Science.gov

Sample records for molecular dynamics reveals

  1. Chain networking revealed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Yexin; Tsige, Mesfin; Wang, Shi-Qing

    Based on Kremer-Grest model for entangled polymer melts, we demonstrate how the response of a polymer glass depends critically on the chain length. After quenching two melts of very different chain lengths (350 beads per chain and 30 beads per chain) into deeply glassy states, we subject them to uniaxial extension. Our MD simulations show that the glass of long chains undergoes stable necking after yielding whereas the system of short chains is unable to neck and breaks up after strain localization. During ductile extension of the polymer glass made of long chain significant chain tension builds up in the load-bearing strands (LBSs). Further analysis is expected to reveal evidence of activation of the primary structure during post-yield extension. These results lend support to the recent molecular model 1 and are the simulations to demonstrate the role of chain networking. This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859)

  2. Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes

    PubMed Central

    Chen, Rui; Mias, George I.; Li-Pook-Than, Jennifer; Jiang, Lihua; Lam, Hugo Y. K.; Chen, Rong; Miriami, Elana; Karczewski, Konrad J.; Hariharan, Manoj; Dewey, Frederick E.; Cheng, Yong; Clark, Michael J.; Im, Hogune; Habegger, Lukas; Balasubramanian, Suganthi; O'Huallachain, Maeve; Dudley, Joel T.; Hillenmeyer, Sara; Haraksingh, Rajini; Sharon, Donald; Euskirchen, Ghia; Lacroute, Phil; Bettinger, Keith; Boyle, Alan P.; Kasowski, Maya; Grubert, Fabian; Seki, Scott; Garcia, Marco; Whirl-Carrillo, Michelle; Gallardo, Mercedes; Blasco, Maria A.; Greenberg, Peter L.; Snyder, Phyllis; Klein, Teri E.; Altman, Russ B.; Butte, Atul; Ashley, Euan A.; Nadeau, Kari C.; Gerstein, Mark; Tang, Hua; Snyder, Michael

    2012-01-01

    SUMMARY Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here we present an integrative Personal Omics Profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14-month period. Our iPOP analysis revealed various medical risks, including Type II diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high coverage genomic and transcriptomic data, which provide the basis of our iPOP, discovered extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and disease states by connecting genomic information with additional dynamic omics activity. PMID:22424236

  3. Substrate Channel in Nitrogenase Revealed by a Molecular Dynamics Approach

    SciTech Connect

    Smith, Dayle; Danyal, Karamatullah; Raugei, Simone; Seefeldt, Lance C.

    2014-03-22

    Mo-dependent nitrogenase catalyzes the biological reduction of N2 to 2NH3 at the FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized sub-microsecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel not previously reported. The viability of the proposed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, with discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment that approaches a face of FeMo-cofactor earlier implicated in substrate binding.

  4. Shapiro like steps reveals molecular nanomagnets' spin dynamics

    NASA Astrophysics Data System (ADS)

    Abdollahipour, Babak; Abouie, Jahanfar; Ebrahimi, Navid

    2015-09-01

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet's spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.

  5. Shapiro like steps reveals molecular nanomagnets’ spin dynamics

    SciTech Connect

    Abdollahipour, Babak; Abouie, Jahanfar Ebrahimi, Navid

    2015-09-15

    We present an accurate way to detect spin dynamics of a nutating molecular nanomagnet by inserting it in a tunnel Josephson junction and studying the current voltage (I-V) characteristic. The spin nutation of the molecular nanomagnet is generated by applying two circularly polarized magnetic fields. We demonstrate that modulation of the Josephson current by the nutation of the molecular nanomagnet’s spin appears as a stepwise structure like Shapiro steps in the I-V characteristic of the junction. Width and heights of these Shapiro-like steps are determined by two parameters of the spin nutation, frequency and amplitude of the nutation, which are simply tuned by the applied magnetic fields.

  6. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    spatial instrumental scales, understanding experimental results involves extensive and difficult data analysis based on liquid theory and condensed matter physics. Therefore, a model that successfully describes the inter- and intra-dendrimer correlations is crucial in obtaining and delivering reliable information. On the other hand, making meaningful comparisons between molecular dynamics and neutron scattering is a fundamental challenge to link simulations and experiments at the nano-scale. This challenge stems from our approach to utilize MD simulation to explain the underlying mechanism of experimental observation. The SANS measurements were conducted on a series of SANS spectrometers including the Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) and the General-Purpose Small-Angle Neutron Scattering Diffractometer (GP-SANS) at the Oak Ridge National Laboratory (ORNL), and NG7 Small Angle Neutron Scattering Spectrometer at National Institute of Standards (NIST) and Technology in U.S.A., large dynamic range small-angle diffractometer D22 at Institut Laue-Langevin (ILL) in France, and 40m-SANS Spectrometer at Korea Atomic Energy Research Institute (KAERI) in Korea. On the other hand, the Amber molecular dynamics simulation package is utilized to carry out the computational study. In this dissertation, the following observations have been revealed. The previously developed theoretical model for polyelectrolyte dendrimers are adopted to analyze SANS measurements and superb model fitting quality is found. Coupling with advanced contrast variation small angle neutron scattering (CVSANS) data analysis scheme reported recently, the intra-dendrimer hydration and hydrocarbon components distributions are revealed experimentally. The results indeed indicate that the maximum density is located in the molecular center rather than periphery, which is consistent to previous SANS studies and the back-folding picture of PAMAM dendrimers. According to this picture

  7. Population dynamics of flaviviruses revealed by molecular phylogenies.

    PubMed Central

    Zanotto, P M; Gould, E A; Gao, G F; Harvey, P H; Holmes, E C

    1996-01-01

    The phylogeny of 123 complete envelope gene sequences was reconstructed in order to understand the evolution of tick- and mosquito-borne flaviviruses. An analysis of phylogenetic tree structure reveals a continual and asymmetric branching process in the tick-borne flaviviruses, compared with an explosive radiation in the last 200 years in viruses transmitted by mosquitoes. The distinction between these two viral groups probably reflects differences in modes of dispersal, propagation, and changes in the size of host populations. The most serious implication of this work is that growing human populations are being exposed to an expanding range of increasingly diverse viral strains. PMID:8570593

  8. Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation

    SciTech Connect

    Petridis, Loukas; Pingali, Sai Venkatesh; Urban, Volker; Heller, William T; O'Neill, Hugh Michael; Foston, Marcus B; Ragauskas, Arthur J; Smith, Jeremy C

    2011-01-01

    Lignin, a major polymeric component of plant cell walls, forms aggregates in vivo and poses a barrier to cellulosic ethanol production. Here, neutron scattering experiments and molecular dynamics simulations reveal that lignin aggregates are characterized by a surface fractal dimension that is invariant under change of scale from 1 1000 A. The simulations also reveal extensive water penetration of the aggregates and heterogeneous chain dynamics corresponding to a rigid core with a fluid surface.

  9. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-01

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 Å), and polyol molecules cluster around the protein at a distance of about 4 Å. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions.

  10. Molecular basis for polyol-induced protein stability revealed by molecular dynamics simulations.

    PubMed

    Liu, Fu-Feng; Ji, Luo; Zhang, Lin; Dong, Xiao-Yan; Sun, Yan

    2010-06-14

    Molecular dynamics simulations of chymotrypsin inhibitor 2 in different polyols (glycerol, xylitol, sorbitol, trehalose, and sucrose) at 363 K were performed to probe the molecular basis of the stabilizing effect, and the data in water, ethanol, and glycol were compared. It is found that protein protection by polyols is positively correlated with both the molecular volume and the fractional polar surface area, and the former contributes more significantly to the protein's stability. Polyol molecules have only a few direct hydrogen bonds with the protein, and the number of hydrogen bonds between a polyol and the protein is similar for different polyols. Thus, it is concluded that the direct interactions contribute little to the stabilizing effect. It is clarified that the preferential exclusion of the polyols is the origin of their protective effects, and it increases with increasing polyol size. Namely, there is preferential hydration on the protein surface (2 A), and polyol molecules cluster around the protein at a distance of about 4 A. The preferential exclusion of polyols leads to indirect interactions that prevent the protein from thermal unfolding. The water structure becomes more ordered with increasing the polyol size. So, the entropy of water in the first hydration shell decreases, and a larger extent of decrease is observed with increasing polyol size, leading to larger transfer free energy. The findings suggest that polyols protect the protein from thermal unfolding via indirect interactions. The work has thus elucidated the molecular mechanism of structural stability of the protein in polyol solutions. PMID:20550422

  11. Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations.

    PubMed

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K; Lua, Linda H L; Chuan, Yap P; Middelberg, Anton P J; Sun, Yan

    2013-05-01

    Virus-like particles (VLPs) are highly organized nanoparticles that have great potential in vaccinology, gene therapy, drug delivery, and materials science. However, the application of VLPs is hindered by obstacles in their design and production due to low efficiency of self-assembly. In the present study, all-atom (AA) molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method are utilized to examine the molecular interactions in the capsomere of a murine polyomavirus (MPV) VLP. It is found that both low ionic strength and the intracapsomere disulfide bonds are favorable for maintaining a stable capsomere. Simulation results examining the effects of solution conditions on the stabilization of a capsomere were verified by calorimetry experiments. Simulation results of free energy decomposition indicate that hydrophobic interaction is favorable for the formation of a capsomere, whereas electrostatic interaction is unfavorable. With increasing ionic strength, the dominant interaction for the stabilization of a capsomere changes from hydrophobic to electrostatic. By comprehensive analyses, the key amino acid residues (hot spots) in VP1 protein aiding formation of a capsomere in different solution conditions have been identified. These results provide molecular insights into the stabilization of building blocks for VLP and are expected to have implications in their partitioning between the correct and off-pathway reactions in VLP assembly. PMID:23586433

  12. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics.

    PubMed

    Aytenfisu, Asaminew H; Liberman, Joseph A; Wedekind, Joseph E; Mathews, David H

    2015-11-01

    Riboswitches are RNA molecules that regulate gene expression using conformational change, affected by binding of small molecule ligands. A crystal structure of a ligand-bound class II preQ1 riboswitch has been determined in a previous structural study. To gain insight into the dynamics of this riboswitch in solution, eight total molecular dynamic simulations, four with and four without ligand, were performed using the Amber force field. In the presence of ligand, all four of the simulations demonstrated rearranged base pairs at the 3' end, consistent with expected base-pairing from comparative sequence analysis in a prior bioinformatic analysis; this suggests the pairing in this region was altered by crystallization. Additionally, in the absence of ligand, three of the simulations demonstrated similar changes in base-pairing at the ligand binding site. Significantly, although most of the riboswitch architecture remained intact in the respective trajectories, the P3 stem was destabilized in the ligand-free simulations in a way that exposed the Shine-Dalgarno sequence. This work illustrates how destabilization of two major groove base triples can influence a nearby H-type pseudoknot and provides a mechanism for control of gene expression by a fold that is frequently found in bacterial riboswitches. PMID:26370581

  13. Molecular Dynamics Simulation Reveals Correlated Inter-Lobe Motion in Protein Lysine Methyltransferase SMYD2

    PubMed Central

    Spellmon, Nicholas; Sun, Xiaonan; Sirinupong, Nualpun; Edwards, Brian; Li, Chunying; Yang, Zhe

    2015-01-01

    SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open–closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity. PMID:26717235

  14. Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics.

    PubMed

    Tan, Cheng; Terakawa, Tsuyoshi; Takada, Shoji

    2016-07-13

    Protein binding to DNA changes the DNA's structure, and altered DNA structure can, in turn, modulate the dynamics of protein binding. This mutual dependency is poorly understood. Here we investigated dynamic couplings among protein binding to DNA, protein sliding on DNA, and DNA bending by applying a coarse-grained simulation method to the bacterial architectural protein HU and 14 other DNA-binding proteins. First, we verified our method by showing that the simulated HU exhibits a weak preference for A/T-rich regions of DNA and a much higher affinity for gapped and nicked DNA, consistent with biochemical experiments. The high affinity was attributed to a local DNA bend, but not the specific chemical moiety of the gap/nick. The long-time dynamic analysis revealed that HU sliding is associated with the movement of the local DNA bending site. Deciphering single sliding steps, we found the coupling between HU sliding and DNA bending is akin to neither induced-fit nor population-shift; instead they moved concomitantly. This is reminiscent of a cation transfer on DNA and can be viewed as a protein version of polaron-like sliding. Interestingly, on shorter time scales, HU paused when the DNA was highly bent at the bound position and escaped from pauses once the DNA spontaneously returned to a less bent structure. The HU sliding is largely regulated by DNA bending dynamics. With 14 other proteins, we explored the generality and versatility of the dynamic coupling and found that 6 of the 15 assayed proteins exhibit the polaron-like sliding. PMID:27309278

  15. Ligand Induced Conformational Changes of the Human Serotonin Transporter Revealed by Molecular Dynamics Simulations

    PubMed Central

    Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432

  16. Ligand induced conformational changes of the human serotonin transporter revealed by molecular dynamics simulations.

    PubMed

    Koldsø, Heidi; Autzen, Henriette Elisabeth; Grouleff, Julie; Schiøtt, Birgit

    2013-01-01

    The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design. PMID:23776432

  17. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations

    PubMed Central

    Hertig, Samuel

    2016-01-01

    Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein’s constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery—the fact that the two sites involved influence one another in a symmetrical manner—can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest. PMID:27285999

  18. Function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations

    SciTech Connect

    Nutt, David; Smith, Jeremy C

    2008-10-01

    Atomistic molecular dynamics simulations are used to investigate the mechanism by which the antifreeze protein from the spruce budworm, Choristoneura fumiferana, binds to ice. Comparison of structural and dynamic properties of the water around the three faces of the triangular prism-shaped protein in aqueous solution reveals that at low temperature the water structure is ordered and the dynamics slowed down around the ice-binding face of the protein, with a disordering effect observed around the other two faces. These results suggest a dual role for the solvation water around the protein. The preconfigured solvation shell around the ice-binding face is involved in the initial recognition and binding of the antifreeze protein to ice by lowering the barrier for binding and consolidation of the protein:ice interaction surface. Thus, the antifreeze protein can bind to the molecularly rough ice surface by becoming actively involved in the formation of its own binding site. Also, the disruption of water structure around the rest of the protein helps prevent the adsorbed protein becoming covered by further ice growth.

  19. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  20. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  1. Nanomechanical Behavior of Single Crystalline SiC Nanotubes Revealed by Molecular Dynamics Simulations

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2008-11-01

    Molecular dynamics simulations with Tersoff potentials were used to study the response of single crystalline SiC nanotubes under tensile, compressive, torsional, combined tension-torsional and combined compression-torsional strains. The simulation results reveal that the nanotubes deform through bond-stretching and breaking and exhibit brittle properties under uniaxial tensile strain, except for the thinnest nanotube at high temperatures, which fails in a ductile manner. Under uniaxial compressive strain, the SiC nanotubes buckle with two modes, i.e. shell buckling and column buckling, depending on the length of the nanotubes. Under torsional strain, the nanotubes buckle either collapse in the middle region into a dumbbell-like structure for thinner wall thicknesses or fail by bond breakage for the largest wall thickness. Both the tensile failure stress and buckling stress decrease under combined tension-torsional and combined compression-torsional strain, and they decrease with increasing torsional rate under combined loading.

  2. Mechanically Untying a Protein Slipknot: Multiple Pathways Revealed by Force Spectroscopy and Steered Molecular Dynamics Simulations

    PubMed Central

    He, Chengzhi; Genchev, Georgi Z.; Lu, Hui; Li, Hongbin

    2013-01-01

    Protein structure is highly diverse when considering a wide range of protein types, helping to give rise to the multitude of functions that proteins perform. In particular, certain proteins are known to adopt a knotted or slipknotted fold. How such proteins undergo mechanical unfolding was investigated utilizing a combination of single molecule atomic force microscopy (AFM), protein engineering and steered molecular dynamics (SMD) simulations to show the mechanical unfolding mechanism of the slipknotted protein AFV3-109. Our results reveal that the mechancial unfolding of AFV3-109 can proceed via multiple parallel unfolding pathways that all cause the protein slipknot to untie, and the polypeptide chain to completely extend. These distinct unfolding pathways proceed either via a two-state or three-state unfolding process involving the formation of a well-defined, stable intermediate state. SMD simulations predict the same contour length increments for different unfolding pathways as single molecule AFM results, thus provding a plausible molecular mechanism for the mechanical unfolding of AFV3-109. These SMD simulations also reveal that two-state unfolding is initiated from both the N- and C-termini, while three-state unfolding is initiated only from the C-terminus. In both pathways, the protein slipknot was untied during unfolding, and no tightened slipknot conformation observed. Detailed analysis revealed that interactions between key structural elements lock the knotting loop in place, preventing it from shrinking and the formation of a tightened slipknot conformation. Our results demonstrate the bifurcation of the mechancial unfolding pathway of AFV3-109, and point to the generality of a kinetic partitioning mechanism for protein folding/unfolding. PMID:22626004

  3. Molecular dynamics

    SciTech Connect

    Ladd, A.J.C.

    1988-08-01

    The basic methodology of equilibrium molecular dynamics is described. Examples from the literature are used to illustrate how molecular dynamics has been used to resolve theoretical controversies, provide data to test theories, and occasionally to discover new phenomena. The emphasis is on the application of molecular dynamics to an understanding of the microscopic physics underlying the transport properties of simple fluids. 98 refs., 4 figs.

  4. Molecular dynamics simulations reveal specific interactions of post-translational palmitoyl modifications with rhodopsin in membranes

    PubMed Central

    Olausson, Bjoern E.S.; Grossfield, Alan; Pitman, Michael C.; Brown, Michael F.; Feller, Scott E.; Vogel, Alexander

    2012-01-01

    We present a detailed analysis of the behavior of the highly flexible post-translational lipid modifications of rhodopsin from multiple-microsecond all-atom molecular dynamics simulations. Rhodopsin was studied in a realistic membrane environment that includes cholesterol, as well as saturated and polyunsaturated lipids with phosphocholine and phosphoethanolamine headgroups. The simulation reveals striking differences between the palmitoylations at Cys322 and Cys323 as well as between the palmitoyl chains and the neighboring lipids. Notably the palmitoyl group at Cys322 shows considerably greater contact with helix H1 of rhodopsin, yielding frequent chain upturns with longer reorientational correlation times, and relatively low order parameters. While the palmitoylation at Cys323 makes fewer protein contacts and has increased order compared to Cys322, it nevertheless exhibits greater flexibility with smaller order parameters than the stearoyl chains of the surrounding lipids. The dynamical structure of the palmitoylations—as well as their extensive fluctuations—suggests a complex function for the post-translational modifications in rhodopsin and potentially other G protein-coupled receptors, going beyond their role as membrane anchoring elements. Rather, we propose that the palmitoylation at Cys323 has a potential role as a lipid anchor, whereas the palmitoyl-protein interaction observed for Cys322 suggests a more specific interaction that affects the stability of the dark state of rhodopsin. PMID:22280374

  5. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    PubMed Central

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-01-01

    Thrombin-binding aptamer (TBA) with the sequence 5′GGTTGGTGTGGTTGG3′ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation. PMID:27045335

  6. The Gating Mechanism of the Human Aquaporin 5 Revealed by Molecular Dynamics Simulations

    PubMed Central

    Janosi, Lorant; Ceccarelli, Matteo

    2013-01-01

    Aquaporins are protein channels located across the cell membrane with the role of conducting water or other small sugar alcohol molecules (aquaglyceroporins). The high-resolution X-ray structure of the human aquaporin 5 (HsAQP5) shows that HsAQP5, as all the other known aquaporins, exhibits tetrameric structure. By means of molecular dynamics simulations we analyzed the role of spontaneous fluctuations on the structural behavior of the human AQP5. We found that different conformations within the tetramer lead to a distribution of monomeric channel structures, which can be characterized as open or closed. The switch between the two states of a channel is a tap-like mechanism at the cytoplasmic end which regulates the water passage through the pore. The channel is closed by a translation of the His67 residue inside the pore. Moreover, water permeation rate calculations revealed that the selectivity filter, located at the other end of the channel, regulates the flow rate of water molecules when the channel is open, by locally modifying the orientation of His173. Furthermore, the calculated permeation rates of a fully open channel are in good agreement with the reported experimental value. PMID:23565173

  7. Unfolding mechanism of thrombin-binding aptamer revealed by molecular dynamics simulation and Markov State Model

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaojun; Zhang, Liyun; Xiao, Xiuchan; Jiang, Yuanyuan; Guo, Yanzhi; Yu, Xinyan; Pu, Xuemei; Li, Menglong

    2016-04-01

    Thrombin-binding aptamer (TBA) with the sequence 5‧GGTTGGTGTGGTTGG3‧ could fold into G-quadruplex, which correlates with functionally important genomic regionsis. However, unfolding mechanism involved in the structural stability of G-quadruplex has not been satisfactorily elucidated on experiments so far. Herein, we studied the unfolding pathway of TBA by a combination of molecular dynamics simulation (MD) and Markov State Model (MSM). Our results revealed that the unfolding of TBA is not a simple two-state process but proceeds along multiple pathways with multistate intermediates. One high flux confirms some observations from NMR experiment. Another high flux exhibits a different and simpler unfolding pathway with less intermediates. Two important intermediate states were identified. One is similar to the G-triplex reported in the folding of G-quadruplex, but lack of H-bonding between guanines in the upper plane. More importantly, another intermediate state acting as a connector to link the folding region and the unfolding one, was the first time identified, which exhibits higher population and stability than the G-triplex-like intermediate. These results will provide valuable information for extending our understanding the folding landscape of G-quadruplex formation.

  8. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    PubMed Central

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-01-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators. PMID:27032695

  9. Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands

    NASA Astrophysics Data System (ADS)

    Vettoretti, Gerolamo; Moroni, Elisabetta; Sattin, Sara; Tao, Jiahui; Agard, David A.; Bernardi, Anna; Colombo, Giorgio

    2016-04-01

    Controlling biochemical pathways through chemically designed modulators may provide novel opportunities to develop therapeutic drugs and chemical tools. The underlying challenge is to design new molecular entities able to act as allosteric chemical switches that selectively turn on/off functions by modulating the conformational dynamics of their target protein. We examine the origins of the stimulation of ATPase and closure kinetics in the molecular chaperone Hsp90 by allosteric modulators through atomistic molecular dynamics (MD) simulations and analysis of protein-ligand interactions. In particular, we focus on the cross-talk between allosteric ligands and protein conformations and its effect on the dynamic properties of the chaperone’s active state. We examine the impact of different allosteric modulators on the stability, structural and internal dynamics properties of Hsp90 closed state. A critical aspect of this study is the development of a quantitative model that correlates Hsp90 activation to the presence of a certain compound, making use of information on the dynamic adaptation of protein conformations to the presence of the ligand, which allows to capture conformational states relevant in the activation process. We discuss the implications of considering the conformational dialogue between allosteric ligands and protein conformations for the design of new functional modulators.

  10. STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics

    PubMed Central

    2015-01-01

    Heterogeneous diffusion dynamics of molecules play an important role in many cellular signaling events, such as of lipids in plasma membrane bioactivity. However, these dynamics can often only be visualized by single-molecule and super-resolution optical microscopy techniques. Using fluorescence lifetime correlation spectroscopy (FLCS, an extension of fluorescence correlation spectroscopy, FCS) on a super-resolution stimulated emission depletion (STED) microscope, we here extend previous observations of nanoscale lipid dynamics in the plasma membrane of living mammalian cells. STED-FLCS allows an improved determination of spatiotemporal heterogeneity in molecular diffusion and interaction dynamics via a novel gated detection scheme, as demonstrated by a comparison between STED-FLCS and previous conventional STED-FCS recordings on fluorescent phosphoglycerolipid and sphingolipid analogues in the plasma membrane of live mammalian cells. The STED-FLCS data indicate that biophysical and biochemical parameters such as the affinity for molecular complexes strongly change over space and time within a few seconds. Drug treatment for cholesterol depletion or actin cytoskeleton depolymerization not only results in the already previously observed decreased affinity for molecular interactions but also in a slight reduction of the spatiotemporal heterogeneity. STED-FLCS specifically demonstrates a significant improvement over previous gated STED-FCS experiments and with its improved spatial and temporal resolution is a novel tool for investigating how heterogeneities of the cellular plasma membrane may regulate biofunctionality. PMID:26235350

  11. STED-FLCS: An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics.

    PubMed

    Vicidomini, Giuseppe; Ta, Haisen; Honigmann, Alf; Mueller, Veronika; Clausen, Mathias P; Waithe, Dominic; Galiani, Silvia; Sezgin, Erdinc; Diaspro, Alberto; Hell, Stefan W; Eggeling, Christian

    2015-09-01

    Heterogeneous diffusion dynamics of molecules play an important role in many cellular signaling events, such as of lipids in plasma membrane bioactivity. However, these dynamics can often only be visualized by single-molecule and super-resolution optical microscopy techniques. Using fluorescence lifetime correlation spectroscopy (FLCS, an extension of fluorescence correlation spectroscopy, FCS) on a super-resolution stimulated emission depletion (STED) microscope, we here extend previous observations of nanoscale lipid dynamics in the plasma membrane of living mammalian cells. STED-FLCS allows an improved determination of spatiotemporal heterogeneity in molecular diffusion and interaction dynamics via a novel gated detection scheme, as demonstrated by a comparison between STED-FLCS and previous conventional STED-FCS recordings on fluorescent phosphoglycerolipid and sphingolipid analogues in the plasma membrane of live mammalian cells. The STED-FLCS data indicate that biophysical and biochemical parameters such as the affinity for molecular complexes strongly change over space and time within a few seconds. Drug treatment for cholesterol depletion or actin cytoskeleton depolymerization not only results in the already previously observed decreased affinity for molecular interactions but also in a slight reduction of the spatiotemporal heterogeneity. STED-FLCS specifically demonstrates a significant improvement over previous gated STED-FCS experiments and with its improved spatial and temporal resolution is a novel tool for investigating how heterogeneities of the cellular plasma membrane may regulate biofunctionality. PMID:26235350

  12. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    DOE PAGESBeta

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more » by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less

  13. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    SciTech Connect

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.

  14. A Model of Lipid-Free Apolipoprotein A-I Revealed by Iterative Molecular Dynamics Simulation

    PubMed Central

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-01-01

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipid-free apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation. PMID:25793886

  15. Mechanism of Mcl-1 Conformational Regulation Upon Small Molecule Binding Revealed by Molecular Dynamic Simulation.

    PubMed

    Wang, Anhui; Song, Ting; Wang, Ziqian; Liu, Yubo; Fan, Yudan; Zhang, Yahui; Zhang, Zhichao

    2016-04-01

    Inhibition of interactions between Mcl-1 and proapoptotic proteins is considered to be a therapeutic strategy to induce apoptosis in cancer cells. Here, we adopted molecular dynamics simulation with molecular mechanics-Poisson Boltzmann/surface area method (MM-PB/SA) to study the inhibition mechanism of three Mcl-1 inhibitors, compounds 1, 2 and 3. Analysis of energy components shows that the better binding free energy of compound 3 than compounds 1 and 2 is attributable to the van der Waals energy (ΔEvdw ) and non-polar solvation energy (ΔGnp ) upon binding. In addition to the excellent agreement with previous experimentally determined affinities, our simulation results further show a bend of helix 4 on Mcl-1 upon compound 3 binding, which is driven by hydrophobic interaction with residue Val(253) , leading to a narrowed BH3-binding groove to impede Puma(BH) (3) binding. The computational result is consistent with our competitive isothermal titration calorimetry (ITC) assays, which shows that the competitive ability of compound 3 toward Mcl-1/Puma(BH) (3) complex is improved beyond its direct binding affinity toward Mcl-1 itself, and compound 3 exhibits much more efficiency to compete with Puma(BH) (3) than compound 2. Our study provides a new strategy to improve inhibitory activity on Mcl-1 based on the conformational dynamic change. PMID:26518611

  16. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE PAGESBeta

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  17. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    SciTech Connect

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  18. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  19. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    PubMed Central

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-01-01

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL. PMID:25737239

  20. Molecular Dynamics Simulation and Statistics Analysis Reveals the Defense Response Mechanism in Plants

    NASA Astrophysics Data System (ADS)

    Liu, Zhichao; Zhao, Yunjie; Zeng, Chen; Computational Biophysics Lab Team

    As the main protein of the bacterial flagella, flagellin plays an important role in perception and defense response. The newly discovered locus, FLS2, is ubiquitously expressed. FLS2 encodes a putative receptor kinase and shares many homologies with some plant resistance genes and even with some components of immune system of mammals and insects. In Arabidopsis, FLS2 perception is achieved by the recognition of epitope flg22, which induces FLS2 heteromerization with BAK1 and finally the plant immunity. Here we use both analytical methods such as Direct Coupling Analysis (DCA) and Molecular Dynamics (MD) Simulations to get a better understanding of the defense mechanism of FLS2. This may facilitate a redesign of flg22 or de-novo design for desired specificity and potency to extend the immune properties of FLS2 to other important crops and vegetables.

  1. Docking Studies and Molecular Dynamic Simulations Reveal Different Features of IDO1 Structure.

    PubMed

    Greco, Francesco Antonio; Bournique, Answald; Coletti, Alice; Custodi, Chiara; Dolciami, Daniela; Carotti, Andrea; Macchiarulo, Antonio

    2016-09-01

    In the last decade, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted a great deal of attention being recognized as key regulator of immunosuppressive pathways in the tumor immuno-editing process. Several classes of inhibitors have been developed as potential anticancer agents, but only few of them have advanced in clinical trials. Hence, the quest of novel potent and selective inhibitors of the enzyme is still active and mostly pursued by structure-based drug design strategies based on early and more recent crystal structures of IDO1. Combining docking studies and molecular dynamic simulations, in this work we have comparatively investigated the structural features of each crystal structure of IDO1. The results pinpoint different features in specific crystal structures of the enzyme that may benefit the medicinal chemistry arena aiding the design of novel potent and selective inhibitors of IDO1. PMID:27546049

  2. Looking inside the tube: what molecular dynamics simulations are revealing about polymer entanglements

    NASA Astrophysics Data System (ADS)

    Larson, Ron

    2007-03-01

    Using concepts developed over the years by de Gennes, Doi, Edwards, Marrucci, Rubinstein, McLeish, Milner, and others, a kind of ``standard model'' for entangled polymer relaxation and rheology has been developed, which, like the ``standard model'' of high-energy physics, has a number of ad hoc assumptions and fitting parameters. The ``standard model'' of polymer relaxation is based on a phenomenological ``tube'' surrounding each polymer chain that represents the effect on that chain of non-crossability constraints imposed by surrounding chains. As a result of its confinement to the tube, the chain relaxes by reptation -- or sliding along the tube, accordion-like fluctuations of the chain within the tube, and movement of, or dilation of, the tube due to motion of the surrounding chains creating the tube-like region. Increasing computer speed and advanced simulation methods are now making possible the direct molecular dynamics simulations of entangled polymers resolved at the monomer scale, over time scales sufficient to test the underlying assumptions of the tube model and allow direct calculation of some of the phenomenological parameters. Here we illustrate how these simulations allow us to estimate the distribution of tube lengths, the average diameter of the tube, and the mobility of the branch point in a simple ``star'' branched polymer. These findings confirm the validity of the tube ansatz, but suggest that some corrections to the ``standard model'' may be needed.

  3. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow

    NASA Astrophysics Data System (ADS)

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W.

    2016-07-01

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step.

  4. The biophysical properties of ethanolamine plasmalogens revealed by atomistic molecular dynamics simulations.

    PubMed

    Rog, Tomasz; Koivuniemi, Artturi

    2016-01-01

    Given the importance of plasmalogens in cellular membranes and neurodegenerative diseases, a better understanding of how plasmalogens affect the lipid membrane properties is needed. Here we carried out molecular dynamics simulations to study a lipid membrane comprised of ethanolamine plasmalogens (PE-plasmalogens). We compared the results to the PE-diacyl counterpart and palmitoyl-oleyl-phosphatidylcholine (POPC) bilayers. Results show that PE-plasmalogens form more compressed, thicker, and rigid lipid bilayers in comparison with the PE-diacyl and POPC membranes. The results also point out that the vinyl-ether linkage increases the ordering of sn-1 chain substantially and the ordering of the sn-2 chain to a minor extent. Further, the vinyl-ether linkage changes the orientation of the lipid head group, but it does not cause changes in the head group and glycerol backbone tilt angles with respect to the bilayer normal. The vinyl-ether linkage also packs the proximal regions of the sn-1 and sn-2 chains more closely together which also decreases the distance between the rest of the sn-1 and sn-2 chains. PMID:26522077

  5. Mechanisms of triggering H1 helix in prion proteins unfolding revealed by molecular dynamic simulation

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Yuan; Lee, H. C.

    2006-03-01

    In template-assistance model, normal Prion protein (PrP^C), the pathogen to cause several prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrP^Sc) through a transient interaction with PrP^Sc. Furthermore, conventional studies showed S1-H1-S2 region in PrP^C to be the template of S1-S2 β-sheet in PrP^Sc, and Prion protein's conformational conversion may involve an unfolding of H1 and refolding into β-sheet. Here we prepare several mouse prion peptides that contain S1-H1-S2 region with specific different structures, which are corresponding to specific interactions, to investigate possible mechanisms to trigger H1 α-helix unfolding process via molecular dynamic simulation. Three properties, conformational transition, salt-bridge in H1, and hydrophobic solvent accessible surface (SAS) are analyzed. From these studies, we found the interaction that triggers H1 unfolding to be the one that causes dihedral angle at residue Asn^143 changes. Whereas interactions that cause S1 segment's conformational changes play a minor in this process. These studies offers an additional evidence for template-assistance model.

  6. Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design.

    PubMed

    Tan, Yaw Sing; Reeks, Judith; Brown, Christopher J; Thean, Dawn; Ferrer Gago, Fernando Jose; Yuen, Tsz Ying; Goh, Eunice Tze Leng; Lee, Xue Er Cheryl; Jennings, Claire E; Joseph, Thomas L; Lakshminarayanan, Rajamani; Lane, David P; Noble, Martin E M; Verma, Chandra S

    2016-09-01

    Protein flexibility poses a major challenge in binding site identification. Several computational pocket detection methods that utilize small-molecule probes in molecular dynamics (MD) simulations have been developed to address this issue. Although they have proven hugely successful at reproducing experimental structural data, their ability to predict new binding sites that are yet to be identified and characterized has not been demonstrated. Here, we report the use of benzenes as probe molecules in ligand-mapping MD (LMMD) simulations to predict the existence of two novel binding sites on the surface of the oncoprotein MDM2. One of them was serendipitously confirmed by biophysical assays and X-ray crystallography to be important for the binding of a new family of hydrocarbon stapled peptides that were specifically designed to target the other putative site. These results highlight the predictive power of LMMD and suggest that predictions derived from LMMD simulations can serve as a reliable basis for the identification of novel ligand binding sites in structure-based drug design. PMID:27532490

  7. The biophysical properties of ethanolamine plasmalogens revealed by atomistic molecular dynamics simulations

    PubMed Central

    Rog, Tomasz; Koivuniemi, Artturi

    2016-01-01

    Given the importance of plasmalogens in cellular membranes and neurodegenerative diseases, a better understanding of how plasmalogens affect the lipid membrane properties is needed. Here we carried out molecular dynamics simulations to study a lipid membrane comprised of ethanolamine plasmalogens (PE–plasmalogens). We compared the results to the PE–diacyl counterpart and palmitoyl-oleyl-phosphatidylcholine (POPC) bilayers. Results show that PE–plasmalogens form more compressed, thicker, and rigid lipid bilayers in comparison with the PE–diacyl and POPC membranes. The results also point out that the vinyl–ether linkage increases the ordering of sn-1 chain substantially and the ordering of the sn-2 chain to a minor extent. Further, the vinyl–ether linkage changes the orientation of the lipid head group, but it does not cause changes in the head group and glycerol backbone tilt angles with respect to the bilayer normal. The vinyl–ether linkage also packs the proximal regions of the sn-1 and sn-2 chains more closely together which also decreases the distance between the rest of the sn-1 and sn-2 chains. PMID:26522077

  8. Mechanisms of crazing in glassy polymers revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj K.; Hartmaier, Alexander

    2012-08-01

    Mechanisms leading to initiation of crazing type failure in a glassy polymer are not clearly understood. This is mainly due to the difficulty in characterizing the stress state and polymer configuration sufficiently locally at the craze initiation site. Using molecular dynamics simulations, we have now been able to access this information and have shown that the local heterogeneous deformation leads to craze initiation in glassy polymers. We found that zones of high plastic activity are constrained by their neighborhood and become unstable, initiating crazing from these sites. Furthermore, based on the constant flow stresses observed in the unstable zones, we conclude that microcavitation is the essential local deformation mode to trigger crazing in glassy polymers. Our results demonstrate the basic difference in the local deformation mode as well as the conditions that lead to either shear-yielding or crazing type failures in glassy polymers. We anticipate our paper to help in devising a new criterion for craze initiation that not only considers the stress state, but also considers local deformation heterogeneities that form the necessary condition for crazing in glassy polymers.

  9. Mechanisms of crazing in glassy polymers revealed by molecular dynamics simulations.

    PubMed

    Mahajan, Dhiraj K; Hartmaier, Alexander

    2012-08-01

    Mechanisms leading to initiation of crazing type failure in a glassy polymer are not clearly understood. This is mainly due to the difficulty in characterizing the stress state and polymer configuration sufficiently locally at the craze initiation site. Using molecular dynamics simulations, we have now been able to access this information and have shown that the local heterogeneous deformation leads to craze initiation in glassy polymers. We found that zones of high plastic activity are constrained by their neighborhood and become unstable, initiating crazing from these sites. Furthermore, based on the constant flow stresses observed in the unstable zones, we conclude that microcavitation is the essential local deformation mode to trigger crazing in glassy polymers. Our results demonstrate the basic difference in the local deformation mode as well as the conditions that lead to either shear-yielding or crazing type failures in glassy polymers. We anticipate our paper to help in devising a new criterion for craze initiation that not only considers the stress state, but also considers local deformation heterogeneities that form the necessary condition for crazing in glassy polymers. PMID:23005778

  10. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow.

    PubMed

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W

    2016-01-01

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step. PMID:27388562

  11. Molecular Dynamics Simulations Reveal that Water Diffusion between Graphene Oxide Layers is Slow

    PubMed Central

    Devanathan, Ram; Chase-Woods, Dylan; Shin, Yongsoon; Gotthold, David W.

    2016-01-01

    Membranes made of stacked layers of graphene oxide (GO) hold the tantalizing promise of revolutionizing desalination and water filtration if selective transport of molecules can be controlled. We present the findings of an integrated study that combines experiment and molecular dynamics simulation of water intercalated between GO layers. We simulated a range of hydration levels from 1 wt.% to 23.3 wt.% water. The interlayer spacing increased upon hydration from 0.8 nm to 1.1 nm. We also synthesized GO membranes that showed an increase in layer spacing from about 0.7 nm to 0.8 nm and an increase in mass of about 15% on hydration. Water diffusion through GO layers is an order of magnitude slower than that in bulk water, because of strong hydrogen bonded interactions. Most of the water molecules are bound to OH groups even at the highest hydration level. We observed large water clusters that could span graphitic regions, oxidized regions and holes that have been experimentally observed in GO. Slow interlayer diffusion can be consistent with experimentally observed water transport in GO if holes lead to a shorter path length than previously assumed and sorption serves as a key rate-limiting step. PMID:27388562

  12. Concerted dynamic motions of an FABP4 model and its ligands revealed by microsecond molecular dynamics simulations.

    PubMed

    Li, Yan; Li, Xiang; Dong, Zigang

    2014-10-14

    In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4-ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level. PMID:25231537

  13. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    SciTech Connect

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-07

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of C{sub α} atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  14. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  15. Molecular Dynamic Simulations Reveal the Structural Determinants of Fatty Acid Binding to Oxy-Myoglobin

    PubMed Central

    Chintapalli, Sree V.; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L.; van Rossum, Damian B.; Anishkin, Andriy; Adams, Sean H.

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  16. Molecular dynamic simulations reveal the structural determinants of Fatty Acid binding to oxy-myoglobin.

    PubMed

    Chintapalli, Sree V; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L; van Rossum, Damian B; Anishkin, Andriy; Adams, Sean H

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a "U" shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  17. Molecular markers reveal infestation dynamics of the bed bug (Hemiptera: Cimicidae) within apartment buildings.

    PubMed

    Booth, Warren; Saenz, Virna L; Santangelo, Richard G; Wang, Changlu; Schal, Coby; Vargo, Edward L

    2012-05-01

    The bed bug, Cimex lectularius L. (Hemiptera: Cimicidae), has experienced an extraordinary global resurgence in recent years, the reasons for which remain poorly understood. Once considered a pest of lower socioeconomic classes, bed bugs are now found extensively across all residential settings, with widespread infestations established in multiapartment buildings. Within such buildings, understanding the population genetic structure and patterns of dispersal may prove critical to the development of effective control strategies. Here, we describe the development of 24 high-resolution microsatellite markers through next generation 454 pyrosequencing and their application to elucidate infestation dynamics within three multistory apartment buildings in the United States. Results reveal contrasting characteristics potentially representative of geographic or locale differences. In Raleigh, NC, an infestation within an apartment building seemed to have started from a single introduction followed by extensive spread. In Jersey City, NJ, two or more introductions followed by spread are evident in two buildings. Populations within single apartments in all buildings were characterized by high levels of relatedness and low levels of diversity, indicative of foundation from small, genetically depauperate propagules. Regardless of the number of unique introductions, genetic data indicate that spread within buildings is extensive, supporting both active and human-mediated dispersal within and between adjacent rooms or apartments spanning multiple floors. PMID:22679860

  18. Molecular Basis for the Cu2+ Binding-Induced Destabilization of β2-Microglobulin Revealed by Molecular Dynamics Simulation

    PubMed Central

    Deng, Nan-Jie; Yan, Lisa; Singh, Deepak; Cieplak, Piotr

    2006-01-01

    According to experimental data, binding of the Cu2+ ions destabilizes the native state of β2-microglobulin (β2m). The partial unfolding of the protein was generally considered an early step toward fibril formation in dialysis-related amyloidosis. Recent NMR studies have suggested that the destabilization of the protein might be achieved through increased flexibility upon Cu2+ binding. However, the molecular mechanism of destabilization due to Cu2+, its role in amyloid formation, and the relative contributions of different potential copper-binding sites remain unclear. To elucidate the effect of ion ligation at atomic detail, a series of molecular dynamics simulations were carried out on apo- and Cu2+-β2m systems in explicit aqueous solutions, with varying numbers of bound ions. Simulations at elevated temperatures (360 K) provide detailed pictures for the process of Cu2+-binding-induced destabilization of the native structure at the nanosecond timescale, which are in agreement with experiments. Conformational transitions toward partially unfolded states were observed in protein solutions containing bound copper ions at His-31 and His-51, which is marked by an increase in the protein vibrational entropy, with TΔS(vibr) ranging from 30 to 69 kcal/mol. The binding of Cu2+ perturbs the secondary structure and the hydrogen bonding pattern disrupts the native hydrophobic contacts in the neighboring segments, which include the β-strand D2 and part of the β-strand E, B, and C and results in greater exposure of the D-E loop and the B-C loop to the water environment. Analysis of the MD trajectories suggests that the changes in the hydrophobic environment near the copper-binding sites lower the barrier of conformational transition and stabilize the more disordered conformation. The results also indicate that the binding of Cu2+ at His-13 has little effect on the conformational stability, whereas the copper-binding site His-31, and to a lesser extent His-51, are

  19. Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations.

    PubMed

    Zhang, Lin; Tang, Ronghong; Bai, Shu; Connors, Natalie K; Lua, Linda H L; Chuan, Yap P; Middelberg, Anton P J; Sun, Yan

    2014-01-01

    The success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly. In the present study, molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were performed to examine the molecular interactions and energetics in a modular capsomere of a murine polyomavirus (MPV) VLP designed to protect against influenza. Insertion of an influenza antigenic module is found to lower the binding energy within the capsomere, and a more active state is observed in Assembly Buffer as compared with that in Stabilization Buffer, which has been experimentally validated through measurements using differential scanning calorimetry. Further in-depth analysis based on free-energy decomposition indicates that destabilized binding can be attributed to electrostatic interaction induced by the chosen antigen module. These results provide molecular insights into the conformational stability of capsomeres and their abilities to be exploited for antigen presentation, and are expected to be beneficial for the biomolecular engineering of VLP vaccines. PMID:25215874

  20. Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation.

    PubMed

    Liu, Jun; Shen, Jianxiang; Zheng, Zijian; Wu, Youping; Zhang, Liqun

    2015-07-24

    By employing united atom molecular dynamics simulation, we have investigated the effects of polymer-graphene interaction ε(np) volume fraction of grapheme φ thermodynamics of polymer matrix (rubbery versus glassy), interfacial interaction in the case of the same dispersion state, shape of nanoparticles (NPs) such as C60 CNT and graphene at the same loading on the toughening efficiency of polymer nanocomposites. By beginning with the pure polymer, we observe that a plateau stress occurs at long chain length because entangled polymer chains in fibrils cannot become broken. We find that the work needed to dissipate during the failure increases with the increase of ε(np) and φ and the yield point in the stress-strain behavior occurs at a smaller strain for an attractive NPs filled system compared to the pure case, attributed to the more mechanically heterogeneous environment. The thermodynamics of the polymer matrix (below and above Tg) seems to have a significant effect on the toughening efficiency of graphene sheets. In the case of the same dispersion state, stronger interfacial interaction always induces long and highly orientated polymer fibrils along the deformation direction, with graphene sheets being encapsulated in these fiber-like bundles. By characterizing the interaction energy between polymer-polymer and polymer-graphene as a function of the strain, we find that the separation of polymer chains from the graphene sheets cease immediately after the yield point, followed by the continuous propagation of the cavities by excluding surrounded polymer chains and graphene sheets together. We also find that at the same attractive interfacial interaction and same loading, the toughening efficiency exhibits the following order: graphene > CNT > C60 Generally, the toughening mechanism of graphene sheets results from the formation of long and highly orientated polymer fibrils to prevent the occurrence of the rupture, which can be greatly improved by the strong

  1. Revealing the toughening mechanism of graphene-polymer nanocomposite through molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Shen, Jianxiang; Zheng, Zijian; Wu, Youping; Zhang, Liqun

    2015-07-01

    By employing united atom molecular dynamics simulation, we have investigated the effects of polymer-graphene interaction {\\varepsilon }np, volume fraction of graphene φ , thermodynamics of polymer matrix (rubbery versus glassy), interfacial interaction in the case of the same dispersion state, shape of nanoparticles (NPs) such as {{{C}}}60, CNT and graphene at the same loading on the toughening efficiency of polymer nanocomposites. By beginning with the pure polymer, we observe that a plateau stress occurs at long chain length because entangled polymer chains in fibrils cannot become broken. We find that the work needed to dissipate during the failure increases with the increase of {\\varepsilon }np and φ , and the yield point in the stress-strain behavior occurs at a smaller strain for an attractive NPs filled system compared to the pure case, attributed to the more mechanically heterogeneous environment. The thermodynamics of the polymer matrix (below and above Tg) seems to have a significant effect on the toughening efficiency of graphene sheets. In the case of the same dispersion state, stronger interfacial interaction always induces long and highly orientated polymer fibrils along the deformation direction, with graphene sheets being encapsulated in these fiber-like bundles. By characterizing the interaction energy between polymer-polymer and polymer-graphene as a function of the strain, we find that the separation of polymer chains from the graphene sheets cease immediately after the yield point, followed by the continuous propagation of the cavities by excluding surrounded polymer chains and graphene sheets together. We also find that at the same attractive interfacial interaction and same loading, the toughening efficiency exhibits the following order: graphene > CNT > {{{C}}}60. Generally, the toughening mechanism of graphene sheets results from the formation of long and highly orientated polymer fibrils to prevent the occurrence of the rupture, which

  2. The Dynamic Conformational Cycle of the Group I Chaperonin C-Termini Revealed via Molecular Dynamics Simulation

    PubMed Central

    Dalton, Kevin M.; Frydman, Judith; Pande, Vijay S.

    2015-01-01

    Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins. PMID:25822285

  3. The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation.

    PubMed

    Dalton, Kevin M; Frydman, Judith; Pande, Vijay S

    2015-01-01

    Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins. PMID:25822285

  4. Molecular force modulation spectroscopy revealing the dynamic response of single bacteriorhodopsins.

    PubMed

    Janovjak, Harald; Müller, Daniel J; Humphris, Andrew D L

    2005-02-01

    Recent advances in atomic force microscopy allowed globular and membrane proteins to be mechanically unfolded on a single-molecule level. Presented is an extension to the existing force spectroscopy experiments. While unfolding single bacteriorhodopsins from native purple membranes, small oscillation amplitudes (6-9 nm) were supplied to the vertical displacement of the cantilever at a frequency of 3 kHz. The phase and amplitude response of the cantilever-protein system was converted to reveal the elastic (conservative) and viscous (dissipative) contributions to the unfolding process. The elastic response (stiffness) of the extended parts of the protein were in the range of a few tens pN/nm and could be well described by the derivative of the wormlike chain model. Discrete events in the viscous response coincided with the unfolding of single secondary structure elements and were in the range of 1 microNs/m. In addition, these force modulation spectroscopy experiments revealed novel mechanical unfolding intermediates of bacteriorhodopsin. We found that kinks result in a loss of unfolding cooperativity in transmembrane helices. Reconstructing force-distance spectra by the integration of amplitude-distance spectra verified their position, offering a novel approach to detect intermediates during the forced unfolding of single proteins. PMID:15574708

  5. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    PubMed

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-01

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters. PMID:26371748

  6. Molecular dynamics of neutral polymer bonding agent (NPBA) as revealed by solid-state NMR spectroscopy.

    PubMed

    Hu, Wei; Su, Yongchao; Zhou, Lei; Pang, Aimin; Cai, Rulin; Ma, Xingang; Li, Shenhui

    2013-01-01

    Neutral polymer bonding agent (NPBA) is one of the most promising polymeric materials, widely used in nitrate ester plasticized polyether (NEPE) propellant as bonding agent. The structure and dynamics of NPBA under different conditions of temperatures and sample processing are comprehensively investigated by solid state NMR (SSNMR). The results indicate that both the main chain and side chain of NPBA are quite rigid below its glass transition temperature (Tg). In contrast, above the Tg, the main chain remains relatively immobilized, while the side chains become highly flexible, which presumably weakens the interaction between bonding agent and the binder or oxidant fillers and in turn destabilizes the high modulus layer formed around the oxidant fillers. In addition, no obvious variation is found for the microstructure of NPBA upon aging treatment or soaking with acetone. These experimental results provide useful insights for understanding the structural properties of NPBA and its interaction with other constituents of solid composite propellants under different processing and working conditions. PMID:24451254

  7. Three steps to gold: mechanism of protein adsorption revealed by Brownian and molecular dynamics simulations.

    PubMed

    Ozboyaci, M; Kokh, D B; Wade, R C

    2016-04-21

    The addition of three N-terminal histidines to β-lactamase inhibitor protein was shown experimentally to increase its binding potency to an Au(111) surface substantially but the binding mechanism was not resolved. Here, we propose a complete adsorption mechanism for this fusion protein by means of a multi-scale simulation approach and free energy calculations. We find that adsorption is a three-step process: (i) recognition of the surface predominantly by the histidine fusion peptide and formation of an encounter complex facilitated by a reduced dielectric screening of water in the interfacial region, (ii) adsorption of the protein on the surface and adoption of a specific binding orientation, and (iii) adaptation of the protein structure on the metal surface accompanied by induced fit. We anticipate that the mechanistic features of protein adsorption to an Au(111) surface revealed here can be extended to other inorganic surfaces and proteins and will therefore aid the design of specific protein-surface interactions. PMID:27021898

  8. Structural Diversity of Ligand-Binding Androgen Receptors Revealed by Microsecond Long Molecular Dynamics Simulations and Enhanced Sampling.

    PubMed

    Duan, Mojie; Liu, Na; Zhou, Wenfang; Li, Dan; Yang, Minghui; Hou, Tingjun

    2016-09-13

    Androgen receptor (AR) plays important roles in the development of prostate cancer (PCa). The antagonistic drugs, which suppress the activity of AR, are widely used in the treatment of PCa. However, the molecular mechanism of antagonism about how ligands affect the structures of AR remains elusive. To better understand the conformational variability of ARs bound with agonists or antagonists, we performed long time unbiased molecular dynamics (MD) simulations and enhanced sampling simulations for the ligand binding domain of AR (AR-LBD) in complex with various ligands. Based on the simulation results, we proposed an allosteric pathway linking ligands and helix 12 (H12) of AR-LBD, which involves the interactions among the ligands and the residues W741, H874, and I899. The interaction pathway provides an atomistic explanation of how ligands affect the structure of AR-LBD. A repositioning of H12 was observed, but it is facilitated by the C-terminal of H12, instead of by the loop between helix 11 (H11) and H12. The bias-exchange metadynamics simulations further demonstrated the above observations. More importantly, the free energy profiles constructed by the enhanced sampling simulations revealed the transition process between the antagonistic form and agonistic form of AR-LBD. Our results would be helpful for the design of more efficient antagonists of AR to combat PCa. PMID:27560203

  9. Structural Basis of Pullulanase Membrane Binding and Secretion Revealed by X-Ray Crystallography, Molecular Dynamics and Biochemical Analysis.

    PubMed

    East, Alexandra; Mechaly, Ariel E; Huysmans, Gerard H M; Bernarde, Cédric; Tello-Manigne, Diana; Nadeau, Nathalie; Pugsley, Anthony P; Buschiazzo, Alejandro; Alzari, Pedro M; Bond, Peter J; Francetic, Olivera

    2016-01-01

    The Klebsiella lipoprotein pullulanase (PulA) is exported to the periplasm, triacylated, and anchored via lipids in the inner membrane (IM) prior to its transport to the bacterial surface through a type II secretion system (T2SS). X-Ray crystallography and atomistic molecular dynamics (MD) simulations of PulA in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) model membrane provided an unprecedented molecular view of an N-terminal unstructured tether and the IM lipoprotein retention signal, and revealed novel interactions with the IM via N-terminal immunoglobulin-like domains in PulA. An efficiently secreted nonacylated variant (PulANA) showed similar peripheral membrane association during MD simulations, consistent with the binding of purified PulANA to liposomes. Remarkably, combined X-ray, MD, and functional studies identified a novel subdomain, Ins, inserted in the α-amylase domain, which is required for PulA secretion. Available data support a model in which PulA binding to the IM promotes interactions with the T2SS, possibly via the Ins subdomain. PMID:26688215

  10. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest

    PubMed Central

    Arenz, Stefan; Bock, Lars V.; Graf, Michael; Innis, C. Axel; Beckmann, Roland; Grubmüller, Helmut; Vaiana, Andrea C.; Wilson, Daniel N.

    2016-01-01

    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation. PMID:27380950

  11. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest.

    PubMed

    Arenz, Stefan; Bock, Lars V; Graf, Michael; Innis, C Axel; Beckmann, Roland; Grubmüller, Helmut; Vaiana, Andrea C; Wilson, Daniel N

    2016-01-01

    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation. PMID:27380950

  12. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest

    NASA Astrophysics Data System (ADS)

    Arenz, Stefan; Bock, Lars V.; Graf, Michael; Innis, C. Axel; Beckmann, Roland; Grubmüller, Helmut; Vaiana, Andrea C.; Wilson, Daniel N.

    2016-07-01

    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.

  13. Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II.

    PubMed

    Vassiliev, Serguei; Zaraiskaya, Tatiana; Bruce, Doug

    2013-10-01

    Photosystem II (PSII) catalyzes the oxidation of water in the conversion of light energy into chemical energy in photosynthesis. Water delivery and oxygen removal from the oxygen evolving complex (OEC), buried deep within PSII, are critical requirements to facilitate the reaction and minimize reactive oxygen damage. It has often been assumed that water and oxygen travel through separate channels within PSII, as demonstrated in cytochrome c oxidase. This study describes all-atom molecular dynamics simulations of PSII designed to investigate channels by fully characterizing the distribution and permeation of both water and oxygen. Interestingly, most channels found in PSII were permeable to both oxygen and water, however individual channels exhibited different energetic barriers for the two solutes. Several routes for oxygen diffusion within PSII with low energy permeation barriers were found, ensuring its fast removal from the OEC. In contrast, all routes for water showed significant energy barriers, corresponding to a much slower permeation rate for water through PSII. Two major factors were responsible for this selectivity: (1) hydrogen bonds between water and channel amino acids, and (2) steric restraints. Our results reveal the presence of a shared network of channels in PSII optimized to both facilitate the quick removal of oxygen and effectively restrict the water supply to the OEC to help stabilize and protect it from small water soluble inhibitors. PMID:23816955

  14. Crystal Structures and Molecular Dynamics Simulations of Thermophilic Malate Dehydrogenase Reveal Critical Loop Motion for Co-Substrate Binding

    PubMed Central

    Luo, Huei-Ru; Wu, Szu-Pei; Hsu, Chun-Hua

    2013-01-01

    Malate dehydrogenase (MDH) catalyzes the conversion of oxaloacetate and malate by using the NAD/NADH coenzyme system. The system is used as a conjugate for enzyme immunoassays of a wide variety of compounds, such as illegal drugs, drugs used in therapeutic applications and hormones. We elucidated the biochemical and structural features of MDH from Thermus thermophilus (TtMDH) for use in various biotechnological applications. The biochemical characterization of recombinant TtMDH revealed greatly increased activity above 60°C and specific activity of about 2,600 U/mg with optimal temperature of 90°C. Analysis of crystal structures of apo and NAD-bound forms of TtMDH revealed a slight movement of the binding loop and few structural elements around the co-substrate binding packet in the presence of NAD. The overall structures did not change much and retained all related positions, which agrees with the CD analyses. Further molecular dynamics (MD) simulation at higher temperatures were used to reconstruct structures from the crystal structure of TtMDH. Interestingly, at the simulated structure of 353 K, a large change occurred around the active site such that with increasing temperature, a mobile loop was closed to co-substrate binding region. From biochemical characterization, structural comparison and MD simulations, the thermal-induced conformational change of the co-substrate binding loop of TtMDH may contribute to the essential movement of the enzyme for admitting NAD and may benefit the enzyme's activity. PMID:24386145

  15. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Yu, Hang; Han, Wei; Ma, Wen; Schulten, Klaus

    2015-12-01

    Parkinson's disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and 3J(HNHCα)-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  16. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation

    SciTech Connect

    Yu, Hang; Ma, Wen; Han, Wei; Schulten, Klaus

    2015-12-28

    Parkinson’s disease, originating from the intrinsically disordered peptide α-synuclein, is a common neurodegenerative disorder that affects more than 5% of the population above age 85. It remains unclear how α-synuclein monomers undergo conformational changes leading to aggregation and formation of fibrils characteristic for the disease. In the present study, we perform molecular dynamics simulations (over 180 μs in aggregated time) using a hybrid-resolution model, Proteins with Atomic details in Coarse-grained Environment (PACE), to characterize in atomic detail structural ensembles of wild type and mutant monomeric α-synuclein in aqueous solution. The simulations reproduce structural properties of α-synuclein characterized in experiments, such as secondary structure content, long-range contacts, chemical shifts, and {sup 3}J(H{sub N}H{sub C{sub α}})-coupling constants. Most notably, the simulations reveal that a short fragment encompassing region 38-53, adjacent to the non-amyloid-β component region, exhibits a high probability of forming a β-hairpin; this fragment, when isolated from the remainder of α-synuclein, fluctuates frequently into its β-hairpin conformation. Two disease-prone mutations, namely, A30P and A53T, significantly accelerate the formation of a β-hairpin in the stated fragment. We conclude that the formation of a β-hairpin in region 38-53 is a key event during α-synuclein aggregation. We predict further that the G47V mutation impedes the formation of a turn in the β-hairpin and slows down β-hairpin formation, thereby retarding α-synuclein aggregation.

  17. Structural diversity of the soluble trimers of the human amylin(20-29) peptide revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mo, Yuxiang; Lu, Yan; Wei, Guanghong; Derreumaux, Philippe

    2009-03-01

    The human islet amyloid polypeptide (hIAPP) or amylin is a 37-residue hormone found as amyloid deposits in pancreatic extracts of nearly all type 2 diabetes patients. The fragment 20-29 of sequence SNNFGAILSS (hIAPP20-29) has been shown to be responsible for the amyloidogenic propensities of the full length protein. Various polymorphic forms of hIAPP20-29 fibrils were described by using Fourier transform infrared (FTIR) and solid-state NMR experiments: unseeded hIAPP20-29 fibril with out-of-register antiparallel β-strands, and two forms of seeded hIAPP20-29 fibril, with in-register antiparallel or in-register parallel β-strands. As a first step toward understanding this polymorphism, we explore the equilibrium structures of the soluble hIAPP20-29 trimer, using multiple molecular dynamics (MD) simulations with the Optimized Potential for Efficient structure Prediction (OPEP) coarse-grained implicit solvent force field for a total length of 3.2 μs. Although, the trimer is found mainly random coil, consistent with the signal measured experimentally during the lag phase of hIAPP20-29 fibril formation, the central FGAIL residues have a relative high propensity to form interpeptide β-sheets and antiparallel β-strands are more probable than parallel β-strands. One MD-predicted out-of-register antiparallel three-stranded β-sheet matches exactly the FTIR-derived unseeded hIAPP20-29 fibril model. Our simulations, however, do not reveal any evidence of in-register parallel or in-register antiparallel β-sheets as reported for seeded hIAPP20-29 fibrils. All these results indicate that fibril polymorphism is partially encoded in a trimer.

  18. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO{sub 2}–H{sub 2}O systems

    SciTech Connect

    Liu, Ping; Zhao, Jing; Liu, Jinxiang; Zhang, Meng; Bu, Yuxiang

    2014-01-28

    In view of the important implications of excess electrons (EEs) interacting with CO{sub 2}–H{sub 2}O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO{sub 2}–H{sub 2}O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO{sub 2} molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO{sub 2}, an EE can stably reside in the empty, low-lying π{sup *} orbital of a CO{sub 2} molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ∠OCO angle of the core CO{sub 2}{sup −} oscillates in the range of 127°∼142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO{sub 2}-bound solvated EE in [CO{sub 2}(H{sub 2}O){sub n}]{sup −} systems. Interestingly, hydration occurs not only on the O atoms of the core CO{sub 2}{sup −} through formation of O⋯H–O H–bond(s), but also on the C atom, through formation of a C⋯H–O H–bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C⋯H distance in the C⋯H–O H–bonds, and vice versa. The number of water molecules associated with the CO{sub 2}{sup −} anion in the first hydration shell is about 4∼7. No dimer-core (C{sub 2}O{sub 4}{sup −}) and core-switching were observed in the double CO{sub 2} aqueous media. This work provides molecular dynamics

  19. Relevant interactions of antimicrobial iron chelators and membrane models revealed by nuclear magnetic resonance and molecular dynamics simulations.

    PubMed

    Coimbra, João T S; Moniz, Tânia; Brás, Natércia F; Ivanova, Galya; Fernandes, Pedro A; Ramos, Maria J; Rangel, Maria

    2014-12-18

    The dynamics and interaction of 3-hydroxy-4-pyridinone fluorescent iron chelators, exhibiting antimicrobial properties, with biological membranes were evaluated through NMR and molecular dynamics simulations. Both NMR and MD simulation results support a strong interaction of the chelators with the lipid bilayers that seems to be strengthened for the rhodamine containing compounds, in particular for compounds that include ethyl groups and a thiourea link. For the latter type of compounds the interaction reaches the hydrophobic core of the lipid bilayer. The molecular docking and MD simulations performed for the potential interaction of the chelators with DC-SIGN receptors provide valuable information regarding the cellular uptake of these compounds since the results show that the fluorophore fragment of the molecular framework is essential for an efficient binding. Putting together our previous and present results, we put forward the hypothesis that all the studied fluorescent chelators have access to the cell, their uptake occurs through different pathways and their permeation properties correlate with a better access to the cell and its compartments and, consequently, with the chelators antimicrobial properties. PMID:25482538

  20. Accelerated molecular dynamics methods

    SciTech Connect

    Perez, Danny

    2011-01-04

    The molecular dynamics method, although extremely powerful for materials simulations, is limited to times scales of roughly one microsecond or less. On longer time scales, dynamical evolution typically consists of infrequent events, which are usually activated processes. This course is focused on understanding infrequent-event dynamics, on methods for characterizing infrequent-event mechanisms and rate constants, and on methods for simulating long time scales in infrequent-event systems, emphasizing the recently developed accelerated molecular dynamics methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics). Some familiarity with basic statistical mechanics and molecular dynamics methods will be assumed.

  1. Factors Influencing Local Membrane Curvature Induction by N-BAR Domains as Revealed by Molecular Dynamics Simulations

    PubMed Central

    Blood, Philip D.; Swenson, Richard D.; Voth, Gregory A.

    2008-01-01

    N-BAR domains are protein modules that bind to and induce curvature in membranes via a charged concave surface and N-terminal amphipathic helices. Recently, molecular dynamics simulations have demonstrated that the N-BAR domain can induce a strong local curvature that matches the curvature of the BAR domain surface facing the bilayer. Here we present further molecular dynamics simulations that examine in greater detail the roles of the concave surface and amphipathic helices in driving local membrane curvature. We find that the strong curvature induction observed in our previous simulations requires the stable presentation of the charged concave surface to the membrane and is not driven by the membrane-embedded amphipathic helices. Nevertheless, without these amphipathic helices embedded in the membrane, the N-BAR domain does not maintain a close association with the bilayer, and fails to drive membrane curvature. Increasing the membrane negative charge through the addition of PIP2 facilitates closer association with the membrane in the absence of embedded helices. At sufficiently high concentrations, amphipathic helices embedded in the membrane drive membrane curvature independently of the BAR domain. PMID:18469070

  2. Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching

    PubMed Central

    2012-01-01

    Background Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA) and a nuclear (histone H3) and mitochondrial (cytochrome oxidase subunit I) protein-coding genes. Results Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. Conclusions Our results suggest that the evolutionary history of host association in Galeommatoidea has been remarkably dynamic, involving frequent host switches between different animal phyla. Such an unusual pattern of dynamic host switching is considered to have resulted from their commensalistic lifestyle, in which they maintain filter

  3. Molecular dynamics simulations of the Escherichia coli HPPK apo-enzyme reveal a network of conformational transitions.

    PubMed

    Gao, Kaifu; He, Hongqing; Yang, Minghui; Yan, Honggao

    2015-11-10

    6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the first reaction in the folate biosynthetic pathway. Comparison of its X-ray and nuclear magnetic resonance structures suggests that the enzyme undergoes significant conformational change upon binding to its substrates, especially in three catalytic loops. Experimental research has shown that even when confined by crystal contacts, loops 2 and 3 remain rather flexible when the enzyme is in its apo form, raising questions about the putative large-scale induced-fit conformational change of HPPK. To investigate the loop dynamics in a crystal-free environment, we performed conventional molecular dynamics simulations of the apo-enzyme at two different temperatures (300 and 350 K). Our simulations show that the crystallographic B-factors considerably underestimate the loop dynamics; multiple conformations of loops 2 and 3, including the open, semi-open, and closed conformations that an enzyme must adopt throughout its catalytic cycle, are all accessible to the apo-enzyme. These results revise our previous view of the functional mechanism of conformational change upon MgATP binding and offer valuable structural insights into the workings of HPPK. In this paper, conformational network analysis and principal component analysis related to the loops are discussed to support the presented conclusions. PMID:26492157

  4. Influence of thermal barrier effect of grain boundaries on bulk cascades in alpha-zirconium revealed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Jin, Yanan; Lai, Wensheng

    2016-03-01

    The effect of grain boundaries (GBs) on bulk cascades in nano-structured alpha-zirconium has been studied by molecular dynamics (MD) simulations. It turns out that the existence of GBs increases the defect productivity in grains, suggesting that the GBs may act as a thermal barrier and postpone the annihilation of defects within grains. Moreover, it is found that the thermal barrier effect of GBs facilitates the shift of symmetric tilt GBs to the grain with higher temperature, and the smaller the tilt angle is, the easier the boundary shift will be. Thus, the influence of GBs on radiation damage in the nano-structured materials comes from the competition between damage increase in grains and defect annihilation at GBs.

  5. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    SciTech Connect

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; Fattebert, Jean -Luc; Emigh, Aiyana; Lightstone, Felice C.; Salsbury , Jr, Freddie

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.

  6. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    DOE PAGESBeta

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; Fattebert, Jean -Luc; Emigh, Aiyana; Lightstone, Felice C.; Salsbury , Jr, Freddie

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone andmore » sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.« less

  7. A Wrench in the Works of Human Acetylcholinesterase: Soman Induced Conformational Changes Revealed by Molecular Dynamics Simulations

    PubMed Central

    Fattebert, Jean-Luc; Emigh, Aiyana

    2015-01-01

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures. PMID:25874456

  8. The complex folding behavior of HIV-1-protease monomer revealed by optical-tweezer single-molecule experiments and molecular dynamics simulations.

    PubMed

    Caldarini, M; Sonar, P; Valpapuram, I; Tavella, D; Volonté, C; Pandini, V; Vanoni, M A; Aliverti, A; Broglia, R A; Tiana, G; Cecconi, C

    2014-12-01

    We have used optical tweezers and molecular dynamics simulations to investigate the unfolding and refolding process of a stable monomeric form of HIV-1-protease (PR). We have characterized the behavior under tension of the native state (N), and that of the ensemble of partially folded (PF) conformations the protein visits en route to N, which collectively act as a long-lived state controlling the slow kinetic phase of the folding process. Our results reveal a rich network of unfolding events, where the native state unfolds either in a two-state manner or by populating an intermediate state I, while the PF state unravels through a multitude of pathways, underscoring its structural heterogeneity. Refolding of mechanically denatured HIV-1-PR monomers is also a multiple-pathway process. Molecular dynamics simulations allowed us to gain insight into possible conformations the protein adopts along the unfolding pathways, and provide information regarding possible structural features of the PF state. PMID:25194276

  9. Using force-matching to reveal essential differences between density functionals in ab initio molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Swanson, Jessica M. J.

    2011-05-01

    The exchange-correlation (XC) functional and value of the electronic fictitious mass μ can be two major sources of systematic errors in ab initio Car-Parrinello Molecular Dynamics (CPMD) simulations, and have a significant impact on the structural and dynamic properties of condensed-phase systems. In this work, an attempt is made to identify the origin of differences in liquid water properties generated from CPMD simulations run with the BLYP and HCTH/120 XC functionals and two different values of μ (representative of "small" and "large" limits) by analyzing the effective pairwise atom-atom interactions. The force-matching (FM) algorithm is used to map CPMD interactions into non-polarizable, empirical potentials defined by bonded interactions, pairwise short-ranged interactions in numerical form, and Coulombic interactions via atomic partial charges. The effective interaction models are derived for the BLYP XC functional with μ = 340 a.u. and μ = 1100 a.u. (BLYP-340 and BLYP-1100 simulations) and the HCTH/120 XC functional with μ = 340 a.u. (HCTH-340 simulation). The BLYP-340 simulation results in overstructured water with slow dynamics. In contrast, the BLYP-1100 and HCTH-340 simulations both produce radial distribution functions (indicative of structure) that are in reasonably good agreement with experiment. It is shown that the main difference between the BLYP-340 and HCTH-340 effective potentials arises in the short-ranged nonbonded interactions (in hydrogen bonding regions), while the difference between the BLYP-340 and BLYP-1100 interactions is mainly in the long-ranged electrostatic components. Collectively, these results demonstrate how the FM method can be used to further characterize various simulation ensembles (e.g., density-functional theory via CPMD). An analytical representation of each effective interaction water model, which is easy to implement, is presented.

  10. Atomistic mechanisms of huntingtin N-terminal fragment insertion on a phospholipid bilayer revealed by molecular dynamics simulations.

    PubMed

    Côté, Sébastien; Wei, Guanghong; Mousseau, Normand

    2014-07-01

    The huntingtin protein is characterized by a segment of consecutive glutamines (Q(N)) that is responsible for its fibrillation. As with other amyloid proteins, misfolding of huntingtin is related to Huntington's disease through pathways that can involve interactions with phospholipid membranes. Experimental results suggest that the N-terminal 17-amino-acid sequence (htt(NT)) positioned just before the Q(N) region is important for the binding of huntingtin to membranes. Through all-atom explicit solvent molecular dynamics simulations, we unveil the structure and dynamics of the htt(NT)Q(N) fragment on a phospholipid membrane at the atomic level. We observe that the insertion dynamics of this peptide can be described by four main steps-approach, reorganization, anchoring, and insertion-that are very diverse at the atomic level. On the membrane, the htt(NT) peptide forms a stable α-helix essentially parallel to the membrane with its nonpolar side-chains-mainly Leu-4, Leu-7, Phe-11 and Leu-14-positioned in the hydrophobic core of the membrane. Salt-bridges involving Glu-5, Glu-12, Lys-6, and Lys-15, as well as hydrogen bonds involving Thr-3 and Ser-13 with the phospholipids also stabilize the structure and orientation of the htt(NT) peptide. These observations do not significantly change upon adding the Q(N) region whose role is rather to provide, through its hydrogen bonds with the phospholipids' head group, a stable scaffold facilitating the partitioning of the htt(NT) region in the membrane. Moreover, by staying accessible to the solvent, the amyloidogenic Q(N) region could also play a key role for the oligomerization of htt(NT)Q(N) on phospholipid membranes. PMID:24415136

  11. Top leads for swine influenza A/H1N1 virus revealed by steered molecular dynamics approach.

    PubMed

    Mai, Binh Khanh; Viet, Man Hoang; Li, Mai Suan

    2010-12-27

    Since March 2009, the rapid spread of infection during the recent A/H1N1 swine flu pandemic has raised concerns of a far more dangerous outcome should this virus become resistant to current drug therapies. Currently oseltamivir (tamiflu) is intensively used for the treatment of influenza and is reported effective for 2009 A/H1N1 virus. However, as this virus is evolving fast, some drug-resistant strains are emerging. Therefore, it is critical to seek alternative treatments and identify roots of the drug resistance. In this paper, we use the steered molecular dynamics (SMD) approach to estimate the binding affinity of ligands to the glycoprotein neuraminidase. Our idea is based on the hypothesis that the larger is the force needed to unbind a ligand from a receptor the higher its binding affinity. Using all-atom models with Gromos force field 43a1 and explicit water, we have studied the binding ability of 32 ligands to glycoprotein neuraminidase from swine flu virus A/H1N1. The electrostatic interaction is shown to play a more important role in binding affinity than the van der Waals one. We have found that four ligands 141562, 5069, 46080, and 117079 from the NSC set are the most promising candidates to cope with this virus, while peramivir, oseltamivir, and zanamivir are ranked 8, 11, and 20. The observation that these four ligands are better than existing commercial drugs has been also confirmed by our results on the binding free energies obtained by the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. Our prediction may be useful for the therapeutic application. PMID:21090736

  12. NMR Spectroscopy and Molecular Dynamics Simulation of r(CCGCUGCGG)2 Reveal a Dynamic UU Internal Loop Found in Myotonic Dystrophy Type 1†

    PubMed Central

    Parkesh, Raman; Fountain, Matthew; Disney, Matthew D.

    2011-01-01

    The NMR structure of an RNA with a copy of the 5′CUG/3′GUC motif found in the triplet repeating disorder myotonic dystrophy type 1 (DM1) is disclosed. The lowest energy conformation of the UU pair is a single hydrogen bonded structure; however, the UU protons undergo exchange indicating structural dynamics. Molecular dynamics simulations show that the single hydrogen bonded structure is the most populated one but the UU pair interconverts between 0, 1, and 2 hydrogen bonded pairs. These studies have implications for the recognition of the DM1 RNA by small molecules and proteins. PMID:21204525

  13. Strong impact of lattice vibrations on electronic and magnetic properties of paramagnetic Fe revealed by disordered local moments molecular dynamics

    NASA Astrophysics Data System (ADS)

    Alling, B.; Körmann, F.; Grabowski, B.; Glensk, A.; Abrikosov, I. A.; Neugebauer, J.

    2016-06-01

    We study the impact of lattice vibrations on magnetic and electronic properties of paramagnetic bcc and fcc iron at finite temperature, employing the disordered local moments molecular dynamics (DLM-MD) method. Vibrations strongly affect the distribution of local magnetic moments at finite temperature, which in turn correlates with the local atomic volumes. Without the explicit consideration of atomic vibrations, the mean local magnetic moment and mean field derived magnetic entropy of paramagnetic bcc Fe are larger compared to paramagnetic fcc Fe, which would indicate that the magnetic contribution stabilizes the bcc phase at high temperatures. In the present study we show that this assumption is not valid when the coupling between vibrations and magnetism is taken into account. At the γ -δ transition temperature (1662 K), the lattice distortions cause very similar magnetic moments of both bcc and fcc structures and hence magnetic entropy contributions. This finding can be traced back to the electronic densities of states, which also become increasingly similar between bcc and fcc Fe with increasing temperature. Given the sensitive interplay of the different physical excitation mechanisms, our results illustrate the need for an explicit consideration of vibrational disorder and its impact on electronic and magnetic properties to understand paramagnetic Fe. Furthermore, they suggest that at the γ -δ transition temperature electronic and magnetic contributions to the Gibbs free energy are extremely similar in bcc and fcc Fe.

  14. Molecular dynamics of the P450cam-Pdx complex reveals complex stability and novel interface contacts.

    PubMed

    Hollingsworth, Scott A; Poulos, Thomas L

    2015-01-01

    Cytochrome P450cam catalyzes the stereo and regiospecific hydroxylation of camphor to 5-exo-hydroxylcamphor. The two electrons for the oxidation of camphor are provided by putidaredoxin (Pdx), a Fe2 S2 containing protein. Two recent crystal structures of the P450cam-Pdx complex, one solved with the aid of covalent cross-linking and one without, have provided a structural picture of the redox partner interaction. To study the stability of the complex structure and the minor differences between the recent crystal structures, a 100 nanosecond molecular dynamics (MD) simulation of the cross-linked structure, mutated in silico to wild type and the linker molecule removed, was performed. The complex was stable over the course of the simulation though conformational changes including the movement of the C helix of P450cam further toward Pdx allowed for the formation of a number of new contacts at the complex interface that remained stable throughout the simulation. While several minor crystal contacts were lost in the simulation, all major contacts that had been experimentally studied previously were maintained. The equilibrated MD structure contained a mixture of contacts resembling both the cross-linked and noncovalent structures and the newly identified interactions. Finally, the reformation of the P450cam Asp251-Arg186 ion pair in the MD simulation mirrors the ion pair observed in the more promiscuous CYP101D1 and suggests that the Asp251-Arg186 ion pair may be important. PMID:25307478

  15. Constant pH Molecular Dynamics Reveals pH-Modulated Binding of Two Small-Molecule BACE1 Inhibitors.

    PubMed

    Ellis, Christopher R; Tsai, Cheng-Chieh; Hou, Xinjun; Shen, Jana

    2016-03-17

    Targeting β-secretase (BACE1) with small-molecule inhibitors offers a promising route for treatment of Alzheimer's disease. However, the intricate pH dependence of BACE1 function and inhibitor efficacy has posed major challenges for structure-based drug design. Here we investigate two structurally similar BACE1 inhibitors that have dramatically different inhibitory activity using continuous constant pH molecular dynamics (CpHMD). At high pH, both inhibitors are stably bound to BACE1; however, within the enzyme active pH range, only the iminopyrimidinone-based inhibitor remains bound, while the aminothiazine-based inhibitor becomes partially dissociated following the loss of hydrogen bonding with the active site and change of the 10s loop conformation. The drastically lower activity of the second inhibitor is due to the protonation of a catalytic aspartate and the lack of a propyne tail. This work demonstrates that CpHMD can be used for screening pH-dependent binding profiles of small-molecule inhibitors, providing a new tool for structure-based drug design and optimization. PMID:26905811

  16. Dynamic Network of Transcription and Pathway Crosstalk to Reveal Molecular Mechanism of MGd-Treated Human Lung Cancer Cells

    PubMed Central

    Wei, Zhiyun; Xiong, Yuyu; Wang, Yang; Tang, Kefu; Li, Yang; Feng, Guoyin; Xing, Qinghe; He, Lin

    2012-01-01

    Recent research has revealed various molecular markers in lung cancer. However, the organizational principles underlying their genetic regulatory networks still await investigation. Here we performed Network Component Analysis (NCA) and Pathway Crosstalk Analysis (PCA) to construct a regulatory network in human lung cancer (A549) cells which were treated with 50 uM motexafin gadolinium (MGd), a metal cation-containing chemotherapeutic drug for 4, 12, and 24 hours. We identified a set of key TFs, known target genes for these TFs, and signaling pathways involved in regulatory networks. Our work showed that putative interactions between these TFs (such as ESR1/Sp1, E2F1/Sp1, c-MYC-ESR, Smad3/c-Myc, and NFKB1/RELA), between TFs and their target genes (such as BMP41/Est1, TSC2/Myc, APE1/Sp1/p53, RARA/HOXA1, and SP1/USF2), and between signaling pathways (such as PPAR signaling pathway and Adipocytokines signaling pathway). These results will provide insights into the regulatory mechanism of MGd-treated human lung cancer cells. PMID:22693540

  17. Molecular basis of the selectivity of the immunoproteasome catalytic subunit LMP2-specific inhibitor revealed by molecular modeling and dynamics simulations.

    PubMed

    Lei, Beilei; Abdul Hameed, Mohamed Diwan M; Hamza, Adel; Wehenkel, Marie; Muzyka, Jennifer L; Yao, Xiao-Jun; Kim, Kyung-Bo; Zhan, Chang-Guo

    2010-09-30

    Given that immunoproteasome inhibitors are currently being developed for a variety of potent therapeutic purposes, the unique specificity of an α',β'-epoxyketone peptide (UK101) toward the LMP2 subunit of the immunoproteasome (analogous to β5 subunit of the constitutive proteasome) has been investigated in this study for the first time by employing homology modeling, molecular docking, molecular dynamics simulation, and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations. On the basis of the simulated binding structures, the calculated binding free energies are in qualitative agreement with the corresponding experimental data, and the selectivity of UK101 is explained reasonably. The observed selectivity of UK101 for the LMP2 subunit is rationalized by the requirement for both a linear hydrocarbon chain at the N terminus and a bulky group at the C terminus of the inhibitor, because the LMP2 subunit has a much more favorable hydrophobic pocket interacting with the linear hydrocarbon chain, and the bulky group at the C terminus has a steric clash with the Tyr 169 in β5 subunit. Finally, our results help to clarify why UK101 is specific to the LMP2 subunit of immunoproteasome, and this investigation should be valuable for rational design of more potent LMP2-specific inhibitors. PMID:20812720

  18. Molecular Basis of the Selectivity of the Immunoproteasome Catalytic Subunit LMP2-Specific Inhibitor Revealed by Molecular Modeling and Dynamics Simulations

    PubMed Central

    Lei, Beilei; AbdulHameed, Mohamed Diwan M.; Hamza, Adel; Wehenkel, Marie; Muzyka, Jennifer L.; Yao, Xiao-Jun; Kim, Kyung-Bo; Zhan, Chang-Guo

    2010-01-01

    Given that immunoproteasome inhibitors are currently being developed for a variety of potent therapeutic purposes, the unique specificity of an α′,β′-epoxyketone peptide (UK101) towards the LMP2 subunit of the immunoproteasome (analogous to β5 subunit of the constitutive proteasome) has been investigated in this study for the first time by employing homology modeling, molecular docking, molecular dynamics simulation, and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations. Based on the simulated binding structures, the calculated binding free energies are in qualitative agreement with the corresponding experimental data and the selectivity of UK101 is explained reasonably. The observed selectivity of UK101 for the LMP2 subunit is rationalized by the requirement for both a linear hydrocarbon chain at the N-terminus and a bulky group at the C-terminus of the inhibitor, because that LMP2 subunit has a much more favorable hydrophobic pocket interacting with the linear hydrocarbon chain, and the bulky group at the C-terminus has a steric clash with the Tyr 169 in β5 subunit. Finally, our results help to clarify why UK101 is specific to the LMP2 subunit of immunoproteasome, and this investigation should be valuable for rational design of more potent LMP2-specific inhibitors. PMID:20812720

  19. Diffusion behavior of helium in titanium and the effect of grain boundaries revealed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Gui-Jun, Cheng; Bao-Qin, Fu; Qing, Hou; Xiao-Song, Zhou; Jun, Wang

    2016-07-01

    The microstructures of titanium (Ti), an attractive tritium (T) storage material, will affect the evolution process of the retained helium (He). Understanding the diffusion behavior of He at the atomic scale is crucial for the mechanism of material degradation. The novel diffusion behavior of He has been reported by molecular dynamics (MD) simulation for the bulk hcp-Ti system and the system with grain boundary (GB). It is observed that the diffusion of He in the bulk hcp-Ti is significantly anisotropic (the diffusion coefficient of the [0001] direction is higher than that of the basal plane), as represented by the different migration energies. Different from convention, the GB accelerates the diffusion of He in one direction but not in the other. It is observed that a twin boundary (TB) can serve as an effective trapped region for He. The TB accelerates diffusion of He in the direction perpendicular to the twinning direction (TD), while it decelerates the diffusion in the TD. This finding is attributable to the change of diffusion path caused by the distortion of the local favorable site for He and the change of its number in the TB region. Project supported by the National Natural Science Foundation of China (Grant No. 51501119), the Scientific Research Starting Foundation for Younger Teachers of Sichuan University, China (Grant No. 2015SCU11058), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2013GB109002), and the Cooperative Research Project “Research of Diffusion Behaviour of He in Grain Boundary of HCP-Titanium”, China.

  20. Factors affecting the interactions between beta-lactoglobulin and fatty acids as revealed in molecular dynamics simulations.

    PubMed

    Yi, Changhong; Wambo, Thierry O

    2015-09-21

    Beta-lactoglobulin (BLG), a bovine dairy protein, is a promiscuously interacting protein that can bind multiple hydrophobic ligands. Fatty acids (FAs), common hydrophobic molecules bound to BLG, are important sources of fuel for life because they yield large quantities of ATP when metabolized. The binding affinity increases with the length of the ligands, indicating the importance of the van der Waals (vdW) interactions between the hydrocarbon tail and the hydrophobic calyx of BLG. An exception to this rule is caprylic acid (OCA) which is two-carbon shorter but has a stronger binding affinity than capric acid. Theoretical calculations in the current literature are not accurate enough to shed light on the underlying physics of this exception. The computed affinity values are greater for longer fatty acids without respect for the caprylic exception and those values are generally several orders of magnitude away from the experimental data. In this work, we used hybrid steered molecular dynamics to accurately compute the binding free energies between BLG and the five saturated FAs of 8 to 16 carbon atoms. The computed binding free energies agree well with experimental data not only in rank but also in absolute values. We gained insights into the exceptional behavior of caprylic acid in the computed values of entropy and electrostatic interactions. We found that the electrostatic interaction between the carboxyl group of caprylic acid and the two amino groups of K60/69 in BLG is much stronger than the vdW force between the OCA's hydrophobic tail and the BLG calyx. This pulls OCA to the top of the beta barrel where it is easier to fluctuate, giving rise to greater entropy of OCA at the binding site. PMID:26272099

  1. Molecular Dynamics Simulation Reveals the Selective Binding of Human Leukocyte Antigen Alleles Associated with Behçet's Disease

    PubMed Central

    Kongkaew, Sirilak; Yotmanee, Pathumwadee; Rungrotmongkol, Thanyada; Kaiyawet, Nopporn; Meeprasert, Arthitaya; Kaburaki, Toshikatsu; Noguchi, Hiroshi; Takeuchi, Fujio; Kungwan, Nawee; Hannongbua, Supot

    2015-01-01

    Behçet’s disease (BD), a multi-organ inflammatory disorder, is associated with the presence of the human leukocyte antigen (HLA) HLA-B*51 allele in many ethnic groups. The possible antigen involvement of the major histocompatibility complex class I chain related gene A transmembrane (MICA-TM) nonapeptide (AAAAAIFVI) has been reported in BD symptomatic patients. This peptide has also been detected in HLA-A*26:01 positive patients. To investigate the link of BD with these two specific HLA alleles, molecular dynamics (MD) simulations were applied on the MICA-TM nonapeptide binding to the two BD-associated HLA alleles in comparison with the two non-BD-associated HLA alleles (B*35:01 and A*11:01). The MD simulations were applied on the four HLA/MICA-TM peptide complexes in aqueous solution. As a result, stabilization for the incoming MICA-TM was found to be predominantly contributed from van der Waals interactions. The P2/P3 residue close to the N-terminal and the P9 residue at the C-terminal of the MICA-TM nonapeptide served as the anchor for the peptide accommodated at the binding groove of the BD associated HLAs. The MM/PBSA free energy calculation predicted a stronger binding of the HLA/peptide complexes for the BD-associated HLA alleles than for the non-BD-associated ones, with a ranked binding strength of B*51:01 > B*35:01 and A*26:01 > A*11:01. Thus, the HLAs associated with BD pathogenesis expose the binding efficiency with the MICA-TM nonapeptide tighter than the non-associated HLA alleles. In addition, the residues 70, 73, 99, 146, 147 and 159 of the two BD-associated HLAs provided the conserved interaction for the MICA-TM peptide binding. PMID:26331842

  2. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  3. Bifurcate localization modes of excess electron in aqueous Ca(2+)amide solution revealed by ab initio molecular dynamics simulation: towards hydrated electron versus hydrated amide anion.

    PubMed

    Zhang, Ru; Bu, Yuxiang

    2016-07-28

    In this work, we conduct ab initio molecular dynamics simulations on the localization dynamics of an excess electron (EE) in acetamide/Ca(2+) aqueous solutions with three different interaction modes of Ca(2+) with acetamide: tight contact, solvent-shared state, and separated interaction. The simulated results reveal that an EE could exhibit two different localization behaviors in these acetamide/Ca(2+) aqueous solutions depending on different amideCa(2+) interactions featuring different contact distances. For the tight contact and solvent-shared state of amideCa(2+) solutions, vertically injected diffuse EEs follow different mechanisms with different dynamics, forming a cavity-shaped hydrated electron or a hydrated amide anion, respectively. Meanwhile, for the separated state, only one localization pattern of a vertically injected diffuse EE towards the formation of hydrated amide anion is observed. The hindrance of hydrated Ca(2+) and the attraction of the hydrated amide group originating from its polarity and low energy π* orbital are the main driving forces. Additionally, different EE localization modes have different effects on the interaction between the amide group and Ca(2+) in turn. This work provides an important basis for further understanding the mechanisms and dynamics of localizations/transfers of radiation-produced EEs and associated EE-induced lesions and damage to biological species in real biological environments or other aqueous solutions. PMID:27351489

  4. Molecular dynamics simulations of metalloproteinases types 2 and 3 reveal differences in the dynamic behavior of the S1' binding pocket.

    PubMed

    de Oliveira, Cesar Augusto F; Zissen, Maurice; Mongon, John; McCammon, J Andrew

    2007-01-01

    Matrix Metalloproteinases (MMPs) are zinc-containing proteinases that are responsible for the metabolism of extracellular matrix proteins. Overexpression of MMPs has been associated with a wide range of pathological diseases such as arthritis, cancer, multiple sclerosis and Alzheimer's disease. The excessive and unregulated activity of Matrix Metalloproteinases type 2 (MMP-2), also known as gelatinase A, has been identified in a numbers of cancer metastases. Several MMP inhibitors (MMPi) have been proposed in the literature aiming to interfere in the MMPs activity. In this work we performed long MD simulations in order to study the dynamical behavior of the binding pocket S1' in the apo forms of MMP type 2 and 3, and identify, at the molecular level, the structural properties relevant for the designing of specific inhibitor of MMP-2. PMID:18220784

  5. New Insights into Active Site Conformation Dynamics of E. coli PNP Revealed by Combined H/D Exchange Approach and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Kazazić, Saša; Bertoša, Branimir; Luić, Marija; Mikleušević, Goran; Tarnowski, Krzysztof; Dadlez, Michal; Narczyk, Marta; Bzowska, Agnieszka

    2016-01-01

    The biologically active form of purine nucleoside phosphorylase (PNP) from Escherichia coli (EC 2.4.2.1) is a homohexamer unit, assembled as a trimer of dimers. Upon binding of phosphate, neighboring monomers adopt different active site conformations, described as open and closed. To get insight into the functions of the two distinctive active site conformations, virtually inactive Arg24Ala mutant is complexed with phosphate; all active sites are found to be in the open conformation. To understand how the sites of neighboring monomers communicate with each other, we have combined H/D exchange (H/DX) experiments with molecular dynamics (MD) simulations. Both methods point to the mobility of the enzyme, associated with a few flexible regions situated at the surface and within the dimer interface. Although H/DX provides an average extent of deuterium uptake for all six hexamer active sites, it was able to indicate the dynamic mechanism of cross-talk between monomers, allostery. Using this technique, it was found that phosphate binding to the wild type (WT) causes arrest of the molecular motion in backbone fragments that are flexible in a ligand-free state. This was not the case for the Arg24Ala mutant. Upon nucleoside substrate/inhibitor binding, some release of the phosphate-induced arrest is observed for the WT, whereas the opposite effects occur for the Arg24Ala mutant. MD simulations confirmed that phosphate is bound tightly in the closed active sites of the WT; conversely, in the open conformation of the active site of the WT phosphate is bound loosely moving towards the exit of the active site. In Arg24Ala mutant binary complex Pi is bound loosely, too.

  6. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Spatial Dynamic Range Spectral Line Mapping

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2008-01-01

    Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.

  7. Solution NMR and molecular dynamics reveal a persistent alpha helix within the dynamic region of PsbQ from photosystem II of higher plants

    PubMed Central

    Rathner, Petr; Rathner, Adriana; Horničáková, Michaela; Wohlschlager, Christian; Chandra, Kousik; Kohoutová, Jaroslava; Ettrich, Rüdiger; Wimmer, Reinhard

    2015-01-01

    ABSTRACT The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X‐ray crystallographic structure of higher plant PsbQ residues S14‐Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this “missing link”, we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N‐terminal residues 1–45 the solution structure deviates significantly from the X‐ray crystallographic one, while the four‐helix bundle core found previously is confirmed. A short α‐helix is observed in the solution structure at the location where a β‐strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N‐terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β‐strand are found. Proteins 2015; 83:1677–1686. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:26138376

  8. Solution NMR and molecular dynamics reveal a persistent alpha helix within the dynamic region of PsbQ from photosystem II of higher plants.

    PubMed

    Rathner, Petr; Rathner, Adriana; Horničáková, Michaela; Wohlschlager, Christian; Chandra, Kousik; Kohoutová, Jaroslava; Ettrich, Rüdiger; Wimmer, Reinhard; Müller, Norbert

    2015-09-01

    The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a β-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β-strand are found. PMID:26138376

  9. Substructured multibody molecular dynamics.

    SciTech Connect

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  10. Molecular dynamics simulation of human serum paraoxonase 1 in DPPC bilayer reveals a critical role of transmembrane helix H1 for HDL association.

    PubMed

    Patra, Mahesh Chandra; Rath, Surya Narayan; Pradhan, Sukanta Kumar; Maharana, Jitendra; De, Sachinandan

    2014-01-01

    Serum paraoxonase 1 (PON1) is a high-density lipoprotein (HDL)-bound mammalian enzyme exhibiting antiatherosclerotic activity. Despite years of research, an accurate model for the binding interaction between PON1 and HDL has not been established. However, it is reported that anchoring of PON1 to HDL is mainly governed by an N-terminal alpha helix H1 and another short helix H2. Here, we studied the molecular association of full-length human PON1 (huPON1) with a HDL-mimetic dipalmitoylphosphatidylcholine (DPPC) bilayer using homology modeling and molecular dynamics simulations. Our results indicate that H1 is the highly dynamic part of huPON1, showing clockwise rotation of up to 30° within the DPPC bilayer. However, without phospholipid molecules, H1 experiences helical distortions, illustrating an incompatible HDL-anchoring conformation. Snorkeling interactions of K3, R18, and R27 together with aromatic locks formed by Y187, Y190, W194, and W202 are highly essential for anchoring of huPON1 to HDL's surface. Molecular mechanics/Poisson-Boltzmann solvent-accessible surface area (MM/PBSA) binding free energy calculation revealed that H1 displays greater binding affinity towards lipid molecules compared with H2 and H3, suggesting that H1 is the most probable HDL-binding domain of PON1. Binding free energy decomposition showed that K3, R18, and R27 interact with polar headgroups of DPPC membrane through electrostatic interaction. Moreover, Y187, Y190, W194, and W202 interact with DPPC lipids mainly through van der Waals interaction. Taken together, these results show that the transmembrane helix H1 along with the interfacial positively charged and aromatic resides were crucial for PON1's association with HDL particle. The current study will be useful towards understanding the antiatherosclerotic and bioscavenging properties of this promiscuous enzyme. PMID:24297451

  11. Superposition State Molecular Dynamics.

    PubMed

    Venkatnathan, Arun; Voth, Gregory A

    2005-01-01

    The ergodic sampling of rough energy landscapes is crucial for understanding phenomena like protein folding, peptide aggregation, polymer dynamics, and the glass transition. These rough energy landscapes are characterized by the presence of many local minima separated by high energy barriers, where Molecular Dynamics (MD) fails to satisfy ergodicity. To enhance ergodic behavior, we have developed the Superposition State Molecular Dynamics (SSMD) method, which uses a superposition of energy states to obtain an effective potential for the MD simulation. In turn, the dynamics on this effective potential can be used to sample the configurational free energy of the real potential. The effectiveness of the SSMD method for a one-dimensional rough potential energy landscape is presented as a test case. PMID:26641113

  12. Structure and conformational dynamics of the domain 5 RNA hairpin of a bacterial group II intron revealed by solution nuclear magnetic resonance and molecular dynamics simulations.

    PubMed

    Pechlaner, Maria; Sigel, Roland K O; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-10-01

    Nuclear magnetic resonance (NMR) nuclear Overhauser enhancement (NOE) data obtained for a 35-nucleotide RNA segment of a bacterial group II intron indicate a helical hairpin structure in which three parts, a terminal pentaloop, a bulge, and a G-A mismatch, display no Watson-Crick base pairing. The 668 NOE upper distance bounds for atom pairs are insufficient to uniquely determine the conformation of these segments. Therefore, molecular dynamics simulations including time-averaged distance restraints have been used to obtain a conformational ensemble compatible with the observed NMR data. The ensemble shows alternating hydrogen bonding patterns for the mentioned segments. In particular, in the pentaloop and in the bulge, the hydrogen bonding networks correspond to distinct conformational clusters that could not be captured by using conventional single-structure refinement techniques. This implies that, to obtain a realistic picture of the conformational ensemble of such flexible biomolecules, it is necessary to properly account for the conformational variability in the structure refinement of RNA fragments. PMID:24001362

  13. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: anion-centered localization and anion-relayed electron transfer dissociation.

    PubMed

    Wu, Xiuxiu; Gao, Liang; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Bu, Yuxiang

    2015-10-28

    Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins. PMID:26399512

  14. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  15. A concurrent multiscale micromorphic molecular dynamics

    SciTech Connect

    Li, Shaofan Tong, Qi

    2015-04-21

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation.

  16. Molecular Dynamics of Acetylcholinesterase

    SciTech Connect

    Shen, T Y.; Tai, Kaihsu; Henchman, Richard H.; Mccammon, Andy

    2002-06-01

    Molecular dynamics simulations are leading to a deeper understanding of the activity of the enzyme acetylcholinesterase. Simulations have shown how breathing motions in the enzyme facilitate the displacement of substrate from the surface of the enzyme to the buried active site. The most recent work points to the complex and spatially extensive nature of such motions and suggests possible modes of regulation of the activity of the enzyme.

  17. Revealing ionic motion molecular solids

    NASA Astrophysics Data System (ADS)

    Thurzo, I.; Zahn, D. R. T.

    2006-01-01

    Thin films of mixed valence semiconductor copper-tetracyano-quinodimethane (Cu-TCNQ) and small molecule tris(8-hydroxyquinolinato)aluminum (Alq3) were investigated by current-voltage (I-V) and admittance (C-V,G-V) techniques in single-layer configuration with different combinations of electrodes. The predicted hysteresis of I-V curves and nearly constant loss (NCL) could be observed for both materials. When cycling devices between negative and positive biases, slowly decaying ionic transient currents interfere with steady-state currents and point to unidirectional motions of the ionic species with subsequent redox reaction at one of the electrodes. Plotting the frequency f dependence of the equivalent parallel capacitance at zero bias as log10 C(0) versus log10(f), the dielectric behavior of Cu-TCNQ and Alq3 complies with the effective-medium model for NCL in ionic conductors [J. R. Macdonald J. Appl. Phys. 94, 558 (2003)]. It also holds for a similar plot of the equivalent parallel zero-bias conductance G(0). The nature of the revealed mobile ions is discussed with emphasis on their sources.

  18. Multiscale reactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-12-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system.

  19. Multiscale reactive molecular dynamics

    PubMed Central

    Knight, Chris; Lindberg, Gerrick E.; Voth, Gregory A.

    2012-01-01

    Many processes important to chemistry, materials science, and biology cannot be described without considering electronic and nuclear-level dynamics and their coupling to slower, cooperative motions of the system. These inherently multiscale problems require computationally efficient and accurate methods to converge statistical properties. In this paper, a method is presented that uses data directly from condensed phase ab initio simulations to develop reactive molecular dynamics models that do not require predefined empirical functions. Instead, the interactions used in the reactive model are expressed as linear combinations of interpolating functions that are optimized by using a linear least-squares algorithm. One notable benefit of the procedure outlined here is the capability to minimize the number of parameters requiring nonlinear optimization. The method presented can be generally applied to multiscale problems and is demonstrated by generating reactive models for the hydrated excess proton and hydroxide ion based directly on condensed phase ab initio molecular dynamics simulations. The resulting models faithfully reproduce the water-ion structural properties and diffusion constants from the ab initio simulations. Additionally, the free energy profiles for proton transfer, which is sensitive to the structural diffusion of both ions in water, are reproduced. The high fidelity of these models to ab initio simulations will permit accurate modeling of general chemical reactions in condensed phase systems with computational efficiency orders of magnitudes greater than currently possible with ab initio simulation methods, thus facilitating a proper statistical sampling of the coupling to slow, large-scale motions of the system. PMID:23249062

  20. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans

    PubMed Central

    Smith, Cody J.; Watson, Joseph D.; Spencer, W. Clay; O’Brien, Tim; Cha, Byeong; Albeg, Adi; Treinin, Millet

    2010-01-01

    Nociceptive neurons innervate the skin with complex dendritic arbors that respond to pain-evoking stimuli such as harsh mechanical force or extreme temperatures. Here we describe the structure and development of a model nociceptor, the PVD neuron of C. elegans, and identify transcription factors that control morphogenesis of the PVD dendritic arbor. The two PVD neuron cell bodies occupy positions on either the right (PVDR) or left (PVDL) sides of the animal in posterior lateral locations. Imaging with a GFP reporter revealed a single axon projecting from the PVD soma to the ventral cord and an elaborate, highly-branched arbor of dendritic processes that envelop the animal with a web-like array directly beneath the skin. Dendritic branches emerge in a step-wise fashion during larval development and may use an existing network of peripheral nerve cords as guideposts for key branching decisions. Time-lapse imaging revealed that branching is highly dynamic with active extension and withdrawal and that PVD branch overlap is prevented by a contact-dependent self-avoidance, a mechanism that is also employed by sensory neurons in other organisms. With the goal of identifying genes that regulate dendritic morphogenesis, we used the mRNA tagging method to produce a gene expression profile of PVD during late larval development. This microarray experiment identified > 2,000 genes that are 1.5 X elevated relative to all larval cells. The enriched transcripts encode a wide range of proteins with potential roles in PVD function (e.g., DEG/ENaC and Trp channels) or development (e.g., UNC-5 and LIN-17/frizzled receptors). We used RNAi and genetic tests to screen 86 transcription factors from this list and identified eleven genes that specify PVD dendritic structure. These transcription factors appear to control discrete steps in PVD morphogenesis and may either promote or limit PVD branching at specific developmental stages. For example, time-lapse imaging revealed that the MEC-3

  1. Molecular dynamics simulations of apo, holo, and inactivator bound GABA-at reveal the role of active site residues in PLP dependent enzymes.

    PubMed

    Gökcan, Hatice; Monard, Gerald; Sungur Konuklar, F Aylin

    2016-07-01

    The pyridoxal 5-phosphate (PLP) cofactor is a significant organic molecule in medicinal chemistry. It is often found covalently bound to lysine residues in proteins to form PLP dependent enzymes. An example of this family of PLP dependent enzymes is γ-aminobutyric acid aminotransferase (GABA-AT) which is responsible for the degradation of the neurotransmitter GABA. Its inhibition or inactivation can be used to prevent the reduction of GABA concentration in brain which is the source of several neurological disorders. As a test case for PLP dependent enzymes, we have performed molecular dynamics simulations of GABA-AT to reveal the roles of the protein residues and its cofactor. Three different states have been considered: the apoenzyme, the holoenzyme, and the inactive state obtained after the suicide inhibition by vigabatrin. Different protonation states have also been considered for PLP and two key active site residues: Asp298 and His190. Together, 24 independent molecular dynamics trajectories have been simulated for a cumulative total of 2.88 µs. Our results indicate that, unlike in aqueous solution, the PLP pyridine moiety is protonated in GABA-AT. This is a consequence of a pKa shift triggered by a strong charge-charge interaction with an ionic "diad" formed by Asp298 and His190 that would help the activation of the first half-reaction of the catalytic mechanism in GABA-AT: the conversion of PLP to free pyridoxamine phosphate (PMP). In addition, our MD simulations exhibit additional strong hydrogen bond networks between the protein and PLP: the phosphate group is held in place by the donation of at least three hydrogen bonds while the carbonyl oxygen of the pyridine ring interacts with Gln301; Phe181 forms a π-π stacking interaction with the pyridine ring and works as a gate keeper with the assistance of Val300. All these interactions are hypothesized to help maintain free PMP in place inside the protein active site to facilitate the second half

  2. Interactive molecular dynamics

    NASA Astrophysics Data System (ADS)

    Schroeder, Daniel V.

    2015-03-01

    Physics students now have access to interactive molecular dynamics simulations that can model and animate the motions of hundreds of particles, such as noble gas atoms, that attract each other weakly at short distances but repel strongly when pressed together. Using these simulations, students can develop an understanding of forces and motions at the molecular scale, nonideal fluids, phases of matter, thermal equilibrium, nonequilibrium states, the Boltzmann distribution, the arrow of time, and much more. This article summarizes the basic features and capabilities of such a simulation, presents a variety of student exercises using it at the introductory and intermediate levels, and describes some enhancements that can further extend its uses. A working simulation code, in html5 and javascript for running within any modern Web browser, is provided as an online supplement.

  3. Introduction to Accelerated Molecular Dynamics

    SciTech Connect

    Perez, Danny

    2012-07-10

    Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

  4. Molecular Dynamics Calculations

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two

  5. Molecular dynamics simulations

    SciTech Connect

    Alder, B.J.

    1985-07-01

    The molecular dynamics computer simulation discovery of the slow decay of the velocity autocorrelation function in fluids is briefly reviewed in order to contrast that long time tail with those observed for the stress autocorrelation function in fluids and the velocity autocorrelation function in the Lorentz gas. For a non-localized particle in the Lorentz gas it is made plausible that even if it behaved quantum mechanically its long time tail would be the same as the classical one. The generalization of Fick's law for diffusion for the Lorentz gas, necessary to avoid divergences due to the slow decay of correlations, is presented. For fluids, that generalization has not yet been established, but the region of validity of generalized hydrodynamics is discussed. 20 refs., 5 figs.

  6. VMD: visual molecular dynamics.

    PubMed

    Humphrey, W; Dalke, A; Schulten, K

    1996-02-01

    VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids. VMD can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods. Molecules are displayed as one or more "representations," in which each representation embodies a particular rendering method and coloring scheme for a selected subset of atoms. The atoms displayed in each representation are chosen using an extensive atom selection syntax, which includes Boolean operators and regular expressions. VMD provides a complete graphical user interface for program control, as well as a text interface using the Tcl embeddable parser to allow for complex scripts with variable substitution, control loops, and function calls. Full session logging is supported, which produces a VMD command script for later playback. High-resolution raster images of displayed molecules may be produced by generating input scripts for use by a number of photorealistic image-rendering applications. VMD has also been expressly designed with the ability to animate molecular dynamics (MD) simulation trajectories, imported either from files or from a direct connection to a running MD simulation. VMD is the visualization component of MDScope, a set of tools for interactive problem solving in structural biology, which also includes the parallel MD program NAMD, and the MDCOMM software used to connect the visualization and simulation programs. VMD is written in C++, using an object-oriented design; the program, including source code and extensive documentation, is freely available via anonymous ftp and through the World Wide Web. PMID:8744570

  7. Na/Ca Intermixing around Silicate and Phosphate Groups in Bioactive Phosphosilicate Glasses Revealed by Heteronuclear Solid-State NMR and Molecular Dynamics Simulations.

    PubMed

    Mathew, Renny; Stevensson, Baltzar; Edén, Mattias

    2015-04-30

    We characterize the intermixing of network-modifying Na(+)/Ca(2+) ions around the silicate (QSi(n)) and phosphate (QP(n)) tetrahedra in a series of 16 Na2O–CaO–SiO2–P2O5 glasses, whose P content and silicate network connectivity were varied independently. The set includes both bioactive and bioinactive compositions and also encompasses two soda-lime-silicate members devoid of P, as well as two CaO–SiO2 glasses and one Na2O–SiO2–P2O5 glass. The various Si/P↔Na/Ca contacts were probed by molecular dynamics (MD) simulations together with heteronuclear magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) experimentation utilizing (23)Na{(31)P} and (23)Na{(29)Si} REDOR, as well as (31)P{ (23)Na} and (29)Si{(23)Na} REAPDOR. We introduce an approach for quantifying the extent of Na(+)/Ca(2+) ordering around a given QP(n) or QSi(n) group, encoded by the preference factor 0⩽ PM ⩽ 1 conveying the relative weights of a random cation intermixing (PM = 0) and complete preference/ordering (PM = 1) for one of the species M, which represents either Na(+) or Ca(2+). The MD-derived preference factors reveal phosphate and silicate species surrounded by Na(+)/Ca(2+) ions intermixed nearly randomly (PM ≲ 0.15), except for the QSi(4) and QSi(1) groups, which manifest more significant cation ordering with preference for Na+ and Ca2+, respectively. The overall weak preferences are essentially independent of the Si and P contents of the glass, whereas PM primarily correlates with the total amount of network modifiers: as the latter is increased, the Na/Ca distribution around the {QP(0), QSi(1), QSi(2)} groups with preference for Ca2(+ )tend to randomize (i.e., PCa decreases), while the PNa-values grow slightly for the {QP(1), QSi(3), QSi(4)} species already preferring coordination of Na. The set of experimental preference factors {PCa} for the orthophosphate (QP(0)) groups extracted from (31)P{(23)Na} REAPDOR NMR-derived M2(P–Na) dipolar second moments agrees

  8. Molecular Dynamics Simulations of Polymers

    NASA Astrophysics Data System (ADS)

    Han, Jie

    1995-01-01

    Molecular dynamics (MD) simulations have been undertaken in this work to explore structures and properties of polyethylene (PE), polyisobutylene (PIB), atactic polypropylene (aPP) and atactic polystyrene (aPS). This work has not only demonstrated the reliability of MD simulations by comparing results with available experiments, but more importantly has revealed structure-property relationships on a molecular level for these selected polymers. Structures of these amorphous polymers were characterized by radial distribution functions (RDFs) or scattering profiles, and properties of the polymers studied were pressure-volume -temperature (PVT) equation of state, enthalpy, cohesive energy, the diffusion coefficient of methane in the polymer, and glass transition temperature. Good agreement was found for these structures and properties between simulation and experiment. More importantly, the scientific understanding of structure-property relationships was established on a molecular level. In the order of aPP (PE), PIB and aPS, with the chain surface separation or free volume decreasing, the density increases and the diffusion coefficient decreases. Therefore, the effects of changes or modifications in the chemical structure of monomer molecules (substituting pendent hydrogen with methyl or phenyl) on polymeric materials performance were attributed to the effects of molecular chain structure on packing structure, which, in turn, affects the properties of these polymers. Local chain dynamics and relaxation have been studied for bulk PE and aPS. Cooperative transitions occur at second-neighbor bonds for PE, and first-neighbor bonds for aPS due to the role of side groups. The activation energy is a single torsional barrier for overall conformational transitions, and is single torsional barrier plus locally "trapped" barrier for relaxation. Temperature dependence is Arrhenius for transition time, and is WLF for relaxation time. The mean correlation times derived from

  9. Revealing Origin of Decrease in Potency of Darunavir and Amprenavir against HIV-2 relative to HIV-1 Protease by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chen, Jianzhong; Liang, Zhiqiang; Wang, Wei; Yi, Changhong; Zhang, Shaolong; Zhang, Qinggang

    2014-11-01

    Clinical inhibitors Darunavir (DRV) and Amprenavir (APV) are less effective on HIV-2 protease (PR2) than on HIV-1 protease (PR1). To identify molecular basis associated with the lower inhibition, molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations were performed to investigate the effectiveness of the PR1 inhibitors DRV and APV against PR1/PR2. The rank of predicted binding free energies agrees with the experimental determined one. Moreover, our results show that two inhibitors bind less strongly to PR2 than to PR1, again in agreement with the experimental findings. The decrease in binding free energies for PR2 relative to PR1 is found to arise from the reduction of the van der Waals interactions induced by the structural adjustment of the triple mutant V32I, I47V and V82I. This result is further supported by the difference between the van der Waals interactions of inhibitors with each residue in PR2 and in PR1. The results from the principle component analysis suggest that inhibitor binding tends to make the flaps of PR2 close and the one of PR1 open. We expect that this study can theoretically provide significant guidance and dynamics information for the design of potent dual inhibitors targeting PR1/PR2.

  10. Floating orbital molecular dynamics simulations.

    PubMed

    Perlt, Eva; Brüssel, Marc; Kirchner, Barbara

    2014-04-21

    We introduce an alternative ab initio molecular dynamics simulation as a unification of Hartree-Fock molecular dynamics and the floating orbital approach. The general scheme of the floating orbital molecular dynamics method is presented. Moreover, a simple but sophisticated guess for the orbital centers is provided to reduce the number of electronic structure optimization steps at each molecular dynamics step. The conservation of total energy and angular momentum is investigated in order to validate the floating orbital molecular dynamics approach with and without application of the initial guess. Finally, a water monomer and a water dimer are simulated, and the influence of the orbital floating on certain properties like the dipole moment is investigated. PMID:24600690

  11. The Structure of Human Apolipoprotein A-IV as Revealed by Stable Isotope-assisted Cross-linking, Molecular Dynamics, and Small Angle X-ray Scattering*

    PubMed Central

    Walker, Ryan G.; Deng, Xiaodi; Melchior, John T.; Morris, Jamie; Tso, Patrick; Jones, Martin K.; Segrest, Jere P.; Thompson, Thomas B.; Davidson, W. Sean

    2014-01-01

    Apolipoprotein (apo)A-IV plays important roles in dietary lipid and glucose metabolism, and knowledge of its structure is required to fully understand the molecular basis of these functions. However, typical of the entire class of exchangeable apolipoproteins, its dynamic nature and affinity for lipid has posed challenges to traditional high resolution structural approaches. We previously reported an x-ray crystal structure of a dimeric truncation mutant of apoA-IV, which showed a unique helix-swapping molecular interface. Unfortunately, the structures of the N and C termini that are important for lipid binding were not visualized. To build a more complete model, we used chemical cross-linking to derive distance constraints across the full-length protein. The approach was enhanced with stable isotope labeling to overcome ambiguities in determining molecular span of the cross-links given the remarkable similarities in the monomeric and dimeric apoA-IV structures. Using 51 distance constraints, we created a starting model for full-length monomeric apoA-IV and then subjected it to two modeling approaches: (i) molecular dynamics simulations and (ii) fitting to small angle x-ray scattering data. This resulted in the most detailed models yet for lipid-free monomeric or dimeric apoA-IV. Importantly, these models were of sufficient detail to direct the experimental identification of new functional residues that participate in a “clasp” mechanism to modulate apoA-IV lipid affinity. The isotope-assisted cross-linking approach should prove useful for further study of this family of apolipoproteins in both the lipid-free and -bound states. PMID:24425874

  12. Cold Adaptation of Zinc Metalloproteases in the Thermolysin Family from Deep Sea and Arctic Sea Ice Bacteria Revealed by Catalytic and Structural Properties and Molecular Dynamics

    PubMed Central

    Xie, Bin-Bin; Bian, Fei; Chen, Xiu-Lan; He, Hai-Lun; Guo, Jun; Gao, Xiang; Zeng, Yin-Xin; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2009-01-01

    Increased conformational flexibility is the prevailing explanation for the high catalytic efficiency of cold-adapted enzymes at low temperatures. However, less is known about the structural determinants of flexibility. We reported two novel cold-adapted zinc metalloproteases in the thermolysin family, vibriolysin MCP-02 from a deep sea bacterium and vibriolysin E495 from an Arctic sea ice bacterium, and compared them with their mesophilic homolog, pseudolysin from a terrestrial bacterium. Their catalytic efficiencies, kcat/Km (10–40 °C), followed the order pseudolysin < MCP-02 < E495 with a ratio of ∼1:2:4. MCP-02 and E495 have the same optimal temperature (Topt, 57 °C, 5 °C lower than pseudolysin) and apparent melting temperature (Tm = 64 °C, ∼10 °C lower than pseudolysin). Structural analysis showed that the slightly lower stabilities resulted from a decrease in the number of salt bridges. Fluorescence quenching experiments and molecular dynamics simulations showed that the flexibilities of the proteins were pseudolysin < MCP-02 < E495, suggesting that optimization of flexibility is a strategy for cold adaptation. Molecular dynamics results showed that the ordinal increase in flexibility from pseudolysin to MCP-02 and E495, especially the increase from MCP-02 to E495, mainly resulted from the decrease of hydrogen-bond stability in the dynamic structure, which was due to the increase in asparagine, serine, and threonine residues. Finally, a model for the cold adaptation of MCP-02 and E495 was proposed. This is the first report of the optimization of hydrogen-bonding dynamics as a strategy for cold adaptation and provides new insights into the structural basis underlying conformational flexibility. PMID:19181663

  13. Transcriptome dynamics of a susceptible wheat upon Fusarium head blight reveals that molecular responses to Fusarium graminearum infection fit over the grain development processes.

    PubMed

    Chetouhi, Cherif; Bonhomme, Ludovic; Lasserre-Zuber, Pauline; Cambon, Florence; Pelletier, Sandra; Renou, Jean-Pierre; Langin, Thierry

    2016-03-01

    In many plant/pathogen interactions, host susceptibility factors are key determinants of disease development promoting pathogen growth and spreading in plant tissues. In the Fusarium head blight (FHB) disease, the molecular basis of wheat susceptibility is still poorly understood while it could provide new insights into the understanding of the wheat/Fusarium graminearum (Fg) interaction and guide future breeding programs to produce cultivars with sustainable resistance. To identify the wheat grain candidate genes, a genome-wide gene expression profiling was performed in the French susceptible wheat cultivar, Recital. Gene-specific two-way ANOVA of about 40 K transcripts at five grain developmental stages identified 1309 differentially expressed genes. Out of these, 536 were impacted by the Fg effect alone. Most of these Fg-responsive genes belonged to biological and molecular functions related to biotic and abiotic stresses indicating the activation of common stress pathways during susceptibility response of wheat grain to FHB. This analysis revealed also 773 other genes displaying either specific Fg-responsive profiles along with grain development stages or synergistic adjustments with the grain development effect. These genes were involved in various molecular pathways including primary metabolism, cell death, and gene expression reprogramming. An increasingly complex host response was revealed, as was the impact of both Fg infection and grain ontogeny on the transcription of wheat genes. This analysis provides a wealth of candidate genes and pathways involved in susceptibility responses to FHB and depicts new clues to the understanding of the susceptibility determinism in plant/pathogen interactions. PMID:26797431

  14. Steered molecular dynamics simulations of a bacterial type IV pilus reveal characteristics of an experimentally-observed, force-induced conformational transition

    NASA Astrophysics Data System (ADS)

    Baker, Joseph; Biais, Nicolas; Tama, Florence

    2011-10-01

    Type IV pili (T4P) are long, filamentous structures that emanate from the cellular surface of many infectious bacteria. They are built from a 158 amino acid long subunit called pilin. T4P can grow to many micrometers in length, and can withstand large tension forces. During the infection process, pili attach themselves to host cells, and therefore naturally find themselves under tension. We investigated the response of a T4 pilus to a pulling force using the method of steered molecular dynamics (SMD) simulation. Our simulations expose to the external environment an amino acid sequence initially hidden in the native filament, in agreement with experimental data. Therefore, our simulations might be probing the initial stage of the transition to a force-induced conformation of the T4 pilus. Additional exposed amino acid sequences that might be useful targets for drugs designed to mitigate bacterial infection were also predicted.

  15. DNA sequencing with MspA: Molecular Dynamics simulations reveal free-energy differences between sequencing and non-sequencing mutants.

    PubMed

    Manara, Richard M A; Wallace, E Jayne; Khalid, Syma

    2015-01-01

    MspA has been identified as a promising candidate protein as a component of a nanopore-based DNA-sequencing device. However the wildtype protein must be engineered to incorporate all of the features desirable for an accurate and efficient device. In the present study we have utilized atomistic molecular dynamics to perform umbrella-sampling calculations to calculate the potential of mean force (PMF) profiles for translocation of the four DNA nucleotides through MspA. We show there is an energetic barrier to translocation of individual nucleotides through a mutant that closely resembles the wildtype protein, but not through a mutant engineered for the purpose of sequencing. Crucially we are able to quantify the change in free energy for mutating key residues. Thus providing a quantitative characterisation of the energetic impact of individual amino acid sidechains on nucleotide translocation through the pore of MspA. PMID:26255609

  16. DNA sequencing with MspA: Molecular Dynamics simulations reveal free-energy differences between sequencing and non-sequencing mutants

    PubMed Central

    Manara, Richard M.A.; Jayne Wallace, E.; Khalid, Syma

    2015-01-01

    MspA has been identified as a promising candidate protein as a component of a nanopore-based DNA-sequencing device. However the wildtype protein must be engineered to incorporate all of the features desirable for an accurate and efficient device. In the present study we have utilized atomistic molecular dynamics to perform umbrella-sampling calculations to calculate the potential of mean force (PMF) profiles for translocation of the four DNA nucleotides through MspA. We show there is an energetic barrier to translocation of individual nucleotides through a mutant that closely resembles the wildtype protein, but not through a mutant engineered for the purpose of sequencing. Crucially we are able to quantify the change in free energy for mutating key residues. Thus providing a quantitative characterisation of the energetic impact of individual amino acid sidechains on nucleotide translocation through the pore of MspA. PMID:26255609

  17. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad—a common structural unit of G-quadruplex DNA

    PubMed Central

    Kogut, Mateusz; Kleist, Cyprian; Czub, Jacek

    2016-01-01

    G-quadruplexes (G4) are nucleic acid conformations of guanine-rich sequences, in which guanines are arranged in the square-planar G-tetrads, stacked on one another. G4 motifs form in vivo and are implicated in regulation of such processes as gene expression and chromosome maintenance. The structure and stability of various G4 topologies were determined experimentally; however, the driving forces for their formation are not fully understood at the molecular level. Here, we used all-atom molecular dynamics to probe the microscopic origin of the G4 motif stability. By computing the free energy profiles governing the dissociation of the 3′-terminal G-tetrad in the telomeric parallel-stranded G4, we examined the thermodynamic and kinetic stability of a single G-tetrad, as a common structural unit of G4 DNA. Our results indicate that the energetics of guanine association alone does not explain the overall stability of the G-tetrad and that interactions involving sugar–phosphate backbone, in particular, the constrained minimization of the phosphate–phosphate repulsion energy, are crucial in providing the observed enthalpic stabilization. This enthalpic gain is largely compensated by the unfavorable entropy change due to guanine association and optimization of the backbone topology. PMID:26980278

  18. Molecular dynamics simulations reveal the balance of forces governing the formation of a guanine tetrad-a common structural unit of G-quadruplex DNA.

    PubMed

    Kogut, Mateusz; Kleist, Cyprian; Czub, Jacek

    2016-04-20

    G-quadruplexes (G4) are nucleic acid conformations of guanine-rich sequences, in which guanines are arranged in the square-planar G-tetrads, stacked on one another. G4 motifs formin vivoand are implicated in regulation of such processes as gene expression and chromosome maintenance. The structure and stability of various G4 topologies were determined experimentally; however, the driving forces for their formation are not fully understood at the molecular level. Here, we used all-atom molecular dynamics to probe the microscopic origin of the G4 motif stability. By computing the free energy profiles governing the dissociation of the 3'-terminal G-tetrad in the telomeric parallel-stranded G4, we examined the thermodynamic and kinetic stability of a single G-tetrad, as a common structural unit of G4 DNA. Our results indicate that the energetics of guanine association alone does not explain the overall stability of the G-tetrad and that interactions involving sugar-phosphate backbone, in particular, the constrained minimization of the phosphate-phosphate repulsion energy, are crucial in providing the observed enthalpic stabilization. This enthalpic gain is largely compensated by the unfavorable entropy change due to guanine association and optimization of the backbone topology. PMID:26980278

  19. Molecular photoionization dynamics

    SciTech Connect

    Dehmer, Joseph L.

    1982-05-01

    This program seeks to develop both physical insight and quantitative characterization of molecular photoionization processes. Progress is briefly described, and some publications resulting from the research are listed. (WHK)

  20. Dynamic-domain-decomposition parallel molecular dynamics

    NASA Astrophysics Data System (ADS)

    Srinivasan, S. G.; Ashok, I.; Jônsson, Hannes; Kalonji, Gretchen; Zahorjan, John

    1997-05-01

    Parallel molecular dynamics with short-range forces can suffer from load-imbalance problems and attendant performance degradation due to density variations in the simulated system. In this paper, we describe an approach to dynamical load balancing, enabled by the Ādhāra runtime system. The domain assigned to each processor is automatically and dynamically resized so as to evenly distribute the molecular dynamics computations across all the processors. The algorithm was tested on an Intel Paragon parallel computer for two and three-dimensional Lennard-Jones systems containing 99 458 and 256000 atoms, respectively, and using up to 256 processors. In these benchmarks, the overhead for carrying out the load-balancing operations was found to be small and the total computation time was reduced by as much as 50%.

  1. Steric and allosteric effects of fatty acids on the binding of warfarin to human serum albumin revealed by molecular dynamics and free energy calculations.

    PubMed

    Fujiwara, Shin-Ichi; Amisaki, Takashi

    2011-01-01

    Human serum albumin (HSA) binds with drugs and fatty acids (FAs). This study was initiated to elucidate the relationship between the warfarin binding affinity of HSA and the positions of bound FA molecules. Molecular dynamics simulations of 11 HSA-warfarin-myristate complexes were performed. HSA-warfarin binding free energy was then calculated for each of the complexes by the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. The results indicated that the magnitude of the binding free energy was smaller in HSA-warfarin complexes that had 4 or more myristate molecules than in complexes with no myristate molecules. The unfavorable effect on the HSA-warfarin binding affinity was caused sterically by the binding of a myristate molecule to the FA binding site closest to the warfarin binding site. On the other hand, the magnitude of HSA-warfarin binding free energy was largest when 3 myristate molecules were bound to the high-affinity sites. The strongest HSA-warfarin binding was attributable to favorable entropic contribution related to larger atomic fluctuations of the amino acid residues at the warfarin binding site. In the binding of 2 myristate molecules to the sites with the highest and second-highest affinities, allosteric modulation that enhanced electrostatic interactions between warfarin and some of the amino acid residues around the warfarin binding site was observed. This study clarified the structural and energetic properties of steric/allosteric effects of FAs on the HSA-warfarin binding affinity and illustrated the approach to analyze protein-ligand interactions in situations such that multiple ligands bind to the other sites of the protein. PMID:21720037

  2. Functional conformations of the L11–ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations

    PubMed Central

    Li, Wen; Sengupta, Jayati; Rath, Bimal K.; Frank, Joachim

    2006-01-01

    The interaction between the GTPase-associated center (GAC) and the aminoacyl-tRNA·EF-Tu·GTP ternary complex is of crucial importance in the dynamic process of decoding and tRNA accommodation. The GAC includes protein L11 and helices 43–44 of 23S rRNA (referred to as L11–rRNA complex). In this study, a method of fitting based on a systematic comparison between cryo-electron microscopy (cryo-EM) density maps and structures obtained by molecular dynamics simulations has been developed. This method has led to the finding of atomic models of the GAC that fit the EM maps with much improved cross-correlation coefficients compared with the fitting of the X-ray structure. Two types of conformations of the L11–rRNA complex, produced by the simulations, match the cryo-EM maps representing the states either bound or unbound to the aa-tRNA·EF-Tu·GTP ternary complex. In the bound state, the N-terminal domain of L11 is extended from its position in the crystal structure, and the base of nucleotide A1067 in the 23S ribosomal RNA is flipped out. This position of the base allows the RNA to reach the elbow region of the aminoacyl-tRNA when the latter is bound in the A/T site. In the unbound state, the N-terminal domain of L11 is rotated only slightly, and A1067 of the RNA is flipped back into the less-solvent-exposed position, as in the crystal structure. By matching our experimental cryo-EM maps with much improved cross-correlation coefficients compared to the crystal structure, these two conformations prove to be strong candidates of the two functional states. PMID:16682558

  3. Multiple binding modes of a small molecule to human Keap1 revealed by X-ray crystallography and molecular dynamics simulation

    PubMed Central

    Satoh, Mikiya; Saburi, Hajime; Tanaka, Tomoyuki; Matsuura, Yoshinori; Naitow, Hisashi; Shimozono, Rieko; Yamamoto, Naoyoshi; Inoue, Hideki; Nakamura, Noriko; Yoshizawa, Yoshitaka; Aoki, Takumi; Tanimura, Ryuji; Kunishima, Naoki

    2015-01-01

    Keap1 protein acts as a cellular sensor for oxidative stresses and regulates the transcription level of antioxidant genes through the ubiquitination of a corresponding transcription factor, Nrf2. A small molecule capable of binding to the Nrf2 interaction site of Keap1 could be a useful medicine. Here, we report two crystal structures, referred to as the soaking and the cocrystallization forms, of the Kelch domain of Keap1 with a small molecule, Ligand1. In these two forms, the Ligand1 molecule occupied the binding site of Keap1 so as to mimic the ETGE motif of Nrf2, although the mode of binding differed in the two forms. Because the Ligand1 molecule mediated the crystal packing in both the forms, the influence of crystal packing on the ligand binding was examined using a molecular dynamics (MD) simulation in aqueous conditions. In the MD structures from the soaking form, the ligand remained bound to Keap1 for over 20 ns, whereas the ligand tended to dissociate in the cocrystallization form. The MD structures could be classified into a few clusters that were related to but distinct from the crystal structures, indicating that the binding modes observed in crystals might be atypical of those in solution. However, the dominant ligand recognition residues in the crystal structures were commonly used in the MD structures to anchor the ligand. Therefore, the present structural information together with the MD simulation will be a useful basis for pharmaceutical drug development. PMID:26199865

  4. Activation and inhibition of cyclin-dependent kinase-2 by phosphorylation; a molecular dynamics study reveals the functional importance of the glycine-rich loop

    PubMed Central

    Bártová, Iveta; Otyepka, Michal; Kříž, Zdeněk; Koča, Jaroslav

    2004-01-01

    Nanoseconds long molecular dynamics (MD) trajectories of differently active complexes of human cyclin-dependent kinase 2 (inactive CDK2/ATP, semiactive CDK2/Cyclin A/ATP, fully active pT160-CDK2/Cyclin A/ATP, inhibited pT14-; pY15-; and pT14,pY15,pT160-CDK2/Cyclin A/ATP) were compared. The MD simulations results of CDK2 inhibition by phosphorylation at T14 and/or Y15 sites provide insight into the structural aspects of CDK2 deactivation. The inhibitory sites are localized in the glycine-rich loop (G-loop) positioned opposite the activation T-loop. Phosphorylation of T14 and both inhibitory sites T14 and Y15 together causes ATP misalignment for phosphorylation and G-loop conformational change. This conformational change leads to the opening of the CDK2 substrate binding box. The phosphorylated Y15 residue negatively affects substrate binding or its correct alignment for ATP terminal phospho-group transfer to the CDK2 substrate. The MD simulations of the CDK2 activation process provide results in agreement with previous X-ray data. PMID:15133164

  5. The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics

    PubMed Central

    2013-01-01

    The sequence dependence of RNA energetics is important for predicting RNA structure. Hairpins with Cn loops are consistently less stable than hairpins with other loops, which suggests the structure of Cn regions could be unusual in the “unfolded” state. For example, previous nuclear magnetic resonance (NMR) evidence suggested that polycytidylic acid forms a left-handed helix. In this study, UV melting experiments show that the hairpin formed by r(5′GGACCCCCGUCC) is less stable than r(5′GGACUUUUGUCC). NMR spectra for single-stranded C4 oligonucleotide, mimicking the unfolded hairpin loop, are consistent with a right-handed A-form-like helix. Comparisons between NMR spectra and molecular dynamics (MD) simulations suggest that recent reparametrizations, parm99χ_YIL and parm99TOR, of the AMBER parm99 force field improve the agreement between structural features for C4 determined by NMR and predicted by MD. Evidently, the force field revisions to parm99 improve the modeling of RNA energetics and therefore structure. PMID:23286901

  6. Molecular Scale Dynamics of Large Ring Polymers

    NASA Astrophysics Data System (ADS)

    Gooßen, S.; Brás, A. R.; Krutyeva, M.; Sharp, M.; Falus, P.; Feoktystov, A.; Gasser, U.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D.

    2014-10-01

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture.

  7. Molecular scale dynamics of large ring polymers.

    PubMed

    Gooßen, S; Brás, A R; Krutyeva, M; Sharp, M; Falus, P; Feoktystov, A; Gasser, U; Pyckhout-Hintzen, W; Wischnewski, A; Richter, D

    2014-10-17

    We present neutron scattering data on the structure and dynamics of melts from polyethylene oxide rings with molecular weights up to ten times the entanglement mass of the linear counterpart. The data reveal a very compact conformation displaying a structure approaching a mass fractal, as hypothesized by recent simulation work. The dynamics is characterized by a fast Rouse relaxation of subunits (loops) and a slower dynamics displaying a lattice animal-like loop displacement. The loop size is an intrinsic property of the ring architecture and is independent of molecular weight. This is the first experimental observation of the space-time evolution of segmental motion in ring polymers illustrating the dynamic consequences of their topology that is unique among all polymeric systems of any other known architecture. PMID:25361284

  8. Eye Movements Reveal Dynamics of Task Control

    ERIC Educational Resources Information Center

    Mayr, Ulrich; Kuhns, David; Rieter, Miranda

    2013-01-01

    With the goal to determine the cognitive architecture that underlies flexible changes of control settings, we assessed within-trial and across-trial dynamics of attentional selection by tracking of eye movements in the context of a cued task-switching paradigm. Within-trial dynamics revealed a switch-induced, discrete delay in onset of…

  9. Molecular dynamics and protein function

    PubMed Central

    Karplus, M.; Kuriyan, J.

    2005-01-01

    A fundamental appreciation for how biological macromolecules work requires knowledge of structure and dynamics. Molecular dynamics simulations provide powerful tools for the exploration of the conformational energy landscape accessible to these molecules, and the rapid increase in computational power coupled with improvements in methodology makes this an exciting time for the application of simulation to structural biology. In this Perspective we survey two areas, protein folding and enzymatic catalysis, in which simulations have contributed to a general understanding of mechanism. We also describe results for the F1 ATPase molecular motor and the Src family of signaling proteins as examples of applications of simulations to specific biological systems. PMID:15870208

  10. A sampling of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel Jon

    The sheer vastness of the number of computations required to simulate a biological molecule puts incredible pressure on algorithms to be efficient while maintaining sufficient accuracy. This dissertation summarizes various projects whose purposes address the large span of types of problems in molecular dynamics simulations of biological systems including: increasing efficiency, measuring convergence, avoiding pitfalls, and an application and analysis of a biological system. Chapters 3 and 4 deal with an enhanced sampling algorithm called "replica exchange molecular dynamics" which is designed to speed-up molecular dynamics simulations. The optimization of a key parameter of these simulations is analyzed. In these successive projects, it was found conclusively that maximizing "exchange attempt frequency" is the most efficient way to run a replica exchange molecular dynamics simulation. Chapter 5 describes an enhanced metric for convergence in parallel simulations called the normalized ergodic measure. The metric is applied to several properties for several replica exchange simulations. Advantages of this metric over other methods are described. Chapter 6 describes the implementation and optimization of an enhanced sampling algorithm similar to replica exchange molecular dynamics called multicanonical algorithm replica exchange molecular dynamics. The algorithm was implemented into a biomolecular simulation suite called AMBER. Additionally several parameters were analyzed and optimized. In Chapter 7, a pitfall in molecular dynamics is observed in biological systems that is caused by negligent use of a simulation's "thermostat". It was found that if the same pseudorandom number seed were used for multiple systems, they eventually synchronize. In this project, synchronization was observed in biological molecules. Various negative effects including corruption of data are pointed out. Chapter 8 describes molecular dynamics simulation of NikR, a homotetrameric nickel

  11. Microwave Spectra, Molecular Structures and Internal Dynamics of H2S...ICF3 and H2O...ICF3 Revealed by Broadband Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Walker, N. R.; Stephens, S. L.; Legon, A. C.

    2012-06-01

    The rotational spectra of three isotopologues of H2S...ICF3 and four isotopologues of H2O...ICF3 have been measured between 7 and 18.5 GHz by chirped-pulse Fourier transform microwave spectroscopy. The rotational constant, B0, the centrifugal distortion constants, DJ and DJK, and the nuclear quadrupole coupling constant of 127I, χaa(I), are precisely determined for H2S...ICF3 and H2O...ICF3 by fitting observed transitions to the Hamiltonians appropriate to symmetric tops. The measured rotational constants allow determination of the molecular geometries. The C2 axis of H2O / H2S intersects the C3 axis of the CF3I sub-unit at the oxygen atom. The r0 lengths of halogen bonds identified between iodine and sulphur, r{(S...I)}, and iodine and oxygen, r(O...I), are determined to be 3.5589(2) A and 3.0517(18) A respectively. The angle, φ, between the local C2 axis of the H2S / H2O sub-unit and the C3 axis of CF3I is found to be 93.7(2)° in H2S...ICF3 and 34.4(20)° in H2O...ICF3. The observed symmetric top spectra imply nearly free internal precession of the C2 axis of the hydrogen sulphide/water unit about the C3 axis of CF3I in each of these complexes. Additional transitions of H216O...ICF3, D216O...ICF3 and H218O...ICF3 can only be assigned using Hamiltonians appropriate to asymmetric tops, suggesting that the effective rigid-rotor fits employed do not completely represent the internal dynamics of H2O...ICF3.

  12. Light-induced structural changes in a short light, oxygen, voltage (LOV) protein revealed by molecular dynamics simulations—implications for the understanding of LOV photoactivation

    PubMed Central

    Bocola, Marco; Schwaneberg, Ulrich; Jaeger, Karl-Erich; Krauss, Ulrich

    2015-01-01

    The modularity of light, oxygen, voltage (LOV) blue-light photoreceptors has recently been exploited for the design of LOV-based optogenetic tools, which allow the light-dependent control of biological functions. For the understanding of LOV sensory function and hence the optimal design of LOV-based optogentic tools it is essential to gain an in depth atomic-level understanding of the underlying photoactivation and intramolecular signal-relay mechanisms. To address this question we performed molecular dynamics simulations on both the dark- and light-adapted state of PpSB1-LOV, a short dimeric bacterial LOV-photoreceptor protein, recently crystallized under constant illumination. While LOV dimers remained globally stable during the light-state simulation with regard to the Jα coiled-coil, distinct conformational changes for a glutamine in the vicinity of the FMN chromophore are observed. In contrast, multiple Jα-helix conformations are sampled in the dark-state. These changes coincide with a displacement of the Iβ and Hβ strands relative to the light-state structure and result in a correlated rotation of both LOV core domains in the dimer. These global changes are most likely initiated by the reorientation of the conserved glutamine Q116, whose side chain flips between the Aβ (dark state) and Hβ strand (light state), while maintaining two potential hydrogen bonds to FMN-N5 and FMN-O4, respectively. This local Q116-FMN reorientation impacts on an inter-subunit salt-bridge (K117-E96), which is stabilized in the light state, hence accounting for the observed decreased mobility. Based on these findings we propose an alternative mechanism for dimeric LOV photoactivation and intramolecular signal-relay, assigning a distinct structural role for the conserved “flipping” glutamine. The proposed mechanism is discussed in light of universal applicability and its implications for the understanding of LOV-based optogenetic tools. PMID:26484348

  13. Gas Phase Molecular Dynamics

    SciTech Connect

    Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.

    1999-05-21

    The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule.

  14. Integration methods for molecular dynamics

    SciTech Connect

    Leimkuhler, B.J.; Reich, S.; Skeel, R.D.

    1996-12-31

    Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches. 48 refs., 2 figs.

  15. Molecular Dynamics Simulations of Graphene Oxide Frameworks

    SciTech Connect

    Zhu, Pan; Sumpter, Bobby G; Meunier, V.; Nicolai, Adrien

    2013-01-01

    We use quantum mechanical calculations to develop a full set of force field parameters in order to perform molecular dynamics simulations to understand and optimize the molecular storage properties inside Graphene Oxide Frameworks (GOFs). A set of boron-related parameters for commonly used empirical force fields is determined to describe the non-bonded and bonded interactions between linear boronic acid linkers and graphene sheets of GOF materials. The transferability of the parameters is discussed and their validity is quantified by comparing quantum mechanical and molecular mechanical structural and vibrational properties. The application of the model to the dynamics of water inside the GOFs reveals significant variations in structural flexibility of GOF depending on the linker density, which is shown to be usable as a tuning parameter for desired diffusion properties.

  16. Nanoindentation of Zr by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Lu (芦子哲), Zizhe; Chernatynskiy, Aleksandr; Noordhoek, Mark J.; Sinnott, Susan B.; Phillpot, Simon R.

    2015-12-01

    Molecular dynamics simulations of nanoindentation are used to study the deformation behaviors of single crystal Zr for four different surface orientations. The comparison of results for two different potentials, an embedded atom method potential and a charged optimized many body potential, reveals the influence of stable and unstable stacking fault energy on dislocation behaviors under nanoindentation. The load-displacement curve, hardness and deformation behaviors of the various surface orientations Zr are compared and the elastic and plastic deformation behaviors are analyzed.

  17. Molecular dynamics investigation of nanoscale cavitation dynamics

    NASA Astrophysics Data System (ADS)

    Sasikumar, Kiran; Keblinski, Pawel

    2014-12-01

    We use molecular dynamics simulations to investigate the cavitation dynamics around intensely heated solid nanoparticles immersed in a model Lennard-Jones fluid. Specifically, we study the temporal evolution of vapor nanobubbles that form around the solid nanoparticles heated over ps time scale and provide a detail description of the following vapor formation and collapse. For 8 nm diameter nanoparticles we observe the formation of vapor bubbles when the liquid temperature 0.5-1 nm away from the nanoparticle surface reaches ˜90% of the critical temperature, which is consistent with the onset of spinodal decomposition. The peak heat flux from the hot solid to the surrounding liquid at the bubble formation threshold is ˜20 times higher than the corresponding steady state critical heat flux. Detailed analysis of the bubble dynamics indicates adiabatic formation followed by an isothermal final stage of growth and isothermal collapse.

  18. Dynamic fracture toughness determined using molecular dynamics

    SciTech Connect

    Swadener, J. G.; Baskes, M. I.; Nastasi, Michael Anthony,

    2004-01-01

    Molecular dynamics (MD) simulations of fracture in crystalline silicon are conducted in order to determine the dynamic fracture toughness. The MD simulations show how the potential energy released during fracture is partitioned into surface energy, energy stored in defects and kinetic energy. First, the MD fracture simulations are shown to produce brittle fracture and be in reasonable agreement with experimental results. Then dynamic hcture toughness is calculated as the sum of the surface energy and the energy stored as defects directly from the MD models. Models oriented to produce fracture on either (111) or (101) planes are used. For the (101) fracture orientation, equilibrium crack speeds of greater than 80% of the Rayleigh wave speed are obtained. Crack speeds initially show a steep increase with increasing energy release rate followed by a much more gradual increase. No plateau in crack speed is observed for static energy release rates up to 20 J/m{sup 2}. At the point where the change in crack speed behavior occur, the dynamic fracture toughness (J{sub d}) is still within 10% of two times the surface energy (2{gamma}{sub 0}) and changing very slowly. From these MD simulations, it appears that the change in crack speed behavior is due to a change in the kinetic energy generation during dynamic fracture. In addition, MD simulations of facture in silicon with defects were conducted. The addition of defects increases the inelastic dissipation and the energy stored in defects.

  19. Fiftieth anniversary of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Melker, Alexander I.

    2007-04-01

    The history of computer application in physics for solving nonlinear problems is considered. Examples from different branches of condensed matter physics (nonlinear vibrations of anharmonic chains of atoms, dynamics of radiation damage of crystals, deformation and fracture of crystals) are given. A new line of investigation and the results obtained in the field of computer simulation of physical processes realized in the department of metal physics and computer technologies in materials science are considered. This line incorporates both a study of self-organization and properties of new materials (fullerenes, carbon nanotubes) and biological objects by molecular dynamics technique as well as the development of new computer simulation methods.

  20. Available Instruments for Analyzing Molecular Dynamics Trajectories

    PubMed Central

    Likhachev, I. V.; Balabaev, N. K.; Galzitskaya, O. V.

    2016-01-01

    Molecular dynamics trajectories are the result of molecular dynamics simulations. Trajectories are sequential snapshots of simulated molecular system which represents atomic coordinates at specific time periods. Based on the definition, in a text format trajectory files are characterized by their simplicity and uselessness. To obtain information from such files, special programs and information processing techniques are applied: from molecular dynamics animation to finding characteristics along the trajectory (versus time). In this review, we describe different programs for processing molecular dynamics trajectories. The performance of these programs, usefulness for analyses of molecular dynamics trajectories, strong and weak aspects are discussed. PMID:27053964

  1. Molecular dynamics on vector computers

    NASA Astrophysics Data System (ADS)

    Sullivan, F.; Mountain, R. D.; Oconnell, J.

    1985-10-01

    An algorithm called the method of lights (MOL) has been developed for the computerized simulation of molecular dynamics. The MOL, implemented on the CYBER 205 computer, is based on sorting and reformulating the manner in which neighbor lists are compiled, and it uses data structures compatible with specialized vector statements that perform parallel computations. The MOL is found to reduce running time over standard methods in scalar form, and vectorization is shown to produce an order-of-magnitude reduction in execution time.

  2. Excited states of ribosome translocation revealed through integrative molecular modeling

    PubMed Central

    Whitford, Paul C.; Ahmed, Aqeel; Yu, Yanan; Hennelly, Scott P.; Tama, Florence; Spahn, Christian M. T.; Onuchic, José N.; Sanbonmatsu, Karissa Y.

    2011-01-01

    The dynamic nature of biomolecules leads to significant challenges when characterizing the structural properties associated with function. While X-ray crystallography and imaging techniques (such as cryo-electron microscopy) can reveal the structural details of stable molecular complexes, strategies must be developed to characterize configurations that exhibit only marginal stability (such as intermediates) or configurations that do not correspond to minima on the energy landscape (such as transition-state ensembles). Here, we present a methodology (MDfit) that utilizes molecular dynamics simulations to generate configurations of excited states that are consistent with available biophysical and biochemical measurements. To demonstrate the approach, we present a sequence of configurations that are suggested to be associated with transfer RNA (tRNA) movement through the ribosome (translocation). The models were constructed by combining information from X-ray crystallography, cryo-electron microscopy, and biochemical data. These models provide a structural framework for translocation that may be further investigated experimentally and theoretically to determine the precise energetic character of each configuration and the transition dynamics between them. PMID:22080606

  3. Excited states of ribosome translocation revealed through integrative molecular modeling.

    PubMed

    Whitford, Paul C; Ahmed, Aqeel; Yu, Yanan; Hennelly, Scott P; Tama, Florence; Spahn, Christian M T; Onuchic, José N; Sanbonmatsu, Karissa Y

    2011-11-22

    The dynamic nature of biomolecules leads to significant challenges when characterizing the structural properties associated with function. While X-ray crystallography and imaging techniques (such as cryo-electron microscopy) can reveal the structural details of stable molecular complexes, strategies must be developed to characterize configurations that exhibit only marginal stability (such as intermediates) or configurations that do not correspond to minima on the energy landscape (such as transition-state ensembles). Here, we present a methodology (MDfit) that utilizes molecular dynamics simulations to generate configurations of excited states that are consistent with available biophysical and biochemical measurements. To demonstrate the approach, we present a sequence of configurations that are suggested to be associated with transfer RNA (tRNA) movement through the ribosome (translocation). The models were constructed by combining information from X-ray crystallography, cryo-electron microscopy, and biochemical data. These models provide a structural framework for translocation that may be further investigated experimentally and theoretically to determine the precise energetic character of each configuration and the transition dynamics between them. PMID:22080606

  4. Face-to-Face Packing of 2,3,9,10-Tetrasubstituted Pentacene Derivatives Revealed through a Solid State [4 + 4] Thermal Cycloaddition and Molecular Dynamic Simulation.

    PubMed

    Pal, Bikash; Lin, Bo-Chao; Dela Cerna, Mark Vincent Carreon; Hsu, Chao-Ping; Lin, Chih-Hsiu

    2016-08-01

    2,3,9,10-Substituted pentacene tetraesters and pentacene diester-dinitriles were synthesized. These pentacene derivatives underwent an unusual solid state [4 + 4] thermal dimerization with good efficiency and complete stereoselectivity. This observation indicates this series of pentacene derivatives adopt π-π stacking geometry with large mutual overlap in solid state. This notion was confirmed by molecualr dynamic simulation. PMID:27362625

  5. Molecular dynamics for dense matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  6. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    SciTech Connect

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  7. Scalable Molecular Dynamics with NAMD

    PubMed Central

    Phillips, James C.; Braun, Rosemary; Wang, Wei; Gumbart, James; Tajkhorshid, Emad; Villa, Elizabeth; Chipot, Christophe; Skeel, Robert D.; Kalé, Laxmikant; Schulten, Klaus

    2008-01-01

    NAMD is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD scales to hundreds of processors on high-end parallel platforms, as well as tens of processors on low-cost commodity clusters, and also runs on individual desktop and laptop computers. NAMD works with AMBER and CHARMM potential functions, parameters, and file formats. This paper, directed to novices as well as experts, first introduces concepts and methods used in the NAMD program, describing the classical molecular dynamics force field, equations of motion, and integration methods along with the efficient electrostatics evaluation algorithms employed and temperature and pressure controls used. Features for steering the simulation across barriers and for calculating both alchemical and conformational free energy differences are presented. The motivations for and a roadmap to the internal design of NAMD, implemented in C++ and based on Charm++ parallel objects, are outlined. The factors affecting the serial and parallel performance of a simulation are discussed. Next, typical NAMD use is illustrated with representative applications to a small, a medium, and a large biomolecular system, highlighting particular features of NAMD, e.g., the Tcl scripting language. Finally, the paper provides a list of the key features of NAMD and discusses the benefits of combining NAMD with the molecular graphics/sequence analysis software VMD and the grid computing/collaboratory software BioCoRE. NAMD is distributed free of charge with source code at www.ks.uiuc.edu. PMID:16222654

  8. Multisurface Adiabatic Reactive Molecular Dynamics.

    PubMed

    Nagy, Tibor; Yosa Reyes, Juvenal; Meuwly, Markus

    2014-04-01

    Adiabatic reactive molecular dynamics (ARMD) simulation method is a surface-crossing algorithm for modeling chemical reactions in classical molecular dynamics simulations using empirical force fields. As the ARMD Hamiltonian is time dependent during crossing, it allows only approximate energy conservation. In the current work, the range of applicability of conventional ARMD is explored, and a new multisurface ARMD (MS-ARMD) method is presented, implemented in CHARMM and applied to the vibrationally induced photodissociation of sulfuric acid (H2SO4) in the gas phase. For this, an accurate global potential energy surface (PES) involving 12 H2SO4 and 4 H2O + SO3 force fields fitted to MP2/6-311G++(2d,2p) reference energies is employed. The MS-ARMD simulations conserve total energy and feature both intramolecular H-transfer reactions and water elimination. An analytical treatment of the dynamics in the crossing region finds that conventional ARMD can approximately conserve total energy for limiting cases. In one of them, the reduced mass of the system is large, which often occurs for simulations of solvated biomolecular systems. On the other hand, MS-ARMD is a general approach for modeling chemical reactions including gas-phase, homogeneous, heterogeneous, and enzymatic catalytic reactions while conserving total energy in atomistic simulations. PMID:26580356

  9. Better, Cheaper, Faster Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent, revolutionary progress in genomics and structural, molecular and cellular biology has created new opportunities for molecular-level computer simulations of biological systems by providing vast amounts of data that require interpretation. These opportunities are further enhanced by the increasing availability of massively parallel computers. For many problems, the method of choice is classical molecular dynamics (iterative solving of Newton's equations of motion). It focuses on two main objectives. One is to calculate the relative stability of different states of the system. A typical problem that has' such an objective is computer-aided drug design. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), "native" state. Perhaps the best example of such a problem is protein folding. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to "quasi non-ergodicity", whereby a part of phase space is inaccessible on time scales of the simulation. To overcome this difficulty and to extend molecular dynamics to "biological" time scales (millisecond or longer) new physical formulations and new algorithmic developments are required. To be efficient they should account for natural limitations of multi-processor computer architecture. I will present work along these lines done in my group. In particular, I will focus on a new approach to calculating the free energies (stability) of different states and to overcoming "the curse of rare events". I will also discuss algorithmic improvements to multiple time step methods and to the treatment of slowly decaying, log-ranged, electrostatic effects.

  10. Radiation in molecular dynamic simulations

    SciTech Connect

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

    2008-10-13

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

  11. The "Collisions Cube" Molecular Dynamics Simulator.

    ERIC Educational Resources Information Center

    Nash, John J.; Smith, Paul E.

    1995-01-01

    Describes a molecular dynamics simulator that employs ping-pong balls as the atoms or molecules and is suitable for either large lecture halls or small classrooms. Discusses its use in illustrating many of the fundamental concepts related to molecular motion and dynamics and providing a three-dimensional perspective of molecular motion. (JRH)

  12. Molecular docking and molecular dynamics studies reveal structural basis of inhibition and selectivity of inhibitors EGCG and OSU-03012 toward glucose regulated protein-78 (GRP78) overexpressed in glioblastoma.

    PubMed

    Bhattacharjee, Rituparna; Devi, Arpita; Mishra, Seema

    2015-10-01

    Glioblastoma (GBM), a malignant form of brain tumor, has a high mortality rate. GRP78, one of the HSP70 protein family members, is overexpressed in GBM. GRP78 is the key chaperone protein involved in the unfolded protein response. Upregulated GRP78 expression in cancer cells inhibits apoptosis and promotes chemoresistance. GRP78 has an ATPase domain, a substrate-binding domain, and a linker region. ATP-competitive inhibitors such as EGCG and OSU-03012 inhibit GRP78 activity and reduce its expression in GBM. However, there is a lack of structural data on the binding modes of these inhibitors to GRP78 ATPase domain. Further, the mode of selectivity of these inhibitors toward GRP78 also is unknown. Toward this end, molecular docking was performed with AutoDock Vina and confirmation obtained by docking using ROSIE. The stability and MM-PBSA binding energy of GRP78-inhibitor complexes as well as energetic contribution of individual residues was analyzed by 50 ns molecular dynamics run with GROMACS. MSA by ClustalW2 identified unique amino acid residues in the ATPase domain of GRP78 which were different from the residues present in other HSP70 proteins. Important and unique amino acid residues of GRP78 such as Ile61, Glu293, Arg297, and Arg367 played a major role in the intermolecular interactions with these inhibitors. The interactions with unique residues of GRP78 as compared with those of HSP70-1A provided the basis for selectivity. It was found that the binding affinity and specificity/selectivity of EGCG toward GRP78 was higher than that toward HSP70-1A, and selectivity was even better than OSU-03012. OSU-03012 was predicted to bind to GRP78. Analyses from MD runs showed tight binding and stability of complexes, and the highest number of hydrogen bonds during the trajectory runs were comparable to those found in the docking studies. Energetic contribution of individual inhibitor-interacting residues showed that energy values of Ile61 and Glu293 were among the most

  13. Peptide crystal simulations reveal hidden dynamics

    PubMed Central

    Janowski, Pawel A.; Cerutti, David S.; Holton, James; Case, David A.

    2013-01-01

    Molecular dynamics simulations of biomolecular crystals at atomic resolution have the potential to recover information on dynamics and heterogeneity hidden in the X-ray diffraction data. We present here 9.6 microseconds of dynamics in a small helical peptide crystal with 36 independent copies of the unit cell. The average simulation structure agrees with experiment to within 0.28 Å backbone and 0.42 Å all-atom rmsd; a model refined against the average simulation density agrees with the experimental structure to within 0.20 Å backbone and 0.33 Å all-atom rmsd. The R-factor between the experimental structure factors and those derived from this unrestrained simulation is 23% to 1.0 Å resolution. The B-factors for most heavy atoms agree well with experiment (Pearson correlation of 0.90), but B-factors obtained by refinement against the average simulation density underestimate the coordinate fluctuations in the underlying simulation where the simulation samples alternate conformations. A dynamic flow of water molecules through channels within the crystal lattice is observed, yet the average water density is in remarkable agreement with experiment. A minor population of unit cells is characterized by reduced water content, 310 helical propensity and a gauche(−) side-chain rotamer for one of the valine residues. Careful examination of the experimental data suggests that transitions of the helices are a simulation artifact, although there is indeed evidence for alternate valine conformers and variable water content. This study highlights the potential for crystal simulations to detect dynamics and heterogeneity in experimental diffraction data, as well as to validate computational chemistry methods. PMID:23631449

  14. Dynamic Environmental Photosynthetic Imaging Reveals Emergent Phenotypes.

    PubMed

    Cruz, Jeffrey A; Savage, Linda J; Zegarac, Robert; Hall, Christopher C; Satoh-Cruz, Mio; Davis, Geoffry A; Kovac, William Kent; Chen, Jin; Kramer, David M

    2016-06-22

    Understanding and improving the productivity and robustness of plant photosynthesis requires high-throughput phenotyping under environmental conditions that are relevant to the field. Here we demonstrate the dynamic environmental photosynthesis imager (DEPI), an experimental platform for integrated, continuous, and high-throughput measurements of photosynthetic parameters during plant growth under reproducible yet dynamic environmental conditions. Using parallel imagers obviates the need to move plants or sensors, reducing artifacts and allowing simultaneous measurement on large numbers of plants. As a result, DEPI can reveal phenotypes that are not evident under standard laboratory conditions but emerge under progressively more dynamic illumination. We show examples in mutants of Arabidopsis of such "emergent phenotypes" that are highly transient and heterogeneous, appearing in different leaves under different conditions and depending in complex ways on both environmental conditions and plant developmental age. These emergent phenotypes appear to be caused by a range of phenomena, suggesting that such previously unseen processes are critical for plant responses to dynamic environments. PMID:27336966

  15. Charge transport network dynamics in molecular aggregates.

    PubMed

    Jackson, Nicholas E; Chen, Lin X; Ratner, Mark A

    2016-08-01

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, [Formula: see text] Simulations reveal the relevant timescale for local transfer integral decorrelation to be [Formula: see text]100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed. PMID:27439871

  16. Nonadiabatic Molecular Dynamics with Trajectories

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano

    2012-02-01

    In the mixed quantum-classical description of molecular systems, only the quantum character of the electronic degrees of freedom is considered while the nuclear motion is treated at a classical level. In the adiabatic case, this picture corresponds to the Born-Oppenheimer limit where the nuclei move as point charges on the potential energy surface (PES) associated with a given electronic state. Despite the success of this approximation, many physical and chemical processes do not fall in the regime where nuclei and electrons can be considered decoupled. In particular, most photoreactions pass through regions of the PES in which electron-nuclear quantum interference effects are sizeable and often crucial for a correct description of the phenomena. Recently, we have developed a trajectory-based nonadiabatic molecular dynamics scheme that describes the nuclear wavepacket as an ensemble of particles following classical trajectories on PESs derived from time-dependent density functional theory (TDDFT) [1]. The method is based on Tully's fewest switches trajectories surface hopping (TSH) where the nonadiabatic coupling elements between the different potential energy surfaces are computed on-the-fly as functionals of the ground state electron density or, equivalently, of the corresponding Kohn-Sham orbitals [2]. Here, we present the theoretical fundamentals of our approach together with an extension that allows for the direct coupling of the dynamics to an external electromagnetic field [3] as well as to the external potential generated by the environment (solvent effects) [4]. The method is applied to the study of the photodissociation dynamics of simple molecules in gas phase and to the description of the fast excited state dynamics of molecules in solution (in particular Ruthenium (II) tris(bipyridine) in water). [4pt] [1] E. Tapavicza, I. Tavernelli, U. Rothlisberger, Phys. Rev. Lett., 98, (2007) 023001. [0pt] [2] Tavernelli I.; Tapavicza E.; Rothlisberger U., J. Chem

  17. Symmetry Reduced Dynamics of Charged Molecular Strands

    NASA Astrophysics Data System (ADS)

    Ellis, David C. P.; Gay-Balmaz, François; Holm, Darryl D.; Putkaradze, Vakhtang; Ratiu, Tudor S.

    2010-09-01

    The equations of motion are derived for the dynamical folding of charged molecular strands (such as DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conformations. The new feature is that these equations are nonlocal when the screened Coulomb interactions, or Lennard-Jones potentials between pairs of charges, are included. The nonlocal dynamics is derived in the convective representation of continuum motion by using modified Euler-Poincaré and Hamilton-Pontryagin variational formulations that illuminate the various approaches within the framework of symmetry reduction of Hamilton’s principle for exact geometric rods. In the absence of nonlocal interactions, the equations recover the classical Kirchhoff theory of elastic rods. The motion equations in the convective representation are shown to arise by a classical Lagrangian reduction associated to the symmetry group of the system. This approach uses the process of affine Euler-Poincaré reduction initially developed for complex fluids. On the Hamiltonian side, the Poisson bracket of the molecular strand is obtained by reduction of the canonical symplectic structure on phase space. A change of variables allows a direct passage from this classical point of view to the covariant formulation in terms of Lagrange-Poincaré equations of field theory. In another revealing perspective, the convective representation of the nonlocal equations of molecular strand motion is transformed into quaternionic form.

  18. Molecular dynamics simulation of benzene

    NASA Astrophysics Data System (ADS)

    Trumpakaj, Zygmunt; Linde, Bogumił B. J.

    2016-03-01

    Intermolecular potentials and a few models of intermolecular interaction in liquid benzene are tested by Molecular Dynamics (MD) simulations. The repulsive part of the Lennard-Jones 12-6 (LJ 12-6) potential is too hard, which yields incorrect results. The exp-6 potential with a too hard repulsive term is also often used. Therefore, we took an expa-6 potential with a small Gaussian correction plus electrostatic interactions. This allows to modify the curvature of the potential. The MD simulations are carried out in the temperature range 280-352 K under normal pressure and at experimental density. The Rayleigh scattering of depolarized light is used for comparison. The results of MD simulations are comparable with the experimental values.

  19. Buckybomb: Reactive Molecular Dynamics Simulation.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno; Prezhdo, Oleg V

    2015-03-01

    Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C60(NO2)12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyball surface. NO oxidizes into NO2, and C60 falls apart, liberating CO2. At the highest temperatures, CO2 gives rise to diatomic carbon. The study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material. PMID:26262672

  20. Quasar feedback revealed by giant molecular outflows

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F.

    2010-07-01

    In the standard scenario for galaxy evolution young star-forming galaxies transform into red bulge-dominated spheroids, where star formation has been quenched. To explain this transformation, a strong negative feedback generated by accretion onto a central super-massive black hole is often invoked. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead the black hole to “suicide” by starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, because outflows previously observed in quasars are generally associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occurrs in the central regions. We used the IRAM PdB Interferometer to observe the CO(1-0) transition in Mrk 231, the closest quasar known. Thanks to the wide band we detected broad wings of the CO line, with velocities of up to 750 km s-1 and spatially resolved on the kpc scale. These broad CO wings trace a giant molecular outflow of about 700 M_⊙/year, far larger than the ongoing star-formation rate (~200 M_⊙/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Mrk 231 in about 107 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~1.2 × 1044 erg/s, corresponding to a few percent of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe associated with the starburst fall short by several orders of magnitude to account for the kinetic energy observed in the outflow. The direct observational evidence for quasar feedback reported here provides solid support to the scenarios ascribing the observed properties of local massive

  1. Molecular dynamics of membrane proteins.

    SciTech Connect

    Woolf, Thomas B.; Crozier, Paul Stewart; Stevens, Mark Jackson

    2004-10-01

    Understanding the dynamics of the membrane protein rhodopsin will have broad implications for other membrane proteins and cellular signaling processes. Rhodopsin (Rho) is a light activated G-protein coupled receptor (GPCR). When activated by ligands, GPCRs bind and activate G-proteins residing within the cell and begin a signaling cascade that results in the cell's response to external stimuli. More than 50% of all current drugs are targeted toward G-proteins. Rho is the prototypical member of the class A GPCR superfamily. Understanding the activation of Rho and its interaction with its Gprotein can therefore lead to a wider understanding of the mechanisms of GPCR activation and G-protein activation. Understanding the dark to light transition of Rho is fully analogous to the general ligand binding and activation problem for GPCRs. This transition is dependent on the lipid environment. The effect of lipids on membrane protein activity in general has had little attention, but evidence is beginning to show a significant role for lipids in membrane protein activity. Using the LAMMPS program and simulation methods benchmarked under the IBIG program, we perform a variety of allatom molecular dynamics simulations of membrane proteins.

  2. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    SciTech Connect

    Warren, Jeffrey; Bilheux, Hassina Z; Kang, Misun; Voisin, Sophie; Cheng, Chu-Lin; Horita, Jusuke; Perfect, Edmund

    2013-01-01

    Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.

  3. Apo- and Antagonist-Binding Structures of Vitamin D Receptor Ligand-Binding Domain Revealed by Hybrid Approach Combining Small-Angle X-ray Scattering and Molecular Dynamics.

    PubMed

    Anami, Yasuaki; Shimizu, Nobutaka; Ekimoto, Toru; Egawa, Daichi; Itoh, Toshimasa; Ikeguchi, Mitsunori; Yamamoto, Keiko

    2016-09-01

    Vitamin D receptor (VDR) controls the expression of numerous genes through the conformational change caused by binding 1α,25-dihydroxyvitamin D3. Helix 12 in the ligand-binding domain (LBD) is key to regulating VDR activation. The structures of apo VDR-LBD and the VDR-LBD/antagonist complex are unclear. Here, we reveal their unprecedented structures in solution using a hybrid method combining small-angle X-ray scattering and molecular dynamics simulations. In apo rat VDR-LBD, helix 12 is partially unraveled, and it is positioned around the canonical active position and fluctuates. Helix 11 greatly bends toward the outside at Q396, creating a kink. In the rat VDR-LBD/antagonist complex, helix 12 does not generate the activation function 2 surface, and loop 11-12 is remarkably flexible compared to that in the apo rat VDR-LBD. On the basis of these structural insights, we propose a "folding-door model" to describe the mechanism of agonism/antagonism of VDR-LBD. PMID:27535484

  4. Langevin stabilization of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Izaguirre, Jesús A.; Catarello, Daniel P.; Wozniak, Justin M.; Skeel, Robert D.

    2001-02-01

    In this paper we show the possibility of using very mild stochastic damping to stabilize long time step integrators for Newtonian molecular dynamics. More specifically, stable and accurate integrations are obtained for damping coefficients that are only a few percent of the natural decay rate of processes of interest, such as the velocity autocorrelation function. Two new multiple time stepping integrators, Langevin Molly (LM) and Brünger-Brooks-Karplus-Molly (BBK-M), are introduced in this paper. Both use the mollified impulse method for the Newtonian term. LM uses a discretization of the Langevin equation that is exact for the constant force, and BBK-M uses the popular Brünger-Brooks-Karplus integrator (BBK). These integrators, along with an extrapolative method called LN, are evaluated across a wide range of damping coefficient values. When large damping coefficients are used, as one would for the implicit modeling of solvent molecules, the method LN is superior, with LM closely following. However, with mild damping of 0.2 ps-1, LM produces the best results, allowing long time steps of 14 fs in simulations containing explicitly modeled flexible water. With BBK-M and the same damping coefficient, time steps of 12 fs are possible for the same system. Similar results are obtained for a solvated protein-DNA simulation of estrogen receptor ER with estrogen response element ERE. A parallel version of BBK-M runs nearly three times faster than the Verlet-I/r-RESPA (reversible reference system propagator algorithm) when using the largest stable time step on each one, and it also parallelizes well. The computation of diffusion coefficients for flexible water and ER/ERE shows that when mild damping of up to 0.2 ps-1 is used the dynamics are not significantly distorted.

  5. Dynamical Localization in Molecular Systems.

    NASA Astrophysics Data System (ADS)

    Wang, Xidi

    In the first four chapters of this thesis we concentrate on the Davydov model which describes the vibrational energy quanta of Amide I bonds (C=O bonds on the alpha -helix) coupled to the acoustic phonon modes of the alpha-helix backbone in the form of a Frohlich Hamiltonian. Following a brief introduction in chapter one, in chapter two we formulate the dynamics of vibrational quanta at finite temperature by using coherent state products. The fluctuation-dissipation relation is derived. At zero temperature, in the continuum limit, we recover the original results of Davydov. We also achieve good agreement with numerical simulations. In chapter three, the net contraction of the lattice is calculated exactly at any temperature, and its relation to the so -call "topological stability" of the Davydov soliton is discussed. In the second section of the chapter three we calculate the overtone spectra of crystalline acetanilide (according to some opinions ACN provides experimental evidence for the existence of Davydov solitons). Good agreement with experimental data has been obtained. In chapter four we study the self-trapped vibrational excitations by the Quantum Monte Carlo technique. For a single excitation, the temperature dependence of different physical observables is calculated. The quasi-particle which resembles the Davydov soliton has been found to be fairly narrow using the most commonly used data for the alpha -helix; at temperatures above a few Kelvin, the quasi-particle reaches its smallest limit (extends over three sites), which implies diffusive motion of the small polaron-like quasi-particle at high temperatures. For the multi-excitation case, bound pairs and clusters of excitations are found at low temperatures; they gradually dissociate when the temperature of the system is increased as calculated from the density-density correlation function. In the last chapter of this thesis, we study a more general model of dynamical local modes in molecular systems

  6. Molecular dynamics on APE100

    NASA Astrophysics Data System (ADS)

    Barone, Luciano Maria; Simonazzi, Riccardo; Tenenbaum, Alexander

    1995-09-01

    We have studied portability, efficiency and accuracy of a standard Molecular Dynamics simulation on the SIMD parallel computer APE100. Computing speed performance and physical system size range have been analyzed and compared with those of a conventional computer. Short range and long range potentials have been considered, and the comparative advantage of different simulation approaches has been assessed. For long range potentials, APE turns out to be faster than a conventional computer; large systems can be conveniently simulated using either the cloning approach (up to ˜ 10 5 particles) or a domain decomposition with the systolic method. In the case of short range potentials and systems with diffusion (like a liquid), APE is convenient only when using a large number of processors. In a special case (a crystal without diffusion), a specific domain decomposition technique with frames makes APE advantageous for intermediate and large systems. Using the latter technique we have studied in detail the effect of different numerical error sources, and compared the accuracy of APE with that of a conventional computer.

  7. Dynamics of riboswitches: Molecular simulations.

    PubMed

    Sanbonmatsu, Karissa Y

    2014-10-01

    Riboswitch RNAs play key roles in bacterial metabolism and represent a promising new class of antibiotic targets for treatment of infectious disease. While many studies of riboswitches have been performed, the exact mechanism of riboswitch operation is still not fully understood at the atomistic level of detail. Molecular dynamics simulations are useful for interpreting existing experimental data and producing predictions for new experiments. Here, a wide range of computational studies on riboswitches is reviewed. By elucidating the key principles of riboswitch operation, computation may aid in the effort to design more specific antibiotics with affinities greater than those of the native ligand. Such a detailed understanding may be required to improve efficacy and reduce side effects. These studies are laying the groundwork for understanding the action mechanism of new compounds that inhibit riboswitch activity. Future directions such as magnesium effects, large-scale conformational changes, expression platforms and co-transcriptional folding are also discussed. This article is part of a Special Issue entitled: Riboswitches. PMID:24953187

  8. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  9. Time-Dependent Molecular Reaction Dynamics

    SciTech Connect

    Oehrn, Yngve

    2007-11-29

    This paper is a brief review of a time-dependent, direct, nonadiabatic theory of molecular processes called Electron Nuclear Dynamics (END). This approach to the study of molecular reaction dynamics is a hierarchical theory that can be applied at various levels of approximation. The simplest level of END uses classical nuclei and represents all electrons by a single, complex, determinantal wave function. The wave function parameters such as average nuclear positions and momenta, and molecular orbital coefcients carry the time dependence and serve as dynamical variables. Examples of application are given of the simplest level of END to ion-atom and ion-molecule reactions.

  10. Neutron Imaging Reveals Internal Plant Hydraulic Dynamics

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2011-12-01

    In situ quantification of soil-plant water fluxes have not been fully successful due to a lack of non-destructive techniques capable of revealing roots or water fluxes at relevant spatial scales. Neutron imaging is a unique non-invasive tool that can assess sub-millimeter scale material properties and transport in situ, and which has been successfully applied to characterize soil and plant water status. Here, we have applied neutron radiography and tomography to quantify water transport through individual maize roots in response to internal plant demand. Zea mays seedlings were grown for 10 days in Flint silica sand within 2.6 cm diameter Al chambers. Using a reactor-based neutron source at Oak Ridge National Laboratory (HFIR), water fluxes were tracked through the maize soil-root systems by collecting consecutive neutron radiographs over a 12 h period following irrigation with D2O. D has a much lower neutron attenuation than H, thus D2O displacement of existing H2O within the plant vascular system, or influx of D2O into previously dry tissue or soil is readily tracked by changes in image intensity through time. Plant water release and uptake was regulated by periodically cycling on a high-intensity grow light. From each maize replicate, selected regions of interest (ROI) were delineated around individual roots, root free soil, stem and leaf segments. Changes in ROI were tracked through time to reveal patterns of water flux. The hydration of root and stem tissue cycled in response to illumination; root water content often increased during darkness, then decreased with illumination as water was transported from the root into the stem. Relative root-shoot hydration through time illustrates the balance between demand, storage capacity and uptake, which varies depending on root characteristics and its localized soil environment. The dynamic transport of water between soil, individual roots, stems and leaves was readily visualized and quantified illustrating the value

  11. Reactive Molecular Dynamics Simulations at the Petascale (Invited)

    NASA Astrophysics Data System (ADS)

    Nakano, A.

    2013-12-01

    We are developing a divide-conquer-recombine algorithmic framework into a metascalable (or 'design once, scale on new architectures') parallelization scheme to perform large spatiotemporal-scale reactive molecular dynamics simulations. The scheme has achieved parallel efficiency well over 0.9 on 786,432 IBM BlueGene/Q processors for 8.5 trillion-atom molecular dynamics and 1.9 trillion electronic degrees-of-freedom quantum molecular dynamics in the framework of density functional theory. Simulation results reveal intricate interplay between photoexcitation, mechanics, flow, and chemical reactions at the nanoscale. Specifically, we will discuss atomistic mechanisms of: (1) rapid hydrogen production from water using metallic alloy nanoparticles; (2) molecular control of charge transfer, charge recombination, and singlet fission for efficient solar cells; and (3) mechanically enhanced reaction kinetics in nanobubbles and nanojets.

  12. Communication: Relation of centroid molecular dynamics and ring-polymer molecular dynamics to exact quantum dynamics

    SciTech Connect

    Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.

    2015-05-21

    We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.

  13. Imaging the molecular dynamics of dissociative electron attachment to water

    SciTech Connect

    Adaniya, Hidihito; Rudek, B.; Osipov, Timur; Haxton, Dan; Weber, Thorsten; Rescigno, Thomas N.; McCurdy, C.W.; Belkacem, Ali

    2009-10-19

    Momentum imaging experiments on dissociative electron attachment to the water molecule are combined with ab initio theoretical calculations of the angular dependence of the quantum mechanical amplitude for electron attachment to provide a detailed picture of the molecular dynamics of dissociation attachment via the two lowest energy Feshbach resonances. The combination of momentum imaging experiments and theory can reveal dissociation dynamics for which the axial recoil approximation breaks down and thus provides a powerful reaction microscope for DEA to polyatomics.

  14. Molecular ions, Rydberg spectroscopy and dynamics

    SciTech Connect

    Jungen, Ch.

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  15. Modeling the Hydrogen Bond within Molecular Dynamics

    ERIC Educational Resources Information Center

    Lykos, Peter

    2004-01-01

    The structure of a hydrogen bond is elucidated within the framework of molecular dynamics based on the model of Rahman and Stillinger (R-S) liquid water treatment. Thus, undergraduates are exposed to the powerful but simple use of classical mechanics to solid objects from a molecular viewpoint.

  16. Molecular Dynamics Simulations of Simple Liquids

    ERIC Educational Resources Information Center

    Speer, Owner F.; Wengerter, Brian C.; Taylor, Ramona S.

    2004-01-01

    An experiment, in which students were given the opportunity to perform molecular dynamics simulations on a series of molecular liquids using the Amber suite of programs, is presented. They were introduced to both physical theories underlying classical mechanics simulations and to the atom-atom pair distribution function.

  17. Parallel Molecular Dynamics Program for Molecules

    Energy Science and Technology Software Center (ESTSC)

    1995-03-07

    ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.

  18. Fermionic Molecular Dynamics for Nuclear Dynamics and Thermodynamics

    NASA Astrophysics Data System (ADS)

    Hasnaoui, K. H. O.; Chomaz, Ph; Gulminelli, F.

    A new Fermionic Molecular Dynamics (FMD) model based on a Skyrme functional is proposed in this paper. After introducing the basic formalism, some first applications to nuclear structure and nuclear thermodynamics are presented.

  19. Molecular dynamics: A stitch in time

    NASA Astrophysics Data System (ADS)

    Deupi, Xavier

    2014-01-01

    Lengthy molecular dynamics simulations of complex systems at the atomic scale usually require supercomputers. Now, by stitching together many shorter independent simulations run 'in the cloud', this requirement has been circumvented, allowing two milliseconds of the dynamics of a G-protein-coupled receptor to be simulated.

  20. Dispersion of Response Times Reveals Cognitive Dynamics

    PubMed Central

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2013-01-01

    Trial to trial variation in word pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes – interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and interdependence. Individual participant distributions of ≈1100 word pronunciation times are successfully mimicked for each participant in combinations of lognormal and power law behavior. Successful hazard function simulations generalize these results to establish interaction dominant dynamics, in contrast with component dominant dynamics, as a likely mechanism for cognitive activity. PMID:19348544

  1. Dynamic molecular crystals with switchable physical properties.

    PubMed

    Sato, Osamu

    2016-06-21

    The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials. PMID:27325090

  2. Molecular dynamics simulations: advances and applications

    PubMed Central

    Hospital, Adam; Goñi, Josep Ramon; Orozco, Modesto; Gelpí, Josep L

    2015-01-01

    Molecular dynamics simulations have evolved into a mature technique that can be used effectively to understand macromolecular structure-to-function relationships. Present simulation times are close to biologically relevant ones. Information gathered about the dynamic properties of macromolecules is rich enough to shift the usual paradigm of structural bioinformatics from studying single structures to analyze conformational ensembles. Here, we describe the foundations of molecular dynamics and the improvements made in the direction of getting such ensemble. Specific application of the technique to three main issues (allosteric regulation, docking, and structure refinement) is discussed.

  3. Molecular dynamics simulations of large macromolecular complexes

    PubMed Central

    Perilla, Juan R.; Goh, Boon Chong; Cassidy, C. Keith; Liu, Bo; Bernardi, Rafael C.; Rudack, Till; Yu, Hang; Wu, Zhe; Schulten, Klaus

    2015-01-01

    Connecting dynamics to structural data from diverse experimental sources, molecular dynamics simulations permit the exploration of biological phenomena in unparalleled detail. Advances in simulations are moving the atomic resolution descriptions of biological systems into the million-to-billion atom regime, in which numerous cell functions reside. In this opinion, we review the progress, driven by large-scale molecular dynamics simulations, in the study of viruses, ribosomes, bioenergetic systems, and other diverse applications. These examples highlight the utility of molecular dynamics simulations in the critical task of relating atomic detail to the function of supramolecular complexes, a task that cannot be achieved by smaller-scale simulations or existing experimental approaches alone. PMID:25845770

  4. Dispersion of Response Times Reveals Cognitive Dynamics

    ERIC Educational Resources Information Center

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2009-01-01

    Trial-to-trial variation in word-pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes-interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and…

  5. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding.

    PubMed

    Xie, Bin-Bin; Bian, Fei; Chen, Xiu-Lan; He, Hai-Lun; Guo, Jun; Gao, Xiang; Zeng, Yin-Xin; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2009-04-01

    Increased conformational flexibility is the prevailing explanation for the high catalytic efficiency of cold-adapted enzymes at low temperatures. However, less is known about the structural determinants of flexibility. We reported two novel cold-adapted zinc metalloproteases in the thermolysin family, vibriolysin MCP-02 from a deep sea bacterium and vibriolysin E495 from an Arctic sea ice bacterium, and compared them with their mesophilic homolog, pseudolysin from a terrestrial bacterium. Their catalytic efficiencies, k(cat)/K(m) (10-40 degrees C), followed the order pseudolysin < MCP-02 < E495 with a ratio of approximately 1:2:4. MCP-02 and E495 have the same optimal temperature (T(opt), 57 degrees C, 5 degrees C lower than pseudolysin) and apparent melting temperature (T(m) = 64 degrees C, approximately 10 degrees C lower than pseudolysin). Structural analysis showed that the slightly lower stabilities resulted from a decrease in the number of salt bridges. Fluorescence quenching experiments and molecular dynamics simulations showed that the flexibilities of the proteins were pseudolysin < MCP-02 < E495, suggesting that optimization of flexibility is a strategy for cold adaptation. Molecular dynamics results showed that the ordinal increase in flexibility from pseudolysin to MCP-02 and E495, especially the increase from MCP-02 to E495, mainly resulted from the decrease of hydrogen-bond stability in the dynamic structure, which was due to the increase in asparagine, serine, and threonine residues. Finally, a model for the cold adaptation of MCP-02 and E495 was proposed. This is the first report of the optimization of hydrogen-bonding dynamics as a strategy for cold adaptation and provides new insights into the structural basis underlying conformational flexibility. PMID:19181663

  6. Molecular dynamics studies on nanoscale gas transport

    NASA Astrophysics Data System (ADS)

    Barisik, Murat

    Three-dimensional molecular dynamics (MD) simulations of nanoscale gas flows are studied to reveal surface effects. A smart wall model that drastically reduces the memory requirements of MD simulations for gas flows is introduced. The smart wall molecular dynamics (SWMD) represents three-dimensional FCC walls using only 74 wall Molecules. This structure is kept in the memory and utilized for each gas molecule surface collision. Using SWMD, fluid behavior within nano-scale confinements is studied for argon in dilute gas, dense gas, and liquid states. Equilibrium MD method is employed to resolve the density and stress variations within the static fluid. Normal stress calculations are based on the Irving-Kirkwood method, which divides the stress tensor into its kinetic and virial parts. The kinetic component recovers pressure based on the ideal gas law. The particle-particle virial increases with increased density, while the surface-particle virial develops due to the surface force field effects. Normal stresses within nano-scale confinements show anisotropy induced primarily by the surface force-field and local variations in the fluid density near the surfaces. For dilute and dense gas cases, surface-force field that extends typically 1nm from each wall induces anisotropic normal stress. For liquid case, this effect is further amplified by the density fluctuations that extend beyond the three field penetration region. Outside the wall force-field penetration and density fluctuation regions the normal stress becomes isotropic and recovers the thermodynamic pressure, provided that sufficiently large force cut-off distances are utilized in the computations. Next, non-equilibrium SWMD is utilized to investigate the surface-gas interaction effects on nanoscale shear-driven gas flows in the transition and free molecular flow regimes. For the specified surface properties and gas-surface pair interactions, density and stress profiles exhibit a universal behavior inside the

  7. Molecular dynamic simulations of ocular tablet dissolution.

    PubMed

    Ru, Qian; Fadda, Hala M; Li, Chung; Paul, Daniel; Khaw, Peng T; Brocchini, Steve; Zloh, Mire

    2013-11-25

    Small tablets for implantation into the subconjunctival space in the eye are being developed to inhibit scarring after glaucoma filtration surgery (GFS). There is a need to evaluate drug dissolution at the molecular level to determine how the chemical structure of the active may correlate with dissolution in the nonsink conditions of the conjunctival space. We conducted molecular dynamics simulations to study the dissolution process of tablets derived from two drugs that can inhibit fibrosis after GFS, 5-fluorouracil (5-FU) and the matrix metalloprotease inhibitor (MMPi), ilomastat. The dissolution was simulated in the presence of simple point charge (SPC) water molecules, and the liquid turnover of the aqueous humor in the subconjunctival space was simulated by removal of the dissolved drug molecules at regular intervals and replacement by new water molecules. At the end of the simulation, the total molecular solvent accessible surface area of 5-FU tablets increased by 60 times more than that of ilomastat as a result of tablet swelling and release of molecules into solution. The tablet dissolution pattern shown in our molecular dynamic simulations tends to correlate with experimental release profiles. This work indicates that a series of molecular dynamic simulations can be used to predict the influence of the molecular properties of a drug on its dissolution profile and could be useful during preformulation where sufficient amounts of the drug are not always available to perform dissolution studies. PMID:24073784

  8. Dynamic signature of molecular association in methanol

    NASA Astrophysics Data System (ADS)

    Bertrand, C. E.; Self, J. L.; Copley, J. R. D.; Faraone, A.

    2016-07-01

    Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids.

  9. Dynamic signature of molecular association in methanol.

    PubMed

    Bertrand, C E; Self, J L; Copley, J R D; Faraone, A

    2016-07-01

    Quasielastic neutron scattering measurements and molecular dynamics simulations were combined to investigate the collective dynamics of deuterated methanol, CD3OD. In the experimentally determined dynamic structure factor, a slow, non-Fickian mode was observed in addition to the standard density-fluctuation heat mode. The simulation results indicate that the slow dynamical process originates from the hydrogen bonding of methanol molecules. The qualitative behavior of this mode is similar to the previously observed α-relaxation in supercooled water [M. C. Bellissent-Funel et al., Phys. Rev. Lett. 85, 3644 (2000)] which also originates from the formation and dissolution of hydrogen-bonded associates (supramolecular clusters). In methanol, however, this mode is distinguishable well above the freezing transition. This finding indicates that an emergent slow mode is not unique to supercooled water, but may instead be a general feature of hydrogen-bonding liquids and associating molecular liquids. PMID:27394112

  10. Numerical methods for molecular dynamics

    SciTech Connect

    Skeel, R.D.

    1991-01-01

    This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.

  11. Semiclassical guided optimal control of molecular dynamics

    SciTech Connect

    Kondorskiy, A.; Mil'nikov, G.; Nakamura, H.

    2005-10-15

    An efficient semiclassical optimal control theory applicable to multidimensional systems is formulated for controlling wave packet dynamics on a single adiabatic potential energy surface. The approach combines advantages of different formulations of optimal control theory: quantum and classical on one hand and global and local on the other. Numerical applications to the control of HCN-CNH isomerization demonstrate that this theory can provide an efficient tool to manipulate molecular dynamics of many degrees of freedom by laser pulses.

  12. AVHRR imagery reveals Antarctic ice dynamics

    SciTech Connect

    Bindschadler, R.A.; Vornberger, P.L. STX Corp., Lanham, MD )

    1990-06-01

    A portion of AVHRR data taken on December 5, 1987 at 06:15 GMT over a part of Antarctica is used here to show that many of the most significant dynamic features of ice sheets can be identified by a careful examination of AVHRR imagery. The relatively low resolution of this instrument makes it ideal for obtaining a broad view of the ice sheets, while its wide swath allows coverage of areas beyond the reach of high-resolution imagers either currently in orbit or planned. An interpretation is given of the present data, which cover the area of ice streams that drain the interior of the West Antarctic ice sheet into the Ross Ice Shelf. 21 refs.

  13. Shock induced phase transition of water: Molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-01

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  14. Molecular dynamics calculations of nuclear stimulated desorption

    SciTech Connect

    Glikman, E.; Kelson, I. ); Doan, N.V. )

    1991-09-01

    Molecular dynamics calculations of nuclear stimulated desorption are carried out for a palladium crystal containing radioactive palladium atoms. The total desorption probability from various sites are computed, as well as the angular distribution of the desorbing atoms. The implications of the results to different experimental scenarios are discussed.

  15. Reaction dynamics in polyatomic molecular systems

    SciTech Connect

    Miller, W.H.

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  16. Optimizing replica exchange moves for molecular dynamics.

    PubMed

    Nadler, Walter; Hansmann, Ulrich H E

    2007-11-01

    We sketch the statistical physics framework of the replica exchange technique when applied to molecular dynamics simulations. In particular, we draw attention to generalized move sets that allow a variety of optimizations as well as new applications of the method. PMID:18233794

  17. Revealing protein dynamics by photobleaching techniques.

    PubMed

    van Drogen, Frank; Peter, Matthias

    2004-01-01

    Green fluorescent proteins (GFPs) are widely used tools to visualize proteins and study their intracellular distribution. One feature of working with GFP variants, photobleaching, has recently been combined with an older technique known as fluorescence recovery after photobleaching (FRAP) to study protein kinetics in vivo. During photobleaching, fluorochromes get destroyed irreversibly by repeated excitation with an intensive light source. When the photobleaching is applied to a restricted area or structure, recovery of fluorescence will be the result of active or passive diffusion from fluorescent molecules from unbleached surrounding areas. Fluorescence loss in photobleaching (FLIP) is a variant of FRAP where an area is bleached, and loss of fluorescence in surrounding areas is observed. FLIP can be used to study the dynamics of different pools of a protein or can show how a protein diffuses, or is transported through a cell or cellular structure. Here, we discuss these photobleaching fluorescent imaging techniques, illustrated with examples of these techniques applied to proteins of the Saccharomyces cerevisiae pheromone response MAPK pathway. PMID:15173624

  18. Molecular dynamics of PLK1 during mitosis

    PubMed Central

    Schmucker, Stephane; Sumara, Izabela

    2014-01-01

    Polo-like kinase 1 (PLK1) is a key regulator of eukaryotic cell division. During mitosis, dynamic regulation of PLK1 is crucial for its roles in centrosome maturation, spindle assembly, microtubule–kinetochore attachment, and cytokinesis. Similar to other members of the PLK family, the molecular architecture of PLK1 protein is characterized by 2 domains—the kinase domain and the regulatory substrate-binding domain (polo-box domain)—that cooperate and control PLK1 function during mitosis. Mitotic cells employ many layers of regulation to activate and target PLK1 to different cellular structures in a timely manner. During the last decade, numerous studies have shed light on the precise molecular mechanisms orchestrating the mitotic activity of PLK1 in time and space. This review aims to discuss available data and concepts related to regulation of the molecular dynamics of human PLK1 during mitotic progression. PMID:27308323

  19. Molecular dynamics simulations of weak detonations.

    PubMed

    Am-Shallem, Morag; Zeiri, Yehuda; Zybin, Sergey V; Kosloff, Ronnie

    2011-12-01

    Detonation of a three-dimensional reactive nonisotropic molecular crystal is modeled using molecular dynamics simulations. The detonation process is initiated by an impulse, followed by the creation of a stable fast reactive shock wave. The terminal shock velocity is independent of the initiation conditions. Further analysis shows supersonic propagation decoupled from the dynamics of the decomposed material left behind the shock front. The dependence of the shock velocity on crystal nonlinear compressibility resembles solitary behavior. These properties categorize the phenomena as a weak detonation. The dependence of the detonation wave on microscopic potential parameters was investigated. An increase in detonation velocity with the reaction exothermicity reaching a saturation value is observed. In all other respects the model crystal exhibits typical properties of a molecular crystal. PMID:22304055

  20. Molecular dynamics modeling of a nanomaterials-water surface interaction

    NASA Astrophysics Data System (ADS)

    Nejat Pishkenari, Hossein; Keramati, Ramtin; Abdi, Ahmad; Minary-Jolandan, Majid

    2016-04-01

    In this article, we study the formation of nanomeniscus around a nanoneedle using molecular dynamics simulation approach. The results reveal three distinct phases in the time-evolution of meniscus before equilibrium according to the contact angle, meniscus height, and potential energy. In addition, we investigated the correlation between the nanoneedle diameter and nanomeniscus characteristics. The results have applications in various fields such as scanning probe microscopy and rheological measurements.

  1. Revealing the dynamic heterogeneity of PMMA/PVDF blends: from microscopic dynamics to macroscopic properties.

    PubMed

    Lu, Bo; Lamnawar, Khalid; Maazouz, Abderrahim; Zhang, Huagui

    2016-04-01

    An effort was made to demonstrate the dynamic heterogeneity of poly(methyl methacrylate) (PMMA)/poly(vinylidene fluoride) (PVDF) blends, where its composition dependence and the role of interphase were probed. Firstly, the composition dependence of thermorheological complexity of PMMA/PVDF blends in the melt was revealed. The molecular entanglement state involving intra- and interchain entanglements was found to govern the scenario of thermorheological complexity. Intriguingly, local heterogeneity was further demonstrated to exist in the melt-state blends with intermediate compositions, and its origin was depicted to be the interphase. The interphase, coupled with unfavourable interchain entanglements in those blends, could explain the reduced viscosity and speed-up relaxations, contributing to the overall thermorheological complexity. Besides, two experimental glass transition temperatures of blends were resolved in view of segment motions in the miscible phase and the crystal-amorphous interphase, and further assessed via the "self-concentration" concept. The presence of a crystal-amorphous interphase, likely leading to three distinct dynamics of segments in blends, was supposed to contribute to the dynamic heterogeneity in segment relaxations for PMMA/PVDF blends in the solid state. Lastly, effects of dynamic heterogeneity on dynamic mechanical properties were also evaluated. PMID:26932245

  2. Emulating Molecular Orbitals and Electronic Dynamics with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Lühmann, Dirk-Sören; Weitenberg, Christof; Sengstock, Klaus

    2015-07-01

    In recent years, ultracold atoms in optical lattices have proven their great value as quantum simulators for studying strongly correlated phases and complex phenomena in solid-state systems. Here, we reveal their potential as quantum simulators for molecular physics and propose a technique to image the three-dimensional molecular orbitals with high resolution. The outstanding tunability of ultracold atoms in terms of potential and interaction offer fully adjustable model systems for gaining deep insight into the electronic structure of molecules. We study the orbitals of an artificial benzene molecule and discuss the effect of tunable interactions in its conjugated π electron system with special regard to localization and spin order. The dynamical time scales of ultracold atom simulators are on the order of milliseconds, which allows for the time-resolved monitoring of a broad range of dynamical processes. As an example, we compute the hole dynamics in the conjugated π system of the artificial benzene molecule.

  3. Chain dynamics in a hexadecane melt as seen by neutron scattering and identified by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Morhenn, Humphrey; Busch, Sebastian; Unruh, Tobias

    2012-09-01

    Different local and global chain dynamics in a C16H34 melt could be revealed by resolution resolved time-of-flight quasielastic neutron scattering and complementary molecular dynamics simulations. Thereby it has been demonstrated that the measured intermediate scattering functions can validate the simulated data on the pico- to nanosecond timescale. Remarkably the shape of the experimentally measured intermediate scattering functions can be reproduced excellently by molecular dynamics simulations. It was found that although the extracted apparent activation energy corresponds to the long-range diffusion value, the molecular dynamics in this time range are mainly due to local bond rotations and the rotation of entire molecules.

  4. Finite Temperature Quasicontinuum: Molecular Dynamics without all the Atoms

    SciTech Connect

    Dupuy, L; Tadmor, E B; Miller, R E; Phillips, R

    2005-02-02

    Using a combination of statistical mechanics and finite-element interpolation, the authors develop a coarse-grained (CG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature. The new approach is significantly more efficient than MD and generalizes earlier work on the quasi-continuum method. The method is validated by recovering equilibrium properties of single crystal Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong dependence on temperature of the critical stress to nucleate dislocations under the indenter.

  5. Exciton dynamics in perturbed vibronic molecular aggregates

    PubMed Central

    Brüning, C.; Wehner, J.; Hausner, J.; Wenzel, M.; Engel, V.

    2015-01-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  6. Exciton dynamics in perturbed vibronic molecular aggregates.

    PubMed

    Brüning, C; Wehner, J; Hausner, J; Wenzel, M; Engel, V

    2016-07-01

    A site specific perturbation of a photo-excited molecular aggregate can lead to a localization of excitonic energy. We investigate this localization dynamics for laser-prepared excited states. Changing the parameters of the electric field significantly influences the exciton localization which offers the possibility for a selective control of this process. This is demonstrated for aggregates possessing a single vibrational degree of freedom per monomer unit. It is shown that the effects identified for the molecular dimer can be generalized to larger aggregates with a high density of vibronic states. PMID:26798840

  7. Efficient Molecular Dynamics Simulations of Multiple Radical Center Systems Based on the Fragment Molecular Orbital Method

    SciTech Connect

    Nakata, Hiroya; Schmidt, Michael W; Fedorov, Dmitri G; Kitaura, Kazuo; Nakamura, Shinichiro; Gordon, Mark S

    2014-10-16

    The fully analytic energy gradient has been developed and implemented for the restricted open-shell Hartree–Fock (ROHF) method based on the fragment molecular orbital (FMO) theory for systems that have multiple open-shell molecules. The accuracy of the analytic ROHF energy gradient is compared with the corresponding numerical gradient, illustrating the accuracy of the analytic gradient. The ROHF analytic gradient is used to perform molecular dynamics simulations of an unusual open-shell system, liquid oxygen, and mixtures of oxygen and nitrogen. These molecular dynamics simulations provide some insight about how triplet oxygen molecules interact with each other. Timings reveal that the method can calculate the energy gradient for a system containing 4000 atoms in only 6 h. Therefore, it is concluded that the FMO-ROHF method will be useful for investigating systems with multiple open shells.

  8. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  9. Molecular dynamics study of cyclohexane interconversion

    NASA Astrophysics Data System (ADS)

    Wilson, Michael A.; Chandler, David

    1990-12-01

    Classical molecular dynamics calculations are reported for one C 6H 12 molecule in a bath of 250 CS 2 molecules at roomtemperature and liquid densities of 1.0, 1.3, 1.4 and 1.5 g/cm 3. The solvent contribution to the free energy of activation for the chair-boat isomerization has been determined to high accuracy. The transmission coefficient and reactive flux correlation functions have also been computed. The results obtained agree with earlier conclusions drawn from RISM integral equation calculations and stochastic molecular dynamics calculations. Namely, the solvent effect on the rate manifests a qualitative breakdown of transition state theory and the RRKM picture of unimolecular kinetics. Analysis of the activated trajectories indicate a significant degree of quasiperiodicity.

  10. Molecular dynamics at constant Cauchy stress

    NASA Astrophysics Data System (ADS)

    Miller, Ronald E.; Tadmor, Ellad B.; Gibson, Joshua S.; Bernstein, Noam; Pavia, Fabio

    2016-05-01

    The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.

  11. Molecular dynamics at constant Cauchy stress.

    PubMed

    Miller, Ronald E; Tadmor, Ellad B; Gibson, Joshua S; Bernstein, Noam; Pavia, Fabio

    2016-05-14

    The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress. PMID:27179471

  12. ADAPTIVE MULTILEVEL SPLITTING IN MOLECULAR DYNAMICS SIMULATIONS*

    PubMed Central

    Aristoff, David; Lelièvre, Tony; Mayne, Christopher G.; Teo, Ivan

    2014-01-01

    Adaptive Multilevel Splitting (AMS) is a replica-based rare event sampling method that has been used successfully in high-dimensional stochastic simulations to identify trajectories across a high potential barrier separating one metastable state from another, and to estimate the probability of observing such a trajectory. An attractive feature of AMS is that, in the limit of a large number of replicas, it remains valid regardless of the choice of reaction coordinate used to characterize the trajectories. Previous studies have shown AMS to be accurate in Monte Carlo simulations. In this study, we extend the application of AMS to molecular dynamics simulations and demonstrate its effectiveness using a simple test system. Our conclusion paves the way for useful applications, such as molecular dynamics calculations of the characteristic time of drug dissociation from a protein target. PMID:26005670

  13. New faster CHARMM molecular dynamics engine

    PubMed Central

    Hynninen, Antti-Pekka; Crowley, Michael F

    2014-01-01

    We introduce a new faster molecular dynamics (MD) engine into the CHARMM software package. The new MD engine is faster both in serial (i.e., single CPU core) and parallel execution. Serial performance is approximately two times higher than in the previous version of CHARMM. The newly programmed parallelization method allows the MD engine to parallelize up to hundreds of CPU cores. PMID:24302199

  14. Molecular dynamics modelling of solidification in metals

    SciTech Connect

    Boercker, D.B.; Belak, J.; Glosli, J.

    1997-12-31

    Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.

  15. Computational mutagenesis reveals the role of active-site tyrosine in stabilising a boat conformation for the substrate: QM/MM molecular dynamics studies of wild-type and mutant xylanases.

    PubMed

    Soliman, Mahmoud E S; Ruggiero, Giuseppe D; Pernía, J Javier Ruiz; Greig, Ian R; Williams, Ian H

    2009-02-01

    Molecular dynamics simulations have been performed for non-covalent complexes of phenyl beta-xylobioside with the retaining endo-beta-1,4-xylanase from B. circulans (BCX) and its Tyr69Phe mutant using a hybrid QM/MM methodology. A trajectory initiated for the wild-type enzyme-substrate complex with the proximal xylose ring bound at the -1 subsite (adjacent to the scissile glycosidic bond) in the (4)C(1) chair conformation shows spontaneous transformation to the (2,5)B boat conformation, and potential of mean force calculations indicate that the boat is approximately 30 kJ mol(-1) lower in free energy than the chair. Analogous simulations for the mutant lacking one oxygen atom confirm the key role of Tyr69 in stabilizing the boat in preference to the (4)C(1) chair conformation, with a relative free energy difference of about 20 kJ mol(-1), by donating a hydrogen bond to the endocyclic oxygen of the proximal xylose ring. QM/MM MD simulations for phenyl beta-xyloside in water, with and without a propionate/propionic acid pair to mimic the catalytic glutamate/glutamic acid pair of the enzyme, show the (4)C(1) chair to be stable, although a hydrogen bond between the OH group at C2 of xylose and the propionate moiety seems to provide some stabilization for the (2,5)B conformation. PMID:19156310

  16. Applications of the molecular dynamics flexible fitting method.

    PubMed

    Trabuco, Leonardo G; Schreiner, Eduard; Gumbart, James; Hsin, Jen; Villa, Elizabeth; Schulten, Klaus

    2011-03-01

    In recent years, cryo-electron microscopy (cryo-EM) has established itself as a key method in structural biology, permitting the structural characterization of large biomolecular complexes in various functional states. The data obtained through single-particle cryo-EM has recently seen a leap in resolution thanks to landmark advances in experimental and computational techniques, resulting in sub-nanometer resolution structures being obtained routinely. The remaining gap between these data and revealing the mechanisms of molecular function can be closed through hybrid modeling tools that incorporate known atomic structures into the cryo-EM data. One such tool, molecular dynamics flexible fitting (MDFF), uses molecular dynamics simulations to combine structures from X-ray crystallography with cryo-EM density maps to derive atomic models of large biomolecular complexes. The structures furnished by MDFF can be used subsequently in computational investigations aimed at revealing the dynamics of the complexes under study. In the present work, recent applications of MDFF are presented, including the interpretation of cryo-EM data of the ribosome at different stages of translation and the structure of a membrane-curvature-inducing photosynthetic complex. PMID:20932910

  17. Molecular crowding and protein enzymatic dynamics.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2012-05-21

    The effects of molecular crowding on the enzymatic conformational dynamics and transport properties of adenylate kinase are investigated. This tridomain protein undergoes large scale hinge motions in the course of its enzymatic cycle and serves as prototype for the study of crowding effects on the cyclic conformational dynamics of proteins. The study is carried out at a mesoscopic level where both the protein and the solvent in which it is dissolved are treated in a coarse grained fashion. The amino acid residues in the protein are represented by a network of beads and the solvent dynamics is described by multiparticle collision dynamics that includes effects due to hydrodynamic interactions. The system is crowded by a stationary random array of hard spherical objects. Protein enzymatic dynamics is investigated as a function of the obstacle volume fraction and size. In addition, for comparison, results are presented for a modification of the dynamics that suppresses hydrodynamic interactions. Consistent with expectations, simulations of the dynamics show that the protein prefers a closed conformation for high volume fractions. This effect becomes more pronounced as the obstacle radius decreases for a given volume fraction since the average void size in the obstacle array is smaller for smaller radii. At high volume fractions for small obstacle radii, the average enzymatic cycle time and characteristic times of internal conformational motions of the protein deviate substantially from their values in solution or in systems with small density of obstacles. The transport properties of the protein are strongly affected by molecular crowding. Diffusive motion adopts a subdiffusive character and the effective diffusion coefficients can change by more than an order of magnitude. The orientational relaxation time of the protein is also significantly altered by crowding. PMID:22476233

  18. Monoamine transporters: insights from molecular dynamics simulations

    PubMed Central

    Grouleff, Julie; Ladefoged, Lucy Kate; Koldsø, Heidi; Schiøtt, Birgit

    2015-01-01

    The human monoamine transporters (MATs) facilitate the reuptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Imbalance in monoaminergic neurotransmission is linked to various diseases including major depression, attention deficit hyperactivity disorder, schizophrenia, and Parkinson’s disease. Inhibition of the MATs is thus an important strategy for treatment of such diseases. The MATs are sodium-coupled transport proteins belonging to the neurotransmitter/Na+ symporter (NSS) family, and the publication of the first high-resolution structure of a NSS family member, the bacterial leucine transporter LeuT, in 2005, proved to be a major stepping stone for understanding this family of transporters. Structural data allows for the use of computational methods to study the MATs, which in turn has led to a number of important discoveries. The process of substrate translocation across the membrane is an intrinsically dynamic process. Molecular dynamics simulations, which can provide atomistic details of molecular motion on ns to ms timescales, are therefore well-suited for studying transport processes. In this review, we outline how molecular dynamics simulations have provided insight into the large scale motions associated with transport of the neurotransmitters, as well as the presence of external and internal gates, the coupling between ion and substrate transport, and differences in the conformational changes induced by substrates and inhibitors. PMID:26528185

  19. Optimally designed fields for controlling molecular dynamics

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel

    1991-10-01

    This research concerns the development of molecular control theory techniques for designing optical fields capable of manipulating molecular dynamic phenomena. Although is has been long recognized that lasers should be capable of manipulating dynamic events, many frustrating years of intuitively driven laboratory studies only serve to illustrate the point that the task is complex and defies intuition. The principal new component in the present research is the recognition that this problem falls into the category of control theory and its inherent complexities require the use of modern control theory tools largely developed in the engineering disciplines. Thus, the research has initiated a transfer of the control theory concepts to the molecular scale. Although much contained effort will be needed to fully develop these concepts, the research in this grant set forth the basic components of the theory and carried out illustrative studies involving the design of optical fields capable of controlling rotational, vibrational and electronic degrees of freedom. Optimal control within the quantum mechanical molecular realm represents a frontier area with many possible ultimate applications. At this stage, the theoretical tools need to be joined with merging laboratory optical pulse shaping capabilities to illustrate the power of the concepts.

  20. Structure and dynamics of complex liquid water: Molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    S, Indrajith V.; Natesan, Baskaran

    2015-06-01

    We have carried out detailed structure and dynamical studies of complex liquid water using molecular dynamics simulations. Three different model potentials, namely, TIP3P, TIP4P and SPC-E have been used in the simulations, in order to arrive at the best possible potential function that could reproduce the structure of experimental bulk water. All the simulations were performed in the NVE micro canonical ensemble using LAMMPS. The radial distribution functions, gOO, gOH and gHH and the self diffusion coefficient, Ds, were calculated for all three models. We conclude from our results that the structure and dynamical parameters obtained for SPC-E model matched well with the experimental values, suggesting that among the models studied here, the SPC-E model gives the best structure and dynamics of bulk water.

  1. Dynamic Maintenance and Visualization of Molecular Surfaces

    SciTech Connect

    Bajaj, C L; Pascucci, V; Shamir, A; Holt, R J; Netravali, A N

    2004-12-16

    Molecular surface computations are often necessary in order to perform synthetic drug design. A critical step in this process is the computation and update of an exact boundary representation for the molecular surface (e.g. the Lee-Richards surface). In this paper they introduce efficient techniques for computing a molecular surface boundary representation as a set of NURBS (non-uniform rational B-splines) patches. This representation introduces for molecules the same geometric data structure used in the solid modeling community and enables immediate access to a wide range of modeling operations and techniques. Furthermore, this allows the use of any general solid modeling or visualization system as a molecular modeling interface. However, using such a representation in a molecular modeling environment raises several efficiency and update constraints, especially in a dynamic setting. For example, changes in the probe radius result in both geometric and topological changes to the set of patches. The techniques provide the option of trading accuracy of the representation for the efficiency of the computation, while still tracking the changes in the set of patches. In particular, they discuss two main classes of dynamic updates: one that keeps the topology of the molecular configuration fixed, and a more complicated case where the topology may be updated continuously. In general the generated output surface is represented in a format that can be loaded into standard solid modeling systems. It can also be directly triangulated or rendered, possibly at different levels of resolution, by a standard graphics library such as OpenGL without any additional effort.

  2. The 2011 Dynamics of Molecular Collisions Conference

    SciTech Connect

    Nesbitt, David J.

    2011-07-11

    The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor

  3. Molecular data and ecological niche modeling reveal population dynamics of widespread shrub Forsythia suspensa (Oleaceae) in China’s warm-temperate zone in response to climate change during the Pleistocene

    PubMed Central

    2014-01-01

    Background Despite its high number of endemic deciduous broad-leaved species in China’s warm-temperate zone, far less attention has been paid to phylogeographic studies in this region. In this work, the phylogeographic history of Forsythia suspensa endemic to China’s warm-temperate zone was investigated to explore the effect of climate change during the Pleistocene on the distribution of this deciduous broad-leaved species in China. Results The cpDNA data revealed seven phylogeographical groups corresponding to geographical regions. By contrast, the nrDNA data supported the samples clustered into three groups, which was inconsistent with separate geographical regions supported by cpDNA data. Ecological niche modeling showed that the climatically suitable area during the cold period was larger than that during the warm period. Conclusions Both molecular data and ecological niche modeling indicated that F. suspensa expanded to nearby low-elevation plains in the glacial periods, and retreated to mountaintops during interglacial warmer stages. This study thus supported that F. suspensa persisted in situ during the glacial of the Pleistocene with enlarged distribution area, contrary to the hypothesis of long distance southward migration or large-scale range contraction. PMID:24885704

  4. Annihilation of craters: Molecular dynamic simulations on a silver surface

    SciTech Connect

    Henriksson, K. O. E.; Nordlund, K.; Keinonen, J.

    2007-12-15

    The ability of silver cluster ions containing 13 atoms to fill in a preexisting crater with a radius of about 28 A ring on a silver (001) target has been investigated using molecular dynamics simulations and the molecular-dynamics-Monte Carlo corrected effective medium potential. The largest lateral distance r between crater and ion was about three times the radius of the preexisting crater, namely, 75 A ring . The results reveal that when r<20 A ring and r>60 A ring the preexisting crater is partially filled in, and for other distances there is a net growth of the crater. The lattice damage created by the cluster ions, the total sputtering yield, the cluster sputtering yield, and simulated transmission electron microscopy images of the irradiated targets are also presented.

  5. HERSCHEL OBSERVATIONS REVEAL ANOMALOUS MOLECULAR ABUNDANCES TOWARD THE GALACTIC CENTER

    SciTech Connect

    Sonnentrucker, P.; Neufeld, D. A.; Indriolo, N.; Gerin, M.; De Luca, M.; Lis, D. C.; Goicoechea, J. R.

    2013-01-20

    We report the Herschel detections of hydrogen fluoride (HF) and para-water (p-H{sub 2}O) in gas intercepting the sight lines to two well-studied molecular clouds in the vicinity of the Sgr A complex: G-0.02-0.07 (the {sup +}50 km s{sup -1} cloud{sup )} and G-0.13-0.08 (the {sup +}20 km s{sup -1} cloud{sup )}. Toward both sight lines, HF and water absorption components are detected over a wide range of velocities covering {approx}250 km s{sup -1}. For all velocity components with V{sub LSR} > -85 km s{sup -1}, we find that the HF and water abundances are consistent with those measured toward other sight lines probing the Galactic disk gas. The velocity components with V{sub LSR} {<=} -85 km s{sup -1}, which are known to trace gas residing within {approx}200 pc of the Galactic center, however, exhibit water vapor abundances with respect to HF at least a factor three higher than those found in the Galactic disk gas. Comparison with CH data indicates that our observations are consistent with a picture where HF and a fraction of the H{sub 2}O absorption arise in diffuse molecular clouds showing Galactic disk-like abundances while the bulk of the water absorption arises in warmer (T {>=} 400 K) diffuse molecular gas for V{sub LSR} {<=} -85 km s{sup -1}. This diffuse Interstellar Medium (ISM) phase has also been recently revealed through observations of CO, HF, H{sup +}{sub 3}, and H{sub 3}O{sup +} absorption toward other sight lines probing the Galactic center inner region.

  6. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease.

    PubMed

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-07-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the 'gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  7. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease

    PubMed Central

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-01-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the ‘gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  8. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-01

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems. PMID:27276553

  9. Application of optimal prediction to molecular dynamics

    SciTech Connect

    Barber IV, John Letherman

    2004-12-01

    Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

  10. Spectroscopy and molecular dynamics in nonpolar fluids

    NASA Astrophysics Data System (ADS)

    Everitt, Karl Frederick

    This thesis considers the mechanisms by which molecular dynamics in nonpolar liquids influences solvation dynamics and vibrational energy relaxation. We use semiclassical molecular dynamics simulations to calculate photon echo signals for two simple fluids. We demonstrate that two new observables are directly related to the relevant molecular quantity, the frequency- frequency time correlation function (TCF), in contrast to the commonly measured 3PEPS, which cannot be simply related to this TCF at short times. We also present a semianalytic photon echo theory, based on an ansatz which determines the full time dependence from the short time expansion coefficients of the TCF. We demonstrate that this theory accurately predicts most photon echo observables, even when the theory's gaussian approximation is not accurate. We also consider vibrational energy relaxation (VER) in liquid oxygen. Using semiclassical molecular dynamics simulations and an intermolecular potential from the literature, we evaluate the required quantity (the spectral density of a certain force-force TCF) using the same ansatz described above. We demonstrate numerically that this procedure is accurate. Approximately relating this semiclassical rate to the fully quantum mechanical VER rate, using one of the more accurate ``quantum corrections'' available in the literature, yields a result which is in order-of-magnitude agreement with the experimental VER rate. We also calculate the VER rate for liquid oxygen/argon mixtures. The rotations of the solvent near a vibrationally excited molecule, and of that molecule itself, have important consequences for the short-time dynamics of the force-force TCF. We propose a simple statistical model which quantitatively explains the mole- fraction dependence of the observed VER rate. Next, we demonstrate that a newly-developed model for oxygen very accurately describes the liquid, by comparing to experimental measures of microscopic structure and dynamics. We also