Science.gov

Sample records for molecular darwinian evolution

  1. Darwinian Evolution and Fractals

    NASA Astrophysics Data System (ADS)

    Carr, Paul H.

    2009-05-01

    Did nature's beauty emerge by chance or was it intelligently designed? Richard Dawkins asserts that evolution is blind aimless chance. Michael Behe believes, on the contrary, that the first cell was intelligently designed. The scientific evidence is that nature's creativity arises from the interplay between chance AND design (laws). Darwin's ``Origin of the Species,'' published 150 years ago in 1859, characterized evolution as the interplay between variations (symbolized by dice) and the natural selection law (design). This is evident in recent discoveries in DNA, Madelbrot's Fractal Geometry of Nature, and the success of the genetic design algorithm. Algorithms for generating fractals have the same interplay between randomness and law as evolution. Fractal statistics, which are not completely random, characterize such phenomena such as fluctuations in the stock market, the Nile River, rainfall, and tree rings. As chaos theorist Joseph Ford put it: God plays dice, but the dice are loaded. Thus Darwin, in discovering the evolutionary interplay between variations and natural selection, was throwing God's dice!

  2. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution

    PubMed Central

    Skinner, Michael K.

    2015-01-01

    Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution. PMID:25917417

  3. How Darwinian is cultural evolution?

    PubMed Central

    Claidière, Nicolas; Scott-Phillips, Thomas C.; Sperber, Dan

    2014-01-01

    Darwin-inspired population thinking suggests approaching culture as a population of items of different types, whose relative frequencies may change over time. Three nested subtypes of populational models can be distinguished: evolutionary, selectional and replicative. Substantial progress has been made in the study of cultural evolution by modelling it within the selectional frame. This progress has involved idealizing away from phenomena that may be critical to an adequate understanding of culture and cultural evolution, particularly the constructive aspect of the mechanisms of cultural transmission. Taking these aspects into account, we describe cultural evolution in terms of cultural attraction, which is populational and evolutionary, but only selectional under certain circumstances. As such, in order to model cultural evolution, we must not simply adjust existing replicative or selectional models but we should rather generalize them, so that, just as replicator-based selection is one form that Darwinian selection can take, selection itself is one of several different forms that attraction can take. We present an elementary formalization of the idea of cultural attraction. PMID:24686939

  4. Do Galaxies Follow Darwinian Evolution?

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  5. Aptamer Selection by Darwinian Evolution

    NASA Astrophysics Data System (ADS)

    Chauveau, F.; Pestourie, C.; Ducongé, F.; Tavitian, B.

    sequence encodes genetic information, while their wealth of structural potential remains virtually unexploited. In contrast, natural evolution has selected many RNA for their catalytic activities or for their ability to interact with proteins or other classes of molecules.

  6. Teaching Darwinian Evolution: Learning from Religious Education

    NASA Astrophysics Data System (ADS)

    Stolberg, Tonie L.

    2010-06-01

    This article examines what science education might be able to learn from phenomenological religious education’s attempts to teach classes where students hold a plurality of religious beliefs. Recent statements as to how best to accomplish the central pedagogical concept of ‘learning from religion’ as a vehicle for human transformation are explored, and then used to appraise the historical research into how Charles Darwin’s responses to religious ideas influenced and were influenced by his scientific work. The issues identified as crucial for science educators to be aware of when teaching students Darwinian evolution are then outlined and, finally, suggestions are made to enable individual students to examine how their personal religious beliefs might interact with their growing understanding of Darwin’s evolutionary approach.

  7. Is evolution Darwinian or/and Lamarckian?

    PubMed Central

    2009-01-01

    -Lamarckian phenomenon because the induced genomic changes, although random, are triggered by environmental factors and are beneficial to the organism. Conclusion Both Darwinian and Lamarckian modalities of evolution appear to be important, and reflect different aspects of the interaction between populations and the environment. Reviewers this article was reviewed by Juergen Brosius, Valerian Dolja, and Martijn Huynen. For complete reports, see the Reviewers' reports section. PMID:19906303

  8. Darwinian evolution does not rule out the gaia hypothesis.

    PubMed

    Sugimoto, Takeshi

    2002-10-21

    This study explores so-called Darwinian Daisyworlds mathematically rigorously in detail. The original Daisyworld was introduced by Watson & Lovelock (1983) to demonstrate how two species of daisies regulate the global temperature of their planet through competition among these species against the rising solar luminosity, i.e. the Gaia hypothesis. Its variants are Darwinian Daisyworlds in which daisies can adapt themselves to the local temperature. Robertson & Robinson (1998) insist their Darwinian daisies lose the ability for temperature regulation on the basis of their spreadsheet simulations. Lenton & Lovelock (2000) point out that the constraints on adaptation recovers Darwinian daisies' ability of temperature regulation on the basis of their Euler-code simulations. The present study shows there exist the exact and closed-form solutions to these two Daisyworlds. The results contradict the former studies: Robertson and Robinson's daisies do regulate the global temperature even longer than non-adaptive daisies; Lenton and Lovelock's daisies are less adaptive than Robertson and Robinson's daisies because of the constraints on adaptation; the introduction of weak adaptability drives species into a dead end of evolution. Thus, the present results confirm that the Gaia hypothesis and Darwinian evolution can coexist. PMID:12384048

  9. Cell biology, molecular embryology, Lamarckian and Darwinian selection as evolvability.

    PubMed

    Hoenigsberg, H

    2003-01-01

    The evolvability of vertebrate systems involves various mechanisms that eventually generate cooperative and nonlethal functional variation on which Darwinian selection can operate. It is a truism that to get vertebrate animals to develop a coherent machine they first had to inherit the right multicellular ontogeny. The ontogeny of a metazoan involves cell lineages that progressively deny their own capacity for increase and for totipotency in benefit of the collective interest of the individual. To achieve such cell altruism Darwinian dynamics rescinded its original unicellular mandate to reproduce. The distinction between heritability at the level of the cell lineage and at the level of the individual is crucial. However, its implications have seldom been explored in depth. While all out reproduction is the Darwinian measure of success among unicellular organisms, a high replication rate of cell lineages within the organism may be deleterious to the individual as a functional unit. If a harmoniously functioning unit is to evolve, mechanisms must have evolved whereby variants that increase their own replication rate by failing to accept their own somatic duties are controlled. For questions involving organelle origins, see Godelle and Reboud, 1995 and Hoekstra, 1990. In other words, modifiers of conflict that control cell lineages with conflicting genes and new mutant replication rates that deviate from their somatic duties had to evolve. Our thesis is that selection at the level of the (multicellular) individual must have opposed selection at the level of the cell lineage. The metazoan embryo is not immune to this conflict especially with the evolution of set-aside cells and other modes of self-policing modifiers (Blackstone and Ellison, 1998; Ransick et al., 1996. In fact, the conflict between the two selection processes permitted a Lamarckian soma-to-germline feedback loop. This new element in metazoan ontogeny became the evolvability of the vertebrate adaptive

  10. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  11. Reflections on Darwinian Evolution – Is there a Jewish Perspective?

    PubMed Central

    Jacob, Chaim O.

    2011-01-01

    I present a realistic view of what Darwinian evolution is in its current form and what it is not. I argue that the Torah is not a source of scientific knowledge and all attempts to reconcile its plain text with the data of science are an exercise in futility. The article argues the position that science and the Torah are incommensurable. I argue against using the Torah for attaining knowledge about the nature of the world, or using science for enhancing or denying the truth of the Torah. PMID:23908802

  12. "Synergistic selection": a Darwinian frame for the evolution of complexity.

    PubMed

    Corning, Peter A; Szathmáry, Eörs

    2015-04-21

    Non-Darwinian theories about the emergence and evolution of complexity date back at least to Lamarck, and include those of Herbert Spencer and the "emergent evolution" theorists of the later nineteenth and early twentieth centuries. In recent decades, this approach has mostly been espoused by various practitioners in biophysics and complexity theory. However, there is a Darwinian alternative - in essence, an economic theory of complexity - proposing that synergistic effects of various kinds have played an important causal role in the evolution of complexity, especially in the "major transitions". This theory is called the "synergism hypothesis". We posit that otherwise unattainable functional advantages arising from various cooperative phenomena have been favored over time in a dynamic that the late John Maynard Smith characterized and modeled as "synergistic selection". The term highlights the fact that synergistic "wholes" may become interdependent "units" of selection. We provide some historical perspective on this issue, as well as a brief explication of the underlying theory and the concept of synergistic selection, and we describe two relevant models. PMID:25681798

  13. Non-Darwinian Express Evolution and Its Phenomenological Theory

    NASA Astrophysics Data System (ADS)

    Azbel', Mark

    2001-03-01

    I quantify fitness (with the probability l(x) to survive to a given, in particular, reproductive, age x) and instantaneous environment (with the birth mortality q). I study l(x) vs q for a given x according to extensive data for humans and flies. To the specified accuracy, the dependence is reversible, independent of the previous history, rapidly (within few % of the lifespan) established. Most important, it is invariant with respect to environment and population genotypes (e.g., for different races, countries, times), i.e. to certain transformations. Mathematically such symmetry implies piecewise linear l(x) vs q, which proceeds via transitions (simultaneous for an entire population of different ages) to new phases. Similar to the Darwinian evolution, this short term adaptation is genetic (since it is independent of living conditions) and inheritable (since it proceeds for at least 10 reproductive generations). In contrast to the Darwinian evolution, it is reversible, rapid, fine-tuned to a single environmental variable, independent of previous history and of a specific DNA sequence (since it is the same for at least an entire species), and is inherited via genetically predetermined phases.

  14. Book review: Darwinian agriculture: How understanding evolution can improve agriculture by R. Ford Dennison

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural research continually seeks to increase productivity while protecting soil, water and genetic resources. The book Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture, by R. Ford Dennison, delivers a thought-provoking view of how principles of ecology and evolution ...

  15. A Heritable Recombination system for synthetic Darwinian evolution in yeast.

    PubMed

    Romanini, Dante W; Peralta-Yahya, Pamela; Mondol, Vanessa; Cornish, Virginia W

    2012-12-21

    Genetic recombination is central to the generation of molecular diversity and enhancement of evolutionary fitness in living systems. Methods such as DNA shuffling that recapitulate this diversity mechanism in vitro are powerful tools for engineering biomolecules with useful new functions by directed evolution. Synthetic biology now brings demand for analogous technologies that enable the controlled recombination of beneficial mutations in living cells. Thus, here we create a Heritable Recombination system centered around a library cassette plasmid that enables inducible mutagenesis via homologous recombination and subsequent combination of beneficial mutations through sexual reproduction in Saccharomyces cerevisiae. Using repair of nonsense codons in auxotrophic markers as a model, Heritable Recombination was optimized to give mutagenesis efficiencies of up to 6% and to allow successive repair of different markers through two cycles of sexual reproduction and recombination. Finally, Heritable Recombination was employed to change the substrate specificity of a biosynthetic enzyme, with beneficial mutations in three different active site loops crossed over three continuous rounds of mutation and selection to cover a total sequence diversity of 10(13). Heritable Recombination, while at an early stage of development, breaks the transformation barrier to library size and can be immediately applied to combinatorial crossing of beneficial mutations for cell engineering, adding important features to the growing arsenal of next generation molecular biology tools for synthetic biology. PMID:23412545

  16. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment.

    PubMed

    Ichihashi, Norikazu; Usui, Kimihito; Kazuta, Yasuaki; Sunami, Takeshi; Matsuura, Tomoaki; Yomo, Tetsuya

    2013-01-01

    The ability to evolve is a key characteristic that distinguishes living things from non-living chemical compounds. The construction of an evolvable cell-like system entirely from non-living molecules has been a major challenge. Here we construct an evolvable artificial cell model from an assembly of biochemical molecules. The artificial cell model contains artificial genomic RNA that replicates through the translation of its encoded RNA replicase. We perform a long-term (600-generation) replication experiment using this system, in which mutations are spontaneously introduced into the RNA by replication error, and highly replicable mutants dominate the population according to Darwinian principles. During evolution, the genomic RNA gradually reinforces its interaction with the translated replicase, thereby acquiring competitiveness against selfish (parasitic) RNAs. This study provides the first experimental evidence that replicating systems can be developed through Darwinian evolution in a cell-like compartment, even in the presence of parasitic replicators. PMID:24088711

  17. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution

    PubMed Central

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A.; Catenacci, Daniel V. T.; Hudson, Richard R.; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-01-01

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 “polymorphic” SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors. PMID:26561581

  18. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.

    PubMed

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-11-24

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors. PMID:26561581

  19. Comparative Structural Models of Similarities and Differences between "Vehicle" and "Target" in Order to Teach Darwinian "Evolution"

    ERIC Educational Resources Information Center

    Marcelos, Maria Fatima; Nagem, Ronaldo L.

    2010-01-01

    Our objective is to contribute to the teaching of Classical Darwinian "Evolution" by means of a study of analogies and metaphors. Throughout the history of knowledge about "Evolution" and in Science teaching, tree structures have been used an analogs to refer to "Evolution," such as by Darwin in the "Tree of Life" passage contained in "On The…

  20. Bipolar transurethral resection of the prostate: Darwinian evolution of an instrumental technique.

    PubMed

    Mamoulakis, Charalampos; de la Rosette, Jean J M C H

    2015-05-01

    Bipolar transurethral resection of the prostate (B-TURP) represents a Darwinian evolution of an instrumental technique that has been justified by reinforcing the leading position of monopolar transurethral resection of the prostate. Notwithstanding limitations, the best available evidence recommends B-TURP as an attractive alternative. It may serve as a reliable training platform for modern residents. High-quality evidence is lacking to definitely define its position in treating special subpopulations (anticoagulation dependence, comorbidities, and large adenomas). Regarding economic issues, preliminary evidence supports B-TURP, warranting further investigation. Future perspectives include attempts toward improvements of the existing technology, combining advantages with those of other new techniques, and evolution to novel, potentially safer, or more efficient techniques to address remaining challenges. PMID:25704995

  1. Non-Darwinian evolution for the source detection of atmospheric releases

    NASA Astrophysics Data System (ADS)

    Cervone, Guido; Franzese, Pasquale

    2011-08-01

    A non-Darwinian evolutionary algorithm is presented as search engine to identify the characteristics of a source of atmospheric pollutants, given a set of concentration measurements. The algorithm drives iteratively a forward dispersion model from tentative sources toward the real source. The solutions of non-Darwinian evolution processes are not generated through pseudo-random operators, unlike traditional evolutionary algorithms, but through a reasoning process based on machine learning rule generation and instantiation. The new algorithm is tested with both a synthetic case and with the Prairie Grass field experiment. To further test the capabilities of the algorithm to work in real-world scenarios, the source identification of all Prairie Grass releases was performed with a decreasing number of sensor measurements, and a relationship is found between the precision of the solution, the number of sensors available, and the levels of concentration measured by the sensors. The proposed methodology can be used for a variety of optimization problems, and is particularly suited for problems where the operations needed for evaluating new candidate solutions are computationally expensive.

  2. Adaptive Evolution of Cooperation through Darwinian Dynamics in Public Goods Games

    PubMed Central

    Deng, Kuiying; Chu, Tianguang

    2011-01-01

    The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population. PMID:22046240

  3. Identifying the Minimum-Energy Atomic Configuration on a Lattice: Lamarckian Twist on Darwinian Evolution

    SciTech Connect

    d'Avezac, M.; Zunger, A.

    2008-01-01

    We examine how the two different mechanisms proposed historically for biological evolution compare for the determination of crystal structures from random initial lattice configurations. The Darwinian theory of evolution contends that the genetic makeup inherited at birth is the one passed on during mating to new offspring, in which case evolution is a product of environmental pressure and chance. In addition to this mechanism, Lamarck surmised that individuals can also pass on traits acquired during their lifetime. Here we show that the minimum-energy configurations of a binary A{sub 1-x}B{sub x} alloy in the full 0 {le} x {le} 1 concentration range can be found much faster if the conventional Darwinian genetic progression--mating configurations and letting the lowest-energy (fittest) offspring survive--is allowed to experience Lamarckian-style fitness improvements during its lifetime. Such improvements consist of A {leftrightarrow} B transmutations of some atomic sites (not just atomic relaxations) guided by 'virtual-atom' energy gradients. This hybrid evolution is shown to provide an efficient solution to a generalized Ising Hamiltonian, illustrated here by finding the ground states of face-centered-cubic Au{sub 1-x}Pd{sub x} using a cluster-expansion functional fitted to first-principles total energies. The statistical rate of success of the search strategies and their practical applicability are rigorously documented in terms of average number of evaluations required to find the solution out of 400 independent evolutionary runs with different random seeds. We show that all exact ground states of a 12-atom supercell (2{sup 12} configurations) can be found within 330 total-energy evaluations, whereas a 36-atom supercell (2{sup 36} configurations) requires on average 39,000 evaluations. Thus, this problem cannot be currently addressed with confidence using costly energy functionals [e.g., density-functional theory (DFT) based] unless it is limited to {le} 20

  4. Evolution Born of Moisture: Analogies and Parallels Between Anaximander's Ideas on Origin of Life and Man and Later Pre-Darwinian and Darwinian Evolutionary Concepts.

    PubMed

    Kočandrle, Radim; Kleisner, Karel

    2013-01-01

    This study focuses on the origin of life as presented in the thought of Anaximander of Miletus but also points to some parallel motifs found in much later conceptions of both the pre-Darwinian German romantic science and post-Darwinian biology. According to Anaximander, life originated in the moisture associated with earth (mud). This moist environment hosted the first living creatures that later populated the dry land. In these descriptions, one can trace the earliest hints of the notion of environmental adaptation. The origin of humans was seen as connected in some way with fish: ancient humans were supposed to have developed inside fish-like animals. Anaximander took into account changes in the development of living creatures (adaptations) and speculated on the origins of humans. Similar ideas are found also in the writings of much later, eighteenth and nineteenth century authors who were close to the tradition of German romantic science. We do not argue that these later concepts are in any way directly linked with those of the pre-Socratics, but they show surprising parallels in, e.g., the hypothesis that life originated in a moist environment or the supposition that human developed from fish-like ancestors. These transformations are seen as a consequence of timeless logic rather than as evolution in historical terms. Despite the accent on the origin of living things, both Anaximander and the later Naturphilosophen lack in their notions the element most characteristic of Darwin's thought, that is, the emphasis on historicity and uniqueness of all that comes into being. PMID:22864993

  5. Thermal Solutions for Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Mast, Christof B.; Osterman, Natan; Braun, Dieter

    2012-12-01

    The key requirement to solve the origin of life puzzle are disequilibrium conditions. Early molecular evolution cannot be explained by initial high concentrations of energetic chemicals since they would just react towards their chemical equilibrium allowing no further development. We argue here that persistent disequilibria are needed to increase complexity during molecular evolution. We propose thermal gradients as the disequilibrium setting which drove Darwinian molecular evolution. On the one hand the thermal gradient gives rise to laminar thermal convection flow with highly regular temperature oscillations that allow melting and replication of DNA. On the other hand molecules move along the thermal gradient, a mechanism termed Soret effect or thermophoresis. Inside a long chamber a combination of the convection flow and thermophoresis leads to a very efficient accumulation of molecules. Short DNA is concentrated thousand-fold, whereas longer DNA is exponentially better accumulated. We demonstrated both scenarios in the same micrometer-sized setting. Forthcoming experiments will reveal how replication and accumulation of DNA in a system, driven only by a thermal gradient, could create a Darwinian process of replication and selection.

  6. Individuals and groups in evolution: Darwinian pluralism and the multilevel selection debate.

    PubMed

    Pievani, Telmo

    2014-04-01

    Outlined here is an updated review of the long-standing 'kin selection vs group selection' debate. Group selection is a highly contentious concept, scientifically and philosophically. In 2012, Dawkins' attack against Wilson's latest book about eusociality concentrated all the attention on group selection and its mutual exclusivity with respect to inclusive fitness theory. Both opponents seem to be wrong, facing the general consensus in the field, which favours a pluralistic approach. Historically, despite some misunderstandings in current literature, such a perspective is clearly rooted in Darwin's writings, which suggested a plurality of levels of selection and a general view that we propose to call 'imperfect selfishness'. Today, the mathematically updated hypothesis of group selection has little to do with earlier versions of 'group selection'. It does not imply ontologically unmanageable notions of 'groups'. We propose here population structure as the main criterion of compatibility between kin selection and group selection. The latter is now evidently a pattern among others within a more general 'multilevel selection' theory. Different explanations and patterns are not mutually exclusive. Such a Darwinian pluralism is not a piece of the past, but a path into the future. A challenge in philosophy of biology will be to figure out the logical structure of this emerging pluralistic theory of evolution in such contentious debates. PMID:24736162

  7. Mode and tempo in the evolution of socio-political organization: reconciling 'Darwinian' and 'Spencerian' evolutionary approaches in anthropology.

    PubMed

    Currie, Thomas E; Mace, Ruth

    2011-04-12

    Traditional investigations of the evolution of human social and political institutions trace their ancestry back to nineteenth century social scientists such as Herbert Spencer, and have concentrated on the increase in socio-political complexity over time. More recent studies of cultural evolution have been explicitly informed by Darwinian evolutionary theory and focus on the transmission of cultural traits between individuals. These two approaches to investigating cultural change are often seen as incompatible. However, we argue that many of the defining features and assumptions of 'Spencerian' cultural evolutionary theory represent testable hypotheses that can and should be tackled within a broader 'Darwinian' framework. In this paper we apply phylogenetic comparative techniques to data from Austronesian-speaking societies of Island South-East Asia and the Pacific to test hypotheses about the mode and tempo of human socio-political evolution. We find support for three ideas often associated with Spencerian cultural evolutionary theory: (i) political organization has evolved through a regular sequence of forms, (ii) increases in hierarchical political complexity have been more common than decreases, and (iii) political organization has co-evolved with the wider presence of hereditary social stratification. PMID:21357233

  8. Darwinian Liberal Education

    ERIC Educational Resources Information Center

    Arnhart, Larry

    2006-01-01

    Be it metaphysics, theology, or some other unifying framework, humans have long sought to determine "first principles" underlying knowledge. Larry Arnhart continues in this vein, positing a Darwinian web of genetic, cultural, and cognitive evolution to explain our social behavior in terms of human nature as governed by biology. He leaves it to us…

  9. Research program for a search of the origin of Darwinian evolution - Research program for a vesicle-based model of the origin of Darwinian evolution on prebiotic early Earth

    NASA Astrophysics Data System (ADS)

    Tessera, Marc

    2016-03-01

    The search for origin of `life' is made even more complicated by differing definitions of the subject matter, although a general consensus is that an appropriate definition should center on Darwinian evolution (Cleland and Chyba 2002). Within a physical approach which has been defined as a level-4 evolution (Tessera and Hoelzer 2013), one mechanism could be described showing that only three conditions are required to allow natural selection to apply to populations of different system lineages. This approach leads to a vesicle- based model with the necessary properties. Of course such a model has to be tested. Thus, after a brief presentation of the model an experimental program is proposed that implements the different steps able to show whether this new direction of the research in the field is valid and workable.

  10. Alfred Russel Wallace (1823-1913): the forgotten co-founder of the Neo-Darwinian theory of biological evolution.

    PubMed

    Kutschera, Ulrich; Hossfeld, Uwe

    2013-12-01

    The British naturalist Alfred Russel Wallace (1823-1913), who had to leave school aged 14 and never attended university, did extensive fieldwork, first in the Amazon River basin (1848-1852) and then in Southeast Asia (1854-1862). Based on this experience, and after reading the corresponding scientific literature, Wallace postulated that species were not created, but are modified descendants of pre-existing varieties (Sarawak Law paper, 1855). Evolution is brought about by a struggle for existence via natural selection, which results in the adaptation of those individuals in variable populations who survive and reproduce (Ternate essay, 1858). In his monograph Darwinism (1889), and in subsequent publications, Wallace extended the contents of Darwin's Origin of Species (1859) into the Neo-Darwinian theory of biological evolution, with reference to the work of August Weismann (1834-1914). Wallace also became the (co)-founder of biogeography, biodiversity research, astrobiology and evolutionary anthropology. Moreover, he envisioned what was later called the anthropocene (i.e., the age of human environmental destructiveness). However, since Wallace believed in atheistic spiritualism and mixed up scientific facts and supernatural speculations in some of his writings, he remains a controversial figure in the history of biology. PMID:23982797

  11. A Scoring Rubric for Students' Responses to Simple Evolution Questions: Darwinian Components

    ERIC Educational Resources Information Center

    Jensen, Murray; Moore, Randy; Hatch, Jay; Hsu, Leon

    2007-01-01

    The call to teach students Darwin's theory of evolution by natural selection has been made by a variety of professional organizations. In addition to these national organizations, almost every state has science education guidelines calling for the teaching of evolution. Many administrators and policymakers believe that evolution is being taught,…

  12. Darwinian Controversies: An Historiographical Recounting

    ERIC Educational Resources Information Center

    Depew, David J.

    2010-01-01

    This essay reviews key controversies in the history of the Darwinian research tradition: the Wilberforce-Huxley debate in 1860, early twentieth-century debates about the heritability of acquired characteristics and the consistency of Mendelian genetics with natural selection; the 1925 Scopes trial about teaching evolution; tensions about race,…

  13. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  14. Darwinian Daisyworld.

    PubMed

    Roberston, D; Robinson, J

    1998-11-01

    The Daisyworld model was developed to show that organisms can collectively regulate the global environment without assuming conscious or altruistic behaviour, i.e. that Gaia is feasible. We studied the effects of adaptive evolution of Daisyworld by allowing daisies to shift their optimal growth temperatures toward the prevailing temperature. This estimates Daisyworld's homeostatic ability, suggesting a trade-off between the ability of organisms to collectively regulate the environment and the abilities of evolving genotypes to adapt to it. PMID:9802955

  15. [Haeckel: a German Darwinian?].

    PubMed

    Schmitt, Stéphane

    2009-01-01

    German biologist Ernst Haeckel (1834-1919) is often considered the most renowned Darwinian in his country since, as early as 1862, he declared that he accepted the conclusions Darwin had reached three years before in On the Origin of Species, and afterwards, he continuously proclaimed himself a supporter of the English naturalist and championed the evolutionary theory. Nevertheless, if we examine carefully his books, in particular his General Morphology (1866), we can see that he carries on a tradition very far from Darwin's thoughts. In spite of his acceptance of the idea of natural selection, that he establishes as an argument for materialism, he adopts, indeed, a conception of evolution that is, in some respects, rather close to Lamarck's views. He is, thus, a good example of the ambiguities of the reception of Darwinism in Germany in the second part of the 19th century. PMID:19281944

  16. Darwinian medicine and psoriasis.

    PubMed

    Romaní de Gabriel, J

    2015-04-01

    Darwinian medicine, or evolutionary medicine, regards some pathological conditions as attempts by the organism to solve a problem or develop defense mechanisms. At certain stages of human evolution, some diseases may have conferred a selective advantage. Psoriasis is a high-penetrance multigenic disorder with prevalence among whites of up to 3%. Psoriatic lesions have been linked with enhanced wound-healing qualities and greater capacity to fight infection. Leprosy, tuberculosis, and infections caused by viruses similar to human immunodeficiency virus have been postulated as environmental stressors that may have selected for psoriasis-promoting genes in some human populations. The tendency of patients with severe psoriasis to develop metabolic syndrome may reflect the body's attempt to react to environmental stresses and warning signs by triggering insulin resistance and fat storage. PMID:25129580

  17. Darwinian selection leads to Gaia.

    PubMed

    Staley, Mark

    2002-09-01

    The Gaia hypothesis, in its strongest form, states that the Earth's atmosphere, oceans, and biota form a tightly coupled system that maintains environmental conditions close to optimal for life. According to Gaia theory, optimal conditions are intrinsic, immutable properties of living organisms. It is assumed that the role of Darwinian selection is to favor organisms that act to stabilize environmental conditions at these optimal levels. In this paper, an alternative form of Gaia theory based on more traditional Darwinian principles is proposed. In the new approach, environmental regulation is a consequence of population dynamics, not Darwinian selection. The role of selection is to favor organisms that are best adapted to prevailing environmental conditions. However, the environment is not a static backdrop for evolution, but is heavily influenced by the presence of living organisms. The resulting co-evolving dynamical process eventually leads to the convergence of equilibrium and optimal conditions. A simple Daisyworld model is used to illustrate this convergence phenomenon. Sensitivity analysis of the Daisyworld model suggests that in stable ecosystems, the convergence of equilibrium and optimal conditions is inevitable, provided there are no externally driven shocks to the system. The end result may appear to be the product of a cooperative venture, but is in fact the outcome of Darwinian selection acting upon "selfish" organisms. PMID:12297068

  18. Effects of Darwinian Selection and Mutability on Rate of Broadly Neutralizing Antibody Evolution during HIV-1 Infection.

    PubMed

    Sheng, Zizhang; Schramm, Chaim A; Connors, Mark; Morris, Lynn; Mascola, John R; Kwong, Peter D; Shapiro, Lawrence

    2016-05-01

    Accumulation of somatic mutations in antibody variable regions is critical for antibody affinity maturation, with HIV-1 broadly neutralizing antibodies (bnAbs) generally requiring years to develop. We recently found that the rate at which mutations accumulate decreases over time, but the mechanism governing this slowing is unclear. In this study, we investigated whether natural selection and/or mutability of the antibody variable region contributed significantly to observed decrease in rate. We used longitudinally sampled sequences of immunoglobulin transcripts of single lineages from each of 3 donors, as determined by next generation sequencing. We estimated the evolutionary rates of the complementarity determining regions (CDRs), which are most significant for functional selection, and found they evolved about 1.5- to 2- fold faster than the framework regions. We also analyzed the presence of AID hotspots and coldspots at different points in lineage development and observed an average decrease in mutability of less than 10 percent over time. Altogether, the correlation between Darwinian selection strength and evolutionary rate trended toward significance, especially for CDRs, but cannot fully explain the observed changes in evolutionary rate. The mutability modulated by AID hotspots and coldspots changes correlated only weakly with evolutionary rates. The combined effects of Darwinian selection and mutability contribute substantially to, but do not fully explain, evolutionary rate change for HIV-1-targeting bnAb lineages. PMID:27191167

  19. Effects of Darwinian Selection and Mutability on Rate of Broadly Neutralizing Antibody Evolution during HIV-1 Infection

    PubMed Central

    Sheng, Zizhang; Schramm, Chaim A.; Connors, Mark; Morris, Lynn; Mascola, John R.; Kwong, Peter D.; Shapiro, Lawrence

    2016-01-01

    Accumulation of somatic mutations in antibody variable regions is critical for antibody affinity maturation, with HIV-1 broadly neutralizing antibodies (bnAbs) generally requiring years to develop. We recently found that the rate at which mutations accumulate decreases over time, but the mechanism governing this slowing is unclear. In this study, we investigated whether natural selection and/or mutability of the antibody variable region contributed significantly to observed decrease in rate. We used longitudinally sampled sequences of immunoglobulin transcripts of single lineages from each of 3 donors, as determined by next generation sequencing. We estimated the evolutionary rates of the complementarity determining regions (CDRs), which are most significant for functional selection, and found they evolved about 1.5- to 2- fold faster than the framework regions. We also analyzed the presence of AID hotspots and coldspots at different points in lineage development and observed an average decrease in mutability of less than 10 percent over time. Altogether, the correlation between Darwinian selection strength and evolutionary rate trended toward significance, especially for CDRs, but cannot fully explain the observed changes in evolutionary rate. The mutability modulated by AID hotspots and coldspots changes correlated only weakly with evolutionary rates. The combined effects of Darwinian selection and mutability contribute substantially to, but do not fully explain, evolutionary rate change for HIV-1-targeting bnAb lineages. PMID:27191167

  20. Workshop on Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Cummings, Michael P.

    2004-01-01

    Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.

  1. Selectionism and Neutralism in Molecular Evolution

    PubMed Central

    Nei, Masatoshi

    2006-01-01

    Charles Darwin proposed that evolution occurs primarily by natural selection, but this view has been controversial from the beginning. Two of the major opposing views have been mutationism and neutralism. Early molecular studies suggested that most amino acid substitutions in proteins are neutral or nearly neutral and the functional change of proteins occurs by a few key amino acid substitutions. This suggestion generated an intense controversy over selectionism and neutralism. This controversy is partially caused by Kimura's definition of neutrality, which was too strict (|2Ns| ≤ 1). If we define neutral mutations as the mutations that do not change the function of gene products appreciably, many controversies disappear because slightly deleterious and slightly advantageous mutations are engulfed by neutral mutations. The ratio of the rate of nonsynonymous nucleotide substitution to that of synonymous substitution is a useful quantity to study positive Darwinian selection operating at highly variable genetic loci, but it does not necessarily detect adaptively important codons. Previously, multigene families were thought to evolve following the model of concerted evolution, but new evidence indicates that most of them evolve by a birth-and-death process of duplicate genes. It is now clear that most phenotypic characters or genetic systems such as the adaptive immune system in vertebrates are controlled by the interaction of a number of multigene families, which are often evolutionarily related and are subject to birth-and-death evolution. Therefore, it is important to study the mechanisms of gene family interaction for understanding phenotypic evolution. Because gene duplication occurs more or less at random, phenotypic evolution contains some fortuitous elements, though the environmental factors also play an important role. The randomness of phenotypic evolution is qualitatively different from allele frequency changes by random genetic drift. However, there is

  2. The instinctual nation-state: non-Darwinian theories, state science and ultra-nationalism in Oka Asajirō's Evolution and Human Life.

    PubMed

    Sullivan, Gregory

    2011-01-01

    In his anthology of socio-political essays, Evolution and Human Life, Oka Asajirō (1868-1944), early twentieth century Japan's foremost advocate of evolutionism, developed a biological vision of the nation-state as super-organism that reflected the concerns and aims of German-inspired Meiji statism and anticipated aspects of radical ultra-nationalism. Drawing on non-Darwinian doctrines, Oka attempted to realize such a fused or organic state by enhancing social instincts that would bind the minzoku (ethnic nation) and state into a single living entity. Though mobilization during the Russo-Japanese War seemed to evince this super-organism, the increasingly contentious and complex society that emerged in the war's aftermath caused Oka to turn first to Lamarckism and eventually to orthogenesis in the hopes of preserving the instincts needed for a viable nation-state. It is especially in the state interventionist measures that Oka finally came to endorse in order to forestall orthogenetically-driven degeneration that the technocratic proclivities of his statist orientation become most apparent. The article concludes by suggesting that Oka's emphasis on degeneration, autarkic expansion, and, most especially, totalitarian submersion of individuals into the statist collectivity indicates a complex relationship between his evolutionism and fascist ideology, what recent scholarship has dubbed radical Shinto ultra-nationalism. PMID:21080039

  3. Evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Sevenster, M.

    1993-01-01

    The evolution of interstellar molecular hydrogen was studied, with a special interest for the formation and evolution of molecular clouds and star formation within them, by a two-dimensional hydrodynamical simulation performed on a rectangular grid of physical sizes on the order of 100 pc. It is filled with an initial density of approx. 1 cm(exp -3), except for one cell (approx. 1 pc(exp 2)) at the center of the grid where an accretion core of 1-10(exp 3) solar masses is placed. The grid is co-moving with the gridcenter that is on a circular orbit around the Galactic center and that also is the guiding center of epicyclic approximation of orbits of the matter surrounding it. The initial radial velocity is zero; to account for differential rotation the initial tangential velocity (i.e. the movement around the galactic center) is proportional to the radial distance to the grid center. The rate is comparable to the rotation rate at the Local Standard of Rest. The influence of galactic rotation is noticed by spiral or elliptical forms, but on much longer time scales than self gravitation and cooling processes. Density and temperature are kept constant at the boundaries and no inflow is allowed along the tangential boundaries.

  4. Usefulness of a Darwinian System in a Biotechnological Application: Evolution of Optical Window Fluorescent Protein Variants under Selective Pressure

    PubMed Central

    Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W.; Zitzelsberger, Horst; Caldwell, Randolph B

    2014-01-01

    With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model. PMID:25192257

  5. The Molecular Basis of Evolution.

    ERIC Educational Resources Information Center

    Wilson, Allan C.

    1985-01-01

    Discovery that mutations accumulate at steady rates over time in the genes of all lineages of plants and animals has led to new insights into evolution at the molecular and organismal levels. Discusses molecular evolution, examining deoxyribonuclei acid (DNA) sequences, morphological distances, and codon rate of change. (DH)

  6. Extending and expanding the Darwinian synthesis: the role of complex systems dynamics.

    PubMed

    Weber, Bruce H

    2011-03-01

    Darwinism is defined here as an evolving research tradition based upon the concepts of natural selection acting upon heritable variation articulated via background assumptions about systems dynamics. Darwin's theory of evolution was developed within a context of the background assumptions of Newtonian systems dynamics. The Modern Evolutionary Synthesis, or neo-Darwinism, successfully joined Darwinian selection and Mendelian genetics by developing population genetics informed by background assumptions of Boltzmannian systems dynamics. Currently the Darwinian Research Tradition is changing as it incorporates new information and ideas from molecular biology, paleontology, developmental biology, and systems ecology. This putative expanded and extended synthesis is most perspicuously deployed using background assumptions from complex systems dynamics. Such attempts seek to not only broaden the range of phenomena encompassed by the Darwinian Research Tradition, such as neutral molecular evolution, punctuated equilibrium, as well as developmental biology, and systems ecology more generally, but to also address issues of the emergence of evolutionary novelties as well as of life itself. PMID:21300318

  7. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  8. Molecular imprint of dust evolution

    NASA Astrophysics Data System (ADS)

    Akimkin, Vitaly; Zhukovska, Svitlana; Wiebe, Dmitri; Semenov, Dmitry; Pavlyuchenkov, Yaroslav; Vasyunin, Anton; Birnstiel, Til; Henning, Thomas

    2013-07-01

    Evolution of sub-micron grains is an essential process during early stages of planet formation. The dust growth and sedimentation to the midplane affect a spectral energy distribution. At the same time dust evolution can alter significantly the distribution of gas that is a factor of 100 more massive than dust and can be traced with molecular line observations. We present simulations of protoplanetary disk structure with grain evolution using the ANDES code ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES comprises (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain chemical network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. Such a set of physical processes allows us to assess the impact of dust evolution on the gas component, which is primarily related to radiation field and total available surface for chemical reactions. Considering cases of (i) evolved dust (2 Myr of grain coagulation, fragmentation and sedimentation) and (ii) pristine dust (well- mixed 0.1 micron grains), we found a sufficient changes in disk physical and chemical structure caused by the dust evolution. Due to higher transparency of the evolved disk model UV-shielded molecular layer is shifted closer to the midplane. The presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO, while the depletion is still effective in adjacent upper layers. Molecular concentrations of many species are enhanced in the disk model with dust evolution (CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO) which provides an opportunity to use these molecules as tracers of dust evolution.

  9. Darwinian Controversies: An Historiographical Recounting

    NASA Astrophysics Data System (ADS)

    Depew, David J.

    2010-05-01

    This essay reviews key controversies in the history of the Darwinian research tradition: the Wilberforce-Huxley debate in 1860, early twentieth-century debates about the heritability of acquired characteristics and the consistency of Mendelian genetics with natural selection; the 1925 Scopes trial about teaching evolution; tensions about race, culture, and eugenics at the 1959 centenary celebration Darwin’s Origin of Species; adaptationism and its critics in the Sociobiology debate of 1970s and, more recently, Evolutionary Psychology; and current disputes about Intelligent Design. These controversies, I argue, are etched into public memory because they occur at the emotionally charged boundaries between public-political, technical-scientific, and personal-religious spheres of discourse. Over most of them falls the shadow of eugenics. The main lesson is that the history of Darwinism cannot be told except by showing the mutual influence of the different norms of discourse that obtain in the personal, technical, and public spheres. Nor can evolutionary biology successfully be taught to citizens and citizens-to-be until the fractious intersections between spheres of discourse have been made explicit. In the course of showing why, I take rival evolutionary approaches to be dynamical historical research traditions rather than static theories. Accordingly, I distinguish Darwin’s version of Darwinism from its later transformations. I pay special attention to the role Darwin assigned to development in evolution, which was marginalized by twentieth-century population genetical Darwinism, but has recently resurfaced in new forms. I also show how the disputed phrases “survival of the fittest” and “social Darwinism” have shaped personal anxieties about “Darwinism,” have provoked public opposition to teaching evolution in public schools, and have cast a shadow over efforts to effectively communicate to the public largely successful technical efforts to make

  10. Molecular evolution of HR, a gene that regulates the postnatal cycle of the hair follicle

    PubMed Central

    Abbasi, Amir Ali

    2011-01-01

    Hair is a unique mammalian trait that is absent in all other animal forms. Hairlessness is rare in mammals and humans are exceptional among primates in lacking dense layer of hair covering. HR was the first gene identified to be implicated in hair-cycle regulation. Point mutations in HR lead to congenital human hair loss, which results in the complete loss of body and scalp hairs. HR functions are indispensable for initiation of postnatal hair follicular cycling. This study investigates the phylogenetic history and analyzes the protein evolutionary rate to provide useful insight into the molecular evolution of HR. The data demonstrates an acceleration of HR sequence evolution in human branch and suggests that the ability of HR protein to mediate postnatal hair-cycling has been altered in the course of human evolution. In particular those residues were pinpointed which should be regarded as target of positive Darwinian selection during human evolution. PMID:22355551

  11. Darwinian Model Building

    SciTech Connect

    Kester, Do; Bontekoe, Romke

    2011-03-14

    We present a way to generate heuristic mathematical models based on the Darwinian principles of variation and selection in a pool of individuals over many generations. Each individual has a genotype (the hereditary properties) and a phenotype (the expression of these properties in the environment). Variation is achieved by cross-over and mutation operations on the genotype which consists in the present case of a single chromosome. The genotypes 'live' in the environment of the data. Nested Sampling is used to optimize the free parameters of the models given the data, thus giving rise to the phenotypes. Selection is based on the phenotypes.The evidences which naturally follow from the Nested Sampling Algorithm are used in a second level of Nested Sampling to find increasingly better models.The data in this paper originate from the Leiden Cytology and Pathology Laboratory (LCPL), which screens pap smears for cervical cancer. We have data for 1750 women who on average underwent 5 tests each. The data on individual women are treated as a small time series. We will try to estimate the next value of the prime cancer indicator from previous tests of the same woman.

  12. Darwinian Model Building

    NASA Astrophysics Data System (ADS)

    Kester, Do; Bontekoe, Romke

    2011-03-01

    We present a way to generate heuristic mathematical models based on the Darwinian principles of variation and selection in a pool of individuals over many generations. Each individual has a genotype (the hereditary properties) and a phenotype (the expression of these properties in the environment). Variation is achieved by cross-over and mutation operations on the genotype which consists in the present case of a single chromosome. The genotypes `live' in the environment of the data. Nested Sampling is used to optimize the free parameters of the models given the data, thus giving rise to the phenotypes. Selection is based on the phenotypes. The evidences which naturally follow from the Nested Sampling Algorithm are used in a second level of Nested Sampling to find increasingly better models. The data in this paper originate from the Leiden Cytology and Pathology Laboratory (LCPL), which screens pap smears for cervical cancer. We have data for 1750 women who on average underwent 5 tests each. The data on individual women are treated as a small time series. We will try to estimate the next value of the prime cancer indicator from previous tests of the same woman.

  13. The Janus face of Darwinian competition.

    PubMed

    Hintze, Arend; Phillips, Nathaniel; Hertwig, Ralph

    2015-01-01

    Without competition, organisms would not evolve any meaningful physical or cognitive abilities. Competition can thus be understood as the driving force behind Darwinian evolution. But does this imply that more competitive environments necessarily evolve organisms with more sophisticated cognitive abilities than do less competitive environments? Or is there a tipping point at which competition does more harm than good? We examine the evolution of decision strategies among virtual agents performing a repetitive sampling task in three distinct environments. The environments differ in the degree to which the actions of a competitor can affect the fitness of the sampling agent, and in the variance of the sample. Under weak competition, agents evolve decision strategies that sample often and make accurate decisions, which not only improve their own fitness, but are good for the entire population. Under extreme competition, however, the dark side of the Janus face of Darwinian competition emerges: Agents are forced to sacrifice accuracy for speed and are prevented from sampling as often as higher variance in the environment would require. Modest competition is therefore a good driver for the evolution of cognitive abilities and of the population as a whole, whereas too much competition is devastating. PMID:26354182

  14. The Janus face of Darwinian competition

    PubMed Central

    Hintze, Arend; Phillips, Nathaniel; Hertwig, Ralph

    2015-01-01

    Without competition, organisms would not evolve any meaningful physical or cognitive abilities. Competition can thus be understood as the driving force behind Darwinian evolution. But does this imply that more competitive environments necessarily evolve organisms with more sophisticated cognitive abilities than do less competitive environments? Or is there a tipping point at which competition does more harm than good? We examine the evolution of decision strategies among virtual agents performing a repetitive sampling task in three distinct environments. The environments differ in the degree to which the actions of a competitor can affect the fitness of the sampling agent, and in the variance of the sample. Under weak competition, agents evolve decision strategies that sample often and make accurate decisions, which not only improve their own fitness, but are good for the entire population. Under extreme competition, however, the dark side of the Janus face of Darwinian competition emerges: Agents are forced to sacrifice accuracy for speed and are prevented from sampling as often as higher variance in the environment would require. Modest competition is therefore a good driver for the evolution of cognitive abilities and of the population as a whole, whereas too much competition is devastating. PMID:26354182

  15. The Malthusian-Darwinian dynamic and the trajectory of civilization

    USGS Publications Warehouse

    Nekola, Jeffrey C.; Allen, Craig D.; Brown, James H.; Burger, Joseph R.; Davidson, Ana D.; Fristoe, Trevor S.; Hamilton, Marcus J.; Hammond, Sean T.; Kodric-Brown, Astrid; Mercado-Silva, Norman; Okie, Jordan G.

    2013-01-01

    Two interacting forces influence all populations: the Malthusian dynamic of exponential growth until resource limits are reached, and the Darwinian dynamic of innovation and adaptation to circumvent these limits through biological and/or cultural evolution. The specific manifestations of these forces in modern human society provide an important context for determining how humans can establish a sustainable relationship with the finite Earth.

  16. The Problem with a Darwinian View of Humanity

    ERIC Educational Resources Information Center

    Cunningham, Paul F.

    2009-01-01

    Comments on the special issue on Charles Darwin and psychology (Dewsbury, February-March 2009), in which the authors present evidence supporting the validity of Charles Darwin's theory of evolution and how generations of psychologists have viewed the natural world through its light, taking Darwinian theories for granted as being a literal…

  17. Adaptive evolution of molecular phenotypes

    NASA Astrophysics Data System (ADS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  18. The search for purpose in a post-Darwinian universe: George Bernard Shaw, 'creative evolution', and Shavian eugenics: 'The dark side of the force'.

    PubMed

    Hale, Piers J

    2006-01-01

    The Irish playwright and socialist George Bernard Shaw has been of marginal concern for historians of biology because his vitalist Lamarckism has been viewed as out of step with contemporary science. However, Julian Huxley and J.B.S. Haldane were certainly of the opinion that Shaw was a man of influence in this regard and took pains to counter his views in their own attempts to engage the public in science. Previously, Shaw's colleague and friend H.G. Wells had also agued with Shaw from his own mechanistic neo-Darwinian perspective. The very public debate between Shaw and Wells, which continued to concern Huxley and Haldane, shows that public concern over the moral implications of Darwinism has a long history. Taking into account the opinions of John Maynard Smith on this matter, I suggest that a consideration of Shaw in this context can give us an understanding of the historical popularity of vitalist teleology as well as of the persistent ambivalence to the non-normative character of Darwinism. PMID:17702503

  19. Three Laws in Darwinian Evolutionary Theory

    NASA Astrophysics Data System (ADS)

    Ao, Ping

    2006-03-01

    Recent works to formulate laws in Darwinian evolutionary dynamics will be discussed. Specifically, three laws which form a consistent mathematical framework for the evolutionary dynamics in biology will be spelt out. The second law is most quantitative and is explicitly expressed in the unique form of a stochastic differential equation. Salient features of Darwinian evolutionary dynamics are captured by this law: the probabilistic nature of evolution, ascendancy, and the adaptive landscape. Four dynamical elements are introduced in this formulation: the ascendant matrix, the transverse matrix, the Wright evolutionary potential, and the stochastic drive. The first law may be regarded as a special case of the second law. It gives the reference point to discuss the evolutionary dynamics. The third law describes the relationship between the focused level of description to its lower and higher ones, and defines the dichotomy of deterministic and stochastic drives. It is an acknowledgement of the hierarchical structure in biology. A new interpretation of Fisher's fundamental theorem of natural selection is provided in terms of the F-Theorem. Ref. P. Ao, Physics of Life Reviews 2 (2005) 117-156.

  20. Bringing Molecules Back into Molecular Evolution

    PubMed Central

    Wilke, Claus O.

    2012-01-01

    Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events. PMID:22761562

  1. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection.

    PubMed

    Bailly, Xavier; Leroy, Riwanon; Carney, Susan; Collin, Olivier; Zal, Franck; Toulmond, Andre; Jollivet, Didier

    2003-05-13

    The hemoglobin of the deep-sea hydrothermal vent vestimentiferan Riftia pachyptila (annelid) is able to bind toxic hydrogen sulfide (H(2)S) to free cysteine residues and to transport it to fuel endosymbiotic sulfide-oxidising bacteria. The cysteine residues are conserved key amino acids in annelid globins living in sulfide-rich environments, but are absent in annelid globins from sulfide-free environments. Synonymous and nonsynonymous substitution analysis from two different sets of orthologous annelid globin genes from sulfide rich and sulfide free environments have been performed to understand how the sulfide-binding function of hemoglobin appeared and has been maintained during the course of evolution. This study reveals that the sites occupied by free-cysteine residues in annelids living in sulfide-rich environments and occupied by other amino acids in annelids from sulfide-free environments, have undergone positive selection in annelids from sulfide-free environments. We assumed that the high reactivity of cysteine residues became a disadvantage when H(2)S disappeared because free cysteines without their natural ligand had the capacity to interact with other blood components, disturb homeostasis, reduce fitness and thus could have been counterselected. To our knowledge, we pointed out for the first time a case of function loss driven by molecular adaptation rather than genetic drift. If constraint relaxation (H(2)S disappearance) led to the loss of the sulfide-binding function in modern annelids from sulfide-free environments, our work suggests that adaptation to sulfide-rich environments is a plesiomorphic feature, and thus that the annelid ancestor could have emerged in a sulfide-rich environment. PMID:12721359

  2. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection

    PubMed Central

    Bailly, Xavier; Leroy, Riwanon; Carney, Susan; Collin, Olivier; Zal, Franck; Toulmond, André; Jollivet, Didier

    2003-01-01

    The hemoglobin of the deep-sea hydrothermal vent vestimentiferan Riftia pachyptila (annelid) is able to bind toxic hydrogen sulfide (H2S) to free cysteine residues and to transport it to fuel endosymbiotic sulfide-oxidising bacteria. The cysteine residues are conserved key amino acids in annelid globins living in sulfide-rich environments, but are absent in annelid globins from sulfide-free environments. Synonymous and nonsynonymous substitution analysis from two different sets of orthologous annelid globin genes from sulfide rich and sulfide free environments have been performed to understand how the sulfide-binding function of hemoglobin appeared and has been maintained during the course of evolution. This study reveals that the sites occupied by free-cysteine residues in annelids living in sulfide-rich environments and occupied by other amino acids in annelids from sulfide-free environments, have undergone positive selection in annelids from sulfide-free environments. We assumed that the high reactivity of cysteine residues became a disadvantage when H2S disappeared because free cysteines without their natural ligand had the capacity to interact with other blood components, disturb homeostasis, reduce fitness and thus could have been counterselected. To our knowledge, we pointed out for the first time a case of function loss driven by molecular adaptation rather than genetic drift. If constraint relaxation (H2S disappearance) led to the loss of the sulfide-binding function in modern annelids from sulfide-free environments, our work suggests that adaptation to sulfide-rich environments is a plesiomorphic feature, and thus that the annelid ancestor could have emerged in a sulfide-rich environment. PMID:12721359

  3. The Molecular Evolution of Actin

    PubMed Central

    Hightower, Robin C.; Meagher, Richard B.

    1986-01-01

    We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3–7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11–15% replacement substitution. In the analysis of plant actins, replacement substitution between soybean actin genes SAc1, SAc3, SAc4 and maize actin gene MAc1 ranged from 8–10%, whereas these members within the soybean actin gene family ranged from 6–9% replacement substitution. The rate of sequence divergence of plant actin sequences appears to be similar to that observed for animal actins. Furthermore, these and other data suggest that the plant actin gene family is ancient and that the families of soybean and maize actin genes have diverged from a single common ancestral plant actin gene that originated long before the divergence of monocots and dicots. The soybean actin multigene family encodes at least three classes of actin. These classes each contain a pair of actin genes that have been designated kappa (SAc1, SAc6), lambda (SAc2, SAc4) and mu (SAc3, SAc7). The three classes of soybean actin are more divergent in nucleotide sequence from one another than higher animal cytoplasmic actin is divergent from muscle actin. The location and distribution of amino acid changes were compared between actin proteins from all sources. A comparison of the hydropathy of all actin sequences, except from Oxytricha, indicated a strong similarity in hydropathic character between all plant and nonplant actins despite the greater number of replacement substitutions in plant actins. These protein sequence

  4. Molecular evolution and thermal adaptation

    NASA Astrophysics Data System (ADS)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  5. Statistical limitations on molecular evolution.

    PubMed

    Perlovsky, Leonid I

    2002-06-01

    Complexity of functions evolving in an evolution process are expected to be limited by the time length of an evolution process among other factors. This paper outlines a general method of deriving function-complexity limitations based on mathematical statistics and independent from details of a biological or genetic mechanism of the evolution of the function. Limitations on the emergence of life are derived, these limitations indicate a possibility of a very fast evolution and are consistent with "RNA world" hypothesis. The discussed method is general and can be used to characterize evolution of more specific biological organism functions and relate functions to genetic structures. The derived general limitations indicate that a co-evolution of multiple functions and species could be a slow process, whereas an evolution of a specific function might proceed very fast, so that no trace of intermediate forms (species) is preserved in fossil records of phenotype or DNA structure; this is consistent with a picture of "punctuated equilibrium". PMID:12023805

  6. Anarchy, socialism and a Darwinian left.

    PubMed

    Clarke, Ellen

    2006-03-01

    In A Darwinian left Peter Singer aims to reconcile Darwinian theory with left wing politics, using evolutionary game theory and in particular a model proposed by Robert Axelrod, which shows that cooperation can be an evolutionarily successful strategy. In this paper I will show that whilst Axelrod's model can give support to a kind of left wing politics, it is not the kind that Singer himself envisages. In fact, it is shown that there are insurmountable problems for the idea of increasing Axelrodian cooperation within a welfare state. My surprising conclusion will be that a Darwinian left worthy of the name would be anarchistic. PMID:16473272

  7. The Theory of Evolution: An Educational Perspective.

    ERIC Educational Resources Information Center

    Johnson, William L.; Johnson, Annabel M.

    The article's thesis is that evolution's intellectual foundations have been steadily eroding, and that few new findings in embryology, taxonomy, fossil remains, and molecular biology are bringing us very near to a formal, logical disproof of Darwinian claims. The paper begins by discussing the evidence of a prehistoric world, then they discuss…

  8. Near-Neutrality: the Leading Edge of the Neutral Theory of Molecular Evolution

    PubMed Central

    Hughes, Austin L.

    2009-01-01

    The nearly-neutral theory represents a development of Kimura’s Neutral Theory of Molecular Evolution that makes testable predictions that go beyond a mere null model. Recent evidence has strongly supported several of these predictions, including the prediction that slightly deleterious variants will accumulate in a species that has undergone a severe bottleneck or in cases where recombination is reduced or absent. Because bottlenecks often occur in speciation and slightly deleterious mutations in coding regions will usually be nonsynonymous, we should expect that the ratio of nonsynonymous to synonymous fixed differences between species should often exceed the ratio of nonsynonymous to synonymous polymorphisms within species. Numerous data support this prediction, although they have often been wrongly interpreted as evidence for positive Darwinian selection. The use of conceptually flawed tests for positive selection has become widespread in recent years, seriously harming the quest for an understanding of genome evolution. When properly analyzed, many (probably most) claimed cases of positive selection will turn out to involve the fixation of slightly deleterious mutations by genetic drift in bottlenecked populations. Slightly deleterious variants are a transient feature of evolution in the long term, but they have had substantial impact on contemporary species, including our own. PMID:18559820

  9. Molecular evolution tracks macroevolutionary transitions in Cetacea.

    PubMed

    McGowen, Michael R; Gatesy, John; Wildman, Derek E

    2014-06-01

    Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. PMID:24794916

  10. Teaching Darwinian Evolution: Learning from Religious Education

    ERIC Educational Resources Information Center

    Stolberg, Tonie L.

    2010-01-01

    This article examines what science education might be able to learn from phenomenological religious education's attempts to teach classes where students hold a plurality of religious beliefs. Recent statements as to how best to accomplish the central pedagogical concept of "learning from religion" as a vehicle for human transformation are…

  11. Study on a Possible Darwinian Origin of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Baladrón, C.

    2011-03-01

    A sketchy subquantum theory deeply influenced by Wheeler's ideas (Am. J. Phys. 51:398-404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.

  12. Molecular Evolution of Puumala Hantavirus

    PubMed Central

    Sironen, Tarja; Vaheri, Antti; Plyusnin, Alexander

    2001-01-01

    Puumala virus (PUUV) is a negative-stranded RNA virus in the genus Hantavirus, family Bunyaviridae. In this study, detailed phylogenetic analysis was performed on 42 complete S segment sequences of PUUV originated from several European countries, Russia, and Japan, the largest set available thus far for hantaviruses. The results show that PUUV sequences form seven distinct and well-supported genetic lineages; within these lineages, geographical clustering of genetic variants is observed. The overall phylogeny of PUUV is star-like, suggesting an early split of genetic lineages. The individual PUUV lineages appear to be independent, with the only exception to this being the Finnish and the Russian lineages that are closely connected to each other. Two strains of PUUV-like virus from Japan form the most ancestral lineage diverging from PUUV. Recombination points within the S segment were searched for and evidence for intralineage recombination events was seen in the Finnish, Russian, Danish, and Belgian lineages of PUUV. Molecular clock analysis showed that PUUV is a stable virus, evolving slowly at a rate of 0.7 × 10−7 to 2.2 × 10−6 nt substitutions per site per year. PMID:11689661

  13. What makes Darwinian hydrology "Darwinian"? Asking a different kind of question about landscapes

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.

    2014-02-01

    There have been repeated calls for a Darwinian approach to hydrologic science, or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding of the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion because its connections to Darwin remain allusive rather than explicit. Here we suggest that the Darwinian approach to hydrology follows the example of Charles Darwin by focusing attention on the patterns of variation in populations and seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development. These hypotheses do not simply catalog patterns or predict them statistically - they connect the present structure with processes operating in the past. Nor are they explanations presented without independent evidence or critical analysis - Darwin's hypotheses about the mechanisms underlying present-day variation could be independently tested and validated. With a Darwinian framework in mind, it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. We discuss some practical and philosophical issues with this approach to hydrologic science: how are explanatory hypotheses generated? What constitutes a good hypothesis? How are hypotheses tested? "Historical" sciences - including paleohydrology - have long grappled with these questions, as must a Darwinian hydrologic science. We can draw on Darwin's own example for some answers, though there are ongoing debates about the philosophical nature of his methods and reasoning. Darwin used a range of methods of historical reasoning to develop explanatory

  14. Evolution of molecular phenotypes under stabilizing selection

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes.

  15. Sexual selection: Another Darwinian process.

    PubMed

    Gayon, Jean

    2010-02-01

    the Darwin-Wallace controversy was that most Darwinian biologists avoided the subject of sexual selection until at least the 1950s, Ronald Fisher being a major exception. This controversy still deserves attention from modern evolutionary biologists, because the modern approach inherits from both Darwin and Wallace. The modern approach tends to present sexual selection as a special aspect of the theory of natural selection, although it also recognizes the big difficulties resulting from the inevitable interaction between these two natural processes of selection. And contra Wallace, it considers mate choice as a major process that deserves a proper evolutionary treatment. The paper's conclusion explains why sexual selection can be taken as a test case for a proper assessment of "Darwinism" as a scientific tradition. Darwin's and Wallace's attitudes towards sexual selection reveal two different interpretations of the principle of natural selection: Wallace's had an environmentalist conception of natural selection, whereas Darwin was primarily sensitive to the element of competition involved in the intimate mechanism of any natural process of selection. Sexual selection, which can lack adaptive significance, reveals this exemplarily. PMID:20338530

  16. Origins of Genius: Darwinian Perspectives on Creativity.

    ERIC Educational Resources Information Center

    Simonton, Dean Keith

    This study of creative genius argues that creativity can best be understood as a Darwinian process of variation and selection. The artist or scientist generates a wealth of ideas, and then subjects these ideas to aesthetic or scientific judgment, selecting only those that have the best chance to survive and reproduce. The book draws on the latest…

  17. The Nature of the Darwinian Revolution

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1972-01-01

    Analysis of the writings of anti-evolutionists contemporary with Darwin reveals that there were many objections that had to be overcome and that the Darwinian revolution" does not conform to the simple model of a scientific revolution as outlined by T. S. Kuhn. (AL)

  18. Molecular evolution of prolactin in primates.

    PubMed

    Wallis, O Caryl; Mac-Kwashie, Akofa O; Makri, Georgia; Wallis, Michael

    2005-05-01

    Pituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus). Slow loris prolactin is very similar in sequence to pig prolactin, so the episode of rapid change occurred during primate evolution, after the separation of lines leading to prosimians and higher primates. Marmoset prolactin is similar in sequence to human prolactin, so the accelerated evolution occurred before divergence of New World monkeys and Old World monkeys/apes. The burst of change was confined largely to coding sequence (nonsynonymous sites) for mature prolactin and is not marked in other components of the gene sequence. This and the observations that (1) there was no apparent loss of function during the episode of rapid evolution, (2) the rate of evolution slowed toward the basal rate after this burst, and (3) the distribution of substitutions in the prolactin molecule is very uneven support the idea that this episode of rapid change was due to positive adaptive selection. In the slow loris and marmoset there is no evidence for duplication of the prolactin gene, and evidence from another New World monkey (Cebus albifrons) and from the chimpanzee and human genome sequences, suggests that this is the general position in primates, contrasting with the situation for GH genes. The chimpanzee prolactin sequence differs from that of human at two residues and comparison of human and chimpanzee prolactin gene sequences suggests that noncoding regions associated with regulating

  19. The Post-Darwinian Controversies

    NASA Astrophysics Data System (ADS)

    Moore, James R.

    1981-11-01

    Preface; Introduction: the terrain of revision; Part I. Historians and Historiography: 1. Draper, White, and the military metaphor; 2. Politics, polemics, and the military milieu; 3. Warfare's toll in historical interpretation; 4. Towards a non-violent history; Part II. Darwinism and Evolutionary Thought: 5. Darwinism in transition; 6. The challenge of Lamarckian evolution; 7. The vogue of Herbert Spencer; 8. Darwinism and Neo-Darwinism; Part III. Theology and Evolution: 9. Christian anti-Darwinism: the realm of certainty and fixity; 10. Christian Darwinism: the role of providence and progress; 11. Christian Darwinism: the relevance of orthodox theology; 12. Darwinism and Darwinisticism in theology; Conclusion; Notes to the text; Bibliography; Index.

  20. Trends in substitution models of molecular evolution

    PubMed Central

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  1. Trends in substitution models of molecular evolution.

    PubMed

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  2. Making a Theist out of Darwin: Asa Gray's Post-Darwinian Natural Theology

    NASA Astrophysics Data System (ADS)

    Russell Hunter, T.

    2012-07-01

    In March of 1860 the eminent Harvard Botanist and orthodox Christian Asa Gray began promoting the Origin of Species in hopes of securing a fair examination of Darwin's evolutionary theory among theistic naturalists. To this end, Gray sought to demonstrate that Darwin had not written atheistically and that his theory of evolution by natural selection had not presented any new scientific or theological difficulties for traditional Christian belief. From his personal correspondence with the author of the Origin, Gray well knew that Darwin did not affirm God's "particular" design of nature but conceded to the possibility that evolution proceeded according to "designed laws." From this concession, Gray attempted to develop a post-Darwinian natural theology which encouraged theistic naturalists to view God's design of nature through the evolutionary process in a manner similar to the way in which they viewed God's Providential interaction with human history. Indeed, securing a fair reading of the Origin was not Gray's sole aim as a promoter of Darwinian ideas. In Darwin's theory of natural selection, Gray believed he had discovered the means by which a more robust natural theological conception of the living and evolving natural world could be developed. In this paper I outline Gray's efforts to produce and popularize a theistic interpretation of Darwinian theory in order to correct various misconceptions concerning Gray's natural theological views and their role in the Darwinian Revolution.

  3. Molecular evolution of hydrogen peroxide degrading enzymes.

    PubMed

    Zámocký, Marcel; Gasselhuber, Bernhard; Furtmüller, Paul G; Obinger, Christian

    2012-09-15

    For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants. PMID:22330759

  4. Molecular epidemiology, phylogeny and evolution of Legionella.

    PubMed

    Khodr, A; Kay, E; Gomez-Valero, L; Ginevra, C; Doublet, P; Buchrieser, C; Jarraud, S

    2016-09-01

    Legionella are opportunistic pathogens that develop in aquatic environments where they multiply in protozoa. When infected aerosols reach the human respiratory tract they may accidentally infect the alveolar macrophages leading to a severe pneumonia called Legionnaires' disease (LD). The ability of Legionella to survive within host-cells is strictly dependent on the Dot/Icm Type 4 Secretion System that translocates a large repertoire of effectors into the host cell cytosol. Although Legionella is a large genus comprising nearly 60 species that are worldwide distributed, only about half of them have been involved in LD cases. Strikingly, the species Legionella pneumophila alone is responsible for 90% of all LD cases. The present review summarizes the molecular approaches that are used for L. pneumophila genotyping with a major focus on the contribution of whole genome sequencing (WGS) to the investigation of local L. pneumophila outbreaks and global epidemiology studies. We report the newest knowledge regarding the phylogeny and the evolution of Legionella and then focus on virulence evolution of those Legionella species that are known to have the capacity to infect humans. Finally, we discuss the evolutionary forces and adaptation mechanisms acting on the Dot/Icm system itself as well as the role of mobile genetic elements (MGE) encoding T4ASSs and of gene duplications in the evolution of Legionella and its adaptation to different hosts and lifestyles. PMID:27180896

  5. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  6. Evolution - A Theory Evolving

    ERIC Educational Resources Information Center

    Weinberg, Janet H.

    1975-01-01

    Presented is an explanation of a non-Darwinian theory of evolution based on the premise that functional differences are the result of many small mutations such as the substitution of one amino acid for another in a large protein molecule. A brief overview of Darwinian evolution and other theories are presented. (EB)

  7. The chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Iglesias, E.

    1977-01-01

    The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.

  8. Molecular epidemiology and evolution of fish Novirhabdoviruses

    USGS Publications Warehouse

    Kurath, Gael

    2014-01-01

    The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.

  9. Becoming a Darwinian: the micro-politics of Sir Francis Galton's scientific career 1859-65.

    PubMed

    Waller, John C

    2004-04-01

    In 1865 Francis Galton (1822-1911) published 'Hereditary Talent and Character', an elaborate attempt to prove the heritability of intelligence on the basis of pedigree data. It was the start of Galton's lifelong commitment to investigating the statistical patterns and physiological mechanisms of hereditary transmission. Most existing attempts to explain Galton's fascination for heredity have argued that he was driven by a commitment to conservative political ideologies to seek means of naturalizing human inequality. However, this paper shows that another factor of at least equal importance has been overlooked by Galton scholars: his determination during the 1860s to be accepted among the ranks of the Darwinian inner circle. By hitching his career to the fortunes of what looked likely to emerge as a new scientific elite, Galton felt that he could bypass the typically slow and uncertain route to achieving scientific distinction. For this essentially strategic reason, between 1860 and 1865 he drifted away from a set of existing scientific concerns that were failing to deliver the approbation that he desired. Earnestly seeking to ingratiate himself with the Darwinian lobby, he then toyed with a variety of potential research projects relevant to Darwinian evolution. Yet Galton consistently failed to stimulate the enthusiasm of the Darwinians. Finally, however, after several months of ruminating, in 1864 he settled on a study of eminent pedigrees as a subject that was both germane and highly useful to the Darwinian enterprise. Galton's willingness to shift the direction of his scientific career during the 1860s underscores the importance of examining the micro-politics of scientific careers in addition to their broader social and political context. This account also emphasizes the limitations of class-based explanations even when considering scientists whose work seems so manifestly indicative of ideological motivation. PMID:15022666

  10. Darwinian natural selection: its enduring explanatory power

    PubMed Central

    2012-01-01

    Evolutionary theory has never had a stronger scientific foundation than it does today. In a short review I hope to portray the deep commitment of today's biologists to Darwinian natural selection and to discoveries made since Darwin's time. In spite of the scientific advances in the century and a half since the publication of On the Origin of Species, Darwin still remains the principal author of modern evolutionary theory. He is one of the greatest contributors of all time to our understanding of nature. PMID:22481845

  11. Darwinian natural selection: its enduring explanatory power.

    PubMed

    Dimijian, Gregory G

    2012-04-01

    Evolutionary theory has never had a stronger scientific foundation than it does today. In a short review I hope to portray the deep commitment of today's biologists to Darwinian natural selection and to discoveries made since Darwin's time. In spite of the scientific advances in the century and a half since the publication of On the Origin of Species, Darwin still remains the principal author of modern evolutionary theory. He is one of the greatest contributors of all time to our understanding of nature. PMID:22481845

  12. Molecular epidemiology and evolution of porcine parvoviruses.

    PubMed

    Streck, André Felipe; Canal, Cláudio Wageck; Truyen, Uwe

    2015-12-01

    Porcine parvovirus (PPV), recently named Ungulate protoparvovirus 1, is considered to be one of the most important causes of reproductive failure in swine. Fetal death, mummification, stillbirths and delayed return to estrus are predominant clinical signs commonly associated with PPV infection in a herd. It has recently been shown that certain parvoviruses exhibit a nucleotide substitution rate close to that commonly determined for RNA viruses. However, the PPV vaccines broadly used in the last 30 years have most likely reduced the genetic diversity of the virus and led to the predominance of strains with a capsid profile distinct from that of the original vaccine-based strains. Furthermore, a number of novel porcine parvovirus species with yet-unknown veterinary relevance and characteristics have been described during the last decade. In this review, an overview of PPV molecular evolution is presented, highlighting characteristics of the various genetic elements, their evolutionary rate and the discovery of new capsid profiles driven by the currently used vaccines. PMID:26453771

  13. Molecular pathogenesis of CLL and its evolution.

    PubMed

    Rodríguez, David; Bretones, Gabriel; Arango, Javier R; Valdespino, Víctor; Campo, Elías; Quesada, Víctor; López-Otín, Carlos

    2015-03-01

    In spite of being the most prevalent adult leukemia in Western countries, the molecular mechanisms driving the establishment and progression of chronic lymphocytic leukemia (CLL) remain largely unknown. In recent years, the use of next-generation sequencing techniques has uncovered new and, in some cases, unexpected driver genes with prognostic and therapeutic value. The mutational landscape of CLL is characterized by high-genetic and epigenetic heterogeneity, low mutation recurrence and a long tail of cases with undefined driver genes. On the other hand, the use of deep sequencing has also revealed high intra-tumor heterogeneity and provided a detailed picture of clonal evolution processes. This phenomenon, in which aberrant DNA methylation can also participate, appears to be tightly associated to poor outcomes and chemo-refractoriness, thus providing a new subject for therapeutic intervention. Hence, and having in mind the limitations derived from the CLL complexity thus described, the application of massively parallel sequencing studies has unveiled a wealth of information that is expected to substantially improve patient staging schemes and CLL clinical management. PMID:25630433

  14. High rates of molecular evolution in hantaviruses.

    PubMed

    Ramsden, Cadhla; Melo, Fernando L; Figueiredo, Luiz M; Holmes, Edward C; Zanotto, Paolo M A

    2008-07-01

    Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus (Sigmodontinae), Dobrava virus (Murinae), Puumala virus (Arvicolinae), and Tula virus (Arvicolinae). Our results reveal that hantaviruses exhibit short-term substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated. PMID:18417484

  15. Introducing the fractional order robotic Darwinian PSO

    NASA Astrophysics Data System (ADS)

    Couceiro, Micael S.; Martins, Fernando M. L.; Rocha, Rui P.; Ferreira, Nuno M. F.

    2012-11-01

    The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm using fractional calculus concepts to control the convergence rate, while considering the robot dynamical characteristics. Moreover, to improve the convergence analysis of the RDPSO, an adjustment of the fractional coefficient based on mobile robot constraints is presented and experimentally assessed with 2 real platforms. Afterwards, this novel fractional-order RDPSO is evaluated in 12 physical robots being further explored using a larger population of 100 simulated mobile robots within a larger scenario. Experimental results show that changing the fractional coefficient does not significantly improve the final solution but presents a significant influence in the convergence time because of its inherent memory property.

  16. Molecular musings in microbial ecology and evolution

    PubMed Central

    2011-01-01

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology. The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology). The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies

  17. Darwinian optimization of synthetic neural systems

    SciTech Connect

    Dress, W.B.

    1987-01-01

    This paper suggests a synthesis of computer science and artificial intelligence with the resurgent ideas of artificial neural systems and genetic algorithms cast in a classical Darwinian mold. Just as Darwin's original theory avoided the need for teleological arguments, the thrust of the approach set forth here for synthetic systems avoids the problem of programmer omniscience and the resulting brittle programs for precisely the same reasons. The price to be paid is one of many long computations on, perhaps, many parallel processors. Hardware development leading to parallel networks of RISC processors should meet the near-term needs of evolutionary parameter determination and allow the ensuring synthetic systems to function in real-time for certain tasks. In the longer term, special-purpose devices will be needed.

  18. Elements for the Development of a Darwinian Scheme Leading to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Baladrón, Carlos

    2015-10-01

    A subquantum theory is examined in which a fundamental system has been characterized as the association of a particle with a continuous trajectory in real space and a classical probabilistic Turing machine defined on an informational space. The particle transfers information to the machine, and this steers the particle by means of self-interaction. In a certain sense, the associated Turing machine might be considered a generalization of the pilot wave function of Bohmian mechanics. The data processing capability entailed by the Turing machine makes the particle a generalized Darwinian system on which natural selection may operate. Darwinian evolution acting on the informational space should then drive the particle from random behaviour purportedly associated to an initial blank state to a possible evolutionarily stable strategy (ESS). Three regulating principles that plausibly encode an ESS are stated. The derivation of the postulates of quantum mechanics is discussed assuming that the behaviour of systems is governed by the three regulating principles. The theory also enables, within the generalized Darwinian framework, a natural characterization of entanglement through the local interaction between the Turing machines of the subsystems. Some possible future experimental and computational tests of the theory are outlined. The central aim of this scheme is to explore the possibility that generalized Darwinian natural selection might induce the emergence of quantum mechanics and its weird features from a real and local underlying description of particles supplemented with a Turing machine on an informational space, since those systems presenting quantum behaviour seem to be the most robust at a microscopic level.

  19. Automatic Evolution of Molecular Nanotechnology Designs

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

  20. Molecular clouds. [significance in stellar evolution

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.

    1977-01-01

    An attempt is made to understand star formation in the context of the dense interstellar molecular gas from which stars are made. Attention is given to how molecular observations (e.g., UV spectroscopy and radio 21-cm and recombination line observations) provide data on the physical state of the dense interstellar gas; observations of H II regions, stellar associations, and dark nebulae are discussed. CO clouds are studied with reference to radial velocity, temperature, density, ionization, magnetic field.

  1. Molecular evolution in food allergy diagnosis.

    PubMed

    Barocci, Fiorella; DE Amici, Mara; Marseglia, Gian L

    2016-10-01

    Traditional allergological diagnostics often provide laboratory data that seem to correspond with similar positive results in different patients. However, with technological developments and the introduction of molecular diagnostics, it is possible to extract and highlight the differences in the serological laboratory data, to obtain detailed specificity on the various allergen components in different clinical settings. Allergological diagnostics prove to be increasingly useful in accurately distinguishing "cross-reactivity" and "cosensitization". This aspect is very important especially in patients who are, with a traditional diagnosis, polysensitized. Molecular diagnosis in allergology has expanded its range of applications thanks to the ability to IgE dose specific (in addition to classic total IgE serum) not only to allergens, food and inhalants, but also to the individual protein components which make up the allergenic source. It is essential to establish a correct diagnosis in order to determine the appropriate therapy. Therefore it is crucial to discern whether a patient is truly allergic because he presents specific IgE for molecules of a species or if the positivity is given from the structural homology between the different proteins. Molecular diagnostics emerges as a valuable tool for the discrimination of allergic patients and to differentiate between "true allergies" and "cross-reactivity". Molecular diagnostics should be used in a targeted manner for an accurate assessment and diagnosis, which would also reduce the use of oral challenges, to predict severe reactions and allergy persistence. PMID:26091488

  2. Molecular evolution of the vertebrate mechanosensory cell and ear

    PubMed Central

    Fritzsch, Bernd; Beisel, Kirk W.; Pauley, Sarah; Soukup, Garrett

    2014-01-01

    The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has

  3. Slow rate of molecular evolution in high-elevation hummingbirds.

    PubMed

    Bleiweiss, R

    1998-01-20

    Estimates of relative rates of molecular evolution from a DNA-hybridization phylogeny for 26 hummingbird species provide evidence for a negative association between elevation and rate of single-copy genome evolution. This effect of elevation on rate remains significant even after taking into account a significant negative association between body mass and molecular rate. Population-level processes do not appear to account for these patterns because (i) all hummingbirds breed within their first year and (ii) the more extensive subdivision and speciation of bird populations living at high elevations predicts a positive association between elevation and rate. The negative association between body mass and molecular rate in other organisms has been attributed to higher mutation rates in forms with higher oxidative metabolism. As ambient oxygen tensions and temperature decrease with elevation, the slow rate of molecular evolution in high-elevation hummingbirds also may have a metabolic basis. A slower rate of single-copy DNA change at higher elevations suggests that the dynamics of molecular evolution cannot be separated from the environmental context. PMID:9435240

  4. A half-century after the molecular clock: new dimensions of molecular evolution.

    PubMed

    Koonin, Eugene V

    2012-08-01

    The EMBO workshop on 'Evolution in the Time of Genomics' took place in May 2012 in the magnificent sixteenth century Palazzo Franchetti near Ponte dell'Accademia in Venice. The meeting focused on phenomena that are not part of the traditional narrative of molecular evolution and which might signal a paradigm shift in the field. PMID:22791022

  5. The Darwinian revolution: Rethinking its meaning and significance

    PubMed Central

    Ruse, Michael

    2009-01-01

    The Darwinian revolution is generally taken to be one of the key events in the history of Western science. In recent years, however, the very notion of a scientific revolution has come under attack, and in the specific case of Charles Darwin and his Origin of Species there are serious questions about the nature of the change (if there was such) and the specifically Darwinian input. This article considers these issues by addressing these questions: Was there a Darwinian revolution? That is, was there a revolution at all? Was there a Darwinian revolution? That is, what was the specific contribution of Charles Darwin? Was there a Darwinian revolution? That is, what was the conceptual nature of what occurred on and around the publication of the Origin? I argue that there was a major change, both scientifically and in a broader metaphysical sense; that Charles Darwin was the major player in the change, although one must qualify the nature and the extent of the change, looking particularly at things in a broader historical context than just as an immediate event; and that the revolution was complex and we need the insights of rather different philosophies of scientific change to capture the whole phenomenon. In some respects, indeed, the process of analysis is still ongoing and unresolved. PMID:19528652

  6. Molecular evolution of GPCRs: Ghrelin/ghrelin receptors.

    PubMed

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2014-06-01

    After the discovery in 1996 of the GH secretagogue-receptor type-1a (GHS-R1a) as an orphan G-protein coupled receptor, many research groups attempted to identify the endogenous ligand. Finally, Kojima and colleagues successfully isolated the peptide ligand from rat stomach extracts, determined its structure, and named it ghrelin. The GHS-R1a is now accepted to be the ghrelin receptor. The existence of the ghrelin system has been demonstrated in many animal classes through biochemical and molecular biological strategies as well as through genome projects. Our work, focused on identifying the ghrelin receptor and its ligand ghrelin in laboratory animals, particularly nonmammalian vertebrates, has provided new insights into the molecular evolution of the ghrelin receptor. In mammals, it is assumed that the ghrelin receptor evolution is in line with the plate tectonics theory. In contrast, the evolution of the ghrelin receptor in nonmammalian vertebrates differs from that of mammals: multiplicity of the ghrelin receptor isoforms is observed in nonmammalian vertebrates only. This multiplicity is due to genome duplication and polyploidization events that particularly occurred in Teleostei. Furthermore, it is likely that the evolution of the ghrelin receptor is distinct from that of its ligand, ghrelin, because only one ghrelin isoform has been detected in all species examined so far. In this review, we summarize current knowledge related to the molecular evolution of the ghrelin receptor in mammalian and nonmammalian vertebrates. PMID:24353285

  7. The Jukes-Cantor Model of Molecular Evolution

    ERIC Educational Resources Information Center

    Erickson, Keith

    2010-01-01

    The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…

  8. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  9. Witnessing Phenotypic and Molecular Evolution in the Fruit Fly.

    PubMed

    Heil, Caiti S S; Hunter, Mika J; Noor, Juliet Kf; Miglia, Kathleen; Manzano-Winkler, Brenda; McDermott, Shannon R; Noor, Mohamed Af

    2012-12-01

    This multi-day exercise is designed for a college Genetics and Evolution laboratory to demonstrate concepts of inheritance and phenotypic and molecular evolution using a live model organism, Drosophila simulans. Students set up an experimental fruit fly population consisting of ten white eyed flies and one red eyed fly. Having red eyes is advantageous compared to having white eyes, allowing students to track the spread of this advantageous trait over several generations. Ultimately, the students perform PCR and gel electrophoresis at two neutral markers, one located in close proximity to the eye-color locus, and one located at the other end of the chromosome. Students observe that most flies have red eyes, and these red-eyed flies have lost variation at the near marker, but maintained variation at the far marker, hence observing a "selective sweep" and the "hitchhiking" of a nearby neutral variant. Students literally observe phenotypic and molecular evolution in their classroom! PMID:23459154

  10. The Molecular Evolution of the Qo Motif

    PubMed Central

    Kao, Wei-Chun; Hunte, Carola

    2014-01-01

    Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex. PMID:25115012

  11. The speciation of conger eel galectins by rapid adaptive evolution.

    PubMed

    Ogawa, Tomohisa; Shirai, Tsuyoshi; Shionyu-Mitsuyama, Clara; Yamane, Takashi; Kamiya, Hisao; Muramoto, Koji

    2004-01-01

    Many cases of accelerated evolution driven by positive Darwinian selection are identified in the genes of venomous and reproductive proteins. This evolutional phenomenon might have important consequences in their gene-products' functions, such as multiple specific toxins for quick immobilization of the prey and the establishment of barriers to fertilization that might lead to speciation, and in the molecular evolution of novel genes. Recently, we analyzed the molecular evolution of two galectins isolated from the skin mucus of conger eel (Conger myriaster), named congerins I and II, by cDNA cloning and X-ray structural analysis, and we found that they have evolved in the rapid adaptive manner to emergence of a new structure including strand-swapping and a unique new ligand-binding site. In this review article we summarize and discuss the molecular evolution, especially the rapid adaptive evolution, and the structure-function relationships of conger eel galectins. PMID:14758068

  12. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  13. Molecular evolution of nitrate reductase genes.

    PubMed

    Zhou, J; Kleinhofs, A

    1996-04-01

    To understand the evolutionary mechanisms and relationships of nitrate reductases (NRs), the nucleotide sequences encoding 19 nitrate reductase (NR) genes from 16 species of fungi, algae, and higher plants were analyzed. The NR genes examined show substantial sequence similarity, particularly within functional domains, and large variations in GC content at the third codon position and intron number. The intron positions were different between the fungi and plants, but conserved within these groups. The overall and nonsynonymous substitution rates among fungi, algae, and higher plants were estimated to be 4.33 x 10(-10) and 3.29 x 10(-10) substitutions per site per year. The three functional domains of NR genes evolved at about one-third of the rate of the N-terminal and the two hinge regions connecting the functional domains. Relative rate tests suggested that the nonsynonymous substitution rates were constant among different lineages, while the overall nucleotide substitution rates varied between some lineages. The phylogenetic trees based on NR genes correspond well with the phylogeny of the organisms determined from systematics and other molecular studies. Based on the nonsynonymous substitution rate, the divergence time of monocots and dicots was estimated to be about 340 Myr when the fungi-plant or algae-higher plant divergence times were used as reference points and 191 Myr when the rice-barley divergence time was used as a reference point. These two estimates are consistent with other estimates of divergence times based on these reference points. The lack of consistency between these two values appears to be due to the uncertainty of the reference times. PMID:8642612

  14. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms

    PubMed Central

    Das, Atze T.; Berkhout, Ben

    2010-01-01

    Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach. PMID:20478891

  15. Social parasitism and the molecular basis of phenotypic evolution.

    PubMed

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B J; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  16. Social parasitism and the molecular basis of phenotypic evolution

    PubMed Central

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B. J.; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer—Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  17. Widespread convergence in toxin resistance by predictable molecular evolution

    PubMed Central

    Ujvari, Beata; Casewell, Nicholas R.; Sunagar, Kartik; Arbuckle, Kevin; Wüster, Wolfgang; Lo, Nathan; O’Meally, Denis; Beckmann, Christa; King, Glenn F.; Deplazes, Evelyne; Madsen, Thomas

    2015-01-01

    The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na+/K+-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na+/K+-ATPase H1–H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na+/K+-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses. PMID:26372961

  18. [The genotyping and molecular evolution of varicella-zoster virus].

    PubMed

    Jiang, Long-Feng; Gan, Lin; Chen, Jing-Xian; Wang, Ming-Li

    2012-09-01

    Varicella-zoster virus (VZV, Human herpesvirus 3) is a member of the family Herpesviridae, and is classified as alpha-subfamily along with HSV-1 and HSV-2. VZV is the causative agent of chicken pox (varicella) mostly in children, after which it establishes latency in the sensory ganglia with the potential to reactivate at a later time to cause shingles (zoster). Increasing molecular epidemiological studies in recent years have been performed to monitor the mutations in VZV genome, discriminate vaccine virus from wild type virus, study the phylogeny of VZV strains throughout the world, and understand the evolution of the different clades of VZV. The progress has great impact on the fields of epidemiology, virology and bioinformatics. In this review, the currently available data concerning the geographic distribution and molecular evolution of VZV clades are discussed. PMID:23233938

  19. [The molecular evolution of rice stress-related genes].

    PubMed

    Song, Xiaojun; Xie, Kaibin; Zhang, Yanping; Jin, Ping

    2014-10-01

    In the processes of evolution, plants have formed a perfect regulation system to tolerate adverse environmental conditions. However, there has not been any report about the molecular evolution of rice stress-related genes. We derived a family of 22 stress-related genes in rice from Plant Stress Gene Database, and analyzed it by bioinformatics and comparative genome method. The results showed that these genes are relatively conservative in low organisms, and their copy numbers increase along with the environmental changes and the evolution. We also found four conserved sequence motifs and three other specific motifs. We propose that these motifs are closely associated with the function of rice stress-related genes. The analysis of selection pressure showed that about 50% rice stress-related genes have positive selection sites, although they were subject to a strong purifying selection. Positive selection sites might be very significant for plants to adapt to environmental changes. PMID:25406251

  20. Reconstructing phylogenies and phenotypes: a molecular view of human evolution.

    PubMed

    Bradley, Brenda J

    2008-04-01

    This review broadly summarizes how molecular biology has contributed to our understanding of human evolution. Molecular anthropology began in the 1960s with immunological comparisons indicating that African apes and humans were closely related and, indeed, shared a common ancestor as recently as 5 million years ago. Although initially dismissed, this finding has proven robust and numerous lines of molecular evidence now firmly place the human-ape divergence at 4-8 Ma. Resolving the trichotomy among humans, chimpanzees and gorillas took a few more decades. Despite the readily apparent physical similarities shared by African apes to the exclusion of modern humans (body hair, knuckle-walking, thin tooth enamel), the molecular support for a human-chimpanzee clade is now overwhelming. More recently, whole genome sequencing and gene mapping have shifted the focus of molecular anthropology from phylogenetic analyses to phenotypic reconstruction and functional genomics. We are starting to identify the genetic basis of the morphological, physiological and behavioural traits that distinguish modern humans from apes and apes from other primates. Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern humans and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes themselves, an idea first proposed over 30 years ago. Almost weekly, press releases describe newly identified genes and regulatory elements that seem to have undergone strong positive selection along the human lineage. Loci involved in speech (e.g. FOXP2), brain development (e.g. ASPM), and skull musculature (e.g. MYH16) have been of particular interest, but some surprising candidate loci (e.g. those involved in auditory capabilities) have emerged as well. Exciting new research avenues, such as the Neanderthal Genome Project, promise that molecular analyses will continue to provide novel insights about our evolution

  1. Flight loss linked to faster molecular evolution in insects

    PubMed Central

    Mitterboeck, T. Fatima; Adamowicz, Sarah J.

    2013-01-01

    The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne. PMID:23884090

  2. A good Darwinian? Winwood Reade and the making of a late Victorian evolutionary epic.

    PubMed

    Hesketh, Ian

    2015-06-01

    In 1871 the travel writer and anthropologist W. Winwood Reade (1838-1875) was inspired by his correspondence with Darwin to turn his narrow ethnological research on West African tribes into the broadest history imaginable, one that would show Darwin's great principle of natural selection at work throughout the evolutionary history of humanity, stretching back to the origins of the universe itself. But when Martyrdom of Man was published in 1872, Reade confessed that Darwin would not likely find him a very good Darwinian, as he was unable to show that natural selection was anything more than a secondary law that arranges all details. When it came to historicising humans within the sweeping history of all creation, Reade argued that the primary law was that of development, a less contentious theory of human evolution that was better suited to Reade's progressive and teleological history of life. By focussing on the extensive correspondence between Reade and Darwin, this paper reconstructs the attempt to make an explicitly Darwinian evolutionary epic in order to shed light on the moral and aesthetic demands that worked to give shape to Victorian efforts to historicise humans within a vastly expanding timeframe. PMID:25716223

  3. Molecular evolution of haemagglutinin (H) gene in measles virus.

    PubMed

    Kimura, Hirokazu; Saitoh, Mika; Kobayashi, Miho; Ishii, Haruyuki; Saraya, Takeshi; Kurai, Daisuke; Tsukagoshi, Hiroyuki; Shirabe, Komei; Nishina, Atsuyoshi; Kozawa, Kunihisa; Kuroda, Makoto; Takeuchi, Fumihiko; Sekizuka, Tsuyoshi; Minakami, Hisanori; Ryo, Akihide; Takeda, Makoto

    2015-01-01

    We studied the molecular evolution of the haemagglutinin (H) gene (full length) in all genotypes (24 genotypes, 297 strains) of measles virus (MeV). The gene's evolutionary timescale was estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also analysed positive selection sites. The MCMC tree indicated that the MeV H gene diverged from the rinderpest virus (same genus) about 250 years ago and that 24 MeV genotypes formed 3 lineages dating back to a 1915 ancestor (95% highest posterior density [HPD] 1882-1941) with relatively rapid evolution (mean rate: 9.02 × 10(-4) substitutions/site/year). The 3 lineages diverged in 1915 (lineage 1, 95% HPD 1882-1941), 1954 (lineage 2, 95% HPD 1937-1969), and 1940 (lineage 3, 95% HPD 1927-1952). These 24 genotypes may have diverged and emerged between the 1940s and 1990 s. Selective pressure analysis identified many negative selection sites on the H protein but only a few positive selection sites, suggesting strongly operated structural and/or functional constraint of changes on the H protein. Based on the molecular evolution of H gene, an ancestor MeV of the 24 genotypes emerged about 100 years ago and the structure of H protein has been well conserved. PMID:26130388

  4. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family.

    PubMed

    Körbes, Ana Paula; Kulcheski, Franceli Rodrigues; Margis, Rogério; Margis-Pinheiro, Márcia; Turchetto-Zolet, Andreia Carina

    2016-03-01

    Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches. PMID:26721558

  5. Molecular hyperdiversity and evolution in very large populations

    PubMed Central

    Cutter, Asher D.; Jovelin, Richard; Dey, Alivia

    2014-01-01

    The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function, and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually-reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation, and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of non-crossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on non-coding regulatory elements. PMID:23506466

  6. Molecular evolution of WDR62, a gene that regulates neocorticogenesis

    PubMed Central

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-01-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000–765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  7. Molecular evolution of WDR62, a gene that regulates neocorticogenesis.

    PubMed

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-09-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000-765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  8. Evolution for Young Victorians

    NASA Astrophysics Data System (ADS)

    Lightman, Bernard

    2012-07-01

    Evolution was a difficult topic to tackle when writing books for the young in the wake of the controversies over Darwin's Origin of Species. Authors who wrote about evolution for the young experimented with different ways of making the complex concepts of evolutionary theory accessible and less controversial. Many authors depicted presented evolution in a non-Darwinian form amenable to religious interpretation.

  9. Darwinian Behavior in a Cold, Sporadically Fed Pool of Ribonucleotides

    PubMed Central

    2012-01-01

    Abstract A testable, explicit origin for Darwinian behavior, feasible on a chaotic early Earth, would aid origins discussion. Here I show that a pool receiving unreliable supplies of unstable ribonucleotide precursors can recurrently fill this role. By using numerical integration, the differential equations governing a sporadically fed pool are solved, yielding quantitative constraints for the proliferation of molecules that also have a chemical phenotype. For example, templated triphosphate nucleotide joining is >104 too slow, suggesting that a group more reactive than pyrophosphate activated primordial nucleotides. However, measured literature rates are sufficient if the Initial Darwinian Ancestor (IDA) resembles a 5′-5′ cofactor-like dinucleotide RNA, synthesized via activation with a phosphorimidazolide-like group. A sporadically fed pool offers unforeseen advantages; for example, the pool hosts a novel replicator which is predominantly unpaired, even though it replicates. Such free template is optimized for effective selection during its replication. Pool nucleotides are also subject to a broadly based selection that impels the population toward replication, effective selection, and Darwinian behavior. Such a primordial pool may have left detectable modern traces. A sporadically fed ribonucleotide pool also fits a recognizable early Earth environment, has recognizable modern descendants, and suits the early shape of the phylogenetic tree of Earthly life. Finally, analysis points to particular data now needed to refine the hypothesis. Accordingly, a kinetically explicit chemical hypothesis for a terran IDA can be justified, and informative experiments seem readily accessible. Key Words: Cofactor—RNA—Origin of life—Replication—Initial Darwinian Ancestor (IDA). Astrobiology 12, 870–883. PMID:22946838

  10. [Evolution and systematics of nematodes based on molecular investigation].

    PubMed

    Okulewicz, Anna; Perec, Agnieszka

    2004-01-01

    Evolution and systematics of nematodes based on molecular investigation. The use of molecular phylogenetics to examine the interrelationships between animal parasites, free-living nematodes, and plant parasites versus traditional classification based on morphological-ecological characters was discussed and reviewed. Distinct differences were observed between parasitic nematodes and free-living ones. Within the former group, animal parasites turned out to be distinctly different from plant parasites. Using small subunit of ribosomal RNA gene sequence from a wide range of nematodes, there is a possibility to compare animal-parasitic, plant-parasitic and free-living taxa. Nowadays the parasitic nematodes expressed sequence tag (EST) project is currently generating sequence information to provide a new source of data to examine the evolutionary history of this taxonomic group. PMID:16859012

  11. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  12. A Tale of Two Crocoducks: Creationist Misuses of Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Hofmann, James R.

    2014-10-01

    Although some creationist objections to evolutionary biology are simplistic and thus are easily refuted, when more technical arguments become widespread it is important for science educators to explain the relevant science in a straightforward manner. An interesting case study is provided by misguided allegations about how cytochrome c data pertain to molecular evolution. The most common of these misrepresentations bears a striking similarity to a particularly glaring misunderstanding of what should be expected of a transitional form in a fossil sequence. Although evangelist Kirk Cameron's ridiculous injunction of a hypothetical `crocoduck' as an example of a potential transitional form is frequently invoked to illustrate the ignorance of many critics of evolutionary science, a strikingly analogous argument was applied to cytochrome c data by biochemist Michael Denton in 1985. The details of this analogy are worth exploring to clarify the fallacy of the widely circulated molecular argument.

  13. Darwinian behavior in a cold, sporadically fed pool of ribonucleotides.

    PubMed

    Yarus, Michael

    2012-09-01

    A testable, explicit origin for Darwinian behavior, feasible on a chaotic early Earth, would aid origins discussion. Here I show that a pool receiving unreliable supplies of unstable ribonucleotide precursors can recurrently fill this role. By using numerical integration, the differential equations governing a sporadically fed pool are solved, yielding quantitative constraints for the proliferation of molecules that also have a chemical phenotype. For example, templated triphosphate nucleotide joining is >10(4) too slow, suggesting that a group more reactive than pyrophosphate activated primordial nucleotides. However, measured literature rates are sufficient if the Initial Darwinian Ancestor (IDA) resembles a 5'-5' cofactor-like dinucleotide RNA, synthesized via activation with a phosphorimidazolide-like group. A sporadically fed pool offers unforeseen advantages; for example, the pool hosts a novel replicator which is predominantly unpaired, even though it replicates. Such free template is optimized for effective selection during its replication. Pool nucleotides are also subject to a broadly based selection that impels the population toward replication, effective selection, and Darwinian behavior. Such a primordial pool may have left detectable modern traces. A sporadically fed ribonucleotide pool also fits a recognizable early Earth environment, has recognizable modern descendants, and suits the early shape of the phylogenetic tree of Earthly life. Finally, analysis points to particular data now needed to refine the hypothesis. Accordingly, a kinetically explicit chemical hypothesis for a terran IDA can be justified, and informative experiments seem readily accessible. PMID:22946838

  14. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  15. The evolution of human populations: a molecular perspective.

    PubMed

    Ayala, F J; Escalante, A A

    1996-02-01

    Human evolution exhibits repeated speciations and conspicuous morphological change: from Australopithecus to Homo habilis, H. erectus, and H. sapiens; and from their hominoid ancestor to orangutans, gorillas, chimpanzees, and humans. Theories of founder-event speciation propose that speciation often occurs as a consequence of population bottlenecks, down to one or very few individual pairs. Proponents of punctuated equilibrium claim in addition that founder-event speciation results in rapid morphological change. The major histocompatibility complex (MHC) consists of several very polymorphic gene loci. The genealogy of 19 human alleles of the DQB1 locus coalesces more than 30 million years ago, before the divergence of apes and Old World monkeys. Many human alleles are more closely related to pongid and cercopithecoid alleles than to other human alleles. Using the theory of gene coalescence, we estimate that these polymorphisms require human populations of the order of N = 100,000 individuals for the last several million years. This conclusion is confirmed by computer simulations showing the rate of decay of the polymorphisms over time. Computer simulations indicate, in addition, that in human evolution no bottlenecks have occurred with fewer than several thousand individuals. We evaluate studies of mtDNA, Y-chromosome, and microsatellite autosomal polymorphisms and conclude that they are consistent with the MHC result that no narrow population bottlenecks have occurred in human evolution. The available molecular information favors a recent African origin of modern humans, who spread out of Africa approximately 100,000 to 200,000 years ago. PMID:8673287

  16. Statistical mechanics of quasispecies theories of molecular evolution

    NASA Astrophysics Data System (ADS)

    Munoz Tavera, Enrique

    This thesis presents a statistical mechanical analysis of different formulations of quasispecies theory of molecular evolution. These theories, characterized by two different families of models, the Crow-Kimura and the Eigen model, constitute a microscopie description of evolution. These models are most often used for RNA viruses, where a phase transition is predicted, in agreement with experiments, between an organized or quasispecies phase, and a disordered non-selective phase when the mutation rate exceeds a critical value. The methods of statistical mechanics, in particular field-theoretic methods, are employed to obtain analytic solutions to four problems relevant to biological interest. The first chapter presents the study of evolution under a multiple-peak fitness landscape, with biological applications in the study of the proliferation of viruses or cancer under the control of drugs or the immune system. The second chapter studies the effect of incorporating different forms of horizontal gene transfer and two-parent recombination to the classical formulation of quasispecies models. As an example, we study the effect of the sign of epistasis of the fitness landscape on the advantage or disadvantage of recombination for the mean fitness. The third chapter considers the relaxation of the purine/pyrimidine assumption in the classical formulation of the models, by formulating and solving the parallel and Eigen models in the context of a four-letter alphabet. The fourth and final chapter studies finite population effects, both in the presence and in the absence of horizontal gene transfer.

  17. Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments

    PubMed Central

    Zhao, Huabin; Ru, Binghua; Teeling, Emma C.; Faulkes, Christopher G.; Zhang, Shuyi; Rossiter, Stephen J.

    2009-01-01

    The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly. PMID:20016835

  18. Selection by differential molecular survival: a possible mechanism of early chemical evolution.

    PubMed Central

    de Duve, C

    1987-01-01

    A model is proposed to account for selective chemical evolution, progressing from a relatively simple initial set of abiotic synthetic phenomena up to the elaborately sophisticated processes that are almost certainly required to produce the complex molecules, such as replicatable RNA-like oligonucleotides, needed for a Darwinian form of selection to start operating. The model makes the following assumptions: (i) that a small number of micromolecular substances were present at high concentration; (ii) that a random assembly mechanism combined these molecules into a variety of multimeric compounds comprising a wide repertoire of rudimentary catalytic activities; and (iii) that a lytic system capable of breaking down the assembled products existed. The model assumes further that catalysts supplied with substrates were significantly protected against breakdown. It is shown that, by granting these assumptions, an increasingly complex network of metabolic pathways would progressively be established. At the same time, the catalysts concerned would accumulate selectively to become choice substrates for elongation and other modifications that could enhance their efficiency, as well as their survival. Chemical evolution would thus proceed by a dual process of metabolic extension and catalytic innovation. Such a process should be largely deterministic and predictable from initial conditions. PMID:3479788

  19. Supernova Feedback in Molecular Clouds: Global Evolution and Dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-04-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetised and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on timescales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer timescales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300 - 3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  20. Supernova feedback in molecular clouds: global evolution and dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-07-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetized and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on time-scales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer time-scales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300-3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  1. MOLECULAR GAS EVOLUTION ACROSS A SPIRAL ARM IN M51

    SciTech Connect

    Egusa, Fumi; Scoville, Nick; Koda, Jin

    2011-01-10

    We present sensitive and high angular resolution CO(1-0) data obtained by the Combined Array for Research in Millimeter-wave Astronomy observations toward the nearby grand-design spiral galaxy M51. The angular resolution of 0.''7 corresponds to 30 pc, which is similar to the typical size of giant molecular clouds (GMCs), and the sensitivity is also high enough to detect typical GMCs. Within the 1' field of view centered on a spiral arm, a number of GMC-scale structures are detected as clumps. However, only a few clumps are found to be associated with each giant molecular association (GMA) and more than 90% of the total flux is resolved out in our data. Considering the high sensitivity and resolution of our data, these results indicate that GMAs are not mere confusion with GMCs but plausibly smooth structures. In addition, we have found that the most massive clumps are located downstream of the spiral arm, which suggests that they are at a later stage of molecular cloud evolution across the arm and plausibly are cores of GMAs. By comparing with H{alpha} and Pa{alpha} images, most of these cores are found to have nearby star-forming regions. We thus propose an evolutionary scenario for the interstellar medium, in which smaller molecular clouds collide to form smooth GMAs at spiral arm regions and then star formation is triggered in the GMA cores. Our new CO data have revealed the internal structure of GMAs at GMC scales, finding the most massive substructures on the downstream side of the arm in close association with the brightest H II regions.

  2. Toward the Darwinian transition: Switching between distributed and speciated states in a simple model of early life

    NASA Astrophysics Data System (ADS)

    Arnoldt, Hinrich; Strogatz, Steven H.; Timme, Marc

    2015-11-01

    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for stochastic processes potentially contributing to this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and essentially contributed to the emergence of vertical descent and the first well-defined species in early evolution. A systematic nonlinear analysis of the stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable direction out of early collective evolution, potentially enabling the start of individuality and vertical Darwinian evolution.

  3. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles.

    PubMed

    McCrory, Charles C L; Uyeda, Christopher; Peters, Jonas C

    2012-02-15

    A series of water-soluble molecular cobalt complexes of tetraazamacrocyclic ligands are reported for the electrocatalytic production of H(2) from pH 2.2 aqueous solutions. The comparative data reported for this family of complexes shed light on their relative efficiencies for hydrogen evolution in water. Rotating disk electrode voltammetry data are presented for each of the complexes discussed, as are data concerning their respective pH-dependent electrocatalytic activity. In particular, two diimine-dioxime complexes were identified as exhibiting catalytic onset at comparatively low overpotentials relative to other reported homogeneous cobalt and nickel electrocatalysts in aqueous solution. These complexes are stable at pH 2.2 and produce hydrogen with high Faradaic efficiency in bulk electrolysis experiments over time intervals ranging from 2 to 24 h. PMID:22280515

  4. Molecular Evolution of the Capsid Gene in Norovirus Genogroup I.

    PubMed

    Kobayashi, Miho; Yoshizumi, Shima; Kogawa, Sayaka; Takahashi, Tomoko; Ueki, Yo; Shinohara, Michiyo; Mizukoshi, Fuminori; Tsukagoshi, Hiroyuki; Sasaki, Yoshiko; Suzuki, Rieko; Shimizu, Hideaki; Iwakiri, Akira; Okabe, Nobuhiko; Shirabe, Komei; Shinomiya, Hiroto; Kozawa, Kunihisa; Kusunoki, Hideki; Ryo, Akihide; Kuroda, Makoto; Katayama, Kazuhiko; Kimura, Hirokazu

    2015-01-01

    We studied the molecular evolution of the capsid gene in all genotypes (genotypes 1-9) of human norovirus (NoV) genogroup I. The evolutionary time scale and rate were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also performed selective pressure analysis and B-cell linear epitope prediction in the deduced NoV GI capsid protein. Furthermore, we analysed the effective population size of the virus using Bayesian skyline plot (BSP) analysis. A phylogenetic tree by MCMC showed that NoV GI diverged from the common ancestor of NoV GII, GIII, and GIV approximately 2,800 years ago with rapid evolution (about 10(-3) substitutions/site/year). Some positive selection sites and over 400 negative selection sites were estimated in the deduced capsid protein. Many epitopes were estimated in the deduced virus capsid proteins. An epitope of GI.1 may be associated with histo-blood group antigen binding sites (Ser377, Pro378, and Ser380). Moreover, BSP suggested that the adaptation of NoV GI strains to humans was affected by natural selection. The results suggested that NoV GI strains evolved rapidly and date back to many years ago. Additionally, the virus may have undergone locally affected natural selection in the host resulting in its adaptation to humans. PMID:26338545

  5. Molecular Evolution and Structural Features of IRAK Family Members

    PubMed Central

    Gosu, Vijayakumar; Basith, Shaherin; Durai, Prasannavenkatesh; Choi, Sangdun

    2012-01-01

    The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations. PMID:23166766

  6. Darwinian psychiatry and the concept of mental disorder.

    PubMed

    Troisi, Alfonso; McGuire, Michael

    2002-12-01

    In this paper, we discuss the concept of mental disorder from the perspective of Darwinian psychiatry. Using this perspective does not resolve all of the quandaries which philosophers of medicine face when trying to provide a general definition of disease. However, it does take an important step toward clarifying why current methods of psychiatric diagnosis are criticizable and how clinicians can improve the identification of true mental disorders. According to Darwinian psychiatry, the validity of the conventional criteria of psychiatric morbidity is dependent on their association with functional impairment. Suffering, statistical deviance, and physical lesion are frequent correlates of mental disorders but, in absence of dysfunctional consequences, none of these criteria is sufficient for considering a psychological or behavioral condition as a psychiatric disorder. The Darwinian concept of mental disorder builds from two basic ideas: (1) the capacity to achieve biological goals is the best single attribute that characterizes mental health; and (2), the assessment of functional capacities cannot be properly made without consideration of the environment in which the individual lives. These two ideas reflect a concept of mental disorder that is both functional and ecological. A correct application of evolutionary knowledge should not necessarily lead to the conclusion that therapeutic intervention should be limited to conditions that jeopardize biological adaptation. Because one of the basic aims of medicine is to alleviate human suffering, an understanding of the evolutionary foundations of the concept of mental disorder should translate into more effective ways for promoting individual and social well-being, not into the search for natural laws determining what is therapeutically right or wrong. PMID:12496733

  7. Getting Past the RNA World: The Initial Darwinian Ancestor

    PubMed Central

    Yarus, Michael

    2011-01-01

    SUMMARY A little-noted result of the confirmation of multiple premises of the RNA-world hypothesis is that we now know something about the dawn organisms that followed the origin of life, perhaps over 4 billion years ago. We are therefore in an improved position to reason about the biota just before RNA times, during the era of the first replicators, the first Darwinian creatures on Earth. An RNA congener still prominent in modern biology is a plausible descendent of these first replicators. PMID:20719875

  8. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  9. Evolution of Molecular Clouds in a Hot Plasma

    NASA Astrophysics Data System (ADS)

    Vieser, Wolfgang; Hensler, Gerhard

    We are performing 2D hydrodynamic simulations to examine the evaporation and condensation of molecular clouds in the hot phase of the interstellar medium due to heat conduction. Heat conduction is a process that may not be neglected for clouds which are embedded in a hot gas, High-Velocity-Clouds falling through the hot galactic halo or clouds in a galactic chimney. The evolution of cold and dense clouds with different masses and radii is calculated in the subsonic streaming of a hot rarefied plasma. Our code includes self-gravity, heating and cooling effects and heat conduction by electrons. Simulations with and without heat conduction show significant differences. Heat conduction provides a possibility to stabilize clouds agains hydrodynamic instabilities. Molecular clouds become able to survive significantly longer in a violent stream of hot gas. Additionally, this hot gas condensates onto the cloud's surface and is mixed very efficiently with the cloud material. Therefore, heat conduction is an important process, which has to be considered in order to explain the existence and metallicity of clouds in a stream of hot gas.

  10. Evolution of Molecular Alignment in a Background Plasma

    NASA Astrophysics Data System (ADS)

    Pearson, Andrew; Antonsen, Thomas

    2008-11-01

    We study numerically the behavior of rotational revivals in a molecular gas when subject to the fluctuating electric field of a background plasma. We model a molecule as a rigid rotor and couple it to an electric field using permanent and induced multipole interactions. The evolution of the density matrix for the molecule is calculated for a short, intense laser pulse, followed by a fluctuating electric field. A broad superposition of angular momentum eigenstates of a molecule is created by the laser field, and the result is a set of recurring peaks in the probability density for observing a particular orientation -- the so-called 'rotational revivals.' Experimentally, this effect is manifest as a variation in the refractive index of the gas [1]. The fluctuating field is created using the dressed particle method, and the result is a loss of coherence between the phases of the basis states of the molecule, which causes a decreasing amplitude for subsequent alignment peaks. Modern short-pulse lasers operate with sufficient intensity to make this effect relevant to experiments in molecular alignment. This work was supported by the Department of Energy.[1] Y.-H. Chen et. al., Optics Express Vol. 15, No. 18, 11341 (2007)

  11. The first molecular phylogeny of Strepsiptera (Insecta) reveals an early burst of molecular evolution correlated with the transition to endoparasitism.

    PubMed

    McMahon, Dino P; Hayward, Alexander; Kathirithamby, Jeyaraney

    2011-01-01

    A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role. PMID:21738621

  12. The consuming instinct. What Darwinian consumption reveals about human nature.

    PubMed

    Saad, Gad

    2013-01-01

    Editor's note: In this engaging talk given last February on a particularly cold and blustery day at Texas Tech University, Professor Gad Saad of Concordia University discusses his work in the area of evolutionary consumption. In making the case for understanding consumerism from a Darwinian perspective, Saad addresses several key tenets from his books The Consuming Instinct (1) and The Evolutionary Bases of Consumption. (2) In particular, Saad argues that: (1) many consumption acts can be mapped onto four key Darwinian modules (survival, mating, kin selection, and reciprocal altruism); and, (2) cultural products such as song lyrics and movie plotlines are fossils of the human mind that highlight a shared, biologically based human nature. In this wide-ranging inquiry, Saad summarizes several of his other empirical works, including the effects of conspicuous consumption on men's testosterone levels (3) and how the ovulatory cycle in the human female influences consumption. (4) Overall, Professor Saad contends that an infusion of evolutionary and biologically based perspectives into the discipline of consumer behavior and related government regulatory policies yields myriad benefits, notably greater consilience, more effective practices, an ethos of interdisciplinarity, and methodological pluralism. PMID:24047091

  13. Social darwinian influences on conceptions of marriage, sex, and motherhood.

    PubMed

    Franzblau, S H

    1996-09-01

    This paper examines the influence of social darwinian and eugenic ideologies on paradigms of marriage, sex, and motherhood from 1900 until the present time. Two major ideological trends of the new entrepreneurial class in England and the United States after the Industrial Revolution concerned 1) increasing the marriage and fertility rates of middle and upper class white women; and 2) establishing early parental bonding between these same women and their infants to ensure the perpetuation of (white) "race culture". These ideological concerns are evident in post-1900 eugenically-oriented journals and books on sex and marriage, which discuss increasing marriage and fertility rates of middle and upper class white women, including the postponement of intellectual studies until after the active reproductive period; eugenicist education, selective sterilization of 'unfit' women; and the glorification of sexual intercourse for women. Funding for basic research on reproductive sex, sponsored by the National Research Council, was based in these ideological trends. After WWII blatant eugenic ideologies disappeared. However, post WWII research on mother-infant bonding or attachment gave support to earlier eugenic ideals. Recent examples of the continuation of social darwinian influences, as well as their social and legal implications are discussed. PMID:24254921

  14. Molecular evolution of the MAGUK family in metazoan genomes

    PubMed Central

    te Velthuis, Aartjan JW; Admiraal, Jeroen F; Bagowski, Christoph P

    2007-01-01

    Background Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK). In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla. Results Our results indicate that at least four of the seven MAGUK subfamilies were present in early metazoan lineages, such as Porifera. We employed domain sequence and structure based methods to infer a model for the evolutionary history of the MAGUKs. Notably, the phylogenetic trees for the guanylate kinase (GK)-, the PDZ- and the SH3-domains all suggested a matching evolutionary model which was further supported by molecular modeling of the 3D structures of different GK domains. We found no MAGUK in plants, fungi or other unicellular organisms, which suggests that the MAGUK core structure originated early in metazoan history. Conclusion In summary, we have characterized here the molecular and structural evolution of the large MAGUK family. Using the MAGUKs as an example, our results show that it is possible to derive a highly supported evolutionary model for important multidomain families by analyzing encoded protein domains. It further suggests that larger superfamilies encoded in the different genomes can be analyzed in a similar manner. PMID:17678554

  15. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of giant molecular clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ˜ 109 M⊙) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the XCO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_{H, min} = 10 {cm}^{-3}, or using an observationally motivated CO intensity threshold of 0.25 {K} {km} {s}^{-1}. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ≈ 40 Myr, with a median of 13 Myr, in agreement with observations. At one-tenth solar metallicity, young clouds ( ≲ 10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ≈3 and one to two orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ≈ 1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, ICO, is strongly suppressed at low dust extinction, Av, and possibly saturates towards high Av, in agreement with observations. The ICO-Av relation shifts towards higher Av for higher metallicities and, to a lesser extent, for stronger UV radiation. At one-tenth solar metallicity, CO emission is weaker in young clouds ( ≲ 10-15 Myr), consistent with the underabundance of CO. Consequently, XCO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  16. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of Giant Molecular Clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ~ 10^9 M_sol) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the X_CO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_H,min = 10 cm^-3, or using an observationally motivated CO intensity threshold of 0.25 K km s^-1. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ~40 Myr, with a median of 13 Myr, in agreement with observations. At one tenth solar metallicity, young clouds (<10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ~3 and 1-2 orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ~1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, I_CO, is strongly suppressed at low dust extinction, A_v, and possibly saturates towards high A_v, in agreement with observations. The I_CO - A_v relation shifts towards higher A_v for higher metallicities and, to a lesser extent, for stronger UV radiation. At one tenth solar metallicity, CO emission is weaker in young clouds (<10-15 Myr), consistent with the underabundance of CO. Consequently, X_CO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  17. Evolution of the atomic and molecular gas content of galaxies

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Somerville, Rachel S.; Trager, Scott C.

    2014-08-01

    We study the evolution of atomic and molecular gas in galaxies in semi-analytic models of galaxy formation that include new modelling of the partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases. We adopt two scenarios for the formation of molecules: one pressure based and one metallicity based. We find that both recipes successfully reproduce the gas fractions and gas-to-stellar mass ratios of H I and H2 in local galaxies, as well as the H I and H2 disc sizes up to z ≤ 2. We reach good agreement with the locally observed H I and H2 mass function, although both recipes slightly overpredict the low-mass end of the H I mass function. Both of our models predict that the high-mass end of the H I mass function remains nearly constant at redshifts z < 2.0. The metallicity-based recipe yields a higher cosmic density of cold gas and much lower cosmic H2 fraction over the entire redshift range probed than the pressure-based recipe. These strong differences in H I mass function and cosmic density between the two recipes are driven by low-mass galaxies (log (M*/M⊙) ≤ 7) residing in low-mass haloes (log (Mvir/M⊙) ≤ 10). Both recipes predict that galaxy gas fractions remain high from z ˜ 6to3 and drop rapidly at lower redshift. The galaxy H2 fractions show a similar trend, but drop even more rapidly. We provide predictions for the CO J = 1-0 luminosity of galaxies, which will be directly comparable with observations with sub-mm and radio instruments.

  18. The Structure and Evolution of Self-Gravitating Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Holliman, John Herbert, II

    1995-01-01

    We present a theoretical formalism to evaluate the structure of molecular clouds and to determine precollapse conditions in star-forming regions. Models consist of pressure-bounded, self-gravitating spheres of a single -fluid ideal gas. We treat the case without rotation. The analysis is generalized to consider states in hydrostatic equilibrium maintained by multiple pressure components. Individual pressures vary with density as P_i(r) ~ rho^{gamma {rm p},i}(r), where gamma_{rm p},i is the polytropic index. Evolution depends additionally on whether conduction occurs on a dynamical time scale and on the adiabatic index gammai of each component, which is modified to account for the effects of any thermal coupling to the environment of the cloud. Special attention is given to properly representing the major contributors to dynamical support in molecular clouds: the pressures due to static magnetic fields, Alfven waves, and thermal motions. Straightforward adjustments to the model allow us to treat the intrinsically anisotropic support provided by the static fields. We derive structure equations, as well as perturbation equations for performing a linear stability analysis. The analysis provides insight on the nature of dynamical motions due to collapse from an equilibrium state and estimates the mass of condensed objects that form in such a process. After presenting a set of general results, we describe models of star-forming regions that include the major pressure components. We parameterize the extent of ambipolar diffusion. The analysis contributes to the physical understanding of several key results from observations of these regions. Commonly observed quantities are explicitly cross-referenced with model results. We theoretically determine density and linewidth profiles on scales ranging from that of molecular cloud cores to that of giant molecular clouds (GMCs). The model offers an explanation of the mean pressures in GMCs, which are observed to be high relative

  19. Molecular mechanisms of cobalt-catalyzed hydrogen evolution

    PubMed Central

    Marinescu, Smaranda C.; Winkler, Jay R.; Gray, Harry B.

    2012-01-01

    Several cobalt complexes catalyze the evolution of hydrogen from acidic solutions, both homogeneously and at electrodes. The detailed molecular mechanisms of these transformations remain unresolved, largely owing to the fact that key reactive intermediates have eluded detection. One method of stabilizing reactive intermediates involves minimizing the overall reaction free-energy change. Here, we report a new cobalt(I) complex that reacts with tosylic acid to evolve hydrogen with a driving force of just 30 meV/Co. Protonation of CoI produces a transient CoIII-H complex that was characterized by nuclear magnetic resonance spectroscopy. The CoIII-H intermediate decays by second-order kinetics with an inverse dependence on acid concentration. Analysis of the kinetics suggests that CoIII-H produces hydrogen by two competing pathways: a slower homolytic route involving two CoIII-H species and a dominant heterolytic channel in which a highly reactive CoII-H transient is generated by CoI reduction of CoIII-H. PMID:22949704

  20. Dynamical Evolution of Supernova Remnants Breaking Through Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul

    2015-04-01

    We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code tep{har83}. We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our one-dimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

  1. HIV Evolution and Escape.

    PubMed Central

    Richman, Douglas D.; Little, Susan J.; Smith, Davey M.; Wrin, Terri; Petropoulos, Christos; Wong, Joseph K.

    2004-01-01

    Human immunodeficiency virus (HIV) exemplifies the principles of Darwinian evolution with a telescoped chronology. Because of its high mutation rate and remarkably high rates of replication, evolution can be appreciated over periods of days in contrast to the durations conceived of by Darwin. Certain selective pressures that drive the evolution of HIV include chemotherapy, anatomic compartmentalization and the immune response. Examples of these selective forces on HIV evolution are described. Images Fig. 5 PMID:17060974

  2. Molecular evolution of SRP cycle components: functional implications.

    PubMed Central

    Althoff, S; Selinger, D; Wise, J A

    1994-01-01

    Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location

  3. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    SciTech Connect

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W. E-mail: p.colin@crya.unam.m E-mail: alan@astro.unam.m

    2010-06-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size {approx}10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  4. Warfare, genocide, and ethnic conflict: a Darwinian approach

    PubMed Central

    2010-01-01

    As the 21st century dawns, I reflect on the history of humankind with growing concern about the need to understand the underlying biological and cultural roots of ethnic conflict and warfare. In the many studies of human conflict, innate biological predispositions have been neglected. This article is the third part of a series of seminars for medical residents at the University of Texas Southwestern Medical School at Dallas (see http://adarwinstudygroup.org/). The series starts with in-depth coverage of Darwinian natural and sexual selection, with examples from the domestication of animals and plants and the crisis of antibiotic resistance. The series strives to show how biology has been neglected in the study of the we-they orientation of human behavior, with its devastating consequences. The subject material is profoundly disturbing, as it looks at “human nature” and contrasts the “dark side” of human behavior with the opposite, profoundly caring and loving side. PMID:21240320

  5. Choosing the right molecular genetic markers for studying biodiversity: from molecular evolution to practical aspects.

    PubMed

    Chenuil, Anne; Anne, Chenuil

    2006-05-01

    The use of molecular genetic markers (MGMs) has become widespread among evolutionary biologists, and the methods of analysis of genetic data improve rapidly, yet an organized framework in which scientists can work is lacking. Elements of molecular evolution are summarized to explain the origin of variation at the DNA level, its measures, and the relationships linking genetic variability to the biological parameters of the studied organisms. MGM are defined by two components: the DNA region(s) screened, and the technique used to reveal its variation. Criteria of choice belong to three categories: (1) the level of variability, (2) the nature of the information (e.g. dominance vs. codominance, ploidy, ... ) which must be determined according to the biological question and (3) some practical criteria which mainly depend on the equipment of the laboratory and experience of the scientist. A three-step procedure is proposed for drawing up MGMs suitable to answer given biological questions, and compiled data are organized to guide the choice at each step: (1) choice, determined by the biological question, of the level of variability and of the criteria of the nature of information, (2) choice of the DNA region and (3) choice of the technique. PMID:16850217

  6. An organismic critique of molecular darwinism.

    PubMed

    Wicken, J S

    1985-12-21

    The molecular darwinian approach to the emergence of life treats the competition between RNA sequences for nucleotide resources as the primordial selective process in prebiotic evolution, which prescribes possible pathways for the subsequent elaboration of organizational relationships. Since success in this competition is determined by the "phenotypic" properties of RNA strands in the absence of organizational context, the genesis of biotic organization is dependent upon the establishment of co-operative, hypercyclic interactions between competing RNA sequences. The thesis of this paper is that hypercycle theory is based on unwarranted assumptions about the conditions of prebiotic evolution, and that the implications of these assumptions run counter to both empirical evidence and to the rational by which natural selection operates in evolution generally. An organismic alternative to hypercycle theory is suggested, based on the catalytic microsphere and the thermodynamics of selection. PMID:2419704

  7. Patterns of molecular evolution of RNAi genes in social and socially parasitic bumblebees.

    PubMed

    Helbing, Sophie; Lattorff, H Michael G

    2016-08-01

    The high frequency of interactions amongst closely related individuals in social insect colonies enhances pathogen transmission. Group-mediated behavior supporting immune defenses tends to decrease selection acting on immune genes. Along with low effective population sizes this might result in relaxed constraint and rapid evolution of immune system genes. Here, we show that antiviral siRNA genes show high rates of molecular evolution with argonaute 2, armitage and maelstrom evolving faster in social bumblebees compared to their socially parasitic cuckoo bumblebees that lack a worker caste. RNAi genes show frequent positive selection at the codon level additionally supported by the occurrence of parallel evolution. Their evolutionary rate is linked to their pathway specific position with genes directly interacting with viruses showing the highest rates of molecular evolution. We suggest that higher pathogen load in social insects indeed drives the molecular evolution of immune genes including antiviral siRNA, if not compensated by behavior. PMID:27117935

  8. A molecular description of the evolution of resistance

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, P.; Joyce, G. F.

    1999-01-01

    BACKGROUND: In vitro evolution has been used to obtain nucleic acid molecules with interesting functional properties. The evolution process usually is carried out in a stepwise manner, involving successive rounds of selection, amplification and mutation. Recently, a continuous in vitro evolution system was devised for RNAs that catalyze the ligation of oligonucleotide substrates, allowing the evolution of catalytic function to be studied in real time. RESULTS: Continuous in vitro evolution of an RNA ligase ribozyme was carried out in the presence of a DNA enzyme that was capable of cleaving, and thereby inactivating, the ribozyme. The DNA concentration was increased steadily over 33.5 hours of evolution, reaching a final concentration that would have been sufficient to inactivate the starting population in one second. The evolved population of ribozymes developed resistance to the DNA enzyme, reducing their vulnerability to cleavage by 2000-fold but retaining their own catalytic function. Based on sequencing and kinetic analysis of the ribozymes, two mechanisms are proposed for this resistance. One involves three nucleotide substitutions, together with two compensatory mutations, that alter the site at which the DNA enzyme binds the ribozyme. The other involves enhancement of the ribozyme's ability to bind its own substrate in a way that protects it from cleavage by the DNA enzyme. CONCLUSIONS: The ability to direct the evolution of an enzyme's biochemical properties in response to the behavior of another macromolecule provides insight into the evolution of resistance and may be useful in developing enzymes with novel or enhanced function.

  9. Molecular diversity and functional evolution of scorpion potassium channel toxins.

    PubMed

    Zhu, Shunyi; Peigneur, Steve; Gao, Bin; Luo, Lan; Jin, Di; Zhao, Yong; Tytgat, Jan

    2011-02-01

    Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases. PMID:20889474

  10. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  11. Mars life: how Darwinian pressures might have shaped its form and function

    NASA Astrophysics Data System (ADS)

    Levin, Gilbert V.

    2005-09-01

    The possible existence of life on Mars is now gaining credence. Evidence consistent with or supporting the presence of extant microbial life, as reported by a life detection experiment on the Viking Mission in 1976, has been rapidly accumulating from spacecraft orbital and lander operations, and from terrestrial observations. Vast oceans of frozen water near the planet's surface are being discovered, with strong indications of recent or present liquid flows, and theory and laboratory experiment have demonstrated that liquid water should exist on the surface of Mars. The biosphere on Earth has been extended into extreme environments until recently thought inimical to life. Places void of life have become rare. No life requirement has been found lacking on Mars. It is possible that, by the time of this 50th Anniversary SPIE Meeting, the paradigm shift accepting life beyond the Earth may have been made. Mankind will then emerge from its ancient fear of loneliness into a new fear of anticipation of what that still unidentified life might portend. The author attempts to apply Darwinian principles of evolution to life on Mars under the selection pressures, opportunities and constraints that have been imposed by past and present Martian conditions. Starting with the type of cell believed to have begun the evolutionary process on Earth, he speculates on what the current life on Mars may be like in form and function, including what threat or promise it might hold for Earth life.

  12. Cognitive phylogenies, the Darwinian logic of descent, and the inadequacy of cladistic thinking

    PubMed Central

    Theofanopoulou, Constantina; Boeckx, Cedric

    2015-01-01

    There has been a reappraisal of phylogenetic issues in cognitive science, as reconstructing cognitive phylogenies has been considered a key for unveiling the cognitive novelties that set the stage for what makes humans special. In our opinion, the studies made until now have approached cognitive phylogenies in a non-optimal way, and we wish to both highlight their problems, drawing on recent considerations in philosophy of biology. The inadequacy of current visions on cognitive phylogenies stems from the influence of the traditional “linear cladograms,” according to which every seemingly new or more sophisticated feature of a cognitive mechanism, viewed as a novelty, is represented as a node on top of the old and shared elements. We claim that this kind of cladograms does not succeed in depicting the complexity with which traits are distributed across species and, furthermore, that the labels of the nodes of these traditional representational systems fail to capture the “tinkering” nature of evolution. We argue that if we are to conceive of cognitive mechanisms in a multi-dimensional, bottom-up perspective, in accordance with the Darwinian logic of descent, we should rather focus on decomposing these mechanisms into lower-level, generic functions, which have the additional advantage of being implementable in neural matter, which ultimately produces cognition. Doing so renders current constructions of cognitive phylogenies otiose. PMID:26528479

  13. The physics of evolution

    NASA Astrophysics Data System (ADS)

    Eigen, Manfred

    1988-12-01

    The Darwinian concept of evolution through natural selection has been revised and put on a solid physical basis, in a form which applies to self-replicable macromolecules. Two new concepts are introduced: sequence space and quasi-species. Evolutionary change in the DNA- or RNA-sequence of a gene can be mapped as a trajectory in a sequence space of dimension ν, where ν corresponds to the number of changeable positions in the genomic sequence. Emphasis, however, is shifted from the single surviving wildtype, a single point in the sequence space, to the complex structure of the mutant distribution that constitutes the quasi-species. Selection is equivalent to an establishment of the quasi-species in a localized region of sequence space, subject to threshold conditions for the error rate and sequence length. Arrival of a new mutant may violate the local threshold condition and thereby lead to a displacement of the quasi-species into a different region of sequence space. This transformation is similar to a phase transition; the dynamical equations that describe the quase-species have been shown to be analogous to those of the two-dimensional Ising model of ferromagnetism. The occurrence of a selectively advantageous mutant is biased by the particulars of the quasi-species distribution, whose mutants are populated according to their fitness relative to that of the wild-type. Inasmuch as fitness regions are connected (like mountain ridges) the evolutionary trajectory is guided to regions of optimal fitness. Evolution experiments in test tubes confirm this modification of the simple chance and law nature of the Darwinian concept. The results of the theory can also be applied to the construction of a machine that provides optimal conditions for a rapid evolution of functionally active macromolecules. An introduction to the physics of molecular evolution by the author has appeared recently.1 Detailed studies of the kinetics and mechanisms of replication of RNA, the most

  14. The Eyes Have It: A Problem-Based Learning Exercise in Molecular Evolution

    ERIC Educational Resources Information Center

    White, Harold B.

    2007-01-01

    Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related…

  15. Non-Darwinian estimation: My ancestors, my genes' ancestors

    PubMed Central

    Weiss, Kenneth M.; Long, Jeffrey C.

    2009-01-01

    There is widespread interest in characterizing the organization of human genetic variation around the world from a population perspective. Related to this are attempts to describe the pattern of genetic variation in the human species generally, including “recreational” genomics, the genome-based estimation of the ancestry of individuals. These approaches rest on subtle concepts of variation, time, and ancestry that are perhaps not widely appreciated. They share the idea that there are, or were, discrete panmictic human populations such that every person is either a member of such a population or is an admixed descendant of them. Ancestry fraction estimation is biased by assumptions about past and present human population structure, as when we trace ancestry to hypothetical unmixed ancestral populations, or assign an individual's ancestry to continental populations that are indistinguishable from classical “races.” Attempts to identify even individuals' local subpopulations are less precise than most (geneticists included) expect, because that is usually based on a small portion of a person's ancestry, relative to the much larger pool of comparably related ancestors. It is easier to show that two people have some relationship than to show who or where the actual ancestor was. There is an important distinction between individuals' demographic ancestry and the ancestry of their genes. Despite superficial appearances, these interpretations of genetic data are often based on typological rather than Darwinian thinking, raising important issues about the questions that are actually being asked. PMID:19411595

  16. Impact of the human egalitarian syndrome on darwinian selection mechanics.

    PubMed

    Boehm, C

    1997-07-01

    With nothing more than kin selection and reciprocal altruism theories to work with, the selection basis of human degrees of altruism and cooperation is often difficult to explain. However, during our prehistoric foraging phase, a highly stable egalitarian syndrome arose that had profound effects on Darwinian selection mechanics. The band's insistence on egalitarianism seriously damped male status rivalry and thereby reduced the intensity of selection within the group by reducing phenotypic variation at that level, while powerful social pressure to make decisions consensual at the band level had a similar effect. Consensual decisions also had another effect: they increased variation between groups because entire bands enacted their subsistence strategies collectively and the strategies varied between bands. By reducing the intensity of individual selection and boosting group effects, these behaviors provided a unique opportunity for altruistic genes to be established and maintained. In addition, the egalitarian custom of socially isolating or actively punishing lazy or cheating noncooperators reduced the free-rider problem. In combination, these phenotypic effects facilitated selection of altruistic genes in spite of some limited free riding. This selection scenario remained in place for thousands of generations, and the result was a shift in the balance of power between individual and group selection in favor of group effects. This new balance today is reflected in an ambivalent human nature that exhibits substantial altruism in addition to selfishness and nepotism. PMID:18811308

  17. Sexual disorders in the context of Darwinian psychiatry.

    PubMed

    Troisi, A

    2003-01-01

    The thesis of this article is that a Darwinian perspective can provide medical sexology with a new theoretical framework which is useful to clarify the relationship between the evolutionary bases of human sexuality and the sex-specific vulnerability to different sexual disorders. Evolutionary theory predicts that the relative parental investment of the sexes in their offspring is associated with different mating strategies in males and females. Individuals of the sex that invests more in offspring should be more discriminative in their sexual interactions because the costs of making a poor mate choice are greater for the highest-investing sex. Because in Homo sapiens, as in many other mammal species, the higher-investing sex is the female sex, women are more discriminative in their sexual preferences and less promiscuous than men. Accordingly, the epidemiology of sexual disorders can be expected to reflect sex differences in evolved mating strategies and sexual psychology. Sexual disorders that represent extreme variants of a mating strategy involving greater voluntary control over mate choice, accurate assessment of the quality of potential mates, and a tendency toward sexual restraint should be more prevalent among women. In contrast, sexual disorders that represent extreme variants of a mating strategy involving responsiveness to a variety of sexual stimuli and a tendency toward promiscuity should occur more frequently among men. Clinical data support these predictions. PMID:12834022

  18. Schizophrenia, Psychiatric Genetics, and Darwinian Psychiatry: An Evolutionary Framework

    PubMed Central

    Pearlson, Godfrey D.; Folley, Bradley S.

    2008-01-01

    The evolutionary origins of one of the most dramatic and seemingly deleterious behavioral phenotypes, the syndrome known as schizophrenia, are mysterious. Schizophrenia occurs in all cultures and is inherited. Although most phenotypes are said to be “selected for” based on adaptive qualities, it is difficult to understand how the genetic basis of schizophrenia could have operated under a similar framework. This has lead several theorists analyzing the proposed evolutionary origins of other disease states to that of schizophrenia. To date, several models have been applied. We have tried to conceptualize schizophrenia in a compensatory advantage framework whereby incomplete penetrance of the full disorder, or alternatively, the inheritance of risk alleles insufficient in number to manifest as the classic clinical syndrome, may manifest as a behavioral phenotype with adaptive advantages (eg, creative behavior or novel illuminating ideas). The idea that even full penetrance can also be advantageous has been offered as applied to religious experience and ancient social standing, but is unlikely. Can complex behavioral phenotypes such as schizophrenia, and particularly those that seem purely deleterious, be explained by mechanisms of Darwinian psychiatry? Can models from other disease classes be applied successfully to schizophrenia? Such ideas have generated intense speculation, but often in the absence of testable models. In this article, we will examine some of these proposed ideas and offer suggestions for future research. PMID:18033774

  19. Schizophrenia, psychiatric genetics, and Darwinian psychiatry: an evolutionary framework.

    PubMed

    Pearlson, Godfrey D; Folley, Bradley S

    2008-07-01

    The evolutionary origins of one of the most dramatic and seemingly deleterious behavioral phenotypes, the syndrome known as schizophrenia, are mysterious. Schizophrenia occurs in all cultures and is inherited. Although most phenotypes are said to be "selected for" based on adaptive qualities, it is difficult to understand how the genetic basis of schizophrenia could have operated under a similar framework. This has lead several theorists analyzing the proposed evolutionary origins of other disease states to that of schizophrenia. To date, several models have been applied. We have tried to conceptualize schizophrenia in a compensatory advantage framework whereby incomplete penetrance of the full disorder, or alternatively, the inheritance of risk alleles insufficient in number to manifest as the classic clinical syndrome, may manifest as a behavioral phenotype with adaptive advantages (eg, creative behavior or novel illuminating ideas). The idea that even full penetrance can also be advantageous has been offered as applied to religious experience and ancient social standing, but is unlikely. Can complex behavioral phenotypes such as schizophrenia, and particularly those that seem purely deleterious, be explained by mechanisms of Darwinian psychiatry? Can models from other disease classes be applied successfully to schizophrenia? Such ideas have generated intense speculation, but often in the absence of testable models. In this article, we will examine some of these proposed ideas and offer suggestions for future research. PMID:18033774

  20. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis

    PubMed Central

    Payne, Claire M; Bernstein, Carol; Dvorak, Katerina; Bernstein, Harris

    2008-01-01

    Sporadic colon cancer is caused predominantly by dietary factors. We have selected bile acids as a focus of this review since high levels of hydrophobic bile acids accompany a Western-style diet, and play a key role in colon carcinogenesis. We describe how bile acid-induced stresses cause cell death in susceptible cells, contribute to genomic instability in surviving cells, impose Darwinian selection on survivors and enhance initiation and progression to colon cancer. The most likely major mechanisms by which hydrophobic bile acids induce stresses on cells (DNA damage, endoplasmic reticulum stress, mitochondrial damage) are described. Persistent exposure of colon epithelial cells to hydrophobic bile acids can result in the activation of pro-survival stress-response pathways, and the modulation of numerous genes/proteins associated with chromosome maintenance and mitosis. The multiple mechanisms by which hydrophobic bile acids contribute to genomic instability are discussed, and include oxidative DNA damage, p53 and other mutations, micronuclei formation and aneuploidy. Since bile acids and oxidative stress decrease DNA repair proteins, an increase in DNA damage and increased genomic instability through this mechanism is also described. This review provides a mechanistic explanation for the important link between a Western-style diet and associated increased levels of colon cancer. PMID:21677822

  1. Darwinian drift: Effects of Wake Vortices and Multiple Obstacles

    NASA Astrophysics Data System (ADS)

    Melkoumian, Sergei; Protas, Bartosz

    2015-11-01

    When a body passes through an unbounded fluid, it induces a net displacement of fluid particles. The difference between the initial and final positions of a fluid particle is defined as the Darwinian drift and plays an important role in the characterization of the stirring occurring in multiphase flows and in the context of biogenic mixing. Traditional studies of drift have mainly focused on single obstacles moving in a potential flow. In the present investigation we consider the effect of wake vorticity, represented by a pair of Föppl point vortices, and the combined effect of multiple obstacles. The drift in various configurations is determined using methods of complex analysis and careful numerical computations. It is demonstrated that, while the total drift increases with the size of the wake for large vortex strengths, it is actually decreased for small circulation values. We also discuss how the interaction of two obstacles affects the drift in comparison to the case of two isolated obstacles. In particular, we identify the lower and upper bound on the drift due to two identical cylinders. In certain cases our results are supported by asymptotic analysis. A physical explanation of the observed affects is offered in terms of the trajectories of individual particles.

  2. [The coast of Northeast Brazil as a Darwinian scientific object: the explorations of John Casper Branner, 1899-1911].

    PubMed

    de Oliveira, Almir Leal

    2014-01-01

    John Casper Branner, a US geologist, had a long history of research in Brazil. The article analyzes his exploration of the geology of the coast of Northeast Brazil during the Branner-Agassiz (1899) and Stanford (1911) expeditions. In the findings from both voyages, Branner characterized the geomorphology of sedimentary basins, sandstone reefs, and coral reefs from a Darwinian evolutionary perspective, blending natural history's model of field research with the practices of modern biology and dynamic geology. He based his interpretation of the evolution of the geological formation on physical and chemical factors. Zoological studies identified the place of evolutionary variation and adaptations of isolated marine species as an auxiliary factor in natural selection. PMID:25338034

  3. Contributions of experimental protobiogenesis to the theory of evolution

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1976-01-01

    Inferences from experiments in protobiogenesis are examined as a forward extension of the theory of evolutionary biology. A nondiscontinuous, intraconsistent theory of general evolution embracing both protobiology and biology is outlined. This overview emphasizes Darwinian selection in the later stages of evolution, and stereochemical molecular selection in some of its earlier stages. It incorporates the concept of limitation of the scope of evolution by internal constraints on variation, based on the argument that internally limiting constraints observed in experiments with molecules are operative in organisms, if chemical processes occur within biological processes and biological processes are assumed to be exponentializations of chemical processes. Major evolutionary events might have occurred by rapid self-assembly processes analogous to those observed in the formation of phase-separated microspheres from amorphous powder or supersaturated solutions.

  4. Molecular evolution of the duplicated TFIIAγ genes in Oryzeae and its relatives

    PubMed Central

    2010-01-01

    Background Gene duplication provides raw genetic materials for evolutionary novelty and adaptation. The evolutionary fate of duplicated transcription factor genes is less studied although transcription factor gene plays important roles in many biological processes. TFIIAγ is a small subunit of TFIIA that is one of general transcription factors required by RNA polymerase II. Previous studies identified two TFIIAγ-like genes in rice genome and found that these genes either conferred resistance to rice bacterial blight or could be induced by pathogen invasion, raising the question as to their functional divergence and evolutionary fates after gene duplication. Results We reconstructed the evolutionary history of the TFIIAγ genes from main lineages of angiosperms and demonstrated that two TFIIAγ genes (TFIIAγ1 and TFIIAγ5) arose from a whole genome duplication that happened in the common ancestor of grasses. Likelihood-based analyses with branch, codon, and branch-site models showed no evidence of positive selection but a signature of relaxed selective constraint after the TFIIAγ duplication. In particular, we found that the nonsynonymous/synonymous rate ratio (ω = dN/dS) of the TFIIAγ1 sequences was two times higher than that of TFIIAγ5 sequences, indicating highly asymmetric rates of protein evolution in rice tribe and its relatives, with an accelerated rate of TFIIAγ1 gene. Our expression data and EST database search further indicated that after whole genome duplication, the expression of TFIIAγ1 gene was significantly reduced while TFIIAγ5 remained constitutively expressed and maintained the ancestral role as a subunit of the TFIIA complex. Conclusion The evolutionary fate of TFIIAγ duplicates is not consistent with the neofunctionalization model that predicts that one of the duplicated genes acquires a new function because of positive Darwinian selection. Instead, we suggest that subfunctionalization might be involved in TFIIAγ evolution in grasses

  5. "Eve" in Africa: Human Evolution Meets Molecular Biology.

    ERIC Educational Resources Information Center

    Seager, Robert D.

    1990-01-01

    Presented is a discussion of recent evidence on the evolution of human forms on earth gathered and evaluated using mitochondrial DNA techniques. Theories regarding the possibility that a common female ancestor existed in Africa about 200,000 years ago are discussed. A list of teaching aids is provided. (CW)

  6. MOLECULAR PHYLOGENY AND EVOLUTION OF MOSQUITO PARASTIC MICROSPORIDIA (MICROSPORIDIA: AMBLYOSPORIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amblyospora and related species were isolated from mosquitoes, black flies and copepods and the small subunit ribosomal DNA gene was sequenced. The comparative phylogenetic analysis for this study shows co-evolution agreement between the mosquito host genera and Amblyospora parasite species with a ...

  7. On the Stability and Evolution of Isolated Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Langer, W.; Nelson, R.

    1998-01-01

    We present the results of three dimensional hydrodynamic models of evolving, isolated, low mass, quiescent clouds and Bok gobules, where the interstellar radiation field plays an important role in the thermal and chemical evolution, and thermal pressure provides dominant support against gravitational collapse.

  8. Temporal scaling of molecular evolution in primates and other mammals.

    PubMed

    Gingerich, P D

    1986-05-01

    Molecular clocks are routinely tested for linearity using a relative rate test and routinely calibrated against the geological time scale using a single or average paleontologically determined time of divergence between living taxa. The relative rate test is a test of parallel rate equality, not a test of rate constancy. Temporal scaling provides a test of rates, where scaling coefficients of 1.0 (isochrony) represent stochastic rate constancy. The fossil record of primates and other mammals is now known in sufficient detail to provide several independent divergence times for major taxonomic groups. Molecular difference should scale negatively or isochronically (scaling coefficients less than 1.0) with divergence time: where two or more divergence times are available, molecular difference appears to scale positively (scaling coefficient greater than 1.0). A minimum of four divergence times are required for adequate statistical power in testing the linear model: scaling is significantly nonlinear and positive in six of 11 published investigations meeting this criterion. All groups studied show some slowdown in rates of molecular change over Cenozoic time. The break from constant or increasing rates during the Mesozoic to decreasing rates during the Cenozoic appears to coincide with extraordinary diversification of placental mammals at the beginning of this era. High rates of selectively neutral molecular change may be concentrated in such discrete events of evolutionary diversification. PMID:3444400

  9. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  10. Brassinosteroid action in flowering plants: a Darwinian perspective

    PubMed Central

    Kutschera, Ulrich; Wang, Zhi-Yong

    2012-01-01

    The year 2012 marks the 150th anniversary of the publication of Charles Darwin's first botanical book, on the fertilization of orchids (1862), wherein he described pollen grains and outlined his evolutionary principles with respect to plant research. Five decades later, the growth-promoting effect of extracts of Orchid pollen on coleoptile elongation was documented. These studies led to the discovery of a new class of phytohormones, the brassinosteroids (BRs) that were isolated from rapeseed (Brassica napus) pollen. These growth-promoting steroids, which regulate height, fertility, and seed-filling in crop plants such as rice (Oryza sativa), also induce stress- and disease resistance in green algae and angiosperms. The origin and current status of BR-research is described here, with reference to BR-action and -signal transduction, and it is shown that modern high-yield rice varieties with erect leaves are deficient in endogenous BRs. Since brassinosteroids induce pathogen resistance in rice plants and hence can suppress rice blast- and bacterial blight-diseases, genetic manipulation of BR-biosynthesis or -perception may be a means to increase crop production. Basic research on BR activity in plants, such as Arabidopsis and rice, has the potential to increase crop yields further as part of a 21th century ‘green biotech-revolution’ that can be traced back to Darwin's classical breeding experiments. It is concluded that ‘Nothing in brassinosteroid research makes sense except in the light of Darwinian evolution’ and the value of basic science is highlighted, with reference to the genetic engineering of better food crops that may become resistant to a variety of plant diseases. PMID:22547659

  11. Evolution and Molecular Control of Hybrid Incompatibility in Plants.

    PubMed

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with "parasitic" selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  12. Evolution and Molecular Control of Hybrid Incompatibility in Plants

    PubMed Central

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with “parasitic” selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  13. Structural limits for evolutive capacities in complex molecular systems.

    PubMed

    Bergareche, A M; Ostolaza, J F

    1990-01-01

    The possibilities of evolution for a system with and without a code of translation from nucleic acids into proteins are evaluated. Our interest is mainly centred on the enzymatic RNA case since this molecule has, at the same time, reproductive and functional properties. After scanning the evolutive capacities of the enzymatic RNAs, including the possibility to play the role of "synthetase" which would match nucleic acids with amino acids as a transition step towards a code, we will try to show that due to their own functional limitative factors, the matching system (code) is necessary. This would be the only way to transform the formal complexity--complexity which has not entered into action before the translation process--into functional information to drive the instructive self-reproductive process. Once this stage is reached, the system could evolve without a limit. PMID:1707552

  14. Exploiting models of molecular evolution to efficiently direct protein engineering.

    PubMed

    Cole, Megan F; Gaucher, Eric A

    2011-02-01

    Directed evolution and protein engineering approaches used to generate novel or enhanced biomolecular function often use the evolutionary sequence diversity of protein homologs to rationally guide library design. To fully capture this sequence diversity, however, libraries containing millions of variants are often necessary. Screening libraries of this size is often undesirable due to inaccuracies of high-throughput assays, costs, and time constraints. The ability to effectively cull sequence diversity while still generating the functional diversity within a library thus holds considerable value. This is particularly relevant when high-throughput assays are not amenable to select/screen for certain biomolecular properties. Here, we summarize our recent attempts to develop an evolution-guided approach, Reconstructing Evolutionary Adaptive Paths (REAP), for directed evolution and protein engineering that exploits phylogenetic and sequence analyses to identify amino acid substitutions that are likely to alter or enhance function of a protein. To demonstrate the utility of this technique, we highlight our previous work with DNA polymerases in which a REAP-designed small library was used to identify a DNA polymerase capable of accepting non-standard nucleosides. We anticipate that the REAP approach will be used in the future to facilitate the engineering of biopolymers with expanded functions and will thus have a significant impact on the developing field of 'evolutionary synthetic biology'. PMID:21132281

  15. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    PubMed Central

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  16. Molecular Evolution of the Plant SLT Protein Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The products of the sodium/lithium tolerance (Slt) genes are proteins that have molecular chaperone activity in vitro. The results from extensive database analyses indicate that SLT-orthologous proteins are present only in seed plants (Spermatopsida). Herein we describe the sequence analysis of th...

  17. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  18. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.

    PubMed

    Mitchell, Kieren J; Pratt, Renae C; Watson, Laura N; Gibb, Gillian C; Llamas, Bastien; Kasper, Marta; Edson, Janette; Hopwood, Blair; Male, Dean; Armstrong, Kyle N; Meyer, Matthias; Hofreiter, Michael; Austin, Jeremy; Donnellan, Stephen C; Lee, Michael S Y; Phillips, Matthew J; Cooper, Alan

    2014-09-01

    Marsupials exhibit great diversity in ecology and morphology. However, compared with their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation. PMID:24881050

  19. Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution

    PubMed Central

    Müller, S.; Stanyon, R.; Finelli, P.; Archidiacono, N.; Wienberg, J.

    2000-01-01

    Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome. PMID:10618396

  20. Molecular Evolution of the TET Gene Family in Mammals

    PubMed Central

    Akahori, Hiromichi; Guindon, Stéphane; Yoshizaki, Sumio; Muto, Yoshinori

    2015-01-01

    Ten-eleven translocation (TET) proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. They also help regulate various cellular functions. Three TET paralogs have been identified (TET1, TET2, and TET3) in humans. This study focuses on the evolution of mammalian TET genes. Distinct patterns in TET1 and TET2 vs. TET3 were revealed by codon-based tests of positive selection. Results indicate that TET1 and TET2 genes have experienced positive selection more frequently than TET3 gene, and that the majority of codon sites evolved under strong negative selection. These findings imply that the selective pressure on TET3 may have been relaxed in several lineages during the course of evolution. Our analysis of convergent amino acid substitutions also supports the different evolutionary dynamics among TET gene subfamily members. All of the five amino acid sites that are inferred to have evolved under positive selection in the catalytic domain of TET2 are localized at the protein’s outer surface. The adaptive changes of these positively selected amino acid sites could be associated with dynamic interactions between other TET-interacting proteins, and positive selection thus appears to shift the regulatory scheme of TET enzyme function. PMID:26633372

  1. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    PubMed Central

    Shi, Fei; Qin, Song; Wang, Yin-Chu

    2011-01-01

    Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions. PMID:21904470

  2. 'Molecules and monkeys': George Gaylord Simpson and the challenge of molecular evolution.

    PubMed

    Aronson, Jay D

    2002-01-01

    In this paper, I analyze George Gaylord Simpson's response to the molecularization of evolutionary biology from his unique perspective as a paleontologist. I do so by exploring his views on early attempts to reconstruct phylogenetic relationships among primates using molecular data. Particular attention is paid to Simpson's role in the evolutionary synthesis of the 1930s and 1940s, as well as his concerns about the rise of molecular biology as a powerful discipline and world-view in the 1960s. I argue that Simpson's belief in the supremacy of natural selection as the primary driving force of evolution, as well as his view that biology was a historical science that seeks ultimate causes and highlights contingency, prevented him from acknowledging that the study of molecular evolution was an inherently valuable part of the life sciences. PMID:15045833

  3. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution.

    PubMed Central

    Sturmbauer, C; Levinton, J S; Christy, J

    1996-01-01

    The current phylogenetic hypothesis for the evolution and biogeography of fiddler crabs relies on the assumption that complex behavioral traits are assumed to also be evolutionary derived. Indo-west Pacific fiddler crabs have simpler reproductive social behavior and are more marine and were thought to be ancestral to the more behaviorally complex and more terrestrial American species. It was also hypothesized that the evolution of more complex social and reproductive behavior was associated with the colonization of the higher intertidal zones. Our phylogenetic analysis, based upon a set of independent molecular characters, however, demonstrates how widely entrenched ideas about evolution and biogeography led to a reasonable, but apparently incorrect, conclusion about the evolutionary trends within this pantropical group of crustaceans. Species bearing the set of "derived traits" are phylogenetically ancestral, suggesting an alternative evolutionary scenario: the evolution of reproductive behavioral complexity in fiddler crabs may have arisen multiple times during their evolution. The evolution of behavioral complexity may have arisen by coopting of a series of other adaptations for high intertidal living and antipredator escape. A calibration of rates of molecular evolution from populations on either side of the Isthmus of Panama suggest a sequence divergence rate for 16S rRNA of 0.9% per million years. The divergence between the ancestral clade and derived forms is estimated to be approximately 22 million years ago, whereas the divergence between the American and Indo-west Pacific is estimated to be approximately 17 million years ago. Images Fig. 1 PMID:11607711

  4. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress

    PubMed Central

    Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne

    2011-01-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943

  5. Molecular genetics and the evolution of ultraviolet vision in vertebrates

    PubMed Central

    Shi, Yongsheng; Radlwimmer, F. Bernhard; Yokoyama, Shozo

    2001-01-01

    Despite the biological importance of UV vision, its molecular bases are not well understood. Here, we present evidence that UV vision in vertebrates is determined by eight specific amino acids in the UV pigments. Amino acid sequence analyses show that contemporary UV pigments inherited their UV sensitivities from the vertebrate ancestor by retaining most of these eight amino acids. In the avian lineage, the ancestral pigment lost UV sensitivity, but some descendants regained it by one amino acid change. Our results also strongly support the hypothesis that UV pigments have an unprotonated Schiff base-linked chromophore. PMID:11573008

  6. Molecular networks and the evolution of human cognitive specializations

    PubMed Central

    Fontenot, Miles; Konopka, Genevieve

    2014-01-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. PMID:25212263

  7. Molecular evolution of peste des petits ruminants virus.

    PubMed

    Muniraju, Murali; Munir, Muhammad; Parthiban, AravindhBabu R; Banyard, Ashley C; Bao, Jingyue; Wang, Zhiliang; Ayebazibwe, Chrisostom; Ayelet, Gelagay; El Harrak, Mehdi; Mahapatra, Mana; Libeau, Geneviève; Batten, Carrie; Parida, Satya

    2014-12-01

    Despite safe and efficacious vaccines against peste des petits ruminants virus (PPRV), this virus has emerged as the cause of a highly contagious disease with serious economic consequences for small ruminant agriculture across Asia, the Middle East, and Africa. We used complete and partial genome sequences of all 4 lineages of the virus to investigate evolutionary and epidemiologic dynamics of PPRV. A Bayesian phylogenetic analysis of all PPRV lineages mapped the time to most recent common ancestor and initial divergence of PPRV to a lineage III isolate at the beginning of 20th century. A phylogeographic approach estimated the probability for root location of an ancestral PPRV and individual lineages as being Nigeria for PPRV, Senegal for lineage I, Nigeria/Ghana for lineage II, Sudan for lineage III, and India for lineage IV. Substitution rates are critical parameters for understanding virus evolution because restrictions in genetic variation can lead to lower adaptability and pathogenicity. PMID:25418782

  8. Gibberellin Receptor GID1: Gibberellin Recognition and Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Sato, Tomomi; Ueguchi-Tanaka, Miyako

    Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. We analyzed the crystal structure of a nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) from Oryza sativa. As it was proposed from the sequence similarity, the overall structure of GID1 shows an α/β-hydrolase fold similar to that of the hormone-sensitive lipases (HSLs) except for an amino-terminal lid. The GA-binding site corresponds to the substrate-binding site of HSLs. Almost residues assigned for GA binding showed very little or no activity when they were replaced with Ala. The substitution of the residues corresponding to those of the lycophyte GID1s caused an increase in the binding affinity for GA34, a 2β-hydroxylated GA4. These findings indicate that GID1 originated from HSL and was tinkered to have the specificity for bioactive GAs in the course of plant evolution.

  9. Glutamine synthetase gene evolution: a good molecular clock.

    PubMed Central

    Pesole, G; Bozzetti, M P; Lanave, C; Preparata, G; Saccone, C

    1991-01-01

    Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves. PMID:1671172

  10. [Molecular Mechanism and Malignant Clonal Evolution of Multiple Myeloma].

    PubMed

    Ding, Fei; Zhu, Ping; Wu, Xue-Qiang

    2015-10-01

    Almost all patients with multiple myeloma (MM) have chromosomal translocation which can result in genetic variation. There are mainly five types of chromosomal translocations, involving the IGH gene translocation to 11q13 (CCND1), 4p16 (FGFR/MMSET), 16q23 (MAF), 6p21 (CCND3) and 20q11 (MAFB). It is possible that all IGH translocations converge on a common cell cycle signal pathway. Some MM develops through a multistep transformation from monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM (SMM) and eventually to MM and plasma cell leukemia (PCL). Similarly to what Darwin proposed in the mid-19th century-random genetic variation and natural selection in the context of limited resources, MM clonal evolution follow branching and nonlinear mode. The failure of MM treatment is usually related with the minimal subclone which is hardly found at newlydiagnosed. PMID:26524068

  11. Molecular evolution and phylogeny of dengue-4 viruses.

    PubMed

    Lanciotti, R S; Gubler, D J; Trent, D W

    1997-09-01

    Nucleotide sequences of the envelope protein genes of 19 geographically and temporally distinct dengue (DEN)-4 viruses were determined. Nucleic acid sequence comparison revealed that the identity among the DEN-4 viruses was greater than 92%. Similarity among deduced amino acids was between 96 and 100%; in most cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis generated phylogenetic trees, which indicated that geographically independent evolution of DEN-4 viruses had occurred. DEN-4 viruses were separated into two genetically distinct subtypes (genotypes). Genotype-1 contains viruses from the Philippines, Thailand and Sri Lanka; genotype-2 consists of viruses from Indonesia, Tahiti, the Caribbean Islands (Puerto Rico, Dominica) and Central and South America. PMID:9292015

  12. The molecular evolution of the vertebrate behavioural repertoire.

    PubMed

    Grant, Seth G N

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  13. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins.

    PubMed

    Miura, Yoko; Suzuki-Matsubara, Mieko; Kageyama, Takashi; Moriyama, Akihiko

    2016-02-01

    The nucleotide sequences of largemouth bass pepsinogens (PG1, 2 and 3) were determined after molecular cloning of the respective cDNAs. Encoded PG1, 2 and 3 were classified as fish pepsinogens A1, A2 and C, respectively. Molecular evolutionary analyses show that vertebrate pepsinogens are classified into seven monophyletic groups, i.e. pepsinogens A, F, Y (prochymosins), C, B, and fish pepsinogens A and C. Regarding the primary structures, extensive deletion was obvious in S'1 loop residues in fish pepsin A as well as tetrapod pepsin Y. This deletion resulted in a decrease in hydrophobic residues in the S'1 site. Hydrolytic specificities of bass pepsins A1 and A2 were investigated with a pepsin substrate and its variants. Bass pepsins preferred both hydrophobic/aromatic residues and charged residues at the P'1 sites of substrates, showing the dual character of S'1 sites. Thermodynamic analyses of bass pepsin A2 showed that its activation Gibbs energy change (∆G(‡)) was lower than that of porcine pepsin A. Several sites of bass pepsin A2 moiety were found to be under positive selection, and most of them are located on the surface of the molecule, where they are involved in conformational flexibility. The broad S'1 specificity and flexible structure of bass pepsin A2 are thought to cause its high proteolytic activity. PMID:26627128

  14. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma.

    PubMed

    Wei, Miaoyan; Lü, Lisheng; Lin, Peiyi; Chen, Zhisheng; Quan, Zhiwei; Tang, Zhaohui

    2016-09-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients. PMID:26940139

  15. The molecular evolution of the vertebrate behavioural repertoire

    PubMed Central

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  16. Molecular tools in understanding the evolution of Vibrio cholerae

    PubMed Central

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  17. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  18. Decoding the molecular evolution of human cognition using comparative genomics

    PubMed Central

    Usui, Noriyoshi; Co, Marissa; Konopka, Genevieve

    2014-01-01

    Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia, and Alzheimer’s disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We focus on the comparison of human and non-human primate brain gene expression and the utility of building gene co-expression networks for prioritizing hundreds of genes that differ in expression among the species queried. We also discuss the importance and methods for functional studies of individual genes identified. Together, this integration of comparative genomics with cellular and animal models should provide improved systems for developing effective therapeutics for disorders of cognition. PMID:25247723

  19. Molecular evolution and in vitro characterization of Botryllus histocompatibility factor.

    PubMed

    Taketa, Daryl A; Nydam, Marie L; Langenbacher, Adam D; Rodriguez, Delany; Sanders, Erin; De Tomaso, Anthony W

    2015-10-01

    Botryllus schlosseri is a colonial ascidian with a natural ability to anastomose with another colony to form a vascular and hematopoietic chimera. In order to fuse, two individuals must share at least one allele at the highly polymorphic fuhc locus. Otherwise, a blood-based inflammatory response will occur resulting in a melanin scar at the sites of interaction. The single-locus genetic control of allorecognition makes B. schlosseri an attractive model to study the underlying molecular mechanisms. Over the past decade, several candidate genes involved in allorecognition have been identified, but how they ultimately contribute to allorecognition outcome remains poorly understood. Here, we report our initial molecular characterization of a recently identified candidate allodeterminant called Botryllus histocompatibility factor (bhf). bhf, both on a DNA and protein level, is the least polymorphic protein in the fuhc locus studied so far and, unlike other known allorecognition determinants, does not appear to be under any form of balancing or directional selection. Additionally, we identified a second isoform through mRNA-Seq and an EST assembly library which is missing exon 3, resulting in a C-terminally truncated form. We report via whole-mount fluorescent in situ hybridization that a subset of cells co-express bhf and cfuhc(sec). Finally, we observed BHF's localization in HEK293T at the cytoplasmic side of the plasma membrane in addition to the nucleus via a nuclear localization signal. Given the localization data thus far, we hypothesize that BHF may function as a scaffolding protein in a complex with other Botryllus proteins, rather than functioning as an allorecognition determinant. PMID:26359175

  20. Vibration-mediated Kondo transport in molecular junctions: conductance evolution during mechanical stretching

    PubMed Central

    Rakhmilevitch, David

    2015-01-01

    Summary The vibration-mediated Kondo effect attracted considerable theoretical interest during the last decade. However, due to lack of extensive experimental demonstrations, the fine details of the phenomenon were not addressed. Here, we analyze the evolution of vibration-mediated Kondo effect in molecular junctions during mechanical stretching. The described analysis reveals the different contributions of Kondo and inelastic transport. PMID:26734532

  1. Modification of pancreatic lipase properties by directed molecular evolution.

    PubMed

    Colin, Damien Yann; Deprez-Beauclair, Paule; Silva, Noella; Infantes, Lourdes; Kerfelec, Brigitte

    2010-05-01

    Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity at acidic pH enhanced by approximately 50% on medium- and long-chain triglycerides. Sequence analysis revealed two substitutions (E179G/N406S) located in specific regions, the hydrophobic groove accommodating the sn-1 chain of the triglyceride (E179G) and the surface loop that is likely to mediate lipase/colipase interaction in the presence of lipids (N406S). Interestingly, these two substitutions shifted the chain-length specificity of lipase toward medium- and long-chain triglycerides. Combination of those two mutations with a promising one at the entrance of the catalytic cavity (K80E) negatively affected the lipase activity at neutral pH but not that at acidic pH. Our results provide a basis for the design of improved lipase at acidic pH and identify for the first time key residues associated with chain-length specificity. PMID:20150178

  2. Epistasis and the Dynamics of Reversion in Molecular Evolution.

    PubMed

    McCandlish, David M; Shah, Premal; Plotkin, Joshua B

    2016-07-01

    Recent studies of protein evolution contend that the longer an amino acid substitution is present at a site, the less likely it is to revert to the amino acid previously occupying that site. Here we study this phenomenon of decreasing reversion rates rigorously and in a much more general context. We show that, under weak mutation and for arbitrary fitness landscapes, reversion rates decrease with time for any site that is involved in at least one epistatic interaction. Specifically, we prove that, at stationarity, the hazard function of the distribution of waiting times until reversion is strictly decreasing for any such site. Thus, in the presence of epistasis, the longer a particular character has been absent from a site, the less likely the site will revert to its prior state. We also explore several examples of this general result, which share a common pattern whereby the probability of having reverted increases rapidly at short times to some substantial value before becoming almost flat after a few substitutions at other sites. This pattern indicates a characteristic tendency for reversion to occur either almost immediately after the initial substitution or only after a very long time. PMID:27194749

  3. Phylogeography and molecular evolution of potato virus Y.

    PubMed

    Cuevas, José M; Delaunay, Agnès; Visser, Johan C; Bellstedt, Dirk U; Jacquot, Emmanuel; Elena, Santiago F

    2012-01-01

    Potato virus Y (PVY) is an important plant pathogen, whose host range includes economically important crops such as potato, tobacco, tomato, and pepper. PVY presents three main strains (PVY(O), PVY(N) and PVY(C)) and several recombinant forms. PVY has a worldwide distribution, yet the mechanisms that promote and maintain its population structure and genetic diversity are still unclear. In this study, we used a pool of 77 complete PVY genomes from isolates collected worldwide. After removing the effect of recombination in our data set, we used bayesian techniques to study the influence of geography and host species in both PVY population structure and dynamics. We have also performed selection and covariation analyses to identify evolutionarily relevant amino acid residues. Our results show that both geographic and host-driven adaptations explain PVY diversification. Furthermore, purifying selection is the main force driving PVY evolution, although some indications of positive selection accounted for the diversification of the different strains. Interestingly, the analysis of P3N-PIPO, a recently described gene in potyviruses, seems to show a variable length among the isolates analyzed, and this variability is explained, in part, by host-driven adaptation. PMID:22655074

  4. Molecular evolution of the capsid gene in human norovirus genogroup II

    PubMed Central

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10−3 substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>102) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  5. Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny.

    PubMed

    Shibusawa, M; Nishibori, M; Nishida-Umehara, C; Tsudzuki, M; Masabanda, J; Griffin, D K; Matsuda, Y

    2004-01-01

    To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented. PMID:15218250

  6. Are Molecular Alphabets Universal Enabling Factors for the Evolution of Complex Life?

    NASA Astrophysics Data System (ADS)

    Dunn, Ian S.

    2013-12-01

    Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified (`non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life.

  7. Are molecular alphabets universal enabling factors for the evolution of complex life?

    PubMed

    Dunn, Ian S

    2013-12-01

    Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified ('non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life. PMID:24510462

  8. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    PubMed

    Beyer, Wolfgang; Bellan, Steve; Eberle, Gisela; Ganz, Holly H; Getz, Wayne M; Haumacher, Renate; Hilss, Karen A; Kilian, Werner; Lazak, Judith; Turner, Wendy C; Turnbull, Peter C B

    2012-01-01

    The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological

  9. Molecular evolution of GPCRs: Melanocortin/melanocortin receptors.

    PubMed

    Dores, Robert M; Londraville, Richard L; Prokop, Jeremy; Davis, Perry; Dewey, Nathan; Lesinski, Natalie

    2014-06-01

    The melanocortin receptors (MCRs) are a family of G protein-coupled receptors that are activated by melanocortin ligands derived from the proprotein, proopiomelanocortin (POMC). During the radiation of the gnathostomes, the five receptors have become functionally segregated (i.e. melanocortin 1 receptor (MC1R), pigmentation regulation; MC2R, glucocorticoid synthesis; MC3R and MC4R, energy homeostasis; and MC5R, exocrine gland physiology). A focus of this review is the role that ligand selectivity plays in the hypothalamus/pituitary/adrenal-interrenal (HPA-I) axis of teleosts and tetrapods as a result of the exclusive ligand selectivity of MC2R for the ligand ACTH. A second focal point of this review is the roles that the accessory proteins melanocortin 2 receptor accessory protein 1 (MRAP1) and MRAP2 are playing in, respectively, the HPA-I axis (MC2R) and the regulation of energy homeostasis by neurons in the hypothalamus (MC4R) of teleosts and tetrapods. In addition, observations are presented on trends in the ligand selectivity parameters of cartilaginous fish, teleost, and tetrapod MC1R, MC3R, MC4R, and MC5R paralogs, and the modeling of the HFRW motif of ACTH(1-24) when compared with α-MSH. The radiation of the MCRs during the evolution of the gnathostomes provides examples of how the physiology of endocrine and neuronal circuits can be shaped by ligand selectivity, the intersession of reverse agonists (agouti-related peptides (AGRPs)), and interactions with accessory proteins (MRAPs). PMID:24868105

  10. The modern theory of biological evolution: an expanded synthesis.

    PubMed

    Kutschera, Ulrich; Niklas, Karl J

    2004-06-01

    In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the "modern synthesis" is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life. PMID:15241603

  11. The modern theory of biological evolution: an expanded synthesis

    NASA Astrophysics Data System (ADS)

    Kutschera, Ulrich; Niklas, Karl J.

    In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the ``modern synthesis'' is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.

  12. Molecular activities, biosynthesis and evolution of triterpenoid saponins.

    PubMed

    Augustin, Jörg M; Kuzina, Vera; Andersen, Sven B; Bak, Søren

    2011-04-01

    Saponins are bioactive compounds generally considered to be produced by plants to counteract pathogens and herbivores. Besides their role in plant defense, saponins are of growing interest for drug research as they are active constituents of several folk medicines and provide valuable pharmacological properties. Accordingly, much effort has been put into unraveling the modes of action of saponins, as well as in exploration of their potential for industrial processes and pharmacology. However, the exploitation of saponins for bioengineering crop plants with improved resistances against pests as well as circumvention of laborious and uneconomical extraction procedures for industrial production from plants is hampered by the lack of knowledge and availability of genes in saponin biosynthesis. Although the ability to produce saponins is rather widespread among plants, a complete synthetic pathway has not been elucidated in any single species. Current conceptions consider saponins to be derived from intermediates of the phytosterol pathway, and predominantly enzymes belonging to the multigene families of oxidosqualene cyclases (OSCs), cytochromes P450 (P450s) and family 1 UDP-glycosyltransferases (UGTs) are thought to be involved in their biosynthesis. Formation of unique structural features involves additional biosynthetical enzymes of diverse phylogenetic background. As an example of this, a serine carboxypeptidase-like acyltransferase (SCPL) was recently found to be involved in synthesis of triterpenoid saponins in oats. However, the total number of identified genes in saponin biosynthesis remains low as the complexity and diversity of these multigene families impede gene discovery based on sequence analysis and phylogeny. This review summarizes current knowledge of triterpenoid saponin biosynthesis in plants, molecular activities, evolutionary aspects and perspectives for further gene discovery. PMID:21333312

  13. Molecular systematics and evolution of the Cyanocorax jays.

    PubMed

    Bonaccorso, Elisa; Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Fleischer, Robert C

    2010-03-01

    Phylogenetic relationships were studied in the genus Cyanocorax (Aves: Corvidae) and related genera, Psilorhinus and Calocitta, a diverse group of New World jays distributed from the southern United States south to Argentina. Although the ecology and behavior of some species in the group have been studied extensively, lack of a molecular phylogeny has precluded rigorous interpretations in an evolutionary framework. Given the diverse combinations of plumage coloration, size, and morphology, the taxonomy of the group has been inconsistent and understanding of biogeographic patterns problematic. Moreover, plumage similarity between two geographically disjuct species, the Tufted jay (Cyanocorax dickeyi) from western Mexico and the White-tailed jay (C. mystacalis) from western Ecuador and Peru, has puzzled ornithologists for decades. Here, a phylogeny of all species in the three genera is presented, based on study of two mitochondrial and three nuclear genes. Phylogenetic trees revealed the non-monophyly of Cyanocorax, and the division of the whole assemblage in two groups: "Clade A" containing Psilorhinus morio, both species in Calocitta,Cyanocorax violaceus, C. caeruleus, C. cristatellus, and C. cyanomelas, and "Clade B" consisting of the remaining species in Cyanocorax. Relationships among species in Clade A were ambiguous and, in general, not well resolved. Within Clade B, analyses revealed the monophyly of the "Cissilopha" jays and showed no evidence for a sister relationship between C. mystacalis and C. dickeyi. The phylogenetic complexity of lineages in the group suggests several complications for the understanding biogeographic patterns, as well as for proposing a taxonomy that is consistent with morphological variation. Although multiple taxonomic arrangements are possible, recommendations are for recognizing only one genus, Cyanocorax, with Psilorhinus and Calocitta as synonyms. PMID:19931623

  14. Reconstructing web evolution and spider diversification in the molecular era

    PubMed Central

    Blackledge, Todd A.; Scharff, Nikolaj; Coddington, Jonathan A.; Szüts, Tamas; Wenzel, John W.; Hayashi, Cheryl Y.; Agnarsson, Ingi

    2009-01-01

    The evolutionary diversification of spiders is attributed to spectacular innovations in silk. Spiders are unique in synthesizing many different kinds of silk, and using silk for a variety of ecological functions throughout their lives, particularly to make prey-catching webs. Here, we construct a broad higher-level phylogeny of spiders combining molecular data with traditional morphological and behavioral characters. We use this phylogeny to test the hypothesis that the spider orb web evolved only once. We then examine spider diversification in relation to different web architectures and silk use. We find strong support for a single origin of orb webs, implying a major shift in the spinning of capture silk and repeated loss or transformation of orb webs. We show that abandonment of costly cribellate capture silk correlates with the 2 major diversification events in spiders (1). Replacement of cribellate silk by aqueous silk glue may explain the greater diversity of modern orb-weaving spiders (Araneoidea) compared with cribellate orb-weaving spiders (Deinopoidea) (2). Within the “RTA clade,” which is the sister group to orb-weaving spiders and contains half of all spider diversity, >90% of species richness is associated with repeated loss of cribellate silk and abandonment of prey capture webs. Accompanying cribellum loss in both groups is a release from substrate-constrained webs, whether by aerially suspended webs, or by abandoning webs altogether. These behavioral shifts in silk and web production by spiders thus likely played a key role in the dramatic evolutionary success and ecological dominance of spiders as predators of insects. PMID:19289848

  15. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  16. How are we making bacteria more resistant to antibiotics? Darwinian impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will address the Darwinian selection of genes of antibiotic resistance in food animals. Darwin’s concept of survival of the fittest is as critical when applied to bacteria as it is to animals. Bacteria live in a highly competitive environment that is similar to the macrobiologica...

  17. Emerging of Stochastic Dynamical Equalities and Steady State Thermodynamics from Darwinian Dynamics*

    PubMed Central

    Ao, P.

    2011-01-01

    The evolutionary dynamics first conceived by Darwin and Wallace, referring to as Darwinian dynamics in the present paper, has been found to be universally valid in biology. The statistical mechanics and thermodynamics, while enormous successful in physics, have been in an awkward situation of wanting a consistent dynamical understanding. Here we present from a formal point of view an exploration of the connection between thermodynamics and Darwinian dynamics and a few related topics. We first show that the stochasticity in Darwinian dynamics implies the existence temperature, hence the canonical distribution of Boltzmann–Gibbs type. In term of relative entropy the Second Law of thermodynamics is dynamically demonstrated without detailed balance condition, and is valid regardless of size of the system. In particular, the dynamical component responsible for breaking detailed balance condition does not contribute to the change of the relative entropy. Two types of stochastic dynamical equalities of current interest are explicitly discussed in the present approach: One is based on Feynman–Kac formula and another is a generalization of Einstein relation. Both are directly accessible to experimental tests. Our demonstration indicates that Darwinian dynamics represents logically a simple and straightforward starting point for statistical mechanics and thermodynamics and is complementary to and consistent with conservative dynamics that dominates the physical sciences. Present exploration suggests the existence of a unified stochastic dynamical framework both near and far from equilibrium. PMID:21949462

  18. A Simple, General Result for the Variance of Substitution Number in Molecular Evolution

    PubMed Central

    Houchmandzadeh, Bahram; Vallade, Marcel

    2016-01-01

    The number of substitutions (of nucleotides, amino acids, etc.) that take place during the evolution of a sequence is a stochastic variable of fundamental importance in the field of molecular evolution. Although the mean number of substitutions during molecular evolution of a sequence can be estimated for a given substitution model, no simple solution exists for the variance of this random variable. We show in this article that the computation of the variance is as simple as that of the mean number of substitutions for both short and long times. Apart from its fundamental importance, this result can be used to investigate the dispersion index R, that is, the ratio of the variance to the mean substitution number, which is of prime importance in the neutral theory of molecular evolution. By investigating large classes of substitution models, we demonstrate that although R≥1, to obtain R significantly larger than unity necessitates in general additional hypotheses on the structure of the substitution model. PMID:27189545

  19. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    PubMed

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. PMID:24259334

  20. Modelling the chemical evolution of molecular clouds as a function of metallicity

    NASA Astrophysics Data System (ADS)

    Penteado, E. M.; Cuppen, H. M.; Rocha-Pinto, H. J.

    2014-04-01

    The Galaxy is in continuous elemental evolution. Since new elements produced by dying stars are delivered to the interstellar medium, the formation of new generations of stars and planetary systems is influenced by this metal enrichment. We aim to study the role of the metallicity on the gas phase chemistry of the interstellar medium. Using a system of coupled ordinary differential equations to model the chemical reactions, we simulate the evolution of the abundance of molecules in the gas phase for different initial interstellar elemental compositions. These varying initial elemental compositions consider the change in the `elemental abundances' predicted by a self-consistent model of the elemental evolution of the Galaxy. As far as we are aware, this is the first attempt to combine elemental evolution of the Galaxy and chemical evolution of molecular clouds. The metallicity was found to have a strong effect on the overall gas phase composition. With decreasing metallicity, the number of long carbon chains was found to increase, the time-scale on which small molecular species are increases, and the main form of oxygen changed from O and CO to O2. These effects were found to be mainly due to the change in electron, H_3^+, and atomic oxygen abundance.

  1. Protein engineering of conger eel galectins by tracing of molecular evolution using probable ancestral mutants

    PubMed Central

    2010-01-01

    Background Conger eel galectins, congerin I (ConI) and congerin II (ConII), show the different molecular characteristics resulting from accelerating evolution. We recently reconstructed a probable ancestral form of congerins, Con-anc. It showed properties similar to those of ConII in terms of thermostability and carbohydrate recognition specificity, although it shares a higher sequence similarity with ConI than ConII. Results In this study, we have focused on the different amino acid residues between Con-anc and ConI, and have performed the protein engineering of Con-anc through site-directed mutagenesis, followed by the molecular evolution analysis of the mutants. This approach revealed the functional importance of loop structures of congerins: (1) N- and C-terminal and loop 5 regions that are involved in conferring a high thermostability to ConI; (2) loops 3, 5, and 6 that are responsible for stronger binding of ConI to most sugars; and (3) loops 5 and 6, and Thr38 residue in loop 3 contribute the specificity of ConI toward lacto-N-fucopentaose-containing sugars. Conclusions Thus, this methodology, with tracing of the molecular evolution using ancestral mutants, is a powerful tool for the analysis of not only the molecular evolutionary process, but also the structural elements of a protein responsible for its various functions. PMID:20152053

  2. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record

    PubMed Central

    Berney, Cédric; Pawlowski, Jan

    2006-01-01

    Recent attempts to establish a molecular time-scale of eukaryote evolution failed to provide a congruent view on the timing of the origin and early diversification of eukaryotes. The major discrepancies in molecular time estimates are related to questions concerning the calibration of the tree. To limit these uncertainties, we used here as a source of calibration points the rich and continuous microfossil record of dinoflagellates, diatoms and coccolithophorids. We calibrated a small-subunit ribosomal RNA tree of eukaryotes with four maximum and 22 minimum time constraints. Using these multiple calibration points in a Bayesian relaxed molecular clock framework, we inferred that the early radiation of eukaryotes occurred near the Mesoproterozoic–Neoproterozoic boundary, about 1100 million years ago. Our results indicate that most Proterozoic fossils of possible eukaryotic origin cannot be confidently assigned to extant lineages and should therefore not be used as calibration points in molecular dating. PMID:16822745

  3. Morphological and Molecular Evolution Are Not Linked in Lamellodiscus (Plathyhelminthes, Monogenea)

    PubMed Central

    Poisot, Timothée; Verneau, Olivier; Desdevises, Yves

    2011-01-01

    Lamellodiscus Johnston & Tiegs 1922 (Monogenea, Diplectanidae) is a genus of common parasites on the gills of sparid fishes. Here we show that this genus is probably undergoing a fast molecular diversification, as reflected by the important genetic variability observed within three molecular markers (partial nuclear 18S rDNA, Internal Transcribed Spacer 1, and mitonchondrial Cytochrome Oxidase I). Using an updated phylogeny of this genus, we show that molecular and morphological evolution are weakly correlated, and that most of the morphologically defined taxonomical units are not consistent with the molecular data. We suggest that Lamellodiscus morphology is probably constrained by strong environmental (host-induced) pressure, and discuss why this result can apply to other taxa. Genetic variability within nuclear 18S and mitochondrial COI genes are compared for several monogenean genera, as this measure may reflect the level of diversification within a genus. Overall our results suggest that cryptic speciation events may occur within Lamellodiscus, and discuss the links between morphological and molecular evolution. PMID:22022582

  4. The pattern of mammalian evolution and the relative rate of molecular evolution

    SciTech Connect

    Easteal, S. )

    1990-01-01

    The rates of nucleotide substitution at four genes in four orders of eutherian mammals are compared in relative rate tests using marsupial orthologs for reference. There is no evidence of systematic variation in evolutionary rate among the orders. The sequences are used to reconstruct the phylogeny of the orders using maximum likelihood, parsimony and compatibility methods. A branching order of rodent then ungulate then primate and lagomorph is overwhelmingly indicated. The nodes of the nucleotide based cladograms are widely separated in relation to the total lengths of the branches. The assumption of a star phylogeny that underlies Kimura's test for molecular evolutionary rate variation is shown to be invalid for eutherian mammals. Excess variance in nucleotide or amino acid differences between mammalian orders, above that predicted by neutral theory is explained better by variation in divergence time than by variation in evolutionary rate.

  5. Darwinian chemistry: towards the synthesis of a simple cell.

    PubMed

    Loakes, David; Holliger, Philipp

    2009-07-01

    The total synthesis of a simple cell is in many ways the ultimate challenge in synthetic biology. Outlined eight years ago in a visionary article by Szostak et al. (J. W. Szostak, D. P. Bartel and P. L. Luisi, Nature, 2001, 409, 387), the chances of success seemed remote. However, recent progress in nucleic acid chemistry, directed evolution and membrane biophysics have brought the prospect of a simple synthetic cell with life-like properties such as growth, division, heredity and evolution within reach. Success in this area will not only revolutionize our understanding of abiogenesis but provide a fertile test-bed for models of prebiotic chemistry and early evolution. Last but not least, a robust "living" protocell may provide a versatile and safe chassis for embedding synthetic devices and systems. PMID:19562107

  6. Molecular dynamics study of nanoparticle evolution in a background gas under laser ablation conditions

    NASA Astrophysics Data System (ADS)

    Gouriet, K.; Zhigilei, L. V.; Itina, T. E.

    2009-03-01

    Long-time evolution of nanoparticles produced by short laser interactions is investigated for different materials. To better understand the mechanisms of the nanoparticle formation at a microscopic level, we use molecular dynamics (MD) simulations to analyse the evolution of a cluster in the presence of a background gas with different parameters (density and temperature). In particular, we compare the simulation results obtained for materials with different interaction potentials (Morse, Lennard-Jones, and Embedded Atom Model). Attention is focused on the evaporation and condensation processes of a cluster with different size and initial temperature. As a result of the MD calculations, we determinate the influence of both cluster properties and background gas parameters on the nanoparticle evolution. The role of the interaction potential is discussed based on the results of the simulations.

  7. A new model for biological effects of radiation and the driven force of molecular evolution

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako

    We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.

  8. Molecular evolution of H9N2 avian influenza viruses in Israel.

    PubMed

    Davidson, Irit; Fusaro, Alice; Heidari, Alireza; Monne, Isabella; Cattoli, Giovanni

    2014-06-01

    While the previous phylogenetic analyses of AIV H9N2 in Israel had mainly focused on phylogenetics and on describing different virus introductions into the country, for the first time, the H9N2-HA gene evolutionary history has been examined taking into account its origin, evolution and phylodynamics. The present study reveals the Israeli H9N2 molecular evolution rate, the virus molecular clock and skyline plot. The molecular skyline plot showed two major increments in population diversity sizes, the first which had occurred in 2003, the second between the end of 2007 and the first half of 2008. Between 2004 and 2007 the population size had proved to be constant. The two peaks correspond to the appearance of the 3rd and 4th major genetic groups, as well as to the introduction of two H9N2 vaccines. The mean evolution rate was 6.123 E-3 substitutions/site/year, typical of avian influenza viruses. The time interval from the most recent common ancestor was 12.3 years, corresponding to the year 2000, when H9N2 was first isolated in Israel. PMID:24469467

  9. Edward Hitchcock's pre-Darwinian (1840) "tree of life".

    PubMed

    Archibald, J David

    2009-01-01

    The "tree of life" iconography, representing the history of life, dates from at least the latter half of the 18th century, but evolution as the mechanism providing this bifurcating history of life did not appear until the early 19th century. There was also a shift from the straight line, scala naturae view of change in nature to a more bifurcating or tree-like view. Throughout the 19th century authors presented tree-like diagrams, some regarding the Deity as the mechanism of change while others argued for evolution. Straight-line or anagenetic evolution and bifurcating or cladogenetic evolution are known in biology today, but are often misrepresented in popular culture, especially with anagenesis being confounded with scala naturae. Although well known in the mid 19th century, the geologist Edward Hitchcock has been forgotten as an early, if not the first author to publish a paleontologically based "tree of life" beginning in 1840 in the first edition of his popular general geology text Elementary Geology. At least 31 editions were published and those between 1840 and 1859 had this "paleontological chart" showing two trees, one for fossil and living plants and another for animals set within a context of geological time. Although the chart did not vary in later editions, the text explaining the chart did change to reflect newer ideas in paleontology and geology. Whereas Lamarck, Chambers, Bronn, Darwin, and Haeckel saw some form of transmutation as the mechanism that created their "trees of life," Hitchcock, like his contemporaries Agassiz and Miller, who also produced "trees of life," saw a deity as the agent of change. Through each edition of his book Hitchcock denounced the newer transmutationist hypotheses of Lamarck, then Chambers, and finally Darwin in an 1860 edition that no longer presented his tree-like "paleontological chart." PMID:20027787

  10. Nuclear Architecture and Patterns of Molecular Evolution Are Correlated in the Ciliate Chilodonella uncinata.

    PubMed

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2016-01-01

    The relationship between nuclear architecture and patterns of molecular evolution in lineages across the eukaryotic tree of life is not well understood, partly because molecular evolution is traditionally explored as changes in base pairs along a linear sequence without considering the context of nuclear position of chromosomes. The ciliate Chilodonella uncinata is an ideal system to address the relationship between nuclear architecture and patterns of molecular evolution as the somatic macronucleus of this ciliate is composed of a peripheral DNA-rich area (orthomere) and a DNA-poor central region (paramere) to form a "heteromeric" macronucleus. Moreover, because the somatic chromosomes of C. uncinata are highly processed into "gene-sized" chromosomes (i.e., nanochromosomes), we can assess fine-scale relationships between location and sequence evolution. By combining fluorescence microscopy and analyses of transcriptome data from C. uncinata, we find that highly expressed genes have the greatest codon usage bias and are enriched in DNA-poor regions. In contrast, genes with less biased sequences tend to be concentrated in DNA abundant areas, at least during vegetative growth. Our analyses are consistent with recent work in plants and animals where nuclear architecture plays a role in gene expression. At the same time, the unusual localization of nanochromosomes suggests that the highly structured nucleus in C. uncinata may create a "gene bank" that facilitates rapid changes in expression of genes required only in specific life history stages. By using "nonmodel" organisms like C. uncinata, we can explore the universality of eukaryotic features while also providing examples of novel properties (i.e., the presence of a gene bank) that build from these features. PMID:27189988

  11. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    PubMed

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  12. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    PubMed Central

    Jones, Gareth; Teeling, Emma C.; Rossiter, Stephen J.

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a “birth-and death” evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID

  13. Nuclear Architecture and Patterns of Molecular Evolution Are Correlated in the Ciliate Chilodonella uncinata

    PubMed Central

    Maurer-Alcalá, Xyrus X.; Katz, Laura A.

    2016-01-01

    The relationship between nuclear architecture and patterns of molecular evolution in lineages across the eukaryotic tree of life is not well understood, partly because molecular evolution is traditionally explored as changes in base pairs along a linear sequence without considering the context of nuclear position of chromosomes. The ciliate Chilodonella uncinata is an ideal system to address the relationship between nuclear architecture and patterns of molecular evolution as the somatic macronucleus of this ciliate is composed of a peripheral DNA-rich area (orthomere) and a DNA-poor central region (paramere) to form a “heteromeric” macronucleus. Moreover, because the somatic chromosomes of C. uncinata are highly processed into “gene-sized” chromosomes (i.e., nanochromosomes), we can assess fine-scale relationships between location and sequence evolution. By combining fluorescence microscopy and analyses of transcriptome data from C. uncinata, we find that highly expressed genes have the greatest codon usage bias and are enriched in DNA-poor regions. In contrast, genes with less biased sequences tend to be concentrated in DNA abundant areas, at least during vegetative growth. Our analyses are consistent with recent work in plants and animals where nuclear architecture plays a role in gene expression. At the same time, the unusual localization of nanochromosomes suggests that the highly structured nucleus in C. uncinata may create a “gene bank” that facilitates rapid changes in expression of genes required only in specific life history stages. By using “nonmodel” organisms like C. uncinata, we can explore the universality of eukaryotic features while also providing examples of novel properties (i.e., the presence of a gene bank) that build from these features. PMID:27189988

  14. Diet and our genetic legacy in the recent anthropocene: a Darwinian perspective to nutritional health.

    PubMed

    Lucock, Mark D; Martin, Charlotte E; Yates, Zoe R; Veysey, Martin

    2014-01-01

    Nutrient-gene research tends to focus on human disease, although such interactions are often a by-product of our evolutionary heritage. This review explores health in this context, reframing genetic variation/epigenetic phenomena linked to diet in the framework of our recent evolutionary past. This "Darwinian/evolutionary medicine" approach examines how diet helped us evolve among primates and to adapt (or fail to adapt) our metabolome to specific environmental conditions leading to major diseases of civilization. This review presents updated evidence from a diet-gene perspective, portraying discord that exists with respect to health and our overall nutritional, cultural, and activity patterns. While Darwinian theory goes beyond nutritional considerations, a significant component within this concept does relate to nutrition and the mismatch between genes, modern diet, obesogenic lifestyle, and health outcomes. The review argues that nutritional sciences should expand knowledge on the evolutionary connection between food and disease, assimilating it into clinical training with greater prominence. PMID:24647381

  15. Evolution before genes

    PubMed Central

    2012-01-01

    Background Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate') of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. Results We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype), that sustains a molecular periphery (analogous to a phenotype). Conclusions We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur. Reviewers This article was reviewed by William Martin and Eugene Koonin. PMID:22221860

  16. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    PubMed

    Eu, Byung Chan

    2008-09-01

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel. PMID:19044872

  17. Molecular evolution of the capsid gene in human norovirus genogroup II.

    PubMed

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10(-3) substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>10(2)) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  18. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy

    PubMed Central

    Preciado, Maria Victoria; Valva, Pamela; Escobar-Gutierrez, Alejandro; Rahal, Paula; Ruiz-Tovar, Karina; Yamasaki, Lilian; Vazquez-Chacon, Carlos; Martinez-Guarneros, Armando; Carpio-Pedroza, Juan Carlos; Fonseca-Coronado, Salvador; Cruz-Rivera, Mayra

    2014-01-01

    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era. PMID:25473152

  19. Molecular evolution and adaptation of the mitochondrial cytochrome b gene in the subgenus Martes.

    PubMed

    Li, B; Malyarchuk, B; He, X B; Derenko, M

    2013-01-01

    Martes species represent a typical example of rapid evolutionary radiation and a recent speciation event. To identify regions of the genome that experienced adaptive evolution, which might provide clues to their functional importance and may be informative about the features that make each species unique, we sought evidence of molecular adaptation in the mitochondrial DNA (mtDNA) cytochrome b gene in the subgenus Martes. Complete sequences of the cytochrome b gene were obtained from 87 samples, including 49 sables, 28 pine martens, and 10 stone martens, and were combined with mtDNA sequences of other true martens, such as M. melampus and M. americana. Analysis of the cytochrome b gene variation in true martens has shown that the evolution of this gene is under negative selection. In contrast, positive selection on the cytochrome b protein has been detected by means of the software TreeSAAP using a phylogenetic reconstruction of Martes taxa. Signatures of adaptive variation in cytochrome b were restricted to the transmembrane domains, which likely function as proton pumps. We compared results of different methods for testing selection and molecular adaptation, and we supposed that the radical changes of the cytochrome b amino acid residues in the subgenus Martes may be the result of molecular adaptation to specific environmental conditions coupled with species dispersals. PMID:24085456

  20. The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure

    PubMed Central

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C.; Paoletti, Christopher; Nowak, Martin A.

    2015-01-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a “molecular clock” to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution. PMID:25719560

  1. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport.

    PubMed

    Hoy, Julie A; Robinson, Howard; Trent, James T; Kakar, Smita; Smagghe, Benoit J; Hargrove, Mark S

    2007-08-01

    The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport "leghemoglobins" evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins. PMID:17560601

  2. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia

    PubMed Central

    Janes, Daniel E.; Organ, Christopher L.; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D.; Georges, Arthur; Graves, Jennifer A. M.; Valenzuela, Nicole; Literman, Robert A.; Rutherford, Kim; Gemmell, Neil; Iverson, John B.; Tamplin, Jeffrey W.; Edwards, Scott V.; Ezaz, Tariq

    2014-01-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations. PMID:25540158

  3. Molecular evolution and antigenic variation of European brown hare syndrome virus (EBHSV).

    PubMed

    Lopes, Ana M; Capucci, Lorenzo; Gavier-Widén, Dolores; Le Gall-Reculé, Ghislaine; Brocchi, Emiliana; Barbieri, Ilaria; Quéméner, Agnès; Le Pendu, Jacques; Geoghegan, Jemma L; Holmes, Edward C; Esteves, Pedro J; Abrantes, Joana

    2014-11-01

    European brown hare syndrome virus (EBHSV) is the aetiological agent of European brown hare syndrome (EBHS), a disease affecting Lepus europaeus and Lepus timidus first diagnosed in Sweden in 1980. To characterize EBHSV evolution we studied hare samples collected in Sweden between 1982 and 2008. Our molecular clock dating is compatible with EBHSV emergence in the 1970s. Phylogenetic analysis revealed two lineages: Group A persisted until 1989 when it apparently suffered extinction; Group B emerged in the mid-1980s and contains the most recent strains. Antigenic differences exist between groups, with loss of reactivity of some MAbs over time, which are associated with amino acid substitutions in recognized epitopes. A role for immune selection is also supported by the presence of positively selected codons in exposed regions of the capsid. Hence, EBHSV evolution is characterized by replacement of Group A by Group B viruses, suggesting that the latter possess a selective advantage. PMID:25155199

  4. PAL: an object-oriented programming library for molecular evolution and phylogenetics.

    PubMed

    Drummond, A; Strimmer, K

    2001-07-01

    Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License. PMID:11448888

  5. On the Evolution of Human Language.

    ERIC Educational Resources Information Center

    Lieberman, Philip

    Human linguistic ability depends, in part, on the gradual evolution of man's supralaryngeal vocal tract. The anatomic basis of human speech production is the result of a long evolutionary process in which the Darwinian process of natural selection acted to retain mutations. For auditory perception, the listener operates in terms of the acoustic…

  6. Teaching Evolution: A Heuristic Study of Personal and Cultural Dissonance

    ERIC Educational Resources Information Center

    Grimes, Larry G.

    2012-01-01

    Darwinian evolution is a robustly supported scientific theory. Yet creationists continue to challenge its teaching in American public schools. Biology teachers in all 50 states are responsible for teaching science content standards that include evolution. As products of their backgrounds and affiliations teachers bring personal attitudes and…

  7. Water oxidation catalysis upon evolution of molecular Co(III) cubanes in aqueous media.

    PubMed

    Genoni, Andrea; La Ganga, Giuseppina; Volpe, Andrea; Puntoriero, Fausto; Di Valentin, Marilena; Bonchio, Marcella; Natali, Mirco; Sartorel, Andrea

    2015-01-01

    The increasing global energy demand has stimulated great recent efforts in investigating new solutions for artificial photosynthesis, a potential source of clean and renewable solar fuel. In particular, according to the generally accepted modular approach aimed at optimising separately the different compartments of the entire process, many studies have focused on the development of catalytic systems for water oxidation to oxygen. While in recent years there have been many reports on new catalytic systems, the mechanism and the active intermediates operating the catalysis have been less investigated. Well-defined, molecular catalysts, constituted by transition metals stabilised by a suitable ligand pool, could help in solving this aspect. However, in some cases molecular species have been shown to evolve to active metal oxides that constitute the other side of this catalysis dichotomy. In this paper, we address the evolution of tetracobalt(III) cubanes, stabilised by a pyridine/acetate ligand pool, to active species that perform water oxidation to oxygen. Primary evolution of the cubane in aqueous solution is likely initiated by removal of an acetate bridge, opening the coordination sphere of the cobalt centres. This cobalt derivative, where the pristine ligands still impact on the reactivity, shows enhanced electron transfer rates to Ru(bpy)3(3+) (hole scavenging) within a photocatalytic cycle with Ru(bpy)3(2+) as the photosensitiser and S2O8(2-) as the electron sink. A more accentuated evolution occurs under continuous irradiation, where Electron Paramagnetic Resonance (EPR) spectroscopy reveals the formation of Co(ii) intermediates, likely contributing to the catalytic process that evolves oxygen. All together, these results confirm the relevant effect of molecular species, in particular in fostering the rate of the electron transfer processes involved in light activated cycles, pivotal in the design of a photoactive device. PMID:26400662

  8. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness

    PubMed Central

    Peña, Matthew I.; Van Itallie, Elizabeth; Bennett, Matthew R.; Shamoo, Yousif

    2010-01-01

    Evolution by natural selection is the driving force behind the endless variation we see in nature, yet our understanding of how changes at the molecular level give rise to different phenotypes and altered fitness at the population level remains inadequate. The reproductive fitness of an organism is the most basic metric that describes the chance that an organism will succeed or fail in its environment and it depends upon a complex network of inter- and intramolecular interactions. A deeper understanding of the quantitative relationships relating molecular evolution to adaptation, and consequently fitness, can guide our understanding of important issues in biomedicine such as drug resistance and the engineering of new organisms with applications to biotechnology. We have developed the “weak link” approach to determine how changes in molecular structure and function can relate to fitness and evolutionary outcomes. By replacing adenylate kinase (AK), an essential gene, in a thermophile with a homologous AK from a mesophile we have created a maladapted weak link that produces a temperature-sensitive phenotype. The recombinant strain adapts to nonpermissive temperatures through point mutations to the weak link that increase both stability and activity of the enzyme AK at higher temperatures. Here, we propose a fitness function relating enzyme activity to growth rate and use it to create a dynamic model of a population of bacterial cells. Using metabolic control analysis we show that the growth rate exhibits thresholdlike behavior, saturating at high enzyme activity as other reactions in the energy metabolism pathway become rate limiting. The dynamic model accurately recapitulates observed evolutionary outcomes. These findings suggest that in vitro enzyme kinetic data, in combination with metabolic network analysis, can be used to create fitness functions and dynamic models of evolution within simple metabolic systems. PMID:20590336

  9. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness

    NASA Astrophysics Data System (ADS)

    Peña, Matthew I.; Van Itallie, Elizabeth; Bennett, Matthew R.; Shamoo, Yousif

    2010-06-01

    Evolution by natural selection is the driving force behind the endless variation we see in nature, yet our understanding of how changes at the molecular level give rise to different phenotypes and altered fitness at the population level remains inadequate. The reproductive fitness of an organism is the most basic metric that describes the chance that an organism will succeed or fail in its environment and it depends upon a complex network of inter- and intramolecular interactions. A deeper understanding of the quantitative relationships relating molecular evolution to adaptation, and consequently fitness, can guide our understanding of important issues in biomedicine such as drug resistance and the engineering of new organisms with applications to biotechnology. We have developed the "weak link" approach to determine how changes in molecular structure and function can relate to fitness and evolutionary outcomes. By replacing adenylate kinase (AK), an essential gene, in a thermophile with a homologous AK from a mesophile we have created a maladapted weak link that produces a temperature-sensitive phenotype. The recombinant strain adapts to nonpermissive temperatures through point mutations to the weak link that increase both stability and activity of the enzyme AK at higher temperatures. Here, we propose a fitness function relating enzyme activity to growth rate and use it to create a dynamic model of a population of bacterial cells. Using metabolic control analysis we show that the growth rate exhibits thresholdlike behavior, saturating at high enzyme activity as other reactions in the energy metabolism pathway become rate limiting. The dynamic model accurately recapitulates observed evolutionary outcomes. These findings suggest that in vitro enzyme kinetic data, in combination with metabolic network analysis, can be used to create fitness functions and dynamic models of evolution within simple metabolic systems.

  10. Non-unity molecular heritability demonstrated by continuous evolution in vitro

    NASA Technical Reports Server (NTRS)

    Schmitt, T.; Lehman, N.

    1999-01-01

    INTRODUCTION: When catalytic RNA is evolved in vitro, the molecule's chemical reactivity is usually the desired selection target. Sometimes the phenotype of a particular RNA molecule cannot be unambiguously determined from its genotype, however. This can occur if a nucleotide sequence can adopt multiple folded states, an example of non-unity heritability (i.e. one genotype gives rise to more than one phenotype). In these cases, more rounds of selection are required to achieve a phenotypic shift. We tested the influence of non-unity heritability at the molecular level by selecting for variants of a ligase ribozyme via continuous evolution. RESULTS: During 20 bursts of continuous evolution of a 152-nucleotide ligase ribozyme in which the Mg2+ concentration was periodically lowered, a nine-error variant of the starting 'wild-type' molecule became dominant in the last eight bursts. This variant appears to be more active than the wild type. Kinetic analyses of the mutant suggest that it may not possess a higher first-order catalytic rate constant, however. Examination of the multiple RNA conformations present under the continuous evolution conditions suggests that the mutant is superior to the wild type because it is less likely to misfold into inactive conformers. CONCLUSIONS: The evolution of genotypes that are more likely to exhibit a particular phenotype is an epiphenomenon usually ascribed only to complex living systems. We show that this can occur at the molecular level, demonstrating that in vitro systems may have more life-like characteristics than previously thought, and providing additional support for an RNA world.

  11. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  12. Spatiotemporal evolution of plasma molecular emission following laser ablation of explosive analogs

    NASA Astrophysics Data System (ADS)

    Merten, Jonathan; Jones, Matthew; Sheppard, Cheyenne; Parigger, Christian; Allen, Susan

    2013-05-01

    The spatial and temporal evolution of the CN molecular emission following laser ablation of a TNT analog (3- nitrobenzoic acid) has been studied along with ablation of targets that contain neither nitro groups nor C-N bonds. At a fluence of ~104 J/cm2, behavior indicative of the ablation of native CN bonds has been observed in samples containing no native CN bonds. The recorded data show significant plasma background emissions that pose difficulties for direct spectral imaging. Spatially resolved images suggest that some of the observed phenomena are simply the result of the interaction of the plasma and the observation volume of the collection optics.

  13. Genetic diversity and molecular evolution of arabis mosaic virus based on the CP gene sequence.

    PubMed

    Gao, Fangluan; Lin, Wuzhen; Shen, Jianguo; Liao, Furong

    2016-04-01

    Arabis mosaic virus (ArMV) is a virus with a wide host range. In this study, the genetic diversity of ArMV and the molecular mechanisms underlying its evolution were investigated using the coat protein (CP) sequence. Of the 33 ArMV isolates studied, three were found to be recombinants. The other 30 recombination-free ArMV isolates could be separated into two major lineages with a significant F ST value (0.384) and tended to cluster according to their geographical origin. Different evolutionary constraints were detected for the two linages, pointing to a role of natural selection in the differentiation of ArMV. PMID:26758729

  14. Evolution of shear banding flows in metallic glasses characterized by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yao, Li; Luan, Yingwei

    2016-06-01

    To reveal the evolution of shear banding flows, one-dimensional nanostructure metallic glass composites have been studied with molecular dynamics. The inherent size determines the initial thickness of shear bands, and the subsequent broadening can be restricted to some extent. The vortex-like flows evoke the atomic motion perpendicular to the shear plane, which accelerates the interatomic diffusion. The reduction of local strain rate causes the flow softening for monolithic Cu-Zr glass, but the participation of Cu-atoms in the shear banding flow gradually leads to the shear hardening for the composites.

  15. Thiol-catalyzed formation of lactate and glycerate from glyceraldehyde. [significance in molecular evolution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1983-01-01

    The rate of lactate formation from glyceraldehyde, catalyzed by N-acetyl-cysteine at ambient temperature in aqueous sodium phosphate (pH 7.0), is more rapid at higher sodium phosphate concentrations and remains essentially the same in the presence and absence of oxygen. The dramatic increase in the rate of glycerate formation that is brought about by this thiol, N-acetylcysteine, is accompanied by commensurate decreases in the rates of glycolate and formate production. It is suggested that the thiol-dependent formation of lactate and glycerate occurs by way of their respective thioesters. Attention is given to the significance of these reactions in the context of molecular evolution.

  16. Molecular structure matching by simulated annealing. II. An exploration of the evolution of configuration landscape problems.

    PubMed

    Barakat, M T; Dean, P M

    1990-09-01

    This paper considers some of the landscape problems encountered in matching molecules by simulated annealing. Although the method is in theory ergodic, the global minimum in the objective function is not always encountered. Factors inherent in the molecular data that lead the trajectory of the minimization away from its optimal route are analysed. Segments comprised of the C alpha atoms of dihydrofolate reductase are used as test data. The evolution of a reverse ordering landscape problem is examined in detail. Where such patterns in the data could lead to incorrect matches, the problem can in part be circumvented by assigning an initial random ordering to the molecules. PMID:2280267

  17. [Molecular evolution of ciliates (Ciliophora) and some related groups of protozoans].

    PubMed

    Lukashenko, N P

    2009-08-01

    The review summarizes current evidence, including the findings related to molecular phylogeny of ciliates (type Ciliophora) and some related groups of protozoans. Based on comparison of the sequences of genes encoding various ribosomal RNAs (rRNAs), the phylogenetic relationships in seven out of eight known classes of ciliates are discussed. The events related to early branching of the eukaryotic tree are briefly presented. The evolutionary history of amitochondrial protists ids considered with regard to reductionistic evolution and archeozoic hypothesis. The phylogenetic relationships among ciliates and sister groups of apicomplexans and dinoflagellates are considered. PMID:19769290

  18. Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels

    PubMed Central

    Lynagh, Timothy; Beech, Robin N.; Lalande, Maryline J.; Keller, Kevin; Cromer, Brett A.; Wolstenholme, Adrian J.; Laube, Bodo

    2015-01-01

    Glutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis. Most remarkably, the arginine emerged on the principal face of the binding site in the Lophotrochozoan lineage, but 65 amino acids upstream, on the complementary face, in the Ecdysozoan lineage. This combined experimental and computational approach throws new light on the evolution of synaptic signalling. PMID:25708000

  19. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws

    PubMed Central

    Šmajs, David; Norris, Steven J.; Weinstock, George M.

    2013-01-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, T. paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. PMID:22198325

  20. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H₂ evolution under fully aqueous conditions.

    PubMed

    Andreiadis, Eugen S; Jacques, Pierre-André; Tran, Phong D; Leyris, Adeline; Chavarot-Kerlidou, Murielle; Jousselme, Bruno; Matheron, Muriel; Pécaut, Jacques; Palacin, Serge; Fontecave, Marc; Artero, Vincent

    2013-01-01

    The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H(2) generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices. PMID:23247177

  1. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws.

    PubMed

    Smajs, David; Norris, Steven J; Weinstock, George M

    2012-03-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. PMID:22198325

  2. A multimodal Darwinian strategy for alleviating the atherosclerosis pandemic.

    PubMed

    Mathew, Geetha; Thambi, Magith; Unnikrishnan, M K

    2014-02-01

    The conflict between our 'primitive' genes and 'modern' lifestyle probably lies at the root of several disorders that afflict modern man. Atherosclerosis, which is relatively unknown among contemporary hunter-gatherer populations, has reached pandemic proportions in recent times. Being an evolutionary problem with several inter-related pathologies, current therapeutic strategy for treating atherosclerosis has inherent limitations. Reviewing evolution-linked risk factors suggests that there are four aspects to the etiology of atherosclerosis namely, decreased intestinal parasitism, oversensitivity of evolutionarily redundant mast cells, chronic underactivation of AMPK (cellular energy sensor) and a deficiency of vitamin D. A combination of these four causes appear to have precipitated the atherosclerosis pandemic in modern times. Man and worms co-existed symbiotically in the past. Massive de-worming campaigns could have disrupted this symbiosis, increasing nutritional availability to man (pro-obesity) at the cost of decreased immunotolerance (pro-atherogenicity). A reduction in helminth-induced chronic TH2 activation could also have enhanced TH1 polarization, eventually disrupting the reciprocal regulation of TH1/TH2 balance and resulting in atherosclerosis. The riddance of helminth infestations may have rendered mast cells immunologically redundant, making them oversensitive to inflammatory stimuli, thereby playing a pro-atherogenic role. AMPK activation exerts pleiotropic anti-atherogenic effects, such as suppression of fatty acid, cholesterol, protein synthesis, reduction of vascular smooth muscle proliferation, etc. As energy deficit is the chief stimulus for AMPK activation, the over-nourished modern man appears to be suffering from chronic underactivation of AMPK, legitimising the unrivalled supremacy of metformin, the oldest prescribed antidiabetic drug. The fact that humans evolved in the sunny tropics suggests that humans are selected for high vitamin D

  3. Evolution of Molecular and Atomic Gas Phases in the Milky Way

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Scoville, Nick; Heyer, Mark

    2016-06-01

    We analyze radial and azimuthal variations of the phase balance between the molecular and atomic interstellar medium (ISM) in the Milky Way (MW) using archival CO(J = 1-0) and HI 21 cm data. In particular, the azimuthal variations—between the spiral arm and interarm regions—are analyzed without any explicit definition of the spiral arm locations. We show that the molecular gas mass fraction, i.e., {f}{{mol}}={{{Σ }}}{{{H}}2}/({{{Σ }}}{HI}+{{{Σ }}}{{{H}}2}), varies predominantly in the radial direction: starting from ˜ 100% at the center, remaining ≳ 50% to R˜ 6 {{kpc}} and decreasing to ˜10%–20% at R=8.5 {{kpc}} when averaged over the whole disk thickness (from ˜100% to ≳60%, then to ˜50% in the midplane). Azimuthal, arm-interarm variations are secondary: only ˜ 20% in the globally molecule-dominated inner MW, but becoming larger, ˜40%–50%, in the atom-dominated outskirts. This suggests that in the inner MW the gas remains highly molecular ({f}{{mol}}\\gt 50%) as it moves from an interarm region into a spiral arm and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts where the gas phase is globally atomic ({f}{{mol}}\\lt 50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., the LMC, M33, and M51). We explain the radial gradient of {f}{{mol}} using a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in the Appendix.

  4. Evolution of Molecular and Atomic Gas Phases in the Milky Way

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Scoville, Nick; Heyer, Mark

    2016-06-01

    We analyze radial and azimuthal variations of the phase balance between the molecular and atomic interstellar medium (ISM) in the Milky Way (MW) using archival CO(J = 1-0) and HI 21 cm data. In particular, the azimuthal variations—between the spiral arm and interarm regions—are analyzed without any explicit definition of the spiral arm locations. We show that the molecular gas mass fraction, i.e., {f}{{mol}}={{{Σ }}}{{{H}}2}/({{{Σ }}}{HI}+{{{Σ }}}{{{H}}2}), varies predominantly in the radial direction: starting from ∼ 100% at the center, remaining ≳ 50% to R∼ 6 {{kpc}} and decreasing to ∼10%–20% at R=8.5 {{kpc}} when averaged over the whole disk thickness (from ∼100% to ≳60%, then to ∼50% in the midplane). Azimuthal, arm-interarm variations are secondary: only ∼ 20% in the globally molecule-dominated inner MW, but becoming larger, ∼40%–50%, in the atom-dominated outskirts. This suggests that in the inner MW the gas remains highly molecular ({f}{{mol}}\\gt 50%) as it moves from an interarm region into a spiral arm and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts where the gas phase is globally atomic ({f}{{mol}}\\lt 50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., the LMC, M33, and M51). We explain the radial gradient of {f}{{mol}} using a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in the Appendix.

  5. Darwinian sex roles confirmed across the animal kingdom

    PubMed Central

    Janicke, Tim; Häderer, Ines K.; Lajeunesse, Marc J.; Anthes, Nils

    2016-01-01

    Since Darwin’s conception of sexual selection theory, scientists have struggled to identify the evolutionary forces underlying the pervasive differences between male and female behavior, morphology, and physiology. The Darwin-Bateman paradigm predicts that anisogamy imposes stronger sexual selection on males, which, in turn, drives the evolution of conventional sex roles in terms of female-biased parental care and male-biased sexual dimorphism. Although this paradigm forms the cornerstone of modern sexual selection theory, it still remains untested across the animal tree of life. This lack of evidence has promoted the rise of alternative hypotheses arguing that sex differences are entirely driven by environmental factors or chance. We demonstrate that, across the animal kingdom, sexual selection, as captured by standard Bateman metrics, is indeed stronger in males than in females and that it is evolutionarily tied to sex biases in parental care and sexual dimorphism. Our findings provide the first comprehensive evidence that Darwin’s concept of conventional sex roles is accurate and refute recent criticism of sexual selection theory. PMID:26933680

  6. Darwinian sex roles confirmed across the animal kingdom.

    PubMed

    Janicke, Tim; Häderer, Ines K; Lajeunesse, Marc J; Anthes, Nils

    2016-02-01

    Since Darwin's conception of sexual selection theory, scientists have struggled to identify the evolutionary forces underlying the pervasive differences between male and female behavior, morphology, and physiology. The Darwin-Bateman paradigm predicts that anisogamy imposes stronger sexual selection on males, which, in turn, drives the evolution of conventional sex roles in terms of female-biased parental care and male-biased sexual dimorphism. Although this paradigm forms the cornerstone of modern sexual selection theory, it still remains untested across the animal tree of life. This lack of evidence has promoted the rise of alternative hypotheses arguing that sex differences are entirely driven by environmental factors or chance. We demonstrate that, across the animal kingdom, sexual selection, as captured by standard Bateman metrics, is indeed stronger in males than in females and that it is evolutionarily tied to sex biases in parental care and sexual dimorphism. Our findings provide the first comprehensive evidence that Darwin's concept of conventional sex roles is accurate and refute recent criticism of sexual selection theory. PMID:26933680

  7. The Darwinian stickleback Gasterosteus aculeatus: a history of evolutionary studies.

    PubMed

    Wootton, R J

    2009-11-01

    The history of studies on the taxonomy and evolutionary biology of the three-spined stickleback Gasterosteus aculeatus from the 18th century to the present is reviewed. After the publication of Darwin's Origin of the Species, four important dates, 1925, 1947, 1967 and 2001, are identified as marking major gains in the understanding of the evolution of the diversity in morphological, life-history, physiological and behavioural traits that characterizes G. aculeatus. The period 1925-1970 led to the identification of the main themes of research: status and adaptive significance of lateral-plate morphs; inter and intrapopulation trait variation in freshwater resident G. aculeatus and the adaptive significance of the variation. Between 1970 and 2001, these themes were investigated using variation observed particularly along the Pacific coast of the U.S.A. and Canada, notably in the Cook Inlet region of Alaska and the Haida Gwaii Archipelago. Studies on adaptive radiation and reproductive isolation in lacustrine, ecomorph pairs (limnetics and benthics) discovered in the Strait of Georgia region have been particularly productive. From 2001, the application of genomic studies to these problems began to open up the study of the relationships between genotype, phenotype and selective advantage to causal analysis. PMID:20738666

  8. Molecular Specificity, Convergence and Constraint Shape Adaptive Evolution in Nutrient-Poor Environments

    PubMed Central

    Hong, Jungeui; Gresham, David

    2014-01-01

    One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that

  9. Morphology Evolution of Molecular Weight Dependent P3HT: PCBM Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Chen, Dian; Briseno, Alejandro; Russell, Thomas

    2011-03-01

    Effective strategies to maximize the performance of bulk heterojunction (BHJ) photovoltaic devices have to be developed and understood to realize their full potential. In BHJ solar cells, the morphology of the active layer is a critical issue to improve device efficiency. In this work, we choose poly(3-hexyl-thiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) system to study the morphology evolution. Different molecular weight P3HTs were synthesized by using Grignard Metathesis (GRIM)~method. In device optimization, polymer with a molecular weight between 20k-30k shows the highest efficiency. It was observed that the as-spun P3HT: PCBM (1:1) blends do not have high order by GISAXS. Within a few seconds of thermal annealing at 150& circ; the crystallinity of P3HT increaased substantially and the polymer chains adopted an edge-on orientation. An-bicontinous morphology was also developed within this short thermal treatment. The in situ GISAXS experiment showed that P3HT of high molecular weight was more easily crystallized from a slowly evaporated chlorobenzene solution and their edge-on orientation is much more obvious than for the lower molecular weight P3HTs. DSC was used to study the thermal properties of P3HTs and P3HT: PCBM blend. The χ of P3HT-PCBM was also calculated by using melting point depression method.

  10. Anticipatory dynamics of biological systems: from molecular quantum states to evolution

    NASA Astrophysics Data System (ADS)

    Igamberdiev, Abir U.

    2015-08-01

    Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.

  11. Major Radiations in the Evolution of Caviid Rodents: Reconciling Fossils, Ghost Lineages, and Relaxed Molecular Clocks

    PubMed Central

    Pérez, María Encarnación; Pol, Diego

    2012-01-01

    Background Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America (“eocardiids”). Results A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (refered here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates. Conclusions The integrated approach used here allowed us identifying the agreements and discrepancies of the fossil record and molecular clock estimates on the timing of the major events in cavioid evolution, revealing evolutionary patterns that would not have been possible to gather using only molecular or paleontological data alone. PMID

  12. Molecular evolution of sex-biased genes in the Drosophila ananassae subgroup

    PubMed Central

    2009-01-01

    Background Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura. Results Sex-biased expression is generally conserved between D. melanogaster and D. ananassae, with the majority of genes exhibiting the same bias in the two species. However, about one-third of the genes have either gained or lost sex-biased expression in one of the species and a small proportion of genes (~4%) have changed bias from one sex to the other. The male-biased genes of D. ananassae show evidence of positive selection acting at the protein level. However, the signal of adaptive protein evolution for male-biased genes is not as strong in D. ananassae as it is in D. melanogaster and is limited to genes with conserved male-biased expression in both species. Within D. ananassae, a significant signal of adaptive evolution is also detected for female-biased and unbiased genes. Conclusions Our findings extend previous observations of widespread adaptive protein evolution to an independent Drosophila lineage, the D. ananassae subgroup. However, the rate of adaptive evolution is

  13. Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents.

    PubMed

    Huchon, D; Catzeflis, F M; Douzery, E J

    1999-05-01

    Nucleotide sequences of exon 28 of the von Willebrand Factor (vWF) were analyzed for a representative sampling of rodent families and eutherian orders, with one marsupial sequence as outgroup. The aim of this study was to test if inclusion of an increased taxonomic diversity in molecular analyses would shed light on three uncertainties concerning rodent phylogeny: (1) relationships between rodent families, (2) Rodentia monophyly, and (3) the sister group relationship of rodents and lagomorphs. The results did not give evidence of any particular rodent pattern of molecular evolution relative to a general eutherian pattern. Base compositions and rates of evolution of vWF sequences of rodents were in the range of placental variation. The 10 rodent families studied here cluster in five clades: Hystricognathi, Sciuridae and Aplodontidae (Sciuroidea), Muridae, Dipodidae, and Gliridae. Among hystricognaths, the following conclusions are drawn: a single colonization event in South America by Caviomorpha, a paraphyly of Old World and New World porcupines, and an African origin for Old World porcupines. Despite a broader taxonomic sampling diversity, we did not obtain a robust answer to the question of Rodentia monophyly, but in the absence of any other alternative, we cannot reject the hypothesis of a single origin of rodents. Moreover, the phylogenetic position of Lagomorpha remains totally unsettled. PMID:10335651

  14. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey

    PubMed Central

    Li, Jia; You, Xinxin; Bian, Chao; Yu, Hui; Coon, Steven L.; Shi, Qiong

    2015-01-01

    All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2. PMID:26729109

  15. Molecular evolution of fever, thrombocytopenia and leukocytopenia virus (FTLSV) based on whole-genome sequences.

    PubMed

    Liu, Licheng; Chen, Weijun; Yang, Yinhui; Jiang, Yongqiang

    2016-04-01

    FTLSV is a novel bunyavirus that was discovered in 2007 in the Henan province of China and has reported case fatality rates of up to 30%. Despite the high case fatality rate, knowledge of the evolution and molecular epidemiology of FTLSV is limited. In this study, detailed phylogenetic analyses were performed on whole-genome sequences to examine the virus's evolutionary rates, estimate dates of common ancestry, and determine the population dynamics and selection pressure for FTLSV. The evolutionary rates of FTLSV were estimated to be 2.28×10(-4), 2.42×10(-4) and 1.19×10(-4) nucleotide substitutions/site/year for the S, M and L segments, respectively. The most recent ancestor of the viruses existed approximately 182-294years ago. Evidence of RNA segment reassortment was found in FTLSV. A Bayesian skyline plot showed that after a period of genetic stability following high variability, the FTLSV population appeared to have contracted it. Selection pressures were estimated and revealed an abundance of negatively selected sites and sparse positively selected sites. These data will be valuable in understanding the evolution and molecular epidemiology of FTLSV, eventually helping to determine mechanisms of emergence and pathogenicity and the level of the virus's threat to public health. PMID:26748010

  16. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey.

    PubMed

    Li, Jia; You, Xinxin; Bian, Chao; Yu, Hui; Coon, Steven L; Shi, Qiong

    2016-01-01

    All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2. PMID:26729109

  17. Molecular heterochrony and the evolution of sociality in bumblebees (Bombus terrestris)

    PubMed Central

    Woodard, S. Hollis; Bloch, Guy M.; Band, Mark R.; Robinson, Gene E.

    2014-01-01

    Sibling care is a hallmark of social insects, but its evolution remains challenging to explain at the molecular level. The hypothesis that sibling care evolved from ancestral maternal care in primitively eusocial insects has been elaborated to involve heterochronic changes in gene expression. This elaboration leads to the prediction that workers in these species will show patterns of gene expression more similar to foundress queens, who express maternal care behaviour, than to established queens engaged solely in reproductive behaviour. We tested this idea in bumblebees (Bombus terrestris) using a microarray platform with approximately 4500 genes. Unlike the wasp Polistes metricus, in which support for the above prediction has been obtained, we found that patterns of brain gene expression in foundress and queen bumblebees were more similar to each other than to workers. Comparisons of differentially expressed genes derived from this study and gene lists from microarray studies in Polistes and the honeybee Apis mellifera yielded a shared set of genes involved in the regulation of related social behaviours across independent eusocial lineages. Together, these results suggest that multiple independent evolutions of eusociality in the insects might have involved different evolutionary routes, but nevertheless involved some similarities at the molecular level. PMID:24552837

  18. The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale.

    PubMed

    Schürch, Anita C; Kremer, Kristin; Kiers, Albert; Daviena, Olaf; Boeree, Martin J; Siezen, Roland J; Smith, Noel H; van Soolingen, Dick

    2010-01-01

    A total of six polymorphisms were identified by comparing the genomes of the first and the last isolate of a well-characterized transmission chain of Mycobacterium tuberculosis involving five patients over a 12 and a half year period. The six polymorphisms consisted of four single nucleotide changes (SNPs), a tandem repeat polymorphism (TRP) and a previously identified IS6110 transposition event. These polymorphic sites were surveyed in each of the isolates from the five patients in the transmission chain. Surprisingly, five of the six polymorphisms accumulated in a single patient in the transmission chain; this patient had been non-compliant to tuberculosis treatment. This first insight into the tempo and mode of molecular evolution in M. tuberculosis at the patient-to-patient level suggests that the molecular evolution of the pathogen in vivo is characterized by periods of relative genomic stability followed by bursts of mutation. Whatever the mechanism for the accumulation of mutations, this observation may have profound consequences for the application of vaccines and therapeutic drugs, the management and treatment of disease outbreaks of M. tuberculosis, the most important bacterial pathogen of humans. PMID:19835997

  19. Evolution and mass extinctions as lognormal stochastic processes

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2014-10-01

    -terrestrial civilizations existing in the Galaxy (as a consequence of the central limit theorem of statistics). (5) But the most striking new result is that the well-known `Molecular Clock of Evolution', namely the `constant rate of Evolution at the molecular level' as shown by Kimura's Neutral Theory of Molecular Evolution, identifies with growth rate of the entropy of our Evo-SETI model, because they both grew linearly in time since the origin of life. (6) Furthermore, we apply our Evo-SETI model to lognormal stochastic processes other than GBMs. For instance, we provide two models for the mass extinctions that occurred in the past: (a) one based on GBMs and (b) the other based on a parabolic mean value capable of covering both the extinction and the subsequent recovery of life forms. (7) Finally, we show that the Markov & Korotayev (2007, 2008) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the underlying lognormal stochastic process is a cubic function of the time. In conclusion: we have provided a new mathematical model capable of embracing molecular evolution, SETI and entropy into a simple set of statistical equations based upon b-lognormals and lognormal stochastic processes with arbitrary mean, of which the GBMs are the particular case of exponential growth.

  20. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system.

    PubMed

    Woodard, S Hollis; Lozier, Jeffrey D; Goulson, David; Williams, Paul H; Strange, James P; Jha, Shalene

    2015-06-01

    Bumble bees are a longstanding model system for studies on behaviour, ecology and evolution, due to their well-studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution and behaviour of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population-level processes, large-scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in regard to adaptation and resilience. Worldwide, many bumble bee populations are in decline. As such, throughout the review, connections are drawn between new molecular insights into bumble bees and our understanding of the causal factors involved in their decline. Ongoing and potential applications to bumble bee management and conservation are also included to demonstrate how genetics- and genomics-enabled research aids in the preservation of this threatened group. PMID:25865395

  1. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes

    PubMed Central

    Choi, Jae Young; Aquadro, Charles F.

    2015-01-01

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system. PMID:26507797

  2. Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ.

    PubMed

    Evans, Patrick D; Vallender, Eric J; Lahn, Bruce T

    2006-06-21

    Primary microcephaly is a developmental defect of the brain characterized by severely reduced brain size but an absence of other overt abnormalities. Mutations in several loci have been linked to primary microcephaly. The underlying genes for two of these were recently identified as CDK5RAP2 and CENPJ. Here, we focus on CDK5RAP2 and show that the protein evolutionary rate of this gene is significantly higher in primates than rodents or carnivores. We further show that the evolutionary rate within primates is particularly high in the human and chimpanzee terminal branches. Thus, the pattern of molecular evolution seen in CDK5RAP2 appears to parallel, at least approximately, that seen in two other previously identified primary microcephaly genes, microcephalin and ASPM. We also briefly discuss CENPJ, which similarly exhibits higher rate of protein evolution in primates as compared to rodents and carnivores. Together, the evolutionary patterns of all four presently known primary microcephaly genes are consistent with the hypothesis that genes regulating brain size during development might also play a role in brain evolution in primates and especially humans. PMID:16631324

  3. Molecular phylogenetics of the Anolis onca series: a case history in retrograde evolution revisited.

    PubMed

    Nicholson, Kirsten E; Mijares-Urrutia, Abraham; Larson, Allan

    2006-09-15

    Anoles of the Anolis onca series represent a dramatic case of retrograde evolution, exhibiting great reduction (A. annectens) and loss (A. onca) of the subdigital pads considered a key innovation for the evolutionary radiation of anoles in arboreal environments. We present a molecular phylogenetic analysis of these anoles and their closest known relatives (A. auratus, A. lineatus, A. meridionalis, and A. nitens) using new mitochondrial DNA sequence data from the ND2 gene, five tRNA genes (tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr)), the origin of light-strand replication, and a portion of the CO1 gene (1,446 aligned base positions, 612 parsimony informative). Our results confirm monophyly of the A. onca series and suggest an evolutionary separation of approximately 10 million years between A. annectens and A. onca. Evolution of subdigital structure in this series illustrates ectopic expression of developmental programs that replace flexible subdigital lamellae of the toepad with rigid, keeled scales resembling dorsal digital scales. Our phylogenetic results indicate that narrowing of the toepad in A. auratus evolved separately from toepad reduction in the A. onca series. Expansion of the subdigital lamellae along the phalanges in A. auratus appears to compensate constriction of lamellae by digital narrowing, maintaining greater climbing capability in this species. Toepad evolution in the lineage ancestral to A. auratus features changes of the same developmental modules as the A. onca series but in the opposite direction. Large molecular distances between geographic populations of A. auratus indicate that its derived toepad structure is at least 9 million years old. PMID:16506231

  4. Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation.

    PubMed

    Pham, Yen; Kuhlman, Brian; Butterfoss, Glenn L; Hu, Hao; Weinreb, Violetta; Carter, Charles W

    2010-12-01

    We substantiate our preliminary description of the class I tryptophanyl-tRNA synthetase minimal catalytic domain with details of its construction, structure, and steady-state kinetic parameters. Generating that active fragment involved deleting 65% of the contemporary enzyme, including the anticodon-binding domain and connecting peptide 1, CP1, a 74-residue internal segment from within the Rossmann fold. We used protein design (Rosetta), rather than phylogenetic sequence alignments, to identify mutations to compensate for the severe loss of modularity, thus restoring stability, as evidenced by renaturation described previously and by 70-ns molecular dynamics simulations. Sufficient solubility to enable biochemical studies was achieved by expressing the redesigned Urzyme as a maltose-binding protein fusion. Michaelis-Menten kinetic parameters from amino acid activation assays showed that, compared with the native full-length enzyme, TrpRS Urzyme binds ATP with similar affinity. This suggests that neither of the two deleted structural modules has a strong influence on ground-state ATP binding. However, tryptophan has 10(3) lower affinity, and the Urzyme has comparably reduced specificity relative to the related amino acid, tyrosine. Molecular dynamics simulations revealed how CP1 may contribute significantly to cognate amino acid specificity. As class Ia editing domains are nested within the CP1, this finding suggests that this module enhanced amino acid specificity continuously, throughout their evolution. We call this type of reconstructed protein catalyst an Urzyme (Ur prefix indicates original, primitive, or earliest). It establishes a model for recapitulating very early steps in molecular evolution in which fitness may have been enhanced by accumulating entire modules, rather than by discrete amino acid sequence changes. PMID:20864539

  5. Detecting the signatures of adaptive evolution in protein-coding genes.

    PubMed

    Bielawski, Joseph P

    2013-01-01

    The field of molecular evolution, which includes genome evolution, is devoted to finding variation within and between groups of organisms and explaining the processes responsible for generating this variation. Many DNA changes are believed to have little to no functional effect, and a neutral process will best explain their evolution. Thus, a central task is to discover which changes had positive fitness consequences and were subject to Darwinian natural selection during the course of evolution. Due the size and complexity of modern molecular datasets, the field has come to rely extensively on statistical modeling techniques to meet this analytical challenge. For DNA sequences that encode proteins, one of the most powerful approaches is to employ a statistical model of codon evolution. This unit provides a general introduction to the practice of modeling codon evolution using the statistical framework of maximum likelihood. Four real-data analysis activities are used to illustrate the principles of parameter estimation, robustness, hypothesis testing, and site classification. Each activity includes an explicit analytical protocol based on programs provided by the Phylogenetic Analysis by Maximum Likelihood (PAML) package. PMID:23288462

  6. Phylemon: a suite of web tools for molecular evolution, phylogenetics and phylogenomics

    PubMed Central

    Tárraga, Joaquín; Medina, Ignacio; Arbiza, Leonardo; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2007-01-01

    Phylemon is an online platform for phylogenetic and evolutionary analyses of molecular sequence data. It has been developed as a web server that integrates a suite of different tools selected among the most popular stand-alone programs in phylogenetic and evolutionary analysis. It has been conceived as a natural response to the increasing demand of data analysis of many experimental scientists wishing to add a molecular evolution and phylogenetics insight into their research. Tools included in Phylemon cover a wide yet selected range of programs: from the most basic for multiple sequence alignment to elaborate statistical methods of phylogenetic reconstruction including methods for evolutionary rates analyses and molecular adaptation. Phylemon has several features that differentiates it from other resources: (i) It offers an integrated environment that enables the direct concatenation of evolutionary analyses, the storage of results and handles required data format conversions, (ii) Once an outfile is produced, Phylemon suggests the next possible analyses, thus guiding the user and facilitating the integration of multi-step analyses, and (iii) users can define and save complete pipelines for specific phylogenetic analysis to be automatically used on many genes in subsequent sessions or multiple genes in a single session (phylogenomics). The Phylemon web server is available at http://phylemon.bioinfo.cipf.es. PMID:17452346

  7. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity

    PubMed Central

    Mack, Korrie L.; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  8. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity.

    PubMed

    Mack, Korrie L; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  9. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution.

    PubMed

    Xia, Xuhua

    2013-07-01

    Since its first release in 2001 as mainly a software package for phylogenetic analysis, data analysis for molecular biology and evolution (DAMBE) has gained many new functions that may be classified into six categories: 1) sequence retrieval, editing, manipulation, and conversion among more than 20 standard sequence formats including MEGA, NEXUS, PHYLIP, GenBank, and the new NeXML format for interoperability, 2) motif characterization and discovery functions such as position weight matrix and Gibbs sampler, 3) descriptive genomic analysis tools with improved versions of codon adaptation index, effective number of codons, protein isoelectric point profiling, RNA and protein secondary structure prediction and calculation of minimum folding energy, and genomic skew plots with optimized window size, 4) molecular phylogenetics including sequence alignment, testing substitution saturation, distance-based, maximum parsimony, and maximum-likelihood methods for tree reconstructions, testing the molecular clock hypothesis with either a phylogeny or with relative-rate tests, dating gene duplication and speciation events, choosing the best-fit substitution models, and estimating rate heterogeneity over sites, 5) phylogeny-based comparative methods for continuous and discrete variables, and 6) graphic functions including secondary structure display, optimized skew plot, hydrophobicity plot, and many other plots of amino acid properties along a protein sequence, tree display and drawing by dragging nodes to each other, and visual searching of the maximum parsimony tree. DAMBE features a graphic, user-friendly, and intuitive interface and is freely available from http://dambe.bio.uottawa.ca (last accessed April 16, 2013). PMID:23564938

  10. Molecular corridors and parameterizations of volatility in the evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pöschl, U.; Shiraiwa, M.

    2015-10-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the volatility of organic compounds containing oxygen, nitrogen and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  11. Molecular Corridor Based Approach for Description of Evolution of Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Li, Y., Sr.; Poeschl, U.; Shiraiwa, M.

    2015-12-01

    Organic aerosol is ubiquitous in the atmosphere and its major component is secondary organic aerosol (SOA). Formation and evolution of SOA is a complex process involving coupled chemical reactions and mass transport in the gas and particle phases (Shiraiwa et al., 2014). Current air quality models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation, resulting in the significant underprediction of observed SOA concentrations, which precludes reliable quantitative predictions of aerosols and their environmental impacts. Recently, it has been suggested that the SOA chemical evolution can be represented well by "molecular corridor" with a tight inverse correlation between molar mass and volatility of SOA oxidation products (Shiraiwa et al., 2014). Here we further analyzed the structure, molar mass and volatility of 31,000 unique organic compounds. These compounds include oxygenated organic compounds as well as nitrogen- and sulfur-containing organics such as amines, organonitrates, and organosulfates. Results show that most of those compounds fall into this two-dimensional (2-D) space, which is constrained by two boundary lines corresponding to the volatility of n -alkanes CnH2n+2 and sugar alcohols CnH2n+2On. A method to predict the volatility of nitrogen- and sulfur- containing compounds is developed based on those 31,000 organic compounds. It is shown that the volatility can be well predicted as a function of chemical composition numbers, providing a way to apply this 2-D space to organic compounds observed in real atmosphere. A comprehensive set of observation data from laboratory experiments, field campaigns and indoor measurements is mapped to the molecular corridor. This 2-D space can successfully grasp the properties of organic compounds formed in different atmospheric conditions. The molecular corridor represents a new framework in which chemical and physical properties as

  12. PyEvolve: a toolkit for statistical modelling of molecular evolution

    PubMed Central

    Butterfield, Andrew; Vedagiri, Vivek; Lang, Edward; Lawrence, Cath; Wakefield, Matthew J; Isaev, Alexander; Huttley, Gavin A

    2004-01-01

    Background Examining the distribution of variation has proven an extremely profitable technique in the effort to identify sequences of biological significance. Most approaches in the field, however, evaluate only the conserved portions of sequences – ignoring the biological significance of sequence differences. A suite of sophisticated likelihood based statistical models from the field of molecular evolution provides the basis for extracting the information from the full distribution of sequence variation. The number of different problems to which phylogeny-based maximum likelihood calculations can be applied is extensive. Available software packages that can perform likelihood calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to model parameterisation. Results Here we describe the implementation of PyEvolve, a toolkit for the application of existing, and development of new, statistical methods for molecular evolution. We present the object architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide model of substitution that includes a parameter for mutation of methylated CpG's, which required 8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a 10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared to leading alternative software, PyEvolve exhibited significantly better real world performance for parameter rich models with a large data set, reducing the time required for optimisation from ~10 days to ~6 hours. Conclusion PyEvolve provides flexible functionality that can be used either for statistical modelling of molecular evolution, or the development of new methods in the field. The toolkit can be

  13. How the Microbial World Saved Evolution from the Scylla of Molecular Biology and the Charybdis of the Modern Synthesis

    PubMed Central

    Woese, Carl R.; Goldenfeld, Nigel

    2009-01-01

    Summary: In this commentary, we provide a personal overview of the conceptual history of microbiology and molecular biology over the course of the last hundred years, emphasizing the relationship of these fields to the problem of evolution. We argue that despite their apparent success, all three reached an impasse that arose from the influence of dogmatic or overly narrow perspectives. Finally, we describe how recent developments in microbiology are realizing Beijerinck's vision of a field that is fully integrated with molecular biology, microbial ecology, thereby challenging and extending current thinking in evolution. PMID:19258530

  14. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    NASA Astrophysics Data System (ADS)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of

  15. Evolution in the charge injection efficiency of evaporated Au contacts on a molecularly doped polymer

    NASA Astrophysics Data System (ADS)

    Ioannidis, Andronique; Facci, John S.; Abkowitz, Martin A.

    1998-08-01

    Injection efficiency from evaporated Au contacts on a molecularly doped polymer (MDP) system has been previously observed to evolve from blocking to ohmic over time. In the present article this contact forming phenomenon is analyzed in detail. The initially blocking nature of the Au contact is in contrast with that expected from the relative workfunctions of Au and of the polymer which suggest Au should inject holes efficiently. It is also in apparent contrast to a differently prepared interface of the same materials. The phenomenon is not unique to this interface, having been confirmed also for evaporated Ag and mechanically made liquid Hg contacts on the same MDP. The MDP is a disordered solid state solution of electroactive triarylamine hole transporting TPD molecules in a polycarbonate matrix. The trap-free hole-transport MDP provides a model system for the study of metal/polymer interfaces by enabling the use of a recently developed technique that gives a quantitative measure of contact injection efficiency. The technique combines field-dependent steady state injection current measurements at a contact under test with time-of-flight (TOF) mobility measurements made on the same sample. In the present case, MDP films were prepared with two top vapor-deposited contacts, one of Au (test contact) and one of Al (for TOF), and a bottom carbon-loaded polymer electrode which is known to be ohmic for hole injection. The samples were aged at various temperatures below the glass transition of the MDP (85 °C) and the evolution of current versus field and capacitance versus frequency behaviors are followed in detail over time and analyzed. Control measurements ensure that the evolution of the electrical properties is due to the Au/polymer interface behavior and not the bulk. All evaporated Au contacts eventually achieved ohmic injection. The evaporated Au/MDP interface was also investigated by transmission electron microscopy as a function of time and showed no evidence of

  16. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    PubMed Central

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA−, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  17. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  18. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution.

    PubMed

    Galtier, Nicolas; Duret, Laurent

    2007-06-01

    The analysis of evolutionary rates is a popular approach to characterizing the effect of natural selection at the molecular level. Sequences contributing to species adaptation are expected to evolve faster than nonfunctional sequences because favourable mutations have a higher fixation probability than neutral ones. Such an accelerated rate of evolution might be due to factors other than natural selection, in particular GC-biased gene conversion. This is true of neutral sequences, but also of constrained sequences, which can be illustrated using the mouse Fxy gene. Several criteria can discriminate between the natural selection and biased gene conversion models. These criteria suggest that the recently reported human accelerated regions are most likely the result of biased gene conversion. We argue that these regions, far from contributing to human adaptation, might represent the Achilles' heel of our genome. PMID:17418442

  19. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  20. Dynamics of the Eigen and the Crow-Kimura models for molecular evolution.

    PubMed

    Saakian, David B; Rozanova, Olga; Akmetzhanov, Andrei

    2008-10-01

    We introduce an alternative way to study molecular evolution within well-established Hamilton-Jacobi formalism, showing that for a broad class of fitness landscapes it is possible to derive dynamics analytically within the 1N accuracy, where N is the genome length. For a smooth and monotonic fitness function this approach gives two dynamical phases: smooth dynamics and discontinuous dynamics. The latter phase arises naturally with no explicite singular fitness function, counterintuitively. The Hamilton-Jacobi method yields straightforward analytical results for the models that utilize fitness as a function of Hamming distance from a reference genome sequence. We also show the way in which this method gives dynamical phase structure for multipeak fitness. PMID:18999456

  1. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    PubMed

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-01

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)<100nm; this protein(s) was susceptible to proteolysis. Thus the compact structure of pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm. PMID:27516291

  2. Molecular Evolution and Phylodynamics of Acute Hepatitis B Virus in Japan

    PubMed Central

    Lin, Serena Y. C.; Toyoda, Hidenori; Kumada, Takashi; Liu, Hsin-Fu

    2016-01-01

    Hepatitis B virus (HBV) is prevalent worldwide and causes liver diseases, including acute and chronic hepatitis. Ten HBV genotypes (A–J) with distinct geographic distributions have been reported. Cases of acute HBV infection with genotype A have increased in Japan nationwide since the 1990s, mainly through sexual transmission. To investigate the molecular evolution and phylodynamics of HBV genotypes, we collected acute HBV isolates acquired in Japan from 1992–2002. Full genomes were obtained for comprehensive phylogenetic and phylodynamic analysis, with other Japanese HBV sequences from GenBank that were isolated during 1991–2010. HBV genotypes were classified using the maximum-likelihood and Bayesian methods. The GMRF Bayesian Skyride was used to estimate the evolution and population dynamics of HBV. Four HBV genotypes (A, B, C, and H) were identified, of which C was the major genotype. The phylodynamic results indicated an exponential growth between the 1960s and early 1990s; this was followed by a population bottleneck after 1995, possibly linked with successful implementation of a nationwide vaccination program. However, HBV/A increased from 1990 to 2003–2004, and then started to decrease. The prevalence of genotype A has increased over the past 10 years. Phylodynamic inference clearly demonstrates a steady population growth compatible with an ongoing subepidemic; this might be due to the loss of immunity to HBV in adolescents and people being born before the vaccination program. This is the first phylodynamic study of HBV infection in Japan and will facilitate understanding the molecular epidemiology and long-term evolutionary dynamics of this virus in Japan. PMID:27280441

  3. Molecular Evolution and Functional Divergence of Trace Amine–Associated Receptors

    PubMed Central

    Eyun, Seong-il; Moriyama, Hideaki; Hoffmann, Federico G.; Moriyama, Etsuko N.

    2016-01-01

    Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors. PMID:26963722

  4. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    PubMed

    Eyun, Seong-Il; Moriyama, Hideaki; Hoffmann, Federico G; Moriyama, Etsuko N

    2016-01-01

    Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors. PMID:26963722

  5. Cosmic Structure and Galaxy Evolution through Intensity Mapping of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Keating, Garrett K.; Marrone, Daniel P.; YT Lee Array Team, SZA Team

    2016-01-01

    The origin and evolution of structure in the Universe is one of the major challenges of observational astronomy. How does baryonic structure trace the underlying dark matter? How have galaxies evolved to produce the present day Universe? A multi-wavelength, multi-tool approach is necessary to provide the complete story of the evolution of structure in the Universe. Intensity mapping, which relies on the ability to detect many objects at once through their integrated emission rather than direct detection of individual objects, is a critical part of this mosaic. In particular, our understanding of the molecular gas component of massive galaxies is being revolutionized by ALMA and EVLA but the population of smaller, star-forming galaxies, which provide the bulk of star formation cannot be individually probed by these instruments.In this talk, I will summarize two intensity mapping experiments to detect molecular gas through the carbon monoxide (CO) rotational transition. We have completed sensitive observations with the Sunyaev-Zel'dovic Array (SZA) telescope at a wavelength of 1 cm that are sensitive to emission at redshifts 2.3 to 3.3. The SZA experiments sets strong limits on models for the CO emission and demonstrates the ability to reject foregrounds and telescope systematics in very deep integrations. I also describe the development of an intensity mapping capability for the Y.T. Lee Array, a 13-element interferometer located on Mauna Loa. In its first phase, this project focuses on detection of CO at redshifts 2.4 - 3.0 with detection via power spectrum and cross-correlation with other surveys. The project includes a major technical upgrade, a new digital correlator and IF electronics component to be deployed in 2015/2016. The Y.T. Lee Array observations will be more sensitive and extend to larger angular scales than the SZA observations.

  6. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs)

    PubMed Central

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar

    2012-01-01

    Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general. PMID:23226151

  7. Evolution in an RNA World

    PubMed Central

    Joyce, Gerald F.

    2009-01-01

    A longstanding research goal has been to develop a self-sustained chemical system that is capable of undergoing Darwinian evolution. The notion of primitive RNA-based life suggests this goal might be achieved by constructing an RNA enzyme that catalyzes the replication of RNA molecules, including the RNA enzyme itself. This reaction recently was demonstrated in a cross-catalytic system involving two RNA enzymes that catalyze each other’s synthesis from a total of four component substrates. The cross-replicating RNA enzymes undergo self-sustained exponential amplification at a constant temperature in the absence of proteins or other biological materials. Amplification occurs with a doubling time of 30–60 min, and can be continued indefinitely. Small populations of cross-replicating RNA enzymes can be made to compete for limited resources within a common environment. The molecules reproduce with high fidelity, but occasionally give rise to recombinants that also can replicate. Over the course of many “generations” of selective amplification, novel variants arise and grow to dominate the population based on their relative fitness under the chosen reaction conditions. This is the first example, outside of biology, of evolutionary adaptation in a molecular genetic system. PMID:19667013

  8. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    PubMed

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information. PMID:26947218

  9. Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution

    SciTech Connect

    Hou, Yidong

    2011-11-08

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo{sub 3}S{sub 4}) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory calculations of the Mo{sub 3}S{sub 4} clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site.

  10. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution.

    PubMed

    Hou, Yidong; Abrams, Billie L; Vesborg, Peter C K; Björketun, Mårten E; Herbst, Konrad; Bech, Lone; Setti, Alessandro M; Damsgaard, Christian D; Pedersen, Thomas; Hansen, Ole; Rossmeisl, Jan; Dahl, Søren; Nørskov, Jens K; Chorkendorff, Ib

    2011-06-01

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo(3)S(4)) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by density functional theory calculations of the Mo(3)S(4) clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site. PMID:21516095

  11. The Global Evolution of Giant Molecular Clouds. II. The Role of Accretion

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-09-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc-2, in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  12. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus

    2015-08-01

    Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt-nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt-N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s-1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols.

  13. Patterns of molecular evolution of an avian neo-sex chromosome.

    PubMed

    Pala, Irene; Hasselquist, Dennis; Bensch, Staffan; Hansson, Bengt

    2012-12-01

    Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after ~42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after ~39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs. PMID:22826461

  14. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster.

    PubMed

    Campos, José L; Halligan, Daniel L; Haddrill, Penelope R; Charlesworth, Brian

    2014-04-01

    Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill-Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over. We carried out a comprehensive study of the benefits of recombination in Drosophila melanogaster, both by contrasting five independent genomic regions that lack crossing over with the rest of the genome and by comparing regions with different rates of crossing over, using data on DNA sequence polymorphisms from an African population that is geographically close to the putatively ancestral population for the species, and on sequence divergence from a related species. We observed reductions in sequence diversity in noncrossover (NC) regions that are inconsistent with the effects of hard selective sweeps in the absence of recombination. Overall, the observed patterns suggest that the recombination rate experienced by a gene is positively related to an increase in the efficiency of both positive and purifying selection. The results are consistent with a BGS model with interference among selected sites in NC regions, and joint effects of BGS, selective sweeps, and a past population expansion on variability in regions of the genome that experience crossing over. In such crossover regions, the X chromosome exhibits a higher rate of adaptive protein sequence evolution than the autosomes, implying a Faster-X effect. PMID:24489114

  15. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC).

    PubMed

    Stenkova, Anna M; Bystritskaya, Evgeniya P; Guzev, Konstantin V; Rakin, Alexander V; Isaeva, Marina P

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system. PMID:27578962

  16. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC)

    PubMed Central

    Stenkova, Anna M.; Bystritskaya, Evgeniya P.; Guzev, Konstantin V.; Rakin, Alexander V.; Isaeva, Marina P.

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system. PMID:27578962

  17. Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution

    PubMed Central

    Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus

    2015-01-01

    Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt–nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt–N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s−1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols. PMID:26250525

  18. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  19. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  20. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  1. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments

    PubMed Central

    Pizzarello, Sandra; Davidowski, Stephen K.; Holland, Gregory P.; Williams, Lynda B.

    2013-01-01

    The composition of the Sutter’s Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography–mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter’s Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials. PMID:24019471

  2. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    PubMed Central

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  3. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies

    PubMed Central

    Dardick, Chris; Callahan, Ann M.

    2014-01-01

    Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant family a staggering variety of fruit types can be found such as fleshy fruits including berries, pomes, and drupes and dry fruit structures like achenes, capsules, and follicles. What are the evolutionary mechanisms that enable such dramatic shifts to occur in a relatively short period of time? This remains a fundamental question of plant biology today. On the surface it seems that these extreme differences in form and function must be the consequence of very different developmental programs that require unique sets of genes. Yet as we begin to decipher the molecular and genetic basis underlying fruit form it is becoming apparent that simple genetic changes in key developmental regulatory genes can have profound anatomical effects. In this review, we discuss recent advances in understanding the molecular mechanisms of fruit endocarp tissue differentiation that have contributed to species diversification within three plant lineages. PMID:25009543

  4. The Convergent Evolution of Blue Iris Pigmentation in Primates Took Distinct Molecular Paths

    PubMed Central

    Meyer, Wynn K; Zhang, Sidi; Hayakawa, Sachiko; Imai, Hiroo; Przeworski, Molly

    2013-01-01

    How many distinct molecular paths lead to the same phenotype? One approach to this question has been to examine the genetic basis of convergent traits, which likely evolved repeatedly under a shared selective pressure. We investigated the convergent phenotype of blue iris pigmentation, which has arisen independently in four primate lineages: humans, blue-eyed black lemurs, Japanese macaques, and spider monkeys. Characterizing the phenotype across these species, we found that the variation within the blue-eyed subsets of each species occupies strongly overlapping regions of CIE L*a*b* color space. Yet whereas Japanese macaques and humans display continuous variation, the phenotypes of blue-eyed black lemurs and their sister species (whose irises are brown) occupy more clustered subspaces. Variation in an enhancer of OCA2 is primarily responsible for the phenotypic difference between humans with blue and brown irises. In the orthologous region, we found no variant that distinguishes the two lemur species or associates with quantitative phenotypic variation in Japanese macaques. Given the high similarity between the blue iris phenotypes in these species and that in humans, this finding implies that evolution has used different molecular paths to reach the same end. Am J Phys Anthropol 151:398–407, 2013.© 2013 Wiley Periodicals, Inc. PMID:23640739

  5. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti.

    PubMed

    Small, Scott T; Tisch, Daniel J; Zimmerman, Peter A

    2014-12-01

    Wuchereria bancrofti (Wb) is the most widely distributed of the three nematodes known to cause lymphatic filariasis (LF), the other two being Brugia malayi and Brugia timori. Current tools available to monitor LF are limited to diagnostic tests targeting DNA repeats, filarial antigens, and anti-filarial antibodies. While these tools are useful for detection and surveillance, elimination programs have yet to take full advantage of molecular typing for inferring infection history, strain fingerprinting, and evolution. To date, molecular typing approaches have included whole mitochondrial genomes, genotyping, targeted sequencing, and random amplified polymorphic DNA (RAPDs). These studies have revealed much about Wb biology. For example, in one study in Papua New Guinea researchers identified 5 major strains that were widespread and many minor strains some of which exhibit geographic stratification. Genome data, while rare, has been utilized to reconstruct evolutionary relationships among taxa of the Onchocercidae (the clade of filarial nematodes) and identify gene synteny. Their phylogeny reveals that speciation from the common ancestor of both B. malayi and Wb occurred around 5-6 millions years ago with shared ancestry to other filarial nematodes as recent as 15 million years ago. These discoveries hold promise for gene discovery and identifying drug targets in species that are more amenable to in vivo experiments. Continued technological developments in whole genome sequencing and data analysis will likely replace many other forms of molecular typing, multiplying the amount of data available on population structure, genetic diversity, and phylogenetics. Once widely available, the addition of population genetic data from genomic studies should hasten the elimination of LF parasites like Wb. Infectious disease control programs have benefited greatly from population genetics data and recently from population genomics data. However, while there is currently a surplus

  6. The Fact of Evolution: Implications for Science Education

    NASA Astrophysics Data System (ADS)

    Hofmann, James R.; Weber, Bruce H.

    Creationists who object to evolution in the science curriculum of public schools often cite Jonathan Well's book Icons of Evolution in their support (Wells2000). In the third chapter of his book Wells claims that neither paleontological nor molecular evidence supports the thesis that the history of life is an evolutionary process of descent from preexisting ancestors. We argue that Wells inappropriately relies upon ambiguities inherent in the term `Darwinian' and the phrase `Darwin'stheory'. Furthermore, he does not accurately distinguish between the overwhelming evidence that supports the thesis of common descent and controversies that pertain to causal mechanisms such as natural selection. We also argue that Wells' attempts to undermine the evidence in support of common descent are flawed and his characterization of the relevant data is misleading. In particular, his assessment of the `Cambrian explosion' does not do justice to the fossil record. Nor do his selective references to debate about molecular and paleontological phylogenies constitute a case against common descent. We conclude that the fossil and molecular evidence is more than sufficient to warrant science educators to present common descent as a well-established scientific fact. We also argue that diagrams depicting the `tree of life' can be pedagogically useful as simplified representations of the history of life.

  7. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor.

    PubMed

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G; Boffi, Juan C; Millar, Neil S; Fuchs, Paul A; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-12-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  8. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Ying; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-03-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  9. Molecular characterization of insulin from squamate reptiles reveals sequence diversity and possible adaptive evolution.

    PubMed

    Yamagishi, Genki; Yoshida, Ayaka; Kobayashi, Aya; Park, Min Kyun

    2016-01-01

    The Squamata are the most adaptive and prosperous group among ectothermic amniotes, reptiles, due to their species-richness and geographically wide habitat. Although the molecular mechanisms underlying their prosperity remain largely unknown, unique features have been reported from hormones that regulate energy metabolism. Insulin, a central anabolic hormone, is one such hormone, as its roles and effectiveness in regulation of blood glucose levels remain to be examined in squamates. In the present study, cDNAs coding for insulin were isolated from multiple species that represent various groups of squamates. The deduced amino acid sequences showed a high degree of divergence, with four lineages showing obviously higher number of amino acid substitutions than most of vertebrates, from teleosts to mammals. Among 18 sites presented to comprise the two receptor binding surfaces (one with 12 sites and the other with 6 sites), substitutions were observed in 13 sites. Among them was the substitution of HisB10, which results in the loss of the ability to hexamerize. Furthermore, three of these substitutions were reported to increase mitogenicity in human analogues. These substitutions were also reported from insulin of hystricomorph rodents and agnathan fishes, whose mitogenic potency have been shown to be increased. The estimated value of the non-synonymous-to-synonymous substitution ratio (ω) for the Squamata clade was larger than those of the other reptiles and aves. Even higher values were estimated for several lineages among squamates. These results, together with the regulatory mechanisms of digestion and nutrient assimilation in squamates, suggested a possible adaptive process through the molecular evolution of squamate INS. Further studies on the roles of insulin, in relation to the physiological and ecological traits of squamate species, will provide an insight into the molecular mechanisms that have led to the adaptivity and prosperity of squamates. PMID:26344944

  10. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index

    NASA Astrophysics Data System (ADS)

    Zhao, Huaying; Magone, M. Teresa; Schuck, Peter

    2011-08-01

    Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.

  11. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti

    PubMed Central

    Small, Scott T.; Tisch, Daniel J.; Zimmerman, Peter A.

    2014-01-01

    Wuchereria bancrofti (Wb) is the most widely distributed of the three nematodes known to cause lymphatic filariasis (LF), the other two being Brugia malayi and B. timori. Current tools available to monitor LF are limited to diagnostic tests targeting DNA repeats, filarial antigens, and anti-filarial antibodies. While these tools are useful for detection and surveillance, elimination programs have yet to take full advantage of molecular typing for inferring infection history, strain fingerprinting, and evolution. To date, molecular typing approaches have included whole mitochondrial genomes, genotyping, targeted sequencing, and random amplified polymorphic DNA (RAPDs). These studies have revealed much about Wb biology. For example, in one study in Papua New Guinea researchers identified 5 major strains that were widespread and many minor strains some of which exhibit geographic stratification. Genome data, while rare, has been utilized to reconstruct evolutionary relationships among taxa of the Onchocercidae (the clade of filarial nematodes) and identify gene synteny. Their phylogeny reveals that speciation from the common ancestor of both B. malayi and Wb occurred around 5–6 millions years ago with shared ancestry to other filarial nematodes as recent as 15 million years ago. These discoveries hold promise for gene discovery and identifying drug targets in species that are more amenable to in vivo experiments. Continued technological developments in whole genome sequencing and data analysis will likely replace many other forms of molecular typing, multiplying the amount of data available on population structure, genetic diversity, and phylogenetics. Once widely available, the addition of population genetic data from genomic studies should hasten the elimination of LF parasites like Wb. PMID:25176600

  12. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  13. Deceptive Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges

    PubMed Central

    Schuster, Astrid; Erpenbeck, Dirk; Pisera, Andrzej; Hooper, John; Bryce, Monika; Fromont, Jane; Wörheide, Gert

    2015-01-01

    Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera). ‘Lithistida’, a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas) that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically) comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of ‘lithistid’ demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous ‘order Lithistida’. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences), we show that 8 out of 13 ‘Lithistida’ families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae – we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different

  14. Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.

    PubMed

    Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar

    2011-12-01

    Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment. PMID:22274614

  15. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    PubMed Central

    2011-01-01

    forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. Reviewers This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier. PMID:21639885

  16. Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene has been effectively used to control rice blast disease caused by Magnaporthe oryzae in many rice growing regions in the world. A number of studies have characterized the molecular evolution of the Pi-ta gene in cultivated rice, O. sativa, and its wild ancestor O. rufipogon; however,...

  17. Oxygen Tolerance of a Molecular Engineered Cathode for Hydrogen Evolution Based on a Cobalt Diimine-Dioxime Catalyst.

    PubMed

    Kaeffer, Nicolas; Morozan, Adina; Artero, Vincent

    2015-10-29

    We report here that a bioinspired cobalt diimine-dioxime molecular catalyst for hydrogen evolution immobilized onto carbon nanotube electrodes proves tolerant toward oxygen. The cobalt complex catalyzes O2 reduction with an onset potential of +0.55 V vs RHE. In this process, a mixture of water and hydrogen peroxide is produced in a 3:1 ratio. Our study evidences that such side-reductions have little impact on effectiveness of proton reduction by the grafted molecular catalyst which still displays good activity for H2 evolution in the presence of O2. The presence of O2 in the media is not detrimental toward H2 evolution under the conditions used, which simulate turn-on conditions of a water-splitting device. PMID:25993343

  18. Reasons Given by UK Churchgoers for Their Stance on Evolution

    ERIC Educational Resources Information Center

    Village, Andrew; Baker, Sylvia

    2013-01-01

    A sample of 661 churchgoers from a range of Christian denominations in the United Kingdom was asked about Darwinian evolution (defined as the common origin of all species, including humans). Respondents were categorised as those who accepted the idea, those who rejected it, and those who were unsure or neutral. People in each category were given a…

  19. Molecular evolution and functional characterisation of haplotypes of an important rubber biosynthesis gene in Hevea brasiliensis.

    PubMed

    Uthup, T K; Rajamani, A; Ravindran, M; Saha, T

    2016-07-01

    Hydroxy-methylglutaryl coenzyme-A synthase (HMGS) is a rate-limiting enzyme in the cytoplasmic isoprenoid biosynthesis pathway leading to natural rubber production in Hevea brasiliensis (rubber). Analysis of the structural variants of this gene is imperative to understand their functional significance in rubber biosynthesis so that they can be properly utilised for ongoing crop improvement programmes in Hevea. We report here allele richness and diversity of the HMGS gene in selected popular rubber clones. Haplotypes consisting of single nucleotide polymorphisms (SNPs) from the coding and non-coding regions with a high degree of heterozygosity were identified. Segregation and linkage disequilibrium analysis confirmed that recombination is the major contributor to the generation of allelic diversity, rather than point mutations. The evolutionarily conserved nature of some SNPs was identified by comparative DNA sequence analysis of HMGS orthologues from diverse taxa, demonstrating the molecular evolution of rubber biosynthesis genes in general. In silico three-dimensional structural studies highlighting the structural positioning of non-synonymous SNPs from different HMGS haplotypes revealed that the ligand-binding site on the enzyme remains impervious to the reported sequence variations. In contrast, gene expression results indicated the possibility of association between specific haplotypes and HMGS expression in Hevea clones, which may have a downstream impact up to the level of rubber production. Moreover, haplotype diversity of the HMGS gene and its putative association with gene expression can be the basis for further genetic association studies in rubber. Furthermore, the data also show the role of SNPs in the evolution of candidate genes coding for functional traits in plants. PMID:26787454

  20. Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    PubMed Central

    Voigt, Oliver; Wülfing, Eilika; Wörheide, Gert

    2012-01-01

    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a

  1. Evolution of prolate molecular clouds at H II boundaries - II. Formation of BRCs of asymmetrical morphology

    NASA Astrophysics Data System (ADS)

    Kinnear, T. M.; Miao, J.; White, G. J.; Sugitani, K.; Goodwin, S.

    2015-06-01

    A systematic investigation on the evolution of a prolate cloud at an H II boundary is conducted using smoothed particle hydrodynamics in order to understand the mechanism for a variety of irregular morphological structures found at the boundaries of various H II regions. The prolate molecular clouds in this investigation are set with their semimajor axes at inclinations between 0° and 90° to a plane-parallel ionizing radiation flux. A set of four parameters, the number density n, the ratio of major to minor axis γ, the inclination angle ϕ and the incident flux FEUV, are used to define the initial state of the simulated clouds. The dependence of the evolution of a prolate cloud under radiation-driven implosion (RDI) on each of the four parameters is investigated. It is found that (i) in addition to the well-studied standard type A, B or C bright-rimmed clouds (BRCs), many other types such as asymmetrical BRCs, filamentary structures and irregular horse-head structures could also be developed at H II boundaries with only simple initial conditions; (ii) the final morphological structures are very sensitive to the four initial parameters, especially to the initial density and the inclination; (iii) the previously defined ionizing radiation penetration depth can still be used as a good indicator of the final morphology. Based on the simulation results, the formation time-scales and masses of the early RDI-triggered star formation from clouds of different initial conditions are also estimated. Finally a unified mechanism for the various morphological structures found in many different H II boundaries is suggested.

  2. Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera, Class Calcarea).

    PubMed

    Voigt, Oliver; Wülfing, Eilika; Wörheide, Gert

    2012-01-01

    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a

  3. Science for Survival: The Modern Synthesis of Evolution and the Biological Sciences Curriculum Study

    ERIC Educational Resources Information Center

    Green, Lisa Anne

    2012-01-01

    In this historical dissertation, I examined the process of curriculum development in the Biological Sciences Curriculum Study (BSCS) in the United States during the period 1959-1963. The presentation of evolution in the high school texts was based on a more robust form of Darwinian evolution which developed during the 1930s and 1940s called…

  4. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae

    PubMed Central

    2013-01-01

    Background Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Results Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. Conclusions We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship. PMID:23497266

  5. Molecular Evolution and Phylogeography of Co-circulating IHNV and VHSV in Italy

    PubMed Central

    Abbadi, Miriam; Fusaro, Alice; Ceolin, Chiara; Casarotto, Claudia; Quartesan, Rosita; Dalla Pozza, Manuela; Cattoli, Giovanni; Toffan, Anna; Holmes, Edward C.; Panzarin, Valentina

    2016-01-01

    Infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) are the most important viral pathogens impacting rainbow trout farming. These viruses are persistent in Italy, where they are responsible for severe disease outbreaks (epizootics) that affect the profitability of the trout industry. Despite the importance of IHNV and VHSV, little is known about their evolution at a local scale, although this is likely to be important for virus eradication and control. To address this issue we performed a detailed molecular evolutionary and epidemiological analysis of IHNV and VHSV in trout farms from northern Italy. Full-length glycoprotein gene sequences of a selection of VHSV (n = 108) and IHNV (n = 89) strains were obtained. This revealed that Italian VHSV strains belong to sublineages Ia1 and Ia2 of genotype Ia and are distributed into 7 genetic clusters. In contrast, all Italian IHNV isolates fell within genogroup E, for which only a single genetic cluster was identified. More striking was that IHNV has evolved more rapidly than VHSV (mean rates of 11 and 7.3 × 10−4 nucleotide substitutions per site, per year, respectively), indicating that these viruses exhibit fundamentally different evolutionary dynamics. The time to the most recent common ancestor of both IHNV and VHSV was consistent with the first reports of these pathogens in Italy. By combining sequence data with epidemiological information it was possible to identify different patterns of virus spread among trout farms, in which adjacent facilities can be infected by either genetically similar or different viruses, and farms located in different water catchments can be infected by identical strains. Overall, these findings highlight the importance of combining molecular and epidemiological information to identify the determinants of IHN and VHS spread, and to provide data that is central to future surveillance strategies and possibly control. PMID:27602026

  6. Molecular Evolution of Viruses of the Family Filoviridae Based on 97 Whole-Genome Sequences

    PubMed Central

    Carroll, Serena A.; Towner, Jonathan S.; Sealy, Tara K.; McMullan, Laura K.; Khristova, Marina L.; Burt, Felicity J.; Swanepoel, Robert; Rollin, Pierre E.

    2013-01-01

    Viruses in the Ebolavirus and Marburgvirus genera (family Filoviridae) have been associated with large outbreaks of hemorrhagic fever in human and nonhuman primates. The first documented cases occurred in primates over 45 years ago, but the amount of virus genetic diversity detected within bat populations, which have recently been identified as potential reservoir hosts, suggests that the filoviruses are much older. Here, detailed Bayesian coalescent phylogenetic analyses are performed on 97 whole-genome sequences, 55 of which are newly reported, to comprehensively examine molecular evolutionary rates and estimate dates of common ancestry for viruses within the family Filoviridae. Molecular evolutionary rates for viruses belonging to different species range from 0.46 × 10−4 nucleotide substitutions/site/year for Sudan ebolavirus to 8.21 × 10−4 nucleotide substitutions/site/year for Reston ebolavirus. Most recent common ancestry can be traced back only within the last 50 years for Reston ebolavirus and Zaire ebolavirus species and suggests that viruses within these species may have undergone recent genetic bottlenecks. Viruses within Marburg marburgvirus and Sudan ebolavirus species can be traced back further and share most recent common ancestors approximately 700 and 850 years before the present, respectively. Examination of the whole family suggests that members of the Filoviridae, including the recently described Lloviu virus, shared a most recent common ancestor approximately 10,000 years ago. These data will be valuable for understanding the evolution of filoviruses in the context of natural history as new reservoir hosts are identified and, further, for determining mechanisms of emergence, pathogenicity, and the ongoing threat to public health. PMID:23255795

  7. Bacillus anthracis: molecular taxonomy, population genetics, phylogeny and patho-evolution.

    PubMed

    Pilo, Paola; Frey, Joachim

    2011-08-01

    Bacillus anthracis, the etiological agent of anthrax, manifests a particular bimodal lifestyle. This bacterial species alternates between short replication phases of 20-40 generations that strictly require infection of the host, normally causing death, interrupted by relatively long, mostly dormant phases as spores in the environment. Hence, the B. anthracis genome is highly homogeneous. This feature and the fact that strains from nearly all parts of the world have been analysed for canonical single nucleotide polymorphisms (canSNPs) and variable number tandem repeats (VNTRs) has allowed the development of molecular epidemiological and molecular clock models to estimate the age of major diversifications in the evolution of B. anthracis and to trace the global spread of this pathogen, which was mostly promoted by movement of domestic cattle with settlers and by international trade of contaminated animal products. From a taxonomic and phylogenetic point of view, B. anthracis is a member of the Bacillus cereus group. The differentiation of B. anthracis from B. cereus sensu stricto, solely based on chromosomal markers, is difficult. However, differences in pathogenicity clearly differentiate B. anthracis from B. cereus and are marked by the strict presence of virulence genes located on the two virulence plasmids pXO1 and pXO2, which both are required by the bacterium to cause anthrax. Conversely, anthrax-like symptoms can also be caused by organisms with chromosomal features that are more closely related to B. cereus, but which carry these virulence genes on two plasmids that largely resemble the B. anthracis virulence plasmids. PMID:21640849

  8. Comparative molecular phylogeny and evolution of sex chromosome DNA sequences in the family Canidae (Mammalia: Carnivora).

    PubMed

    Tsubouchi, Ayako; Fukui, Daisuke; Ueda, Miya; Tada, Kazumi; Toyoshima, Shouji; Takami, Kazutoshi; Tsujimoto, Tsunenori; Uraguchi, Kohji; Raichev, Evgeniy; Kaneko, Yayoi; Tsunoda, Hiroshi; Masuda, Ryuichi

    2012-03-01

    To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation. PMID:22379982

  9. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    PubMed Central

    2008-01-01

    Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9) might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria. PMID:18325105

  10. Molecular Evolution and Phylogeography of Co-circulating IHNV and VHSV in Italy.

    PubMed

    Abbadi, Miriam; Fusaro, Alice; Ceolin, Chiara; Casarotto, Claudia; Quartesan, Rosita; Dalla Pozza, Manuela; Cattoli, Giovanni; Toffan, Anna; Holmes, Edward C; Panzarin, Valentina

    2016-01-01

    Infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) are the most important viral pathogens impacting rainbow trout farming. These viruses are persistent in Italy, where they are responsible for severe disease outbreaks (epizootics) that affect the profitability of the trout industry. Despite the importance of IHNV and VHSV, little is known about their evolution at a local scale, although this is likely to be important for virus eradication and control. To address this issue we performed a detailed molecular evolutionary and epidemiological analysis of IHNV and VHSV in trout farms from northern Italy. Full-length glycoprotein gene sequences of a selection of VHSV (n = 108) and IHNV (n = 89) strains were obtained. This revealed that Italian VHSV strains belong to sublineages Ia1 and Ia2 of genotype Ia and are distributed into 7 genetic clusters. In contrast, all Italian IHNV isolates fell within genogroup E, for which only a single genetic cluster was identified. More striking was that IHNV has evolved more rapidly than VHSV (mean rates of 11 and 7.3 × 10(-4) nucleotide substitutions per site, per year, respectively), indicating that these viruses exhibit fundamentally different evolutionary dynamics. The time to the most recent common ancestor of both IHNV and VHSV was consistent with the first reports of these pathogens in Italy. By combining sequence data with epidemiological information it was possible to identify different patterns of virus spread among trout farms, in which adjacent facilities can be infected by either genetically similar or different viruses, and farms located in different water catchments can be infected by identical strains. Overall, these findings highlight the importance of combining molecular and epidemiological information to identify the determinants of IHN and VHS spread, and to provide data that is central to future surveillance strategies and possibly control. PMID:27602026

  11. Evolution of Life and SETI (Evo-SETI)

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    forced by us to have their peak value located on the exponential mean-value curve of the GBM (this is the so-called “Peak-Locus Theorem”). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to identify with Cladistics (refs. [2], [3], [4]). 4) The (Shannon) Entropy of such b-lognormals is then seen to represent the “degree of progress” reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, Human History may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller “chaos”), and have their peaks located on the increasing GBM exponential. This exponential is thus the “trend of progress” in Human History. 5) But our most striking new result is about the well-known “Molecular Clock of Evolution”, namely the “constant rate of Evolution at the molecular level” as shown by Kimura’s Neutral Theory of Molecular Evolution. We showed that that the Molecular Clock identifies with Entropy in our Evo-SETI model because they both grew linearly in time since the origin of life. 6) Furthermore, we applid our Evo-SETI model to lognormal stochastic processes other then the GBMs. For instance, we showed that the Markov-Korotayev (2007-2008, refs. [5], [6]) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the lognormal stochastic process is a cubic (third degree polynomial) function of the time. In conclusion: we have provided a vast mathematical model capable of embracing Molecular Evolution, SETI and Entropy into a simple set of statistical equations based upon b-lognormals pdfs and lognormal stochastic processes Keywords: Molecular Clock, Darwinian evolution, statistical Drake equation, lognormal probability densities, geometric Brownian motion, entropy. REFERENCES [1] Maccone, C. (2008), “The Statistical

  12. Genome-wide analysis of adaptive molecular evolution in the carnivorous plant Utricularia gibba.

    PubMed

    Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Librado, Pablo; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A

    2015-02-01

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba's unique lifestyle and highly specialized body plan. PMID:25577200

  13. Genome-Wide Analysis of Adaptive Molecular Evolution in the Carnivorous Plant Utricularia gibba

    PubMed Central

    Librado, Pablo; Ibarra-Laclette, Enrique; Herrera-Estrella, Luis; Rozas, Julio; Albert, Victor A.

    2015-01-01

    The genome of the bladderwort Utricularia gibba provides an unparalleled opportunity to uncover the adaptive landscape of an aquatic carnivorous plant with unique phenotypic features such as absence of roots, development of water-filled suction bladders, and a highly ramified branching pattern. Despite its tiny size, the U. gibba genome accommodates approximately as many genes as other plant genomes. To examine the relationship between the compactness of its genome and gene turnover, we compared the U. gibba genome with that of four other eudicot species, defining a total of 17,324 gene families (orthogroups). These families were further classified as either 1) lineage-specific expanded/contracted or 2) stable in size. The U. gibba-expanded families are generically related to three main phenotypic features: 1) trap physiology, 2) key plant morphogenetic/developmental pathways, and 3) response to environmental stimuli, including adaptations to life in aquatic environments. Further scans for signatures of protein functional specialization permitted identification of seven candidate genes with amino acid changes putatively fixed by positive Darwinian selection in the U. gibba lineage. The Arabidopsis orthologs of these genes (AXR, UMAMIT41, IGS, TAR2, SOL1, DEG9, and DEG10) are involved in diverse plant biological functions potentially relevant for U. gibba phenotypic diversification, including 1) auxin metabolism and signal transduction, 2) flowering induction and floral meristem transition, 3) root development, and 4) peptidases. Taken together, our results suggest numerous candidate genes and gene families as interesting targets for further experimental confirmation of their functional and adaptive roles in the U. gibba’s unique lifestyle and highly specialized body plan. PMID:25577200

  14. Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach

    PubMed Central

    Jiménez, Sergio; Lawton-Rauh, Amy L; Reighard, Gregory L; Abbott, Albert G; Bielenberg, Douglas G

    2009-01-01

    Background Dormancy associated MADS-box (DAM) genes are candidates for the regulation of growth cessation and terminal bud formation in peach. These genes are not expressed in the peach mutant evergrowing, which fails to cease growth and enter dormancy under dormancy-inducing conditions. We analyzed the phylogenetic relationships among and the rates and patterns of molecular evolution within DAM genes in the phylogenetic context of the MADS-box gene family. Results The peach DAM genes grouped with the SVP/StMADS11 lineage of type II MIKCC MADS-box genes. Phylogenetic analyses suggest that the peach SVP/StMADS11-like gene family, which contains significantly more members than annual model plants, expanded through serial tandem gene duplication. We found evidence of strong purifying selection acting to constrain functional divergence among the peach DAM genes and only a single codon, located in the C-terminal region, under significant positive selection. Conclusion Because all DAM genes are expressed in peach and are subjected to strong purifying selection we suggest that the duplicated genes have been maintained by subfunctionalization and/or neofunctionalization. In addition, this pattern of selection suggests that the DAM genes are important for peach growth and development. PMID:19558704

  15. Reproductive mode evolution in nematodes: insights from molecular phylogenies and recently discovered species.

    PubMed

    Denver, D R; Clark, K A; Raboin, M J

    2011-11-01

    The Phylum Nematoda has long been known to contain a great diversity of species that vary in reproductive mode, though our understanding of the evolutionary origins, causes and consequences of nematode reproductive mode change have only recently started to mature. Here we bring together and analyze recent progress on reproductive mode evolution throughout the phylum, resulting from the application of molecular phylogenetic approaches and newly discovered nematode species. Reproductive mode variation is reviewed in multiple free-living, animal-parasitic and plant-parasitic nematode groups. Discussion ranges from the model nematode Caenorhabditis elegans and its close relatives, to the plant-parasitic nematodes of the Meloidogyne genus where there is extreme variation in reproductive mode between and even within species, to the vertebrate-parasitic genus Strongyloides and related genera where reproductive mode varies across generations (heterogony). Multiple evolutionary transitions from dioecous (obligately outcrossing) to hermaphroditism and parthenogenesis in the phylum are discussed, along with one case of an evolutionary transition from hermaphroditism to doioecy in the Oscheius genus. We consider the roles of underlying genetic mechanisms in promoting reproductive plasticity in this phylum, as well as the potential evolutionary forces promoting transitions in reproductive mode. PMID:21787872

  16. The Diversity and Molecular Evolution of B-Cell Receptors during Infection

    PubMed Central

    Hoehn, Kenneth B.; Fowler, Anna; Lunter, Gerton; Pybus, Oliver G.

    2016-01-01

    B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish. PMID:26802217

  17. Understanding the Evolution of Microstructure: What is the Role of Molecular Dynamics?

    NASA Astrophysics Data System (ADS)

    Foiles, Stephen

    2013-03-01

    The microstructure of a material, as characterized for example by grain size, determines a wide range of materials properties such as strength, toughness, and corrosion resistance. Understanding how the microstructure influences properties and how to obtain a desired microstructure are some of the enduring central problems of materials science. This challenge is inherently multi-scale since the fundamental mechanisms by which microstructures change occur at the atomic scale while the network of interfaces is on a scale of microns and up. In this talk, the role of molecular dynamics (MD) simulations in understanding the evolution of microstructure will be examined. The successes and outstanding challenges of using MD simulations to determine the properties of grain boundaries, in particular free energy and mobility, will be described. Further, microstructures with nanoscale grains evolve in times accessible to MD simulation. The insights into grain growth and deformation that can be obtained from such simulations will be described. Sandia National Laboratories isa multi-program laboratory managed and operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time. PMID:24849013

  19. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  20. Iron and molecular opacities and the evolution of Population I stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-Wen

    1993-01-01

    Effects of recent opacity revisions on the evolution of Population I stars are explored over the range 1.5-60 solar masses. Opacity parameters considered include the angular momentum coupling scheme for iron, the relative iron abundance, the total metal abundance, and diatomic and triatomic molecular sources. Only the total metal abundance exerts an important control over the evolutionary tracks. Blue loops on the H-R diagram during core helium burning can be very sensitive to opacity, but only insofar as the simple formation or suppression of a blue loop is concerned. The blue loops are most robust for stellar masses around 10 solar masses. We confirm, from a comparison of stellar models with observational data, that the total metal abundance is close to solar and that convective core overshooting is likely to be very slight. The new models predict the existence of an iron convection zone in the envelope and a great widening of the main-sequence band in the H-R diagram at luminosities brighter than 100,000 solar luminosities.

  1. Molecular epidemiology and evolution of human enterovirus 71 and hand, foot and mouth disease.

    PubMed

    Zhifang, Liu; Juanjuan, Gui; Qihang, Hua; Changzheng, Dong

    2015-05-01

    Human enterovirus 71(EV71), one of the major pathogens of the hand, foot and mouth disease (HFMD), causes skin rashes in palms, feet and mouth ulcers and complication in the central nervous system such as aseptic meningitis and acute flaccid paralysis that may lead to death. EV71 infection has been reported to be associated with many outbreaks of HFMD worldwide, especially the great outbreaks that occurred in the Asia-Pacific region and caused numerous death since 1997. The studies of molecular epidemiology and evolution of EV71 are important for the prevention and control of HFMD since no vaccines and antiviral drugs have been developed except symptomatic treatment for HFMD. In this review, we summarize genotype classification, temporal and spatial distribution, evolutionary characteristics and modes of EV71 as well as typical EV71 epidemics. Further studies on EV71 and HFMD may lead to better understanding of pathological mechanisms of EV71, development of antiviral drugs and prevention and control of HFMD. PMID:25998430

  2. The Diversity and Molecular Evolution of B-Cell Receptors during Infection.

    PubMed

    Hoehn, Kenneth B; Fowler, Anna; Lunter, Gerton; Pybus, Oliver G

    2016-05-01

    B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish. PMID:26802217

  3. Molecular development of fibular reduction in birds and its evolution from dinosaurs.

    PubMed

    Botelho, João Francisco; Smith-Paredes, Daniel; Soto-Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O

    2016-03-01

    Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo-tibial disparity. PMID:26888088

  4. Periodic Vesicle Formation in Tectonic Fault Zones--an Ideal Scenario for Molecular Evolution.

    PubMed

    Mayer, Christian; Schreiber, Ulrich; Dávila, María J

    2015-06-01

    Tectonic fault systems in the continental crust offer huge networks of interconnected channels and cavities. Filled mainly with water and carbon dioxide (CO2), containing a wide variety of hydrothermal chemistry and numerous catalytic surfaces, they may offer ideal reaction conditions for prebiotic chemistry. In these systems, an accumulation zone for organic compounds will develop at a depth of approximately 1 km where CO2 turns sub-critical and dissolved components precipitate. At this point, periodic pressure changes caused for example by tidal influences or geyser activity may generate a cyclic process involving repeated phase transitions of carbon dioxide. In the presence of amphiphilic compounds, this will necessarily lead to the transient formation of coated water droplets in the gas phase and corresponding vesicular structures in the aqueous environment. During this process, the concentration of organic components inside the droplets and vesicles would be drastically increased, allowing for favorable reaction conditions and, in case of the vesicles generated, large trans-membrane concentration gradients. Altogether, the process of periodic formation and destruction of vesicles could offer a perfect environment for molecular evolution in small compartments and for the generation of protocells. The basic process of vesicle formation is reproduced experimentally with a lipid in a water/CO2 system. PMID:25716918

  5. Periodic Vesicle Formation in Tectonic Fault Zones—an Ideal Scenario for Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Mayer, Christian; Schreiber, Ulrich; Dávila, María J.

    2015-06-01

    Tectonic fault systems in the continental crust offer huge networks of interconnected channels and cavities. Filled mainly with water and carbon dioxide (CO2), containing a wide variety of hydrothermal chemistry and numerous catalytic surfaces, they may offer ideal reaction conditions for prebiotic chemistry. In these systems, an accumulation zone for organic compounds will develop at a depth of approximately 1 km where CO2 turns sub-critical and dissolved components precipitate. At this point, periodic pressure changes caused for example by tidal influences or geyser activity may generate a cyclic process involving repeated phase transitions of carbon dioxide. In the presence of amphiphilic compounds, this will necessarily lead to the transient formation of coated water droplets in the gas phase and corresponding vesicular structures in the aqueous environment. During this process, the concentration of organic components inside the droplets and vesicles would be drastically increased, allowing for favorable reaction conditions and, in case of the vesicles generated, large trans-membrane concentration gradients. Altogether, the process of periodic formation and destruction of vesicles could offer a perfect environment for molecular evolution in small compartments and for the generation of protocells. The basic process of vesicle formation is reproduced experimentally with a lipid in a water/CO2 system.

  6. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins

    PubMed Central

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.

    2014-01-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267

  7. Molecular evidence for convergent evolution and allopolyploid speciation within the Physcomitrium-Physcomitrella species complex

    PubMed Central

    2014-01-01

    Background The moss Physcomitrella patens (Hedw.) Bruch & Schimp. is an important experimental model system for evolutionary-developmental studies. In order to shed light on the evolutionary history of Physcomitrella and related species within the Funariaceae, we analyzed the natural genetic diversity of the Physcomitrium-Physcomitrella species complex. Results Molecular analysis of the nuclear single copy gene BRK1 reveals that three Physcomitrium species feature larger genome sizes than Physcomitrella patens and encode two expressed BRK1 homeologs (polyploidization-derived paralogs), indicating that they may be allopolyploid hybrids. Phylogenetic analyses of BRK1 as well as microsatellite simple sequence repeat (SSR) data confirm a polyphyletic origin for three Physcomitrella lineages. Differences in the conservation of mitochondrial editing sites further support hybridization and cryptic speciation within the Physcomitrium-Physcomitrella species complex. Conclusions We propose a revised classification of the previously described four subspecies of Physcomitrella patens into three distinct species, namely Physcomitrella patens, Physcomitrella readeri and Physcomitrella magdalenae. We argue that secondary reduction of sporophyte complexity in these species is due to the establishment of an ecological niche, namely spores resting in mud and possible spore dispersal by migratory birds. Besides the Physcomitrium-Physcomitrella species complex, the Funariaceae are host to their type species, Funaria hygrometrica, featuring a sporophyte morphology which is more complex. Their considerable developmental variation among closely related lineages and remarkable trait evolution render the Funariaceae an interesting group for evolutionary and genetic research. PMID:25015729

  8. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-08-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments.

  9. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA. PMID:26578760

  10. Entropy and charge in molecular evolution--the case of phosphate

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Biopoesis, the creation of life, implies molecular evolution from simple components, randomly distributed and in a dilute state, to form highly organized, concentrated systems capable of metabolism, replication and mutation. This chain of events must involve environmental processes that can locally lower entropy in several steps; by specific selection from an indiscriminate mixture, by concentration from dilute solution, and in the case of the mineral-induced processes, by particular effectiveness in ordering and selective reaction, directed toward formation of functional biomolecules. Numerous circumstances provide support for the notion that negatively charged molecules were functionally required and geochemically available for biopoesis. Sulfite ion may have been important in bisulfite complex formation with simple aldehydes, facilitating the initial concentration by sorption of aldehydes in positively charged surface active minerals. Borate ion may have played a similar, albeit less investigated role in forming charged sugar complexes. Among anionic species, oligophosphate ions and charged phosphate esters are likely to have been of even more wide ranging importance, reflected in the continued need for phosphate in a proposed RNA world, and extending its central role to evolved biochemistry. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and, by selective concentration, induces the oligomerization of aldehydes. As a manifestation of life arisen, phosphate already appears in an organic context in the oldest preserved sedimentary record.

  11. Molecular phylogeny, systematics and morphological evolution of the acorn barnacles (Thoracica: Sessilia: Balanomorpha).

    PubMed

    Pérez-Losada, Marcos; Høeg, Jens T; Simon-Blecher, Noa; Achituv, Yair; Jones, Diana; Crandall, Keith A

    2014-12-01

    The Balanomorpha are the largest group of barnacles and rank among the most diverse, commonly encountered and ecologically important marine crustaceans in the world. Paradoxically, despite their relevance and extensive study for over 150years, their evolutionary relationships are still unresolved. Classical morphological systematics was often based on non-cladistic approaches, while modern phylogenetic studies suffer from severe undersampling of taxa and characters (both molecular and morphological). Here we present a phylogenetic analysis of the familial relationships within the Balanomorpha. We estimate divergence times and examine morphological diversity based on five genes, 156 specimens, 10 fossil calibrations, and six key morphological characters. Two balanomorphan superfamilies, eight families and twelve genera were identified as polyphyletic. Chthamaloids, chionelasmatoid and pachylasmatoids split first from the pedunculated ancestors followed by a clade of tetraclitoids and coronuloids, and most of the balanoids. The Balanomorpha split from the Verrucidae (outgroup) in the Lower Cretaceous (139.6 Mya) with all the main lineages, except Pachylasmatoidea, having emerged by the Paleocene (60.9 Mya). Various degrees of convergence were observed in all the assessed morphological characters except the maxillipeds, which suggests that classical interpretations of balanomorphan morphological evolution need to be revised and reinterpreted. PMID:25261121

  12. Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features.

    PubMed

    Dong, Songyu; Kumazawa, Yoshinori

    2005-07-01

    Complete mitochondrial DNA (mtDNA) sequences were determined for representative species from six snake families: the acrochordid little file snake, the bold boa constrictor, the cylindrophiid red pipe snake, the viperid himehabu, the pythonid ball python, and the xenopeltid sunbeam snake. Thirteen protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNALeu gene were two notable features of the snake mtDNAs. The duplicate control regions had nearly identical nucleotide sequences within species but they were divergent among species, suggesting concerted sequence evolution of the two control regions. In addition, the duplicate control regions appear to have facilitated an interchange of some flanking tRNA genes in the viperid lineage. Phylogenetic analyses were conducted using a large number of sites (9570 sites in total) derived from the complete mtDNA sequences. Our data strongly suggested a new phylogenetic relationship among the major families of snakes: ((((Viperidae, Colubridae), Acrochordidae), (((Pythonidae, Xenopeltidae), Cylindrophiidae), Boidae)), Leptotyphlopidae). This conclusion was distinct from a widely accepted view based on morphological characters in denying the sister-group relationship of boids and pythonids, as well as the basal divergence of nonmacrostomatan cylindrophiids. These results imply the significance to reconstruct the snake phylogeny with ample molecular data, such as those from complete mtDNA sequences. PMID:16007493

  13. Peptidylprolyl cis/trans isomerase activity and molecular evolution of vertebrate Cyclophilin A.

    PubMed

    Liqian, Ren; Wei, Liu; Wenbo, Li; Wenjun, Liu; Lei, Sun

    2016-08-01

    Peptidylprolyl isomerases (PPIase) cyclophilin A (CypA, encoded by PPIA) is a typical member of the Cyclophilin family and is involved in protein folding/translocation, signal transduction, inflammation, immune system regulation, apoptosis and virus replication. In the present study, we investigated the PPIase activity and genetic variation of vertebrate CypA. According to the GenBank reference sequences, vertebrate PPIA genes were cloned, among which the bat (Myotis davidi) and duck (Anas platyrhynchos) PPIA genes were reported for the first time. Then PPIA genes were sub-cloned into the expression vector pGEX-6p-1 and expressed in Escherichia coli. Recombinant CypA proteins were purified by using sepharose 4B affinity chromatography and the GST tag was cleaved, followed by gel filtration. The PPIase activity assay indicated that there was no significant difference in the catalytic activity of prolyl peptide bond isomerization among 12 different vertebrate CypA proteins. In addition, the genetic variation and molecular evolution analysis showed that these vertebrate CypA proteins had the same CsA binding site and the PPIase active sites. Furthermore, the predicted structure and gene localization were remarkable conserved. Our data suggested that the important residues of CypA were highly conserved, which is crucial for its PPIase activity and cellular functions. PMID:27531612

  14. Molecular evolution of the fusion protein gene in human respiratory syncytial virus subgroup A.

    PubMed

    Kimura, Hirokazu; Nagasawa, Koo; Tsukagoshi, Hiroyuki; Matsushima, Yuki; Fujita, Kiyotaka; Yoshida, Lay Myint; Tanaka, Ryota; Ishii, Haruyuki; Shimojo, Naoki; Kuroda, Makoto; Ryo, Akihide

    2016-09-01

    We studied the molecular evolution of the fusion protein (F) gene in the human respiratory syncytial virus subgroup A (HRSV-A). We performed time-scaled phylogenetic analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. We also conducted genetic distance (p-distance), positive/negative selection, and Bayesian skyline plot analyses. Furthermore, we mapped the amino acid substitutions of the protein. The MCMC-constructed tree indicated that the HRSV F gene diverged from the bovine RSV (BRSV) gene approximately 550years ago and had a relatively low substitution rate (7.59×10(-4) substitutions/site/year). Moreover, a common ancestor of HRSV-A and -B diverged approximately 280years ago, which has since formed four distinct clusters. The present HRSV-A strains were assigned six genotypes based on F gene sequences and attachment glycoprotein gene sequences. The present strains exhibited high F gene sequence similarity values and low genetic divergence. No positive selection sites were identified; however, 50 negative selection sites were identified. F protein amino acid substitutions at 17 sites were distributed in the F protein. The effective population size of the gene has remained relatively constant, but the population size of the prevalent genotype (GA2) has increased in the last 10years. These results suggest that the HRSV-AF gene has evolved independently and formed some genotypes. PMID:27291709

  15. The Evolution and Origin of Animal Toll-Like Receptor Signaling Pathway Revealed by Network-Level Molecular Evolutionary Analyses

    PubMed Central

    Qin, Sheng; Chen, Liming; Ma, Fei

    2012-01-01

    Genes carry out their biological functions through pathways in complex networks consisting of many interacting molecules. Studies on the effect of network architecture on the evolution of individual proteins will provide valuable information for understanding the origin and evolution as well as functional conservation of signaling pathways. However, the relationship between the network architecture and the individual protein sequence evolution is yet little known. In current study, we carried out network-level molecular evolution analysis on TLR (Toll-like receptor ) signaling pathway, which plays an important role in innate immunity in insects and mammals, and we found that: 1) The selection constraint of genes was negatively correlated with its position along TLR signaling pathway; 2) all genes in TLR signaling pathway were highly conserved and underwent strong purifying selection; 3) the distribution of selective pressure along the pathway was driven by differential nonsynonymous substitution levels; 4) The TLR signaling pathway might present in a common ancestor of sponges and eumetazoa, and evolve via the TLR, IKK, IκB and NF-κB genes underwent duplication events as well as adaptor molecular enlargement, and gene structure and conservation motif of NF-κB genes shifted in their evolutionary history. Our results will improve our understanding on the evolutionary history of animal TLR signaling pathway as well as the relationship between the network architecture and the sequences evolution of individual protein. PMID:23236523

  16. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    SciTech Connect

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  17. Effect of colliding plasmas dynamics, evolution, and stagnation on carbon molecular formation

    NASA Astrophysics Data System (ADS)

    Al-Shboul, Khaled F.

    The major theme of this dissertation is to investigate the dynamics of expanding laser ablation plumes generated in vacuum as well as in the presence of an ambient gas with a special emphasis on the fascinating field of colliding laser plasmas. In order to understand the physical nature of the mechanisms taking place during laser produced plasmas (LPP) evolution like recombination, collisional excitation, and plasma-laser interaction, time-space resolved studies offered the most logical approach. The thesis is divided into eight chapters and a brief description of each chapter is given below. Chapter 1 provides a brief introduction of LPP, its properties, and applications. The chapter also discusses the fundamental theories describing laser-materials interaction and provides a literature survey on colliding plasma. In Chapter 2, the description of experimental methods used for the present work is given. Details of the experimental set up used for the visible emission spectroscopy and optical time of flight, studies are also discussed. Chapter 3 gives a numerical model for estimating basic laser-mater interaction and plasma parameters such as surface temperature, ablation rate, laser absorption by the generated plasma and its temperature and density. Chapter 4 contains a study on the ambient gas effects on nanosecond laser-produced graphite plasma molecular dynamics formation. The results showed weak C 2 emission zone limited to very close distance to the target surface in vacuum conditions. In contrast, C2 formation in the plasma plume was profoundly enhanced in the presence of ambient gas pressure where C 2 intensity oscillations were observed in both axial and radial directions with increasing ambient gas pressure. By studying these oscillations it was concluded that recombination is the major mechanism for C2 formation. In chapter 5, spatio-temporal mappings of ionic, neutral, and molecular species were generated under varied ambient gas pressures conditions for

  18. Clean Donor Oxidation Enhances the H2 Evolution Activity of a Carbon Quantum Dot-Molecular Catalyst Photosystem.

    PubMed

    Martindale, Benjamin C M; Joliat, Evelyne; Bachmann, Cyril; Alberto, Roger; Reisner, Erwin

    2016-08-01

    Carbon quantum dots (CQDs) are new-generation light absorbers for photocatalytic H2 evolution in aqueous solution, but the performance of CQD-molecular catalyst systems is currently limited by the decomposition of the molecular component. Clean oxidation of the electron donor by donor recycling prevents the formation of destructive radical species and non-innocent oxidation products. This approach allowed a CQD-molecular nickel bis(diphosphine) photocatalyst system to reach a benchmark lifetime of more than 5 days and a record turnover number of 1094±61 molH2  (molNi )(-1) for a defined synthetic molecular nickel catalyst in purely aqueous solution under AM1.5G solar irradiation. PMID:27355200

  19. Molecular evolution of NASP and conserved histone H3/H4 transport pathway

    PubMed Central

    2014-01-01

    Background NASP is an essential protein in mammals that functions in histone transport pathways and maintenance of a soluble reservoir of histones H3/H4. NASP has been studied exclusively in Opisthokonta lineages where some functional diversity has been reported. In humans, growing evidence implicates NASP miss-regulation in the development of a variety of cancers. Although a comprehensive phylogenetic analysis is lacking, NASP-family proteins that possess four TPR motifs are thought to be widely distributed across eukaryotes. Results We characterize the molecular evolution of NASP by systematically identifying putative NASP orthologs across diverse eukaryotic lineages ranging from excavata to those of the crown group. We detect extensive silent divergence at the nucleotide level suggesting the presence of strong purifying selection acting at the protein level. We also observe a selection bias for high frequencies of acidic residues which we hypothesize is a consequence of their critical function(s), further indicating the role of functional constraints operating on NASP evolution. Our data indicate that TPR1 and TPR4 constitute the most rapidly evolving functional units of NASP and may account for the functional diversity observed among well characterized family members. We also show that NASP paralogs in ray-finned fish have different genomic environments with clear differences in their GC content and have undergone significant changes at the protein level suggesting functional diversification. Conclusion We draw four main conclusions from this study. First, wide distribution of NASP throughout eukaryotes suggests that it was likely present in the last eukaryotic common ancestor (LECA) possibly as an important innovation in the transport of H3/H4. Second, strong purifying selection operating at the protein level has influenced the nucleotide composition of NASP genes. Further, we show that selection has acted to maintain a high frequency of functionally relevant

  20. Genomic variability and molecular evolution of Asian isolates of sugarcane streak mosaic virus.

    PubMed

    Liang, Shan-Shan; Alabi, Olufemi J; Damaj, Mona B; Fu, Wei-Lin; Sun, Sheng-Ren; Fu, Hua-Ying; Chen, Ru-Kai; Mirkov, T Erik; Gao, San-Ji

    2016-06-01

    Sugarcane streak mosaic virus (SCSMV), an economically important causal agent of mosaic disease of sugarcane, is a member of the newly created genus Poacevirus in the family Potyviridae. In this study, we report the molecular characterization of three new SCSMV isolates from China (YN-YZ211 and HN-YZ49) and Myanmar (MYA-Formosa) and their genetic variation and phylogenetic relationship to SCSMV isolates from Asia and the type members of the family Potyviridae. The complete genome of each of the three isolates was determined to be 9781 nucleotides (nt) in size, excluding the 3' poly(A) tail. Phylogenetic analysis of the complete polyprotein amino acid (aa) sequences (3130 aa) revealed that all SCSMV isolates clustered into a phylogroup specific to the genus Poacevirus and formed two distinct clades designated as group I and group II. Isolates YN-YZ211, HN-YZ49 and MYA-Formosa clustered into group I, sharing 96.8-99.5 % and 98.9-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, among themselves and 81.2-98.8 % and 94.0-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, with the corresponding sequences of seven Asian SCSMV isolates. Population genetic analysis revealed greater between-group (0.190 ± 0.004) than within-group (group I = 0.025 ± 0.001 and group II = 0.071 ± 0.003) evolutionary divergence values, further supporting the results of the phylogenetic analysis. Further analysis indicated that natural selection might have contributed to the evolution of isolates belonging to the two identified SCSMV clades, with infrequent genetic exchanges occurring between them over time. These findings provide a comprehensive analysis of the population genetic structure and driving forces for the evolution of SCSMV with implications for global exchange of sugarcane germplasm. PMID:26973230

  1. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae)

    PubMed Central

    Wang, Nian; McAllister, Hugh A.; Bartlett, Paul R.; Buggs, Richard J. A.

    2016-01-01

    Background and Aims Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Methods Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. Key Results As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera. Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa. Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the

  2. Genetic subdivisions within Trypanosoma cruzi (Discrete Typing Units) and their relevance for molecular epidemiology and experimental evolution

    PubMed Central

    Tibayrenc, Michel

    2003-01-01

    Background This paper summarizes the main results obtained on Trypanosoma cruzi genetic diversity and population structure since this parasite became the theme of many genetic and molecular studies in the early seventies. Results T. cruzi exibits a paradigmatic pattern of long-term, clonal evolution, which has structured its natural populations into several discrete genetic subdivisions or "Discrete Typing Units" (DTU). Rare hybridization events are nevertheless detectable in natural populations and have been recently obtained in the laboratory. Conclusions The DTUs and natural clones of T. cruzi constitute relevant units for molecular epidemiology and experimental evolution. Experimental mating opens the way to an in-depth knowledge of this parasite's formal genetics. PMID:14613498

  3. The dynamical evolution of molecular clouds near the Galactic Centre - I. Orbital structure and evolutionary timeline

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Dale, James E.; Longmore, Steven N.

    2015-02-01

    We recently proposed that the star-forming potential of dense molecular clouds in the Central Molecular Zone (CMZ, i.e. the central few 100 pc) of the Milky Way is intimately linked to their orbital dynamics, potentially giving rise to an absolute-time sequence of star-forming clouds. In this paper, we present an orbital model for the gas stream(s) observed in the CMZ. The model is obtained by integrating orbits in the empirically constrained gravitational potential and represents a good fit (χ _red^2=2.0) to the observed position-velocity distribution of dense (n > several 103 cm-3) gas, reproducing all of its key properties. The orbit is also consistent with observational constraints not included in the fitting process, such as the 3D space velocities of Sgr B2 and the Arches and Quintuplet clusters. It differs from previous, parametric models in several respects: (1) the orbit is open rather than closed due to the extended mass distribution in the CMZ, (2) its orbital velocity (100-200 km s-1) is twice as high as in previous models, and (3) Sgr A* coincides with the focus of the (eccentric) orbit rather than being offset. Our orbital solution supports the recently proposed scenario in which the dust ridge between G0.253+0.016 (`the Brick') and Sgr B2 represents an absolute-time sequence of star-forming clouds, of which the condensation was triggered by the tidal compression during their most recent pericentre passage. We position the clouds on a common timeline and find that their pericentre passages occurred 0.30-0.74 Myr ago. Given their short free-fall times (tff ˜ 0.34 Myr), the quiescent cloud G0.253+0.016 and the vigorously star-forming complex Sgr B2 are separated by a single free-fall time of evolution, implying that star formation proceeds rapidly once collapse has been initiated. We provide the complete orbital solution, as well as several quantitative predictions of our model (e.g. proper motions and the positions of star formation `hotspots'). The

  4. Evolution

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  5. Rapid molecular evolution across amniotes of the IIS/TOR network

    PubMed Central

    McGaugh, Suzanne E.; Bronikowski, Anne M.; Kuo, Chih-Horng; Reding, Dawn M.; Addis, Elizabeth A.; Flagel, Lex E.; Janzen, Fredric J.

    2015-01-01

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861

  6. Molecular Analysis of a Leprosy Immunotherapeutic Bacillus Provides Insights into Mycobacterium Evolution

    PubMed Central

    Raghuvanshi, Saurabh; Khurana, Jitendra P.; Tyagi, Akhilesh K.; Tyagi, Anil K.; Hasnain, Seyed E.

    2007-01-01

    Background Evolutionary dynamics plays a central role in facilitating the mechanisms of species divergence among pathogenic and saprophytic mycobacteria. The ability of mycobacteria to colonize hosts, to proliferate and to cause diseases has evolved due to its predisposition to various evolutionary forces acting over a period of time. Mycobacterium indicus pranii (MIP), a taxonomically unknown ‘generalist’ mycobacterium, acts as an immunotherapeutic against leprosy and is approved for use as a vaccine against it. The large-scale field trials of this MIP based leprosy vaccine coupled with its demonstrated immunomodulatory and adjuvant property has led to human clinical evaluations of MIP in interventions against HIV-AIDS, psoriasis and bladder cancer. MIP, commercially available as ‘Immuvac’, is currently the focus of advanced phase III clinical trials for its antituberculosis efficacy. Thus a comprehensive analysis of MIP vis-à-vis evolutionary path, underpinning its immanent immunomodulating properties is of the highest desiderata. Principal Findings Genome wide comparisons together with molecular phylogenetic analyses by fluorescent amplified fragment length polymorphism (FAFLP), enterobacterial repetitive intergenic consensus (ERIC) based genotyping and candidate orthologues sequencing revealed that MIP has been the predecessor of highly pathogenic Mycobacterium avium intracellulare complex (MAIC) that did not resort to parasitic adaptation by reductional gene evolution and therefore, preferred a free living life-style. Further analysis suggested a shared aquatic phase of MAIC bacilli with the early pathogenic forms of Mycobacterium, well before the latter diverged as ‘specialists’. Conclusions/Significance This evolutionary paradigm possibly affirms to marshal our understanding about the acquisition and optimization of virulence in mycobacteria and determinants of boundaries therein. PMID:17912347

  7. Molecular Evolution of Multiple-Level Control of Heme Biosynthesis Pathway in Animal Kingdom

    PubMed Central

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5′ untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway. PMID:24489775

  8. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    PubMed

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-01

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. PMID:26785049

  9. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize

    PubMed Central

    Han, Guomin; Zhou, Lingyan; Ali, Asif; Zhu, Suwen; Li, Xiaoyu

    2016-01-01

    The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses. PMID:27560803

  10. DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance.

    PubMed

    Murugan, Kadarkarai; Vadivalagan, Chithravel; Karthika, Pushparaj; Panneerselvam, Chellasamy; Paulpandi, Manickam; Subramaniam, Jayapal; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Parajulee, Megha N; Benelli, Giovanni

    2016-01-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating pathogens and parasites. The standard method of utilisation of morphological characters becomes challenging due to various factors such as phenotypical variations. We explored the complementary approach of CO1 gene-based identification, analysing ten species of mosquito vectors belonging to three genera, Aedes, Culex and Anopheles from India. Analysed nucleotide sequences were found without pseudo genes and indels; they match with high similarity in nucleotide Basic Local Alignment Search Tool (BLASTn) search. The partial CO1 sequence of Anopheles niligricus was the first time record submitted to National Center for Biotechnology Information (NCBI). Mean intra- and interspecies divergence was found to be 1.30 and 3.83 %, respectively. The congeneric divergence was three times higher than the conspecifics. Deep intraspecific divergence was noted in three of the species, and the reason could be explained more accurately in the future by improving the sample size across different locations. The transitional and transversional substitutions were tested individually. Ts and Tv substitutions in all the 1st, 2nd and 3rd codons were estimated to be (0.44, 99.51), (40.35, 59.66) and (59.16, 40.84), respectively. Saturation of the sequences was resolved, since both the Ts and Tv exhibited a linear relationship suggesting that the sequences were not saturated. NJ and ML tree analysis showed that the individuals of the same species clustered together based on the CO1 sequence similarity, regardless of their collection site and geographic location. Overall, this study adds basic knowledge to molecular evolution of mosquito vectors of medical and veterinary importance and may be useful to improve biotechnological tools employed in Culicidae control programmes. PMID:26358100

  11. Rapid molecular evolution across amniotes of the IIS/TOR network.

    PubMed

    McGaugh, Suzanne E; Bronikowski, Anne M; Kuo, Chih-Horng; Reding, Dawn M; Addis, Elizabeth A; Flagel, Lex E; Janzen, Fredric J; Schwartz, Tonia S

    2015-06-01

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861

  12. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize.

    PubMed

    Liu, Fang; Xu, Yunjian; Han, Guomin; Zhou, Lingyan; Ali, Asif; Zhu, Suwen; Li, Xiaoyu

    2016-01-01

    The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses. PMID:27560803

  13. GIANT MOLECULAR CLOUD EVOLUTIONS IN THE NEARBY SPIRAL GALAXY M33

    SciTech Connect

    Miura, Rie E.; Espada, Daniel; Hwang, Narae; Okumura, Sachiko K.; Komugi, Shinya; Nakanishi, Kouichiro; Sawada, Tsuyoshi; Kohno, Kotaro; Tosaki, Tomoka; Kuno, Nario; Hirota, Akihiko; Onodera, Sachiko; Kaneko, Hiroyuki; Kawabe, Ryohei; Muraoka, Kazuyuki; Minamidani, Tetsuhiro

    2012-12-10

    We present a giant molecular cloud (GMC) catalog of M33, containing 71 GMCs in total, based on wide-field and high-sensitivity CO(J = 3-2) observations with a spatial resolution of 100 pc using the ASTE 10 m telescope. Employing archival optical data, we identify 75 young stellar groups (YSGs) from the excess of the surface stellar density, and estimate their ages by comparing with stellar evolution models. A spatial comparison among the GMCs, YSGs, and H II regions enable us to classify GMCs into four categories: Type A, showing no sign of massive star formation (SF); Type B, being associated only with H II regions; Type C, with both H II regions and <10 Myr old YSGs; and Type D, with both H II regions and 10-30 Myr YSGs. Out of 65 GMCs (discarding those at the edges of the observed fields), 1 (1%), 13 (20%), 29 (45%), and 22 (34%) are Types A, B, C, and D, respectively. We interpret these categories as stages in a GMC evolutionary sequence. Assuming that the timescale for each evolutionary stage is proportional to the number of GMCs, the lifetime of a GMC with a mass >10{sup 5} M{sub Sun} is estimated to be 20-40 Myr. In addition, we find that the dense gas fraction as traced by the CO(J = 3-2)/CO(J = 1-0) ratio is enhanced around SF regions. This confirms a scenario where dense gas is preferentially formed around previously generated stars, and will be the fuel for the next stellar generation. In this way, massive SF gradually propagates in a GMC until gas is exhausted.

  14. Ecology has contrasting effects on genetic variation within species versus rates of molecular evolution across species in water beetles.

    PubMed

    Fujisawa, Tomochika; Vogler, Alfried P; Barraclough, Timothy G

    2015-01-22

    Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution. PMID:25621335

  15. Ecology has contrasting effects on genetic variation within species versus rates of molecular evolution across species in water beetles

    PubMed Central

    Fujisawa, Tomochika; Vogler, Alfried P.; Barraclough, Timothy G.

    2015-01-01

    Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution. PMID:25621335

  16. Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.

    PubMed

    Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L

    2015-12-01

    Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods. PMID:26002349

  17. Symbiosis between hydra and chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution.

    PubMed

    Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2013-03-01

    Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. PMID:23219706

  18. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    PubMed

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds. PMID:26498763

  19. A Mathematical Model for Evolution and SETI

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2011-12-01

    Darwinian evolution theory may be regarded as a part of SETI theory in that the factor fl in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor fl is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation.

  20. A mathematical model for evolution and SETI.

    PubMed

    Maccone, Claudio

    2011-12-01

    Darwinian evolution theory may be regarded as a part of SETI theory in that the factor f(l) in the Drake equation represents the fraction of planets suitable for life on which life actually arose. In this paper we firstly provide a statistical generalization of the Drake equation where the factor f(l) is shown to follow the lognormal probability distribution. This lognormal distribution is a consequence of the Central Limit Theorem (CLT) of Statistics, stating that the product of a number of independent random variables whose probability densities are unknown and independent of each other approached the lognormal distribution when the number of factors increased to infinity. In addition we show that the exponential growth of the number of species typical of Darwinian Evolution may be regarded as the geometric locus of the peaks of a one-parameter family of lognormal distributions (b-lognormals) constrained between the time axis and the exponential growth curve. Finally, since each b-lognormal distribution in the family may in turn be regarded as the product of a large number (actually "an infinity") of independent lognormal probability distributions, the mathematical way is paved to further cast Darwinian Evolution into a mathematical theory in agreement with both its typical exponential growth in the number of living species and the Statistical Drake Equation. PMID:22139521

  1. Molecular evolution and the global reemergence of enterovirus D68 by genome-wide analysis.

    PubMed

    Gong, Yu-Nong; Yang, Shu-Li; Shih, Shin-Ru; Huang, Yhu-Chering; Chang, Pi-Yueh; Huang, Chung-Guei; Kao, Kuo-Chin; Hu, Han-Chung; Liu, Yi-Chun; Tsao, Kuo-Chien

    2016-08-01

    Human enterovirus D68 (EV-D68) was first reported in the United States in 1962; thereafter, a few cases were reported from 1970 to 2005, but 2 outbreaks occurred in the Philippines (2008) and the United States (2014). However, little is known regarding the molecular evolution of this globally reemerging virus due to a lack of whole-genome sequences and analyses. Here, all publically available sequences including 147 full and 1248 partial genomes from GenBank were collected and compared at the clade and subclade level; 11 whole genomes isolated in Taiwan (TW) in 2014 were also added to the database. Phylogenetic trees were constructed to identify a new subclade, B3, and represent clade circulations among strains. Nucleotide sequence identities of the VP1 gene were 94% to 95% based on a comparison of subclade B3 to B1 and B2 and 87% to 91% when comparing A, C, and D. The patterns of clade circulation need to be clarified to improve global monitoring of EV-D68, even though this virus showed lower diversity among clades compared with the common enterovirus EV-71. Notably, severe cases isolated from Taiwan and China in 2014 were found in subclade B3. One severe case from Taiwan occurred in a female patient with underlying angioimmunoblastic T-cell lymphoma, from whom a bronchoalveolar lavage specimen was obtained. Although host factors play a key role in disease severity, we cannot exclude the possibility that EV-D68 may trigger clinical symptoms or death. To further investigate the genetic diversity of EV-D68, we reported 34 amino acid (aa) polymorphisms identified by comparing subclade B3 to B1 and B2. Clade D strains had a 1-aa deletion and a 2-aa insertion in the VP1 gene, and 1 of our TW/2014 strains had a shorter deletion in the 5' untranslated region than a previously reported deletion. In summary, a new subclade, genetic indels, and polymorphisms in global strains were discovered elucidating evolutionary and epidemiological trends of EV-D68, and 11 genomes were

  2. Molecular evolution and the global reemergence of enterovirus D68 by genome-wide analysis

    PubMed Central

    Gong, Yu-Nong; Yang, Shu-Li; Shih, Shin-Ru; Huang, Yhu-Chering; Chang, Pi-Yueh; Huang, Chung-Guei; Kao, Kuo-Chin; Hu, Han-Chung; Liu, Yi-Chun; Tsao, Kuo-Chien

    2016-01-01

    Abstract Human enterovirus D68 (EV-D68) was first reported in the United States in 1962; thereafter, a few cases were reported from 1970 to 2005, but 2 outbreaks occurred in the Philippines (2008) and the United States (2014). However, little is known regarding the molecular evolution of this globally reemerging virus due to a lack of whole-genome sequences and analyses. Here, all publically available sequences including 147 full and 1248 partial genomes from GenBank were collected and compared at the clade and subclade level; 11 whole genomes isolated in Taiwan (TW) in 2014 were also added to the database. Phylogenetic trees were constructed to identify a new subclade, B3, and represent clade circulations among strains. Nucleotide sequence identities of the VP1 gene were 94% to 95% based on a comparison of subclade B3 to B1 and B2 and 87% to 91% when comparing A, C, and D. The patterns of clade circulation need to be clarified to improve global monitoring of EV-D68, even though this virus showed lower diversity among clades compared with the common enterovirus EV-71. Notably, severe cases isolated from Taiwan and China in 2014 were found in subclade B3. One severe case from Taiwan occurred in a female patient with underlying angioimmunoblastic T-cell lymphoma, from whom a bronchoalveolar lavage specimen was obtained. Although host factors play a key role in disease severity, we cannot exclude the possibility that EV-D68 may trigger clinical symptoms or death. To further investigate the genetic diversity of EV-D68, we reported 34 amino acid (aa) polymorphisms identified by comparing subclade B3 to B1 and B2. Clade D strains had a 1-aa deletion and a 2-aa insertion in the VP1 gene, and 1 of our TW/2014 strains had a shorter deletion in the 5′ untranslated region than a previously reported deletion. In summary, a new subclade, genetic indels, and polymorphisms in global strains were discovered elucidating evolutionary and epidemiological trends of EV-D68, and 11

  3. The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history

    PubMed Central

    Kroll, Oliver; Hershler, Robert; Albrecht, Christian; Terrazas, Edmundo M; Apaza, Roberto; Fuentealba, Carmen; Wolff, Christian; Wilke, Thomas

    2012-01-01

    Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had a complex history that included at least five major hydrological phases during the Pleistocene. It is generally assumed that these physical events helped shape the evolutionary history of the lake's biota. Herein, we study an endemic species assemblage in Lake Titicaca, composed of members of the microgastropod genus Heleobia, to determine whether the lake has functioned as a reservoir of relic species or the site of local diversification, to evaluate congruence of the regional paleohydrology and the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses indicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital taxa) forms a species flock. A molecular clock analysis suggests that the most recent common ancestor (MRCAs) of the Altiplano taxa evolved 0.53 (0.28–0.80) My ago and the MRCAs of the Altiplano taxa and their extralimital sister group 0.92 (0.46–1.52) My ago. The endemic species of Lake Titicaca are younger than the lake itself, implying primarily intralacustrine speciation. Moreover, the timing of evolutionary branching events and the ages of two precursors of Lake Titicaca, lakes Cabana and Ballivián, is congruent. Although Lake Titicaca appears to have been the principal site of speciation for the regional Heleobia fauna, the contemporary spatial patterns of endemism have been masked by immigration and/or emigration events of local riverine taxa, which we attribute to the unstable hydrographic history of the Altiplano. Thus, a hierarchical distribution of endemism is not evident, but instead there is a single genetic break between two regional clades. We also discuss our findings in relation to studies of other regional biota and suggest that salinity tolerance

  4. The Darwinian muddle on the division of labour: an attempt at clarification.

    PubMed

    D'Hombres, Emmanuel

    2016-04-01

    It is of philosophical and epistemological interest to examine how Darwin conceived the process of division of labour within Natural History. Darwin observed the advantages brought by division of labour to the human economy, and considered that the principle of divergence within nature, which is, according to him, one of the two 'keystones' of his theory, gave comparable advantages. This led him to re-examine Milne-Edwards' view on the notion of division of physiological labour, and to introduce this with modifications into his naturalist writings. After a short review of the Darwinian historiography dealing with this issue, I first show the conceptual confusion into which Darwin plunges, when using a so-called economic argument to defend his thesis of the maximization of beings in a given territory due to division of labour. Following this I propose several hypotheses to explain these shifts, recurring in Darwin's texts, from one conception and from one application to another, of the division of labour. PMID:26463099

  5. Protein Evolution by Molecular Tinkering: Diversification of the Nuclear Receptor Superfamily from a Ligand-Dependent Ancestor

    PubMed Central

    Bridgham, Jamie T.; Eick, Geeta N.; Larroux, Claire; Deshpande, Kirti; Harms, Michael J.; Gauthier, Marie E. A.; Ortlund, Eric A.; Degnan, Bernard M.; Thornton, Joseph W.

    2010-01-01

    Understanding how protein structures and functions have diversified is a central goal in molecular evolution. Surveys of very divergent proteins from model organisms, however, are often insufficient to determine the features of ancestral proteins and to reveal the evolutionary events that yielded extant diversity. Here we combine genomic, biochemical, functional, structural, and phylogenetic analyses to reconstruct the early evolution of nuclear receptors (NRs), a diverse superfamily of transcriptional regulators that play key roles in animal development, physiology, and reproduction. By inferring the structure and functions of the ancestral NR, we show—contrary to current belief—that NRs evolved from a ligand-activated ancestral receptor that existed near the base of the Metazoa, with fatty acids as possible ancestral ligands. Evolutionary tinkering with this ancestral structure generated the extraordinary diversity of modern receptors: sensitivity to different ligands evolved because of subtle modifications of the internal cavity, and ligand-independent activation evolved repeatedly because of various mutations that stabilized the active conformation in the absence of ligand. Our findings illustrate how a mechanistic dissection of protein evolution in a phylogenetic context can reveal the deep homology that links apparently “novel” molecular functions to a common ancestral form. PMID:20957188

  6. Structural Evolution of Polylactide Molecular Bottlebrushes: Kinetics Study by Size Exclusion Chromatography, Small Angle Neutron Scattering and Simulations

    SciTech Connect

    Pickel, Deanna L; Kilbey, II, S Michael; Uhrig, David; Hong, Kunlun; Carrillo, Jan-Michael Y; Sumpter, Bobby G; Ahn, Suk-Kyun; Han, Youngkyu; Kim, Dr. Tae-Hwan; Smith, Gregory Scott; Do, Changwoo

    2014-01-01

    Structural evolution from poly(lactide) (PLA) macromonomer to resultant PLA molecular bottlebrush during ring opening metathesis polymerization (ROMP) was investigated for the first time by combining size exclusion chromatography (SEC), small-angle neutron scattering (SANS) and coarse-grained molecular dynamics (CG-MD) simulations. Multiple aliquots were collected at various reaction times during ROMP, and subsequently analyzed by SEC and SANS. The two complementary techniques enable the understanding of systematic changes in conversion, molecular weight and dispersity as well as structural details of PLA molecular bottlebrushes. CG-MD simulation not only predicts the experimental observations, but it also provides further insight into the analysis and interpretation of data obtained in SEC and SANS experiments. We find that PLA molecular bottlebrushes undergo three conformational transitions with increasing conversion (i.e., increasing the backbone length): (1) from an elongated to a globular shape due to longer side chain at lower conversion, (2) from a globular to an elongated shape at intermediate conversion caused by excluded volume of PLA side chain, and (3) the saturation of contour length at higher conversion due to chain transfer reactions.

  7. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla

    PubMed Central

    Fontanillas, Eric; Welch, John J; Thomas, Jessica A; Bromham, Lindell

    2007-01-01

    Background Molecular clock dates, which place the origin of animal phyla deep in the Precambrian, have been used to reject the hypothesis of a rapid evolutionary radiation of animal phyla supported by the fossil record. One possible explanation of the discrepancy is the potential for fast substitution rates early in the metazoan radiation. However, concerted rate variation, occurring simultaneously in multiple lineages, cannot be detected by "clock tests", and so another way to explore such variation is to look for correlated changes between rates and other biological factors. Here we investigate two possible causes of fast early rates: change in average body size or diversification rate of deep metazoan lineages. Results For nine genes for phylogenetically independent comparisons between 50 metazoan phyla, orders, and classes, we find a significant correlation between average body size and rate of molecular evolution of mitochondrial genes. The data also indicate that diversification rate may have a positive effect on rates of mitochondrial molecular evolution. Conclusion If average body sizes were significantly smaller in the early history of the Metazoa, and if rates of diversification were much higher, then it is possible that mitochondrial genes have undergone a slow-down in evolutionary rate, which could affect date estimates made from these genes. PMID:17592650

  8. Outrunning Nature: Directed Evolution of Superior Biocatalysts

    NASA Astrophysics Data System (ADS)

    Woodyer, Ryan; Chen, Wilfred; Zhao, Huimin

    2004-01-01

    Driven by recent technical advances in genetic engineering and new societal needs, the use of enzymes and microorganisms as catalysts to synthesize chemicals and materials is rapidly expanding. One of the key technical drivers is the development of various directed evolution methods for biocatalyst discovery and optimization. Although it essentially replicates the Darwinian evolutionary processes in a test tube, directed evolution can create biocatalysts with better catalytic performance than Nature's own products within weeks or months rather than eons. In this article, both the technologies and applications of directed evolution in biocatalysis are discussed.

  9. Colloquium paper: phylogenomic evidence of adaptive evolution in the ancestry of humans.

    PubMed

    Goodman, Morris; Sterner, Kirstin N

    2010-05-11

    In Charles Darwin's tree model for life's evolution, natural selection adaptively modifies newly arisen species as they branch apart from their common ancestor. In accord with this Darwinian concept, the phylogenomic approach to elucidating adaptive evolution in genes and genomes in the ancestry of modern humans requires a well supported and well sampled phylogeny that accurately places humans and other primates and mammals with respect to one another. For more than a century, first from the comparative immunological work of Nuttall on blood sera and now from comparative genomic studies, molecular findings have demonstrated the close kinship of humans to chimpanzees. The close genetic correspondence of chimpanzees to humans and the relative shortness of our evolutionary separation suggest that most distinctive features of the modern human phenotype had already evolved during our ancestry with chimpanzees. Thus, a phylogenomic assessment of being human should examine earlier stages of human ancestry as well as later stages. In addition, with the availability of a number of mammalian genomes, similarities in phenotype between distantly related taxa should be explored for evidence of convergent or parallel adaptive evolution. As an example, recent phylogenomic evidence has shown that adaptive evolution of aerobic energy metabolism genes may have helped shape such distinctive modern human features as long life spans and enlarged brains in the ancestries of both humans and elephants. PMID:20445097

  10. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate.

    PubMed

    Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L

    2016-03-01

    We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. PMID:26505145

  11. Punctuated equilibrium and shock waves in molecular models of biological evolution.

    PubMed

    Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way. PMID:25215763

  12. Punctuated equilibrium and shock waves in molecular models of biological evolution

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Ghazaryan, Makar H.; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.

  13. Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification.

    PubMed

    Gupta, Radhey S

    2016-07-01

    Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa. PMID:27279642

  14. Evolution of OH and CO-Dark Molecular Gas Fraction across a Molecular Cloud Boundary in Taurus

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Li, Di; Yue, Nannan; Goldsmith, Paul F.

    2016-03-01

    We present observations of 12CO J = 1-0, 13CO J = 1-0, H i, and all four ground-state transitions of the hydroxyl (OH) radical toward a sharp boundary region of the Taurus molecular cloud. Based on a photodissociation region (PDR) model that reproduces CO and [C i] emission from the same region, we modeled the three OH transitions, 1612, 1665, and 1667 MHz successfully through escape probability non-local thermal equilibrium radiative transfer model calculations. We could not reproduce the 1720 MHz observations, due to unmodeled pumping mechanisms, of which the most likely candidate is a C-shock. The abundance of OH and CO-dark molecular gas is well-constrained. The OH abundance [OH]/[H2] decreases from 8× {10}-7 to 1× {10}-7 as Av increases from 0.4 to 2.7 mag following an empirical law: which is higher than PDR model predictions for low-extinction regions by a factor of 80. The overabundance of OH at extinctions at or below 1 mag is likely the result of a C-shock. The dark gas fraction (DGF, defined as the fraction of molecular gas without detectable CO emission) decreases from 80% to 20% following a Gaussian profile: This trend of the DGF is consistent with our understanding that the DGF drops at low visual extinction due to photodissociation of H2 and drops at high visual extinction due to CO formation. The DGF peaks in the extinction range where H2 has already formed and achieved self-shielding but 12CO has not. Two narrow velocity components with a peak-to-peak spacing of ˜1 km s-1 were clearly identified. Their relative intensity and variation in space and frequency suggest colliding streams or gas flows at the boundary region.

  15. Congruence and indifference between two molecular markers for understanding oral evolution in the Marynidae sensu lato (Ciliophora, Colpodea)

    PubMed Central

    Dunthorn, Micah; Katz, Laura A.; Stoeck, Thorsten; Foissner, Wilhelm

    2012-01-01

    Our understanding of the evolution of oral structures within the Colpodida is confounded by the low number of morphological characters that can be used in constructing hypotheses, and by the low taxon and character sampling in molecular phylogenetic analyses designed to assess these hypotheses. Here we increase character sampling by sequencing the mitochondrial SSU-rDNA locus for three isolates of the Marynidae sensu lato. We show that the inferred mitochondrial and nuclear SSU-rDNA trees, as well as concatenated and constrained analyses, are congruent in not recovering a monophyletic Marynidae. However, due to low node support, the trees are indifferent to whether the morphological characters used to unite the Marynidae are the result of retention of ancestral states or convergence. In light of this indifference and an increased amount of nuclear and mitochondrial SSU-rDNA data, alternative hypotheses of oral evolution in the Colpodida are presented. PMID:22356924

  16. Molecular evolution of the clustered MMIC-3 multigene family of Gossypium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniqueness, content, localization, and defense-related features of the root-knot nematode resistance-associated MIC-3 supergene cluster in the genus Gossypium are all of interest for molecular evolutionary studies of duplicate supergenes in allopolyploids. Here we report molecular evolutionary rates...

  17. Molecular Evolution of Clustered MIC-3 (Meloidogyne Induced Cotton -3) Multigene Family of Gossypium Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniqueness, content, localization, and defense-related features of the root-knot nematode resistance-associated MIC-3 multigene cluster in the genus Gossypium are all of interest for molecular evolutionary studies of duplicate genes in allopolyploids. Here we report molecular evolutionary rates of t...

  18. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions

    NASA Astrophysics Data System (ADS)

    Andreiadis, Eugen S.; Jacques, Pierre-André; Tran, Phong D.; Leyris, Adeline; Chavarot-Kerlidou, Murielle; Jousselme, Bruno; Matheron, Muriel; Pécaut, Jacques; Palacin, Serge; Fontecave, Marc; Artero, Vincent

    2013-01-01

    The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H2 generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices.

  19. Iconoclasts of Evolution: Haeckel, Behe, Wells & the Ontogeny of a Fraud

    ERIC Educational Resources Information Center

    Pickett, Kurt M.; Wenzel, John W.; Rissing, Steven W.

    2005-01-01

    Behe (1998) and Wells (1999) claimed that embryological support for Darwinian evolution is based on the drawings of the 19th century embryologist Ernst Haeckel (1834-1919) whose embryological drawings were regarded inaccurate and fraudulent. The history of modern embryology, the roles played by Von Baer and Haeckel in that history and the manner…

  20. Nothing in the History of Spanish "Anis" Makes Sense, Except in the Light of Evolution

    ERIC Educational Resources Information Center

    Delgado, Juan Antonio; Palma, Ricardo Luis

    2011-01-01

    We describe, discuss and illustrate a metaphoric parallel between the history of the most famous Spanish liqueur, "Anis del Mono" ("Anis" of the Monkey), and the evolution of living organisms in the light of Darwinian theory and other biological hypotheses published subsequent to Charles Darwin's "Origin of Species." Also, we report the use of a…

  1. Cryptic Species in Tropic Sands - Interactive 3D Anatomy, Molecular Phylogeny and Evolution of Meiofaunal Pseudunelidae (Gastropoda, Acochlidia)

    PubMed Central

    Neusser, Timea P.; Jörger, Katharina M.; Schrödl, Michael

    2011-01-01

    Background Towards realistic estimations of the diversity of marine animals, tiny meiofaunal species usually are underrepresented. Since the biological species concept is hardly applicable on exotic and elusive animals, it is even more important to apply a morphospecies concept on the best level of information possible, using accurate and efficient methodology such as 3D modelling from histological sections. Molecular approaches such as sequence analyses may reveal further, cryptic species. This is the first case study on meiofaunal gastropods to test diversity estimations from traditional taxonomy against results from modern microanatomical methodology and molecular systematics. Results The examined meiofaunal Pseudunela specimens from several Indo-Pacific islands cannot be distinguished by external features. Their 3D microanatomy shows differences in the organ systems and allows for taxonomic separation in some cases. Additional molecular analyses based on partial mitochondrial cytochrome c oxidase subunit I (COI) and 16S rRNA markers revealed considerable genetic structure that is largely congruent with anatomical or geographical patterns. Two new species (Pseudunela viatoris and P. marteli spp. nov.) are formally described integrating morphological and genetic analyses. Phylogenetic analysis using partial 16S rRNA, COI and the nuclear 18S rRNA markers shows a clade of Pseudunelidae species as the sister group to limnic Acochlidiidae. Within Pseudunela, two subtypes of complex excretory systems occur. A complex kidney already evolved in the ancestor of Hedylopsacea. Several habitat shifts occurred during hedylopsacean evolution. Conclusions Cryptic species occur in tropical meiofaunal Pseudunela gastropods, and likely in other meiofaunal groups with poor dispersal abilities, boosting current diversity estimations. Only a combined 3D microanatomical and molecular approach revealed actual species diversity within Pseudunela reliably. Such integrative methods are

  2. Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects

    PubMed Central

    Glastad, Karl M.; Goodisman, Michael A. D.; Yi, Soojin V.; Hunt, Brendan G.

    2015-01-01

    Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution. PMID:26637432

  3. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process.

    PubMed

    Shapiro, James A

    2016-01-01

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification. PMID:27338490

  4. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    PubMed Central

    Shapiro, James A.

    2016-01-01

    The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification. PMID:27338490

  5. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    PubMed Central

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  6. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment.

    PubMed

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  7. Positive Darwinian selection results in resistance to cardioactive toxins in true toads (Anura: Bufonidae)

    PubMed Central

    Moore, David J.; Halliday, Damien C. T.; Rowell, David M.; Robinson, Anthony J.; Keogh, J. Scott

    2009-01-01

    Members of the Family Bufonidae, true toads, are famous for their endogenously synthesized cardioactive steroids that serve as defensive toxins. Evolution of resistance to these toxins is not understood. We sequenced a key region of the toxin's binding site in the Na+/K+ ATPase for relevant taxa representing Hyloidea (including bufonids), Ranoidea and Archaeobatrachia and tested for positive selection in a phylogenetic context. Bufonidae were distinct from other Hyloidea at 4–6 of 12 sites and, with one exception, had a homologous amino acid sequence. Melanophryniscus stelzneri had a distinct sequence, consistent with other independent evidence for a differentiated toxin. Tests within Bufonidae detected positive selection within the binding region, providing, to our knowledge, the first evidence of this type for positive selection within Amphibia. There was no evidence for positive selection on Bufonidae or M. stelzneri lineages. Sequence change in Leptodactylus ocellatus, a leptodactylid predator of Bufonidae, provides a molecular basis for predator resistance possibly associated with gene duplication. PMID:19465576

  8. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  9. Tracking adaptive evolution in the structure, function and molecular phylogeny of haemoglobin in non-Antarctic notothenioid fish species

    NASA Astrophysics Data System (ADS)

    Verde, Cinzia; Parisi, Elio; di Prisco, Guido

    2006-04-01

    With the notable exception of Antarctic icefishes, haemoglobin (Hb) is present in all vertebrates. In polar fish, Hb evolution has included adaptations with implications at the biochemical, physiological and molecular levels. Cold adaptation has been shown to be also linked to small changes in primary structure and post-translational modifications in proteins, including hydrophobic remodelling and increased flexibility. A wealth of knowledge is available on the oxygen-transport system of fish inhabiting Antarctic waters, but very little is known on the structure and function of Hb of non-Antarctic notothenioid fishes. The comparison of the biochemical and physiological adaptations between cold-adapted and non-cold-adapted species is a powerful tool to understand whether (and to what extent) extreme environments require specific adaptations or simply select for phenotypically different life styles. This study focuses on structure, function and molecular phylogeny of Hb in Antarctic and non-Antarctic notothenioid fishes. The rationale is to use the primary structure of Hb as tool of choice to gain insight into the pathways of the evolution history of α and β globins of notothenioids and also as a basis for reconstructing the phylogenetic relationships among Antarctic and non-Antarctic species.

  10. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L.

    PubMed

    Mao, Hude; Yu, Lijuan; Li, Zhanjie; Liu, Hui; Han, Ran

    2016-04-01

    Homeodomain-leucine zipper (HD-Zip) transcription factors regulate developmental processes and stress responses in plants, and they vary widely in gene number and family structure. In this study, 55 predicted maize HD-Zip genes were systematically analyzed with respect to their phylogenetic relationships, molecular evolution, and gene expression in order to understand the functional diversification within the family. Phylogenetic analysis of HD-Zip proteins from Zea mays, Oryza sativa, Arabidopsis thaliana, Vitis vinifera, and Physcomitrella patens showed that they group into four classes. We inferred that the copy numbers of classes I and III genes were relatively conserved in all five species. The 55 maize HD-Zip genes are distributed randomly on the ten chromosomes, with 15 segmental duplication and 4 tandem duplication events, suggesting that segmental duplications were the major contributors in the expansion of the maize HD-Zip gene family. Expression analysis of the 55 maize HD-Zip genes in different tissues and drought conditions revealed differences in the expression levels and patterns between the four classes. Promoter analysis revealed that a number of stress response-, hormone response-, light response-, and development-related cis-acting elements were present in their promoters. Our results provide novel insights into the molecular evolution and gene expression within the HD-Zip gene family in maize, and provide a solid foundation for future functional study of the HD-Zip genes in maize. PMID:26979310

  11. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    USGS Publications Warehouse

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P.; Goerlitz, D.F.

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-1990). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater. ?? 1994.

  12. Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program.

    PubMed

    Ikmi, Aissam; Gaertner, Bjoern; Seidel, Christopher; Srivastava, Mansi; Zeitlinger, Julia; Gibson, Matthew C

    2014-06-01

    Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene yes-associated protein (Yap)/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling. PMID:24509725

  13. Spiraling into History: A Molecular Phylogeny and Investigation of Biogeographic Origins and Floral Evolution for the Genus Costus

    PubMed Central

    Salzman, Shayla; Driscoll, Heather E.; Renner, Tanya; André, Thiago; Shen, Stacy; Specht, Chelsea D.

    2015-01-01

    Rapid radiations are notoriously difficult to resolve, yet understanding phylogenetic patterns in such lineages can be useful for investigating evolutionary processes associated with bursts of speciation and morphological diversification. Here we present an expansive molecular phylogeny of Costus L. (Costaceae Nakai) with a focus on the Neotropical species within the clade, sampling 47 of the known 51 Neotropical species and including five molecular markers for phylogenetic analysis (ITS, ETS, rps16, trnL-F, and CaM). We use the phylogenetic results to investigate shifts in pollination syndrome, with the intention of addressing potential mechanisms leading to the rapid radiation documented for this clade. Our ancestral reconstruction of pollination syndrome presents the first evidence in this genus of an evolutionary toggle in pollination morphologies, demonstrating both the multiple independent evolutions of ornithophily (bird pollination) as well as reversals to melittophily (bee pollination). We show that the ornithophilous morphology has evolved at least eight times independently with four potential reversals to melittophilous morphology, and confirm prior work showing that neither pollination syndrome defines a monophyletic lineage. Based on the current distribution for the Neotropical and African species, we reconstruct the ancestral distribution of the Neotropical clade as the Pacific Coast of Mexico and Central America. Our results indicate an historic dispersal of a bee-pollinated taxon from Africa to the Pacific Coast of Mexico/Central America, with subsequent diversification leading to the evolution of a bird-pollinated floral morphology in multiple derived lineages. PMID:26146450

  14. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    SciTech Connect

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P. ); Goerlitz, D.F. )

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-90). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater.

  15. Molecular Evolution of the Yap/Yorkie Proto-Oncogene and Elucidation of Its Core Transcriptional Program

    PubMed Central

    Ikmi, Aissam; Gaertner, Bjoern; Seidel, Christopher; Srivastava, Mansi; Zeitlinger, Julia; Gibson, Matthew C.

    2014-01-01

    Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene yes-associated protein (Yap)/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling. PMID:24509725

  16. In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries.

    PubMed

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Rama Sesha; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R; Wang, Chong-Min

    2015-09-01

    Dynamic structural and chemical evolution at solid-liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe a solid-liquid interface under reaction conditions. We describe the creation and usage of in situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid-liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to be depleted of the salt anions and with reduced concentration of Li(+) ions, essentially leading to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributing to the overpotential of the cell. This observation provides unprecedented molecular level dynamic information on the initial formation of the solid electrolyte interphase (SEI) layer. The present work also ultimately opens new avenues for implanting the in situ liquid SIMS concept to probe the chemical reaction process that intimately involves solid-liquid interface, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization. PMID:26287361

  17. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bumble bees are a longstanding model system for studies on behavior, ecology, and evolution, due to their well-studied social lifestyle, invaluable roles as both wild and managed pollinators, and their ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of ...

  18. "DNA Re-EvolutioN": A Game for Learning Molecular Genetics and Evolution

    ERIC Educational Resources Information Center

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game "DNA Re-EvolutioN" as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular…

  19. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant f...

  20. Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer

    PubMed Central

    Kwon, Inchan

    2007-01-01

    Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. “Shielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating ‘designer’ gene delivery vectors with enhanced properties. PMID:17763830

  1. Molecular evolution analysis of WUSCHEL-related homeobox transcription factor family reveals functional divergence among clades in the homeobox region.

    PubMed

    Segatto, Ana Lúcia A; Thompson, Claudia E; Freitas, Loreta B

    2016-07-01

    Gene families have been shown to play important roles in plant evolution and are associated with diversification and speciation. Genes of WUSCHEL-related homeobox family of transcription factors have important functions in plant development and are correlated with the appearance of evolutionary novelties. There are several published studies related to this family, but little is known about the relationships among the main clades in the phylogeny and the molecular evolution of the family. In this study, we obtained a well-resolved Bayesian phylogenetic tree establishing the relationships among the main clades and determining the position of Selaginella moellendorffii WOX genes. Moreover, a correlation was identified between the number of genes in the genomes and the events of whole-genome duplications. The intron-exon structure is more consistent across the modern clade, which appeared more recently in the WOX evolutionary history, and coincides with the development of higher complexity in plant species. No positive selection was detected among sites through the branches in the tree. However, with regard to the main clades, functional divergence among certain amino acids in the homeodomain region was found. Relaxed purifying selection could be the main driving force in the evolution of these genes and in agreement with some genes have been demonstrated to be functionally redundant. PMID:27150824

  2. A model of compensatory molecular evolution involving multiple sites in RNA molecules.

    PubMed

    Kusumi, Junko; Ichinose, Motoshi; Takefu, Masasuke; Piskol, Robert; Stephan, Wolfgang; Iizuka, Masaru

    2016-01-01

    Consider two sites under compensatory fitness interaction, such as a Watson-Crick base pair in an RNA helix or two interacting residues in a protein. A mutation at any one of these two sites may reduce the fitness of an individual. However, fitness may be restored by the occurrence of a second mutation at the other site. Kimura modeled this process using a two-locus haploid fitness scheme with two alleles at each locus. He predicted that compensatory evolution following this model is very rare unless selection against the deleterious single mutations is weak and linkage between the interacting sites is tight. Here we investigate the question whether the rate of compensatory evolution increases if we take the context of the two directly interacting sites into account. By "context", we mean the effect of neighboring sites in an RNA helix. Interaction between the focal pair of sites under consideration and the context may lead to so-called indirect compensation. Thus, extending Kimura's classical model of compensatory evolution, we study the effects of both direct and indirect compensation on the rate of compensatory evolution. It is shown that the effects of indirect compensation are very strong. We find that recombination does not slow down the rate of compensatory evolution as predicted by the classical model. Instead, compensatory substitutions may be relatively frequent, even if linkage between the focal interacting sites is loose, selection against deleterious mutations is strong, and mutation rate is low. We compare our theoretical results with data on RNA secondary structures from vertebrate introns. PMID:26506471

  3. Recent insertion/deletion (reINDEL) mutations: increasing awareness to boost molecular-based research in ecology and evolution

    PubMed Central

    Schlick-Steiner, Birgit C; Arthofer, Wolfgang; Moder, Karl; Steiner, Florian M

    2015-01-01

    Today, the comparative analysis of DNA molecules mainly uses information inferred from nucleotide substitutions. Insertion/deletion (INDEL) mutations, in contrast, are largely considered uninformative and discarded, due to our lacking knowledge on their evolution. However, including rather than discarding INDELs would be relevant to any research area in ecology and evolution that uses molecular data. As a practical approach to better understanding INDEL evolution in general, we propose the study of recent INDEL (reINDEL) mutations – mutations where both ancestral and derived state are seen in the sample. The precondition for reINDEL identification is knowledge about the pedigree of the individuals sampled. Sound reINDEL knowledge will allow the improved modeling needed for including INDELs in the downstream analysis of molecular data. Both microsatellites, currently still the predominant marker system in the analysis of populations, and sequences generated by next-generation sequencing, a promising and rapidly developing range of technologies, offer the opportunity for reINDEL identification. However, a 2013 sample of animal microsatellite studies contained unexpectedly few reINDELs identified. As most likely explanation, we hypothesize that reINDELs are underreported rather than absent and that this underreporting stems from common reINDEL unawareness. If our hypothesis applies, increased reINDEL awareness should allow gathering data rapidly. We recommend the routine reporting of either the absence or presence of reINDELs together with standardized key information on the nature of mutations when they are detected and the use of the keyword “reINDEL” to increase visibility in both instances of successful and unsuccessful search. PMID:25628861

  4. Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition

    NASA Astrophysics Data System (ADS)

    Grzybowska, K.; Grzybowski, A.; Pawlus, S.; Pionteck, J.; Paluch, M.

    2015-06-01

    In this paper, we investigate how changes in the system entropy influence the characteristic time scale of the system molecular dynamics near the glass transition. Independently of any model of thermodynamic evolution of the time scale, against some previous suppositions, we show that the system entropy S is not sufficient to govern the time scale defined by structural relaxation time τ. In the density scaling regime, we argue that the decoupling between τ and S is a consequence of different values of the scaling exponents γ and γS in the density scaling laws, τ =f (ργ/T ) and S =h (ργS/T ) , where ρ and T denote density and temperature, respectively. It implies that the proper relation between τ and S requires supplementing with a density factor, u (ρ), i.e., τ =g ( u (ρ )w (S ) ) . This meaningful finding additionally demonstrates that the density scaling idea can be successfully used to separate physically relevant contributions to the time scale of molecular dynamics near the glass transition. The relation reported by us between τ and S constitutes a general pattern based on nonconfigurational quantities for describing the thermodynamic evolution of the characteristic time scale of molecular dynamics near the glass transition in the density scaling regime, which is a promising alternative to the approaches based as the Adam-Gibbs model on the configurational entropy that is difficult to evaluate in the entire thermodynamic space. As an example, we revise the Avramov entropic model of the dependence τ(T ,ρ), giving evidence that its entropic basis has to be extended by the density dependence of the maximal energy barrier for structural relaxation. We also discuss the excess entropy Sex, the density scaling of which is found to mimic the density scaling of the total system entropy S .

  5. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation

    PubMed Central

    Jobson, Richard W.; Nielsen, Rasmus; Laakkonen, Liisa; Wikström, Mårten; Albert, Victor A.

    2004-01-01

    Much recent attention in the study of adaptation of organismal form has centered on developmental regulation. As such, the highly conserved respiratory machinery of eukaryotic cells might seem an unlikely target for selection supporting novel morphologies. We demonstrate that a dramatic molecular evolutionary rate increase in subunit I of cytochrome c oxidase (COX) from an active-trapping lineage of carnivorous plants is caused by positive Darwinian selection. Bladderworts (Utricularia) trap plankton when water-immersed, negatively pressured suction bladders are triggered. The resetting of traps involves active ion transport, requiring considerable energy expenditure. As judged from the quaternary structure of bovine COX, the most profound adaptive substitutions are two contiguous cysteines absent in ≈99.9% of databased COX I sequences from Eukaryota, Archaea, and Bacteria. This motif lies directly at the docking point of COX I helix 3 and cytochrome c, and modeling of bovine COX I suggests the possibility of an unprecedented helix-terminating disulfide bridge that could alter COX/cytochrome c dissociation kinetics. Thus, the key adaptation in Utricularia likely lies in molecular energetic changes that buttressed the mechanisms responsible for the bladderworts' radical morphological evolution. Along with evidence for COX evolution underlying expansion of the anthropoid neocortex, our findings underscore that important morphological and physiological innovations must often be accompanied by specific adaptations in proteins with basic cellular functions. PMID:15596720

  6. Molecular mimicry: its evolution from concept to mechanism as a cause of autoimmune diseases.

    PubMed

    Oldstone, Michael B A

    2014-06-01

    On a clonal level, certain antibodies and T cells can interact with dissimilar antigens found in microbes and in host cells. More than 5% of over 800 monoclonal antibodies derived from multiple RNA and DNA viruses, as well as from a large number of T cell clones, engage in such interactions. Several of these cross-reactions, which we termed molecular mimicry, are against unique host proteins involved in autoimmune responses and diseases. Thus, molecular mimicry initiated as a host response to a virus or a microbial infection, but alternatively cross-reacting with an appropriate host-antigen, can be a mechanism for instigating an autoimmune disease. Molecular mimicry provides an explanation for the genetic observation that identical twins rarely manifest the same autoimmune disease and the documented epidemiologic evidence that microbial and/or viral infections often precede autoimmune disorders. PMID:24694269

  7. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    PubMed

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  8. Anticorrelation between the Evolution of Molecular Dipole Moments and Induced Work Function Modifications

    PubMed Central

    2013-01-01

    We explore the limits of modifying metal work functions with large molecular dipoles by systematically increasing the dipole moment of archetype donor–acceptor molecules in self-assembled monolayers on gold. Contrary to intuition, we find that enhancing the dipoles leads to a reduction of the adsorption-induced change of the work function. Using atomistic simulations, we show that large dipoles imply electronic localization and level shifts that drive the interface into a thermodynamically unstable situation and trigger compensating charge reorganizations working against the molecular dipoles. Under certain circumstances, these are even found to overcompensate the effect that increasing the dipoles has for the work function. PMID:24163725

  9. Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family.

    PubMed

    Cioffi, M B; Liehr, T; Trifonov, V; Molina, W F; Bertollo, L A C

    2013-01-01

    The Erythrinidae fish family is an excellent model for analyzing the evolution of sex chromosomes. Different stages of sex chromosome differentiation from homomorphic to highly differentiated ones can be found among the species of this family. Here, whole chromosome painting, together with the cytogenetic mapping of repetitive DNAs, highlighted the evolutionary relationships of the sex chromosomes among different erythrinid species and genera. It was demonstrated that the sex chromosomes can follow distinct evolutionary pathways inside this family. Reciprocal hybridizations with whole sex chromosome probes revealed that different autosomal pairs have evolved as the sex pair, even among closely related species. In addition, distinct origins and different patterns of differentiation were found for the same type of sex chromosome system. These features expose the high plasticity of the sex chromosome evolution in lower vertebrates, in contrast to that occurring in higher ones. A possible role of this sex chromosome turnover in the speciation processes is also discussed. PMID:23919986

  10. Genome-Wide Molecular Clock and Horizontal Gene Transfer in Bacterial Evolution

    PubMed Central

    Novichkov, Pavel S.; Omelchenko, Marina V.; Gelfand, Mikhail S.; Mironov, Andrei A.; Wolf, Yuri I.; Koonin, Eugene V.

    2004-01-01

    We describe a simple theoretical framework for identifying orthologous sets of genes that deviate from a clock-like model of evolution. The approach used is based on comparing the evolutionary distances within a set of orthologs to a standard intergenomic distance, which was defined as the median of the distribution of the distances between all one-to-one orthologs. Under the clock-like model, the points on a plot of intergenic distances versus intergenomic distances are expected to fit a straight line. A statistical technique to identify significant deviations from the clock-like behavior is described. For several hundred analyzed orthologous sets representing three well-defined bacterial lineages, the α-Proteobacteria, the γ-Proteobacteria, and the Bacillus-Clostridium group, the clock-like null hypothesis could not be rejected for ∼70% of the sets, whereas the rest showed substantial anomalies. Subsequent detailed phylogenetic analysis of the genes with the strongest deviations indicated that over one-half of these genes probably underwent a distinct form of horizontal gene transfer, xenologous gene displacement, in which a gene is displaced by an ortholog from a different lineage. The remaining deviations from the clock-like model could be explained by lineage-specific acceleration of evolution. The results indicate that although xenologous gene displacement is a major force in bacterial evolution, a significant majority of orthologous gene sets in three major bacterial lineages evolved in accordance with the clock-like model. The approach described here allows rapid detection of deviations from this mode of evolution on the genome scale. PMID:15375139

  11. Molecular Evolution and Functional Divergence of Soluble Starch Synthase Genes in Cassava (Manihot Esculenta Crantz)

    PubMed Central

    Yang, Zefeng; Wang, Yifan; Xu, Shuhui; Xu, Chenwu; Yan, Changjie

    2013-01-01

    Soluble starch synthases (SSs) are major enzymes involved in starch biosynthesis in plants. Cassava starch has many remarkable characteristics, which should be influenced by the evolution of SS genes in this starchy root crop. In this work, we performed a comprehensive phylogenetic and evolutionary analysis of the soluble starch synthases in cassava. Genome-wide identification showed that there are 9 genes encoding soluble starch synthases in cassava. All of the soluble starch synthases encoded by these genes contain both Glyco_transf_5 and Glycos_transf_1 domains, and a correlation analysis showed evidence of coevolution between these 2 domains in cassava SS genes. The SS genes in land plants can be divided into 6 subfamilies that were formed before the origin of seed plants, and species-specific expansion has contributed to the evolution of this family in cassava. A functional divergence analysis for this family provided statistical evidence for shifted evolutionary rates between the subfamilies of land plant soluble starch synthases. Although the main selective pressure acting on land plant SS genes was purifying selection, our results also revealed that point mutation with positive selection contributed to the evolution of 2 SS genes in cassava. The remarkable cassava starch characteristics might be the result of both the duplication and adaptive selection of SS genes. PMID:23888108

  12. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    SciTech Connect

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  13. Temporal dynamics of intrahost molecular evolution for a plant RNA virus.

    PubMed

    Cuevas, José M; Willemsen, Anouk; Hillung, Julia; Zwart, Mark P; Elena, Santiago F

    2015-05-01

    Populations of plant RNA viruses are highly polymorphic in infected plants, which may allow rapid within-host evolution. To understand tobacco etch potyvirus (TEV) evolution, longitudinal samples from experimentally evolved populations in the natural host tobacco and from the alternative host pepper were phenotypically characterized and genetically analyzed. Temporal and compartmental variabilities of TEV populations were quantified using high throughput Illumina sequencing and population genetic approaches. Of the two viral phenotypic traits measured, virulence increased in the novel host but decreased in the original one, and viral load decreased in both hosts, though to a lesser extent in the novel one. Dynamics of population genetic diversity were also markedly different among hosts. Population heterozygosity increased in the ancestral host, with a dominance of synonymous mutations fixed, whereas it did not change or even decreased in the new host, with an excess of nonsynonymous mutations. All together, these observations suggest that directional selection is the dominant evolutionary force in TEV populations evolving in a novel host whereas either diversifying selection or random genetic drift may play a fundamental role in the natural host. To better understand these evolutionary dynamics, we developed a computer simulation model that incorporates the effects of mutation, selection, and drift. Upon parameterization with empirical data from previous studies, model predictions matched the observed patterns, thus reinforcing our idea that the empirical patterns of mutation accumulation represent adaptive evolution. PMID:25660377

  14. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages.

    PubMed

    Jacques, Pierre-André; Artero, Vincent; Pécaut, Jacques; Fontecave, Marc

    2009-12-01

    Hydrogen production through the reduction of water appears to be a convenient solution for the long-run storage of renewable energies. However, economically viable hydrogen production requests platinum-free catalysts, because this expensive and scarce (only 37 ppb in the Earth's crust) metal is not a sustainable resource [Gordon RB, Bertram M, Graedel TE (2006) Proc Natl Acad Sci USA 103:1209-1214]. Here, we report on a new family of cobalt and nickel diimine-dioxime complexes as efficient and stable electrocatalysts for hydrogen evolution from acidic nonaqueous solutions with slightly lower overvoltages and much larger stabilities towards hydrolysis as compared to previously reported cobaloxime catalysts. A mechanistic study allowed us to determine that hydrogen evolution likely proceeds through a bimetallic homolytic pathway. The presence of a proton-exchanging site in the ligand, furthermore, provides an exquisite mechanism for tuning the electrocatalytic potential for hydrogen evolution of these compounds in response to variations of the acidity of the solution, a feature only reported for native hydrogenase enzymes so far. PMID:19948953

  15. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages

    PubMed Central

    Jacques, Pierre-André; Artero, Vincent; Pécaut, Jacques; Fontecave, Marc

    2009-01-01

    Hydrogen production through the reduction of water appears to be a convenient solution for the long-run storage of renewable energies. However, economically viable hydrogen production requests platinum-free catalysts, because this expensive and scarce (only 37 ppb in the Earth's crust) metal is not a sustainable resource [Gordon RB, Bertram M, Graedel TE (2006) Proc Natl Acad Sci USA 103:1209–1214]. Here, we report on a new family of cobalt and nickel diimine-dioxime complexes as efficient and stable electrocatalysts for hydrogen evolution from acidic nonaqueous solutions with slightly lower overvoltages and much larger stabilities towards hydrolysis as compared to previously reported cobaloxime catalysts. A mechanistic study allowed us to determine that hydrogen evolution likely proceeds through a bimetallic homolytic pathway. The presence of a proton-exchanging site in the ligand, furthermore, provides an exquisite mechanism for tuning the electrocatalytic potential for hydrogen evolution of these compounds in response to variations of the acidity of the solution, a feature only reported for native hydrogenase enzymes so far. PMID:19948953

  16. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis.

    PubMed

    Liang, Ying; Yu, Youjian; Shen, Xiuping; Dong, Heng; Lyu, Meiling; Xu, Liai; Ma, Zhiming; Liu, Tingting; Cao, Jiashu

    2015-12-01

    Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches. PMID:26506823

  17. Molecular evidence-based medicine: evolution and integration of information in the genomic era.

    PubMed

    Ioannidis, J P A

    2007-05-01

    Evidence-based medicine and molecular medicine have both been influential in biomedical research in the last 15 years. Despite following largely parallel routes to date, the goals and principles of evidence-based and molecular medicine are complementary and they should be converging. I define molecular evidence-based medicine as the study of medical information that makes sense of the advances of molecular biological disciplines and where errors and biases are properly appreciated and placed in context. Biomedical measurement capacity improves very rapidly. The exponentially growing mass of hypotheses being tested requires a new approach to both statistical and biological inference. Multidimensional biology requires careful exact replication of research findings, but indirect corroboration is often all that is achieved at best. Besides random error, bias remains a major threat. It is often difficult to separate bias from the spirit of scientific inquiry to force data into coherent and 'significant' biological stories. Transparency and public availability of protocols, data, analyses and results may be crucial to make sense of the complex biology of human disease and avoid being flooded by spurious research findings. Research efforts should be integrated across teams in an open, sharing environment. Most research in the future may be designed, performed, and integrated in the public cyberspace. PMID:17461979

  18. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    SciTech Connect

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  19. Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences

    NASA Astrophysics Data System (ADS)

    Cheng, Jiao; Gao, Tianxiang; Miao, Zhenqing; Yanagimoto, Takashi

    2011-03-01

    A molecular phylogenetic analysis of the genus Scomber was conducted based on mitochondrial (COI, Cyt b and control region) and nuclear (5S rDNA) DNA sequence data in multigene perspective. A variety of phylogenetic analytic methods were used to clarify the current taxonomic Classification and to assess phylogenetic relationships and the evolutionary history of this genus. The present study produced a well-resolved phylogeny that strongly supported the monophyly of Scomber. We confirmed that S. japonicus and S. colias were genetically distinct. Although morphologically and ecologically similar to S. colias, the molecular data showed that S. japonicus has a greater molecular affinity with S. australasicus, which conflicts with the traditional taxonomy. This phylogenetic pattern was corroborated by the mtDNA data, but incompletely by the nuclear DNA data. Phylogenetic concordance between the mitochondrial and nuclear DNA regions for the basal nodes Supports an Atlantic origin for Scomber. The present-day geographic ranges of the species were compared with the resultant molecular phylogeny derived from partition Bayesian analyses of the combined data sets to evaluate possible dispersal routes of the genus. The present-day geographic distribution of Scomber species might be best ascribed to multiple dispersal events. In addition, our results suggest that phylogenies derived from multiple genes and long sequences exhibited improved phylogenetic resolution, from which we conclude that the phylogenetic reconstruction is a reliable representation of the evolutionary history of Scomber.

  20. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  1. Corrections to chance fluctuations: quantum mind in biological evolution?

    PubMed

    Damiani, Giuseppe

    2009-01-01

    According to neo-Darwinian theory, biological evolution is produced by natural selection of random hereditary variations. This assumption stems from the idea of a mechanical and deterministic world based on the laws of classic physics. However, the increased knowledge of relationships between metabolism, epigenetic systems, and editing of nucleic acids suggests the existence of self-organized processes of adaptive evolution in response to environmental stresses. Living organisms are open thermodynamic systems which use entropic decay of external source of electromagnetic energy to increase their internal dynamic order and to generate new genetic and epigenetic information with a high degree of coherency and teleonomic creativity. Sensing, information processing, and decision making of biological systems might be mainly quantum phenomena. Amplification of microscopic quantum events using the long-range correlation of fractal structures, at the borderline between deterministic order and unpredictable chaos, may be used to direct a reproducible transition of the biological systems towards a defined macroscopic state. The discoveries of many natural genetic engineering systems, the ability to choose the most effective solutions, and the emergence of complex forms of consciousness at different levels confirm the importance of mind-action directed processes in biological evolution, as suggested by Alfred Russel Wallace. Although the main Darwinian principles will remain a crucial component of our understanding of evolution, a radical rethinking of the conceptual structure of the neo-Darwinian theory is needed. PMID:20533189

  2. Autonomous Agents: The Origins and Co-Evolution of Reproducing Molecular Systems

    NASA Technical Reports Server (NTRS)

    Kauffman, Stuart

    1999-01-01

    The central aim of this award concerned an investigation into, and adequate formulation of, the concept of an "autonomous agent." If we consider a bacterium swimming upstream in a glucose gradient, we are willing to say of the bacterium that it is going to get food. That is, we are willing, and do, describe the bacterium as acting on its own behalf in an environment. All free living cells are, in this sense, autonomous agents. But the bacterium is "just" a set of molecules. We define an autonomous agent as a physical system able to act on its own behalf in an environment, then ask, "What must a physical system be to be an autonomous agent?" The tentative definition for a molecular autonomous agent is that it must be self-reproducing and carry out at least one thermodynamic work cycle. The work carried out in this grant involved, among other features, the development of a detailed model of a molecular autonomous agent, and study of the kinetics of this system. In particular, a molecular autonomous agent must, by the above tentative definition, not only reproduce, but must carry out at least one work cycle. I took, as a simple example of a self-reproducing molecular system, the single-stranded DNA hexamer 3'CCGCGG5' which can line up and ligate its two complementary trimers, 5'CCG3' and 5'CGG3'. But the two ligated trimers constitute the same molecular sequence in the 3' to 5' direction as the initial hexamer, hence this system is autocatalytic. On the other hand the above system is not yet an autonomous agent. At the minimum, autonomous agents, as I have defined them, are a new class of chemical reaction network. At a maximum, they may constitute a proper definition of life itself.

  3. Mass extinctions vs. uniformitarianism in biological evolution

    SciTech Connect

    Bak, P.; Paczuski, M.

    1995-12-31

    It is usually believed that Darwin`s theory leads to a smooth gradual evolution, so that mass extinctions must be caused by external shocks. However, it has recently been argued that mass extinctions arise from the intrinsic dynamics of Darwinian evolution. Species become extinct when swept by intermittent avalanches propagating through the global ecology. These ideas are made concrete through studies of simple mathematical models of co-evolving species. The models exhibit self-organized criticality and describe some general features of the extinction pattern in the fossil record.

  4. Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life

    PubMed Central

    Faddeeva, A.; Studer, R. A.; Kraaijeveld, K.; Sie, D.; Ylstra, B.; Mariën, J.; op den Camp, H. J. M.; Datema, E.; den Dunnen, J. T.; van Straalen, N. M.; Roelofs, D.

    2015-01-01

    Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land. PMID:26075903

  5. New Molecular Insight into Mechanism of Evolution of Mammalian Synthetic Prions.

    PubMed

    Makarava, Natallia; Savtchenko, Regina; Alexeeva, Irina; Rohwer, Robert G; Baskakov, Ilia V

    2016-04-01

    Previous studies established that transmissible prion diseases could be induced by in vitro-produced recombinant prion protein (PrP) fibrils with structures that are fundamentally different from that of authentic PrP scrapie isoform (PrP(Sc)). To explain evolution of synthetic prions, a new mechanism referred to as deformed templating was introduced. Here, we asked whether an increase in expression level of the cellular form of PrP (PrP(C)) speeds up the evolution of synthetic strains in vivo. We found that in transgenic mice that overexpress hamster PrP(C), PrP(C) overexpression accelerated recombinant PrP fibril-induced conversion of PrP(C) to the abnormal proteinase K-resistant state, referred to as atypical PrPres, which was the first product of PrP(C) misfolding in vivo. However, overexpression of PrP(C) did not facilitate the second step of synthetic strain evolution-transition from atypical PrPres to PrP(Sc), which is attributed to the stochastic nature of rare deformed templating events. In addition, the potential of atypical PrPres to interfere with replication of a short-incubation time prion strain was investigated. Atypical PrPres was found to interfere strongly with replication of 263K in vitro; however, it did not delay prion disease in animals. The rate of deformed templating does not depend on the concentration of substrate and is hence more likely to be controlled by the intrinsic rate of conformational errors in templating alternative self-propagating states. PMID:26873446

  6. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates

    PubMed Central

    2008-01-01

    Background Many electron transport chain (ETC) genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains. Results In a dataset comprising 29 vertebrate taxa, including representatives from all major groups of primates, there is nearly 100% conservation of the COX5A amino acid sequence among extant, non-anthropoid placental mammals. The most recent common ancestor of these species lived about 100 million years (MY) ago. In contrast, anthropoid primates show markedly elevated rates of nonsynonymous evolution. In particular, branch site tests identify five positively selected codons in anthropoids, and ancestral reconstructions infer that substitutions in these codons occurred predominantly on stem lineages (anthropoid, ape and New World monkey) and on the human terminal branch. Examination of catarrhine brain samples by immunohistochemistry characterizes for the first time COX5A protein distribution in the primate neocortex, and suggests that the protein is most abundant in the mitochondria of large-size projection neurons. Real time quantitative PCR supports previous microarray results showing COX5A is expressed in cerebral cortical tissue at a higher level in human than in chimpanzee or gorilla. Conclusion Taken together, these results suggest that both protein structural and gene regulatory changes contributed to COX5A evolution during humankind's ancestry. Furthermore, these findings are consistent with the hypothesis that adaptations in ETC genes contributed to the emergence of the energetically expensive anthropoid neocortex. PMID:18197981

  7. Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Yongquan; Shen, Tong; Lu, Xionggang

    2013-03-01

    A structural evolution during solidification and melting processes of nanoparticle Fe9577 was investigated from MD simulations. A perfect lamellar structure, consisting alternately of fcc and hcp layers, was obtained from solidification process. A structural heredity of early embryo is proposed to explain the structural preference of solidification. Defects were found inside the solid core and play the same role as surface premelting on melting. hcp was found more stable than fcc in high temperature. The difference between melting and solidification points can be deduced coming fully from the overcoming of thermodynamic energy barrier, instead of kinetic delay of structural relaxation.

  8. Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene

    NASA Astrophysics Data System (ADS)

    Hayashi, Cheryl Y.; Lewis, Randolph V.

    2000-02-01

    Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.

  9. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory?

    PubMed Central

    Marshall, Paul; Bredy, Timothy W.

    2016-01-01

    A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. To date, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram. PMID:27512601

  10. Pteros 2.0: Evolution of the fast parallel molecular analysis library for C++ and python.

    PubMed

    Yesylevskyy, Semen O

    2015-07-15

    Pteros is the high-performance open-source library for molecular modeling and analysis of molecular