their use for fabrication of core-shell crystals, and their welding by 3D epitaxial growth into networks of crystals as single-crystalline entities. Welding of crystals by self-assembly processes into macroscopic networks of crystals is a powerful strategy for the design of hierarchically organized periodic complex architectures composed of different subdomains displaying targeted characteristics. Crystal welding may be regarded as a first step toward the design of new hierarchically organized complex crystalline systems. PMID:26581391

  1. FORT Molecular Ecology Laboratory

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Stevens, P.D.

    2011-01-01

    The mission of the U.S. Geological Survey (USGS) at the Fort Collins Science Center Molecular Ecology Laboratory is to use the tools and concepts of molecular genetics to address a variety of complex management questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from these studies is used to support wildlife-management planning and conservation actions. Current and past studies have provided information to assess taxonomic boundaries, inform listing decisions made under the Endangered Species Act, identify unique or genetically depauperate populations, estimate population size or survival rates, develop management or recovery plans, breed wildlife in captivity, relocate wildlife from one location to another, and assess the effects of environmental change.

  2. An artificial molecular pump.

    PubMed

    Cheng, Chuyang; McGonigal, Paul R; Schneebeli, Severin T; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Stoddart, J Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration. PMID:25984834

  3. Superposition State Molecular Dynamics.

    PubMed

    Venkatnathan, Arun; Voth, Gregory A

    2005-01-01

    The ergodic sampling of rough energy landscapes is crucial for understanding phenomena like protein folding, peptide aggregation, polymer dynamics, and the glass transition. These rough energy landscapes are characterized by the presence of many local minima separated by high energy barriers, where Molecular Dynamics (MD) fails to satisfy ergodicity. To enhance ergodic behavior, we have developed the Superposition State Molecular Dynamics (SSMD) method, which uses a superposition of energy states to obtain an effective potential for the MD simulation. In turn, the dynamics on this effective potential can be used to sample the configurational free energy of the real potential. The effectiveness of the SSMD method for a one-dimensional rough potential energy landscape is presented as a test case. PMID:26641113

  4. An artificial molecular pump

    NASA Astrophysics Data System (ADS)

    Cheng, Chuyang; McGonigal, Paul R.; Schneebeli, Severin T.; Li, Hao; Vermeulen, Nicolaas A.; Ke, Chenfeng; Stoddart, J. Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.

  5. Molecular psychiatry of zebrafish

    PubMed Central

    Stewart, Adam Michael; Ullmann, Jeremy F.P.; Norton, William H.J.; Brennan, Caroline H.; Parker, Matthew O.; Gerlai, Robert; Kalueff, Allan V.

    2014-01-01

    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling CNS disorders. In particular, we outline recent genetic and technological developments allowing for in-vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern biological psychiatry research. PMID:25349164

  6. Wholly Synthetic Molecular Machines.

    PubMed

    Cheng, Chuyang; Stoddart, J Fraser

    2016-06-17

    The past quarter of a century has witnessed an increasing engagement on the part of physicists and chemists in the design and synthesis of molecular machines de novo. This minireview traces the development of artificial molecular machines from their prototypes in the form of shuttles and switches to their emergence as motors and pumps where supplies of energy in the form of chemical fuel, electrochemical potential and light activation become a minimum requirement for them to function away from equilibrium. The challenge facing this rapidly growing community of scientists and engineers today is one of putting wholly synthetic molecules to work, both individually and as collections. Here, we highlight some of the recent conceptual and practical advances relating to the operation of wholly synthetic rotary and linear motors. PMID:26833859

  7. Molecular pathways in dystonia

    PubMed Central

    Bragg, D. Cristopher; Armata, Ioanna A.; Nery, Flavia C.; Breakefield, Xandra O.; Sharma, Nutan

    2011-01-01

    The hereditary dystonias comprise a set of diseases defined by a common constellation of motor deficits. These disorders are most likely associated with different molecular etiologies, many of which have yet to be elucidated. Here we discuss recent advances in three forms of hereditary dystonia, DYT1, DYT6 and DYT16, which share a similar clinical picture: onset in childhood or adolescence, progressive spread of symptoms with generalized involvement of body regions and a steady state affliction without treatment. Unlike DYT1, the genes responsible for DYT6 and DYT16 have only recently been identified, with relatively little information about the function of the encoded proteins. Nevertheless, recent data suggest that these proteins may fit together within interacting pathways involved in dopaminergic signaling, transcriptional regulation, and cellular stress responses. This review focuses on these molecular pathways, highlighting potential common themes among these dystonias which may serve as areas for future research. PMID:21134457

  8. Molecular water pumps.

    PubMed

    Zeuthen, T

    2000-01-01

    There is good evidence that cotransporters of the symport type behave as molecular water pumps, in which a water flux is coupled to the substrate fluxes. The free energy stored in the substrate gradients is utilized, by a mechanism within the protein, for the transport of water. Accordingly, the water flux is secondary active and can proceed uphill against the water chemical potential difference. The effect has been recognized in all symports studied so far (Table 1). It has been studied in details for the K+/Cl- cotransporter in the choroid plexus epithelium, the H+/lactate cotransporter in the retinal pigment epithelium, the intestinal Na+/glucose cotransporter (SGLT1) and the renal Na+/dicarboxylate cotransporter both expressed in Xenopus oocytes. The generality of the phenomenon among symports with widely different primary structures suggests that the property of molecular water pumps derives from a pattern of conformational changes common for this type of membrane proteins. Most of the data on molecular water pumps are derived from fluxes initiated by rapid changes in the composition of the external solution. There was no experimental evidence for unstirred layers in such experiments, in accordance with theoretical evaluations. Even the experimental introduction of unstirred layers did not lead to any measurable water fluxes. The majority of the experimental data supports a molecular model where water is cotransported: A well defined number of water molecules act as a substrate on equal footing with the non-aqueous substrates. The ratio of any two of the fluxes is constant, given by the properties of the protein, and is independent of the driving forces or other external parameters. The detailed mechanism behind the molecular water pumps is as yet unknown. It is, however, possible to combine well established phenomena for enzymes into a working model. For example, uptake and release of water is associated with conformational changes during enzymatic action; a

  9. Molecular Dynamics of Acetylcholinesterase

    SciTech Connect

    Shen, T Y.; Tai, Kaihsu; Henchman, Richard H.; Mccammon, Andy

    2002-06-01

    Molecular dynamics simulations are leading to a deeper understanding of the activity of the enzyme acetylcholinesterase. Simulations have shown how breathing motions in the enzyme facilitate the displacement of substrate from the surface of the enzyme to the buried active site. The most recent work points to the complex and spatially extensive nature of such motions and suggests possible modes of regulation of the activity of the enzyme.

  10. Functional Molecular Ecological Networks

    PubMed Central

    Zhou, Jizhong; Deng, Ye; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-01-01

    Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all microbial biodiversity research focuses on “species” richness and abundance but not on their interactions. Although a network approach is powerful in describing ecological interactions among species, defining the network structure in a microbial community is a great challenge. Also, although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly understood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological networks was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a long-term grassland FACE (free air, CO2 enrichment) experiment. Our results indicate that RMT is powerful in identifying functional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO2 and ambient CO2 (aCO2) possessed the general characteristics of complex systems such as scale free, small world, modular, and hierarchical. However, the topological structures of the functional molecular ecological networks are distinctly different between eCO2 and aCO2, at the levels of the entire communities, individual functional gene categories/groups, and functional genes/sequences, suggesting that eCO2 dramatically altered the network interactions among different microbial functional genes/populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidating network interactions in microbial communities and their responses to environmental changes is fundamentally important for research in microbial ecology, systems microbiology, and global change. PMID:20941329

  11. Primer on molecular genetics

    SciTech Connect

    Not Available

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  12. MOLSCAT: MOLecular SCATtering

    NASA Astrophysics Data System (ADS)

    Hutson, Jeremy M.; Green, Sheldon

    2012-06-01

    MOLSCAT is a FORTRAN code for quantum mechanical (coupled channel) solution of the nonreactive molecular scattering problem and was developed to obtain collision rates for molecules in the interstellar gas which are needed to understand microwave and infrared astronomical observations. The code is implemented for various types of collision partners. In addition to the essentially exact close coupling method several approximate methods, including the Coupled States and Infinite Order Sudden approximations, are provided.

  13. Functional molecular ecological networks.

    PubMed

    Zhou, Jizhong; Deng, Ye; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-01-01

    Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all microbial biodiversity research focuses on "species" richness and abundance but not on their interactions. Although a network approach is powerful in describing ecological interactions among species, defining the network structure in a microbial community is a great challenge. Also, although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly understood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological networks was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a long-term grassland FACE (free air, CO(2) enrichment) experiment. Our results indicate that RMT is powerful in identifying functional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO(2) and ambient CO(2) (aCO(2)) possessed the general characteristics of complex systems such as scale free, small world, modular, and hierarchical. However, the topological structures of the functional molecular ecological networks are distinctly different between eCO(2) and aCO(2), at the levels of the entire communities, individual functional gene categories/groups, and functional genes/sequences, suggesting that eCO(2) dramatically altered the network interactions among different microbial functional genes/populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidating network interactions in microbial communities and their responses to environmental changes is fundamentally important for research in microbial ecology, systems microbiology, and global change. PMID:20941329

  14. Moving beyond molecular mechanisms

    PubMed Central

    2015-01-01

    A major goal in cell biology is to bridge the gap in our understanding of how molecular mechanisms contribute to cell and organismal physiology. Approaches well established in the physical sciences could be instrumental in achieving this goal. A better integration of the physical sciences with cell biology will therefore be an important step in our quest to decipher how cells work together to construct a living organism. PMID:25601400

  15. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  16. Communication: Molecular gears.

    PubMed

    Burnell, E Elliott; de Lange, Cornelis A; Meerts, W Leo

    2016-09-01

    The (1)H nuclear magnetic resonance spectrum of hexamethylbenzene orientationally ordered in the nematic liquid crystal ZLI-1132 is analysed using covariance matrix adaptation evolution strategy. The spectrum contains over 350 000 lines with many overlapping transitions, from which four independent direct dipolar couplings are obtained. The rotations of the six methyl groups appear to be correlated due to mutual steric hindrance. Adjacent methyl groups show counter-rotating or geared motion. Hexamethylbenzene thus behaves as a molecular hexagonal gear. PMID:27608981

  17. Molecular opacities for exoplanets.

    PubMed

    Bernath, Peter F

    2014-04-28

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy. PMID:24664921

  18. Molecular-beam scattering

    SciTech Connect

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  19. Graphs in molecular biology

    PubMed Central

    Huber, Wolfgang; Carey, Vincent J; Long, Li; Falcon, Seth; Gentleman, Robert

    2007-01-01

    Graph theoretical concepts are useful for the description and analysis of interactions and relationships in biological systems. We give a brief introduction into some of the concepts and their areas of application in molecular biology. We discuss software that is available through the Bioconductor project and present a simple example application to the integration of a protein-protein interaction and a co-expression network. PMID:17903289

  20. Molecular opacities for exoplanets

    PubMed Central

    Bernath, Peter F.

    2014-01-01

    Spectroscopic observations of exoplanets are now possible by transit methods and direct emission. Spectroscopic requirements for exoplanets are reviewed based on existing measurements and model predictions for hot Jupiters and super-Earths. Molecular opacities needed to simulate astronomical observations can be obtained from laboratory measurements, ab initio calculations or a combination of the two approaches. This discussion article focuses mainly on laboratory measurements of hot molecules as needed for exoplanet spectroscopy. PMID:24664921

  1. Conceptual Considerations in Molecular Science

    ERIC Educational Resources Information Center

    Sawyer, Donald T.

    2005-01-01

    There are significant misconceptions within the chemical community and molecular science, particularly in the undergraduate curriculum and the associated textbooks. Some of the misconceptions are described, which give poor basis to understand molecular bonding and structure, and reaction mechanisms.

  2. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  3. Digitotalar dysmorphism: Molecular elucidation.

    PubMed

    Vorster, Anna Alvera; Beighton, Peter; Ramesar, Rajkumar Sewcharan

    2016-01-01

    Dominantly inherited digitotalar dysmorphism (DTD), which is characterised by flexion contractures of digits and 'rocker-bottom' feet due to a vertical talus, was first described in a South African family of European stock in 1972. We review the clinical manifestations and document the molecular basis for DTD in this prototype family. This family was restudied in 1995 and 2006 and biological specimens were obtained for molecular studies. Since the distal arthrogryposes (DAs) are genetically heterogeneous, an unbiased approach to mutation identification was undertaken through whole-exome next-generation sequencing of DNA from a single DTD-affected female. Venous blood specimens were obtained for DNA banking and subsequent molecular studies. Analysis of the nine genes that had previously been shown to cause DAs revealed a pathogenic mutation in exon nine of TNNT3. The presence of the p.(Arg63His) missense mutation at position 63 of TNNT3 was confirmed through direct cycle sequencing of genomic DNA in six affected family members for whom DNA had been archived. PMID:26915936

  4. Molecular Neuropathology of Gliomas

    PubMed Central

    Riemenschneider, Markus J.; Reifenberger, Guido

    2009-01-01

    Gliomas are the most common primary human brain tumors. They comprise a heterogeneous group of benign and malignant neoplasms that are histologically classified according to the World Health Organization (WHO) classification of tumors of the nervous system. Over the past 20 years the cytogenetic and molecular genetic alterations associated with glioma formation and progression have been intensely studied and genetic profiles as additional aids to the definition of brain tumors have been incorporated in the WHO classification. In fact, first steps have been undertaken in supplementing classical histopathological diagnosis by the use of molecular tests, such as MGMT promoter hypermethylation in glioblastomas or detection of losses of chromosome arms 1p and 19q in oligodendroglial tumors. The tremendous progress that has been made in the use of array-based profiling techniques will likely contribute to a further molecular refinement of glioma classification and lead to the identification of glioma core pathways that can be specifically targeted by more individualized glioma therapies. PMID:19333441

  5. Molecular basis of alcoholism.

    PubMed

    Most, Dana; Ferguson, Laura; Harris, R Adron

    2014-01-01

    Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy. PMID:25307570

  6. Molecular biology of hearing

    PubMed Central

    Stöver, Timo; Diensthuber, Marc

    2012-01-01

    The inner ear is our most sensitive sensory organ and can be subdivided into three functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound, which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear houses the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In recent years there has been significant progress in research on the molecular basis of hearing. An increasing number of genes and proteins related to hearing are being identified and characterized. The growing knowledge of these genes contributes not only to greater appreciation of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss. PMID:22558056

  7. Molecular adsorption on graphene

    NASA Astrophysics Data System (ADS)

    Kong, Lingmei; Enders, Axel; Rahman, Talat S.; Dowben, Peter A.

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H2O, H2, O2, CO, NO2, NO, and NH3), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH2, An-CH3, An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene’s electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity.

  8. Molecular adsorption on graphene.

    PubMed

    Kong, Lingmei; Enders, Axel; Rahman, Talat S; Dowben, Peter A

    2014-11-01

    Current studies addressing the engineering of charge carrier concentration and the electronic band gap in epitaxial graphene using molecular adsorbates are reviewed. The focus here is on interactions between the graphene surface and the adsorbed molecules, including small gas molecules (H(2)O, H(2), O(2), CO, NO(2), NO, and NH(3)), aromatic, and non-aromatic molecules (F4-TCNQ, PTCDA, TPA, Na-NH(2), An-CH(3), An-Br, Poly (ethylene imine) (PEI), and diazonium salts), and various biomolecules such as peptides, DNA fragments, and other derivatives. This is followed by a discussion on graphene-based gas sensor concepts. In reviewing the studies of the effects of molecular adsorption on graphene, it is evident that the strong manipulation of graphene's electronic structure, including p- and n-doping, is not only possible with molecular adsorbates, but that this approach appears to be superior compared to these exploiting edge effects, local defects, or strain. However, graphene-based gas sensors, albeit feasible because huge adsorbate-induced variations in the relative conductivity are possible, generally suffer from the lack of chemical selectivity. PMID:25287516

  9. Thermoelectricity in molecular junctions.

    PubMed

    Reddy, Pramod; Jang, Sung-Yeon; Segalman, Rachel A; Majumdar, Arun

    2007-03-16

    By trapping molecules between two gold electrodes with a temperature difference across them, the junction Seebeck coefficients of 1,4-benzenedithiol (BDT), 4,4'-dibenzenedithiol, and 4,4''-tribenzenedithiol in contact with gold were measured at room temperature to be +8.7 +/- 2.1 microvolts per kelvin (muV/K), +12.9 +/- 2.2 muV/K, and +14.2 +/- 3.2 muV/K, respectively (where the error is the full width half maximum of the statistical distributions). The positive sign unambiguously indicates p-type (hole) conduction in these heterojunctions, whereas the Au Fermi level position for Au-BDT-Au junctions was identified to be 1.2 eV above the highest occupied molecular orbital level of BDT. The ability to study thermoelectricity in molecular junctions provides the opportunity to address these fundamental unanswered questions about their electronic structure and to begin exploring molecular thermoelectric energy conversion. PMID:17303718

  10. The local effect of octreotide on mechanical pain sensitivity is more sensitive in DA rats than DA.1U rats.

    PubMed

    Yao, Fan-Rong; Wang, Hui-Sheng; Guo, Yuan; Zhao, Yan

    2016-02-01

    A recent study by the authors indicated that major histocompatibility complex (MHC) genes are associated with the differences in basal pain sensitivity and in formalin model between Dark-Agouti (DA) and novel congenic DA.1U rats, which have the same genetic background as DA rats except for the u alleles of MHC. The objective of the present study is to investigate whether there is a difference in the pristane-induced arthritis (PIA) model and local analgesic effect of octreotide (OCT) between DA and DA.1U rats. The hindpaw mechanical withdrawal threshold (MWT) and heat withdrawal latency (HWL) were observed. The C unit firings of the tibial nerve evoked by non-noxious and noxious toe movements were recorded by electrophysiological methods in normal and PIA models in DA and DA.1U rats before and after local OCT administration. The expression of somatostatin receptor 2A (SSTR2A) was observed by immunohistochemistry. The results demonstrate that DA rats have a higher mechanical sensitivity than DA.1U rats after PIA. Local OCT administration significantly elevated MWT in DA rats under normal and PIA sate, but not in DA.1U rats. The electrophysiological experiments showed OCT significantly attenuated the firings of C units evoked by non-noxious and noxious stimulation in DA rats more than those in DA.1U rats both in normal and PIA states. In addition, the expression of SSTR2A in the dorsal horn of the spinal cord was significantly higher in DA than in DA.1U rats. All of the findings suggest a higher local analgesic effect of OCT in DA rats than DA.1U rats, which might be associated with the MHC genes. PMID:26606866

  11. Common colds on Tristan da Cunha

    PubMed Central

    Shibli, M.; Gooch, S.; Lewis, H. E.; Tyrrell, D. A. J.

    1971-01-01

    Eight epidemics of respiratory disease have been observed among islanders of Tristan da Cunha. They seem to be initiated by the arrival of ships and transmission seemed to occur as a result of close human contact but could not always be traced. Islanders suffered from less colds than those in less isolated communities. PMID:5282927

  12. The PAN-DA data acquisition system

    SciTech Connect

    Petravick, D.; Berg, D.; Berman, E.; Bernett, M.; Constanta-Fanourakis, P.; Dorries, T.; Haire, M.; Kaczar, K; MacKinnon, B.; Moore, C.; Nicinski, T.; Oleynik, G.; Pordes, R.; Sergey, G.; Votava, M.; White, V.

    1989-05-01

    The Online and Data Acquisition software groups at Fermi National Accelerator Laboratory have extended the VAXONLINE data acquisition package to include a VME based data path. The resulting environment, PAN-DA, provides a high throughput for logging, filtering, formatting and selecting events. 10 refs., 1 fig.

  13. Hidden sketches by Leonardo da Vinci revealed

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2009-02-01

    Three drawings on the back of Leonardo da Vinci's The Virgin and Child with St Anne (circa 1508) have been discovered by researchers led by Michel Menu from the Centre de Recherche et de Restauration des Musées de France (C2RMF) and the Louvre Museum in Paris.

  14. How to Think Like Leonardo da Vinci

    ERIC Educational Resources Information Center

    Caouette, Ralph

    2008-01-01

    To be effective and relevant in twenty-first-century learning, art needs to be more inclusive. In this article, the author discusses how teachers can find a good example in Leonardo da Vinci for building an art program. His art, design, and curiosity are the perfect foundation for any art program, at any level. (Contains 3 resources and 3 online…

  15. Molecular cloning of the extracellular endodextranase of Streptococcus salivarius.

    PubMed Central

    Lawman, P; Bleiweis, A S

    1991-01-01

    We report the cloning in Escherichia coli of the gene encoding an extracellular endodextranase (alpha-1,6-glucanhydrolase, EC 3.2.1.11) from Streptococcus salivarius PC-1. Recombinants from a S. salivarius PC-1-Lambda ZAP II genomic library specifying dextranase activity were identified as plaques surrounded by zones of clearing on blue dextran agar. One such clone, PD1, had a 6.3-kb EcoRI fragment insert which encoded a 190-kDa protein with dextranase activity. The recombinant strain also produced two lower-molecular-mass polypeptides (90 and 70 kDa) that had dextranase activity. Native dextranase was recovered from concentrated culture fluids of S. salivarius as a single 110-kDa polypeptide. PD1 phage lysate and PC-1 culture supernatant fluid extract were used to measure substrate specificity of the recombinant and native forms of dextranase, respectively. Analysis of these reaction products by thin-layer chromatography revealed the expected isomaltosaccharide products yielded by the recombinant-specified enzyme but was unable to resolve the larger polysaccharide products of the native enzyme. Furthermore, S. salivarius utilized neither the substrates nor the products of dextran hydrolysis for growth. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 PMID:1938938

  16. Adult Born Olfactory Bulb Dopaminergic Interneurons: Molecular Determinants and Experience-Dependent Plasticity

    PubMed Central

    Bonzano, Sara; Bovetti, Serena; Gendusa, Claudio; Peretto, Paolo; De Marchis, Silvia

    2016-01-01

    The olfactory bulb (OB) is a highly plastic brain region involved in the early processing of olfactory information. A remarkably feature of the OB circuits in rodents is the constitutive integration of new neurons that takes place during adulthood. Newborn cells in the adult OB are mostly inhibitory interneurons belonging to chemically, morphologically and functionally heterogeneous types. Although there is general agreement that adult neurogenesis in the OB plays a key role in sensory information processing and olfaction-related plasticity, the contribution of each interneuron subtype to such functions is far to be elucidated. Here, we focus on the dopaminergic (DA) interneurons: we highlight recent findings about their morphological features and then describe the molecular factors required for the specification/differentiation and maintenance of the DA phenotype in adult born neurons. We also discuss dynamic changes of the DA interneuron population related to age, environmental stimuli and lesions, and their possible functional implications. PMID:27199651

  17. Adult Born Olfactory Bulb Dopaminergic Interneurons: Molecular Determinants and Experience-Dependent Plasticity.

    PubMed

    Bonzano, Sara; Bovetti, Serena; Gendusa, Claudio; Peretto, Paolo; De Marchis, Silvia

    2016-01-01

    The olfactory bulb (OB) is a highly plastic brain region involved in the early processing of olfactory information. A remarkably feature of the OB circuits in rodents is the constitutive integration of new neurons that takes place during adulthood. Newborn cells in the adult OB are mostly inhibitory interneurons belonging to chemically, morphologically and functionally heterogeneous types. Although there is general agreement that adult neurogenesis in the OB plays a key role in sensory information processing and olfaction-related plasticity, the contribution of each interneuron subtype to such functions is far to be elucidated. Here, we focus on the dopaminergic (DA) interneurons: we highlight recent findings about their morphological features and then describe the molecular factors required for the specification/differentiation and maintenance of the DA phenotype in adult born neurons. We also discuss dynamic changes of the DA interneuron population related to age, environmental stimuli and lesions, and their possible functional implications. PMID:27199651

  18. 40 CFR 60.51Da - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Generating Units § 60.51Da Reporting requirements. (a) For SO2, NOX, PM, and NOX plus CO emissions, the... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Reporting requirements. 60.51Da Section 60.51Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  19. 40 CFR 60.47Da - Commercial demonstration permit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Commercial demonstration permit. 60.47Da Section 60.47Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Steam Generating Units § 60.47Da Commercial demonstration permit. (a) An owner or operator of...

  20. 40 CFR 60.51Da - Reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Generating Units § 60.51Da Reporting requirements. (a) For SO2, NOX, PM, and NOX plus CO emissions, the... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Reporting requirements. 60.51Da Section 60.51Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  1. 40 CFR 60.47Da - Commercial demonstration permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Commercial demonstration permit. 60.47Da Section 60.47Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Steam Generating Units § 60.47Da Commercial demonstration permit. (a) An owner or operator of...

  2. 40 CFR 60.51Da - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Generating Units § 60.51Da Reporting requirements. (a) For SO2, NOX, PM, and NOX plus CO emissions, the... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Reporting requirements. 60.51Da Section 60.51Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  3. 40 CFR 60.47Da - Commercial demonstration permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Commercial demonstration permit. 60.47Da Section 60.47Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Steam Generating Units § 60.47Da Commercial demonstration permit. (a) An owner or operator of...

  4. 32 CFR 516.25 - DA Form 4.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 3 2011-07-01 2009-07-01 true DA Form 4. 516.25 Section 516.25 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION Reporting Legal Proceedings to HQDA § 516.25 DA Form 4. (a) General. The DA Form 4 (See figure...

  5. 32 CFR 516.25 - DA Form 4.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true DA Form 4. 516.25 Section 516.25 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS LITIGATION Reporting Legal Proceedings to HQDA § 516.25 DA Form 4. (a) General. The DA Form 4 (See figure...

  6. A Day in the Life at DaVita Academy

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    When a company name means "giving life," the bar for learning and development programs is held high. In this article, the author describes what it takes to graduate from DaVita Academy, the soft skills training program dialysis services company DaVita offers all its employees. DaVita's chief executive officer, Kent Thiry, states that the Academy…

  7. Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition.

    PubMed

    Grabovac, Vjera; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-09-30

    The aim of the present study was to investigate the influence of molecular mass and thiol group content of poly(acrylic acid)-cysteine conjugates on the permeation of sulforhodamine 101 and penicillin G. acting as substrates for multidrug resistance-associated protein 2 efflux pump. Poly(acrylic acids) of 2 kDa, 100 kDa, 250 kDa, 450 kDa and 3000 kDa were conjugated with cysteine. The thiol group content of all these polymers was in the range from 343.3 ± 48.4 μmol/g to 450.3 ± 76.1 μmol/g. Transport studies were performed on rat small intestine mounted in Ussing-type chambers. Since 250 kDa poly(acrylic acid) showed the highest permeation enhancing effect, additionally thiolated 250 kDa polyacrylates displaying 157.2 μmol/g, 223.0 ± 18.1 and 355.9 μmol/g thiol groups were synthesized in order to investigate the influence of thiol group content on the permeation enhancement. The permeation of sulforhodamine was 3.93- and 3.85-fold improved using 250 kDa poly(acrylic acid)-cysteine conjugate exhibiting 355.9 ± 39.5 μmol/g and 223.0 ± 18.1 μmol/g thiol groups. Using the same conjugates the permeation of penicillin G was 1.70- and 1.59-fold improved, respectively. The study demonstrates that thiolated poly(acrylic acid) inhibits Mrp2 mediated transport and that the extent of inhibition depends on the molecular mass and degree of thiolation of the polymer. PMID:26238816

  8. Molecular characterization of the 28- and 31-kilodalton subunits of the Legionella pneumophila major outer membrane protein.

    PubMed Central

    Hoffman, P S; Seyer, J H; Butler, C A

    1992-01-01

    The major outer membrane protein of Legionella pneumophila exhibits an apparent molecular mass of 100 kDa. Previous studies revealed the oligomer to be composed of 28- and 31-kDa subunits; the latter subunit is covalently bound to peptidoglycan. These proteins exhibit cross-reactivity with polyclonal anti-31-kDa protein serum. In this study, we present evidence to confirm that the 31-kDa subunit is a 28-kDa subunit containing a bound fragment of peptidoglycan. Peptide maps of purified proteins were generated following cyanogen bromide cleavage or proteolysis with staphylococcal V8 protease. A comparison of the banding patterns resulting from sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a common pattern. Selected peptide fragments were sequenced on a gas phase microsequencer, and the sequence was compared with the sequence obtained for the 28-kDa protein. While the amino terminus of the 31-kDa protein was blocked, peptide fragments generated by cyanogen bromide treatment exhibited a sequence identical to that of the amino terminus of the 28-kDa protein, but beginning at amino acid four (glycine), which is preceded by methionine at the third position. This sequence, (Gly-Thr-Met)-Gly-Pro-Val-Trp-Thr-Pro-Gly-Asn ... , confirms that these proteins have a common amino terminus. An oligonucleotide synthesized from the codons of the common N-terminal amino acid sequence was used to establish by Southern and Northern (RNA) blot analyses that a single gene coded for both proteins. With regard to the putative porin structure, we have identified two major bands at 70 kDa and at approximately 120 kDa by nonreducing SDS-PAGE. The former may represent the typical trimeric motif, while the latter may represent either a double trimer or an aggregate. Analysis of these two forms by two-dimensional SDS-PAGE (first dimensions, nonreducing; second dimensions, reducing) established that both were composed of 31- and 28-kDa subunits cross-linked via

  9. Elucidating molecular mass and shape of a neurotoxic Aβ oligomer.

    PubMed

    Sebollela, Adriano; Mustata, Gina-Mirela; Luo, Kevin; Velasco, Pauline T; Viola, Kirsten L; Cline, Erika N; Shekhawat, Gajendra S; Wilcox, Kyle C; Dravid, Vinayak P; Klein, William L

    2014-12-17

    Alzheimer's disease (AD), the most prevalent type of dementia, has been associated with the accumulation of amyloid β oligomers (AβOs) in the central nervous system. AβOs vary widely in size, ranging from dimers to larger than 100 kDa. Evidence indicates that not all oligomers are toxic, and there is yet no consensus on the size of the actual toxic oligomer. Here we used NU4, a conformation-dependent anti-AβO monoclonal antibody, to investigate size and shape of a toxic AβO assembly. By using size-exclusion chromatography and immuno-based detection, we isolated an AβO-NU4 complex amenable for biochemical and morphological studies. The apparent molecular mass of the NU4-targeted oligomer was 80 kDa. Atomic force microscopy imaging of the AβO-NU4 complex showed a size distribution centered at 5.37 nm, an increment of 1.5 nm compared to the size of AβOs (3.85 nm). This increment was compatible with the size of NU4 (1.3 nm), suggesting a 1:1 oligomer to NU4 ratio. NU4-reactive oligomers extracted from AD human brain concentrated in a molecular mass range similar to that found for in vitro prepared oligomers, supporting the relevance of the species herein studied. These results represent an important step toward understanding the connection between AβO size and toxicity. PMID:25343357

  10. Elucidating Molecular Mass and Shape of a Neurotoxic Aβ Oligomer

    PubMed Central

    2015-01-01

    Alzheimer's disease (AD), the most prevalent type of dementia, has been associated with the accumulation of amyloid β oligomers (AβOs) in the central nervous system. AβOs vary widely in size, ranging from dimers to larger than 100 kDa. Evidence indicates that not all oligomers are toxic, and there is yet no consensus on the size of the actual toxic oligomer. Here we used NU4, a conformation-dependent anti-AβO monoclonal antibody, to investigate size and shape of a toxic AβO assembly. By using size-exclusion chromatography and immuno-based detection, we isolated an AβO-NU4 complex amenable for biochemical and morphological studies. The apparent molecular mass of the NU4-targeted oligomer was 80 kDa. Atomic force microscopy imaging of the AβO-NU4 complex showed a size distribution centered at 5.37 nm, an increment of 1.5 nm compared to the size of AβOs (3.85 nm). This increment was compatible with the size of NU4 (1.3 nm), suggesting a 1:1 oligomer to NU4 ratio. NU4-reactive oligomers extracted from AD human brain concentrated in a molecular mass range similar to that found for in vitro prepared oligomers, supporting the relevance of the species herein studied. These results represent an important step toward understanding the connection between AβO size and toxicity. PMID:25343357

  11. Membrane electroporation--fast molecular exchange by electroosmosis.

    PubMed

    Dimitrov, D S; Sowers, A E

    1990-03-01

    Human and rabbit erythrocyte ghosts loaded with FITC-dextran (mol. mass = 10 kDa) and NBD-glucosamine (mol. mass = 342 Da) in buffers of different ionic strength and composition were subjected to electric pulses (intensity 0.7 kV/mm and decay half-time 1 ms) at 7-10 degrees C and 20-24 degrees C. The transfer of the fluorescent dyes from the interior of the ghosts through the electropores was observed by low light level video microscopy. The pulses caused the fluorescence to appear outside the membranes as a transient cylindrical cloud directed toward the negative electrode during the first video frame (17 ms). It was similar in both rabbit and human erythrocyte ghosts and at both temperatures but differs for the two dyes, the fluorescence cylinder is long and tall for the FITC-dextran and relatively short and thick for the NBD-glucosamine. The molecular exchange was 2-3 orders of magnitude faster within the first 17 ms after the pulse than the diffusional exchange. It decreased with increasing ionic strength. Formulae for the transfer of molecules by electroosmotic flow through the pores are in agreement with these observations. They allow estimation of the total area of pores with radii larger than that of the fluorescent dye during the pulse. The major conclusion is that electroosmosis is the dominating mechanism of molecular exchange in electroporation of erythrocyte ghosts. PMID:1690573

  12. Molecular mechanism of lysosomal sialidase deficiency in galactosialidosis involves its rapid degradation.

    PubMed Central

    Vinogradova, M V; Michaud, L; Mezentsev, A V; Lukong, K E; El-Alfy, M; Morales, C R; Potier, M; Pshezhetsky, A V

    1998-01-01

    Galactosialidosis is an inherited lysosomal storage disease caused by the combined deficiency of lysosomal sialidase and beta-galactosidase secondary to the deficiency of cathepsin A/protective protein, which is associated with sialidase and beta-galactosidase in a high-molecular weight (1.27MDa) complex. Clinical phenotypes of patients as well as the composition of compounds which are stored in patient's tissues implicate sialidase deficiency as the underlying pathogenic defect. The recent cloning and sequencing of lysosomal sialidase [Pshezhetsky, Richard, Michaud, Igdoura, Wang, Elsliger, Qu, Leclerc, Gravel, Dallaire and Potier (1997), Nature Genet. 15, 316-320] allowed us to study the molecular mechanism of sialidase deficiency in galactosialidosis. By Western blotting, using antibodies against the recombinant human enzyme, and by NH2-terminal sequencing, we showed that sialidase is synthesized as a 45.5 kDa precursor and after the cleavage of the 47-amino acid signal peptide and glycosylation becomes a 48.3 kDa mature active enzyme present in the 1.27 kDa complex. Transgenic expression of sialidase in cultured skin fibroblasts from normal controls and from galactosialidosis patients, followed by immunofluorescent and immunoelectron microscopy showed that in both normal and affected cells the expressed sialidase was localized on lysosomal and plasma membranes, but the amount of sialidase found in galactosialidosis cells was approximately 5-fold reduced. Metabolic labelling studies demonstrated that the 48.3 kDa mature active form of sialidase was stable in normal fibroblasts (half-life approximately 2.7 h), whereas in galactosialidosis fibroblasts the enzyme was rapidly converted (half-life approximately 30 min) into 38.7 and 24 kDa catalytically inactive forms. Altogether our data provide evidence that the molecular mechanism of sialidase deficiency in galactosialidosis is associated with abnormal proteolytic cleavage and fast degradation. PMID:9480870

  13. Microscale Vortex-assisted Electroporator for Sequential Molecular Delivery

    PubMed Central

    Vickers, Dwayne A. L.; Hur, Soojung Claire

    2014-01-01

    Electroporation has received increasing attention in the past years, because it is a very powerful technique for physically introducing non-permeant exogenous molecular probes into cells. This work reports a microfluidic electroporation platform capable of performing multiple molecule delivery to mammalian cells with precise and molecular-dependent parameter control. The system’s ability to isolate cells with uniform size distribution allows for less variation in electroporation efficiency per given electric field strength; hence enhanced sample viability. Moreover, its process visualization feature allows for observation of the fluorescent molecular uptake process in real-time, which permits prompt molecular delivery parameter adjustments in situ for efficiency enhancement. To show the vast capabilities of the reported platform, macromolecules with different sizes and electrical charges (e.g., Dextran with MW of 3,000 and 70,000 Da) were delivered to metastatic breast cancer cells with high delivery efficiencies (>70%) for all tested molecules. The developed platform has proven its potential for use in the expansion of research fields where on-chip electroporation techniques can be beneficial. PMID:25145886

  14. Molecular proxies for paleoclimatology

    NASA Astrophysics Data System (ADS)

    Eglinton, Timothy I.; Eglinton, Geoffrey

    2008-10-01

    We summarize the applications of molecular proxies in paleoclimatology. Marine molecular records especially are proving to be of value but certain environmentally persistent compounds can also be measured in lake sediments, loess deposits and ice cores. The fundamentals of this approach are the molecular parameters, the compound abundances and carbon, hydrogen, nitrogen and oxygen isotopic contents which can be derived by the analysis of sediment extracts. These afford proxy measures which can be interpreted in terms of the conditions which control climate and also reflect its operation. We discuss two types of proxy; those of terrigenous and those of aquatic origin, and exemplify their application in the study of marine sediments through the medium of ten case studies based in the Atlantic, Mediterranean and Pacific Oceans, and in Antarctica. The studies are mainly for periods in the present, the Holocene and particularly the last glacial/interglacial, but they also include one study from the Cretaceous. The terrigenous proxies, which are measures of continental vegetation, are based on higher plant leaf wax compounds, i.e. long-chain (circa C 30) hydrocarbons, alcohols and acids. They register the relative contributions of C 3 vs. C 4 type plants to the vegetation in the source areas. The two marine proxies are measures of sea surface temperatures (SST). The longer established one, (U 37K') is based on the relative abundances of C 37 alkenones photosynthesized by unicellular algae, members of the Haptophyta. The newest proxy (TEX 86) is based on C 86 glycerol tetraethers (GDGTs) synthesized in the water column by some of the archaeal microbiota, the Crenarchaeota.

  15. VMD: visual molecular dynamics.

    PubMed

    Humphrey, W; Dalke, A; Schulten, K

    1996-02-01

    VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more "representations," in which each representation embodies a particular rendering method and coloring scheme for a selected subset of atoms. The atoms displayed in each representation are chosen using an extensive atom selection syntax, which includes Boolean operators and regular expressions. VMD provides a complete graphical user interface for program control, as well as a text interface using the Tcl embeddable parser to allow for complex scripts with variable substitution, control loops, and function calls. Full session logging is supported, which produces a VMD command script for later playback. High-resolution raster images of displayed molecules may be produced by generating input scripts for use by a number of photorealistic image-rendering applications. VMD has also been expressly designed with the ability to animate molecular dynamics (MD) simulation trajectories, imported either from files or from a direct connection to a running MD simulation. VMD is the visualization component of MDScope, a set of tools for interactive problem solving in structural biology, which also includes the parallel MD program NAMD, and the MDCOMM software used to connect the visualization and simulation programs. VMD is written in C++, using an object-oriented design; the program, including source code and extensive documentation, is freely available via anonymous ftp and through the World Wide Web. PMID:8744570

  16. Molecular ecological network analyses

    PubMed Central

    2012-01-01

    Background Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Results Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP

  17. Molecular Mediators of Angiogenesis

    PubMed Central

    Ucuzian, Areck A.; Gassman, Andrew A.; East, Andrea T.; Greisler, Howard P.

    2010-01-01

    Angiogenesis, or the formation of new blood vessels from the preexisting vasculature, is a key component in numerous physiologic and pathologic responses and has broad impact in many medical and surgical specialties. In this review, we discuss the key cellular steps which lead to the neovascularization of tissues, and highlight the main molecular mechanisms and mediators in this process. We include discussions on proteolytic enzymes, cell/matrix interactions, pertinent cell signaling pathways, and end with a survey of the mechanisms which lead to the stabilization and maturation of neovasculatures. PMID:20061852

  18. Molecular biology and reproduction.

    PubMed

    McDonough, P G

    1999-03-01

    Modern molecular biology has provided unique insights into the fundamental understanding of reproductive disorders and the detection of microorganisms. The remarkable advances in DNA diagnostics have been expedited by the development of polymerase chain reaction (PCR) and the ability to isolate DNA and RNA from many different sources such as blood, saliva, hair roots, microscopic slides, paraffin-embedded tissue sections, clinical swabs, and even cancellous bone. These technical advances have been bolstered by the development of an increasing number of effective screening techniques to scan genomic DNA for unknown point mutations. The continued development of technology will ultimately result in automated DNA (desoxyribonucleic acid) diagnosis for the practicing clinician. The continuing expansion of information concerning the human genome will place an increasing emphasis on bioinformatics and the use of computer software for analyzing DNA sequences. With the automation of DNA diagnosis and the use of small samples (500 nanograms), the direct examination of the DNA of a patient, fetus, or microorganism will emerge as a definitive means of establishing the presence of the specific genetic change that causes disease. A knowledge of the precise pathology at the molecular level has and will provide important insights into the biochemical basis for many human diseases. A firm knowledge of the DNA alterations in disease and expression patterns of specific genes will provide for more directed therapeutic strategies. The refinement of vector technology and nuclear transplantion techniques will provide the opportunity for directed gene therapy to the early human embryo. This presentation is designed to acquaint the reader with current techniques of testing at the DNA level, prototype mutations in the reproductive sciences, new concepts in the molecular mechanisms of disease that affect reproduction, and therapeutic opportunities for the future. It is hoped that future

  19. Molecular mechanisms of epilepsy

    PubMed Central

    Staley, Kevin

    2015-01-01

    Decades of experimental work have established an imbalance of excitation and inhibition as the leading mechanism of the transition from normal brain function to seizure. In epilepsy, these transitions are rare and abrupt. Transition processes incorporating positive feedback, such as activity-dependent disinhibition, could provide these unique timing features. A rapidly expanding array of genetic etiologies will help delineate the molecular mechanism(s). This delineation will entail quite a bit of cell biology. The genes discovered to date are currently more remarkable for their diversity than their similarities. PMID:25710839

  20. Adenovirus type 2 encoded early 11 kDa protein

    SciTech Connect

    Murthy, S.V.K.N.; Kapoor, Q.S.

    1986-05-01

    Several adenovirus type 2 (Ad2) encoded early proteins have been identified in viral infected human KB cells. These proteins are of great interest as they play key roles in cell transformation, viral DNA synthesis and gene expression. They have partially purified an AD2 encoded early polypeptide of an apparent molecular weight of 11 kilodaltons from the nuclei of viral infected cells labelled with /sup 35/S-methionine. After DNA removal from the nuclear extracts, the polypeptide was isolated using DEAE-Sephacel anion exchange and Biogel P-10 gel filtration columns. This simple two step procedure yielded several fold purification of the polypeptide. Antisera raised in mice against an Ad2 transformed rat cell line 8617 was found to immunoprecipitate the 11 kDa polypeptide from the nuclear extract of Ad2 infected KB cells. After relating this protein to an open reading frame of an Ad2 early gene block by matching the amino acid sequences to the nucleotide sequences of early genes, they plan to functionally characterize this protein by using monoclonal antibodies in in vivo and in vitro experiments.

  1. Assessment of molecular weight distribution of wheat gluten proteins for chapatti quality.

    PubMed

    Chaudhary, Nisha; Dangi, Priya; Khatkar, Bhupendar Singh

    2016-05-15

    Size exclusion chromatography (SEC) was used to characterize molecular weight distribution pattern of gluten proteins of four Indian commercial wheat varieties in order to elucidate their influence on flour physicochemical, dough rheology and quality characteristics of chapatti. SEC profile of a wheat variety was segregated into five domains: peak I (130-30 kDa; glutenins), peak II (55-20 kDa; gliadins), peak III (28-10 kDa; low molecular weight gliadins), peak IV and V (<10 kDa; albumins and globulins). SEC results indicated that R/E ratio (r=0.745(∗∗) and r=-0.869(∗∗)), gluten index (r=0.959(∗∗) and r=-0.994(∗∗)), dough development time (r=0.830(∗∗) and r=-0.930(∗∗)) and dough stability (r=0.901(∗∗) and r=-0.979(∗∗)) were positively and negatively altered by peak I and II, respectively. Peak I (r=0.879(∗∗) and r=-0.981(∗∗)) and peak II (r=-0.744(∗∗) and r=0.995(∗∗)) substantially influenced the chapatti hardness and overall score, respectively. PMID:26775940

  2. Relationship of molecular weight distribution profile of unreduced gluten protein extracts with quality characteristics of bread.

    PubMed

    Chaudhary, Nisha; Dangi, Priya; Khatkar, B S

    2016-11-01

    A statistical correlation was established among the molecular weight distribution patterns of unreduced gluten proteins and physicochemical, rheological and bread-making quality characteristics of wheat varieties. Size exclusion chromatography fractionated the gluten proteins apparently into five peaks. Peak I signified glutenins (30-130kDa), peak II as gliadins (20-55kDa), peak III as very low molecular weight monomeric gliadins (10-28kDa), peak IV and V, collectively, as albumins and globulins (<10kDa). Peaks I and II had appreciable effects on dough development time (r=0.830(∗∗) and r=-0.930(∗∗)) and dough stability (r=0.901(∗∗) and r=-0.979(∗∗)). Peak I was associated with R/E ratio (r=0.745(∗∗)), gluten index (r=0.959(∗∗)), and gliadin/glutenin ratio (r=-0.952(∗∗)), while peak II influenced inversely as expected. Peak I exhibited positive statistical significance with bread loaf volume (r=0.848(∗∗)); however, peak II had negative (r=-0.818(∗∗)) impact. Bread firmness increased with increment in peak II (r=0.625(∗∗)), and decreased with accretion in peak I (r=-0.623(∗∗)). PMID:27211654

  3. Molecular weight determination of an active photosystem I preparation from a thermophilic cyanobacterium, Synechococcus elongatus

    SciTech Connect

    Schafheutle, M.E.; Setlikova, E.; Timmins, P.A.; Johner, H.; Gutgesell, P.; Setlik, I.; Welte, W. )

    1990-02-06

    An active photosystem I (PSI) complex was isolated from the thermophilic cyanobacterium Synechococcus elongatus by a procedure consisting of three steps: First, extraction of photosystem II from the thylakoids by a sulfobetaine detergent yields PSI-enriched membranes. Second, the latter are treated with Triton X-100 to extract PSI particles, which are further purified by preparative isoelectric focusing. Third, anion-exchange chromatography is used to remove contaminating phycobilisome polypeptides. The purified particles show three major bands in sodium dodecyl sulfate gel electrophoresis of apparent molecular mass of 110, 15, and 10 kDa. Charge separation was monitored by the kinetics of flash-induced absorption changes at 820 nm. A chlorophyll/P700 ratio of 60 was found. When the particles are stored at 4 degrees C, charge separation was stable for weeks. The molecular mass of the PSI particles, determined by measurement of zero-angle neutron scattering intensity, was 217,000 Da. The PSI particles thus consist of one heterodimer of the 60-80-kDa polypeptides and presumably one copy of the 15- and 10-kDa polypeptides, respectively.

  4. Stability of high-mass molecular libraries: the role of the oligoporphyrin core

    PubMed Central

    Sezer, Uĝur; Schmid, Philipp; Felix, Lukas; Mayor, Marcel; Arndt, Markus

    2015-01-01

    Molecular beam techniques are a key to many experiments in physical chemistry and quantum optics. In particular, advanced matter-wave experiments with high-mass molecules profit from the availability of slow, neutral and mass-selected molecular beams that are sufficiently stable to remain intact during laser heating and photoionization mass spectrometry. We present experiments on the photostability with molecular libraries of tailored oligoporphyrins with masses up to 25 000 Da. We compare two fluoroalkylsulfanyl-functionalized libraries based on two different molecular cores that offer the same number of anchor points for functionalization but differ in their geometry and electronic properties. A pentaporphyrin core stabilizes a library of chemically well-defined molecules with more than 1600 atoms. They can be neutrally desorbed with velocities as low as 20 m/s and efficiently analyzed in photoionization mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25601698

  5. Molecular mechanism of reduction in pregnenolone synthesis by cigarette smoke

    SciTech Connect

    Bose, Mahuya; Whittal, Randy M.; Gairola, C. Gary; Bose, Himangshu S.

    2008-05-15

    Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer to inner mitochondrial membrane for the synthesis of pregnenolone. Here, we investigated the molecular mechanism of the reduction of pregnenolone synthesis by cigarette smoke condensate (CSC). Pre-exposure or post-exposure of cells with CSC led to reduced pregnenolone synthesis, in a fashion similar to its effect on isolated mitochondria. However, there was no difference in the expression of 30 kDa StAR in cells treated with moderately concentrated CSC by either regimen. The active form of 37 kDa StAR is degraded easily suggesting that the continuous presence of CSC reduces StAR expression. Mitochondrial import of {sup 35}S-methionine-labeled StAR followed by extraction of the StAR-mitochondrial complex with 1% digitonin showed similarly sized complexes in the CSC-treated and untreated mitochondria. Further analysis by sucrose density gradient centrifugation showed a specific complex, 'complex 2', in the untreated mitochondria but absent in the CSC-treated mitochondria. Mass spectrometric analysis revealed that complex 2 is the outer mitochondrial protein, VDAC1. Knockdown of VDAC1 expression by siRNA followed by co-transfection with StAR resulted in a lack of pregnenolone synthesis and 37 kDa StAR expression with reduced expression of the intermediate, 32 kDa StAR. Taken together, these results suggest that in the absence of VDAC1, active StAR expression is reduced indicating that VDAC1 expression is essential for StAR activity. In the absence of VDAC1-StAR interaction, cholesterol cannot be transported into mitochondria; thus the interaction with VDAC1 is a mandatory step for initiating steroidogenesis.

  6. Evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Sevenster, M.

    1993-01-01

    The evolution of interstellar molecular hydrogen was studied, with a special interest for the formation and evolution of molecular clouds and star formation within them, by a two-dimensional hydrodynamical simulation performed on a rectangular grid of physical sizes on the order of 100 pc. It is filled with an initial density of approx. 1 cm(exp -3), except for one cell (approx. 1 pc(exp 2)) at the center of the grid where an accretion core of 1-10(exp 3) solar masses is placed. The grid is co-moving with the gridcenter that is on a circular orbit around the Galactic center and that also is the guiding center of epicyclic approximation of orbits of the matter surrounding it. The initial radial velocity is zero; to account for differential rotation the initial tangential velocity (i.e. the movement around the galactic center) is proportional to the radial distance to the grid center. The rate is comparable to the rotation rate at the Local Standard of Rest. The influence of galactic rotation is noticed by spiral or elliptical forms, but on much longer time scales than self gravitation and cooling processes. Density and temperature are kept constant at the boundaries and no inflow is allowed along the tangential boundaries.

  7. The Molecular Atlas Project

    NASA Astrophysics Data System (ADS)

    Silverberg, Jesse; Yin, Peng

    The promise of super-resolution microscopy is a technology to discover new biological mechanisms that occur at smaller length scales then previously observable. However, with higher-resolution, we generally lose the larger spatial context of the image itself. The Molecular Atlas Project (MAP) directly asks how these competing interests between super-resolution imaging and broader spatially contextualized information can be reconciled. MAP enables us to acquire, visualize, explore, and annotate proteomic image data representing 7 orders of magnitude in length ranging from molecular (nm) to tissue (cm) scales. This multi-scale understanding is made possible by combining multiplexed DNA-PAINT, a DNA nanotechnology approach to super-resolution imaging, with ``big-data'' strategies for information management and image visualization. With these innovations combined, MAP enables us to explore cell-specific heterogeneity in ductal carcinoma for every cellin a cm-sized tissue section, analyze organoid growth for advances in high-throughput tissue-on-a-chip technology, and examine individual synapses for connectome mapping over extremely wide areas. Ultimately, MAP is a fundamentally new way to interact with multiscale biophysical data.

  8. Molecular Epidemiology of Amebiasis

    PubMed Central

    Ali, Ibne Karim M.; Clark, C. Graham; Petri, William A.

    2008-01-01

    Entamoeba histolytica, the causative agent of human amebiasis, remains a significant cause of morbidity and mortality in developing countries and is responsible for up to 100,000 deaths worldwide each year. Entamoeba dispar, morphologically indistinguishable from E. histolytica, is more common in humans in many parts of the world. Similarly Entamoeba moshkovskii, which was long considered to be a free-living ameba, is also morphologically identical to E. histolytica and E. dispar, and is highly prevalent in some E. histolytica endemic countries. However, the only species to cause disease in humans is E. histolytica. Most old epidemiological data on E. histolytica are unusable as the techniques employed do not differentiate between the above three Entamoeba species. Molecular tools are now available not only to diagnose these species accurately but also to study intra-species genetic diversity. Recent studies suggest that only a minority of all E. histolytica infections progress to development of clinical symptoms in the host and there exist population level differences between the E. histolytica strains isolated from the asymptomatic and symptomatic individuals. Nevertheless the underlying factors responsible for variable clinical outcome of infection by E. histolytica remain largely unknown. We anticipate that the recently completed E. histolytica genome sequence and new molecular techniques will rapidly advance our understanding of the epidemiology and pathogenicity of amebiasis. PMID:18571478

  9. Multiscale reactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-12-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.

  10. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  11. Towards graphyne molecular electronics.

    PubMed

    Li, Zhihai; Smeu, Manuel; Rives, Arnaud; Maraval, Valérie; Chauvin, Remi; Ratner, Mark A; Borguet, Eric

    2015-01-01

    α-Graphyne, a carbon-expanded version of graphene ('carbo-graphene') that was recently evidenced as an alternative zero-gap semiconductor, remains a theoretical material. Nevertheless, using specific synthesis methods, molecular units of α-graphyne ('carbo-benzene' macrocycles) can be inserted between two anilinyl (4-NH2-C6H4)-anchoring groups that allow these fragments to form molecular junctions between gold electrodes. Here, electrical measurements by the scanning tunnelling microscopy (STM) break junction technique and electron transport calculations are carried out on such a carbo-benzene, providing unprecedented single molecule conductance values: 106 nS through a 1.94-nm N-N distance, essentially 10 times the conductance of a shorter nanographenic hexabenzocoronene analogue. Deleting a C4 edge of the rigid C18 carbo-benzene circuit results in a flexible 'carbo-butadiene' molecule that has a conductance 40 times lower. Furthermore, carbo-benzene junctions exhibit field-effect transistor behaviour when an electrochemical gate potential is applied, opening the way for device applications. All the results are interpreted on the basis of theoretical calculations. PMID:25699991

  12. Towards graphyne molecular electronics

    NASA Astrophysics Data System (ADS)

    Li, Zhihai; Smeu, Manuel; Rives, Arnaud; Maraval, Valérie; Chauvin, Remi; Ratner, Mark A.; Borguet, Eric

    2015-02-01

    α-Graphyne, a carbon-expanded version of graphene (‘carbo-graphene’) that was recently evidenced as an alternative zero-gap semiconductor, remains a theoretical material. Nevertheless, using specific synthesis methods, molecular units of α-graphyne (‘carbo-benzene’ macrocycles) can be inserted between two anilinyl (4-NH2-C6H4)-anchoring groups that allow these fragments to form molecular junctions between gold electrodes. Here, electrical measurements by the scanning tunnelling microscopy (STM) break junction technique and electron transport calculations are carried out on such a carbo-benzene, providing unprecedented single molecule conductance values: 106 nS through a 1.94-nm N-N distance, essentially 10 times the conductance of a shorter nanographenic hexabenzocoronene analogue. Deleting a C4 edge of the rigid C18 carbo-benzene circuit results in a flexible ‘carbo-butadiene’ molecule that has a conductance 40 times lower. Furthermore, carbo-benzene junctions exhibit field-effect transistor behaviour when an electrochemical gate potential is applied, opening the way for device applications. All the results are interpreted on the basis of theoretical calculations.

  13. Molecular Comb Development

    SciTech Connect

    Ferrell, T.L.; Thundat, G.T.; Witkowski, C.E., III

    2007-07-17

    This CRADA was developed to enable ORNL to assist Protein Discovery, Inc. to develop a novel biomolecular separation system based on an ORNL patent application 'Photoelectrochemical Molecular Comb' by Thundat, Ferrell, and Brown. The Molecular Comb concept is based on creating light-induced charge carriers at a semiconductor-liquid interface, which is kept at a potential control such that a depletion layer is formed in the semiconductor. Focusing light from a low-power illumination source creates electron-hole pairs, which get separated in the depletion layer. The light-induced charge carriers reaching the surface attract oppositely charged biomolecules present in the solution. The solution is a buffer solution with very small concentrations of biomolecules. As the focused light is moved across the surface of the semiconductor-liquid interface, the accumulated biomolecules follow the light beam. A thin layer of gel or other similar material on the surface of the semiconductor can act as a sieving medium for separating the biomolecules according to their sizes.

  14. Methods in Molecular Biophysics

    NASA Astrophysics Data System (ADS)

    Serdyuk, Igor N.; Zaccai, Nathan R.; Zaccai, Joseph

    2001-12-01

    Our knowledge of biological macromolecules and their interactions is based on the application of physical methods, ranging from classical thermodynamics to recently developed techniques for the detection and manipulation of single molecules. These methods, which include mass spectrometry, hydrodynamics, microscopy, diffraction and crystallography, electron microscopy, molecular dynamics simulations, and nuclear magnetic resonance, are complementary; each has its specific advantages and limitations. Organised by method, this textbook provides descriptions and examples of applications for the key physical methods in modern biology. It is an invaluable resource for undergraduate and graduate students of molecular biophysics in science and medical schools, as well as research scientists looking for an introduction to techniques beyond their specialty. As appropriate for this interdisciplinary field, the book includes short asides to explain physics aspects to biologists and biology aspects to physicists. Comprehensive coverage and up-to-date treatment of the latest physical methods in modern biology Each method includes a brief historical introduction, theoretical principles, applications, advantages and limitations, and concludes with a checklist of key ideas Interdisciplinary and accessible to biologists, physicists, and those with medical backgrounds

  15. Photoinduced diffusion molecular transport

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Viktor M.; Dekhtyar, Marina L.; Lin, Sheng Hsien; Trakhtenberg, Leonid I.

    2016-08-01

    We consider a Brownian photomotor, namely, the directed motion of a nanoparticle in an asymmetric periodic potential under the action of periodic rectangular resonant laser pulses which cause charge redistribution in the particle. Based on the kinetics for the photoinduced electron redistribution between two or three energy levels of the particle, the time dependence of its potential energy is derived and the average directed velocity is calculated in the high-temperature approximation (when the spatial amplitude of potential energy fluctuations is small relative to the thermal energy). The thus developed theory of photoinduced molecular transport appears applicable not only to conventional dichotomous Brownian motors (with only two possible potential profiles) but also to a much wider variety of molecular nanomachines. The distinction between the realistic time dependence of the potential energy and that for a dichotomous process (a step function) is represented in terms of relaxation times (they can differ on the time intervals of the dichotomous process). As shown, a Brownian photomotor has the maximum average directed velocity at (i) large laser pulse intensities (resulting in short relaxation times on laser-on intervals) and (ii) excited state lifetimes long enough to permit efficient photoexcitation but still much shorter than laser-off intervals. A Brownian photomotor with optimized parameters is exemplified by a cylindrically shaped semiconductor nanocluster which moves directly along a polar substrate due to periodically photoinduced dipole moment (caused by the repetitive excited electron transitions to a non-resonant level of the nanocylinder surface impurity).

  16. MOLECULAR VACUUM PUMP

    DOEpatents

    Eckberg, E.E.

    1960-09-27

    A multiple molecular vacuum pump capable of producing a vacuum of the order of 10/sup -9/ mm Hg is described. The pump comprises a casing of an aggregate of paired and matched cylindrical plates, a recessed portion on one face of each plate concentrically positioned formed by a radially extending wall and matching the similarly recessed portion of its twin plate of that pair of plates and for all paired and matched plates; a plurality of grooves formed in the radially extending walls of each and all recesses progressing in a spiral manner from their respective starting points out at the periphery of the recess inwardly to the central area; a plurality of rotors rotatably mounted to closely occupy the spaces as presented by the paired and matched recesses between all paired plates; a hollowed drive-shaft perforated at points adjacent to the termini of all spiral grooves; inlet ports at the starting points of all grooves and through all plates at common points to each respectively; and a common outlet passage presented by the hollow portion of the perforated hollowed drive-shaft of the molecular pump. (AEC)

  17. Molecular basis of vaccination.

    PubMed

    Del Giudice, G; Pizza, M; Rappuoli, R

    1998-02-01

    Vaccines represent the most cost-effective means to prevent infectious diseases. Most of the vaccines which are currently available were developed long before the era of molecular biology and biotechnology. They were obtained following empirical approaches leading to the inactivation or to the attenuation of microorganisms, without any knowledge neither of the mechanisms of pathogenesis of the disease they were expected to protect from, nor of the immune responses elicited by the infectious agents or by the vaccine itself. The past two decades have seen an impressive progress in the field of immunology and molecular biology, which have allowed a better understanding of the interactions occurring between microbes and their hosts. This basic knowledge has represented an impetus towards the generation of better vaccines and the development of new vaccines. In this monograph we briefly summarize some of the most important biotechnological approaches that are currently followed in the development of new vaccines, and provide details on an approach to vaccine development: the genetic detoxification of bacterial toxins. Such an approach has been particularly successful in the rational design of a new vaccine against pertussis, which has been shown to be extremely efficacious and safe. It has been applied to the construction of powerful mucosal adjuvants, for administration of vaccines at mucosal surfaces. PMID:9789264

  18. Shark cartilage 14 kDa protein as a dendritic cells activator.

    PubMed

    Safari, Elahe; Hassan, Zuhair M; Moazzeni, Seyed Mohammad

    2015-04-01

    Low molecular weight components of shark cartilage are reported to have anti-tumor as well as immuno-stimulating effects. Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that have a key role in establishment of anti-cancer immune response. In this study, the effect of 14 kDa protein from shark cartilage was investigated on stimulation and maturation of dendritic cells. The isolated 14 kDa protein from shark cartilage extract was added to DCs medium during overnight culture and their maturation and T cells stimulation potential was investigated. The majority of shark-cartilage-treated DCs expressed higher levels of maturation markers and were more effective in stimulation of allogenic T cells compared with non-treated DCs (p < 0.05). Our results showed that shark cartilage 14 kDa protein can potentially be used in DC-mediated T-cells stimulation and induction of desirable immune responses in clinical trials such as cancer immunotherapy. However, further studies are required to examine this proposal. PMID:25669314

  19. Molecular Design of Bisphosphonate-Modified Proteins for Efficient Bone Targeting In Vivo

    PubMed Central

    Katsumi, Hidemasa; Sano, Jun-ichi; Nishikawa, Makiya; Hanzawa, Keiko; Sakane, Toshiyasu; Yamamoto, Akira

    2015-01-01

    To establish a rational molecular design for bisphosphonate (BP)-modified proteins for efficient bone targeting, a pharmacokinetic study was performed using a series of alendronate (ALN), a nitrogen-containing BP, modified proteins with various molecular weights and varying degrees of modification. Four proteins with different molecular weight—yeast glutathione reductase (GR; MW: 112,000 Da), bovine serum albumin (BSA; MW: 67,000 Da), recombinant human superoxide dismutase (SOD; MW: 32,000 Da), and chicken egg white lysozyme (LZM; MW: 14,000 Da)—were modified with ALN to obtain ALN-modified proteins. Pharmacokinetic analysis of the tissue distribution of the ALN-modified and unmodified proteins was performed after radiolabeling them with indium-111 (111In) by using a bifunctional chelating agent. Calculation of tissue uptake clearances revealed that the bone uptake clearances of 111In-ALN-modified proteins were proportional to the degree of ALN modification. 111In-GR-ALN and BSA-ALN, the two high-molecular-weight proteins, efficiently accumulated in bones, regardless of the degree of ALN modification. Approximately 36 and 34% of the dose, respectively, was calculated to be delivered to the bones. In contrast, the maximum amounts taken up by bone were 18 and 13% of the dose for 111In-SOD-ALN(32) and LZM-ALN(9), respectively, because of their high renal clearance. 111In-SOD modified with both polyethylene glycol (PEG) and ALN (111In-PEG-SOD-ALN) was efficiently delivered to the bone. Approximately 36% of the dose was estimated to be delivered to the bones. In an experimental bone metastasis mouse model, treatment with PEG-SOD-ALN significantly reduced the number of tumor cells in the bone of the mice. These results indicate that the combination of PEG and ALN modification is a promising approach for efficient bone targeting of proteins with a high total-body clearance. PMID:26287482

  20. Effects of molecular size and chemical factor on plasma gene transfection

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoshihisa; Motomura, Hideki; Kido, Yugo; Satoh, Susumu; Jinno, Masafumi

    2016-07-01

    In order to clarify the mechanism of plasma gene transfection, the relationship between transfection efficiency and transferred molecular size was investigated. Molecules with low molecular mass (less than 50 kDa; dye or dye-labeled oligonucleotide) and high molecular mass (more than 1 MDa; plasmid DNA or fragment of plasmid DNA) were transferred to L-929 cells. It was found that the transfection efficiency decreases with increasing in transferred molecular size and also depends on the tertiary structure of transferred molecules. Moreover, it was suggested the transfection mechanism is different between the molecules with low (less than 50 kDa) and high molecular mass (higher than 1 MDa). For the amount of gene transfection after plasma irradiation, which is comparable to that during plasma irradiation, it is shown that H2O2 molecules are the main contributor. The transfection efficiency decreased to 0.40 ± 0.22 upon scavenging the H2O2 generated by plasma irradiation using the catalase. On the other hand, when the H2O2 solution is dropped into the cell suspension without plasma irradiation, the transfection efficiency is almost 0%. In these results, it is also suggested that there is a synergetic effect of H2O2 with electrical factors or other reactive species generated by plasma irradiation.

  1. Estimation of biliary excretion of foreign compounds using properties of molecular structure.

    PubMed

    Sharifi, Mohsen; Ghafourian, Taravat

    2014-01-01

    Biliary excretion is one of the main elimination pathways for drugs and/or their metabolites. Therefore, an insight into the structural profile of cholephilic compounds through accurate modelling of the biliary excretion is important for the estimation of clinical pharmacokinetics in early stages of drug discovery. The aim of this study was to develop quantitative structure-activity relationships as computational tools for the estimation of biliary excretion and identification of the molecular properties controlling this process. The study used percentage of dose excreted intact into bile measured in vivo in rat for a diverse dataset of 217 compounds. Statistical techniques were multiple linear regression analysis, regression trees, random forest and boosted trees. A simple regression tree model generated using the CART algorithm was the most accurate in the estimation of the percentage of bile excretion of compounds, and this outperformed the more sophisticated boosted trees and random forest techniques. Analysis of the outliers indicated that the models perform best when lipophilicity is not too extreme (log P < 5.35) and for compounds with molecular weight above 280 Da. Molecular descriptors selected by all these models including the top ten incorporated in boosted trees and random forest indicated a higher biliary excretion for relatively hydrophilic compounds especially if they are anionic or cationic, and have a large molecular size. A statistically validated molecular weight threshold for potentially significant biliary excretion was above 348 Da. PMID:24202722

  2. High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants

    SciTech Connect

    Hu, Ting-Chou; Korczyńska, Justyna; Smith, David K.; Brzozowski, Andrzej Marek

    2008-09-01

    High-molecular-weight poly-γ-glutamic acid-based polymers have been synthesized, tested and adopted for protein crystallization. Protein crystallization has been revolutionized by the introduction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here.

  3. Using molecular recognition of beta-cyclodextrin to determine molecular weights of low-molecular-weight explosives by MALDI-TOF mass spectrometry.

    PubMed

    Zhang, Min; Shi, Zhen; Bai, Yinjuan; Gao, Yong; Hu, Rongzu; Zhao, Fenqi

    2006-02-01

    This study presents a novel method for determining the molecular weights of low molecular weight (MW) energetic compounds through their complexes of beta-cyclodextrin (beta-CD) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in a mass range of 500 to 1700 Da, avoiding matrix interference. The MWs of one composite explosive composed of 2,6-DNT, TNT, and RDX, one propellant with unknown components, and 14 single-compound explosives (RDX, HMX, 3,4-DNT, 2,6-DNT, 2,5-DNT, 2,4,6-TNT, TNAZ, DNI, BTTN, NG, TO, NTO, NP, and 662) were measured. The molecular recognition and inclusion behavior of beta-CD to energetic materials (EMs) were investigated. The results show that (1) the established method is sensitive, simple, accurate, and suitable for determining the MWs of low-MW single-compound explosives and energetic components in composite explosives and propellants; and (2) beta-CD has good inclusion and modular recognition abilities to the above EMs. PMID:16406809

  4. The DA{phi}NE-Light Facility

    SciTech Connect

    Burattini, Emilio; Cinque, Gianfelice; Dabagov, Sultan; Grilli, Antonio; Marcelli, Augusto; Pace, Elisabetta; Piccinini, Massimo; Raco, Agostino; Monti, Francesca

    2004-05-12

    The new Synchrotron Radiation facility at Frascati exploits the intense photon emission from DA{phi}NE, the 0,51 GeV storage ring circulating over 1 A of electrons. Among the three beamlines commissioned, the Synchrotron INfrared Beamline At Da{phi}ne (SINBAD) is fully operational by a brilliant SR beam spanning the entire IR. Recently, the soft X-ray beamline has been characterized and, once implemented the double-crystal monocromator, X-ray Absorption Spectroscopy is applied on material standards in the distinguishing energy region below 4 keV. An UltraViolet line, presently dedicated to photobiology dosimetry, has also given first results on cell irradiation in the UVB band.

  5. Purification and characterization of a novel 88 kDa protein from serum and vitreous of patients with Eales' disease.

    PubMed

    Sulochana, K N; Rajesh, M; Ramakrishnan, S

    2001-10-01

    Eales' disease is a perivasculitis that affects the peripheral retina of young adults and results in recurrent vitreous hemorrhage. Although increased oxidative stress and decreased antioxidant defense have been reported to be associated with Eales' disease, the exact cause for the disease and its pathogenesis are not known. Here is reported the identification, purification and characterization of a new protein from the serum and vitreous of patients with Eales' disease. This protein was purified using preparative electrophoresis and HPLC. The purified protein had a retention time of 9.2 min in RP HPLC. Its molecular weight as determined by gel permeation chromatography was 88 kDa hence, it was termed as 88 kDa protein. Alcian blue and Schiffs staining revealed 88 kDa protein to be a glycoprotein. Proteins purified from both serum and vitreous exhibited anti lipid peroxidation effect on erythrocyte when added during in vitro assay of thiobarbuteric acid reactive substances (TBARS). In addition to this property the protein also has Fe(2+)sequestering effect. The anti TBARS activity of 88 kDa protein was completely inhibited by 0.1 m M concentration of parachlromercuric benzoate (PCMB) and 5,5' dithiobis(2-nitrobenzoic acid) DTNB. The total thiol content (cysteine) of the purified 88 kDa protein was found to be 8% by mass. Eighty eight kDa protein from both the sources namely vitreous and serum are immunologically identical when studied using polyclonal antibodies raised in goat against purified serum protein. The N terminal sequence of 88 kDa protein by automated Edman's degradation chemistry is A D D P N S L S P S A F A E A L A L L R D S X L A R F V. The protein and DNA data base search revealed no match to 88 kDa protein and hence this was considered as unique protein. Further knowledge on the in vivo function of 88 kDa protein is very important to understand its role in the pathogenesis of Eales' disease. PMID:11825025

  6. Molecular mechanism of pore formation by actinoporins.

    PubMed

    Kristan, Katarina Crnigoj; Viero, Gabriella; Dalla Serra, Mauro; Macek, Peter; Anderluh, Gregor

    2009-12-15

    Actinoporins are effective pore-forming toxins produced by sea anemones. These extremely potent, basic 20 kDa proteins readily form pores in membranes that contain sphingomyelin. Much has been learned about the molecular basis of their pore-forming mechanism in recent years. Pore formation is a multi-step process that involves recognition of membrane sphingomyelin, firm binding to the membrane accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerisation of three to four monomers. The final conductive pathway is formed by amphipathic alpha-helices, hence actinoporins are an important example of so-called alpha-helical pore-forming toxins. Actinoporins have become useful model proteins to study protein-membrane interactions, specific recognition of lipids in the membrane, and protein oligomerisation in the lipid milieu. Recent sequence and structural data of proteins similar to actinoporins indicate that they are not a unique family restricted to sea anemones as was long believed. An AF domain superfamily (abbreviated from actinoporin-like proteins and fungal fruit-body lectins) was defined and shown to contain members from three animal and two plant phyla. On the basis of functional properties of some members we hypothesise that AF domain proteins are peripheral membrane proteins. Finally, ability of actinoporins to form transmembrane pores has been exploited in some novel biomedical applications. PMID:19268680

  7. Molecularly Imprinted Composite Membranes for Selective Detection of 2-Deoxyadenosine in Urine Samples

    PubMed Central

    Scorrano, Sonia; Mergola, Lucia; Di Bello, Maria Pia; Lazzoi, Maria Rosaria; Vasapollo, Giuseppe; Del Sole, Roberta

    2015-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. In this work, a novel molecularly imprinted polymer composite membrane (MIM) was synthesized and employed for the selective detection in urine samples of 2-deoxyadenosine (2-dA), an important tumoral marker. By thermal polymerization, the 2-dA-MIM was cross-linked on the surface of a polyvinylidene-difluoride (PVDF) membrane. By characterization techniques, the linking of the imprinted polymer on the surface of the membrane was found. Batch-wise guest binding experiments confirmed the absorption capacity of the synthesized membrane towards the template molecule. Subsequently, a time-course of 2-dA retention on membrane was performed and the best minimum time (30 min) to bind the molecule was established. HPLC analysis was also performed to carry out a rapid detection of target molecule in urine sample with a recovery capacity of 85%. The experiments indicated that the MIM was highly selective and can be used for revealing the presence of 2-dA in urine samples. PMID:26086824

  8. The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve.

    PubMed

    Schwab, J C; Beckers, C J; Joiner, K A

    1994-01-18

    The obligate intracellular protozoan parasite Toxoplasma gondii creates and enters into a unique membrane-bounded cytoplasmic compartment, the parasitophorous vacuole, when invading mammalian host cells. By microinjecting polar fluorescent molecules into individual T. gondii-infected fibroblasts, we show here that the parasitophorous vacuole membrane (PVM) surrounding the parasite functions as a molecular sieve. Lucifer yellow (457 Da) displayed free bidirectional flux across the PVM and distinctly outlined the parasites, which did not take up the dye, within the vacuole. This dye movement was not appreciably delayed by pretreatment of cells with 5 mM probenecid or chilling the monolayer to 5 degrees C, suggesting that dye movement was due to passive permeation through a membrane pore rather than active transport. Calcein, fluo-3, and a series of fluorescein isothiocyanate-labeled peptides up to 1291 Da crossed the PVM in a size-restricted fashion. A labeled peptide of 1926 Da and labeled dextrans and proteins (> or = 3000 Da) failed to transit the PVM. This putative channel in the PVM therefore allows exchange of molecules up to 1300-1900 Da between the host cell cytoplasm and the parasitophorous vacuolar space. PMID:8290555

  9. DA-Raf–dependent inhibition of the Ras-ERK signaling pathway in type 2 alveolar epithelial cells controls alveolar formation

    PubMed Central

    Watanabe-Takano, Haruko; Takano, Kazunori; Sakamoto, Akemi; Matsumoto, Kenji; Tokuhisa, Takeshi; Endo, Takeshi; Hatano, Masahiko

    2014-01-01

    Alveolar formation is coupled to the spatiotemporally regulated differentiation of alveolar myofibroblasts (AMYFs), which contribute to the morphological changes of interalveolar walls. Although the Ras-ERK signaling pathway is one of the key regulators for alveolar formation in developing lungs, the intrinsic molecular and cellular mechanisms underlying its role remain largely unknown. By analyzing the Ras-ERK signaling pathway during postnatal development of lungs, we have identified a critical role of DA-Raf1 (DA-Raf)—a dominant-negative antagonist for the Ras-ERK signaling pathway—in alveolar formation. DA-Raf–deficient mice displayed alveolar dysgenesis as a result of the blockade of AMYF differentiation. DA-Raf is predominantly expressed in type 2 alveolar epithelial cells (AEC2s) in developing lungs, and DA-Raf–dependent MEK1/2 inhibition in AEC2s suppresses expression of tissue inhibitor of matalloprotienase 4 (TIMP4), which prevents a subsequent proteolytic cascade matrix metalloproteinase (MMP)14–MMP2. Furthermore, MMP14–MMP2 proteolytic cascade regulates AMYF differentiation and alveolar formation. Therefore, DA-Raf–dependent inhibition of the Ras-ERK signaling pathway in AEC2s is required for alveolar formation via triggering MMP2 activation followed by AMYF differentiation. These findings reveal a pivotal role of the Ras-ERK signaling pathway in the dynamic regulation of alveolar development. PMID:24843139

  10. The Real Code of Leonardo da Vinci

    PubMed Central

    Ose, Leiv

    2008-01-01

    Leonardo da Vinci was born in Italy. Among the researchers and scientists, he is favourably known for his remarkable efforts in scientific work. His investigations of atherosclerosis judiciously combine three separate fields of research. In 1506, he finished his masterpiece, painting of Mona Lisa. A careful clinical examination of the famous painting reveals a yellow irregular leather-like spot at the inner end of the left upper eyelid and a soft bumpy well-defined swelling of the dorsum of the right hand beneath the index finger about 3 cm long. This is probably the first case of familial hypercholesterolemia (FH). The FH code of Leonardo da Vinci was given immense consideration by scientists like Carl Muller, who described the xanthomas tuberosum and angina pectoris. On the contrary, Akira Endo searched for microbial metabolites that would inhibit HMG-CoA reductase, the rate-limiting enzyme in the synthesis of cholesterol and finally, Michael Brown and Joseph Goldstein published a remarkable series of elegant and insightful papers in the 70s and 80s. They established that the cellular uptake of low-density lipoprotein (LDL) essentially requires the LDL receptor. In conclusion: this was the real Code of Leonardo da Vinci. PMID:19924278

  11. Assessment of Molecular Modeling & Simulation

    SciTech Connect

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  12. Molecular modification of proanthocyanidins.

    PubMed

    Huo, Qing; Kong, Xiangye; Yang, Xiaofang; Wang, Yue; Ma, Lingling; Luo, Min; Xu, Diandou

    2016-07-01

    Regioselective enzymatic acylation of proanthocyanidin is proposed and investigated as a method by which to improve the solubility of proanthocyanidins in the oil phase and maintain its oxidation resistance. Experimental results indicate that butanol functions as the best solvent in the studied reaction, in which Lipase Novozym435 is used as biological catalyst enzyme and the molar ratio of lauric acid to proanthocyanidins is 4:1. To increase the esterification conversion, we propose the addition of molecular sieve at 5 h. The product was separated by TLC, and results indicate an optimal solvent ratio of ethyl acetate: petroleum ether: acetic acid = 2:3:0.5. This condition can effectively separate the ester and proanthocyanidins, achieving an esterification yield of 60.9%. PMID:27459598

  13. A molecular case report

    PubMed Central

    Kulesz-Martin, Molly; Lagowski, James; Olson, Susan; Wortham, Aaron; West, Toni; Thomas, George; Ryan, Christopher W.; Tyner, Jeffrey W.

    2013-01-01

    Current therapies for Renal Cell Carcinoma favor vascular endothelial growth factor receptor (VEGF-R) tyrosine kinase (TK) inhibitors (TKIs). In theory, these are most applicable in tumors that have lost VHL-with subsequent stabilization of HIF and upregulation of VEGF. A subset of patients harbor primary-refractory disease, as in this case, where there was no evidence for loss of VHL or chromosome 3p. We evaluated molecular targeted agents in viable tumor cells cultured from a patient’s clear cell renal cell carcinoma (RCC). Of 66 agents, only dasatinib, an inhibitor of Src tyrosine kinase, strongly reduced viability of the patient’s cultured kidney tumor cells. Immunostaining of the original primary tumor revealed strong positivity for VHL and Src protein expression. Functional evaluation of a patient’s tumor cells appears feasible in the setting of RCC. PMID:23192268

  14. Molecular pathogenesis of emphysema.

    PubMed

    Taraseviciene-Stewart, Laimute; Voelkel, Norbert F

    2008-02-01

    Emphysema is one manifestation of a group of chronic, obstructive, and frequently progressive destructive lung diseases. Cigarette smoking and air pollution are the main causes of emphysema in humans, and cigarette smoking causes emphysema in rodents. This review examines the concept of a homeostatically active lung structure maintenance program that, when attacked by proteases and oxidants, leads to the loss of alveolar septal cells and airspace enlargement. Inflammatory and noninflammatory mechanisms of disease pathogenesis, as well as the role of the innate and adaptive immune systems, are being explored in genetically altered animals and in exposure models of this disease. These recent scientific advances support a model whereby alveolar destruction resulting from a coalescence of mechanical forces, such as hyperinflation, and more recently recognized cellular and molecular events, including apoptosis, cellular senescence, and failed lung tissue repair, produces the clinically recognized syndrome of emphysema. PMID:18246188

  15. Molecular genetics of alopecias.

    PubMed

    Ramot, Yuval; Zlotogorski, Abraham

    2015-01-01

    Recent developments in research methods and techniques, such as whole-exome and -genome sequencing, have substantially improved our understanding of genetic conditions. Special progress has been made in the field of genotrichoses, or hereditary hair diseases, a field that has been obscure for many years. The underlying genes for many of the monogenic hair diseases are now known. Additionally, complex analyses of large cohorts of patients have given us the first clues to the genes associated with polygenic hair disorders, such as androgenetic alopecia and alopecia areata. Thanks to these major findings, the sophisticated regulation of the morphogenesis, development and growth of hair follicles has begun to be revealed, and new players in this delicate molecular interplay have been exposed. PMID:26370647

  16. Molecular dynamics simulations

    SciTech Connect

    Alder, B.J.

    1985-07-01

    The molecular dynamics computer simulation discovery of the slow decay of the velocity autocorrelation function in fluids is briefly reviewed in order to contrast that long time tail with those observed for the stress autocorrelation function in fluids and the velocity autocorrelation function in the Lorentz gas. For a non-localized particle in the Lorentz gas it is made plausible that even if it behaved quantum mechanically its long time tail would be the same as the classical one. The generalization of Fick's law for diffusion for the Lorentz gas, necessary to avoid divergences due to the slow decay of correlations, is presented. For fluids, that generalization has not yet been established, but the region of validity of generalized hydrodynamics is discussed. 20 refs., 5 figs.

  17. Multiphotochromic molecular systems.

    PubMed

    Fihey, Arnaud; Perrier, Aurélie; Browne, Wesley R; Jacquemin, Denis

    2015-06-01

    Molecular systems encompassing more than one photochromic entity can be used to build highly functional materials, thanks to their potential multi-addressability and/or multi-response properties. Over the last decade, the synthesis and spectroscopic and kinetic characterisation as well as the modeling of a wide range of multiphotochromes have been achieved in a field that is emerging as a distinct branch of photochemistry. In this review, we provide an overview of the available multiphotochromic compounds which use a variety of photoactive building blocks, e.g., diarylethene, azobenzene, spiropyran, naphthopyran or fulgimide derivatives. Their efficiency in terms of multi-responsiveness is discussed and several strategies to circumvent the most common limitation (i.e., the loss of photochromism of one part) are described. PMID:25921433

  18. Molecular Dynamics Calculations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two

  19. Gas Phase Molecular Dynamics

    SciTech Connect

    Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.

    1999-05-21

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule.

  20. Molecular pathogenesis of emphysema

    PubMed Central

    Taraseviciene-Stewart, Laimute; Voelkel, Norbert F.

    2008-01-01

    Emphysema is one manifestation of a group of chronic, obstructive, and frequently progressive destructive lung diseases. Cigarette smoking and air pollution are the main causes of emphysema in humans, and cigarette smoking causes emphysema in rodents. This review examines the concept of a homeostatically active lung structure maintenance program that, when attacked by proteases and oxidants, leads to the loss of alveolar septal cells and airspace enlargement. Inflammatory and noninflammatory mechanisms of disease pathogenesis, as well as the role of the innate and adaptive immune systems, are being explored in genetically altered animals and in exposure models of this disease. These recent scientific advances support a model whereby alveolar destruction resulting from a coalescence of mechanical forces, such as hyperinflation, and more recently recognized cellular and molecular events, including apoptosis, cellular senescence, and failed lung tissue repair, produces the clinically recognized syndrome of emphysema. PMID:18246188

  1. Molecular probes for cardiovascular imaging.

    PubMed

    Liang, Grace; Nguyen, Patricia K

    2016-08-01

    Molecular probes provide imaging signal and contrast for the visualization, characterization, and measurement of biological processes at the molecular level. These probes can be designed to target the cell or tissue of interest and must be retained at the imaging site until they can be detected by the appropriate imaging modality. In this article, we will discuss the basic design of molecular probes, differences among the various types of probes, and general strategies for their evaluation of cardiovascular disease. PMID:27189171

  2. Time-resolved molecular imaging

    NASA Astrophysics Data System (ADS)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  3. Molecularly imprinted nanohybrids based on dopamine-modified poly(γ-glutamic acid) for electrochemical sensing of melamine.

    PubMed

    Zhang, Rongli; Xu, Sheng; Zhu, Ye; Zhao, Wei; Luo, Jing; Liu, Xiaoya; Tang, Dingxing

    2016-11-15

    A voltammetric sensor for melamine (MEL) was prepared from molecularly imprinted nanohybrids (MINBs). A dopamine modified poly-γ-glutamic acid copolymer (γ-PGA-DA) and MEL were self-assembled into MEL/γ-PGA-DA nanoparticles (NPs) in aqueous solution via weak interactions, followed by adding an aqueous AgNO3 solution into the mixture. The Ag(+) was adsorbed in the MEL/γ-PGA-DA NPs and spontaneously reduced to Ag NPs by the dopamine moieties of γ-PGA-DA, forming Ag/MEL/γ-PGA-DA MINBs, which were then cast on a gold electrode to form a MINBs film. The MEL was removed by electrolysis via catalysis of Ag NPs at a constant potential of 1.4V in phosphate buffer saline solution, to obtain a voltammetric sensor for MEL. The sensor responded linearly to MEL in the concentration range of 5×10(-18) to 5×10(-7)molL(-1). Compared to other published molecularly imprinted polymer sensors for sensing MEL, the prepared MINBs sensor had much wider detection range with lower detection limit. PMID:27196255

  4. Interface-assisted molecular spintronics

    SciTech Connect

    Raman, Karthik V.

    2014-09-15

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  5. Molecular Hydrogen in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Speck, Angela K.; Baldridge, Sean; Matsuura, Mikako

    2015-08-01

    Planetary Nebulae (PNe) have long played the role of laboratories for investigating atomic, molecular, dust and plasma physics, which have applications to diverse other astrophysical environments. In this presentation we will discuss clumpy structures within planetary nebulae that are the hosts to, and protectors of molecular gas in an otherwise forbidding ionized zone. We will present new observations of the molecular hydrogen emission from several PNe and discuss their implications for the formation, evolution and survival/demise of such molecular globules. The science behind dust and molecule formation and survival that apply to many other astronomical objects and places.

  6. Interface-assisted molecular spintronics

    NASA Astrophysics Data System (ADS)

    Raman, Karthik V.

    2014-09-01

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  7. Serotonin2C receptors modulate dopamine transmission in the nucleus accumbens independently of dopamine release: behavioral, neurochemical and molecular studies with cocaine.

    PubMed

    Cathala, Adeline; Devroye, Céline; Maitre, Marlène; Piazza, Pier Vincenzo; Abrous, Djoher Nora; Revest, Jean-Michel; Spampinato, Umberto

    2015-05-01

    In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity. PMID:24661380

  8. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  9. Role of NOM molecular size on iodo-trihalomethane formation during chlorination and chloramination.

    PubMed

    Zhang, Jie; Chen, Dan-Dan; Li, Lei; Li, Wen-Wei; Mu, Yang; Yu, Han-Qing

    2016-10-01

    Natural organic matter (NOM) is the major precursor for the generation of disinfection byproducts (DBPs) during disinfection, but the role of the NOM molecular size on the formation of iodinated DBPs (I-DBPs) is still unclear. The objective of this study was to evaluate the function of the NOM molecular size on the formation of iodo-trihalomethane (I-THMs) during chlorination and chloramination. Humic acid was adopted as the NOM matrix and fractionated into four molecular weight (MW) groups. Various parameters, including iodide, bromide, NOM concentrations, pH, and pre-chlorination time, were investigated for each MW fraction. During chlorination, high MW fractions (i.e., MW > 100 K Da and 50 K < MW < K00 K Da) produced more I-THMs compared with small MW fractions (i.e., MW < 3 K Da and 3 K < MW < 50 K Da). With the increase in the I(-) or NOM concentration, the formation of I-THMs increased for small MW fractions, while a slight reduction occurred for high MW fractions during chlorination. Higher pH resulted in more I-THM formation for small MW fractions, while the opposite was true for high MW fractions during chlorination. Compared to small MW fractions, bromide was relatively more reactive with high MW fractions in the formation of I-THMs during chlorination. During chloramination, the I-THM yields decreased with the increasing NOM concentration for high MW fractions. The concentration of bromine-containing I-THMs decreased with increasing pH for all MW fractions during chloramination. Additionally, with the prolongation of pre-chlorination time, the total amount of I-THMs decreased remarkably for MWs higher than 3 K Da, while a slight change for MW lower than 3 K Da occurred during chloramination. The results from this study suggest that the molecular weight of the NOM plays an important role in the formation of I-THMs during chlorination and chloramination. PMID:27423047

  10. Molecular digital pathology: progress and potential of exchanging molecular data.

    PubMed

    Roy, Somak; Pfeifer, John D; LaFramboise, William A; Pantanowitz, Liron

    2016-09-01

    Many of the demands to perform next generation sequencing (NGS) in the clinical laboratory can be resolved using the principles of telepathology. Molecular telepathology can allow facilities to outsource all or a portion of their NGS operation such as cloud computing, bioinformatics pipelines, variant data management, and knowledge curation. Clinical pathology laboratories can electronically share diverse types of molecular data with reference laboratories, technology service providers, and/or regulatory agencies. Exchange of electronic molecular data allows laboratories to perform validation of rare diseases using foreign data, check the accuracy of their test results against benchmarks, and leverage in silico proficiency testing. This review covers the emerging subject of molecular telepathology, describes clinical use cases for the appropriate exchange of molecular data, and highlights key issues such as data integrity, interoperable formats for massive genomic datasets, security, malpractice and emerging regulations involved with this novel practice. PMID:27471996

  11. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor.

    PubMed Central

    Dent, J A; Berkowitz, S D; Ware, J; Kasper, C K; Ruggeri, Z M

    1990-01-01

    Proteolytic cleavage of the von Willebrand factor subunit may be important for processing and/or function of the molecule and is altered in certain subtypes of von Willebrand disease. It results in the generation of two main fragments with apparent molecular masses of 140 kDa and 176 kDa from the 225-kDa subunit. We have now obtained chemical evidence to locate the protease-sensitive bond between residues Tyr-842 and Met-843, a site that appears to reflect the specificity of calcium-dependent neutral proteases (calpains). Antibodies were raised against four synthetic peptides that represented sequences immediately preceding or following or including the cleavage site. One antibody (against the fragment from Ala-837 through Asp-851) reacted only with the intact subunit, and its epitope included the cleavage site. All others reacted specifically with either the 140-kDa or the 176-kDa fragment, demonstrating their origin from a single cleavage. In samples of purified von Willebrand factor from four of five patients with type IIA von Willebrand disease, the anti-peptide antibodies showed markedly decreased reactivity with either the 140-kDa or the 176-kDa fragment, suggesting the existence of distinct molecular abnormalities clustered around the cleavage site. Thus, in the majority of type IIA patients, a common pathogenetic mechanism may lead to the disappearance of the larger multimers as a consequence of structural changes that may expose a sensitive bond to the action of specific proteases. These studies demonstrate the use of anti-peptide antibodies directed at a relevant structural domain for the immunochemical differentiation of normal and mutant molecules. Images PMID:2385594

  12. Human transcription factor IIIC contains a polypeptide of 55 kDa specifically binding to Pol III genes.

    PubMed Central

    Schneider, H R; Waldschmidt, R; Seifart, K H

    1990-01-01

    Human transcription factor IIIC contains a 55 kDa polypeptide which specifically interacts with the Adenovirus 2 VAI gene promoter and which mimics most of the DNA binding properties of the entire factor. The specificity and affinity of this protein:DNA interaction was demonstrated by: (i) Separation of purified fractions of hTFIIIC by SDS PAGE, electrotransfer to nitrocellulose, renaturation of proteins and their subsequent binding to the VAI gene, (ii) recovery and renaturation of proteins from SDS gels and identification of a fraction of hTFIIIC with a molecular mass less than 68 kDa, which specifically binds to VAI DNA, (iii) correlating the differential binding activity of the renatured 55 kDa component of hTFIIIC to mutated Pol III promoters with the ability of the entire factor to form functional transcription complexes thereon, and finally by (iv) specific crosslinking of the 55 kDa DNA binding component of hTFIIIC to the photoaffinity labeled B-box promoter sequence of the VAI gene. Images PMID:2395640

  13. Molecular sensors for MEMS

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Yung

    Molecular sensors, known as pressure-sensitive paint and temperature-sensitive paint, are applied inside MEMS devices to obtain the internal and external flow fields. The spatial resolution for the PSP and TSP measurements has improved to 5 mum. The low-pressure PSP sensor has been investigated for use in MEMS measurements, with an application range from continuum flow to transition flow. PSP and TSP measurements in different micro devices have been obtained with the flow fields covering steady and unsteady, subsonic and supersonic flow. In microchannel measurements, the pressure distributions inside the microchannel have been obtained for Knudsen number from 0.006 to 0.8. Compressibility and rarefaction effects can be observed in the PSP data. Detailed information at the channel inlet was also collected to discuss the entrance effect for different flow regimes. For micronozzle experiments, four different micronozzles have been fabricated to study geometry effects at the micro scale. The pressure maps inside the micronozzle devices have been obtained with PSP sensors. A modified schlieren technique is used to compare the PSP results and investigate the shock wave behavior at high- and low-pressure conditions. Thick viscous layers in the micronozzle have been observed in the low-pressure measurements. For microjet impingements, heat transfer measurements have been collected with different microjet devices by using TSP sensors. For supersonic impinging microjet measurements, both pressure and temperature data have been obtained at different pressure ratios, impingement angles and impingement distances. Measurements reveal that the magnitude and number of shock cells decreases in the micro scale due to strong viscous effects. For microturbine measurements, averaged results of PSP and TSP measurements have been obtained for a rotation speed from 1300 to 4000 rpm. Phase-averaged results have been collected by using a laser triggering system at rotation speed of 1400 rpm

  14. Molecular electronics under the microscope

    NASA Astrophysics Data System (ADS)

    2015-03-01

    The field of molecular electronics has developed significantly as experimental techniques to study charge transport through single molecules have become more reliable. Three Articles in this issue highlight how chemists can now better understand and control electronic properties at the molecular level.

  15. Teaching Molecular 3-D Literacy

    ERIC Educational Resources Information Center

    Richardson, David C.; Richardson, Jane S.

    2002-01-01

    This article describes how the use of interactive molecular graphics makes a unique and important contribution to student learning of biochemistry and molecular biology at any level. These authors developed the concept of the kinemage (from "kinetic image"), a different way of organizing computer graphics that is aimed explicitly at the…

  16. The Molecular Basis of Evolution.

    ERIC Educational Resources Information Center

    Wilson, Allan C.

    1985-01-01

    Discovery that mutations accumulate at steady rates over time in the genes of all lineages of plants and animals has led to new insights into evolution at the molecular and organismal levels. Discusses molecular evolution, examining deoxyribonuclei acid (DNA) sequences, morphological distances, and codon rate of change. (DH)

  17. Molecular ecology of aquatic microbes

    SciTech Connect

    1994-12-31

    Abstracts of reports are presented from a meeting on Molecular Ecology of Aquatic Microbes. Topics included: opportunities offered to aquatic ecology by molecular biology; the role of aquatic microbes in biogeochemical cycles; characterization of the microbial community; the effect of the environment on aquatic microbes; and the targeting of specific biological processes.

  18. Optically controllable molecular logic circuits

    NASA Astrophysics Data System (ADS)

    Nishimura, Takahiro; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-01

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  19. Optically controllable molecular logic circuits

    SciTech Connect

    Nishimura, Takahiro Fujii, Ryo; Ogura, Yusuke; Tanida, Jun

    2015-07-06

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  20. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  1. Teaching Molecular Biology with Microcomputers.

    ERIC Educational Resources Information Center

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  2. Computationally Designed Molecularly Imprinted Materials

    NASA Astrophysics Data System (ADS)

    Pavel, Dumitru; Lagowski, Jolanta; Faid, Karim

    2004-03-01

    Molecular dynamics simulations were carried out for different molecular systems in order to predict the binding affinities, binding energies, binding distances and the active site groups between the simulated molecular systems and different bio-ligands (theophylline and its derivatives), which have been designed and minimized using molecular simulation techniques. The first simulated molecular systems consisted of a ligand and functional monomer, such as methacrylic acid and its derivatives. For each pair of molecular systems, (10 monomers with a ligand and 10 monomers without a ligand) a total energy difference was calculated in order to estimate the binding energy between a ligand and the corresponding monomers. The analysis of the simulated functional monomers with ligands indicates that the functional group of monomers interacting with ligands tends to be either COOH or CH2=CH. The distances between the ligand and monomer, in the most stable cases as indicated above, are between 2.0-4.5 Å. The second simulated molecular systems consisted of a ligand and a polymer. The polymers were obtained from monomers that were simulated above. And similar to monomer study, for each pair of molecular systems, (polymer with a ligand and polymer without a ligand) a total energy difference was calculated in order to estimate the binding energy between ligand and the corresponding polymer. The binding distance between the active site of a polymer and a ligand will also be discussed.

  3. Molecular imaging in ovarian cancer.

    PubMed

    Reyners, A K L; Broekman, K E; Glaudemans, A W J M; Brouwers, A H; Arts, H J G; van der Zee, A G J; de Vries, E G E; Jalving, M

    2016-04-01

    Ovarian cancer has a high mortality and novel-targeted treatment strategies have not resulted in breakthroughs for this disease. Insight into the molecular characteristics of ovarian tumors may improve diagnosis and selection of patients for treatment with targeted therapies. A potential way to achieve this is by means of molecular imaging. Generic tumor processes, such as glucose metabolism ((18)F-fluorodeoxyglucose) and DNA synthesis ((18)F-fluorodeoxythymidine), can be visualized non-invasively. More specific targets, such as hormone receptors, growth factor receptors, growth factors and targets of immunotherapy, can also be visualized. Molecular imaging can capture data on intra-patient tumor heterogeneity and is of potential value for individualized, target-guided treatment selection. Early changes in molecular characteristics during therapy may serve as early predictors of response. In this review, we describe the current knowledge on molecular imaging in the diagnosis and as an upfront or early predictive biomarker in patients with ovarian cancer. PMID:27141066

  4. Molecular chaperones and neuronal proteostasis

    PubMed Central

    Smith, Heather L.; Li, Wenwen; Cheetham, Michael E.

    2015-01-01

    Protein homeostasis (proteostasis) is essential for maintaining the functionality of the proteome. The disruption of proteostasis, due to genetic mutations or an age-related decline, leads to aberrantly folded proteins that typically lose their function. The accumulation of misfolded and aggregated protein is also cytotoxic and has been implicated in the pathogenesis of neurodegenerative diseases. Neurons have developed an intrinsic protein quality control network, of which molecular chaperones are an essential component. Molecular chaperones function to promote efficient folding and target misfolded proteins for refolding or degradation. Increasing molecular chaperone expression can suppress protein aggregation and toxicity in numerous models of neurodegenerative disease; therefore, molecular chaperones are considered exciting therapeutic targets. Furthermore, mutations in several chaperones cause inherited neurodegenerative diseases. In this review, we focus on the importance of molecular chaperones in neurodegenerative diseases, and discuss the advances in understanding their protective mechanisms. PMID:25770416

  5. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated. PMID:24600690

  6. Nucleic acid based molecular devices.

    PubMed

    Krishnan, Yamuna; Simmel, Friedrich C

    2011-03-28

    In biology, nucleic acids are carriers of molecular information: DNA's base sequence stores and imparts genetic instructions, while RNA's sequence plays the role of a messenger and a regulator of gene expression. As biopolymers, nucleic acids also have exciting physicochemical properties, which can be rationally influenced by the base sequence in myriad ways. Consequently, in recent years nucleic acids have also become important building blocks for bottom-up nanotechnology: as molecules for the self-assembly of molecular nanostructures and also as a material for building machinelike nanodevices. In this Review we will cover the most important developments in this growing field of nucleic acid nanodevices. We also provide an overview of the biochemical and biophysical background of this field and the major "historical" influences that shaped its development. Particular emphasis is laid on DNA molecular motors, molecular robotics, molecular information processing, and applications of nucleic acid nanodevices in biology. PMID:21432950

  7. Porphyrins as molecular nanomaterials

    NASA Astrophysics Data System (ADS)

    Faraon, Victor; Ion, Rodica-Mariana; Pop, Simona-Florentina; Van-Staden, Raluca; Van-Staden, Jacobus-Frederick

    2010-11-01

    Some pophyrins as molecular materials are discussed in this paper. Aggregates of these molecules have been known for some time to possess interesting properties. Their optical properties as isolated species in condensed phases have also recently become interesting, and their ability to form new hybrid materials, by mixing them with themselves or other molecules with different electron affinities and ionization potentials, now appears to be extremely attractive. Few porphyrin structures, 5,10,15,20-tetra-p-phenyl-porphyrin (TPP), 5,10,15,20-tetra-p-methoxy-phenyl-porphyrin (TMOPP), 5,10,15,20-tetra-p-tolyl-porphyrin (TTP), 5,10,15,20-tetra-p-sulphonato-phenyl-porphyrin (TSPP), have been synthesized in this paper. Some analytical investigations as UV-Vis spectrophotometry (UV-Vis), Fourier transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM) have been discussed as purity and stability criteria. Also, some considerations about their aggregation ability are discussed, and not in the last time, their capacity to generate porphyrin nanotubes.

  8. Molecular and Cellular Biophysics

    NASA Astrophysics Data System (ADS)

    Jackson, Meyer B.

    2006-01-01

    Molecular and Cellular Biophysics provides advanced undergraduate and graduate students with a foundation in the basic concepts of biophysics. Students who have taken physical chemistry and calculus courses will find this book an accessible and valuable aid in learning how these concepts can be used in biological research. The text provides a rigorous treatment of the fundamental theories in biophysics and illustrates their application with examples. Conformational transitions of proteins are studied first using thermodynamics, and subsequently with kinetics. Allosteric theory is developed as the synthesis of conformational transitions and association reactions. Basic ideas of thermodynamics and kinetics are applied to topics such as protein folding, enzyme catalysis and ion channel permeation. These concepts are then used as the building blocks in a treatment of membrane excitability. Through these examples, students will gain an understanding of the general importance and broad applicability of biophysical principles to biological problems. Offers a unique synthesis of concepts across a wide range of biophysical topics Provides a rigorous theoretical treatment, alongside applications in biological systems Author has been teaching biophysics for nearly 25 years

  9. Similarity of molecular shape.

    PubMed

    Meyer, A Y; Richards, W G

    1991-10-01

    The similarity of one molecule to another has usually been defined in terms of electron densities or electrostatic potentials or fields. Here it is expressed as a function of the molecular shape. Formulations of similarity (S) reduce to very simple forms, thus rendering the computerised calculation straightforward and fast. 'Elements of similarity' are identified, in the same spirit as 'elements of chirality', except that the former are understood to be variable rather than present-or-absent. Methods are presented which bypass the time-consuming mathematical optimisation of the relative orientation of the molecules. Numerical results are presented and examined, with emphasis on the similarity of isomers. At the extreme, enantiomeric pairs are considered, where it is the dissimilarity (D = 1 - S) that is of consequence. We argue that chiral molecules can be graded by dissimilarity, and show that D is the shape-analog of the 'chirality coefficient', with the simple form of the former opening up numerical access to the latter. PMID:1770379

  10. Molecular mechanisms of cancer.

    PubMed Central

    Koeffler, H. P.; McCormick, F.; Denny, C.

    1991-01-01

    Cancer is caused by specific DNA damage. Several common mechanisms that cause DNA damage result in specific malignant disorders: First, proto-oncogenes can be activated by translocations. For example, translocation of the c-myc proto-oncogene from chromosome 8 to one of the immunoglobulin loci on chromosomes 2, 14, or 22 results in Burkitt's lymphomas. Translocation of the c-abl proto-oncogene from chromosome 9 to the BCR gene located on chromosome 22 produces a hybrid BCR/ABL protein resulting in chronic myelogenous leukemia. Second, proto-oncogenes can be activated by point mutations. For example, point mutations of genes coding for guanosine triphosphate-binding proteins, such as H-, K-, or N-ras or G proteins, can be oncogenic as noted in a large variety of malignant neoplasms. Proteins from these mutated genes are constitutively active rather than being faithful second messengers of periodic extracellular signals. Third, mutations that inactivate a gene can result in tumors if the product of the gene normally constrains cellular proliferation. Functional loss of these "tumor suppressor genes" is found in many tumors such as colon and lung cancers. The diagnosis, classification, and treatment of cancers will be greatly enhanced by understanding their abnormalities at the molecular level. PMID:1815390

  11. Rigid molecular foams

    SciTech Connect

    Steckle, W.P. Jr.; Mitchell, M.A.; Aspen, P.G.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Organic analogues to inorganic zeolites would be a significant step forward in engineered porous materials and would provide advantages in range, selectivity, tailorability, and processing. Rigid molecular foams or {open_quotes}organic zeolites{close_quotes} would not be crystalline materials and could be tailored over a broader range of pore sizes and volumes. A novel process for preparing hypercrosslinked polymeric foams has been developed via a Friedel-Crafts polycondensation reaction. A series of rigid hypercrosslinked foams have been prepared using simple rigid polyaromatic hydrocarbons including benzene, biphenyl, m-terphenyl, diphenylmethane, and polystyrene, with dichloroxylene (DCX) as the pore size. After drying the foams are robust and rigid. Densities of the resulting foams can range from 0.15 g/cc to 0.75 g/cc. Nitrogen adsorption studies have shown that by judiciously selecting monomers and the crosslinking agent along with the level of crosslinking and the cure time of the resulting gel, the pore size, pore size distribution, and the total surface area of the foam can be tailored. Surface areas range from 160 to 1,200 m{sup 2}/g with pore sizes ranging from 6 {angstrom} to 2,000 {angstrom}.

  12. MOLECULAR MECHANISMS OF PREECLAMPSIA

    PubMed Central

    Mutter, Walter P.; Karumanchi, S. Ananth

    2008-01-01

    Preeclampsia is a major cause of maternal, fetal, and neonatal mortality worldwide. The mechanisms that initiate preeclampsia in humans have been elusive, but some parts of the puzzle have begun to come together. A key discovery in the field was the realization that its major phenotypes, such as hypertension and proteinuria, are due to excess circulating soluble fms-like tyrosine kinase-1 (sFlt-1, also referred to as sVEGFR-1). sFlt-1 is an endogenous anti-angiogenic protein that is made by the placenta and acts by neutralizing the pro-angiogenic proteins vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). More recently, soluble endoglin, another circulating anti-angiogenic protein was found to synergize with sFlt1 and contribute to the pathogenesis of preeclampsia. Abnormalities in these circulating angiogenic proteins are not only present during clinical preeclampsia, but also antedate clinical symptoms by several weeks. This review will summarize our current understanding of the molecular mechanism of preeclampsia, with an emphasis on the recently characterized circulating anti-angiogenic proteins. PMID:17553534

  13. Molecular processes in comets

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.

    1993-01-01

    Classical trajectory calculations of the cross sections for vibrational and rotational energy exchange in direct and reactive collisions of hydrogen atoms and hydrogen molecules have been carried out. To test the sensitivity, three potential energy surfaces have been used. For the exchange transitions which occur at small internuclear distances, the rate coefficients for the three surfaces agree quite well. For the direct transitions, there are significant differences for the pure rotational transitions from j=0 to 2 and from j=1 to j=3 in which there is no change in vibration. For higher j the differences tend to disappear, suggesting that the rotational angular momentum can couple to the orbital angular momentum to overcome the centrifugal barrier. Complete numerically exact quantum mechanical calculations for the process in which vJ changes have been performed. Dr. M. A'Hearn has provided data on the fluorescent population of the NH rotational and fine-structure levels from which we should be able to predict accurate photodissociation lifetimes. The distribution rate of C2 is being investigated. A review of H3(+) in terrestrial and extraterrestrial environments was prepared for a volume of Advances in Atomic, Molecular and Optical Physics.

  14. Designing the molecular future.

    PubMed

    Schneider, Gisbert

    2012-01-01

    Approximately 25 years ago the first computer applications were conceived for the purpose of automated 'de novo' drug design, prominent pioneering tools being ALADDIN, CAVEAT, GENOA, and DYLOMMS. Many of these early concepts were enabled by innovative techniques for ligand-receptor interaction modeling like GRID, MCSS, DOCK, and CoMFA, which still provide the theoretical framework for several more recently developed molecular design algorithms. After a first wave of software tools and groundbreaking applications in the 1990s--expressly GROW, GrowMol, LEGEND, and LUDI representing some of the key players--we are currently witnessing a renewed strong interest in this field. Innovative ideas for both receptor and ligand-based drug design have recently been published. We here provide a personal perspective on the evolution of de novo design, highlighting some of the historic achievements as well as possible future developments of this exciting field of research, which combines multiple scientific disciplines and is, like few other areas in chemistry, subject to continuous enthusiastic discussion and compassionate dispute. PMID:22127731

  15. Molecular genetics of ependymoma

    PubMed Central

    Yao, Yuan; Mack, Stephen C.; Taylor, Michael D.

    2011-01-01

    Brain tumors are the leading cause of cancer death in children, with ependymoma being the third most common and posing a significant clinical burden. Its mechanism of pathogenesis, reliable prognostic indicators, and effective treatments other than surgical resection have all remained elusive. Until recently, ependymoma research was hindered by the small number of tumors available for study, low resolution of cytogenetic techniques, and lack of cell lines and animal models. Ependymoma heterogeneity, which manifests as variations in tumor location, patient age, histological grade, and clinical behavior, together with the observation of a balanced genomic profile in up to 50% of cases, presents additional challenges in understanding the development and progression of this disease. Despite these difficulties, we have made significant headway in the past decade in identifying the genetic alterations and pathways involved in ependymoma tumorigenesis through collaborative efforts and the application of microarray-based genetic (copy number) and transcriptome profiling platforms. Genetic characterization of ependymoma unraveled distinct mRNA-defined subclasses and led to the identification of radial glial cells as its cell type of origin. This review summarizes our current knowledge in the molecular genetics of ependymoma and proposes future research directions necessary to further advance this field. PMID:21959044

  16. A paramagnetic molecular voltmeter.

    PubMed

    Surek, Jack T; Thomas, David D

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R(1)) and transverse (R(2)) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R(1) increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  17. A Paramagnetic Molecular Voltmeter

    PubMed Central

    Surek, Jack T.; Thomas, David D.

    2008-01-01

    We have developed a general electron paramagnetic resonance (EPR) method to measure electrostatic potential at spin labels on proteins to millivolt accuracy. Electrostatic potential is fundamental to energy-transducing proteins like myosin, because molecular energy storage and retrieval is primarily electrostatic. Quantitative analysis of protein electrostatics demands a site-specific spectroscopic method sensitive to millivolt changes. Previous electrostatic potential studies on macromolecules fell short in sensitivity, accuracy and/or specificity. Our approach uses fast-relaxing charged and neutral paramagnetic relaxation agents (PRAs) to increase nitroxide spin label relaxation rate solely through collisional spin exchange. These PRAs were calibrated in experiments on small nitroxides of known structure and charge to account for differences in their relaxation efficiency. Nitroxide longitudinal (R1) and transverse (R2) relaxation rates were separated by applying lineshape analysis to progressive saturation spectra. The ratio of measured R1 increases for each pair of charged and neutral PRAs measures the shift in local PRA concentration due to electrostatic potential. Voltage at the spin label is then calculated using the Boltzmann equation. Measured voltages for two small charged nitroxides agree with Debye-Hückel calculations. Voltage for spin-labeled myosin fragment S1 also agrees with calculation based on the pK shift of the reacted cysteine. PMID:17964835

  18. [Advances in Molecular Cloning].

    PubMed

    Ashwini, M; Murugan, S B; Balamurugan, S; Sathishkumar, R

    2016-01-01

    "Molecular cloning" meaning creation of recombinant DNA molecules has impelled advancement throughout life sciences. DNA manipulation has become easy due to powerful tools showing exponential growth in applications and sophistication of recombinant DNA technology. Cloning genes has become simple what led to an explosion in the understanding of gene function by seamlessly stitching together multiple DNA fragments or by the use of swappable gene cassettes, maximizing swiftness and litheness. A novel archetype might materialize in the near future with synthetic biology techniques that will facilitate quicker assembly and iteration of DNA clones, accelerating the progress of gene therapy vectors, recombinant protein production processes and new vaccines by in vitro chemical synthesis of any in silico-specified DNA construct. The advent of innovative cloning techniques has opened the door to more refined applications such as identification and mapping of epigenetic modifications and high-throughput assembly of combinatorial libraries. In this review, we will examine the major breakthroughs in cloning techniques and their applications in various areas of biological research that have evolved mainly due to easy construction of novel expression systems. PMID:27028806

  19. Photoacoustic molecular imaging

    NASA Astrophysics Data System (ADS)

    Kiser, William L., Jr.; Reinecke, Daniel; DeGrado, Timothy; Bhattacharyya, Sibaprasad; Kruger, Robert A.

    2007-02-01

    It is well documented that photoacoustic imaging has the capability to differentiate tissue based on the spectral characteristics of tissue in the optical regime. The imaging depth in tissue exceeds standard optical imaging techniques, and systems can be designed to achieve excellent spatial resolution. A natural extension of imaging the intrinsic optical contrast of tissue is to demonstrate the ability of photoacoustic imaging to detect contrast agents based on optically absorbing dyes that exhibit well defined absorption peaks in the infrared. The ultimate goal of this project is to implement molecular imaging, in which Herceptin TM, a monoclonal antibody that is used as a therapeutic agent in breast cancer patients that over express the HER2 gene, is labeled with an IR absorbing dye, and the resulting in vivo bio-distribution is mapped using multi-spectral, infrared stimulation and subsequent photoacoustic detection. To lay the groundwork for this goal and establish system sensitivity, images were collected in tissue mimicking phantoms to determine maximum detection depth and minimum detectable concentration of Indocyanine Green (ICG), a common IR absorbing dye, for a single angle photoacoustic acquisition. A breast mimicking phantom was constructed and spectra were also collected for hemoglobin and methanol. An imaging schema was developed that made it possible to separate the ICG from the other tissue mimicking components in a multiple component phantom. We present the results of these experiments and define the path forward for the detection of dye labeled Herceptin TM in cell cultures and mice models.

  20. Characterization of low-molecular-weight hyaluronic acid-based hydrogel and differential stem cell responses in the hydrogel microenvironments.

    PubMed

    Kim, Jungju; Park, Yongdoo; Tae, Giyoong; Lee, Kyu Back; Hwang, Chang Mo; Hwang, Soon Jung; Kim, In Sook; Noh, Insup; Sun, Kyung

    2009-03-15

    Hyaluronic acid is a natural glycosaminoglycan involved in biological processes. Low-molecular-weight hyaluronic acid (10 and 50 kDa)-based hydrogel was synthesized using derivatized hyaluronic acid. Hyaluronic acid was acrylated by two steps: (1) introduction of an amine group using adipic acid dihydrazide, and (2) acrylation by N-acryloxysuccinimide. Injectable hyaluronic acid-based hydrogel was prepared by using acrylated hyaluronic acid and poly(ethylene glycol) tetra-thiols via Michael-type addition reaction. Mechanical properties of the hydrogel were evaluated by varying the molecular weight of acrylated hyaluronic acid (10 and 50 kDa) and the weight percent of hydrogel. Hydrogel based on 50-kDa hyaluronic acid showed the shortest gelation time and the highest complex modulus. Next, human mesenchymal stem cells were cultured in cell-adhesive RGD peptide-immobilized hydrogels together with bone morphogenic protein-2 (BMP-2). Cells cultured in the RGD/BMP-2-incorporated hydrogels showed proliferation rates higher than that of control or RGD-immobilized hydrogels. Real-time RT-PCR showed that the expression of osteoblast marker genes such as CBFalpha1 and alkaline phosphatase was increased in hyaluronic acid-based hydrogel, and the expression level was dependent on the molecular weight of hyaluronic acid, RGD peptide, and BMP-2. This study indicates that low-molecular-weight hyaluronic acid-based hydrogel can be applied to tissue regeneration as differentiation guidance materials of stem cells. PMID:18384163

  1. Structure of the gene encoding the 14.5 kDa subunit of human RNA polymerase II.

    PubMed Central

    Acker, J; Wintzerith, M; Vigneron, M; Kedinger, C

    1993-01-01

    The structure of the gene encoding the 14.5 kDa subunit of the human RNA polymerase II (or B) has been elucidated. The gene consists of six exons, ranging from 52 to over 101 bp, interspaced with five introns ranging from 84 to 246 bp. It is transcribed into three major RNA species, present at low abundance in exponentially growing HeLa cells. The corresponding messenger RNAs contain the same open reading frame encoding a 125 amino acid residue protein, with a calculated molecular weight of 14,523 Da. This protein (named hRPB14.5) shares strong homologies with the homologous polymerase subunits encoded by the Drosophila (RpII15) and yeast (RPB9) genes. Cysteines characteristic of two zinc fingers are conserved in all three corresponding sequences and, like the yeast protein, the hRPB14.5 subunit exhibits zinc-binding activity. Images PMID:8265347

  2. Fluorescence fingerprints and Cu2+-complexing ability of individual molecular size fractions in soil- and waste-borne DOM.

    PubMed

    Knoth de Zarruk, K; Scholer, G; Dudal, Y

    2007-09-01

    Land spreading of organic materials introduces large amounts of dissolved organic matter (DOM) into the soil. DOM has the ability to form stable complexes with heavy metals and can facilitate their transport towards the groundwater. The effects on soil processes are difficult to assess, because different DOM components might react differently towards metal ions. The objective of this study was to investigate the fluorescence signature and the Cu2+-binding capacity of individual molecular size fractions of DOM from various sources. DOM extracted from leaf compost, chicken manure, sugar cane vinasse and a fulvic hypercalcaric cambisol was fractionated by the means of dialysis into four molecular size classes: MW<500, 50012000-14000 Da. Vinasse and leaf compost contained around 80% and 70%, respectively, of the total organic carbon in the fractions with low molecular weight (MW<3500 Da); in chicken manure and soil these fractions accounted for 40% and 50% only. Fluorescence was highest in the fraction MW>12000 Da for leaf compost, chicken manure and soil. The opposite result was obtained for vinasse, where the fractions with low molecular weight showed highest fluorescence intensities, distinguishing it from all other samples. Vinasse showed the greatest ability to bind Cu2+ with a resulting complex concentration of 6.31mgl(-1) while in contact with an excess of Cu2+. Leaf compost, soil and chicken manure followed with 2.69, 1.12, and 0.85mgl(-1), respectively. Within vinasse, the fraction MW<500 Da was able to form the most DOM-Cu complexes, indicating the importance of low molecular weight fractions in metal binding. PMID:17498777

  3. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan.

    PubMed

    Kaya, Murat; Asan-Ozusaglam, Meltem; Erdogan, Sevil

    2016-06-01

    In this study the antimicrobial activity of low molecular weight (3.22 kDa) chitosan, obtained for the first time from a species belonging to the Scorpiones, was screened against nine pathogenic microorganisms (seven bacteria and two yeasts) and compared with that of medium molecular weight commercial chitosan (MMWCC). It was observed that the antimicrobial activity of the low molecular weight scorpion chitosan (LMWSC) was specific to bacterial species in general rather than gram-negative or gram-positive bacterial groups. It was also determined that LMWSC had a stronger inhibitory effect than the MMWCC, particularly on the bacterium Listeria monocytogenes and the yeast Candida albicans, which are important pathogens for public health. In addition, it was recorded that the MMWCC had a greater inhibitory effect on Bacillus subtilis than LMWSC. According to the results obtained by the disc diffusion method, the antibacterial activity of both LMWSC and MMWCC against B. subtilis and Salmonella enteritidis was higher than the widely used antibiotic Gentamicin (CN, 10 μg/disc). PMID:26702952

  4. Trapping cold molecular hydrogen.

    PubMed

    Seiler, Ch; Hogan, S D; Merkt, F

    2011-11-14

    Translationally cold H(2) molecules excited to non-penetrating |M(J)| = 3 Rydberg states of principal quantum number in the range 21-37 have been decelerated and trapped using time-dependent inhomogeneous electric fields. The |M(J)| = 3 Rydberg states were prepared from the X (1)Σ(+)(u)(v = 0, J = 0) ground state using a resonant three-photon excitation sequence via the B (1)Σ(+)(u)(v = 3, J = 1) and I (1)Π(g) (v = 0, J = 2) intermediate states and circularly polarized laser radiation. The circular polarization of the vacuum ultraviolet radiation used for the B ← X transition was generated by resonance-enhanced four-wave mixing in xenon and the degree of circular polarization was determined to be 96%. To analyse the deceleration and trapping experiments, the Stark effect in Rydberg states of molecular hydrogen was calculated using a matrix diagonalization procedure similar to that presented by Yamakita et al., J. Chem. Phys., 2004, 121, 1419. Particular attention was given to the prediction of zero-field positions of low-l states and of avoided crossings between Rydberg-Stark states with different values of |M(J)|. The calculated Stark maps and probabilities for diabatic traversal of the avoided crossings were used as input to Monte-Carlo particle-trajectory simulations. These simulations provide a quantitatively satisfactory description of the experimental data and demonstrate that particle loss caused by adiabatic traversals of avoided crossings between adjacent |M(J)| = 3 Stark states of H(2) is small at principal quantum numbers beyond n = 25. The main source of trap losses was found to be from collisional processes. Predissociation following the absorption of blackbody radiation is estimated to be the second most important trap-loss mechanism at room temperature, and trap loss by spontaneous emission is negligible under our experimental conditions. PMID:21818497

  5. Molecular imaging in atherosclerosis

    PubMed Central

    Glaudemans, Andor W. J. M.; Slart, Riemer H. J. A.; Bozzao, Alessandro; Bonanno, Elena; Arca, Marcello; Dierckx, Rudi A. J. O.

    2010-01-01

    Atherosclerosis is the major cause of cardiovascular disease, which still has the leading position in morbidity and mortality in the Western world. Many risk factors and pathobiological processes are acting together in the development of atherosclerosis. This leads to different remodelling stages (positive and negative) which are both associated with plaque physiology and clinical presentation. The different remodelling stages of atherosclerosis are explained with their clinical relevance. Recent advances in basic science have established that atherosclerosis is not only a lipid storage disease, but that also inflammation has a fundamental role in all stages of the disease. The molecular events leading to atherosclerosis will be extensively reviewed and described. Further on in this review different modalities and their role in the different stages of atherosclerosis will be discussed. Non-nuclear invasive imaging techniques (intravascular ultrasound, intravascular MRI, intracoronary angioscopy and intravascular optical coherence tomography) and non-nuclear non-invasive imaging techniques (ultrasound with Doppler flow, electron-bean computed tomography, coronary computed tomography angiography, MRI and coronary artery MR angiography) will be reviewed. After that we focus on nuclear imaging techniques for detecting atherosclerotic plaques, divided into three groups: atherosclerotic lesion components, inflammation and thrombosis. This emerging area of nuclear imaging techniques can provide measures of biological activity of atherosclerotic plaques, thereby improving the prediction of clinical events. As we will see in the future perspectives, at present, there is no special tracer that can be called the diagnostic tool to diagnose prospective stroke or infarction in patients. Nevertheless, we expect such a tracer to be developed in the next few years and maybe, theoretically, it could even be used for targeted therapy (in the form of a beta-emitter) to combat

  6. HIV Molecular Immunology 2014

    SciTech Connect

    Yusim, Karina; Korber, Bette Tina Marie; Barouch, Dan; Koup, Richard; de Boer, Rob; Moore, John P.; Brander, Christian; Haynes, Barton F.; Walker, Bruce D.

    2015-02-03

    HIV Molecular Immunology is a companion volume to HIV Sequence Compendium. This publication, the 2014 edition, is the PDF version of the web-based HIV Immunology Database (http://www.hiv.lanl.gov/content/immunology/). The web interface for this relational database has many search options, as well as interactive tools to help immunologists design reagents and interpret their results. In the HIV Immunology Database, HIV-specific B-cell and T-cell responses are summarized and annotated. Immunological responses are divided into three parts, CTL, T helper, and antibody. Within these parts, defined epitopes are organized by protein and binding sites within each protein, moving from left to right through the coding regions spanning the HIV genome. We include human responses to natural HIV infections, as well as vaccine studies in a range of animal models and human trials. Responses that are not specifically defined, such as responses to whole proteins or monoclonal antibody responses to discontinuous epitopes, are summarized at the end of each protein section. Studies describing general HIV responses to the virus, but not to any specific protein, are included at the end of each part. The annotation includes information such as crossreactivity, escape mutations, antibody sequence, TCR usage, functional domains that overlap with an epitope, immune response associations with rates of progression and therapy, and how specific epitopes were experimentally defined. Basic information such as HLA specificities for T-cell epitopes, isotypes of monoclonal antibodies, and epitope sequences are included whenever possible. All studies that we can find that incorporate the use of a specific monoclonal antibody are included in the entry for that antibody. A single T-cell epitope can have multiple entries, generally one entry per study. Finally, maps of all defined linear epitopes relative to the HXB2 reference proteins are provided.

  7. [Molecular Subtypes of Gastric Cancer].

    PubMed

    Hatogai, Ken; Doi, Toshihiko

    2016-03-01

    Gastric cancer has been classified based on the pathological characteristics including microscopic configuration and growth pattern. Although these classifications have been used in studies investigating prognosis and recurrence pattern, they are not considered for decisions regarding the therapeutic strategy. In the ToGA study, trastuzumab, an anti-HER2 monoclonal antibody, demonstrated clinical efficacy for gastric cancer with HER2 overexpression or HER2 gene amplification. Based on these findings of the ToGA study, the definition of HER2-positive gastric cancer was established. Thereafter, several molecular targeted agents, including agents targeting other receptor tyrosine kinases, have been investigated in gastric cancer. However, to date no biomarker, except HER2, has been established. Based on the recent technological development in the field of gene analysis, a comprehensive molecular evaluation of gastric cancer was performed as part of The Cancer Genome Atlas (TCGA) project, and a new molecular classification was proposed that divided gastric cancer into the following 4 subtypes: tumors positive for Epstein-Barr virus, microsatellite instability tumors, genomically stable tumors, and tumors with chromosomal instability. Each subtype has specific molecular alterations including gene mutation and amplification, DNA methylation, and protein overexpression. Additionally, some subtypes were suggested to be correlated with the clinicopathological characteristics or as targets of some molecular targeted agents that are currently under development. The new molecular classification is expected to be a roadmap for patient stratification and clinical trials on molecular targeted therapies in gastric cancer. PMID:27067842

  8. Molecular wire and interface for bioelectronic molecular devices

    NASA Astrophysics Data System (ADS)

    Aizawa, M.; Khan, G. F.; Shinohara, H.; Ikariyama, Y.

    1992-07-01

    Protein molecules have successfully been incorporated in bioelectronic molecular devices through the molecular wire or interface of conducting polymer. Such enzymes as glucose oxidase and fructose dehydrogenase were adsorbed on the platinum electrode surface, which was followed by the electropolymerization of pyrrole to deposit an ultimately thin layer of polypyrrole on the electrode surface. Alcohol dehydrogenase was immobilized in a polypyrrole membrane with NAD and Meldora's blue in the similar manner on the electrode surface. The electron transfer from the electron transfer sites of these enzymes to the corresponding electrode has been promoted through the molecular wire. It has been demonstrated that the enzyme activity is modulated by changing the potential of the electrode with which the enzyme is connected through the molecular wire. On the basis of the electronic characteristics of these enzyme proteins the design principles of biomolecular electron devices have been proposed.

  9. An auxin-binding protein is localized to the plasma membrane of maize coleoptile cells: Identification by photoaffinity labeling and purification of a 23-kDa polypeptide

    SciTech Connect

    Feldwisch, J.; Zettl, R.; Hesse, F.; Schell, J.; Palme, K. )

    1992-01-15

    Plasma membrane vesicles were isolated from maize (Zea mays L.) coleoptile tissue by aqueous two-phase partitioning and assayed for homogeneity by the use of membrane-specific enzymatic assays. Using 5-azido-(7-{sup 3}H)indole-3-acetic acid (({sup 3}H)N{sub 3}IAA), the authors identified several IAA-binding proteins with the molecular masses of 60 kDa (pm60), 58 kDa (pm58), and 23 kDa (pm23). Using Triton X-114, they were able to selectively extract pm23 from the plasma membrane. They show that auxins and functional analogues compete with ({sup 3}H)N{sub 3}IAA for binding to pm23. They found that PAB130, a polyclonal antibody raised against auxin-binding protein 1 (ABP-1), recognized ABP-1 as well as pm23. This suggests that pm23 shares common epitopes with ABP-1. In addition, they identified an auxin-binding protein with a molecular mass of 24 kDa (pm24), which was detected in microsomal but not in plasma membrane vesicle preparations. Like pm23 this protein was extracted from membrane vesicles with Triton X-114. They designed a purification scheme allowing simultaneous purification of pm23 and pm24. Homogeneous pm23 and pm24 were obtained from coleoptile extracts after 7,000-fold purification.

  10. Biochemical and immunological properties of two forms of pertactin, the 69,000-molecular-weight outer membrane protein of Bordetella pertussis.

    PubMed Central

    Gotto, J W; Eckhardt, T; Reilly, P A; Scott, J V; Cowell, J L; Metcalf, T N; Mountzouros, K; Gibbons, J J; Siegel, M

    1993-01-01

    Two apparent isoforms of the virulence-associated 69,000-molecular-weight protein pertactin were purified from Bordetella pertussis. Mass spectrometry showed a difference of 2,060 Da, which may result from differential C-terminal cleavage of a larger precursor. Both forms were protective in a mouse model, eliciting bactericidal antibodies and reducing respiratory tract colonization. Images PMID:8478113

  11. Purification, Molecular Cloning, and Enzymatic Properties of a Family 12 Endoglucanase (EG-II) from Fomitopsis palustris: Role of EG-II in Larch Holocellulose Hydrolysis▿

    PubMed Central

    Shimokawa, Tomoko; Shibuya, Hajime; Nojiri, Masanobu; Yoshida, Shigeki; Ishihara, Mitsuro

    2008-01-01

    A family 12 endoglucanase with a molecular mass of 23,926 Da (EG-II) from the brown-rot basidiomycete Fomitopsis palustris was purified and characterized. One of the roles of EG-II in wood degradation is thought to be to loosen the polysaccharide network in cell walls by disentangling hemicelluloses that are associated with cellulose. PMID:18658283

  12. NASA Applications of Molecular Nanotechnology

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  13. Conformational Transitions in Molecular Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Janke, W.

    2008-11-01

    Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.

  14. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    PubMed Central

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  15. Molecularly Regulated Reversible DNA Polymerization.

    PubMed

    Chen, Niancao; Shi, Xuechen; Wang, Yong

    2016-06-01

    Natural polymers are synthesized and decomposed under physiological conditions. However, it is challenging to develop synthetic polymers whose formation and reversibility can be both controlled under physiological conditions. Here we show that both linear and branched DNA polymers can be synthesized via molecular hybridization in aqueous solutions, on the particle surface, and in the extracellular matrix (ECM) without the involvement of any harsh conditions. More importantly, these polymers can be effectively reversed to dissociate under the control of molecular triggers. Since nucleic acids can be conjugated with various molecules or materials, we anticipate that molecularly regulated reversible DNA polymerization holds potential for broad biological and biomedical applications. PMID:27100911

  16. Time delay in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Hockett, P.; Frumker, E.; Villeneuve, D. M.; Corkum, P. B.

    2016-05-01

    Time-delays in the photoionization of molecules are investigated. As compared to atomic ionization, the time-delays expected from molecular ionization present a much richer phenomenon, with a strong spatial dependence due to the anisotropic nature of the molecular scattering potential. We investigate this from a scattering theory perspective, and make use of molecular photoionization calculations to examine this effect in representative homonuclear and hetronuclear diatomic molecules, nitrogen and carbon monoxide. We present energy and angle-resolved maps of the Wigner delay time for single-photon valence ionization, and discuss the possibilities for experimental measurements.

  17. Introduction to Accelerated Molecular Dynamics

    SciTech Connect

    Perez, Danny

    2012-07-10

    Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

  18. Photoelectron photoion molecular beam spectroscopy

    SciTech Connect

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  19. Nucleic acids and molecular biology

    SciTech Connect

    Eckstein, F.; Lilley, D.M.J.

    1988-01-01

    Molecular biology has always been a discipline of rapid development. Despite this the authors are presently experiencing a period of unprecedented proliferation of information in nucleic acid studies and molecular biology. These areas are intimately interwoven, so that each influences the other to their mutual benefit. The rapid growth in information leads to ever-increasing specialization. The authors present the series Nucleic Acids and Molecular Biology. It comprises focused review articles by active researchers who report on the newest developments in their areas of particular interest.

  20. Thermopower measurements in molecular junctions.

    PubMed

    Rincón-García, Laura; Evangeli, Charalambos; Rubio-Bollinger, Gabino; Agraït, Nicolás

    2016-08-01

    The measurement of thermopower in molecular junctions offers complementary information to conductance measurements and is becoming essential for the understanding of transport processes at the nanoscale. In this review, we discuss the recent advances in the study of the thermoelectric properties of molecular junctions. After presenting the theoretical background for thermoelectricity at the nanoscale, we review the experimental techniques for measuring the thermopower in these systems and discuss the main results. Finally, we consider the challenges in the application of molecular junctions in viable thermoelectric devices. PMID:27277330

  1. Molecular Hydrodynamics from Memory Kernels.

    PubMed

    Lesnicki, Dominika; Vuilleumier, Rodolphe; Carof, Antoine; Rotenberg, Benjamin

    2016-04-01

    The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations, decays algebraically as t^{-3/2}. We show how the hydrodynamic Basset-Boussinesq force naturally emerges from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the crossover between the molecular and hydrodynamic regimes upon increasing the solute radius. PMID:27104730

  2. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    SciTech Connect

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G. )

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost, a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.

  3. A 47-kDa human nuclear protein recognized by antikinetochore autoimmune sera is homologous with the protein encoded by RCC1, a gene implicated in onset of chromosome condensation.

    PubMed Central

    Bischoff, F R; Maier, G; Tilz, G; Ponstingl, H

    1990-01-01

    Several autoimmune sera from patients with Raynaud phenomenon decorated mammalian kinetochores and bound to a 47-kDa protein on immunoblots of nuclear lysates. Antibody affinity-purified from immunoblots of the 47-kDa band recognized kinetochores, but due to crossreaction with an 18-kDa protein, localization remains elusive. We used one of these sera to purify the antigen from HeLa cells synchronized in mitosis as a noncovalent complex with a 25-kDa protein. The antigen was released from DNA by intercalation with 25 mM chloroquine. Ion-exchange chromatography yielded the pure complex with an apparent molecular size of 68 kDa, which was separated into its components by gel filtration in 6 M guanidinium chloride. Upon two-dimensional gel electrophoresis the 47-kDa protein gave two main spots of pI 6.6 and 6.7, respectively. Posttranslational modification is indicated by additional antigenic spots, by lack of a free alpha-amino group, and by chromatographic behavior of peptides on reversed-phase chromatography. The amino acid sequence for 205 residues of the 47-kDa protein has been established. This sequence is highly homologous with the translated reading frame of RCC1, a gene reportedly involved in regulating onset of mammalian chromosome condensation. Images PMID:2236072

  4. [Anticoagulant activity of low-molecular-weight sulfated derivatives of galactomannan from Cyamopsis tetragonoloba (L.) seeds].

    PubMed

    Mestechkina, N M; Shcherbukhin, V D; Bannikova, G E; Varlamov, V P; Drozd, N N; Tolstenkov, A S; Makarov, V A; Tikhonov, V E

    2008-01-01

    Galactomannan from seeds of Cyamopsis tetragonoloba (L.) Taub. (guar) was depolymerized using immobilized enzymatic preparation celloviridin. A set of fragments whose molecular weights varied from 12.6 to 245.6 kDa was obtained. Sulfated derivatives of components of all fractions were synthesized, in which the content of HSO3(-) groups was 48.05% +/- 2.31. All preparations exhibited anticoagulant activity, which was recorded in vitro in two tests--aIIa and aXa. The antithrombin activity (aIIa) was high (up to 65-87 U/mg) and did not depend on the molecular weight of a sulfated derivative; in the second test (aXa), the effect of molecular weight was observed. Biospecific electrophoresis allowed us to detect the ability of galactomannan sulfates to form complexes with protamine sulfate, a classic antidote to heparin. PMID:18491607

  5. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    PubMed Central

    Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681

  6. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    PubMed

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells. PMID:27341780

  7. Exercises in Molecular Computing

    PubMed Central

    2014-01-01

    Conspectus The successes of electronic digital logic have transformed every aspect of human life over the last half-century. The word “computer” now signifies a ubiquitous electronic device, rather than a human occupation. Yet evidently humans, large assemblies of molecules, can compute, and it has been a thrilling challenge to develop smaller, simpler, synthetic assemblies of molecules that can do useful computation. When we say that molecules compute, what we usually mean is that such molecules respond to certain inputs, for example, the presence or absence of other molecules, in a precisely defined but potentially complex fashion. The simplest way for a chemist to think about computing molecules is as sensors that can integrate the presence or absence of multiple analytes into a change in a single reporting property. Here we review several forms of molecular computing developed in our laboratories. When we began our work, combinatorial approaches to using DNA for computing were used to search for solutions to constraint satisfaction problems. We chose to work instead on logic circuits, building bottom-up from units based on catalytic nucleic acids, focusing on DNA secondary structures in the design of individual circuit elements, and reserving the combinatorial opportunities of DNA for the representation of multiple signals propagating in a large circuit. Such circuit design directly corresponds to the intuition about sensors transforming the detection of analytes into reporting properties. While this approach was unusual at the time, it has been adopted since by other groups working on biomolecular computing with different nucleic acid chemistries. We created logic gates by modularly combining deoxyribozymes (DNA-based enzymes cleaving or combining other oligonucleotides), in the role of reporting elements, with stem–loops as input detection elements. For instance, a deoxyribozyme that normally exhibits an oligonucleotide substrate recognition region is

  8. Molecularly doped metals.

    PubMed

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  9. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.

    2000-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. The most direct approach to this problem is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing energy and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following questions about these proteins: (1) How do small proteins self-organize into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides form membrane-spanning structures (e.g. channels)? (3) By what mechanisms do such structures perform their functions? The simulations are performed using the molecular dynamics method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated in real space while long-range forces are evaluated in reciprocal space, using a particle-mesh algorithm which is of order O(NInN). With a time step of 2 femtoseconds, problems occurring on multi-nanosecond time scales (10(exp 6)-10(exp 8) time steps) are accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude, which requires algorithmic improvements and codes scalable to a large number of processors. Work in this direction is in progress. Two series of simulations are discussed. In one series, it is shown that nonpolar peptides, disordered in water, translocate to the nonpolar interior of the membrane and fold into helical structures (see Figure). Once in the membrane, the peptides

  10. Investigating Evolutionary Questions Using Online Molecular Databases.

    ERIC Educational Resources Information Center

    Puterbaugh, Mary N.; Burleigh, J. Gordon

    2001-01-01

    Recommends using online molecular databases as teaching tools to illustrate evolutionary questions and concepts while introducing students to public molecular databases. Provides activities in which students make molecular comparisons between species. (YDS)

  11. Molecular and Functional Characterization of Bacopa monniera: A Retrospective Review

    PubMed Central

    Rajan, Koilmani Emmanuvel; Preethi, Jayakumar; Singh, Hemant K.

    2015-01-01

    Over the last 50 years, laboratories around the world analyzed the pharmacological effect of Bacopa monniera extract in different dimensions, especially as a nerve tonic and memory enhancer. Studies in animal model evidenced that Bacopa treatment can attenuate dementia and enhances memory. Further, they demonstrate that Bacopa primarily either acts via antioxidant mechanism (i.e., neuroprotection) or alters different neurotransmitters (serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), acetylcholine (ACh), γ-aminobutyric acid (GABA)) to execute the pharmacological effect. Among them, 5-HT has been shown to fine tune the neural plasticity, which is a substrate for memory formation. This review focuses on the studies which trace the effect of Bacopa treatment on serotonergic system and 5-HT mediated key molecular changes that are associated with memory formation. PMID:26413131

  12. Dairy Wastewater Treatment Using Low Molecular Weight Crab Shell Chitosan

    NASA Astrophysics Data System (ADS)

    Geetha Devi, M.; Dumaran, Joefel Jessica; Feroz, S.

    2012-08-01

    The investigation of possible use of low molecular weight crab shell chitosan (MW 20 kDa) in the treatment of dairy waste water was studied. Various experiments have been carried out using batch adsorption technique to study the effects of the process variables, which include contact time, stirring speed, pH and adsorbent dosage. Treated effluent characteristics at optimum condition showed that chitosan can be effectively used as adsorbent in the treatment of dairy wastewater. The optimum conditions for this study were at 150 mg/l of chitosan, pH 5 and 50 min of mixing time with 50 rpm of mixing speed. Chitosan showed the highest performance under these conditions with 79 % COD, 93 % turbidity and 73 % TSS reduction. The result showed that chitosan is an effective coagulant, which can reduce the level of COD, TSS and turbidity in dairy industry wastewater.

  13. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize.

    PubMed

    Liu, Hongjun; Shi, Junpeng; Sun, Chuanlong; Gong, Hao; Fan, Xingming; Qiu, Fazhan; Huang, Xuehui; Feng, Qi; Zheng, Xixi; Yuan, Ningning; Li, Changsheng; Zhang, Zhiyong; Deng, Yiting; Wang, Jiechen; Pan, Guangtang; Han, Bin; Lai, Jinsheng; Wu, Yongrui

    2016-05-01

    The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding. PMID:27092004

  14. Gene duplication confers enhanced expression of 27-kDa γ-zein for endosperm modification in quality protein maize

    PubMed Central

    Liu, Hongjun; Shi, Junpeng; Sun, Chuanlong; Gong, Hao; Fan, Xingming; Qiu, Fazhan; Huang, Xuehui; Feng, Qi; Zheng, Xixi; Yuan, Ningning; Li, Changsheng; Zhang, Zhiyong; Deng, Yiting; Wang, Jiechen; Pan, Guangtang; Han, Bin; Lai, Jinsheng; Wu, Yongrui

    2016-01-01

    The maize opaque2 (o2) mutant has a high nutritional value but it develops a chalky endosperm that limits its practical use. Genetic selection for o2 modifiers can convert the normally chalky endosperm of the mutant into a hard, vitreous phenotype, yielding what is known as quality protein maize (QPM). Previous studies have shown that enhanced expression of 27-kDa γ-zein in QPM is essential for endosperm modification. Taking advantage of genome-wide association study analysis of a natural population, linkage mapping analysis of a recombinant inbred line population, and map-based cloning, we identified a quantitative trait locus (qγ27) affecting expression of 27-kDa γ-zein. qγ27 was mapped to the same region as the major o2 modifier (o2 modifier1) on chromosome 7 near the 27-kDa γ-zein locus. qγ27 resulted from a 15.26-kb duplication at the 27-kDa γ-zein locus, which increases the level of gene expression. This duplication occurred before maize domestication; however, the gene structure of qγ27 appears to be unstable and the DNA rearrangement frequently occurs at this locus. Because enhanced expression of 27-kDa γ-zein is critical for endosperm modification in QPM, qγ27 is expected to be under artificial selection. This discovery provides a useful molecular marker that can be used to accelerate QPM breeding. PMID:27092004

  15. Studies of New Fused Benzazepine as Selective Dopamine D3 Receptor Antagonists Using 3D-QSAR, Molecular Docking and Molecular Dynamics

    PubMed Central

    Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi

    2011-01-01

    In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q2 = 0.603, R2ncv = 0.829, R2pre = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q2 = 0.506, R2ncv =0.838, R2pre = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R3 substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R1 substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists. PMID:21541053

  16. Ferric Enterochelin Transport in Yersinia enterocolitica: Molecular and Evolutionary Aspects

    PubMed Central

    Schubert, S.; Fischer, D.; Heesemann, J.

    1999-01-01

    Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of the Yersinia fep-fes gene cluster orthologous to the Escherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded by fepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD, fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD or fes genes abrogates enterochelin-supported growth of Y. enterocolitica on iron-chelated media. In contrast to E. coli, the fep-fes gene cluster in Y. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, and Yersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the family Enterobacteriaceae. PMID:10515929

  17. Ferric enterochelin transport in Yersinia enterocolitica: molecular and evolutionary aspects.

    PubMed

    Schubert, S; Fischer, D; Heesemann, J

    1999-10-01

    Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of the Yersinia fep-fes gene cluster orthologous to the Escherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded by fepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD, fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD or fes genes abrogates enterochelin-supported growth of Y. enterocolitica on iron-chelated media. In contrast to E. coli, the fep-fes gene cluster in Y. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, and Yersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the family Enterobacteriaceae. PMID:10515929

  18. Fabrication of molecular tension probes.

    PubMed

    Kim, Sung Bae; Fujii, Rika

    2016-01-01

    A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein-protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: •Molecular tension appended by protein-protein interactions (PPI) is visualized with a luciferase.•Estrogen activities are quantitatively illuminated with the molecular tension probes.•Full-length Renilla luciferase enhances the optical intensities after bending by PPI. PMID:27222821

  19. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L. ); Naruse, Y. )

    1992-01-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows inventory by difference'' for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  20. Molecular Sieve Regeneration System (MSRS)

    SciTech Connect

    Nasise, J.E.; Anderson, J.L.; Naruse, Y.

    1992-03-01

    A Molecular Sieve Regeneration System (MSRS) was added to the existing Tritium Waste Treatment system (TWT) within the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. The Department of Energy (DOE) no longer allows ``inventory by difference`` for radioactive wastes that are to be buried. The MSRS was designed and built to comply with this requirement. Within the TWT, water is generated by the catalytic conversion of hydrogen isotopes and removed by molecular sieve trapping prior to release to the environment. Molecular sieve regeneration is required to remove the trapped water and to rejuvenate the beds. The MSRS permits the collection and direct tritium assay of regenerated tritiated water from molecular sieve beds. This paper describes the MSRS in detail and how it is interfaced with the TWT.

  1. Computerized molecular modeling of carbohydrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computerized molecular modleing continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studi...

  2. Imaging molecular orbitals using photoionization

    NASA Astrophysics Data System (ADS)

    Santra, Robin

    2006-10-01

    The interpretation of a recent experiment using high-order harmonic generation [Itatani et al., Nature 432 (2004) 867] as a measurement of the highest occupied molecular orbital of a molecule is conceptually problematic, even if the independent-particle picture is taken seriously. Guided by the relationship between the amplitude for one-photon-induced electron emission and the electron-ion recombination amplitude in the three-step model of high-order harmonic generation, it is argued that synchrotron-based photoionization might be a superior approach to imaging molecular orbitals. Within the Hartree-Fock independent-particle picture, the molecular-frame photoelectron angular distributions, measured as a function of photon energy, could be used to reconstruct all orbitals occupied in the Hartree-Fock ground state of the molecule investigated. It is suggested that laser alignment techniques could be employed to facilitate the measurement of the molecular-frame photoelectron angular distributions.

  3. Molecular Mechanism of Water Evaporation

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-01

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  4. Computer representation of molecular surfaces

    SciTech Connect

    Max, N.L.

    1981-07-06

    This review article surveys recent work on computer representation of molecular surfaces. Several different algorithms are discussed for producing vector or raster drawings of space-filling models formed as the union of spheres. Other smoother surfaces are also considered.

  5. Molecular tools used in agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A summary of molecular tools used for research in agriculture were presented. Examples of DNA sequencing, library preparation, use of fingerprinting for pathogens and plant crops, high throughput sequencing, whole-genome amplification, reporter genes, and other methods....

  6. Molecular Biology of Nitrogen Fixation

    ERIC Educational Resources Information Center

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  7. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)

  8. Emerging molecular phenotypes of asthma.

    PubMed

    Ray, Anuradha; Oriss, Timothy B; Wenzel, Sally E

    2015-01-15

    Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years, both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology, and genetics. These combined characteristics have been used to define phenotypes of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has now been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways have moved the concept of clinical phenotypes toward the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biological therapies. Thus the global term asthma is poised to become obsolete, being replaced by terms that more specifically identify the pathology associated with the disease. PMID:25326577

  9. Molecular Aggregation in Disodium Cromoglycate

    NASA Astrophysics Data System (ADS)

    Singh, Gautam; Agra-Kooijman, D.; Collings, P. J.; Kumar, Satyendra

    2012-02-01

    Details of molecular aggregation in the mesophases of the anti-asthmatic drug disodium cromoglycate (DSCG) have been studied using x-ray synchrotron scattering. The results show two reflections, one at wide angles corresponding to π-π stacking (3.32 å) of molecules, and the other at small angles which is perpendicular to the direction of molecular stacking and corresponds to the distance between the molecular aggregates. The latter varies from 35 - 41 å in the nematic (N) phase and 27 -- 32 å in the columnar (M) phase. The temperature evolution of the stack height, positional order correlations in the lateral direction, and orientation order parameter were determined in the N, M, and biphasic regions. The structure of the N and M phases and the nature of the molecular aggregation, together with their dependence on temperature and concentration, will be presented.

  10. Biological and biomimetic molecular machines.

    PubMed

    Huang, Tony J; Juluri, Bala K

    2008-02-01

    The evolution of life facilitates the creation of biological molecular machines. In these so-called 'nanomachines,' nature elegantly shows that when precisely organized and assembled, simple molecular mechanical components can link motions efficiently from the nanometer scale to the macroscopic world, and achieve complex functions such as powering skeletal muscles, synthesizing ATP and producing DNA/RNA. Inspired by nature, researchers are creating artifical molecular machines with tailored structures and properties, with the aim of realizing man-made active nanosystems that operate with the same efficiency and complexity as biological nanomachines. It is anticipated that in the not-too-distant future, unique applications of biological and biomimetic molecular machines will emerge in areas such as biochemical instrumentation and nanomedicine. PMID:18393670

  11. Apparatus for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  12. Fabrication of molecular tension probes

    PubMed Central

    Kim, Sung Bae; Fujii, Rika

    2016-01-01

    A unique bioluminescent imaging probe is introduced for illuminating molecular tension appended by protein–protein interactions (PPIs) of interest. A full-length luciferase is sandwiched between two proteins of interest via minimal flexible linkers. The ligand-activated PPIs append intramolecular tension to the sandwiched luciferase, boosting or dropping the enzymatic activity in a quantitative manner. This method guides construction of a new lineage of bioassays for determining molecular tension appended by ligand-activated PPIs. The summary of the method is: • Molecular tension appended by protein–protein interactions (PPI) is visualized with a luciferase. • Estrogen activities are quantitatively illuminated with the molecular tension probes. • Full-length Renilla luciferase enhances the optical intensities after bending by PPI. PMID:27222821

  13. Molecular Imaging in Genetic Medicine

    PubMed Central

    Jacob, Ayden; Van Gestel, Frederick; Yaghoubi, Shahriar

    2016-01-01

    The field of biomedical imaging has made significant advances in recent times. This includes extremely high-resolution anatomic imaging and functional imaging of physiologic and pathologic processes as well as novel modalities in optical imaging to evaluate molecular features within the cellular environment. The latter has made it possible to image phenotypic markers of various genotypes that are implicated in human development, behavior, and disease. This article discusses the role of molecular imaging in genetic and precision medicine.  PMID:27186447

  14. [Knowledgebases in postgenomic molecular biology].

    PubMed

    Lisitsa, A V; Shilov, B V; Evdokimov, P A; Gusev, S A

    2010-01-01

    Knowledgebases can become an effective tool essentially raising quality of information retrieval in molecular biology, promoting the development of new methods of education and forecasting of the biomedical R&D. Knowledge-based technologies should induce "paradigm shift" in the life science due to integrative focusing of research groups towards the challenges of postgenomic era. This paper debates concept of the knowledgebase, which exploits web usage mining to personalize the access of molecular biologist to the Internet resources. PMID:21328913

  15. 40 CFR 60.52Da - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Recordkeeping requirements. 60.52Da Section 60.52Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility Steam Generating Units for...

  16. Asteroid 2012 DA14 To Whiz Past Earth Safely

    NASA Video Gallery

    The small near-Earth asteroid 2012 DA14 will pass very close to Earth on Feb. 15, 2013. Asteroid 2012 DA14 will be closest to Earth at about 11:24 a.m. PST (2:24 p.m. EST and 1924 UTC), on Feb. 15,...

  17. The Case: Bunche-Da Vinci Learning Partnership Academy

    ERIC Educational Resources Information Center

    Eisenberg, Nicole; Winters, Lynn; Alkin, Marvin C.

    2005-01-01

    The Bunche-Da Vinci case described in this article presents a situation at Bunche Elementary School that four theorists were asked to address in their evaluation designs (see EJ791771, EJ719772, EJ791773, and EJ792694). The Bunche-Da Vinci Learning Partnership Academy, an elementary school located between an urban port city and a historically…

  18. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential.

    PubMed

    Soeiro, Vinicius C; Melo, Karoline R T; Alves, Monique G C F; Medeiros, Mayara J C; Grilo, Maria L P M; Almeida-Lima, Jailma; Pontes, Daniel L; Costa, Leandro S; Rocha, Hugo A O

    2016-01-01

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis. PMID:27548151

  19. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential

    PubMed Central

    Soeiro, Vinicius C.; Melo, Karoline R. T.; Alves, Monique G. C. F.; Medeiros, Mayara J. C.; Grilo, Maria L. P. M.; Almeida-Lima, Jailma; Pontes, Daniel L.; Costa, Leandro S.; Rocha, Hugo A. O.

    2016-01-01

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis. PMID:27548151

  20. [Motivation and Emotional States: Structural Systemic, Neurochemical, Molecular and Cellular Mechanisms].

    PubMed

    Bazyan, A S

    2016-01-01

    The structural, systemic, neurochemical, molecular and cellular mechanisms of organization and coding motivation and emotional states are describe. The GABA and glutamatergic synaptic systems of basal ganglia form a neural network and participate in the implementation of voluntary behavior. Neuropeptides, neurohormones and paracrine neuromodulators involved in the organization of motivation and emotional states, integrated with synaptic systems, controlled by neural networks and organizing goal-directed behavior. Structural centers for united and integrated of information in voluntary and goal-directed behavior are globus pallidus. Substantia nigra pars reticulata switches the information from corticobasal networks to thalamocortical networks, induces global dopaminergic (DA) signal and organize interaction of mesolimbic and nigostriatnoy DA systems controlled by prefrontal and motor cortex. Together with the motor cortex, substantia nigra displays information in the brainstem and spinal cord to implementation of behavior. Motivation states are formed in the interaction of neurohormonal and neuropeptide systems by monoaminergic systems of brain. Emotional states are formed by monoaminergic systems of the mid-brain, where the leading role belongs to the mesolimbic DA system. The emotional and motivation state of the encoded specific epigenetic molecular and chemical pattern of neuron. PMID:27149821

  1. Molecular Detection of Antimicrobial Resistance

    PubMed Central

    Fluit, Ad C.; Visser, Maarten R.; Schmitz, Franz-Josef

    2001-01-01

    The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art. PMID:11585788

  2. Hydrogen storage in molecular compounds.

    PubMed

    Mao, Wendy L; Mao, Ho-Kwang

    2004-01-20

    At low temperature (T) and high pressure (P), gas molecules can be held in ice cages to form crystalline molecular compounds that may have application for energy storage. We synthesized a hydrogen clathrate hydrate, H(2)(H(2)O)(2), that holds 50 g/liter hydrogen by volume or 5.3 wt %. The clathrate, synthesized at 200-300 MPa and 240-249 K, can be preserved to ambient P at 77 K. The stored hydrogen is released when the clathrate is warmed to 140 K at ambient P. Low T also stabilizes other molecular compounds containing large amounts of molecular hydrogen, although not to ambient P, e.g., the stability field for H(2)(H(2)O) filled ice (11.2 wt % molecular hydrogen) is extended from 2,300 MPa at 300 K to 600 MPa at 190 K, and that for (H(2))(4)CH(4) (33.4 wt % molecular hydrogen) is extended from 5,000 MPa at 300 K to 200 MPa at 77 K. These unique characteristics show the potential of developing low-T molecular crystalline compounds as a new means for hydrogen storage. PMID:14711993

  3. Electron transport through molecular junctions

    NASA Astrophysics Data System (ADS)

    Zimbovskaya, Natalya A.; Pederson, Mark R.

    2011-12-01

    At present, metal-molecular tunnel junctions are recognized as important active elements in molecular electronics. This gives a strong motivation to explore physical mechanisms controlling electron transport through molecules. In the last two decades, an unceasing progress in both experimental and theoretical studies of molecular conductance has been demonstrated. In the present work we give an overview of theoretical methods used to analyze the transport properties of metal-molecular junctions as well as some relevant experiments and applications. After a brief general description of the electron transport through molecules we introduce a Hamiltonian which can be used to analyze electron-electron, electron-phonon and spin-orbit interactions. Then we turn to description of the commonly used transport theory formalisms including the nonequilibrium Green’s functions based approach and the approach based on the “master” equations. We discuss the most important effects which could be manifested through molecules in electron transport phenomena such as Coulomb, spin and Frank-Condon blockades, Kondo peak in the molecular conductance, negative differential resistance and some others. Bearing in mind that first principles electronic structure calculations are recognized as the indispensable basis of the theory of electron transport through molecules, we briefly discuss the main equations and some relevant applications of the density functional theory which presently is often used to analyze important characteristics of molecules and molecular clusters. Finally, we discuss some kinds of nanoelectronic devices built using molecules and similar systems such as carbon nanotubes, various nanowires and quantum dots.

  4. Molecular Simulations in Astrobiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.; Schweighofer, Karl; Chipot, Christophe; New, Michael H.; Vincenzi, Donald L. (Technical Monitor)

    2001-01-01

    One of the main goals of astrobiology is to understand the origin of cellular life. In the absence of any record of the earliest ancestors of contemporary cells, protocells, the most direct way to test our understanding of their characteristics is to construct laboratory models of protocells. Such efforts, currently underway in the NASA Astrobiology Program, are accompanied by computational studies aimed at explaining self-organization of simple molecules into ordered structures and developing designs of molecules that are capable of performing protocellular functions. Many of these functions, such as importing nutrients, capturing and storing energy, and responding to changes in the environment, are carried out by proteins bound to membranes. We use computer simulations to address the following, questions about these proteins: (1) How do small proteins (peptides) organize themselves into ordered structures at water-membrane interfaces and insert into membranes? (2) How do peptides aggregate to form membrane-spannin(y structures (e.g., channels)? (3) By what mechanisms do such aggregates perform their functions? The simulations are performed using the molecular dynamics (MD) method. In this method, Newton's equations of motion for each atom in the system are solved iteratively. At each time step, the forces exerted on each atom by the remaining atoms are evaluated by dividing them into two parts. Short-range forces are calculated directly in real space while long-range forces are evaluated in reciprocal space, usually using a particle-mesh algorithm which is of order O(NlnN). Currently, a time step of 2 femtoseconds is typically used, thereby making studies of problems occurring on multi-nanosecond time scales (10(exp 6) - 10(exp 8) time steps) accessible. To address a broader range of problems, simulations need to be extended by three orders of magnitude. Such an extension requires both algorithmic improvements and codes scalable to a large number of parallel

  5. A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers.

    PubMed

    Chen, Shengli; Wang, Fenfen; Peng, Yongjin; Chen, Tiehong; Wu, Qiang; Sun, Pingchuan

    2015-09-01

    A triol-functional crosslinker combining the thermoreversible properties of Diels-Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross-linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro-DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid-state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot-press molding, injection molding, and solution casting. It is notable that all the recycled cross-linked polymers display nearly invariable elongation/stress at break compared to the as-synthesized samples. Further end-group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross-linked polymers. PMID:26248230

  6. The dopaminergic basis of human behaviors: a review of molecular imaging studies

    PubMed Central

    Egerton, Alice; Mehta, Mitul A; Montgomery, Andrew J; Lappin, Julia M; Howes, Oliver D; Reeves, Suzanne J; Cunningham, Vincent J; Grasby, Paul M

    2013-01-01

    This systematic review describes human molecular imaging studies which have investigated alterations in extracellular DA levels during performance of behavioral tasks. Whilst heterogeneity in experimental methods limits meta-analysis, we describe the advantages and limitations of different methodological approaches. Interpretation of experimental results may be limited by regional cerebral blood flow (rCBF) changes, head movement and choice of control conditions. We revisit our original study of striatal DA release during video-game playing (Koepp et al., 1998) to illustrate the potentially confounding influences of head movement and alterations in rCBF. Changes in [11C]raclopride binding may be detected in extrastriatal as well as striatal brain regions – however we review evidence which suggests that extrastriatal changes may not be clearly interpreted in terms of DA release. Whilst several investigations have detected increases in striatal extracellular DA concentrations during task components such as motor learning and execution, reward-related processes, stress and cognitive performance, the presence of potentially biasing factors should be carefully considered (and, where possible, accounted for) when designing and interpreting future studies. PMID:19481108

  7. Expression of two membrane fusion proteins, synaptosome-associated protein of 25 kDa and vesicle-associated membrane protein, in choroid plexus epithelium.

    PubMed

    Chung, I; Burkart, A; Szmydynger-Chodobska, J; Dodd, K A; Trimble, W S; Miller, K V; Shim, M; Chodobski, A

    2003-01-01

    In addition to being the major site of cerebrospinal fluid formation, the choroid plexus epithelium emerges as an important source of polypeptides in the brain. Physiologically regulated release of some polypeptides synthesized by the choroid plexus has been shown. The molecular mechanisms underlying this polypeptide secretion have not been characterized, however. In the present study, synaptosome-associated protein of 25 kDa and vesicle-associated membrane protein, two membrane fusion proteins playing a critical role in exocytosis in neurons and endocrine cells, were found to be expressed in the choroid plexus epithelium. It was also shown that in choroidal epithelium, synaptosome-associated protein of 25 kDa and vesicle-associated membrane protein stably interact. Two members of the vesicle-associated membrane protein family, vesicle-associated membrane protein-1 and vesicle-associated membrane protein-2, were expressed in the rat choroid plexus at the messenger RNA and protein level. However, their newly discovered isoforms, vesicle-associated membrane protein-1b and vesicle-associated membrane protein-2b, produced by alternative RNA splicing, were not detected in choroidal tissue. Immunohistochemistry demonstrated that vesicle-associated membrane protein is confined to the cytoplasm of choroidal epithelium, whereas synaptosome-associated protein of 25 kDa is associated with plasma membranes, albeit with a varied cellular distribution among species studied. Specifically, in the rat choroid plexus, synaptosome-associated protein of 25 kDa was localized to the basolateral membrane domain of choroidal epithelium and was expressed in small groups of cells. In comparison, in ovine and human choroidal tissues, apical staining for synaptosome-associated protein of 25 kDa was found in the majority of epithelial cells. These species-related differences in cellular synaptosome-associated protein of 25 kDa distribution suggested that the synaptosome-associated protein of

  8. Da Costa's syndrome or neurocirculatory asthenia.

    PubMed Central

    Paul, O

    1987-01-01

    The syndrome variously called Da Costa's syndrome, effort syndrome, neurocirculatory asthenia, etc has been studied for more than 100 years by many distinguished physicians. Originally identified in men in wartime, it has been widely recognised as a common chronic condition in both sexes in civilian life. Although the symptoms may seem to appear after infections and various physical and psychological stresses, neurocirculatory asthenia is most often encountered as a familial disorder that is unrelated to these factors, although they may aggravate an existing tendency. Respiratory complaints (including breathlessness, with and without effort, and smothering sensations) are almost universal, and palpitation, chest discomfort, dizziness and faintness, and fatigue are common. The physical examination is normal. The aetiology is obscure but patients usually have a normal life span. Reassurance and measures to improve physical fitness are helpful. PMID:3314950

  9. 75 FR 52292 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3... Federal Aviation Administration 14 CFR Part 39 RIN 2120-AA64 Airworthiness Directives; Diamond Aircraft... new airworthiness directive (AD) for all Diamond Aircraft Industries GmbH Models DA 40 and DA...

  10. 75 FR 75868 - Airworthiness Directives; Diamond Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... Register on August 25, 2010 (75 FR 52292). That NPRM proposed to require a retrofit of the rear passenger... 12866, (2) Is not a ``significant rule'' under DOT Regulatory Policies and Procedures (44 FR 11034... Aircraft Industries GmbH Models DA 40 and DA 40F Airplanes AGENCY: Federal Aviation Administration,...

  11. Design and Development of Molecular Imaging Probes

    PubMed Central

    Chen, Kai; Chen, Xiaoyuan

    2013-01-01

    Molecular imaging, the visualization, characterization and measurement of biological processes at the cellular, subcellular level, or even molecular level in living subjects, has rapidly gained importance in the dawning era of personalized medicine. Molecular imaging takes advantage of the traditional diagnostic imaging techniques and introduces molecular imaging probes to determine the expression of indicative molecular markers at different stages of diseases and disorders. As a key component of molecular imaging, molecular imaging probe must be able to specifically reach the target of interest in vivo while retaining long enough to be detected. A desirable molecular imaging probe with clinical translation potential is expected to have unique characteristics. Therefore, design and development of molecular imaging probe is frequently a challenging endeavor for medicinal chemists. This review summarizes the general principles of molecular imaging probe design and some fundamental strategies of molecular imaging probe development with a number of illustrative examples. PMID:20388106

  12. Schistosoma mansoni: anomalous immunogenic properties of a 27 kDa larval serine protease associated with protective immunity.

    PubMed

    Darani, H Y; Curtis, R H; McNeice, C; Price, H P; Sayers, J R; Doenhoff, M J

    1997-09-01

    A cationic Schistosoma mansoni cercarial antigen was shown to be a serine protease as it was capable of hydrolysing N-acetyl-DL-phenylalanine beta-naphthyl ester (NAPBNE) after precipitation by immunoelectrophoresis, and this reaction was modulated by the serine protease inhibitors phenylmethanesulfonyl fluoride (PMSF) and diisopropylfluorophosphate (DEP). The antigen in the immunoprecipitin arcs could also be radio-isotope labelled with tritiated DFP. The peptidolytic enzyme identified in immunoelectrophoresis with polyspecific sera and radio-isotope labelled with tritiated DFP had a relative molecular size of approximately 27 kDa in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and evidence obtained after partial purification, SDS-PAGE and immunoblotting supported this size estimate for the enzyme. A rabbit antiserum raised against the peptidolytic antigen reacted against a doublet of antigens at 27/28 kDa in immunoelectrophoresis arcs and against an antigen of 60 kDa in Western immunoblots of crude cercarial homogenate. However, the latter serum precipitated the cationic antigen in immunoelectrophoresed cercarial homogenates only after pre-incubation of the homogenates with PMSF. Fractions containing the partially purified protease also degraded radio-isotope labelled human IgG. The reactivity of a range of polyspecific and monospecific rabbit antisera in Western blots with larval extracts indicated that antibody responses against the 27/28 kDa doublet may be modulated. When immunized with material which contained the 27 kDa enzyme as a major constituent, and which was secreted by S. mansoni cercariae during transformation, only 5 of 16 mice produced antibody to this antigen that was detectable in Western blots. The 5 antibody 'responder' mice were significantly (P < 0.001) protected against challenge with a percutaneous infection of S. mansoni cercariae compared with a group of a mice also immunized with CTF, but which had not produced

  13. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.

    PubMed

    Wei, Jia; Tong, Liang

    2015-10-29

    Acetyl-CoA carboxylase (ACC) has crucial roles in fatty acid metabolism and is an attractive target for drug discovery against diabetes, cancer and other diseases. Saccharomyces cerevisiae ACC (ScACC) is crucial for the production of very-long-chain fatty acids and the maintenance of the nuclear envelope. ACC contains biotin carboxylase (BC) and carboxyltransferase (CT) activities, and its biotin is linked covalently to the biotin carboxyl carrier protein (BCCP). Most eukaryotic ACCs are 250-kilodalton (kDa), multi-domain enzymes and function as homodimers and higher oligomers. They contain a unique, 80-kDa central region that shares no homology with other proteins. Although the structures of the BC, CT and BCCP domains and other biotin-dependent carboxylase holoenzymes are known, there is currently no structural information on the ACC holoenzyme. Here we report the crystal structure of the full-length, 500-kDa holoenzyme dimer of ScACC. The structure is remarkably different from that of the other biotin-dependent carboxylases. The central region contains five domains and is important for positioning the BC and CT domains for catalysis. The structure unexpectedly reveals a dimer of the BC domain and extensive conformational differences compared to the structure of the BC domain alone, which is a monomer. These structural changes reveal why the BC domain alone is catalytically inactive and define the molecular mechanism for the inhibition of eukaryotic ACC by the natural product soraphen A and by phosphorylation of a Ser residue just before the BC domain core in mammalian ACC. The BC and CT active sites are separated by 80 Å, and the entire BCCP domain must translocate during catalysis. PMID:26458104

  14. Bioinformatics evaluation of the possibility of heat shock proteins as autoantigens in multiple sclerosis based on molecular mimicry hypothesis.

    PubMed

    Ansari Qeshmi, Safa; Dabbagh, Fatemeh; Borhani Haghighi, Afshin; Ghasemi, Younes

    2016-06-15

    Molecular mimicry is the explanatory link between the heat shock proteins (HSPs) of infectious agents and triggering multiple sclerosis. Considering that there are many similarities between self- and bacterial-HSPs, the goal was to investigate a panel of 60- and 70kDa HSPs from a variety of bacteria in order to predict the role of each microorganism in triggering or progression of the disease under the molecular mimicry hypothesis. By clarifying the peptides meeting criteria for cross-reactivity and elucidating the role of each microorganism in MS pathogenesis, it would be easier to suggest more effective treatment and preventive strategies for this disease. PMID:27235356

  15. Mass Spectrometry Profiles Superoxide-Induced Intra-molecular Disulfide in the FMN-binding Subunit of Mitochondrial Complex I

    PubMed Central

    Zhang, Liwen; Xu, Hua; Chen, Chwen-Lih; Green-Church, Kari B.; Freitas, Michael A.; Chen, Yeong-Renn

    2008-01-01

    Protein thiols with regulatory functions play a critical role in maintaining the homeostasis of the redox state in mitochondria. One major host of regulatory cysteines in mitochondria is complex I, with the thiols primarily located on its 51 kDa FMN-binding subunit. In response to oxidative stress, these thiols are expected to form intra-molecular disulfide bridges as one of their oxidative post-translational modifications. Here, to test this hypothesis and gain insights into the molecular pattern of disulfide in complex I, the isolated bovine complex I was prepared. Superoxide (O2•−) is generated by complex I under the conditions of enzyme turnover. O2•−-induced intra-molecular disulfide formation at the 51 kDa subunit was determined by tandem mass spectrometry and database searching, with the latter accomplished by adaptation of the in-house developed database search engine, MassMatrix [Xu H., et. al J. Proteome Res. (2008) 7, 138–44]. LC/MS/MS analysis of tryptic/chymotryptic digests of the 51 kDa subunit from alkylated complex I revealed that four specific cysteines (C125, C142, C187, and C206) of the 51 kDa subunit were involved in the formation of mixed intra-molecular disulfide linkages. In all, three cysteine pairs were observed: C125/C142, C187/C206, and C142/C206. The formation of disulfide bond was subsequently inhibited by superoxide dismutase, indicating the involvement of O2•−. These results elucidated by mass spectrometry indicates that the residues of C125, C142, C187, and C206 are the specific regulatory cysteines of complex I, and they participate in the oxidative modification with disulfide formation under the physiological or pathophysiological conditions of oxidative stress. PMID:18789718

  16. Interactions of the 67 kDa laminin receptor and its precursor with laminin

    PubMed Central

    Fatehullah, Aliya; Doherty, Caroline; Pivato, Géraldine; Allen, George; Devine, Lynda; Nelson, John; Timson, David J.

    2009-01-01

    The 67LR (67 kDa laminin receptor) enables cells to interact with components of the extracellular matrix. The molecule is derived from the 37LRP (37 kDa laminin receptor precursor); however, the precise molecular mechanism of this conversion is unknown. Recombinant 37LRP, expressed in and purified from Escherichia coli, bound to human laminin in a SPR (surface plasmon resonance) experiment. 67LR isolated from human breast-cancer-derived cells in culture was also shown to bind to laminin by SPR. However, the kinetics of association are qualitatively different. 37LRP, but not 67LR, binds to heparan sulfate. The binding of 37LRP to heparan sulfate did not affect the interaction of 37LRP with laminin. In contrast, heparan sulfate reduces the extent of binding of laminin to 67LR. Taken together, these results show that 37LRP has some of the biological activities of 67LR, even prior to the conversion event. However, the conversion affects the sites of interaction with both laminin and heparan sulfate. PMID:19691449

  17. Effects of molecular liposomal hybrid compositions with oxidized dextrans and isonicotinic acid hydrazide on production of granulocytic macrophage colony-stimulating factor by macrophages.

    PubMed

    Shkurupy, V A; Arkhipov, S A; Troitsky, A V; Luzgina, N G; Zaikovskaja, M V; Ufimceva, E G; Iljine, D A; Akhramenko, E S; Gulyaeva, E P; Bistrova, T N

    2009-10-01

    The effects of molecular liposomal hybrid compositions consisting of liposomes (200-450 nm) containing oxidized dextrans (dextranals; 35-60 kDa) conjugated with isonicotinic acid hydrazide (dextrazides), their components, and native dextrans on the production of granulocytic macrophage CSF by peritoneal macrophages were studied in vitro. Dextranals proved to be more potent inductors of granulocytic macrophage CSF than native dextrans. Conjugation of nicotinic acid hydrazide with dextranals did not modify their capacity to stimulate the production of granulocytic macrophage CSF. Liposomes in the molecular liposomal hybrid compositions did not attenuate the dextrazide capacity to stimulate the production of granulocytic macrophage CSF. Molecular liposomal compositions containing 60 kDa dextrazide exhibited the most potent stimulatory effect on macrophage production of granulocytic macrophage CSF. PMID:20396775

  18. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria.

    PubMed

    McCormick, Sean P; Moore, Michael J; Lindahl, Paul A

    2015-06-01

    Liquid chromatography was used with an online inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20-40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria, called Mn1100, had a mass of ∼1100 Da and a concentration of ∼2 μM. Mammalian mitochondria contained a second Mn species with a mass of ∼2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ∼580 Da; the concentration of Fe580 in mitochondria was ∼100 μM. When mitochondria were isolated from fermenting cells in postexponential phase, the mass of the dominant LMM Fe complex was ∼1100 Da. Upon incubation, the intensity of Fe1100 declined and that of Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and two other Fe species (Fe2000 and Fe1100) at concentrations of ∼50 μM each. The dominant LMM Zn species in mitochondria had a mass of ∼1200 Da and a concentration of ∼110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ∼5000 Da and a concentration in yeast mitochondria of ∼16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at a concentration of ∼1 μM. Increasing Mn, Fe, Cu, and Zn concentrations 10-fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free glutathione or glutathione

  19. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria

    PubMed Central

    McCormick, Sean P.; Moore, Michael J.; Lindahl, Paul A.

    2015-01-01

    Liquid chromatography was used with an on-line inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20 – 40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria had a mass of ca. 1100 Da and a concentration of ~ 2 μM. Mammalian mitochondria contained a second Mn species with a mass of ca. 2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ca. 580 Da; the concentration of Fe580 in mitochondria was ca. 100 μM. When mitochondria were isolated from fermenting cells in post-exponential phase, the mass of the dominant LMM Fe complex was ca. 1100 Da. Upon incubation, the intensity of Fe1100 declined and Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and 2 other Fe species (Fe2000 and Fe1100) at concentrations of ca. 50 μM each. The dominant LMM Zn species in mitochondria had a mass of ca. 1200 Da and a concentration of ca. 110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ca. 5000 Da and a concentration in yeast mitochondria of ca. 16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at ca. 1 μM concentration. Increasing Mn, Fe, Cu, and Zn concentrations 10 fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free GSH or GSSG. PMID:26018429

  20. EDITORIAL: Molecular switches at surfaces Molecular switches at surfaces

    NASA Astrophysics Data System (ADS)

    Weinelt, Martin; von Oppen, Felix

    2012-10-01

    In nature, molecules exploit interaction with their environment to realize complex functionalities on the nanometer length scale. Physical, chemical and/or biological specificity is frequently achieved by the switching of molecules between microscopically different states. Paradigmatic examples are the energy production in proton pumps of bacteria or the signal conversion in human vision, which rely on switching molecules between different configurations or conformations by external stimuli. The remarkable reproducibility and unparalleled fatigue resistance of these natural processes makes it highly desirable to emulate nature and develop artificial systems with molecular functionalities. A promising avenue towards this goal is to anchor the molecular switches at surfaces, offering new pathways to control their functional properties, to apply electrical contacts, or to integrate switches into larger systems. Anchoring at surfaces allows one to access the full range from individual molecular switches to self-assembled monolayers of well-defined geometry and to customize the coupling between molecules and substrate or between adsorbed molecules. Progress in this field requires both synthesis and preparation of appropriate molecular systems and control over suitable external stimuli, such as light, heat, or electrical currents. To optimize switching and generate function, it is essential to unravel the geometric structure, the electronic properties and the dynamic interactions of the molecular switches on surfaces. This special section, Molecular Switches at Surfaces, collects 17 contributions describing different aspects of this research field. They analyze elementary processes, both in single molecules and in ensembles of molecules, which involve molecular switching and concomitant changes of optical, electronic, or magnetic properties. Two topical reviews summarize the current status, including both challenges and achievements in the field of molecular switches on