Science.gov

Sample records for molecular evolution improves

  1. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  2. Workshop on Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Cummings, Michael P.

    2004-01-01

    Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.

  3. Evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Sevenster, M.

    1993-01-01

    The evolution of interstellar molecular hydrogen was studied, with a special interest for the formation and evolution of molecular clouds and star formation within them, by a two-dimensional hydrodynamical simulation performed on a rectangular grid of physical sizes on the order of 100 pc. It is filled with an initial density of approx. 1 cm(exp -3), except for one cell (approx. 1 pc(exp 2)) at the center of the grid where an accretion core of 1-10(exp 3) solar masses is placed. The grid is co-moving with the gridcenter that is on a circular orbit around the Galactic center and that also is the guiding center of epicyclic approximation of orbits of the matter surrounding it. The initial radial velocity is zero; to account for differential rotation the initial tangential velocity (i.e. the movement around the galactic center) is proportional to the radial distance to the grid center. The rate is comparable to the rotation rate at the Local Standard of Rest. The influence of galactic rotation is noticed by spiral or elliptical forms, but on much longer time scales than self gravitation and cooling processes. Density and temperature are kept constant at the boundaries and no inflow is allowed along the tangential boundaries.

  4. A Directed Molecular Evolution Approach to Improved Immunogenicity of the HIV-1 Envelope Glycoprotein

    PubMed Central

    Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.

    2011-01-01

    A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594

  5. The Molecular Basis of Evolution.

    ERIC Educational Resources Information Center

    Wilson, Allan C.

    1985-01-01

    Discovery that mutations accumulate at steady rates over time in the genes of all lineages of plants and animals has led to new insights into evolution at the molecular and organismal levels. Discusses molecular evolution, examining deoxyribonuclei acid (DNA) sequences, morphological distances, and codon rate of change. (DH)

  6. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  7. Molecular imprint of dust evolution

    NASA Astrophysics Data System (ADS)

    Akimkin, Vitaly; Zhukovska, Svitlana; Wiebe, Dmitri; Semenov, Dmitry; Pavlyuchenkov, Yaroslav; Vasyunin, Anton; Birnstiel, Til; Henning, Thomas

    2013-07-01

    Evolution of sub-micron grains is an essential process during early stages of planet formation. The dust growth and sedimentation to the midplane affect a spectral energy distribution. At the same time dust evolution can alter significantly the distribution of gas that is a factor of 100 more massive than dust and can be traced with molecular line observations. We present simulations of protoplanetary disk structure with grain evolution using the ANDES code ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES comprises (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain chemical network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. Such a set of physical processes allows us to assess the impact of dust evolution on the gas component, which is primarily related to radiation field and total available surface for chemical reactions. Considering cases of (i) evolved dust (2 Myr of grain coagulation, fragmentation and sedimentation) and (ii) pristine dust (well- mixed 0.1 micron grains), we found a sufficient changes in disk physical and chemical structure caused by the dust evolution. Due to higher transparency of the evolved disk model UV-shielded molecular layer is shifted closer to the midplane. The presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO, while the depletion is still effective in adjacent upper layers. Molecular concentrations of many species are enhanced in the disk model with dust evolution (CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO) which provides an opportunity to use these molecules as tracers of dust evolution.

  8. Thermal Solutions for Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Mast, Christof B.; Osterman, Natan; Braun, Dieter

    2012-12-01

    The key requirement to solve the origin of life puzzle are disequilibrium conditions. Early molecular evolution cannot be explained by initial high concentrations of energetic chemicals since they would just react towards their chemical equilibrium allowing no further development. We argue here that persistent disequilibria are needed to increase complexity during molecular evolution. We propose thermal gradients as the disequilibrium setting which drove Darwinian molecular evolution. On the one hand the thermal gradient gives rise to laminar thermal convection flow with highly regular temperature oscillations that allow melting and replication of DNA. On the other hand molecules move along the thermal gradient, a mechanism termed Soret effect or thermophoresis. Inside a long chamber a combination of the convection flow and thermophoresis leads to a very efficient accumulation of molecules. Short DNA is concentrated thousand-fold, whereas longer DNA is exponentially better accumulated. We demonstrated both scenarios in the same micrometer-sized setting. Forthcoming experiments will reveal how replication and accumulation of DNA in a system, driven only by a thermal gradient, could create a Darwinian process of replication and selection.

  9. Adaptive evolution of molecular phenotypes

    NASA Astrophysics Data System (ADS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  10. Bringing Molecules Back into Molecular Evolution

    PubMed Central

    Wilke, Claus O.

    2012-01-01

    Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events. PMID:22761562

  11. Trends in substitution models of molecular evolution

    PubMed Central

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  12. Trends in substitution models of molecular evolution.

    PubMed

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  13. The Molecular Evolution of Actin

    PubMed Central

    Hightower, Robin C.; Meagher, Richard B.

    1986-01-01

    We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3–7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11–15% replacement substitution. In the analysis of plant actins, replacement substitution between soybean actin genes SAc1, SAc3, SAc4 and maize actin gene MAc1 ranged from 8–10%, whereas these members within the soybean actin gene family ranged from 6–9% replacement substitution. The rate of sequence divergence of plant actin sequences appears to be similar to that observed for animal actins. Furthermore, these and other data suggest that the plant actin gene family is ancient and that the families of soybean and maize actin genes have diverged from a single common ancestral plant actin gene that originated long before the divergence of monocots and dicots. The soybean actin multigene family encodes at least three classes of actin. These classes each contain a pair of actin genes that have been designated kappa (SAc1, SAc6), lambda (SAc2, SAc4) and mu (SAc3, SAc7). The three classes of soybean actin are more divergent in nucleotide sequence from one another than higher animal cytoplasmic actin is divergent from muscle actin. The location and distribution of amino acid changes were compared between actin proteins from all sources. A comparison of the hydropathy of all actin sequences, except from Oxytricha, indicated a strong similarity in hydropathic character between all plant and nonplant actins despite the greater number of replacement substitutions in plant actins. These protein sequence

  14. Molecular evolution and thermal adaptation

    NASA Astrophysics Data System (ADS)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  15. Statistical limitations on molecular evolution.

    PubMed

    Perlovsky, Leonid I

    2002-06-01

    Complexity of functions evolving in an evolution process are expected to be limited by the time length of an evolution process among other factors. This paper outlines a general method of deriving function-complexity limitations based on mathematical statistics and independent from details of a biological or genetic mechanism of the evolution of the function. Limitations on the emergence of life are derived, these limitations indicate a possibility of a very fast evolution and are consistent with "RNA world" hypothesis. The discussed method is general and can be used to characterize evolution of more specific biological organism functions and relate functions to genetic structures. The derived general limitations indicate that a co-evolution of multiple functions and species could be a slow process, whereas an evolution of a specific function might proceed very fast, so that no trace of intermediate forms (species) is preserved in fossil records of phenotype or DNA structure; this is consistent with a picture of "punctuated equilibrium". PMID:12023805

  16. Molecular evolution tracks macroevolutionary transitions in Cetacea.

    PubMed

    McGowen, Michael R; Gatesy, John; Wildman, Derek E

    2014-06-01

    Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. PMID:24794916

  17. Molecular Evolution of Puumala Hantavirus

    PubMed Central

    Sironen, Tarja; Vaheri, Antti; Plyusnin, Alexander

    2001-01-01

    Puumala virus (PUUV) is a negative-stranded RNA virus in the genus Hantavirus, family Bunyaviridae. In this study, detailed phylogenetic analysis was performed on 42 complete S segment sequences of PUUV originated from several European countries, Russia, and Japan, the largest set available thus far for hantaviruses. The results show that PUUV sequences form seven distinct and well-supported genetic lineages; within these lineages, geographical clustering of genetic variants is observed. The overall phylogeny of PUUV is star-like, suggesting an early split of genetic lineages. The individual PUUV lineages appear to be independent, with the only exception to this being the Finnish and the Russian lineages that are closely connected to each other. Two strains of PUUV-like virus from Japan form the most ancestral lineage diverging from PUUV. Recombination points within the S segment were searched for and evidence for intralineage recombination events was seen in the Finnish, Russian, Danish, and Belgian lineages of PUUV. Molecular clock analysis showed that PUUV is a stable virus, evolving slowly at a rate of 0.7 × 10−7 to 2.2 × 10−6 nt substitutions per site per year. PMID:11689661

  18. Molecular pathogenesis of CLL and its evolution.

    PubMed

    Rodríguez, David; Bretones, Gabriel; Arango, Javier R; Valdespino, Víctor; Campo, Elías; Quesada, Víctor; López-Otín, Carlos

    2015-03-01

    In spite of being the most prevalent adult leukemia in Western countries, the molecular mechanisms driving the establishment and progression of chronic lymphocytic leukemia (CLL) remain largely unknown. In recent years, the use of next-generation sequencing techniques has uncovered new and, in some cases, unexpected driver genes with prognostic and therapeutic value. The mutational landscape of CLL is characterized by high-genetic and epigenetic heterogeneity, low mutation recurrence and a long tail of cases with undefined driver genes. On the other hand, the use of deep sequencing has also revealed high intra-tumor heterogeneity and provided a detailed picture of clonal evolution processes. This phenomenon, in which aberrant DNA methylation can also participate, appears to be tightly associated to poor outcomes and chemo-refractoriness, thus providing a new subject for therapeutic intervention. Hence, and having in mind the limitations derived from the CLL complexity thus described, the application of massively parallel sequencing studies has unveiled a wealth of information that is expected to substantially improve patient staging schemes and CLL clinical management. PMID:25630433

  19. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  20. Evolution of molecular phenotypes under stabilizing selection

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes.

  1. Molecular evolution of prolactin in primates.

    PubMed

    Wallis, O Caryl; Mac-Kwashie, Akofa O; Makri, Georgia; Wallis, Michael

    2005-05-01

    Pituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus). Slow loris prolactin is very similar in sequence to pig prolactin, so the episode of rapid change occurred during primate evolution, after the separation of lines leading to prosimians and higher primates. Marmoset prolactin is similar in sequence to human prolactin, so the accelerated evolution occurred before divergence of New World monkeys and Old World monkeys/apes. The burst of change was confined largely to coding sequence (nonsynonymous sites) for mature prolactin and is not marked in other components of the gene sequence. This and the observations that (1) there was no apparent loss of function during the episode of rapid evolution, (2) the rate of evolution slowed toward the basal rate after this burst, and (3) the distribution of substitutions in the prolactin molecule is very uneven support the idea that this episode of rapid change was due to positive adaptive selection. In the slow loris and marmoset there is no evidence for duplication of the prolactin gene, and evidence from another New World monkey (Cebus albifrons) and from the chimpanzee and human genome sequences, suggests that this is the general position in primates, contrasting with the situation for GH genes. The chimpanzee prolactin sequence differs from that of human at two residues and comparison of human and chimpanzee prolactin gene sequences suggests that noncoding regions associated with regulating

  2. Selectionism and Neutralism in Molecular Evolution

    PubMed Central

    Nei, Masatoshi

    2006-01-01

    Charles Darwin proposed that evolution occurs primarily by natural selection, but this view has been controversial from the beginning. Two of the major opposing views have been mutationism and neutralism. Early molecular studies suggested that most amino acid substitutions in proteins are neutral or nearly neutral and the functional change of proteins occurs by a few key amino acid substitutions. This suggestion generated an intense controversy over selectionism and neutralism. This controversy is partially caused by Kimura's definition of neutrality, which was too strict (|2Ns| ≤ 1). If we define neutral mutations as the mutations that do not change the function of gene products appreciably, many controversies disappear because slightly deleterious and slightly advantageous mutations are engulfed by neutral mutations. The ratio of the rate of nonsynonymous nucleotide substitution to that of synonymous substitution is a useful quantity to study positive Darwinian selection operating at highly variable genetic loci, but it does not necessarily detect adaptively important codons. Previously, multigene families were thought to evolve following the model of concerted evolution, but new evidence indicates that most of them evolve by a birth-and-death process of duplicate genes. It is now clear that most phenotypic characters or genetic systems such as the adaptive immune system in vertebrates are controlled by the interaction of a number of multigene families, which are often evolutionarily related and are subject to birth-and-death evolution. Therefore, it is important to study the mechanisms of gene family interaction for understanding phenotypic evolution. Because gene duplication occurs more or less at random, phenotypic evolution contains some fortuitous elements, though the environmental factors also play an important role. The randomness of phenotypic evolution is qualitatively different from allele frequency changes by random genetic drift. However, there is

  3. Molecular evolution of hydrogen peroxide degrading enzymes.

    PubMed

    Zámocký, Marcel; Gasselhuber, Bernhard; Furtmüller, Paul G; Obinger, Christian

    2012-09-15

    For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants. PMID:22330759

  4. Molecular epidemiology, phylogeny and evolution of Legionella.

    PubMed

    Khodr, A; Kay, E; Gomez-Valero, L; Ginevra, C; Doublet, P; Buchrieser, C; Jarraud, S

    2016-09-01

    Legionella are opportunistic pathogens that develop in aquatic environments where they multiply in protozoa. When infected aerosols reach the human respiratory tract they may accidentally infect the alveolar macrophages leading to a severe pneumonia called Legionnaires' disease (LD). The ability of Legionella to survive within host-cells is strictly dependent on the Dot/Icm Type 4 Secretion System that translocates a large repertoire of effectors into the host cell cytosol. Although Legionella is a large genus comprising nearly 60 species that are worldwide distributed, only about half of them have been involved in LD cases. Strikingly, the species Legionella pneumophila alone is responsible for 90% of all LD cases. The present review summarizes the molecular approaches that are used for L. pneumophila genotyping with a major focus on the contribution of whole genome sequencing (WGS) to the investigation of local L. pneumophila outbreaks and global epidemiology studies. We report the newest knowledge regarding the phylogeny and the evolution of Legionella and then focus on virulence evolution of those Legionella species that are known to have the capacity to infect humans. Finally, we discuss the evolutionary forces and adaptation mechanisms acting on the Dot/Icm system itself as well as the role of mobile genetic elements (MGE) encoding T4ASSs and of gene duplications in the evolution of Legionella and its adaptation to different hosts and lifestyles. PMID:27180896

  5. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  6. The chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Iglesias, E.

    1977-01-01

    The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.

  7. R evolution: Improving perturbative QCD

    SciTech Connect

    Hoang, Andre H.; Jain, Ambar; Stewart, Iain W.; Scimemi, Ignazio

    2010-07-01

    Perturbative QCD results in the MS scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the ''MSR scheme'' which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS. Results in MSR depend on a cutoff parameter R, in addition to the {mu} of MS. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like {mu} in MS). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q{approx}1 GeV, and power corrections are reduced compared to MS.

  8. R evolution: Improving perturbative QCD

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Jain, Ambar; Scimemi, Ignazio; Stewart, Iain W.

    2010-07-01

    Perturbative QCD results in the MS¯ scheme can be dramatically improved by switching to a scheme that accounts for the dominant power law dependence on the factorization scale in the operator product expansion. We introduce the “MSR scheme” which achieves this in a Lorentz and gauge invariant way and has a very simple relation to MS¯. Results in MSR depend on a cutoff parameter R, in addition to the μ of MS¯. R variations can be used to independently estimate (i.) the size of power corrections, and (ii.) higher-order perturbative corrections (much like μ in MS¯). We give two examples at three-loop order, the ratio of mass splittings in the B*-B and D*-D systems, and the Ellis-Jaffe sum rule as a function of momentum transfer Q in deep inelastic scattering. Comparing to data, the perturbative MSR results work well even for Q˜1GeV, and power corrections are reduced compared to MS¯.

  9. Molecular epidemiology and evolution of fish Novirhabdoviruses

    USGS Publications Warehouse

    Kurath, Gael

    2014-01-01

    The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.

  10. Molecular epidemiology and evolution of porcine parvoviruses.

    PubMed

    Streck, André Felipe; Canal, Cláudio Wageck; Truyen, Uwe

    2015-12-01

    Porcine parvovirus (PPV), recently named Ungulate protoparvovirus 1, is considered to be one of the most important causes of reproductive failure in swine. Fetal death, mummification, stillbirths and delayed return to estrus are predominant clinical signs commonly associated with PPV infection in a herd. It has recently been shown that certain parvoviruses exhibit a nucleotide substitution rate close to that commonly determined for RNA viruses. However, the PPV vaccines broadly used in the last 30 years have most likely reduced the genetic diversity of the virus and led to the predominance of strains with a capsid profile distinct from that of the original vaccine-based strains. Furthermore, a number of novel porcine parvovirus species with yet-unknown veterinary relevance and characteristics have been described during the last decade. In this review, an overview of PPV molecular evolution is presented, highlighting characteristics of the various genetic elements, their evolutionary rate and the discovery of new capsid profiles driven by the currently used vaccines. PMID:26453771

  11. High rates of molecular evolution in hantaviruses.

    PubMed

    Ramsden, Cadhla; Melo, Fernando L; Figueiredo, Luiz M; Holmes, Edward C; Zanotto, Paolo M A

    2008-07-01

    Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus (Sigmodontinae), Dobrava virus (Murinae), Puumala virus (Arvicolinae), and Tula virus (Arvicolinae). Our results reveal that hantaviruses exhibit short-term substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated. PMID:18417484

  12. Molecular musings in microbial ecology and evolution

    PubMed Central

    2011-01-01

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology. The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology). The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies

  13. Automatic Evolution of Molecular Nanotechnology Designs

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

  14. Molecular clouds. [significance in stellar evolution

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.

    1977-01-01

    An attempt is made to understand star formation in the context of the dense interstellar molecular gas from which stars are made. Attention is given to how molecular observations (e.g., UV spectroscopy and radio 21-cm and recombination line observations) provide data on the physical state of the dense interstellar gas; observations of H II regions, stellar associations, and dark nebulae are discussed. CO clouds are studied with reference to radial velocity, temperature, density, ionization, magnetic field.

  15. Molecular evolution in food allergy diagnosis.

    PubMed

    Barocci, Fiorella; DE Amici, Mara; Marseglia, Gian L

    2016-10-01

    Traditional allergological diagnostics often provide laboratory data that seem to correspond with similar positive results in different patients. However, with technological developments and the introduction of molecular diagnostics, it is possible to extract and highlight the differences in the serological laboratory data, to obtain detailed specificity on the various allergen components in different clinical settings. Allergological diagnostics prove to be increasingly useful in accurately distinguishing "cross-reactivity" and "cosensitization". This aspect is very important especially in patients who are, with a traditional diagnosis, polysensitized. Molecular diagnosis in allergology has expanded its range of applications thanks to the ability to IgE dose specific (in addition to classic total IgE serum) not only to allergens, food and inhalants, but also to the individual protein components which make up the allergenic source. It is essential to establish a correct diagnosis in order to determine the appropriate therapy. Therefore it is crucial to discern whether a patient is truly allergic because he presents specific IgE for molecules of a species or if the positivity is given from the structural homology between the different proteins. Molecular diagnostics emerges as a valuable tool for the discrimination of allergic patients and to differentiate between "true allergies" and "cross-reactivity". Molecular diagnostics should be used in a targeted manner for an accurate assessment and diagnosis, which would also reduce the use of oral challenges, to predict severe reactions and allergy persistence. PMID:26091488

  16. Molecular evolution of the vertebrate mechanosensory cell and ear

    PubMed Central

    Fritzsch, Bernd; Beisel, Kirk W.; Pauley, Sarah; Soukup, Garrett

    2014-01-01

    The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has

  17. Slow rate of molecular evolution in high-elevation hummingbirds.

    PubMed

    Bleiweiss, R

    1998-01-20

    Estimates of relative rates of molecular evolution from a DNA-hybridization phylogeny for 26 hummingbird species provide evidence for a negative association between elevation and rate of single-copy genome evolution. This effect of elevation on rate remains significant even after taking into account a significant negative association between body mass and molecular rate. Population-level processes do not appear to account for these patterns because (i) all hummingbirds breed within their first year and (ii) the more extensive subdivision and speciation of bird populations living at high elevations predicts a positive association between elevation and rate. The negative association between body mass and molecular rate in other organisms has been attributed to higher mutation rates in forms with higher oxidative metabolism. As ambient oxygen tensions and temperature decrease with elevation, the slow rate of molecular evolution in high-elevation hummingbirds also may have a metabolic basis. A slower rate of single-copy DNA change at higher elevations suggests that the dynamics of molecular evolution cannot be separated from the environmental context. PMID:9435240

  18. A half-century after the molecular clock: new dimensions of molecular evolution.

    PubMed

    Koonin, Eugene V

    2012-08-01

    The EMBO workshop on 'Evolution in the Time of Genomics' took place in May 2012 in the magnificent sixteenth century Palazzo Franchetti near Ponte dell'Accademia in Venice. The meeting focused on phenomena that are not part of the traditional narrative of molecular evolution and which might signal a paradigm shift in the field. PMID:22791022

  19. Functional molecular markers for crop improvement.

    PubMed

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered. PMID:26171816

  20. Molecular evolution of GPCRs: Ghrelin/ghrelin receptors.

    PubMed

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2014-06-01

    After the discovery in 1996 of the GH secretagogue-receptor type-1a (GHS-R1a) as an orphan G-protein coupled receptor, many research groups attempted to identify the endogenous ligand. Finally, Kojima and colleagues successfully isolated the peptide ligand from rat stomach extracts, determined its structure, and named it ghrelin. The GHS-R1a is now accepted to be the ghrelin receptor. The existence of the ghrelin system has been demonstrated in many animal classes through biochemical and molecular biological strategies as well as through genome projects. Our work, focused on identifying the ghrelin receptor and its ligand ghrelin in laboratory animals, particularly nonmammalian vertebrates, has provided new insights into the molecular evolution of the ghrelin receptor. In mammals, it is assumed that the ghrelin receptor evolution is in line with the plate tectonics theory. In contrast, the evolution of the ghrelin receptor in nonmammalian vertebrates differs from that of mammals: multiplicity of the ghrelin receptor isoforms is observed in nonmammalian vertebrates only. This multiplicity is due to genome duplication and polyploidization events that particularly occurred in Teleostei. Furthermore, it is likely that the evolution of the ghrelin receptor is distinct from that of its ligand, ghrelin, because only one ghrelin isoform has been detected in all species examined so far. In this review, we summarize current knowledge related to the molecular evolution of the ghrelin receptor in mammalian and nonmammalian vertebrates. PMID:24353285

  1. The Jukes-Cantor Model of Molecular Evolution

    ERIC Educational Resources Information Center

    Erickson, Keith

    2010-01-01

    The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…

  2. Witnessing Phenotypic and Molecular Evolution in the Fruit Fly.

    PubMed

    Heil, Caiti S S; Hunter, Mika J; Noor, Juliet Kf; Miglia, Kathleen; Manzano-Winkler, Brenda; McDermott, Shannon R; Noor, Mohamed Af

    2012-12-01

    This multi-day exercise is designed for a college Genetics and Evolution laboratory to demonstrate concepts of inheritance and phenotypic and molecular evolution using a live model organism, Drosophila simulans. Students set up an experimental fruit fly population consisting of ten white eyed flies and one red eyed fly. Having red eyes is advantageous compared to having white eyes, allowing students to track the spread of this advantageous trait over several generations. Ultimately, the students perform PCR and gel electrophoresis at two neutral markers, one located in close proximity to the eye-color locus, and one located at the other end of the chromosome. Students observe that most flies have red eyes, and these red-eyed flies have lost variation at the near marker, but maintained variation at the far marker, hence observing a "selective sweep" and the "hitchhiking" of a nearby neutral variant. Students literally observe phenotypic and molecular evolution in their classroom! PMID:23459154

  3. The Molecular Evolution of the Qo Motif

    PubMed Central

    Kao, Wei-Chun; Hunte, Carola

    2014-01-01

    Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex. PMID:25115012

  4. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  5. Molecular evolution of nitrate reductase genes.

    PubMed

    Zhou, J; Kleinhofs, A

    1996-04-01

    To understand the evolutionary mechanisms and relationships of nitrate reductases (NRs), the nucleotide sequences encoding 19 nitrate reductase (NR) genes from 16 species of fungi, algae, and higher plants were analyzed. The NR genes examined show substantial sequence similarity, particularly within functional domains, and large variations in GC content at the third codon position and intron number. The intron positions were different between the fungi and plants, but conserved within these groups. The overall and nonsynonymous substitution rates among fungi, algae, and higher plants were estimated to be 4.33 x 10(-10) and 3.29 x 10(-10) substitutions per site per year. The three functional domains of NR genes evolved at about one-third of the rate of the N-terminal and the two hinge regions connecting the functional domains. Relative rate tests suggested that the nonsynonymous substitution rates were constant among different lineages, while the overall nucleotide substitution rates varied between some lineages. The phylogenetic trees based on NR genes correspond well with the phylogeny of the organisms determined from systematics and other molecular studies. Based on the nonsynonymous substitution rate, the divergence time of monocots and dicots was estimated to be about 340 Myr when the fungi-plant or algae-higher plant divergence times were used as reference points and 191 Myr when the rice-barley divergence time was used as a reference point. These two estimates are consistent with other estimates of divergence times based on these reference points. The lack of consistency between these two values appears to be due to the uncertainty of the reference times. PMID:8642612

  6. Improved molecular tools for sugar cane biotechnology.

    PubMed

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology. PMID:24150836

  7. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms

    PubMed Central

    Das, Atze T.; Berkhout, Ben

    2010-01-01

    Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach. PMID:20478891

  8. Social parasitism and the molecular basis of phenotypic evolution.

    PubMed

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B J; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  9. Social parasitism and the molecular basis of phenotypic evolution

    PubMed Central

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B. J.; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer—Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  10. Widespread convergence in toxin resistance by predictable molecular evolution

    PubMed Central

    Ujvari, Beata; Casewell, Nicholas R.; Sunagar, Kartik; Arbuckle, Kevin; Wüster, Wolfgang; Lo, Nathan; O’Meally, Denis; Beckmann, Christa; King, Glenn F.; Deplazes, Evelyne; Madsen, Thomas

    2015-01-01

    The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na+/K+-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na+/K+-ATPase H1–H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na+/K+-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses. PMID:26372961

  11. Choosing the right molecular genetic markers for studying biodiversity: from molecular evolution to practical aspects.

    PubMed

    Chenuil, Anne; Anne, Chenuil

    2006-05-01

    The use of molecular genetic markers (MGMs) has become widespread among evolutionary biologists, and the methods of analysis of genetic data improve rapidly, yet an organized framework in which scientists can work is lacking. Elements of molecular evolution are summarized to explain the origin of variation at the DNA level, its measures, and the relationships linking genetic variability to the biological parameters of the studied organisms. MGM are defined by two components: the DNA region(s) screened, and the technique used to reveal its variation. Criteria of choice belong to three categories: (1) the level of variability, (2) the nature of the information (e.g. dominance vs. codominance, ploidy, ... ) which must be determined according to the biological question and (3) some practical criteria which mainly depend on the equipment of the laboratory and experience of the scientist. A three-step procedure is proposed for drawing up MGMs suitable to answer given biological questions, and compiled data are organized to guide the choice at each step: (1) choice, determined by the biological question, of the level of variability and of the criteria of the nature of information, (2) choice of the DNA region and (3) choice of the technique. PMID:16850217

  12. [The genotyping and molecular evolution of varicella-zoster virus].

    PubMed

    Jiang, Long-Feng; Gan, Lin; Chen, Jing-Xian; Wang, Ming-Li

    2012-09-01

    Varicella-zoster virus (VZV, Human herpesvirus 3) is a member of the family Herpesviridae, and is classified as alpha-subfamily along with HSV-1 and HSV-2. VZV is the causative agent of chicken pox (varicella) mostly in children, after which it establishes latency in the sensory ganglia with the potential to reactivate at a later time to cause shingles (zoster). Increasing molecular epidemiological studies in recent years have been performed to monitor the mutations in VZV genome, discriminate vaccine virus from wild type virus, study the phylogeny of VZV strains throughout the world, and understand the evolution of the different clades of VZV. The progress has great impact on the fields of epidemiology, virology and bioinformatics. In this review, the currently available data concerning the geographic distribution and molecular evolution of VZV clades are discussed. PMID:23233938

  13. [The molecular evolution of rice stress-related genes].

    PubMed

    Song, Xiaojun; Xie, Kaibin; Zhang, Yanping; Jin, Ping

    2014-10-01

    In the processes of evolution, plants have formed a perfect regulation system to tolerate adverse environmental conditions. However, there has not been any report about the molecular evolution of rice stress-related genes. We derived a family of 22 stress-related genes in rice from Plant Stress Gene Database, and analyzed it by bioinformatics and comparative genome method. The results showed that these genes are relatively conservative in low organisms, and their copy numbers increase along with the environmental changes and the evolution. We also found four conserved sequence motifs and three other specific motifs. We propose that these motifs are closely associated with the function of rice stress-related genes. The analysis of selection pressure showed that about 50% rice stress-related genes have positive selection sites, although they were subject to a strong purifying selection. Positive selection sites might be very significant for plants to adapt to environmental changes. PMID:25406251

  14. Reconstructing phylogenies and phenotypes: a molecular view of human evolution.

    PubMed

    Bradley, Brenda J

    2008-04-01

    This review broadly summarizes how molecular biology has contributed to our understanding of human evolution. Molecular anthropology began in the 1960s with immunological comparisons indicating that African apes and humans were closely related and, indeed, shared a common ancestor as recently as 5 million years ago. Although initially dismissed, this finding has proven robust and numerous lines of molecular evidence now firmly place the human-ape divergence at 4-8 Ma. Resolving the trichotomy among humans, chimpanzees and gorillas took a few more decades. Despite the readily apparent physical similarities shared by African apes to the exclusion of modern humans (body hair, knuckle-walking, thin tooth enamel), the molecular support for a human-chimpanzee clade is now overwhelming. More recently, whole genome sequencing and gene mapping have shifted the focus of molecular anthropology from phylogenetic analyses to phenotypic reconstruction and functional genomics. We are starting to identify the genetic basis of the morphological, physiological and behavioural traits that distinguish modern humans from apes and apes from other primates. Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern humans and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes themselves, an idea first proposed over 30 years ago. Almost weekly, press releases describe newly identified genes and regulatory elements that seem to have undergone strong positive selection along the human lineage. Loci involved in speech (e.g. FOXP2), brain development (e.g. ASPM), and skull musculature (e.g. MYH16) have been of particular interest, but some surprising candidate loci (e.g. those involved in auditory capabilities) have emerged as well. Exciting new research avenues, such as the Neanderthal Genome Project, promise that molecular analyses will continue to provide novel insights about our evolution

  15. Flight loss linked to faster molecular evolution in insects

    PubMed Central

    Mitterboeck, T. Fatima; Adamowicz, Sarah J.

    2013-01-01

    The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne. PMID:23884090

  16. Molecular evolution of haemagglutinin (H) gene in measles virus.

    PubMed

    Kimura, Hirokazu; Saitoh, Mika; Kobayashi, Miho; Ishii, Haruyuki; Saraya, Takeshi; Kurai, Daisuke; Tsukagoshi, Hiroyuki; Shirabe, Komei; Nishina, Atsuyoshi; Kozawa, Kunihisa; Kuroda, Makoto; Takeuchi, Fumihiko; Sekizuka, Tsuyoshi; Minakami, Hisanori; Ryo, Akihide; Takeda, Makoto

    2015-01-01

    We studied the molecular evolution of the haemagglutinin (H) gene (full length) in all genotypes (24 genotypes, 297 strains) of measles virus (MeV). The gene's evolutionary timescale was estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also analysed positive selection sites. The MCMC tree indicated that the MeV H gene diverged from the rinderpest virus (same genus) about 250 years ago and that 24 MeV genotypes formed 3 lineages dating back to a 1915 ancestor (95% highest posterior density [HPD] 1882-1941) with relatively rapid evolution (mean rate: 9.02 × 10(-4) substitutions/site/year). The 3 lineages diverged in 1915 (lineage 1, 95% HPD 1882-1941), 1954 (lineage 2, 95% HPD 1937-1969), and 1940 (lineage 3, 95% HPD 1927-1952). These 24 genotypes may have diverged and emerged between the 1940s and 1990 s. Selective pressure analysis identified many negative selection sites on the H protein but only a few positive selection sites, suggesting strongly operated structural and/or functional constraint of changes on the H protein. Based on the molecular evolution of H gene, an ancestor MeV of the 24 genotypes emerged about 100 years ago and the structure of H protein has been well conserved. PMID:26130388

  17. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family.

    PubMed

    Körbes, Ana Paula; Kulcheski, Franceli Rodrigues; Margis, Rogério; Margis-Pinheiro, Márcia; Turchetto-Zolet, Andreia Carina

    2016-03-01

    Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches. PMID:26721558

  18. Molecular hyperdiversity and evolution in very large populations

    PubMed Central

    Cutter, Asher D.; Jovelin, Richard; Dey, Alivia

    2014-01-01

    The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function, and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually-reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation, and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of non-crossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on non-coding regulatory elements. PMID:23506466

  19. Molecular evolution of WDR62, a gene that regulates neocorticogenesis

    PubMed Central

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-01-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000–765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  20. Molecular evolution of WDR62, a gene that regulates neocorticogenesis.

    PubMed

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-09-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000-765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  1. [Evolution and systematics of nematodes based on molecular investigation].

    PubMed

    Okulewicz, Anna; Perec, Agnieszka

    2004-01-01

    Evolution and systematics of nematodes based on molecular investigation. The use of molecular phylogenetics to examine the interrelationships between animal parasites, free-living nematodes, and plant parasites versus traditional classification based on morphological-ecological characters was discussed and reviewed. Distinct differences were observed between parasitic nematodes and free-living ones. Within the former group, animal parasites turned out to be distinctly different from plant parasites. Using small subunit of ribosomal RNA gene sequence from a wide range of nematodes, there is a possibility to compare animal-parasitic, plant-parasitic and free-living taxa. Nowadays the parasitic nematodes expressed sequence tag (EST) project is currently generating sequence information to provide a new source of data to examine the evolutionary history of this taxonomic group. PMID:16859012

  2. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  3. A Tale of Two Crocoducks: Creationist Misuses of Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Hofmann, James R.

    2014-10-01

    Although some creationist objections to evolutionary biology are simplistic and thus are easily refuted, when more technical arguments become widespread it is important for science educators to explain the relevant science in a straightforward manner. An interesting case study is provided by misguided allegations about how cytochrome c data pertain to molecular evolution. The most common of these misrepresentations bears a striking similarity to a particularly glaring misunderstanding of what should be expected of a transitional form in a fossil sequence. Although evangelist Kirk Cameron's ridiculous injunction of a hypothetical `crocoduck' as an example of a potential transitional form is frequently invoked to illustrate the ignorance of many critics of evolutionary science, a strikingly analogous argument was applied to cytochrome c data by biochemist Michael Denton in 1985. The details of this analogy are worth exploring to clarify the fallacy of the widely circulated molecular argument.

  4. Application of Molecular Genetics and Transformation to Barley Improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter of the new barley monograph summarizes current applications of molecular genetics and transformation to barley improvement. The chapter describes recent applications of molecular markers including association genetics, QTL mapping and marker assisted selection in barley programs, and in...

  5. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  6. The evolution of human populations: a molecular perspective.

    PubMed

    Ayala, F J; Escalante, A A

    1996-02-01

    Human evolution exhibits repeated speciations and conspicuous morphological change: from Australopithecus to Homo habilis, H. erectus, and H. sapiens; and from their hominoid ancestor to orangutans, gorillas, chimpanzees, and humans. Theories of founder-event speciation propose that speciation often occurs as a consequence of population bottlenecks, down to one or very few individual pairs. Proponents of punctuated equilibrium claim in addition that founder-event speciation results in rapid morphological change. The major histocompatibility complex (MHC) consists of several very polymorphic gene loci. The genealogy of 19 human alleles of the DQB1 locus coalesces more than 30 million years ago, before the divergence of apes and Old World monkeys. Many human alleles are more closely related to pongid and cercopithecoid alleles than to other human alleles. Using the theory of gene coalescence, we estimate that these polymorphisms require human populations of the order of N = 100,000 individuals for the last several million years. This conclusion is confirmed by computer simulations showing the rate of decay of the polymorphisms over time. Computer simulations indicate, in addition, that in human evolution no bottlenecks have occurred with fewer than several thousand individuals. We evaluate studies of mtDNA, Y-chromosome, and microsatellite autosomal polymorphisms and conclude that they are consistent with the MHC result that no narrow population bottlenecks have occurred in human evolution. The available molecular information favors a recent African origin of modern humans, who spread out of Africa approximately 100,000 to 200,000 years ago. PMID:8673287

  7. Statistical mechanics of quasispecies theories of molecular evolution

    NASA Astrophysics Data System (ADS)

    Munoz Tavera, Enrique

    This thesis presents a statistical mechanical analysis of different formulations of quasispecies theory of molecular evolution. These theories, characterized by two different families of models, the Crow-Kimura and the Eigen model, constitute a microscopie description of evolution. These models are most often used for RNA viruses, where a phase transition is predicted, in agreement with experiments, between an organized or quasispecies phase, and a disordered non-selective phase when the mutation rate exceeds a critical value. The methods of statistical mechanics, in particular field-theoretic methods, are employed to obtain analytic solutions to four problems relevant to biological interest. The first chapter presents the study of evolution under a multiple-peak fitness landscape, with biological applications in the study of the proliferation of viruses or cancer under the control of drugs or the immune system. The second chapter studies the effect of incorporating different forms of horizontal gene transfer and two-parent recombination to the classical formulation of quasispecies models. As an example, we study the effect of the sign of epistasis of the fitness landscape on the advantage or disadvantage of recombination for the mean fitness. The third chapter considers the relaxation of the purine/pyrimidine assumption in the classical formulation of the models, by formulating and solving the parallel and Eigen models in the context of a four-letter alphabet. The fourth and final chapter studies finite population effects, both in the presence and in the absence of horizontal gene transfer.

  8. Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments

    PubMed Central

    Zhao, Huabin; Ru, Binghua; Teeling, Emma C.; Faulkes, Christopher G.; Zhang, Shuyi; Rossiter, Stephen J.

    2009-01-01

    The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly. PMID:20016835

  9. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies

    PubMed Central

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  10. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    PubMed

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  11. Supernova Feedback in Molecular Clouds: Global Evolution and Dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-04-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetised and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on timescales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer timescales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300 - 3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  12. Supernova feedback in molecular clouds: global evolution and dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-07-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetized and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on time-scales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer time-scales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300-3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  13. MOLECULAR GAS EVOLUTION ACROSS A SPIRAL ARM IN M51

    SciTech Connect

    Egusa, Fumi; Scoville, Nick; Koda, Jin

    2011-01-10

    We present sensitive and high angular resolution CO(1-0) data obtained by the Combined Array for Research in Millimeter-wave Astronomy observations toward the nearby grand-design spiral galaxy M51. The angular resolution of 0.''7 corresponds to 30 pc, which is similar to the typical size of giant molecular clouds (GMCs), and the sensitivity is also high enough to detect typical GMCs. Within the 1' field of view centered on a spiral arm, a number of GMC-scale structures are detected as clumps. However, only a few clumps are found to be associated with each giant molecular association (GMA) and more than 90% of the total flux is resolved out in our data. Considering the high sensitivity and resolution of our data, these results indicate that GMAs are not mere confusion with GMCs but plausibly smooth structures. In addition, we have found that the most massive clumps are located downstream of the spiral arm, which suggests that they are at a later stage of molecular cloud evolution across the arm and plausibly are cores of GMAs. By comparing with H{alpha} and Pa{alpha} images, most of these cores are found to have nearby star-forming regions. We thus propose an evolutionary scenario for the interstellar medium, in which smaller molecular clouds collide to form smooth GMAs at spiral arm regions and then star formation is triggered in the GMA cores. Our new CO data have revealed the internal structure of GMAs at GMC scales, finding the most massive substructures on the downstream side of the arm in close association with the brightest H II regions.

  14. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles.

    PubMed

    McCrory, Charles C L; Uyeda, Christopher; Peters, Jonas C

    2012-02-15

    A series of water-soluble molecular cobalt complexes of tetraazamacrocyclic ligands are reported for the electrocatalytic production of H(2) from pH 2.2 aqueous solutions. The comparative data reported for this family of complexes shed light on their relative efficiencies for hydrogen evolution in water. Rotating disk electrode voltammetry data are presented for each of the complexes discussed, as are data concerning their respective pH-dependent electrocatalytic activity. In particular, two diimine-dioxime complexes were identified as exhibiting catalytic onset at comparatively low overpotentials relative to other reported homogeneous cobalt and nickel electrocatalysts in aqueous solution. These complexes are stable at pH 2.2 and produce hydrogen with high Faradaic efficiency in bulk electrolysis experiments over time intervals ranging from 2 to 24 h. PMID:22280515

  15. Application of Improved Grammatical Evolution to Santa Fe Trail Problems

    NASA Astrophysics Data System (ADS)

    Kuroda, Takuya; Iwasawa, Hiroto; Awgichew, Tewodros; Kita, Eisuke

    Grammatical Evolution (GE) is one of the evolutionary algorithms, which can deal with the rules with tree structure by one-dimensional chromosome. Syntax rules are defined in Backus Naur Form (BNF) to translate binary number (genotype) to function or program (phenotype). In this study, three algorithms are introduced for improving the convergence speed. First, an original GE are compared with Genetic Programming (GP) in the function identification problem. Next, the improved GE algorithms are applied to Santa Fe Trail problem. The results show that the improved schemes are effective for improving the convergence speed.

  16. Molecular Evolution of the Capsid Gene in Norovirus Genogroup I.

    PubMed

    Kobayashi, Miho; Yoshizumi, Shima; Kogawa, Sayaka; Takahashi, Tomoko; Ueki, Yo; Shinohara, Michiyo; Mizukoshi, Fuminori; Tsukagoshi, Hiroyuki; Sasaki, Yoshiko; Suzuki, Rieko; Shimizu, Hideaki; Iwakiri, Akira; Okabe, Nobuhiko; Shirabe, Komei; Shinomiya, Hiroto; Kozawa, Kunihisa; Kusunoki, Hideki; Ryo, Akihide; Kuroda, Makoto; Katayama, Kazuhiko; Kimura, Hirokazu

    2015-01-01

    We studied the molecular evolution of the capsid gene in all genotypes (genotypes 1-9) of human norovirus (NoV) genogroup I. The evolutionary time scale and rate were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also performed selective pressure analysis and B-cell linear epitope prediction in the deduced NoV GI capsid protein. Furthermore, we analysed the effective population size of the virus using Bayesian skyline plot (BSP) analysis. A phylogenetic tree by MCMC showed that NoV GI diverged from the common ancestor of NoV GII, GIII, and GIV approximately 2,800 years ago with rapid evolution (about 10(-3) substitutions/site/year). Some positive selection sites and over 400 negative selection sites were estimated in the deduced capsid protein. Many epitopes were estimated in the deduced virus capsid proteins. An epitope of GI.1 may be associated with histo-blood group antigen binding sites (Ser377, Pro378, and Ser380). Moreover, BSP suggested that the adaptation of NoV GI strains to humans was affected by natural selection. The results suggested that NoV GI strains evolved rapidly and date back to many years ago. Additionally, the virus may have undergone locally affected natural selection in the host resulting in its adaptation to humans. PMID:26338545

  17. Molecular Evolution and Structural Features of IRAK Family Members

    PubMed Central

    Gosu, Vijayakumar; Basith, Shaherin; Durai, Prasannavenkatesh; Choi, Sangdun

    2012-01-01

    The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations. PMID:23166766

  18. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    PubMed Central

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  19. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  20. Evolution of Molecular Clouds in a Hot Plasma

    NASA Astrophysics Data System (ADS)

    Vieser, Wolfgang; Hensler, Gerhard

    We are performing 2D hydrodynamic simulations to examine the evaporation and condensation of molecular clouds in the hot phase of the interstellar medium due to heat conduction. Heat conduction is a process that may not be neglected for clouds which are embedded in a hot gas, High-Velocity-Clouds falling through the hot galactic halo or clouds in a galactic chimney. The evolution of cold and dense clouds with different masses and radii is calculated in the subsonic streaming of a hot rarefied plasma. Our code includes self-gravity, heating and cooling effects and heat conduction by electrons. Simulations with and without heat conduction show significant differences. Heat conduction provides a possibility to stabilize clouds agains hydrodynamic instabilities. Molecular clouds become able to survive significantly longer in a violent stream of hot gas. Additionally, this hot gas condensates onto the cloud's surface and is mixed very efficiently with the cloud material. Therefore, heat conduction is an important process, which has to be considered in order to explain the existence and metallicity of clouds in a stream of hot gas.

  1. Evolution of Molecular Alignment in a Background Plasma

    NASA Astrophysics Data System (ADS)

    Pearson, Andrew; Antonsen, Thomas

    2008-11-01

    We study numerically the behavior of rotational revivals in a molecular gas when subject to the fluctuating electric field of a background plasma. We model a molecule as a rigid rotor and couple it to an electric field using permanent and induced multipole interactions. The evolution of the density matrix for the molecule is calculated for a short, intense laser pulse, followed by a fluctuating electric field. A broad superposition of angular momentum eigenstates of a molecule is created by the laser field, and the result is a set of recurring peaks in the probability density for observing a particular orientation -- the so-called 'rotational revivals.' Experimentally, this effect is manifest as a variation in the refractive index of the gas [1]. The fluctuating field is created using the dressed particle method, and the result is a loss of coherence between the phases of the basis states of the molecule, which causes a decreasing amplitude for subsequent alignment peaks. Modern short-pulse lasers operate with sufficient intensity to make this effect relevant to experiments in molecular alignment. This work was supported by the Department of Energy.[1] Y.-H. Chen et. al., Optics Express Vol. 15, No. 18, 11341 (2007)

  2. The first molecular phylogeny of Strepsiptera (Insecta) reveals an early burst of molecular evolution correlated with the transition to endoparasitism.

    PubMed

    McMahon, Dino P; Hayward, Alexander; Kathirithamby, Jeyaraney

    2011-01-01

    A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role. PMID:21738621

  3. Molecular evolution of the MAGUK family in metazoan genomes

    PubMed Central

    te Velthuis, Aartjan JW; Admiraal, Jeroen F; Bagowski, Christoph P

    2007-01-01

    Background Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK). In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla. Results Our results indicate that at least four of the seven MAGUK subfamilies were present in early metazoan lineages, such as Porifera. We employed domain sequence and structure based methods to infer a model for the evolutionary history of the MAGUKs. Notably, the phylogenetic trees for the guanylate kinase (GK)-, the PDZ- and the SH3-domains all suggested a matching evolutionary model which was further supported by molecular modeling of the 3D structures of different GK domains. We found no MAGUK in plants, fungi or other unicellular organisms, which suggests that the MAGUK core structure originated early in metazoan history. Conclusion In summary, we have characterized here the molecular and structural evolution of the large MAGUK family. Using the MAGUKs as an example, our results show that it is possible to derive a highly supported evolutionary model for important multidomain families by analyzing encoded protein domains. It further suggests that larger superfamilies encoded in the different genomes can be analyzed in a similar manner. PMID:17678554

  4. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of giant molecular clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ˜ 109 M⊙) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the XCO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_{H, min} = 10 {cm}^{-3}, or using an observationally motivated CO intensity threshold of 0.25 {K} {km} {s}^{-1}. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ≈ 40 Myr, with a median of 13 Myr, in agreement with observations. At one-tenth solar metallicity, young clouds ( ≲ 10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ≈3 and one to two orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ≈ 1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, ICO, is strongly suppressed at low dust extinction, Av, and possibly saturates towards high Av, in agreement with observations. The ICO-Av relation shifts towards higher Av for higher metallicities and, to a lesser extent, for stronger UV radiation. At one-tenth solar metallicity, CO emission is weaker in young clouds ( ≲ 10-15 Myr), consistent with the underabundance of CO. Consequently, XCO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  5. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of Giant Molecular Clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ~ 10^9 M_sol) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the X_CO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_H,min = 10 cm^-3, or using an observationally motivated CO intensity threshold of 0.25 K km s^-1. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ~40 Myr, with a median of 13 Myr, in agreement with observations. At one tenth solar metallicity, young clouds (<10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ~3 and 1-2 orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ~1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, I_CO, is strongly suppressed at low dust extinction, A_v, and possibly saturates towards high A_v, in agreement with observations. The I_CO - A_v relation shifts towards higher A_v for higher metallicities and, to a lesser extent, for stronger UV radiation. At one tenth solar metallicity, CO emission is weaker in young clouds (<10-15 Myr), consistent with the underabundance of CO. Consequently, X_CO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  6. Evolution of the atomic and molecular gas content of galaxies

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Somerville, Rachel S.; Trager, Scott C.

    2014-08-01

    We study the evolution of atomic and molecular gas in galaxies in semi-analytic models of galaxy formation that include new modelling of the partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases. We adopt two scenarios for the formation of molecules: one pressure based and one metallicity based. We find that both recipes successfully reproduce the gas fractions and gas-to-stellar mass ratios of H I and H2 in local galaxies, as well as the H I and H2 disc sizes up to z ≤ 2. We reach good agreement with the locally observed H I and H2 mass function, although both recipes slightly overpredict the low-mass end of the H I mass function. Both of our models predict that the high-mass end of the H I mass function remains nearly constant at redshifts z < 2.0. The metallicity-based recipe yields a higher cosmic density of cold gas and much lower cosmic H2 fraction over the entire redshift range probed than the pressure-based recipe. These strong differences in H I mass function and cosmic density between the two recipes are driven by low-mass galaxies (log (M*/M⊙) ≤ 7) residing in low-mass haloes (log (Mvir/M⊙) ≤ 10). Both recipes predict that galaxy gas fractions remain high from z ˜ 6to3 and drop rapidly at lower redshift. The galaxy H2 fractions show a similar trend, but drop even more rapidly. We provide predictions for the CO J = 1-0 luminosity of galaxies, which will be directly comparable with observations with sub-mm and radio instruments.

  7. The Structure and Evolution of Self-Gravitating Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Holliman, John Herbert, II

    1995-01-01

    We present a theoretical formalism to evaluate the structure of molecular clouds and to determine precollapse conditions in star-forming regions. Models consist of pressure-bounded, self-gravitating spheres of a single -fluid ideal gas. We treat the case without rotation. The analysis is generalized to consider states in hydrostatic equilibrium maintained by multiple pressure components. Individual pressures vary with density as P_i(r) ~ rho^{gamma {rm p},i}(r), where gamma_{rm p},i is the polytropic index. Evolution depends additionally on whether conduction occurs on a dynamical time scale and on the adiabatic index gammai of each component, which is modified to account for the effects of any thermal coupling to the environment of the cloud. Special attention is given to properly representing the major contributors to dynamical support in molecular clouds: the pressures due to static magnetic fields, Alfven waves, and thermal motions. Straightforward adjustments to the model allow us to treat the intrinsically anisotropic support provided by the static fields. We derive structure equations, as well as perturbation equations for performing a linear stability analysis. The analysis provides insight on the nature of dynamical motions due to collapse from an equilibrium state and estimates the mass of condensed objects that form in such a process. After presenting a set of general results, we describe models of star-forming regions that include the major pressure components. We parameterize the extent of ambipolar diffusion. The analysis contributes to the physical understanding of several key results from observations of these regions. Commonly observed quantities are explicitly cross-referenced with model results. We theoretically determine density and linewidth profiles on scales ranging from that of molecular cloud cores to that of giant molecular clouds (GMCs). The model offers an explanation of the mean pressures in GMCs, which are observed to be high relative

  8. galaxy formation and evolution with an improved SPH code

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Li, Y.

    2014-01-01

    We present the results with an updated version of Gadget-3. Our improvements over the original version include both modifications on SPH algorithms and physical processes relevant to galaxy formation and evolution. A smoother kernel is used to reduce the noise of force calculation. Discontinuities and sub-sonic turbulence are treated with a time dependent conduction term and a time dependent viscosity term. The new code successfully handles the KH/RT instabilities. A new set of metal dependent cooling/heating functions is computed self-consistently to account for the ionizing UV background from galaxies and QSOs. Meanwhile we also updated the star formation model and black hole accretion model. With all of these improvement, our code can produce more realistic disk galaxies compared to previous work. Future simulations with this new code will give us more reliable results and enable us to better understand galaxy formation and evolution in greater detail and accuracy.

  9. Improved Differential Evolution for Combined Heat and Power Economic Dispatch

    NASA Astrophysics Data System (ADS)

    Jena, C.; Basu, M.; Panigrahi, C. K.

    2016-04-01

    This paper presents an improved differential evolution to solve non-smooth non-convex combined heat and power economic dispatch (CHPED) problem. Valve-point loading and prohibited operating zones of conventional thermal generators are taken into account. Differential evolution (DE) exploits the differences of randomly sampled pairs of objective vectors for its mutation process. Consequently the variation between vectors will outfit the objective function toward the optimization process and therefore provides efficient global optimization capability. However, although DE is shown to be precise, fast as well as robust, its search efficiency will be impaired during solution process with fast descending diversity of population. This paper proposes Gaussian random variable instead of scaling factor which improves search efficiency. The effectiveness of the proposed method has been verified on four test systems. The results of the proposed approach are compared with those obtained by other evolutionary methods. It is found that the proposed improved differential evolution based approach is able to provide better solution.

  10. Molecular mechanisms of cobalt-catalyzed hydrogen evolution

    PubMed Central

    Marinescu, Smaranda C.; Winkler, Jay R.; Gray, Harry B.

    2012-01-01

    Several cobalt complexes catalyze the evolution of hydrogen from acidic solutions, both homogeneously and at electrodes. The detailed molecular mechanisms of these transformations remain unresolved, largely owing to the fact that key reactive intermediates have eluded detection. One method of stabilizing reactive intermediates involves minimizing the overall reaction free-energy change. Here, we report a new cobalt(I) complex that reacts with tosylic acid to evolve hydrogen with a driving force of just 30 meV/Co. Protonation of CoI produces a transient CoIII-H complex that was characterized by nuclear magnetic resonance spectroscopy. The CoIII-H intermediate decays by second-order kinetics with an inverse dependence on acid concentration. Analysis of the kinetics suggests that CoIII-H produces hydrogen by two competing pathways: a slower homolytic route involving two CoIII-H species and a dominant heterolytic channel in which a highly reactive CoII-H transient is generated by CoI reduction of CoIII-H. PMID:22949704

  11. Dynamical Evolution of Supernova Remnants Breaking Through Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul

    2015-04-01

    We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code tep{har83}. We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our one-dimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

  12. Improved molecular barcodes by lifetime discrimination

    NASA Astrophysics Data System (ADS)

    Hall, Daniel B.; Lawrence, William G.

    2009-02-01

    Individual microspheres labeled with a unique barcode and a surface-bound probe are able to provide multiplexed biological assays in a convenient and high-throughput format. Typically, barcodes are created by impregnating microspheres with several colors of fluorophores mixed at different intensity levels. The number of barcodes is limited to hundreds primarily due to variability in fluorophore loading and difficulties in compensating for signal crosstalk. We constructed a molecular barcode based on differences in lifetimes rather than intensities. Lifetime-based measurements have an advantage in that signal from neighboring channels is reduced (because signal intensities are equal) and may be mathematically deconvoluted. The excited state lifetime of quantum dots (QDs) was systematically altered by attaching a variable number of quencher molecules to the surface. We have synthesized a series of ten QDs with distinguishable lifetimes all emitting at the same wavelength. The QDs were loaded into microspheres to determine the expected signal intensities. The uncertainty in lifetimes as a function of the interrogation time was determined. An acceptable standard deviation (3%) was obtained with a measurement time of approximately 10-30 μsec. Currently, we are expanding these studies to include multiple wavelengths and determining the maximal number of barcodes for a given spectral window.

  13. Modification of pancreatic lipase properties by directed molecular evolution.

    PubMed

    Colin, Damien Yann; Deprez-Beauclair, Paule; Silva, Noella; Infantes, Lourdes; Kerfelec, Brigitte

    2010-05-01

    Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity at acidic pH enhanced by approximately 50% on medium- and long-chain triglycerides. Sequence analysis revealed two substitutions (E179G/N406S) located in specific regions, the hydrophobic groove accommodating the sn-1 chain of the triglyceride (E179G) and the surface loop that is likely to mediate lipase/colipase interaction in the presence of lipids (N406S). Interestingly, these two substitutions shifted the chain-length specificity of lipase toward medium- and long-chain triglycerides. Combination of those two mutations with a promising one at the entrance of the catalytic cavity (K80E) negatively affected the lipase activity at neutral pH but not that at acidic pH. Our results provide a basis for the design of improved lipase at acidic pH and identify for the first time key residues associated with chain-length specificity. PMID:20150178

  14. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress

    PubMed Central

    Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne

    2011-01-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943

  15. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma.

    PubMed

    Wei, Miaoyan; Lü, Lisheng; Lin, Peiyi; Chen, Zhisheng; Quan, Zhiwei; Tang, Zhaohui

    2016-09-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients. PMID:26940139

  16. Decoding the molecular evolution of human cognition using comparative genomics

    PubMed Central

    Usui, Noriyoshi; Co, Marissa; Konopka, Genevieve

    2014-01-01

    Identification of genetic and molecular factors responsible for the specialized cognitive abilities of humans is expected to provide important insights into the mechanisms responsible for disorders of cognition such as autism, schizophrenia, and Alzheimer’s disease. Here, we discuss the use of comparative genomics for identifying salient genes and gene networks that may underlie cognition. We focus on the comparison of human and non-human primate brain gene expression and the utility of building gene co-expression networks for prioritizing hundreds of genes that differ in expression among the species queried. We also discuss the importance and methods for functional studies of individual genes identified. Together, this integration of comparative genomics with cellular and animal models should provide improved systems for developing effective therapeutics for disorders of cognition. PMID:25247723

  17. Molecular evolution of SRP cycle components: functional implications.

    PubMed Central

    Althoff, S; Selinger, D; Wise, J A

    1994-01-01

    Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location

  18. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    SciTech Connect

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W. E-mail: p.colin@crya.unam.m E-mail: alan@astro.unam.m

    2010-06-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size {approx}10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  19. Morphology Evolution of Molecular Weight Dependent P3HT: PCBM Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Chen, Dian; Briseno, Alejandro; Russell, Thomas

    2011-03-01

    Effective strategies to maximize the performance of bulk heterojunction (BHJ) photovoltaic devices have to be developed and understood to realize their full potential. In BHJ solar cells, the morphology of the active layer is a critical issue to improve device efficiency. In this work, we choose poly(3-hexyl-thiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) system to study the morphology evolution. Different molecular weight P3HTs were synthesized by using Grignard Metathesis (GRIM)~method. In device optimization, polymer with a molecular weight between 20k-30k shows the highest efficiency. It was observed that the as-spun P3HT: PCBM (1:1) blends do not have high order by GISAXS. Within a few seconds of thermal annealing at 150& circ; the crystallinity of P3HT increaased substantially and the polymer chains adopted an edge-on orientation. An-bicontinous morphology was also developed within this short thermal treatment. The in situ GISAXS experiment showed that P3HT of high molecular weight was more easily crystallized from a slowly evaporated chlorobenzene solution and their edge-on orientation is much more obvious than for the lower molecular weight P3HTs. DSC was used to study the thermal properties of P3HTs and P3HT: PCBM blend. The χ of P3HT-PCBM was also calculated by using melting point depression method.

  20. An improved molecular assay for Tritrichomonas foetus.

    PubMed

    Grahn, R A; BonDurant, R H; van Hoosear, K A; Walker, R L; Lyons, L A

    2005-01-01

    Tritrichomonas foetus (T. foetus) is the causative agent of bovine trichomonosis, a sexually transmitted disease leading to abortion (from 1 to 8 months gestation), infertility, and occasional pyometra. The annual losses to the U.S. beef industry are estimated to be in the hundreds of millions of dollars. Currently, the "gold standard" diagnostic test for trichomonosis in most countries is the cultivation of live organisms from reproductive secretions. The cultured organisms can then be followed by PCR assays with primers that amplify T. foetus to the exclusion of all other trichomonad species. Thus, negative results present as null data, indistinguishable from failed PCR amplification during T. foetus specific amplification. Our newly developed assay improves previously developed PCR based techniques by using diagnostic size variants from within the internal transcribed spacer 1 (ITS1) region that is between the 18S rRNA and 5.8S rRNA subunits. This new PCR assay amplifies trichomonad DNA from a variety of genera and positively identifies the causative agent in the bovine trichomonad infection. This approach eliminates false negatives found in some current assays as well as identifying the causative agent of trichomonad infection. Additionally, our assay incorporates a fluorescently labeled primer enabling high sensitivity and rapid assessment of the specific trichomonad species. Moreover, electrophoretic separation of amplified samples can be outsourced, thus eliminating the need for diagnostic laboratories to purchase expensive analysis equipment. PMID:15619373

  1. Molecular Specificity, Convergence and Constraint Shape Adaptive Evolution in Nutrient-Poor Environments

    PubMed Central

    Hong, Jungeui; Gresham, David

    2014-01-01

    One of the central goals of evolutionary biology is to explain and predict the molecular basis of adaptive evolution. We studied the evolution of genetic networks in Saccharomyces cerevisiae (budding yeast) populations propagated for more than 200 generations in different nitrogen-limiting conditions. We find that rapid adaptive evolution in nitrogen-poor environments is dominated by the de novo generation and selection of copy number variants (CNVs), a large fraction of which contain genes encoding specific nitrogen transporters including PUT4, DUR3 and DAL4. The large fitness increases associated with these alleles limits the genetic heterogeneity of adapting populations even in environments with multiple nitrogen sources. Complete identification of acquired point mutations, in individual lineages and entire populations, identified heterogeneity at the level of genetic loci but common themes at the level of functional modules, including genes controlling phosphatidylinositol-3-phosphate metabolism and vacuole biogenesis. Adaptive strategies shared with other nutrient-limited environments point to selection of genetic variation in the TORC1 and Ras/PKA signaling pathways as a general mechanism underlying improved growth in nutrient-limited environments. Within a single population we observed the repeated independent selection of a multi-locus genotype, comprised of the functionally related genes GAT1, MEP2 and LST4. By studying the fitness of individual alleles, and their combination, as well as the evolutionary history of the evolving population, we find that the order in which these mutations are acquired is constrained by epistasis. The identification of repeatedly selected variation at functionally related loci that interact epistatically suggests that gene network polymorphisms (GNPs) may be a frequent outcome of adaptive evolution. Our results provide insight into the mechanistic basis by which cells adapt to nutrient-limited environments and suggest that

  2. Patterns of molecular evolution of RNAi genes in social and socially parasitic bumblebees.

    PubMed

    Helbing, Sophie; Lattorff, H Michael G

    2016-08-01

    The high frequency of interactions amongst closely related individuals in social insect colonies enhances pathogen transmission. Group-mediated behavior supporting immune defenses tends to decrease selection acting on immune genes. Along with low effective population sizes this might result in relaxed constraint and rapid evolution of immune system genes. Here, we show that antiviral siRNA genes show high rates of molecular evolution with argonaute 2, armitage and maelstrom evolving faster in social bumblebees compared to their socially parasitic cuckoo bumblebees that lack a worker caste. RNAi genes show frequent positive selection at the codon level additionally supported by the occurrence of parallel evolution. Their evolutionary rate is linked to their pathway specific position with genes directly interacting with viruses showing the highest rates of molecular evolution. We suggest that higher pathogen load in social insects indeed drives the molecular evolution of immune genes including antiviral siRNA, if not compensated by behavior. PMID:27117935

  3. A molecular description of the evolution of resistance

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, P.; Joyce, G. F.

    1999-01-01

    BACKGROUND: In vitro evolution has been used to obtain nucleic acid molecules with interesting functional properties. The evolution process usually is carried out in a stepwise manner, involving successive rounds of selection, amplification and mutation. Recently, a continuous in vitro evolution system was devised for RNAs that catalyze the ligation of oligonucleotide substrates, allowing the evolution of catalytic function to be studied in real time. RESULTS: Continuous in vitro evolution of an RNA ligase ribozyme was carried out in the presence of a DNA enzyme that was capable of cleaving, and thereby inactivating, the ribozyme. The DNA concentration was increased steadily over 33.5 hours of evolution, reaching a final concentration that would have been sufficient to inactivate the starting population in one second. The evolved population of ribozymes developed resistance to the DNA enzyme, reducing their vulnerability to cleavage by 2000-fold but retaining their own catalytic function. Based on sequencing and kinetic analysis of the ribozymes, two mechanisms are proposed for this resistance. One involves three nucleotide substitutions, together with two compensatory mutations, that alter the site at which the DNA enzyme binds the ribozyme. The other involves enhancement of the ribozyme's ability to bind its own substrate in a way that protects it from cleavage by the DNA enzyme. CONCLUSIONS: The ability to direct the evolution of an enzyme's biochemical properties in response to the behavior of another macromolecule provides insight into the evolution of resistance and may be useful in developing enzymes with novel or enhanced function.

  4. Improved Precursor Directed Biosynthesis in E. coli via Directed Evolution

    PubMed Central

    Lee, Ho Young; Harvey, Colin J.B.; Cane, David E.; Khosla, Chaitan

    2010-01-01

    Erythromycin and related macrolide antibiotics are widely used polyketide natural products. We have evolved an engineered biosynthetic pathway in Escherichia coli that yields erythromycin analogs from simple synthetic precursors. Multiple rounds of mutagenesis and screening led to the identification of new mutant strains with improved efficiency for precursor directed biosynthesis. Genetic and biochemical analysis suggested that the phenotypically relevant alterations in these mutant strains were localized exclusively to the host-vector system, and not to the polyketide synthase. We also demonstrate the utility of this improved system through engineered biosynthesis of a novel alkynyl erythromycin derivative with comparable antibacterial activity to its natural counterpart. In addition to reinforcing the power of directed evolution for engineering macrolide biosynthesis, our studies have identified a new lead substance for investigating structure-function relationships in the bacterial ribosome. PMID:21081955

  5. Molecular diversity and functional evolution of scorpion potassium channel toxins.

    PubMed

    Zhu, Shunyi; Peigneur, Steve; Gao, Bin; Luo, Lan; Jin, Di; Zhao, Yong; Tytgat, Jan

    2011-02-01

    Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases. PMID:20889474

  6. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution.

    PubMed

    Xia, Xuhua

    2013-07-01

    Since its first release in 2001 as mainly a software package for phylogenetic analysis, data analysis for molecular biology and evolution (DAMBE) has gained many new functions that may be classified into six categories: 1) sequence retrieval, editing, manipulation, and conversion among more than 20 standard sequence formats including MEGA, NEXUS, PHYLIP, GenBank, and the new NeXML format for interoperability, 2) motif characterization and discovery functions such as position weight matrix and Gibbs sampler, 3) descriptive genomic analysis tools with improved versions of codon adaptation index, effective number of codons, protein isoelectric point profiling, RNA and protein secondary structure prediction and calculation of minimum folding energy, and genomic skew plots with optimized window size, 4) molecular phylogenetics including sequence alignment, testing substitution saturation, distance-based, maximum parsimony, and maximum-likelihood methods for tree reconstructions, testing the molecular clock hypothesis with either a phylogeny or with relative-rate tests, dating gene duplication and speciation events, choosing the best-fit substitution models, and estimating rate heterogeneity over sites, 5) phylogeny-based comparative methods for continuous and discrete variables, and 6) graphic functions including secondary structure display, optimized skew plot, hydrophobicity plot, and many other plots of amino acid properties along a protein sequence, tree display and drawing by dragging nodes to each other, and visual searching of the maximum parsimony tree. DAMBE features a graphic, user-friendly, and intuitive interface and is freely available from http://dambe.bio.uottawa.ca (last accessed April 16, 2013). PMID:23564938

  7. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    PubMed Central

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-01-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA·/TFA−, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts. PMID:26486863

  8. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  9. The Eyes Have It: A Problem-Based Learning Exercise in Molecular Evolution

    ERIC Educational Resources Information Center

    White, Harold B.

    2007-01-01

    Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related…

  10. Molecular activities, biosynthesis and evolution of triterpenoid saponins.

    PubMed

    Augustin, Jörg M; Kuzina, Vera; Andersen, Sven B; Bak, Søren

    2011-04-01

    Saponins are bioactive compounds generally considered to be produced by plants to counteract pathogens and herbivores. Besides their role in plant defense, saponins are of growing interest for drug research as they are active constituents of several folk medicines and provide valuable pharmacological properties. Accordingly, much effort has been put into unraveling the modes of action of saponins, as well as in exploration of their potential for industrial processes and pharmacology. However, the exploitation of saponins for bioengineering crop plants with improved resistances against pests as well as circumvention of laborious and uneconomical extraction procedures for industrial production from plants is hampered by the lack of knowledge and availability of genes in saponin biosynthesis. Although the ability to produce saponins is rather widespread among plants, a complete synthetic pathway has not been elucidated in any single species. Current conceptions consider saponins to be derived from intermediates of the phytosterol pathway, and predominantly enzymes belonging to the multigene families of oxidosqualene cyclases (OSCs), cytochromes P450 (P450s) and family 1 UDP-glycosyltransferases (UGTs) are thought to be involved in their biosynthesis. Formation of unique structural features involves additional biosynthetical enzymes of diverse phylogenetic background. As an example of this, a serine carboxypeptidase-like acyltransferase (SCPL) was recently found to be involved in synthesis of triterpenoid saponins in oats. However, the total number of identified genes in saponin biosynthesis remains low as the complexity and diversity of these multigene families impede gene discovery based on sequence analysis and phylogeny. This review summarizes current knowledge of triterpenoid saponin biosynthesis in plants, molecular activities, evolutionary aspects and perspectives for further gene discovery. PMID:21333312

  11. The Evolution and Origin of Animal Toll-Like Receptor Signaling Pathway Revealed by Network-Level Molecular Evolutionary Analyses

    PubMed Central

    Qin, Sheng; Chen, Liming; Ma, Fei

    2012-01-01

    Genes carry out their biological functions through pathways in complex networks consisting of many interacting molecules. Studies on the effect of network architecture on the evolution of individual proteins will provide valuable information for understanding the origin and evolution as well as functional conservation of signaling pathways. However, the relationship between the network architecture and the individual protein sequence evolution is yet little known. In current study, we carried out network-level molecular evolution analysis on TLR (Toll-like receptor ) signaling pathway, which plays an important role in innate immunity in insects and mammals, and we found that: 1) The selection constraint of genes was negatively correlated with its position along TLR signaling pathway; 2) all genes in TLR signaling pathway were highly conserved and underwent strong purifying selection; 3) the distribution of selective pressure along the pathway was driven by differential nonsynonymous substitution levels; 4) The TLR signaling pathway might present in a common ancestor of sponges and eumetazoa, and evolve via the TLR, IKK, IκB and NF-κB genes underwent duplication events as well as adaptor molecular enlargement, and gene structure and conservation motif of NF-κB genes shifted in their evolutionary history. Our results will improve our understanding on the evolutionary history of animal TLR signaling pathway as well as the relationship between the network architecture and the sequences evolution of individual protein. PMID:23236523

  12. Evolution of cyanobacterial morphotypes: Taxa required for improved phylogenomic approaches.

    PubMed

    Schirrmeister, Bettina E; Anisimova, Maria; Antonelli, Alexandre; Bagheri, Homayoun C

    2011-07-01

    Within prokaryotes cyanobacteria represent one of the oldest and morphologically most diverse phyla on Earth. The rise of oxygen levels in the atmosphere 2.32-2.45 billion years ago is assigned to the photosynthetic activity of ancestors from this phylum. Subsequently cyanobacteria were able to adapt to various habitats evolving a comprehensive set of different morphotypes. In a recent study we showed that this evolution is not a gradual transition from simple unicellular to more complex multicellular forms as often assumed. Instead complexity was lost several times and regained at least once. An understanding of the genetic basis of these transitions would be further strengthened by phylogenomic approaches. However, considering that new methods for phylogenomic analyses are emerging, it is unfortunate that genomes available today are comprised of an unbalanced sampling of taxa. We propose avenues to remedy this by identifying taxa that would improve the representation of phylogenetic diversity in this phylum. PMID:21966561

  13. "Eve" in Africa: Human Evolution Meets Molecular Biology.

    ERIC Educational Resources Information Center

    Seager, Robert D.

    1990-01-01

    Presented is a discussion of recent evidence on the evolution of human forms on earth gathered and evaluated using mitochondrial DNA techniques. Theories regarding the possibility that a common female ancestor existed in Africa about 200,000 years ago are discussed. A list of teaching aids is provided. (CW)

  14. MOLECULAR PHYLOGENY AND EVOLUTION OF MOSQUITO PARASTIC MICROSPORIDIA (MICROSPORIDIA: AMBLYOSPORIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amblyospora and related species were isolated from mosquitoes, black flies and copepods and the small subunit ribosomal DNA gene was sequenced. The comparative phylogenetic analysis for this study shows co-evolution agreement between the mosquito host genera and Amblyospora parasite species with a ...

  15. On the Stability and Evolution of Isolated Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Langer, W.; Nelson, R.

    1998-01-01

    We present the results of three dimensional hydrodynamic models of evolving, isolated, low mass, quiescent clouds and Bok gobules, where the interstellar radiation field plays an important role in the thermal and chemical evolution, and thermal pressure provides dominant support against gravitational collapse.

  16. Temporal scaling of molecular evolution in primates and other mammals.

    PubMed

    Gingerich, P D

    1986-05-01

    Molecular clocks are routinely tested for linearity using a relative rate test and routinely calibrated against the geological time scale using a single or average paleontologically determined time of divergence between living taxa. The relative rate test is a test of parallel rate equality, not a test of rate constancy. Temporal scaling provides a test of rates, where scaling coefficients of 1.0 (isochrony) represent stochastic rate constancy. The fossil record of primates and other mammals is now known in sufficient detail to provide several independent divergence times for major taxonomic groups. Molecular difference should scale negatively or isochronically (scaling coefficients less than 1.0) with divergence time: where two or more divergence times are available, molecular difference appears to scale positively (scaling coefficient greater than 1.0). A minimum of four divergence times are required for adequate statistical power in testing the linear model: scaling is significantly nonlinear and positive in six of 11 published investigations meeting this criterion. All groups studied show some slowdown in rates of molecular change over Cenozoic time. The break from constant or increasing rates during the Mesozoic to decreasing rates during the Cenozoic appears to coincide with extraordinary diversification of placental mammals at the beginning of this era. High rates of selectively neutral molecular change may be concentrated in such discrete events of evolutionary diversification. PMID:3444400

  17. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  18. Photocatalytic hydrogen evolution with ruthenium polypyridine sensitizers: unveiling the key factors to improve efficiencies.

    PubMed

    Deponti, Elisa; Natali, Mirco

    2016-05-31

    Photochemical hydrogen evolution studies aimed at evaluating new molecular catalysts have usually exploited Ru(bpy)3(2+) (where bpy = 2,2'-bipyridine) as the reference photosensitizer, thanks to its suitable optical and redox properties. In principle, an additional improvement of the photocatalytic performances can be achieved also by a careful adjustment of the photophysical and/or electrochemical characteristics of the ruthenium-based sensitizer. Herein we describe homogeneous molecular systems for photocatalytic hydrogen evolution composed of a series of ruthenium polypyridine complexes as the photosensitizers (), a cobaloxime catalyst, and ascorbic acid as the sacrificial electron donor. Suitable functionalizations of the 4,4' positions of bipyridine ligands have been addressed in order to modify the redox properties of the chromophores rather than their optical ones. A careful and detailed kinetic characterization of the relevant processes at the basis of hydrogen evolving photocatalysis has been addressed to rationalize the observed behavior. The results show that the ruthenium complex involving two 2,2'-bipyridines and one 4,4'-dimethyl-2,2'-bipyridine () may outperform the standard Ru(bpy)3(2+) (), combining the right balance of structural and redox properties, thus posing as an alternative benchmark photosensitizer for the study of new hydrogen evolving catalysts. PMID:27165725

  19. Evolution and Molecular Control of Hybrid Incompatibility in Plants.

    PubMed

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with "parasitic" selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  20. Evolution and Molecular Control of Hybrid Incompatibility in Plants

    PubMed Central

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with “parasitic” selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  1. Structural limits for evolutive capacities in complex molecular systems.

    PubMed

    Bergareche, A M; Ostolaza, J F

    1990-01-01

    The possibilities of evolution for a system with and without a code of translation from nucleic acids into proteins are evaluated. Our interest is mainly centred on the enzymatic RNA case since this molecule has, at the same time, reproductive and functional properties. After scanning the evolutive capacities of the enzymatic RNAs, including the possibility to play the role of "synthetase" which would match nucleic acids with amino acids as a transition step towards a code, we will try to show that due to their own functional limitative factors, the matching system (code) is necessary. This would be the only way to transform the formal complexity--complexity which has not entered into action before the translation process--into functional information to drive the instructive self-reproductive process. Once this stage is reached, the system could evolve without a limit. PMID:1707552

  2. Exploiting models of molecular evolution to efficiently direct protein engineering.

    PubMed

    Cole, Megan F; Gaucher, Eric A

    2011-02-01

    Directed evolution and protein engineering approaches used to generate novel or enhanced biomolecular function often use the evolutionary sequence diversity of protein homologs to rationally guide library design. To fully capture this sequence diversity, however, libraries containing millions of variants are often necessary. Screening libraries of this size is often undesirable due to inaccuracies of high-throughput assays, costs, and time constraints. The ability to effectively cull sequence diversity while still generating the functional diversity within a library thus holds considerable value. This is particularly relevant when high-throughput assays are not amenable to select/screen for certain biomolecular properties. Here, we summarize our recent attempts to develop an evolution-guided approach, Reconstructing Evolutionary Adaptive Paths (REAP), for directed evolution and protein engineering that exploits phylogenetic and sequence analyses to identify amino acid substitutions that are likely to alter or enhance function of a protein. To demonstrate the utility of this technique, we highlight our previous work with DNA polymerases in which a REAP-designed small library was used to identify a DNA polymerase capable of accepting non-standard nucleosides. We anticipate that the REAP approach will be used in the future to facilitate the engineering of biopolymers with expanded functions and will thus have a significant impact on the developing field of 'evolutionary synthetic biology'. PMID:21132281

  3. Improved Infrastucture for Cdms and JPL Molecular Spectroscopy Catalogues

    NASA Astrophysics Data System (ADS)

    Endres, Christian; Schlemmer, Stephan; Drouin, Brian; Pearson, John; Müller, Holger S. P.; Schilke, P.; Stutzki, Jürgen

    2014-06-01

    Over the past years a new infrastructure for atomic and molecular databases has been developed within the framework of the Virtual Atomic and Molecular Data Centre (VAMDC). Standards for the representation of atomic and molecular data as well as a set of protocols have been established which allow now to retrieve data from various databases through one portal and to combine the data easily. Apart from spectroscopic databases such as the Cologne Database for Molecular Spectroscopy (CDMS), the Jet Propulsion Laboratory microwave, millimeter and submillimeter spectral line catalogue (JPL) and the HITRAN database, various databases on molecular collisions (BASECOL, KIDA) and reactions (UMIST) are connected. Together with other groups within the VAMDC consortium we are working on common user tools to simplify the access for new customers and to tailor data requests for users with specified needs. This comprises in particular tools to support the analysis of complex observational data obtained with the ALMA telescope. In this presentation requests to CDMS and JPL will be used to explain the basic concepts and the tools which are provided by VAMDC. In addition a new portal to CDMS will be presented which has a number of new features, in particular meaningful quantum numbers, references linked to data points, access to state energies and improved documentation. Fit files are accessible for download and queries to other databases are possible.

  4. Molecular Evolution of the Plant SLT Protein Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The products of the sodium/lithium tolerance (Slt) genes are proteins that have molecular chaperone activity in vitro. The results from extensive database analyses indicate that SLT-orthologous proteins are present only in seed plants (Spermatopsida). Herein we describe the sequence analysis of th...

  5. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  6. Adaptive Evolution of Synthetic Cooperating Communities Improves Growth Performance

    PubMed Central

    Zhang, Xiaolin; Reed, Jennifer L.

    2014-01-01

    Symbiotic interactions between organisms are important for human health and biotechnological applications. Microbial mutualism is a widespread phenomenon and is important in maintaining natural microbial communities. Although cooperative interactions are prevalent in nature, little is known about the processes that allow their initial establishment, govern population dynamics and affect evolutionary processes. To investigate cooperative interactions between bacteria, we constructed, characterized, and adaptively evolved a synthetic community comprised of leucine and lysine Escherichia coli auxotrophs. The co-culture can grow in glucose minimal medium only if the two auxotrophs exchange essential metabolites — lysine and leucine (or its precursors). Our experiments showed that a viable co-culture using these two auxotrophs could be established and adaptively evolved to increase growth rates (by ∼3 fold) and optical densities. While independently evolved co-cultures achieved similar improvements in growth, they took different evolutionary trajectories leading to different community compositions. Experiments with individual isolates from these evolved co-cultures showed that changes in both the leucine and lysine auxotrophs improved growth of the co-culture. Interestingly, while evolved isolates increased growth of co-cultures, they exhibited decreased growth in mono-culture (in the presence of leucine or lysine). A genome-scale metabolic model of the co-culture was also constructed and used to investigate the effects of amino acid (leucine or lysine) release and uptake rates on growth and composition of the co-culture. When the metabolic model was constrained by the estimated leucine and lysine release rates, the model predictions agreed well with experimental growth rates and composition measurements. While this study and others have focused on cooperative interactions amongst community members, the adaptive evolution of communities with other types of

  7. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.

    PubMed

    Mitchell, Kieren J; Pratt, Renae C; Watson, Laura N; Gibb, Gillian C; Llamas, Bastien; Kasper, Marta; Edson, Janette; Hopwood, Blair; Male, Dean; Armstrong, Kyle N; Meyer, Matthias; Hofreiter, Michael; Austin, Jeremy; Donnellan, Stephen C; Lee, Michael S Y; Phillips, Matthew J; Cooper, Alan

    2014-09-01

    Marsupials exhibit great diversity in ecology and morphology. However, compared with their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation. PMID:24881050

  8. Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution

    PubMed Central

    Müller, S.; Stanyon, R.; Finelli, P.; Archidiacono, N.; Wienberg, J.

    2000-01-01

    Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome. PMID:10618396

  9. Molecular Evolution of the TET Gene Family in Mammals

    PubMed Central

    Akahori, Hiromichi; Guindon, Stéphane; Yoshizaki, Sumio; Muto, Yoshinori

    2015-01-01

    Ten-eleven translocation (TET) proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. They also help regulate various cellular functions. Three TET paralogs have been identified (TET1, TET2, and TET3) in humans. This study focuses on the evolution of mammalian TET genes. Distinct patterns in TET1 and TET2 vs. TET3 were revealed by codon-based tests of positive selection. Results indicate that TET1 and TET2 genes have experienced positive selection more frequently than TET3 gene, and that the majority of codon sites evolved under strong negative selection. These findings imply that the selective pressure on TET3 may have been relaxed in several lineages during the course of evolution. Our analysis of convergent amino acid substitutions also supports the different evolutionary dynamics among TET gene subfamily members. All of the five amino acid sites that are inferred to have evolved under positive selection in the catalytic domain of TET2 are localized at the protein’s outer surface. The adaptive changes of these positively selected amino acid sites could be associated with dynamic interactions between other TET-interacting proteins, and positive selection thus appears to shift the regulatory scheme of TET enzyme function. PMID:26633372

  10. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    PubMed Central

    Shi, Fei; Qin, Song; Wang, Yin-Chu

    2011-01-01

    Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions. PMID:21904470

  11. 'Molecules and monkeys': George Gaylord Simpson and the challenge of molecular evolution.

    PubMed

    Aronson, Jay D

    2002-01-01

    In this paper, I analyze George Gaylord Simpson's response to the molecularization of evolutionary biology from his unique perspective as a paleontologist. I do so by exploring his views on early attempts to reconstruct phylogenetic relationships among primates using molecular data. Particular attention is paid to Simpson's role in the evolutionary synthesis of the 1930s and 1940s, as well as his concerns about the rise of molecular biology as a powerful discipline and world-view in the 1960s. I argue that Simpson's belief in the supremacy of natural selection as the primary driving force of evolution, as well as his view that biology was a historical science that seeks ultimate causes and highlights contingency, prevented him from acknowledging that the study of molecular evolution was an inherently valuable part of the life sciences. PMID:15045833

  12. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution.

    PubMed Central

    Sturmbauer, C; Levinton, J S; Christy, J

    1996-01-01

    The current phylogenetic hypothesis for the evolution and biogeography of fiddler crabs relies on the assumption that complex behavioral traits are assumed to also be evolutionary derived. Indo-west Pacific fiddler crabs have simpler reproductive social behavior and are more marine and were thought to be ancestral to the more behaviorally complex and more terrestrial American species. It was also hypothesized that the evolution of more complex social and reproductive behavior was associated with the colonization of the higher intertidal zones. Our phylogenetic analysis, based upon a set of independent molecular characters, however, demonstrates how widely entrenched ideas about evolution and biogeography led to a reasonable, but apparently incorrect, conclusion about the evolutionary trends within this pantropical group of crustaceans. Species bearing the set of "derived traits" are phylogenetically ancestral, suggesting an alternative evolutionary scenario: the evolution of reproductive behavioral complexity in fiddler crabs may have arisen multiple times during their evolution. The evolution of behavioral complexity may have arisen by coopting of a series of other adaptations for high intertidal living and antipredator escape. A calibration of rates of molecular evolution from populations on either side of the Isthmus of Panama suggest a sequence divergence rate for 16S rRNA of 0.9% per million years. The divergence between the ancestral clade and derived forms is estimated to be approximately 22 million years ago, whereas the divergence between the American and Indo-west Pacific is estimated to be approximately 17 million years ago. Images Fig. 1 PMID:11607711

  13. Molecular genetics and the evolution of ultraviolet vision in vertebrates

    PubMed Central

    Shi, Yongsheng; Radlwimmer, F. Bernhard; Yokoyama, Shozo

    2001-01-01

    Despite the biological importance of UV vision, its molecular bases are not well understood. Here, we present evidence that UV vision in vertebrates is determined by eight specific amino acids in the UV pigments. Amino acid sequence analyses show that contemporary UV pigments inherited their UV sensitivities from the vertebrate ancestor by retaining most of these eight amino acids. In the avian lineage, the ancestral pigment lost UV sensitivity, but some descendants regained it by one amino acid change. Our results also strongly support the hypothesis that UV pigments have an unprotonated Schiff base-linked chromophore. PMID:11573008

  14. Molecular networks and the evolution of human cognitive specializations

    PubMed Central

    Fontenot, Miles; Konopka, Genevieve

    2014-01-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. PMID:25212263

  15. Molecular evolution of peste des petits ruminants virus.

    PubMed

    Muniraju, Murali; Munir, Muhammad; Parthiban, AravindhBabu R; Banyard, Ashley C; Bao, Jingyue; Wang, Zhiliang; Ayebazibwe, Chrisostom; Ayelet, Gelagay; El Harrak, Mehdi; Mahapatra, Mana; Libeau, Geneviève; Batten, Carrie; Parida, Satya

    2014-12-01

    Despite safe and efficacious vaccines against peste des petits ruminants virus (PPRV), this virus has emerged as the cause of a highly contagious disease with serious economic consequences for small ruminant agriculture across Asia, the Middle East, and Africa. We used complete and partial genome sequences of all 4 lineages of the virus to investigate evolutionary and epidemiologic dynamics of PPRV. A Bayesian phylogenetic analysis of all PPRV lineages mapped the time to most recent common ancestor and initial divergence of PPRV to a lineage III isolate at the beginning of 20th century. A phylogeographic approach estimated the probability for root location of an ancestral PPRV and individual lineages as being Nigeria for PPRV, Senegal for lineage I, Nigeria/Ghana for lineage II, Sudan for lineage III, and India for lineage IV. Substitution rates are critical parameters for understanding virus evolution because restrictions in genetic variation can lead to lower adaptability and pathogenicity. PMID:25418782

  16. Gibberellin Receptor GID1: Gibberellin Recognition and Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Sato, Tomomi; Ueguchi-Tanaka, Miyako

    Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. We analyzed the crystal structure of a nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) from Oryza sativa. As it was proposed from the sequence similarity, the overall structure of GID1 shows an α/β-hydrolase fold similar to that of the hormone-sensitive lipases (HSLs) except for an amino-terminal lid. The GA-binding site corresponds to the substrate-binding site of HSLs. Almost residues assigned for GA binding showed very little or no activity when they were replaced with Ala. The substitution of the residues corresponding to those of the lycophyte GID1s caused an increase in the binding affinity for GA34, a 2β-hydroxylated GA4. These findings indicate that GID1 originated from HSL and was tinkered to have the specificity for bioactive GAs in the course of plant evolution.

  17. Glutamine synthetase gene evolution: a good molecular clock.

    PubMed Central

    Pesole, G; Bozzetti, M P; Lanave, C; Preparata, G; Saccone, C

    1991-01-01

    Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves. PMID:1671172

  18. [Molecular Mechanism and Malignant Clonal Evolution of Multiple Myeloma].

    PubMed

    Ding, Fei; Zhu, Ping; Wu, Xue-Qiang

    2015-10-01

    Almost all patients with multiple myeloma (MM) have chromosomal translocation which can result in genetic variation. There are mainly five types of chromosomal translocations, involving the IGH gene translocation to 11q13 (CCND1), 4p16 (FGFR/MMSET), 16q23 (MAF), 6p21 (CCND3) and 20q11 (MAFB). It is possible that all IGH translocations converge on a common cell cycle signal pathway. Some MM develops through a multistep transformation from monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM (SMM) and eventually to MM and plasma cell leukemia (PCL). Similarly to what Darwin proposed in the mid-19th century-random genetic variation and natural selection in the context of limited resources, MM clonal evolution follow branching and nonlinear mode. The failure of MM treatment is usually related with the minimal subclone which is hardly found at newlydiagnosed. PMID:26524068

  19. Molecular evolution and phylogeny of dengue-4 viruses.

    PubMed

    Lanciotti, R S; Gubler, D J; Trent, D W

    1997-09-01

    Nucleotide sequences of the envelope protein genes of 19 geographically and temporally distinct dengue (DEN)-4 viruses were determined. Nucleic acid sequence comparison revealed that the identity among the DEN-4 viruses was greater than 92%. Similarity among deduced amino acids was between 96 and 100%; in most cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis generated phylogenetic trees, which indicated that geographically independent evolution of DEN-4 viruses had occurred. DEN-4 viruses were separated into two genetically distinct subtypes (genotypes). Genotype-1 contains viruses from the Philippines, Thailand and Sri Lanka; genotype-2 consists of viruses from Indonesia, Tahiti, the Caribbean Islands (Puerto Rico, Dominica) and Central and South America. PMID:9292015

  20. The molecular evolution of the vertebrate behavioural repertoire.

    PubMed

    Grant, Seth G N

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  1. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins.

    PubMed

    Miura, Yoko; Suzuki-Matsubara, Mieko; Kageyama, Takashi; Moriyama, Akihiko

    2016-02-01

    The nucleotide sequences of largemouth bass pepsinogens (PG1, 2 and 3) were determined after molecular cloning of the respective cDNAs. Encoded PG1, 2 and 3 were classified as fish pepsinogens A1, A2 and C, respectively. Molecular evolutionary analyses show that vertebrate pepsinogens are classified into seven monophyletic groups, i.e. pepsinogens A, F, Y (prochymosins), C, B, and fish pepsinogens A and C. Regarding the primary structures, extensive deletion was obvious in S'1 loop residues in fish pepsin A as well as tetrapod pepsin Y. This deletion resulted in a decrease in hydrophobic residues in the S'1 site. Hydrolytic specificities of bass pepsins A1 and A2 were investigated with a pepsin substrate and its variants. Bass pepsins preferred both hydrophobic/aromatic residues and charged residues at the P'1 sites of substrates, showing the dual character of S'1 sites. Thermodynamic analyses of bass pepsin A2 showed that its activation Gibbs energy change (∆G(‡)) was lower than that of porcine pepsin A. Several sites of bass pepsin A2 moiety were found to be under positive selection, and most of them are located on the surface of the molecule, where they are involved in conformational flexibility. The broad S'1 specificity and flexible structure of bass pepsin A2 are thought to cause its high proteolytic activity. PMID:26627128

  2. The molecular evolution of the vertebrate behavioural repertoire

    PubMed Central

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  3. Molecular tools in understanding the evolution of Vibrio cholerae

    PubMed Central

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  4. Improving Molecular Level Chemical Speciation of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Worton, D. R.; Decker, M.; Isaacman, G. A.; Chan, A.; Wilson, K. R.; Goldstein, A. H.

    2013-12-01

    A substantial fraction of fine mode aerosols are organic with the majority formed in the atmosphere through oxidation of gas phase compounds emitted from a variety of natural and man-made sources. As a result, organic aerosols are comprised of thousands of individual organic species whose complexity increases exponentially with carbon number and degree of atmospheric oxidation. Chemical characterization of individual compounds present in this complex mixture provides information on sources and transformation processes that are critical for apportioning organic carbon from an often convoluted mixture of sources and to constrain oxidation mechanisms needed for atmospheric models. These compounds also affect the physical and optical properties of the aerosol but the vast majority remain unidentified and missing from published mass spectral libraries because of difficulties in separating and identifying them. We have developed improved methodologies for chemical identification in order to better understand complex environmental mixtures. Our approach has been to combine two-dimensional gas chromatography with high resolution time of flight mass spectrometry (GC×GC-HRTOFMS) and both traditional electron ionization (EI) and vacuum ultraviolet (VUV) photoionization. GC×GC provides improved separation of individual compounds over traditional one dimensional GC and minimizes co-elution of peaks resulting in mass spectra that are virtually free of interferences. VUV ionization is a ';soft' ionization technique that reduces fragmentation and enhances the abundance of the parent or molecular ion, which when combined with high resolution mass spectrometry can provide molecular formulas for chromatographic peaks. We demonstrate our methodology by applying it to identify more than 500 individual compounds in aerosol filter samples collected at Blodgett Forest, a rural site in the Sierra Nevada Mountains. Using the EI NIST mass spectral library and molecular formulas determined

  5. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  6. Molecular evolution and in vitro characterization of Botryllus histocompatibility factor.

    PubMed

    Taketa, Daryl A; Nydam, Marie L; Langenbacher, Adam D; Rodriguez, Delany; Sanders, Erin; De Tomaso, Anthony W

    2015-10-01

    Botryllus schlosseri is a colonial ascidian with a natural ability to anastomose with another colony to form a vascular and hematopoietic chimera. In order to fuse, two individuals must share at least one allele at the highly polymorphic fuhc locus. Otherwise, a blood-based inflammatory response will occur resulting in a melanin scar at the sites of interaction. The single-locus genetic control of allorecognition makes B. schlosseri an attractive model to study the underlying molecular mechanisms. Over the past decade, several candidate genes involved in allorecognition have been identified, but how they ultimately contribute to allorecognition outcome remains poorly understood. Here, we report our initial molecular characterization of a recently identified candidate allodeterminant called Botryllus histocompatibility factor (bhf). bhf, both on a DNA and protein level, is the least polymorphic protein in the fuhc locus studied so far and, unlike other known allorecognition determinants, does not appear to be under any form of balancing or directional selection. Additionally, we identified a second isoform through mRNA-Seq and an EST assembly library which is missing exon 3, resulting in a C-terminally truncated form. We report via whole-mount fluorescent in situ hybridization that a subset of cells co-express bhf and cfuhc(sec). Finally, we observed BHF's localization in HEK293T at the cytoplasmic side of the plasma membrane in addition to the nucleus via a nuclear localization signal. Given the localization data thus far, we hypothesize that BHF may function as a scaffolding protein in a complex with other Botryllus proteins, rather than functioning as an allorecognition determinant. PMID:26359175

  7. Vibration-mediated Kondo transport in molecular junctions: conductance evolution during mechanical stretching

    PubMed Central

    Rakhmilevitch, David

    2015-01-01

    Summary The vibration-mediated Kondo effect attracted considerable theoretical interest during the last decade. However, due to lack of extensive experimental demonstrations, the fine details of the phenomenon were not addressed. Here, we analyze the evolution of vibration-mediated Kondo effect in molecular junctions during mechanical stretching. The described analysis reveals the different contributions of Kondo and inelastic transport. PMID:26734532

  8. Epistasis and the Dynamics of Reversion in Molecular Evolution.

    PubMed

    McCandlish, David M; Shah, Premal; Plotkin, Joshua B

    2016-07-01

    Recent studies of protein evolution contend that the longer an amino acid substitution is present at a site, the less likely it is to revert to the amino acid previously occupying that site. Here we study this phenomenon of decreasing reversion rates rigorously and in a much more general context. We show that, under weak mutation and for arbitrary fitness landscapes, reversion rates decrease with time for any site that is involved in at least one epistatic interaction. Specifically, we prove that, at stationarity, the hazard function of the distribution of waiting times until reversion is strictly decreasing for any such site. Thus, in the presence of epistasis, the longer a particular character has been absent from a site, the less likely the site will revert to its prior state. We also explore several examples of this general result, which share a common pattern whereby the probability of having reverted increases rapidly at short times to some substantial value before becoming almost flat after a few substitutions at other sites. This pattern indicates a characteristic tendency for reversion to occur either almost immediately after the initial substitution or only after a very long time. PMID:27194749

  9. Phylogeography and molecular evolution of potato virus Y.

    PubMed

    Cuevas, José M; Delaunay, Agnès; Visser, Johan C; Bellstedt, Dirk U; Jacquot, Emmanuel; Elena, Santiago F

    2012-01-01

    Potato virus Y (PVY) is an important plant pathogen, whose host range includes economically important crops such as potato, tobacco, tomato, and pepper. PVY presents three main strains (PVY(O), PVY(N) and PVY(C)) and several recombinant forms. PVY has a worldwide distribution, yet the mechanisms that promote and maintain its population structure and genetic diversity are still unclear. In this study, we used a pool of 77 complete PVY genomes from isolates collected worldwide. After removing the effect of recombination in our data set, we used bayesian techniques to study the influence of geography and host species in both PVY population structure and dynamics. We have also performed selection and covariation analyses to identify evolutionarily relevant amino acid residues. Our results show that both geographic and host-driven adaptations explain PVY diversification. Furthermore, purifying selection is the main force driving PVY evolution, although some indications of positive selection accounted for the diversification of the different strains. Interestingly, the analysis of P3N-PIPO, a recently described gene in potyviruses, seems to show a variable length among the isolates analyzed, and this variability is explained, in part, by host-driven adaptation. PMID:22655074

  10. Molecular evolution of the capsid gene in human norovirus genogroup II

    PubMed Central

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10−3 substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>102) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  11. Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny.

    PubMed

    Shibusawa, M; Nishibori, M; Nishida-Umehara, C; Tsudzuki, M; Masabanda, J; Griffin, D K; Matsuda, Y

    2004-01-01

    To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented. PMID:15218250

  12. Are Molecular Alphabets Universal Enabling Factors for the Evolution of Complex Life?

    NASA Astrophysics Data System (ADS)

    Dunn, Ian S.

    2013-12-01

    Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified (`non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life.

  13. Are molecular alphabets universal enabling factors for the evolution of complex life?

    PubMed

    Dunn, Ian S

    2013-12-01

    Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified ('non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life. PMID:24510462

  14. Molecular evolution and functional characterisation of haplotypes of an important rubber biosynthesis gene in Hevea brasiliensis.

    PubMed

    Uthup, T K; Rajamani, A; Ravindran, M; Saha, T

    2016-07-01

    Hydroxy-methylglutaryl coenzyme-A synthase (HMGS) is a rate-limiting enzyme in the cytoplasmic isoprenoid biosynthesis pathway leading to natural rubber production in Hevea brasiliensis (rubber). Analysis of the structural variants of this gene is imperative to understand their functional significance in rubber biosynthesis so that they can be properly utilised for ongoing crop improvement programmes in Hevea. We report here allele richness and diversity of the HMGS gene in selected popular rubber clones. Haplotypes consisting of single nucleotide polymorphisms (SNPs) from the coding and non-coding regions with a high degree of heterozygosity were identified. Segregation and linkage disequilibrium analysis confirmed that recombination is the major contributor to the generation of allelic diversity, rather than point mutations. The evolutionarily conserved nature of some SNPs was identified by comparative DNA sequence analysis of HMGS orthologues from diverse taxa, demonstrating the molecular evolution of rubber biosynthesis genes in general. In silico three-dimensional structural studies highlighting the structural positioning of non-synonymous SNPs from different HMGS haplotypes revealed that the ligand-binding site on the enzyme remains impervious to the reported sequence variations. In contrast, gene expression results indicated the possibility of association between specific haplotypes and HMGS expression in Hevea clones, which may have a downstream impact up to the level of rubber production. Moreover, haplotype diversity of the HMGS gene and its putative association with gene expression can be the basis for further genetic association studies in rubber. Furthermore, the data also show the role of SNPs in the evolution of candidate genes coding for functional traits in plants. PMID:26787454

  15. Distribution and molecular evolution of bacillus anthracis genotypes in Namibia.

    PubMed

    Beyer, Wolfgang; Bellan, Steve; Eberle, Gisela; Ganz, Holly H; Getz, Wayne M; Haumacher, Renate; Hilss, Karen A; Kilian, Werner; Lazak, Judith; Turner, Wendy C; Turnbull, Peter C B

    2012-01-01

    The recent development of genetic markers for Bacillus anthracis has made it possible to monitor the spread and distribution of this pathogen during and between anthrax outbreaks. In Namibia, anthrax outbreaks occur annually in the Etosha National Park (ENP) and on private game and livestock farms. We genotyped 384 B. anthracis isolates collected between 1983-2010 to identify the possible epidemiological correlations of anthrax outbreaks within and outside the ENP and to analyze genetic relationships between isolates from domestic and wild animals. The isolates came from 20 animal species and from the environment and were genotyped using a 31-marker multi-locus-VNTR-analysis (MLVA) and, in part, by twelve single nucleotide polymorphism (SNP) markers and four single nucleotide repeat (SNR) markers. A total of 37 genotypes (GT) were identified by MLVA, belonging to four SNP-groups. All GTs belonged to the A-branch in the cluster- and SNP-analyses. Thirteen GTs were found only outside the ENP, 18 only within the ENP and 6 both inside and outside. Genetic distances between isolates increased with increasing time between isolations. However, genetic distance between isolates at the beginning and end of the study period was relatively small, indicating that while the majority of GTs were only found sporadically, three genetically close GTs, accounting for more than four fifths of all the ENP isolates, appeared dominant throughout the study period. Genetic distances among isolates were significantly greater for isolates from different host species, but this effect was small, suggesting that while species-specific ecological factors may affect exposure processes, transmission cycles in different host species are still highly interrelated. The MLVA data were further used to establish a model of the probable evolution of GTs within the endemic region of the ENP. SNR-analysis was helpful in correlating an isolate with its source but did not elucidate epidemiological

  16. Molecular evolution of GPCRs: Melanocortin/melanocortin receptors.

    PubMed

    Dores, Robert M; Londraville, Richard L; Prokop, Jeremy; Davis, Perry; Dewey, Nathan; Lesinski, Natalie

    2014-06-01

    The melanocortin receptors (MCRs) are a family of G protein-coupled receptors that are activated by melanocortin ligands derived from the proprotein, proopiomelanocortin (POMC). During the radiation of the gnathostomes, the five receptors have become functionally segregated (i.e. melanocortin 1 receptor (MC1R), pigmentation regulation; MC2R, glucocorticoid synthesis; MC3R and MC4R, energy homeostasis; and MC5R, exocrine gland physiology). A focus of this review is the role that ligand selectivity plays in the hypothalamus/pituitary/adrenal-interrenal (HPA-I) axis of teleosts and tetrapods as a result of the exclusive ligand selectivity of MC2R for the ligand ACTH. A second focal point of this review is the roles that the accessory proteins melanocortin 2 receptor accessory protein 1 (MRAP1) and MRAP2 are playing in, respectively, the HPA-I axis (MC2R) and the regulation of energy homeostasis by neurons in the hypothalamus (MC4R) of teleosts and tetrapods. In addition, observations are presented on trends in the ligand selectivity parameters of cartilaginous fish, teleost, and tetrapod MC1R, MC3R, MC4R, and MC5R paralogs, and the modeling of the HFRW motif of ACTH(1-24) when compared with α-MSH. The radiation of the MCRs during the evolution of the gnathostomes provides examples of how the physiology of endocrine and neuronal circuits can be shaped by ligand selectivity, the intersession of reverse agonists (agouti-related peptides (AGRPs)), and interactions with accessory proteins (MRAPs). PMID:24868105

  17. Molecular Breeding for Improved Second Generation Bioenergy Crops.

    PubMed

    Allwright, Mike R; Taylor, Gail

    2016-01-01

    There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future. PMID:26541073

  18. Directed molecular evolution to design advanced red fluorescent proteins

    PubMed Central

    Subach, Fedor V; Piatkevich, Kiryl D; Verkhusha, Vladislav V

    2015-01-01

    Fluorescent proteins have become indispensable imaging tools for biomedical research. continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications. PMID:22127219

  19. Molecular evolution of HR, a gene that regulates the postnatal cycle of the hair follicle

    PubMed Central

    Abbasi, Amir Ali

    2011-01-01

    Hair is a unique mammalian trait that is absent in all other animal forms. Hairlessness is rare in mammals and humans are exceptional among primates in lacking dense layer of hair covering. HR was the first gene identified to be implicated in hair-cycle regulation. Point mutations in HR lead to congenital human hair loss, which results in the complete loss of body and scalp hairs. HR functions are indispensable for initiation of postnatal hair follicular cycling. This study investigates the phylogenetic history and analyzes the protein evolutionary rate to provide useful insight into the molecular evolution of HR. The data demonstrates an acceleration of HR sequence evolution in human branch and suggests that the ability of HR protein to mediate postnatal hair-cycling has been altered in the course of human evolution. In particular those residues were pinpointed which should be regarded as target of positive Darwinian selection during human evolution. PMID:22355551

  20. Molecular systematics and evolution of the Cyanocorax jays.

    PubMed

    Bonaccorso, Elisa; Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Fleischer, Robert C

    2010-03-01

    Phylogenetic relationships were studied in the genus Cyanocorax (Aves: Corvidae) and related genera, Psilorhinus and Calocitta, a diverse group of New World jays distributed from the southern United States south to Argentina. Although the ecology and behavior of some species in the group have been studied extensively, lack of a molecular phylogeny has precluded rigorous interpretations in an evolutionary framework. Given the diverse combinations of plumage coloration, size, and morphology, the taxonomy of the group has been inconsistent and understanding of biogeographic patterns problematic. Moreover, plumage similarity between two geographically disjuct species, the Tufted jay (Cyanocorax dickeyi) from western Mexico and the White-tailed jay (C. mystacalis) from western Ecuador and Peru, has puzzled ornithologists for decades. Here, a phylogeny of all species in the three genera is presented, based on study of two mitochondrial and three nuclear genes. Phylogenetic trees revealed the non-monophyly of Cyanocorax, and the division of the whole assemblage in two groups: "Clade A" containing Psilorhinus morio, both species in Calocitta,Cyanocorax violaceus, C. caeruleus, C. cristatellus, and C. cyanomelas, and "Clade B" consisting of the remaining species in Cyanocorax. Relationships among species in Clade A were ambiguous and, in general, not well resolved. Within Clade B, analyses revealed the monophyly of the "Cissilopha" jays and showed no evidence for a sister relationship between C. mystacalis and C. dickeyi. The phylogenetic complexity of lineages in the group suggests several complications for the understanding biogeographic patterns, as well as for proposing a taxonomy that is consistent with morphological variation. Although multiple taxonomic arrangements are possible, recommendations are for recognizing only one genus, Cyanocorax, with Psilorhinus and Calocitta as synonyms. PMID:19931623

  1. Reconstructing web evolution and spider diversification in the molecular era

    PubMed Central

    Blackledge, Todd A.; Scharff, Nikolaj; Coddington, Jonathan A.; Szüts, Tamas; Wenzel, John W.; Hayashi, Cheryl Y.; Agnarsson, Ingi

    2009-01-01

    The evolutionary diversification of spiders is attributed to spectacular innovations in silk. Spiders are unique in synthesizing many different kinds of silk, and using silk for a variety of ecological functions throughout their lives, particularly to make prey-catching webs. Here, we construct a broad higher-level phylogeny of spiders combining molecular data with traditional morphological and behavioral characters. We use this phylogeny to test the hypothesis that the spider orb web evolved only once. We then examine spider diversification in relation to different web architectures and silk use. We find strong support for a single origin of orb webs, implying a major shift in the spinning of capture silk and repeated loss or transformation of orb webs. We show that abandonment of costly cribellate capture silk correlates with the 2 major diversification events in spiders (1). Replacement of cribellate silk by aqueous silk glue may explain the greater diversity of modern orb-weaving spiders (Araneoidea) compared with cribellate orb-weaving spiders (Deinopoidea) (2). Within the “RTA clade,” which is the sister group to orb-weaving spiders and contains half of all spider diversity, >90% of species richness is associated with repeated loss of cribellate silk and abandonment of prey capture webs. Accompanying cribellum loss in both groups is a release from substrate-constrained webs, whether by aerially suspended webs, or by abandoning webs altogether. These behavioral shifts in silk and web production by spiders thus likely played a key role in the dramatic evolutionary success and ecological dominance of spiders as predators of insects. PMID:19289848

  2. The Diversity and Molecular Evolution of B-Cell Receptors during Infection

    PubMed Central

    Hoehn, Kenneth B.; Fowler, Anna; Lunter, Gerton; Pybus, Oliver G.

    2016-01-01

    B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish. PMID:26802217

  3. The Diversity and Molecular Evolution of B-Cell Receptors during Infection.

    PubMed

    Hoehn, Kenneth B; Fowler, Anna; Lunter, Gerton; Pybus, Oliver G

    2016-05-01

    B-cell receptors (BCRs) are membrane-bound immunoglobulins that recognize and bind foreign proteins (antigens). BCRs are formed through random somatic changes of germline DNA, creating a vast repertoire of unique sequences that enable individuals to recognize a diverse range of antigens. After encountering antigen for the first time, BCRs undergo a process of affinity maturation, whereby cycles of rapid somatic mutation and selection lead to improved antigen binding. This constitutes an accelerated evolutionary process that takes place over days or weeks. Next-generation sequencing of the gene regions that determine BCR binding has begun to reveal the diversity and dynamics of BCR repertoires in unprecedented detail. Although this new type of sequence data has the potential to revolutionize our understanding of infection dynamics, quantitative analysis is complicated by the unique biology and high diversity of BCR sequences. Models and concepts from molecular evolution and phylogenetics that have been applied successfully to rapidly evolving pathogen populations are increasingly being adopted to study BCR diversity and divergence within individuals. However, BCR dynamics may violate key assumptions of many standard evolutionary methods, as they do not descend from a single ancestor, and experience biased mutation. Here, we review the application of evolutionary models to BCR repertoires and discuss the issues we believe need be addressed for this interdisciplinary field to flourish. PMID:26802217

  4. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  5. Directed evolution improves the fibrinolytic activity of nattokinase from Bacillus natto.

    PubMed

    Yongjun, Cai; Wei, Bao; Shujun, Jiang; Meizhi, Weng; Yan, Jia; Yan, Yin; Zhongliang, Zheng; Goulin, Zou

    2011-12-01

    Nattokinase (subtilisin NAT, NK) is a relatively effective microbial fibrinolytic enzyme that has been identified and characterized from Bacillus natto. In the current report, DNA family shuffling was used to improve the fibrinolytic activity of nattokinase. Three homologous genes from B. natto AS 1.107, Bacillus amyloliquefaciens CICC 20164 and Bacillus licheniformis CICC 10092 were shuffled to generate a mutant library. A plate-based method was used to screen the mutant libraries for improved activity. After three rounds of DNA shuffling, one desirable mutant with 16 amino acid substitutions was obtained. The mutant enzyme was purified and characterized. The kinetic measurements showed that the catalytic efficiency of the mutant NK was approximately 2.3 times higher than that of the wild-type nattokinase. In addition, the molecular modeling analysis suggested that the mutations affect the enzymatic function by changing the surface conformation of the substrate-binding pocket. The current study shows that the evolution of nattokinase with improved fibrinolytic activity by DNA family shuffling is feasible and provides useful references to facilitate the application of nattokinase in thrombolytic therapy. PMID:22029857

  6. High molecular weight insulating polymers can improve the performance of molecular solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Wen, Wen; Kramer, Edward; Bazan, Guillermo

    2014-03-01

    Solution-processed molecular semiconductors for the fabrication of solar cells have emerged as a competitive alternative to their conjugated polymer counterparts, primarily because such materials systems exhibit no batch-to-batch variability, can be purified to a greater extent and offer precisely defined chemical structures. Highest power conversion efficiencies (PCEs) have been achieved through a combination of molecular design and the application of processing methods that optimize the bulk heterojunction (BHJ) morphology. However, one finds that the methods used for controlling structural order, for example the use of high boiling point solvent additives, have been inspired by examination of the conjugated polymer literature. It stands to reason that a different class of morphology modifiers should be sought that address challenges unique to molecular films, including difficulties in obtaining thicker films and avoiding the dewetting of active photovoltaic layers. Here we show that the addition of small quantities of high molecular weight polystyrene (PS) is a very simple to use and economically viable additive that improves PCE. Remarkably, the PS spontaneously accumulates away from the electrodes as separate domains that do not interfere with charge extraction and collection or with the arrangement of the donor and acceptor domains in the BHJ blend.

  7. A Simple, General Result for the Variance of Substitution Number in Molecular Evolution

    PubMed Central

    Houchmandzadeh, Bahram; Vallade, Marcel

    2016-01-01

    The number of substitutions (of nucleotides, amino acids, etc.) that take place during the evolution of a sequence is a stochastic variable of fundamental importance in the field of molecular evolution. Although the mean number of substitutions during molecular evolution of a sequence can be estimated for a given substitution model, no simple solution exists for the variance of this random variable. We show in this article that the computation of the variance is as simple as that of the mean number of substitutions for both short and long times. Apart from its fundamental importance, this result can be used to investigate the dispersion index R, that is, the ratio of the variance to the mean substitution number, which is of prime importance in the neutral theory of molecular evolution. By investigating large classes of substitution models, we demonstrate that although R≥1, to obtain R significantly larger than unity necessitates in general additional hypotheses on the structure of the substitution model. PMID:27189545

  8. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    PubMed

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. PMID:24259334

  9. Modelling the chemical evolution of molecular clouds as a function of metallicity

    NASA Astrophysics Data System (ADS)

    Penteado, E. M.; Cuppen, H. M.; Rocha-Pinto, H. J.

    2014-04-01

    The Galaxy is in continuous elemental evolution. Since new elements produced by dying stars are delivered to the interstellar medium, the formation of new generations of stars and planetary systems is influenced by this metal enrichment. We aim to study the role of the metallicity on the gas phase chemistry of the interstellar medium. Using a system of coupled ordinary differential equations to model the chemical reactions, we simulate the evolution of the abundance of molecules in the gas phase for different initial interstellar elemental compositions. These varying initial elemental compositions consider the change in the `elemental abundances' predicted by a self-consistent model of the elemental evolution of the Galaxy. As far as we are aware, this is the first attempt to combine elemental evolution of the Galaxy and chemical evolution of molecular clouds. The metallicity was found to have a strong effect on the overall gas phase composition. With decreasing metallicity, the number of long carbon chains was found to increase, the time-scale on which small molecular species are increases, and the main form of oxygen changed from O and CO to O2. These effects were found to be mainly due to the change in electron, H_3^+, and atomic oxygen abundance.

  10. Protein engineering of conger eel galectins by tracing of molecular evolution using probable ancestral mutants

    PubMed Central

    2010-01-01

    Background Conger eel galectins, congerin I (ConI) and congerin II (ConII), show the different molecular characteristics resulting from accelerating evolution. We recently reconstructed a probable ancestral form of congerins, Con-anc. It showed properties similar to those of ConII in terms of thermostability and carbohydrate recognition specificity, although it shares a higher sequence similarity with ConI than ConII. Results In this study, we have focused on the different amino acid residues between Con-anc and ConI, and have performed the protein engineering of Con-anc through site-directed mutagenesis, followed by the molecular evolution analysis of the mutants. This approach revealed the functional importance of loop structures of congerins: (1) N- and C-terminal and loop 5 regions that are involved in conferring a high thermostability to ConI; (2) loops 3, 5, and 6 that are responsible for stronger binding of ConI to most sugars; and (3) loops 5 and 6, and Thr38 residue in loop 3 contribute the specificity of ConI toward lacto-N-fucopentaose-containing sugars. Conclusions Thus, this methodology, with tracing of the molecular evolution using ancestral mutants, is a powerful tool for the analysis of not only the molecular evolutionary process, but also the structural elements of a protein responsible for its various functions. PMID:20152053

  11. DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance.

    PubMed

    Murugan, Kadarkarai; Vadivalagan, Chithravel; Karthika, Pushparaj; Panneerselvam, Chellasamy; Paulpandi, Manickam; Subramaniam, Jayapal; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Parajulee, Megha N; Benelli, Giovanni

    2016-01-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating pathogens and parasites. The standard method of utilisation of morphological characters becomes challenging due to various factors such as phenotypical variations. We explored the complementary approach of CO1 gene-based identification, analysing ten species of mosquito vectors belonging to three genera, Aedes, Culex and Anopheles from India. Analysed nucleotide sequences were found without pseudo genes and indels; they match with high similarity in nucleotide Basic Local Alignment Search Tool (BLASTn) search. The partial CO1 sequence of Anopheles niligricus was the first time record submitted to National Center for Biotechnology Information (NCBI). Mean intra- and interspecies divergence was found to be 1.30 and 3.83 %, respectively. The congeneric divergence was three times higher than the conspecifics. Deep intraspecific divergence was noted in three of the species, and the reason could be explained more accurately in the future by improving the sample size across different locations. The transitional and transversional substitutions were tested individually. Ts and Tv substitutions in all the 1st, 2nd and 3rd codons were estimated to be (0.44, 99.51), (40.35, 59.66) and (59.16, 40.84), respectively. Saturation of the sequences was resolved, since both the Ts and Tv exhibited a linear relationship suggesting that the sequences were not saturated. NJ and ML tree analysis showed that the individuals of the same species clustered together based on the CO1 sequence similarity, regardless of their collection site and geographic location. Overall, this study adds basic knowledge to molecular evolution of mosquito vectors of medical and veterinary importance and may be useful to improve biotechnological tools employed in Culicidae control programmes. PMID:26358100

  12. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record

    PubMed Central

    Berney, Cédric; Pawlowski, Jan

    2006-01-01

    Recent attempts to establish a molecular time-scale of eukaryote evolution failed to provide a congruent view on the timing of the origin and early diversification of eukaryotes. The major discrepancies in molecular time estimates are related to questions concerning the calibration of the tree. To limit these uncertainties, we used here as a source of calibration points the rich and continuous microfossil record of dinoflagellates, diatoms and coccolithophorids. We calibrated a small-subunit ribosomal RNA tree of eukaryotes with four maximum and 22 minimum time constraints. Using these multiple calibration points in a Bayesian relaxed molecular clock framework, we inferred that the early radiation of eukaryotes occurred near the Mesoproterozoic–Neoproterozoic boundary, about 1100 million years ago. Our results indicate that most Proterozoic fossils of possible eukaryotic origin cannot be confidently assigned to extant lineages and should therefore not be used as calibration points in molecular dating. PMID:16822745

  13. Correcting for Purifying Selection: An Improved Human Mitochondrial Molecular Clock

    PubMed Central

    Soares, Pedro; Ermini, Luca; Thomson, Noel; Mormina, Maru; Rito, Teresa; Röhl, Arne; Salas, Antonio; Oppenheimer, Stephen; Macaulay, Vincent; Richards, Martin B.

    2009-01-01

    There is currently no calibration available for the whole human mtDNA genome, incorporating both coding and control regions. Furthermore, as several authors have pointed out recently, linear molecular clocks that incorporate selectable characters are in any case problematic. We here confirm a modest effect of purifying selection on the mtDNA coding region and propose an improved molecular clock for dating human mtDNA, based on a worldwide phylogeny of > 2000 complete mtDNA genomes and calibrating against recent evidence for the divergence time of humans and chimpanzees. We focus on a time-dependent mutation rate based on the entire mtDNA genome and supported by a neutral clock based on synonymous mutations alone. We show that the corrected rate is further corroborated by archaeological dating for the settlement of the Canary Islands and Remote Oceania and also, given certain phylogeographic assumptions, by the timing of the first modern human settlement of Europe and resettlement after the Last Glacial Maximum. The corrected rate yields an age of modern human expansion in the Americas at ∼15 kya that—unlike the uncorrected clock—matches the archaeological evidence, but continues to indicate an out-of-Africa dispersal at around 55–70 kya, 5–20 ky before any clear archaeological record, suggesting the need for archaeological research efforts focusing on this time window. We also present improved rates for the mtDNA control region, and the first comprehensive estimates of positional mutation rates for human mtDNA, which are essential for defining mutation models in phylogenetic analyses. PMID:19500773

  14. The Evolution of School Improvement from the Classroom Teacher's Perspective.

    ERIC Educational Resources Information Center

    Thompson, Marci; Mitchell, Deborah

    2002-01-01

    Highlights changes that have occurred since 1992 at Elm Dale Elementary School (Greenfield, Wisconsin) through the school improvement process. Describes how teachers have become involved in and developed ownership of the improvement process, and how they have learned to analyze data. Asserts that the school improvement process has changed the…

  15. Morphological and Molecular Evolution Are Not Linked in Lamellodiscus (Plathyhelminthes, Monogenea)

    PubMed Central

    Poisot, Timothée; Verneau, Olivier; Desdevises, Yves

    2011-01-01

    Lamellodiscus Johnston & Tiegs 1922 (Monogenea, Diplectanidae) is a genus of common parasites on the gills of sparid fishes. Here we show that this genus is probably undergoing a fast molecular diversification, as reflected by the important genetic variability observed within three molecular markers (partial nuclear 18S rDNA, Internal Transcribed Spacer 1, and mitonchondrial Cytochrome Oxidase I). Using an updated phylogeny of this genus, we show that molecular and morphological evolution are weakly correlated, and that most of the morphologically defined taxonomical units are not consistent with the molecular data. We suggest that Lamellodiscus morphology is probably constrained by strong environmental (host-induced) pressure, and discuss why this result can apply to other taxa. Genetic variability within nuclear 18S and mitochondrial COI genes are compared for several monogenean genera, as this measure may reflect the level of diversification within a genus. Overall our results suggest that cryptic speciation events may occur within Lamellodiscus, and discuss the links between morphological and molecular evolution. PMID:22022582

  16. The pattern of mammalian evolution and the relative rate of molecular evolution

    SciTech Connect

    Easteal, S. )

    1990-01-01

    The rates of nucleotide substitution at four genes in four orders of eutherian mammals are compared in relative rate tests using marsupial orthologs for reference. There is no evidence of systematic variation in evolutionary rate among the orders. The sequences are used to reconstruct the phylogeny of the orders using maximum likelihood, parsimony and compatibility methods. A branching order of rodent then ungulate then primate and lagomorph is overwhelmingly indicated. The nodes of the nucleotide based cladograms are widely separated in relation to the total lengths of the branches. The assumption of a star phylogeny that underlies Kimura's test for molecular evolutionary rate variation is shown to be invalid for eutherian mammals. Excess variance in nucleotide or amino acid differences between mammalian orders, above that predicted by neutral theory is explained better by variation in divergence time than by variation in evolutionary rate.

  17. Book review: Darwinian agriculture: How understanding evolution can improve agriculture by R. Ford Dennison

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural research continually seeks to increase productivity while protecting soil, water and genetic resources. The book Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture, by R. Ford Dennison, delivers a thought-provoking view of how principles of ecology and evolution ...

  18. Molecular dynamics study of nanoparticle evolution in a background gas under laser ablation conditions

    NASA Astrophysics Data System (ADS)

    Gouriet, K.; Zhigilei, L. V.; Itina, T. E.

    2009-03-01

    Long-time evolution of nanoparticles produced by short laser interactions is investigated for different materials. To better understand the mechanisms of the nanoparticle formation at a microscopic level, we use molecular dynamics (MD) simulations to analyse the evolution of a cluster in the presence of a background gas with different parameters (density and temperature). In particular, we compare the simulation results obtained for materials with different interaction potentials (Morse, Lennard-Jones, and Embedded Atom Model). Attention is focused on the evaporation and condensation processes of a cluster with different size and initial temperature. As a result of the MD calculations, we determinate the influence of both cluster properties and background gas parameters on the nanoparticle evolution. The role of the interaction potential is discussed based on the results of the simulations.

  19. A new model for biological effects of radiation and the driven force of molecular evolution

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako

    We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.

  20. Molecular evolution of H9N2 avian influenza viruses in Israel.

    PubMed

    Davidson, Irit; Fusaro, Alice; Heidari, Alireza; Monne, Isabella; Cattoli, Giovanni

    2014-06-01

    While the previous phylogenetic analyses of AIV H9N2 in Israel had mainly focused on phylogenetics and on describing different virus introductions into the country, for the first time, the H9N2-HA gene evolutionary history has been examined taking into account its origin, evolution and phylodynamics. The present study reveals the Israeli H9N2 molecular evolution rate, the virus molecular clock and skyline plot. The molecular skyline plot showed two major increments in population diversity sizes, the first which had occurred in 2003, the second between the end of 2007 and the first half of 2008. Between 2004 and 2007 the population size had proved to be constant. The two peaks correspond to the appearance of the 3rd and 4th major genetic groups, as well as to the introduction of two H9N2 vaccines. The mean evolution rate was 6.123 E-3 substitutions/site/year, typical of avian influenza viruses. The time interval from the most recent common ancestor was 12.3 years, corresponding to the year 2000, when H9N2 was first isolated in Israel. PMID:24469467

  1. Effect of colliding plasmas dynamics, evolution, and stagnation on carbon molecular formation

    NASA Astrophysics Data System (ADS)

    Al-Shboul, Khaled F.

    carbon plasmas generated by 40fs pulses of 800 nm radiation from a femtosecond Ti:Sapphire laser. The results show that the molecular species spatial extension and lifetime are directly correlated to the evolution of excited ions in the presence of an ambient gas. Compared to ns graphite LPPs where carbon dimers are represented by complex intensity contours, the contours of fs laser plumes showed more uniform C2 emission. Chapter 6 of this thesis show that graphite colliding plasmas can be used for generating stagnation layer as a potential source for cluster production and as an alternative to introducing ambient gas for decelerating or controlling the plume dynamics. In this study, it was found that C2 dimer emission intensity improved significantly using the colliding scheme compared to conventional single laser ablation plumes. In chapter 7, a special colliding plasma experimental scheme was designed to study fusion reactor plasma facing component material ablation. A special experimental setup was designed where the laser is split into two perpendicular line-like beams focused onto a hemi-circular targets composed of varied elements. Single plume and stagnation layer dynamics of candidate fusion wall materials, viz., carbon and tungsten, and other materials, viz., aluminum, and molybdenum were investigated. The results highlight different characteristics of tungsten and carbon colliding plasmas under similar conditions. While tungsten plumes did not show stagnation clouds at the colliding zone, an intense stagnation layer formed from carbon colliding plumes. This stagnation layer, which may be a source of nanoparticles and aerosols generation, could limit the reactor performance by slowing down the repetition rate. (Abstract shortened by UMI.)

  2. An Improved Differential Evolution Solution for Software Project Scheduling Problem

    PubMed Central

    Biju, A. C.; Victoire, T. Aruldoss Albert; Mohanasundaram, Kumaresan

    2015-01-01

    This paper proposes a differential evolution (DE) method for the software project scheduling problem (SPSP). The interest on finding a more efficient solution technique for SPSP is always a topic of interest due to the fact of ever growing challenges faced by the software industry. The curse of dimensionality is introduced in the scheduling problem by ever increasing software assignments and the number of staff who handles it. Thus the SPSP is a class of NP-hard problem, which requires a rigorous solution procedure which guarantees a reasonably better solution. Differential evolution is a direct search stochastic optimization technique that is fairly fast and reasonably robust. It is also capable of handling nondifferentiable, nonlinear, and multimodal objective functions like SPSP. This paper proposes a refined DE where a new mutation mechanism is introduced. The superiority of the proposed method is experimented and demonstrated by solving the SPSP on 50 random instances and the results are compared with some of the techniques in the literature. PMID:26495419

  3. Improved estimates of coordinate error for molecular replacement

    SciTech Connect

    Oeffner, Robert D.; Bunkóczi, Gábor; McCoy, Airlie J.; Read, Randy J.

    2013-11-01

    A function for estimating the effective root-mean-square deviation in coordinates between two proteins has been developed that depends on both the sequence identity and the size of the protein and is optimized for use with molecular replacement in Phaser. A top peak translation-function Z-score of over 8 is found to be a reliable metric of when molecular replacement has succeeded. The estimate of the root-mean-square deviation (r.m.s.d.) in coordinates between the model and the target is an essential parameter for calibrating likelihood functions for molecular replacement (MR). Good estimates of the r.m.s.d. lead to good estimates of the variance term in the likelihood functions, which increases signal to noise and hence success rates in the MR search. Phaser has hitherto used an estimate of the r.m.s.d. that only depends on the sequence identity between the model and target and which was not optimized for the MR likelihood functions. Variance-refinement functionality was added to Phaser to enable determination of the effective r.m.s.d. that optimized the log-likelihood gain (LLG) for a correct MR solution. Variance refinement was subsequently performed on a database of over 21 000 MR problems that sampled a range of sequence identities, protein sizes and protein fold classes. Success was monitored using the translation-function Z-score (TFZ), where a TFZ of 8 or over for the top peak was found to be a reliable indicator that MR had succeeded for these cases with one molecule in the asymmetric unit. Good estimates of the r.m.s.d. are correlated with the sequence identity and the protein size. A new estimate of the r.m.s.d. that uses these two parameters in a function optimized to fit the mean of the refined variance is implemented in Phaser and improves MR outcomes. Perturbing the initial estimate of the r.m.s.d. from the mean of the distribution in steps of standard deviations of the distribution further increases MR success rates.

  4. Improved molecular collision models for nonequilibrium rarefied gases

    NASA Astrophysics Data System (ADS)

    Parsons, Neal

    The Direct Simulation Monte Carlo (DSMC) method typically used to model thermochemical nonequilibrium rarefied gases requires accurate total collision cross sections, reaction probabilities, and molecular internal energy exchange models. However, the baseline total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, reaction probabilities are defined such that experimentally determined equilibrium reaction rates are replicated, and internal energy relaxation models are phenomenological in nature. Therefore, these models have questionable validity in modeling strongly nonequilibrium gases with temperatures greater than those possible in experimental test facilities. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method can be used to accurately compute total collision cross sections, reaction probabilities, and internal energy exchange models based on first principles for hypervelocity collision conditions. In this thesis, MD/QCT-based models were used to improve simulations of two unique nonequilibrium rarefied gas systems: the Ionian atmosphere and hypersonic shocks in Earth's atmosphere. The Jovian plasma torus flows over Io at ≈ 57 km/s, inducing high-speed collisions between atmospheric SO2 and the hypervelocity plasma's O atoms and ions. The DSMC method is well-suited to model the rarefied atmosphere, so MD/QCT studies are therefore conducted to improve DSMC collision models of the critical SO2-O collision pair. The MD/QCT trajectory simulations employed a new potential energy surface that was developed using a ReaxFF fit to a set of ab initio calculations. Compared to the MD/QCT results, the baseline DSMC models are found to significantly under-predict total cross sections, use reaction probabilities that are unrealistically high, and give unphysical internal energies above the dissociation energy for non-reacting inelastic collisions and under-predicts post

  5. Nuclear Architecture and Patterns of Molecular Evolution Are Correlated in the Ciliate Chilodonella uncinata.

    PubMed

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2016-01-01

    The relationship between nuclear architecture and patterns of molecular evolution in lineages across the eukaryotic tree of life is not well understood, partly because molecular evolution is traditionally explored as changes in base pairs along a linear sequence without considering the context of nuclear position of chromosomes. The ciliate Chilodonella uncinata is an ideal system to address the relationship between nuclear architecture and patterns of molecular evolution as the somatic macronucleus of this ciliate is composed of a peripheral DNA-rich area (orthomere) and a DNA-poor central region (paramere) to form a "heteromeric" macronucleus. Moreover, because the somatic chromosomes of C. uncinata are highly processed into "gene-sized" chromosomes (i.e., nanochromosomes), we can assess fine-scale relationships between location and sequence evolution. By combining fluorescence microscopy and analyses of transcriptome data from C. uncinata, we find that highly expressed genes have the greatest codon usage bias and are enriched in DNA-poor regions. In contrast, genes with less biased sequences tend to be concentrated in DNA abundant areas, at least during vegetative growth. Our analyses are consistent with recent work in plants and animals where nuclear architecture plays a role in gene expression. At the same time, the unusual localization of nanochromosomes suggests that the highly structured nucleus in C. uncinata may create a "gene bank" that facilitates rapid changes in expression of genes required only in specific life history stages. By using "nonmodel" organisms like C. uncinata, we can explore the universality of eukaryotic features while also providing examples of novel properties (i.e., the presence of a gene bank) that build from these features. PMID:27189988

  6. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    PubMed

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  7. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    PubMed Central

    Jones, Gareth; Teeling, Emma C.; Rossiter, Stephen J.

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a “birth-and death” evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID

  8. Nuclear Architecture and Patterns of Molecular Evolution Are Correlated in the Ciliate Chilodonella uncinata

    PubMed Central

    Maurer-Alcalá, Xyrus X.; Katz, Laura A.

    2016-01-01

    The relationship between nuclear architecture and patterns of molecular evolution in lineages across the eukaryotic tree of life is not well understood, partly because molecular evolution is traditionally explored as changes in base pairs along a linear sequence without considering the context of nuclear position of chromosomes. The ciliate Chilodonella uncinata is an ideal system to address the relationship between nuclear architecture and patterns of molecular evolution as the somatic macronucleus of this ciliate is composed of a peripheral DNA-rich area (orthomere) and a DNA-poor central region (paramere) to form a “heteromeric” macronucleus. Moreover, because the somatic chromosomes of C. uncinata are highly processed into “gene-sized” chromosomes (i.e., nanochromosomes), we can assess fine-scale relationships between location and sequence evolution. By combining fluorescence microscopy and analyses of transcriptome data from C. uncinata, we find that highly expressed genes have the greatest codon usage bias and are enriched in DNA-poor regions. In contrast, genes with less biased sequences tend to be concentrated in DNA abundant areas, at least during vegetative growth. Our analyses are consistent with recent work in plants and animals where nuclear architecture plays a role in gene expression. At the same time, the unusual localization of nanochromosomes suggests that the highly structured nucleus in C. uncinata may create a “gene bank” that facilitates rapid changes in expression of genes required only in specific life history stages. By using “nonmodel” organisms like C. uncinata, we can explore the universality of eukaryotic features while also providing examples of novel properties (i.e., the presence of a gene bank) that build from these features. PMID:27189988

  9. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    PubMed Central

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  10. Evolution of planetary nebulae. I. An improved synthetic model

    NASA Astrophysics Data System (ADS)

    Marigo, P.; Girardi, L.; Groenewegen, M. A. T.; Weiss, A.

    2001-11-01

    We present a new synthetic model to follow the evolution of a planetary nebula (PN) and its central star, starting from the onset of AGB phase up to the white dwarf cooling sequence. The model suitably combines various analytical prescriptions to account for different (but inter-related) aspects of planetary nebulae, such as: the dynamical evolution of the primary shell and surrounding ejecta, the photoionisation of H and He by the central star, the nebular emission of a few relevant optical lines (e.g. Hβ ; He II lambda 4686; [O III] lambda 5007). Particular effort has been put into the analytical description of dynamical effects such as the three-winds interaction and the shell thickening due to ionisation (i.e. the thin-shell approximation is relaxed), that are nowadays considered important aspects of the PN evolution. Predictions of the synthetic model are tested by comparison with both findings of hydrodynamical calculations, and observations of Galactic PNe. The sensitiveness of the results to the model parameters (e.g. transition time, mass of the central star, H-/He-burning tracks, etc.) is also discussed. We briefly illustrate the systematic differences that are expected in the luminosities and lifetimes of PNe with either H- or He-burning central stars, which result in different ``detection probabilities'' across the H-R diagram, in both Hβ and [OIII] lambda5007 lines. Adopting reasonable values of the model parameters, we are able to reproduce, in a satisfactory way, many general properties of PNe, like the ionised mass-nebular radius relationship, the trends of a few main nebular line ratios, and the observed ranges of nebular shell thicknesses, electron densities, and expansion velocities. The models naturally predict also the possible transitions from optically-thick to optically-thin configurations (and vice versa). In this context, our analysis indicates that the condition of optical thinness to the H continuum plays an important role in producing

  11. Recent insertion/deletion (reINDEL) mutations: increasing awareness to boost molecular-based research in ecology and evolution

    PubMed Central

    Schlick-Steiner, Birgit C; Arthofer, Wolfgang; Moder, Karl; Steiner, Florian M

    2015-01-01

    Today, the comparative analysis of DNA molecules mainly uses information inferred from nucleotide substitutions. Insertion/deletion (INDEL) mutations, in contrast, are largely considered uninformative and discarded, due to our lacking knowledge on their evolution. However, including rather than discarding INDELs would be relevant to any research area in ecology and evolution that uses molecular data. As a practical approach to better understanding INDEL evolution in general, we propose the study of recent INDEL (reINDEL) mutations – mutations where both ancestral and derived state are seen in the sample. The precondition for reINDEL identification is knowledge about the pedigree of the individuals sampled. Sound reINDEL knowledge will allow the improved modeling needed for including INDELs in the downstream analysis of molecular data. Both microsatellites, currently still the predominant marker system in the analysis of populations, and sequences generated by next-generation sequencing, a promising and rapidly developing range of technologies, offer the opportunity for reINDEL identification. However, a 2013 sample of animal microsatellite studies contained unexpectedly few reINDELs identified. As most likely explanation, we hypothesize that reINDELs are underreported rather than absent and that this underreporting stems from common reINDEL unawareness. If our hypothesis applies, increased reINDEL awareness should allow gathering data rapidly. We recommend the routine reporting of either the absence or presence of reINDELs together with standardized key information on the nature of mutations when they are detected and the use of the keyword “reINDEL” to increase visibility in both instances of successful and unsuccessful search. PMID:25628861

  12. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

    PubMed Central

    Fischbach, Michael A.; Lai, Jonathan R.; Roche, Eric D.; Walsh, Christopher T.; Liu, David R.

    2007-01-01

    Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with ≈10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts. PMID:17620609

  13. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    PubMed

    Eu, Byung Chan

    2008-09-01

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel. PMID:19044872

  14. Molecular evolution of the capsid gene in human norovirus genogroup II.

    PubMed

    Kobayashi, Miho; Matsushima, Yuki; Motoya, Takumi; Sakon, Naomi; Shigemoto, Naoki; Okamoto-Nakagawa, Reiko; Nishimura, Koichi; Yamashita, Yasutaka; Kuroda, Makoto; Saruki, Nobuhiro; Ryo, Akihide; Saraya, Takeshi; Morita, Yukio; Shirabe, Komei; Ishikawa, Mariko; Takahashi, Tomoko; Shinomiya, Hiroto; Okabe, Nobuhiko; Nagasawa, Koo; Suzuki, Yoshiyuki; Katayama, Kazuhiko; Kimura, Hirokazu

    2016-01-01

    Capsid protein of norovirus genogroup II (GII) plays crucial roles in host infection. Although studies on capsid gene evolution have been conducted for a few genotypes of norovirus, the molecular evolution of norovirus GII is not well understood. Here we report the molecular evolution of all GII genotypes, using various bioinformatics techniques. The time-scaled phylogenetic tree showed that the present GII strains diverged from GIV around 1630CE at a high evolutionary rate (around 10(-3) substitutions/site/year), resulting in three lineages. The GII capsid gene had large pairwise distances (maximum > 0.39). The effective population sizes of the present GII strains were large (>10(2)) for about 400 years. Positive (20) and negative (over 450) selection sites were estimated. Moreover, some linear and conformational B-cell epitopes were found in the deduced GII capsid protein. These results suggested that norovirus GII strains rapidly evolved with high divergence and adaptation to humans. PMID:27384324

  15. Molecular Evolution of Dengue Viruses: Contributions of Phylogenetics to Understanding the History and Epidemiology of the Preeminent Arboviral Disease

    PubMed Central

    Weaver, Scott C.; Vasilakis, Nikos

    2013-01-01

    Dengue viruses (DENV) are the most important arboviral pathogens in tropical and subtropical regions throughout the world, putting at risk of infection nearly a third of the global human population. Evidence from the historical record suggests a long association between these viruses and humans. The transmission of DENV includes a sylvatic, enzootic cycle between nonhuman primates and arboreal mosquitoes of the genus Aedes, and an urban, endemic/epidemic cycle between Aedes aegypti, a mosquito with larval development in peridomestic water containers, and human reservoir hosts. DENV are members of the genus Flavivirus in the Family Flaviviridae and comprise of 4 antigenically distinct serotypes (DENV-1-4). Although they are nearly identical epidemiologically, the 4 DENV serotypes are genetically quite distinct. Utilization of phylogenetic analyses based on partial and/or complete genomic sequences has elucidated the origins, epidemiology (genetic diversity, transmission dynamics and epidemic potential), and the forces that shape DENV molecular evolution (rates of evolution, selection pressures, population sizes, putative recombination and evolutionary constraints) in nature. In this review, we examine how phylogenetics have improved understanding of DENV population dynamics and sizes at various stages of infection and transmission, and how this information may influence pathogenesis and improve our ability to understand and predict DENV emergence. PMID:19460319

  16. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy

    PubMed Central

    Preciado, Maria Victoria; Valva, Pamela; Escobar-Gutierrez, Alejandro; Rahal, Paula; Ruiz-Tovar, Karina; Yamasaki, Lilian; Vazquez-Chacon, Carlos; Martinez-Guarneros, Armando; Carpio-Pedroza, Juan Carlos; Fonseca-Coronado, Salvador; Cruz-Rivera, Mayra

    2014-01-01

    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era. PMID:25473152

  17. Molecular evolution and adaptation of the mitochondrial cytochrome b gene in the subgenus Martes.

    PubMed

    Li, B; Malyarchuk, B; He, X B; Derenko, M

    2013-01-01

    Martes species represent a typical example of rapid evolutionary radiation and a recent speciation event. To identify regions of the genome that experienced adaptive evolution, which might provide clues to their functional importance and may be informative about the features that make each species unique, we sought evidence of molecular adaptation in the mitochondrial DNA (mtDNA) cytochrome b gene in the subgenus Martes. Complete sequences of the cytochrome b gene were obtained from 87 samples, including 49 sables, 28 pine martens, and 10 stone martens, and were combined with mtDNA sequences of other true martens, such as M. melampus and M. americana. Analysis of the cytochrome b gene variation in true martens has shown that the evolution of this gene is under negative selection. In contrast, positive selection on the cytochrome b protein has been detected by means of the software TreeSAAP using a phylogenetic reconstruction of Martes taxa. Signatures of adaptive variation in cytochrome b were restricted to the transmembrane domains, which likely function as proton pumps. We compared results of different methods for testing selection and molecular adaptation, and we supposed that the radical changes of the cytochrome b amino acid residues in the subgenus Martes may be the result of molecular adaptation to specific environmental conditions coupled with species dispersals. PMID:24085456

  18. The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure

    PubMed Central

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C.; Paoletti, Christopher; Nowak, Martin A.

    2015-01-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a “molecular clock” to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution. PMID:25719560

  19. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport.

    PubMed

    Hoy, Julie A; Robinson, Howard; Trent, James T; Kakar, Smita; Smagghe, Benoit J; Hargrove, Mark S

    2007-08-01

    The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport "leghemoglobins" evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins. PMID:17560601

  20. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia

    PubMed Central

    Janes, Daniel E.; Organ, Christopher L.; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D.; Georges, Arthur; Graves, Jennifer A. M.; Valenzuela, Nicole; Literman, Robert A.; Rutherford, Kim; Gemmell, Neil; Iverson, John B.; Tamplin, Jeffrey W.; Edwards, Scott V.; Ezaz, Tariq

    2014-01-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations. PMID:25540158

  1. Molecular evolution and antigenic variation of European brown hare syndrome virus (EBHSV).

    PubMed

    Lopes, Ana M; Capucci, Lorenzo; Gavier-Widén, Dolores; Le Gall-Reculé, Ghislaine; Brocchi, Emiliana; Barbieri, Ilaria; Quéméner, Agnès; Le Pendu, Jacques; Geoghegan, Jemma L; Holmes, Edward C; Esteves, Pedro J; Abrantes, Joana

    2014-11-01

    European brown hare syndrome virus (EBHSV) is the aetiological agent of European brown hare syndrome (EBHS), a disease affecting Lepus europaeus and Lepus timidus first diagnosed in Sweden in 1980. To characterize EBHSV evolution we studied hare samples collected in Sweden between 1982 and 2008. Our molecular clock dating is compatible with EBHSV emergence in the 1970s. Phylogenetic analysis revealed two lineages: Group A persisted until 1989 when it apparently suffered extinction; Group B emerged in the mid-1980s and contains the most recent strains. Antigenic differences exist between groups, with loss of reactivity of some MAbs over time, which are associated with amino acid substitutions in recognized epitopes. A role for immune selection is also supported by the presence of positively selected codons in exposed regions of the capsid. Hence, EBHSV evolution is characterized by replacement of Group A by Group B viruses, suggesting that the latter possess a selective advantage. PMID:25155199

  2. PAL: an object-oriented programming library for molecular evolution and phylogenetics.

    PubMed

    Drummond, A; Strimmer, K

    2001-07-01

    Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License. PMID:11448888

  3. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution

    PubMed Central

    Skinner, Michael K.

    2015-01-01

    Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution. PMID:25917417

  4. Water oxidation catalysis upon evolution of molecular Co(III) cubanes in aqueous media.

    PubMed

    Genoni, Andrea; La Ganga, Giuseppina; Volpe, Andrea; Puntoriero, Fausto; Di Valentin, Marilena; Bonchio, Marcella; Natali, Mirco; Sartorel, Andrea

    2015-01-01

    The increasing global energy demand has stimulated great recent efforts in investigating new solutions for artificial photosynthesis, a potential source of clean and renewable solar fuel. In particular, according to the generally accepted modular approach aimed at optimising separately the different compartments of the entire process, many studies have focused on the development of catalytic systems for water oxidation to oxygen. While in recent years there have been many reports on new catalytic systems, the mechanism and the active intermediates operating the catalysis have been less investigated. Well-defined, molecular catalysts, constituted by transition metals stabilised by a suitable ligand pool, could help in solving this aspect. However, in some cases molecular species have been shown to evolve to active metal oxides that constitute the other side of this catalysis dichotomy. In this paper, we address the evolution of tetracobalt(III) cubanes, stabilised by a pyridine/acetate ligand pool, to active species that perform water oxidation to oxygen. Primary evolution of the cubane in aqueous solution is likely initiated by removal of an acetate bridge, opening the coordination sphere of the cobalt centres. This cobalt derivative, where the pristine ligands still impact on the reactivity, shows enhanced electron transfer rates to Ru(bpy)3(3+) (hole scavenging) within a photocatalytic cycle with Ru(bpy)3(2+) as the photosensitiser and S2O8(2-) as the electron sink. A more accentuated evolution occurs under continuous irradiation, where Electron Paramagnetic Resonance (EPR) spectroscopy reveals the formation of Co(ii) intermediates, likely contributing to the catalytic process that evolves oxygen. All together, these results confirm the relevant effect of molecular species, in particular in fostering the rate of the electron transfer processes involved in light activated cycles, pivotal in the design of a photoactive device. PMID:26400662

  5. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness

    PubMed Central

    Peña, Matthew I.; Van Itallie, Elizabeth; Bennett, Matthew R.; Shamoo, Yousif

    2010-01-01

    Evolution by natural selection is the driving force behind the endless variation we see in nature, yet our understanding of how changes at the molecular level give rise to different phenotypes and altered fitness at the population level remains inadequate. The reproductive fitness of an organism is the most basic metric that describes the chance that an organism will succeed or fail in its environment and it depends upon a complex network of inter- and intramolecular interactions. A deeper understanding of the quantitative relationships relating molecular evolution to adaptation, and consequently fitness, can guide our understanding of important issues in biomedicine such as drug resistance and the engineering of new organisms with applications to biotechnology. We have developed the “weak link” approach to determine how changes in molecular structure and function can relate to fitness and evolutionary outcomes. By replacing adenylate kinase (AK), an essential gene, in a thermophile with a homologous AK from a mesophile we have created a maladapted weak link that produces a temperature-sensitive phenotype. The recombinant strain adapts to nonpermissive temperatures through point mutations to the weak link that increase both stability and activity of the enzyme AK at higher temperatures. Here, we propose a fitness function relating enzyme activity to growth rate and use it to create a dynamic model of a population of bacterial cells. Using metabolic control analysis we show that the growth rate exhibits thresholdlike behavior, saturating at high enzyme activity as other reactions in the energy metabolism pathway become rate limiting. The dynamic model accurately recapitulates observed evolutionary outcomes. These findings suggest that in vitro enzyme kinetic data, in combination with metabolic network analysis, can be used to create fitness functions and dynamic models of evolution within simple metabolic systems. PMID:20590336

  6. Evolution of a single gene highlights the complexity underlying molecular descriptions of fitness

    NASA Astrophysics Data System (ADS)

    Peña, Matthew I.; Van Itallie, Elizabeth; Bennett, Matthew R.; Shamoo, Yousif

    2010-06-01

    Evolution by natural selection is the driving force behind the endless variation we see in nature, yet our understanding of how changes at the molecular level give rise to different phenotypes and altered fitness at the population level remains inadequate. The reproductive fitness of an organism is the most basic metric that describes the chance that an organism will succeed or fail in its environment and it depends upon a complex network of inter- and intramolecular interactions. A deeper understanding of the quantitative relationships relating molecular evolution to adaptation, and consequently fitness, can guide our understanding of important issues in biomedicine such as drug resistance and the engineering of new organisms with applications to biotechnology. We have developed the "weak link" approach to determine how changes in molecular structure and function can relate to fitness and evolutionary outcomes. By replacing adenylate kinase (AK), an essential gene, in a thermophile with a homologous AK from a mesophile we have created a maladapted weak link that produces a temperature-sensitive phenotype. The recombinant strain adapts to nonpermissive temperatures through point mutations to the weak link that increase both stability and activity of the enzyme AK at higher temperatures. Here, we propose a fitness function relating enzyme activity to growth rate and use it to create a dynamic model of a population of bacterial cells. Using metabolic control analysis we show that the growth rate exhibits thresholdlike behavior, saturating at high enzyme activity as other reactions in the energy metabolism pathway become rate limiting. The dynamic model accurately recapitulates observed evolutionary outcomes. These findings suggest that in vitro enzyme kinetic data, in combination with metabolic network analysis, can be used to create fitness functions and dynamic models of evolution within simple metabolic systems.

  7. Non-unity molecular heritability demonstrated by continuous evolution in vitro

    NASA Technical Reports Server (NTRS)

    Schmitt, T.; Lehman, N.

    1999-01-01

    INTRODUCTION: When catalytic RNA is evolved in vitro, the molecule's chemical reactivity is usually the desired selection target. Sometimes the phenotype of a particular RNA molecule cannot be unambiguously determined from its genotype, however. This can occur if a nucleotide sequence can adopt multiple folded states, an example of non-unity heritability (i.e. one genotype gives rise to more than one phenotype). In these cases, more rounds of selection are required to achieve a phenotypic shift. We tested the influence of non-unity heritability at the molecular level by selecting for variants of a ligase ribozyme via continuous evolution. RESULTS: During 20 bursts of continuous evolution of a 152-nucleotide ligase ribozyme in which the Mg2+ concentration was periodically lowered, a nine-error variant of the starting 'wild-type' molecule became dominant in the last eight bursts. This variant appears to be more active than the wild type. Kinetic analyses of the mutant suggest that it may not possess a higher first-order catalytic rate constant, however. Examination of the multiple RNA conformations present under the continuous evolution conditions suggests that the mutant is superior to the wild type because it is less likely to misfold into inactive conformers. CONCLUSIONS: The evolution of genotypes that are more likely to exhibit a particular phenotype is an epiphenomenon usually ascribed only to complex living systems. We show that this can occur at the molecular level, demonstrating that in vitro systems may have more life-like characteristics than previously thought, and providing additional support for an RNA world.

  8. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  9. Collinearly-improved BK evolution meets the HERA data

    NASA Astrophysics Data System (ADS)

    Iancu, E.; Madrigal, J. D.; Mueller, A. H.; Soyez, G.; Triantafyllopoulos, D. N.

    2015-11-01

    In a previous publication, we have established a collinearly-improved version of the Balitsky-Kovchegov (BK) equation, which resums to all orders the radiative corrections enhanced by large double transverse logarithms. Here, we study the relevance of this equation as a tool for phenomenology, by confronting it to the HERA data. To that aim, we first improve the perturbative accuracy of our resummation, by including two classes of single-logarithmic corrections: those generated by the first non-singular terms in the DGLAP splitting functions and those expressing the one-loop running of the QCD coupling. The equation thus obtained includes all the next-to-leading order corrections to the BK equation which are enhanced by (single or double) collinear logarithms. We then use numerical solutions to this equation to fit the HERA data for the electron-proton reduced cross-section at small Bjorken x. We obtain good quality fits for physically acceptable initial conditions. Our best fit, which shows a good stability up to virtualities as large as Q2 = 400 GeV2 for the exchanged photon, uses as an initial condition the running-coupling version of the McLerran-Venugopalan model, with the QCD coupling running according to the smallest dipole prescription.

  10. An improved version of the Green's function molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Kong, Ling Ti; Denniston, Colin; Müser, Martin H.

    2011-02-01

    This work presents an improved version of the Green's function molecular dynamics method (Kong et al., 2009; Campañá and Müser, 2004 [1,2]), which enables one to study the elastic response of a three-dimensional solid to an external stress field by taking into consideration only atoms near the surface. In the previous implementation, the effective elastic coefficients measured at the Γ-point were altered to reduce finite size effects: their eigenvalues corresponding to the acoustic modes were set to zero. This scheme was found to work well for simple Bravais lattices as long as only atoms within the last layer were treated as Green's function atoms. However, it failed to function as expected in all other cases. It turns out that a violation of the acoustic sum rule for the effective elastic coefficients at Γ (Kong, 2010 [3]) was responsible for this behavior. In the new version, the acoustic sum rule is enforced by adopting an iterative procedure, which is found to be physically more meaningful than the previous one. In addition, the new algorithm allows one to treat lattices with bases and the Green's function slab is no longer confined to one layer. New version program summaryProgram title: FixGFC/FixGFMD v1.12 Catalogue identifier: AECW_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECW_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 206 436 No. of bytes in distributed program, including test data, etc.: 4 314 850 Distribution format: tar.gz Programming language: C++ Computer: All Operating system: Linux Has the code been vectorized or parallelized?: Yes. Code has been parallelized using MPI directives. RAM: Depends on the problem Classification: 7.7 External routines: LAMMPS ( http://lammps.sandia.gov/), MPI ( http

  11. Spatiotemporal evolution of plasma molecular emission following laser ablation of explosive analogs

    NASA Astrophysics Data System (ADS)

    Merten, Jonathan; Jones, Matthew; Sheppard, Cheyenne; Parigger, Christian; Allen, Susan

    2013-05-01

    The spatial and temporal evolution of the CN molecular emission following laser ablation of a TNT analog (3- nitrobenzoic acid) has been studied along with ablation of targets that contain neither nitro groups nor C-N bonds. At a fluence of ~104 J/cm2, behavior indicative of the ablation of native CN bonds has been observed in samples containing no native CN bonds. The recorded data show significant plasma background emissions that pose difficulties for direct spectral imaging. Spatially resolved images suggest that some of the observed phenomena are simply the result of the interaction of the plasma and the observation volume of the collection optics.

  12. Genetic diversity and molecular evolution of arabis mosaic virus based on the CP gene sequence.

    PubMed

    Gao, Fangluan; Lin, Wuzhen; Shen, Jianguo; Liao, Furong

    2016-04-01

    Arabis mosaic virus (ArMV) is a virus with a wide host range. In this study, the genetic diversity of ArMV and the molecular mechanisms underlying its evolution were investigated using the coat protein (CP) sequence. Of the 33 ArMV isolates studied, three were found to be recombinants. The other 30 recombination-free ArMV isolates could be separated into two major lineages with a significant F ST value (0.384) and tended to cluster according to their geographical origin. Different evolutionary constraints were detected for the two linages, pointing to a role of natural selection in the differentiation of ArMV. PMID:26758729

  13. Evolution of shear banding flows in metallic glasses characterized by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yao, Li; Luan, Yingwei

    2016-06-01

    To reveal the evolution of shear banding flows, one-dimensional nanostructure metallic glass composites have been studied with molecular dynamics. The inherent size determines the initial thickness of shear bands, and the subsequent broadening can be restricted to some extent. The vortex-like flows evoke the atomic motion perpendicular to the shear plane, which accelerates the interatomic diffusion. The reduction of local strain rate causes the flow softening for monolithic Cu-Zr glass, but the participation of Cu-atoms in the shear banding flow gradually leads to the shear hardening for the composites.

  14. Thiol-catalyzed formation of lactate and glycerate from glyceraldehyde. [significance in molecular evolution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1983-01-01

    The rate of lactate formation from glyceraldehyde, catalyzed by N-acetyl-cysteine at ambient temperature in aqueous sodium phosphate (pH 7.0), is more rapid at higher sodium phosphate concentrations and remains essentially the same in the presence and absence of oxygen. The dramatic increase in the rate of glycerate formation that is brought about by this thiol, N-acetylcysteine, is accompanied by commensurate decreases in the rates of glycolate and formate production. It is suggested that the thiol-dependent formation of lactate and glycerate occurs by way of their respective thioesters. Attention is given to the significance of these reactions in the context of molecular evolution.

  15. Molecular structure matching by simulated annealing. II. An exploration of the evolution of configuration landscape problems.

    PubMed

    Barakat, M T; Dean, P M

    1990-09-01

    This paper considers some of the landscape problems encountered in matching molecules by simulated annealing. Although the method is in theory ergodic, the global minimum in the objective function is not always encountered. Factors inherent in the molecular data that lead the trajectory of the minimization away from its optimal route are analysed. Segments comprised of the C alpha atoms of dihydrofolate reductase are used as test data. The evolution of a reverse ordering landscape problem is examined in detail. Where such patterns in the data could lead to incorrect matches, the problem can in part be circumvented by assigning an initial random ordering to the molecules. PMID:2280267

  16. [Molecular evolution of ciliates (Ciliophora) and some related groups of protozoans].

    PubMed

    Lukashenko, N P

    2009-08-01

    The review summarizes current evidence, including the findings related to molecular phylogeny of ciliates (type Ciliophora) and some related groups of protozoans. Based on comparison of the sequences of genes encoding various ribosomal RNAs (rRNAs), the phylogenetic relationships in seven out of eight known classes of ciliates are discussed. The events related to early branching of the eukaryotic tree are briefly presented. The evolutionary history of amitochondrial protists ids considered with regard to reductionistic evolution and archeozoic hypothesis. The phylogenetic relationships among ciliates and sister groups of apicomplexans and dinoflagellates are considered. PMID:19769290

  17. Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels

    PubMed Central

    Lynagh, Timothy; Beech, Robin N.; Lalande, Maryline J.; Keller, Kevin; Cromer, Brett A.; Wolstenholme, Adrian J.; Laube, Bodo

    2015-01-01

    Glutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis. Most remarkably, the arginine emerged on the principal face of the binding site in the Lophotrochozoan lineage, but 65 amino acids upstream, on the complementary face, in the Ecdysozoan lineage. This combined experimental and computational approach throws new light on the evolution of synaptic signalling. PMID:25708000

  18. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws

    PubMed Central

    Šmajs, David; Norris, Steven J.; Weinstock, George M.

    2013-01-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, T. paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. PMID:22198325

  19. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H₂ evolution under fully aqueous conditions.

    PubMed

    Andreiadis, Eugen S; Jacques, Pierre-André; Tran, Phong D; Leyris, Adeline; Chavarot-Kerlidou, Murielle; Jousselme, Bruno; Matheron, Muriel; Pécaut, Jacques; Palacin, Serge; Fontecave, Marc; Artero, Vincent

    2013-01-01

    The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H(2) generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices. PMID:23247177

  20. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws.

    PubMed

    Smajs, David; Norris, Steven J; Weinstock, George M

    2012-03-01

    Pathogenic uncultivable treponemes, similar to syphilis-causing Treponema pallidum subspecies pallidum, include T. pallidum ssp. pertenue, T. pallidum ssp. endemicum and Treponema carateum, which cause yaws, bejel and pinta, respectively. Genetic analyses of these pathogens revealed striking similarity among these bacteria and also a high degree of similarity to the rabbit pathogen, Treponema paraluiscuniculi, a treponeme not infectious to humans. Genome comparisons between pallidum and non-pallidum treponemes revealed genes with potential involvement in human infectivity, whereas comparisons between pallidum and pertenue treponemes identified genes possibly involved in the high invasivity of syphilis treponemes. Genetic variability within syphilis strains is considered as the basis of syphilis molecular epidemiology with potential to detect more virulent strains, whereas genetic variability within a single strain is related to its ability to elude the immune system of the host. Genome analyses also shed light on treponemal evolution and on chromosomal targets for molecular diagnostics of treponemal infections. PMID:22198325

  1. Evolution of Molecular and Atomic Gas Phases in the Milky Way

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Scoville, Nick; Heyer, Mark

    2016-06-01

    We analyze radial and azimuthal variations of the phase balance between the molecular and atomic interstellar medium (ISM) in the Milky Way (MW) using archival CO(J = 1-0) and HI 21 cm data. In particular, the azimuthal variations—between the spiral arm and interarm regions—are analyzed without any explicit definition of the spiral arm locations. We show that the molecular gas mass fraction, i.e., {f}{{mol}}={{{Σ }}}{{{H}}2}/({{{Σ }}}{HI}+{{{Σ }}}{{{H}}2}), varies predominantly in the radial direction: starting from ˜ 100% at the center, remaining ≳ 50% to R˜ 6 {{kpc}} and decreasing to ˜10%–20% at R=8.5 {{kpc}} when averaged over the whole disk thickness (from ˜100% to ≳60%, then to ˜50% in the midplane). Azimuthal, arm-interarm variations are secondary: only ˜ 20% in the globally molecule-dominated inner MW, but becoming larger, ˜40%–50%, in the atom-dominated outskirts. This suggests that in the inner MW the gas remains highly molecular ({f}{{mol}}\\gt 50%) as it moves from an interarm region into a spiral arm and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts where the gas phase is globally atomic ({f}{{mol}}\\lt 50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., the LMC, M33, and M51). We explain the radial gradient of {f}{{mol}} using a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in the Appendix.

  2. Evolution of Molecular and Atomic Gas Phases in the Milky Way

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Scoville, Nick; Heyer, Mark

    2016-06-01

    We analyze radial and azimuthal variations of the phase balance between the molecular and atomic interstellar medium (ISM) in the Milky Way (MW) using archival CO(J = 1-0) and HI 21 cm data. In particular, the azimuthal variations—between the spiral arm and interarm regions—are analyzed without any explicit definition of the spiral arm locations. We show that the molecular gas mass fraction, i.e., {f}{{mol}}={{{Σ }}}{{{H}}2}/({{{Σ }}}{HI}+{{{Σ }}}{{{H}}2}), varies predominantly in the radial direction: starting from ∼ 100% at the center, remaining ≳ 50% to R∼ 6 {{kpc}} and decreasing to ∼10%–20% at R=8.5 {{kpc}} when averaged over the whole disk thickness (from ∼100% to ≳60%, then to ∼50% in the midplane). Azimuthal, arm-interarm variations are secondary: only ∼ 20% in the globally molecule-dominated inner MW, but becoming larger, ∼40%–50%, in the atom-dominated outskirts. This suggests that in the inner MW the gas remains highly molecular ({f}{{mol}}\\gt 50%) as it moves from an interarm region into a spiral arm and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts where the gas phase is globally atomic ({f}{{mol}}\\lt 50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., the LMC, M33, and M51). We explain the radial gradient of {f}{{mol}} using a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in the Appendix.

  3. Anticipatory dynamics of biological systems: from molecular quantum states to evolution

    NASA Astrophysics Data System (ADS)

    Igamberdiev, Abir U.

    2015-08-01

    Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.

  4. Major Radiations in the Evolution of Caviid Rodents: Reconciling Fossils, Ghost Lineages, and Relaxed Molecular Clocks

    PubMed Central

    Pérez, María Encarnación; Pol, Diego

    2012-01-01

    Background Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America (“eocardiids”). Results A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (refered here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates. Conclusions The integrated approach used here allowed us identifying the agreements and discrepancies of the fossil record and molecular clock estimates on the timing of the major events in cavioid evolution, revealing evolutionary patterns that would not have been possible to gather using only molecular or paleontological data alone. PMID

  5. Molecular evolution and the global reemergence of enterovirus D68 by genome-wide analysis.

    PubMed

    Gong, Yu-Nong; Yang, Shu-Li; Shih, Shin-Ru; Huang, Yhu-Chering; Chang, Pi-Yueh; Huang, Chung-Guei; Kao, Kuo-Chin; Hu, Han-Chung; Liu, Yi-Chun; Tsao, Kuo-Chien

    2016-08-01

    Human enterovirus D68 (EV-D68) was first reported in the United States in 1962; thereafter, a few cases were reported from 1970 to 2005, but 2 outbreaks occurred in the Philippines (2008) and the United States (2014). However, little is known regarding the molecular evolution of this globally reemerging virus due to a lack of whole-genome sequences and analyses. Here, all publically available sequences including 147 full and 1248 partial genomes from GenBank were collected and compared at the clade and subclade level; 11 whole genomes isolated in Taiwan (TW) in 2014 were also added to the database. Phylogenetic trees were constructed to identify a new subclade, B3, and represent clade circulations among strains. Nucleotide sequence identities of the VP1 gene were 94% to 95% based on a comparison of subclade B3 to B1 and B2 and 87% to 91% when comparing A, C, and D. The patterns of clade circulation need to be clarified to improve global monitoring of EV-D68, even though this virus showed lower diversity among clades compared with the common enterovirus EV-71. Notably, severe cases isolated from Taiwan and China in 2014 were found in subclade B3. One severe case from Taiwan occurred in a female patient with underlying angioimmunoblastic T-cell lymphoma, from whom a bronchoalveolar lavage specimen was obtained. Although host factors play a key role in disease severity, we cannot exclude the possibility that EV-D68 may trigger clinical symptoms or death. To further investigate the genetic diversity of EV-D68, we reported 34 amino acid (aa) polymorphisms identified by comparing subclade B3 to B1 and B2. Clade D strains had a 1-aa deletion and a 2-aa insertion in the VP1 gene, and 1 of our TW/2014 strains had a shorter deletion in the 5' untranslated region than a previously reported deletion. In summary, a new subclade, genetic indels, and polymorphisms in global strains were discovered elucidating evolutionary and epidemiological trends of EV-D68, and 11 genomes were

  6. Molecular evolution and the global reemergence of enterovirus D68 by genome-wide analysis

    PubMed Central

    Gong, Yu-Nong; Yang, Shu-Li; Shih, Shin-Ru; Huang, Yhu-Chering; Chang, Pi-Yueh; Huang, Chung-Guei; Kao, Kuo-Chin; Hu, Han-Chung; Liu, Yi-Chun; Tsao, Kuo-Chien

    2016-01-01

    Abstract Human enterovirus D68 (EV-D68) was first reported in the United States in 1962; thereafter, a few cases were reported from 1970 to 2005, but 2 outbreaks occurred in the Philippines (2008) and the United States (2014). However, little is known regarding the molecular evolution of this globally reemerging virus due to a lack of whole-genome sequences and analyses. Here, all publically available sequences including 147 full and 1248 partial genomes from GenBank were collected and compared at the clade and subclade level; 11 whole genomes isolated in Taiwan (TW) in 2014 were also added to the database. Phylogenetic trees were constructed to identify a new subclade, B3, and represent clade circulations among strains. Nucleotide sequence identities of the VP1 gene were 94% to 95% based on a comparison of subclade B3 to B1 and B2 and 87% to 91% when comparing A, C, and D. The patterns of clade circulation need to be clarified to improve global monitoring of EV-D68, even though this virus showed lower diversity among clades compared with the common enterovirus EV-71. Notably, severe cases isolated from Taiwan and China in 2014 were found in subclade B3. One severe case from Taiwan occurred in a female patient with underlying angioimmunoblastic T-cell lymphoma, from whom a bronchoalveolar lavage specimen was obtained. Although host factors play a key role in disease severity, we cannot exclude the possibility that EV-D68 may trigger clinical symptoms or death. To further investigate the genetic diversity of EV-D68, we reported 34 amino acid (aa) polymorphisms identified by comparing subclade B3 to B1 and B2. Clade D strains had a 1-aa deletion and a 2-aa insertion in the VP1 gene, and 1 of our TW/2014 strains had a shorter deletion in the 5′ untranslated region than a previously reported deletion. In summary, a new subclade, genetic indels, and polymorphisms in global strains were discovered elucidating evolutionary and epidemiological trends of EV-D68, and 11

  7. Molecular evolution of sex-biased genes in the Drosophila ananassae subgroup

    PubMed Central

    2009-01-01

    Background Genes with sex-biased expression often show rapid molecular evolution between species. Previous population genetic and comparative genomic studies of Drosophila melanogaster and D. simulans revealed that male-biased genes have especially high rates of adaptive evolution. To test if this is also the case for other lineages within the melanogaster group, we investigated gene expression in D. ananassae, a species that occurs in structured populations in tropical and subtropical regions. We used custom-made microarrays and published microarray data to characterize the sex-biased expression of 129 D. ananassae genes whose D. melanogaster orthologs had been classified previously as male-biased, female-biased, or unbiased in their expression and had been studied extensively at the population-genetic level. For 43 of these genes we surveyed DNA sequence polymorphism in a natural population of D. ananassae and determined divergence to the sister species D. atripex and D. phaeopleura. Results Sex-biased expression is generally conserved between D. melanogaster and D. ananassae, with the majority of genes exhibiting the same bias in the two species. However, about one-third of the genes have either gained or lost sex-biased expression in one of the species and a small proportion of genes (~4%) have changed bias from one sex to the other. The male-biased genes of D. ananassae show evidence of positive selection acting at the protein level. However, the signal of adaptive protein evolution for male-biased genes is not as strong in D. ananassae as it is in D. melanogaster and is limited to genes with conserved male-biased expression in both species. Within D. ananassae, a significant signal of adaptive evolution is also detected for female-biased and unbiased genes. Conclusions Our findings extend previous observations of widespread adaptive protein evolution to an independent Drosophila lineage, the D. ananassae subgroup. However, the rate of adaptive evolution is

  8. Molecular evolution of the nuclear von Willebrand factor gene in mammals and the phylogeny of rodents.

    PubMed

    Huchon, D; Catzeflis, F M; Douzery, E J

    1999-05-01

    Nucleotide sequences of exon 28 of the von Willebrand Factor (vWF) were analyzed for a representative sampling of rodent families and eutherian orders, with one marsupial sequence as outgroup. The aim of this study was to test if inclusion of an increased taxonomic diversity in molecular analyses would shed light on three uncertainties concerning rodent phylogeny: (1) relationships between rodent families, (2) Rodentia monophyly, and (3) the sister group relationship of rodents and lagomorphs. The results did not give evidence of any particular rodent pattern of molecular evolution relative to a general eutherian pattern. Base compositions and rates of evolution of vWF sequences of rodents were in the range of placental variation. The 10 rodent families studied here cluster in five clades: Hystricognathi, Sciuridae and Aplodontidae (Sciuroidea), Muridae, Dipodidae, and Gliridae. Among hystricognaths, the following conclusions are drawn: a single colonization event in South America by Caviomorpha, a paraphyly of Old World and New World porcupines, and an African origin for Old World porcupines. Despite a broader taxonomic sampling diversity, we did not obtain a robust answer to the question of Rodentia monophyly, but in the absence of any other alternative, we cannot reject the hypothesis of a single origin of rodents. Moreover, the phylogenetic position of Lagomorpha remains totally unsettled. PMID:10335651

  9. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey

    PubMed Central

    Li, Jia; You, Xinxin; Bian, Chao; Yu, Hui; Coon, Steven L.; Shi, Qiong

    2015-01-01

    All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2. PMID:26729109

  10. Molecular evolution of fever, thrombocytopenia and leukocytopenia virus (FTLSV) based on whole-genome sequences.

    PubMed

    Liu, Licheng; Chen, Weijun; Yang, Yinhui; Jiang, Yongqiang

    2016-04-01

    FTLSV is a novel bunyavirus that was discovered in 2007 in the Henan province of China and has reported case fatality rates of up to 30%. Despite the high case fatality rate, knowledge of the evolution and molecular epidemiology of FTLSV is limited. In this study, detailed phylogenetic analyses were performed on whole-genome sequences to examine the virus's evolutionary rates, estimate dates of common ancestry, and determine the population dynamics and selection pressure for FTLSV. The evolutionary rates of FTLSV were estimated to be 2.28×10(-4), 2.42×10(-4) and 1.19×10(-4) nucleotide substitutions/site/year for the S, M and L segments, respectively. The most recent ancestor of the viruses existed approximately 182-294years ago. Evidence of RNA segment reassortment was found in FTLSV. A Bayesian skyline plot showed that after a period of genetic stability following high variability, the FTLSV population appeared to have contracted it. Selection pressures were estimated and revealed an abundance of negatively selected sites and sparse positively selected sites. These data will be valuable in understanding the evolution and molecular epidemiology of FTLSV, eventually helping to determine mechanisms of emergence and pathogenicity and the level of the virus's threat to public health. PMID:26748010

  11. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey.

    PubMed

    Li, Jia; You, Xinxin; Bian, Chao; Yu, Hui; Coon, Steven L; Shi, Qiong

    2016-01-01

    All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT), the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD) led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2. PMID:26729109

  12. Molecular heterochrony and the evolution of sociality in bumblebees (Bombus terrestris)

    PubMed Central

    Woodard, S. Hollis; Bloch, Guy M.; Band, Mark R.; Robinson, Gene E.

    2014-01-01

    Sibling care is a hallmark of social insects, but its evolution remains challenging to explain at the molecular level. The hypothesis that sibling care evolved from ancestral maternal care in primitively eusocial insects has been elaborated to involve heterochronic changes in gene expression. This elaboration leads to the prediction that workers in these species will show patterns of gene expression more similar to foundress queens, who express maternal care behaviour, than to established queens engaged solely in reproductive behaviour. We tested this idea in bumblebees (Bombus terrestris) using a microarray platform with approximately 4500 genes. Unlike the wasp Polistes metricus, in which support for the above prediction has been obtained, we found that patterns of brain gene expression in foundress and queen bumblebees were more similar to each other than to workers. Comparisons of differentially expressed genes derived from this study and gene lists from microarray studies in Polistes and the honeybee Apis mellifera yielded a shared set of genes involved in the regulation of related social behaviours across independent eusocial lineages. Together, these results suggest that multiple independent evolutions of eusociality in the insects might have involved different evolutionary routes, but nevertheless involved some similarities at the molecular level. PMID:24552837

  13. The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale.

    PubMed

    Schürch, Anita C; Kremer, Kristin; Kiers, Albert; Daviena, Olaf; Boeree, Martin J; Siezen, Roland J; Smith, Noel H; van Soolingen, Dick

    2010-01-01

    A total of six polymorphisms were identified by comparing the genomes of the first and the last isolate of a well-characterized transmission chain of Mycobacterium tuberculosis involving five patients over a 12 and a half year period. The six polymorphisms consisted of four single nucleotide changes (SNPs), a tandem repeat polymorphism (TRP) and a previously identified IS6110 transposition event. These polymorphic sites were surveyed in each of the isolates from the five patients in the transmission chain. Surprisingly, five of the six polymorphisms accumulated in a single patient in the transmission chain; this patient had been non-compliant to tuberculosis treatment. This first insight into the tempo and mode of molecular evolution in M. tuberculosis at the patient-to-patient level suggests that the molecular evolution of the pathogen in vivo is characterized by periods of relative genomic stability followed by bursts of mutation. Whatever the mechanism for the accumulation of mutations, this observation may have profound consequences for the application of vaccines and therapeutic drugs, the management and treatment of disease outbreaks of M. tuberculosis, the most important bacterial pathogen of humans. PMID:19835997

  14. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity.

    PubMed

    Hubbard, Basil P; Badran, Ahmed H; Zuris, John A; Guilinger, John P; Davis, Kevin M; Chen, Liwei; Tsai, Shengdar Q; Sander, Jeffry D; Joung, J Keith; Liu, David R

    2015-10-01

    Nucleases containing programmable DNA-binding domains can alter the genomes of model organisms and have the potential to become human therapeutics. Here we present DNA-binding phage-assisted continuous evolution (DB-PACE) as a general approach for the laboratory evolution of DNA-binding activity and specificity. We used this system to generate transcription activator-like effectors nucleases (TALENs) with broadly improved DNA cleavage specificity, establishing DB-PACE as a versatile approach for improving the accuracy of genome-editing agents. PMID:26258293

  15. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity

    PubMed Central

    Hubbard, Basil P.; Badran, Ahmed H.; Zuris, John A.; Guilinger, John P.; Davis, Kevin M.; Chen, Liwei; Tsai, Shengdar Q.; Sander, Jeffry D.; Joung, J. Keith; Liu, David R.

    2015-01-01

    Nucleases containing programmable DNA-binding domains can alter the genomes of model organisms and have the potential to become human therapeutics. Here we present DNA-binding phage-assisted continuous evolution (DB-PACE) as a general approach for the laboratory evolution of DNA-binding activity and specificity. We used this system to generate TALE nucleases with broadly improved DNA cleavage specificity, establishing DB-PACE as a versatile approach for improving the accuracy of genome-editing agents. PMID:26258293

  16. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system.

    PubMed

    Woodard, S Hollis; Lozier, Jeffrey D; Goulson, David; Williams, Paul H; Strange, James P; Jha, Shalene

    2015-06-01

    Bumble bees are a longstanding model system for studies on behaviour, ecology and evolution, due to their well-studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution and behaviour of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population-level processes, large-scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in regard to adaptation and resilience. Worldwide, many bumble bee populations are in decline. As such, throughout the review, connections are drawn between new molecular insights into bumble bees and our understanding of the causal factors involved in their decline. Ongoing and potential applications to bumble bee management and conservation are also included to demonstrate how genetics- and genomics-enabled research aids in the preservation of this threatened group. PMID:25865395

  17. Molecular Evolution of Drosophila Germline Stem Cell and Neural Stem Cell Regulating Genes

    PubMed Central

    Choi, Jae Young; Aquadro, Charles F.

    2015-01-01

    Here, we study the molecular evolution of a near complete set of genes that had functional evidence in the regulation of the Drosophila germline and neural stem cell. Some of these genes have previously been shown to be rapidly evolving by positive selection raising the possibility that stem cell genes as a group have elevated signatures of positive selection. Using recent Drosophila comparative genome sequences and population genomic sequences of Drosophila melanogaster, we have investigated both long- and short-term evolution occurring across these two different stem cell systems, and compared them with a carefully chosen random set of genes to represent the background rate of evolution. Our results showed an excess of genes with evidence of a recent selective sweep in both germline and neural stem cells in D. melanogaster. However compared with their control genes, both stem cell systems had no significant excess of genes with long-term recurrent positive selection in D. melanogaster, or across orthologous sequences from the melanogaster group. The evidence of long-term positive selection was limited to a subset of genes with specific functions in both the germline and neural stem cell system. PMID:26507797

  18. Near-Neutrality: the Leading Edge of the Neutral Theory of Molecular Evolution

    PubMed Central

    Hughes, Austin L.

    2009-01-01

    The nearly-neutral theory represents a development of Kimura’s Neutral Theory of Molecular Evolution that makes testable predictions that go beyond a mere null model. Recent evidence has strongly supported several of these predictions, including the prediction that slightly deleterious variants will accumulate in a species that has undergone a severe bottleneck or in cases where recombination is reduced or absent. Because bottlenecks often occur in speciation and slightly deleterious mutations in coding regions will usually be nonsynonymous, we should expect that the ratio of nonsynonymous to synonymous fixed differences between species should often exceed the ratio of nonsynonymous to synonymous polymorphisms within species. Numerous data support this prediction, although they have often been wrongly interpreted as evidence for positive Darwinian selection. The use of conceptually flawed tests for positive selection has become widespread in recent years, seriously harming the quest for an understanding of genome evolution. When properly analyzed, many (probably most) claimed cases of positive selection will turn out to involve the fixation of slightly deleterious mutations by genetic drift in bottlenecked populations. Slightly deleterious variants are a transient feature of evolution in the long term, but they have had substantial impact on contemporary species, including our own. PMID:18559820

  19. Molecular evolution of the brain size regulator genes CDK5RAP2 and CENPJ.

    PubMed

    Evans, Patrick D; Vallender, Eric J; Lahn, Bruce T

    2006-06-21

    Primary microcephaly is a developmental defect of the brain characterized by severely reduced brain size but an absence of other overt abnormalities. Mutations in several loci have been linked to primary microcephaly. The underlying genes for two of these were recently identified as CDK5RAP2 and CENPJ. Here, we focus on CDK5RAP2 and show that the protein evolutionary rate of this gene is significantly higher in primates than rodents or carnivores. We further show that the evolutionary rate within primates is particularly high in the human and chimpanzee terminal branches. Thus, the pattern of molecular evolution seen in CDK5RAP2 appears to parallel, at least approximately, that seen in two other previously identified primary microcephaly genes, microcephalin and ASPM. We also briefly discuss CENPJ, which similarly exhibits higher rate of protein evolution in primates as compared to rodents and carnivores. Together, the evolutionary patterns of all four presently known primary microcephaly genes are consistent with the hypothesis that genes regulating brain size during development might also play a role in brain evolution in primates and especially humans. PMID:16631324

  20. Molecular phylogenetics of the Anolis onca series: a case history in retrograde evolution revisited.

    PubMed

    Nicholson, Kirsten E; Mijares-Urrutia, Abraham; Larson, Allan

    2006-09-15

    Anoles of the Anolis onca series represent a dramatic case of retrograde evolution, exhibiting great reduction (A. annectens) and loss (A. onca) of the subdigital pads considered a key innovation for the evolutionary radiation of anoles in arboreal environments. We present a molecular phylogenetic analysis of these anoles and their closest known relatives (A. auratus, A. lineatus, A. meridionalis, and A. nitens) using new mitochondrial DNA sequence data from the ND2 gene, five tRNA genes (tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr)), the origin of light-strand replication, and a portion of the CO1 gene (1,446 aligned base positions, 612 parsimony informative). Our results confirm monophyly of the A. onca series and suggest an evolutionary separation of approximately 10 million years between A. annectens and A. onca. Evolution of subdigital structure in this series illustrates ectopic expression of developmental programs that replace flexible subdigital lamellae of the toepad with rigid, keeled scales resembling dorsal digital scales. Our phylogenetic results indicate that narrowing of the toepad in A. auratus evolved separately from toepad reduction in the A. onca series. Expansion of the subdigital lamellae along the phalanges in A. auratus appears to compensate constriction of lamellae by digital narrowing, maintaining greater climbing capability in this species. Toepad evolution in the lineage ancestral to A. auratus features changes of the same developmental modules as the A. onca series but in the opposite direction. Large molecular distances between geographic populations of A. auratus indicate that its derived toepad structure is at least 9 million years old. PMID:16506231

  1. Tryptophanyl-tRNA synthetase Urzyme: a model to recapitulate molecular evolution and investigate intramolecular complementation.

    PubMed

    Pham, Yen; Kuhlman, Brian; Butterfoss, Glenn L; Hu, Hao; Weinreb, Violetta; Carter, Charles W

    2010-12-01

    We substantiate our preliminary description of the class I tryptophanyl-tRNA synthetase minimal catalytic domain with details of its construction, structure, and steady-state kinetic parameters. Generating that active fragment involved deleting 65% of the contemporary enzyme, including the anticodon-binding domain and connecting peptide 1, CP1, a 74-residue internal segment from within the Rossmann fold. We used protein design (Rosetta), rather than phylogenetic sequence alignments, to identify mutations to compensate for the severe loss of modularity, thus restoring stability, as evidenced by renaturation described previously and by 70-ns molecular dynamics simulations. Sufficient solubility to enable biochemical studies was achieved by expressing the redesigned Urzyme as a maltose-binding protein fusion. Michaelis-Menten kinetic parameters from amino acid activation assays showed that, compared with the native full-length enzyme, TrpRS Urzyme binds ATP with similar affinity. This suggests that neither of the two deleted structural modules has a strong influence on ground-state ATP binding. However, tryptophan has 10(3) lower affinity, and the Urzyme has comparably reduced specificity relative to the related amino acid, tyrosine. Molecular dynamics simulations revealed how CP1 may contribute significantly to cognate amino acid specificity. As class Ia editing domains are nested within the CP1, this finding suggests that this module enhanced amino acid specificity continuously, throughout their evolution. We call this type of reconstructed protein catalyst an Urzyme (Ur prefix indicates original, primitive, or earliest). It establishes a model for recapitulating very early steps in molecular evolution in which fitness may have been enhanced by accumulating entire modules, rather than by discrete amino acid sequence changes. PMID:20864539

  2. Molecular bases and improvement of heat tolerance in crop plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High temperature is a major constraint to crop productivity, causing substantial reductions in yield and quality, and expected to become a more devastating factor due to global warming. A better understanding of molecular mechanisms of tolerance to high temperatures is necessary for designing and de...

  3. Phylemon: a suite of web tools for molecular evolution, phylogenetics and phylogenomics

    PubMed Central

    Tárraga, Joaquín; Medina, Ignacio; Arbiza, Leonardo; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2007-01-01

    Phylemon is an online platform for phylogenetic and evolutionary analyses of molecular sequence data. It has been developed as a web server that integrates a suite of different tools selected among the most popular stand-alone programs in phylogenetic and evolutionary analysis. It has been conceived as a natural response to the increasing demand of data analysis of many experimental scientists wishing to add a molecular evolution and phylogenetics insight into their research. Tools included in Phylemon cover a wide yet selected range of programs: from the most basic for multiple sequence alignment to elaborate statistical methods of phylogenetic reconstruction including methods for evolutionary rates analyses and molecular adaptation. Phylemon has several features that differentiates it from other resources: (i) It offers an integrated environment that enables the direct concatenation of evolutionary analyses, the storage of results and handles required data format conversions, (ii) Once an outfile is produced, Phylemon suggests the next possible analyses, thus guiding the user and facilitating the integration of multi-step analyses, and (iii) users can define and save complete pipelines for specific phylogenetic analysis to be automatically used on many genes in subsequent sessions or multiple genes in a single session (phylogenomics). The Phylemon web server is available at http://phylemon.bioinfo.cipf.es. PMID:17452346

  4. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity

    PubMed Central

    Mack, Korrie L.; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  5. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity.

    PubMed

    Mack, Korrie L; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  6. Molecular corridors and parameterizations of volatility in the evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Y.; Pöschl, U.; Shiraiwa, M.

    2015-10-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the volatility of organic compounds containing oxygen, nitrogen and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  7. Improving Food Safety by Understanding the Evolution of Egg-contaminating Salmonella Enteritidis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving Food Safety by Understanding the Evolution of Egg-contaminating Salmonella Enteritidis Jean Guard, Veterinary Medical Officer U. S. Department of Agriculture, Athens, GA USA (jean.guard@ars.usda.gov) The curious case of egg contamination by Salmonella enterica serovar Enteritidis S. ...

  8. Molecular Corridor Based Approach for Description of Evolution of Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Li, Y., Sr.; Poeschl, U.; Shiraiwa, M.

    2015-12-01

    Organic aerosol is ubiquitous in the atmosphere and its major component is secondary organic aerosol (SOA). Formation and evolution of SOA is a complex process involving coupled chemical reactions and mass transport in the gas and particle phases (Shiraiwa et al., 2014). Current air quality models do not embody the full spectrum of reaction and transport processes, nor do they identify the dominant rate-limiting steps in SOA formation, resulting in the significant underprediction of observed SOA concentrations, which precludes reliable quantitative predictions of aerosols and their environmental impacts. Recently, it has been suggested that the SOA chemical evolution can be represented well by "molecular corridor" with a tight inverse correlation between molar mass and volatility of SOA oxidation products (Shiraiwa et al., 2014). Here we further analyzed the structure, molar mass and volatility of 31,000 unique organic compounds. These compounds include oxygenated organic compounds as well as nitrogen- and sulfur-containing organics such as amines, organonitrates, and organosulfates. Results show that most of those compounds fall into this two-dimensional (2-D) space, which is constrained by two boundary lines corresponding to the volatility of n -alkanes CnH2n+2 and sugar alcohols CnH2n+2On. A method to predict the volatility of nitrogen- and sulfur- containing compounds is developed based on those 31,000 organic compounds. It is shown that the volatility can be well predicted as a function of chemical composition numbers, providing a way to apply this 2-D space to organic compounds observed in real atmosphere. A comprehensive set of observation data from laboratory experiments, field campaigns and indoor measurements is mapped to the molecular corridor. This 2-D space can successfully grasp the properties of organic compounds formed in different atmospheric conditions. The molecular corridor represents a new framework in which chemical and physical properties as

  9. PyEvolve: a toolkit for statistical modelling of molecular evolution

    PubMed Central

    Butterfield, Andrew; Vedagiri, Vivek; Lang, Edward; Lawrence, Cath; Wakefield, Matthew J; Isaev, Alexander; Huttley, Gavin A

    2004-01-01

    Background Examining the distribution of variation has proven an extremely profitable technique in the effort to identify sequences of biological significance. Most approaches in the field, however, evaluate only the conserved portions of sequences – ignoring the biological significance of sequence differences. A suite of sophisticated likelihood based statistical models from the field of molecular evolution provides the basis for extracting the information from the full distribution of sequence variation. The number of different problems to which phylogeny-based maximum likelihood calculations can be applied is extensive. Available software packages that can perform likelihood calculations suffer from a lack of flexibility and scalability, or employ error-prone approaches to model parameterisation. Results Here we describe the implementation of PyEvolve, a toolkit for the application of existing, and development of new, statistical methods for molecular evolution. We present the object architecture and design schema of PyEvolve, which includes an adaptable multi-level parallelisation schema. The approach for defining new methods is illustrated by implementing a novel dinucleotide model of substitution that includes a parameter for mutation of methylated CpG's, which required 8 lines of standard Python code to define. Benchmarking was performed using either a dinucleotide or codon substitution model applied to an alignment of BRCA1 sequences from 20 mammals, or a 10 species subset. Up to five-fold parallel performance gains over serial were recorded. Compared to leading alternative software, PyEvolve exhibited significantly better real world performance for parameter rich models with a large data set, reducing the time required for optimisation from ~10 days to ~6 hours. Conclusion PyEvolve provides flexible functionality that can be used either for statistical modelling of molecular evolution, or the development of new methods in the field. The toolkit can be

  10. Improving the performance of molecular dynamics simulations on parallel clusters.

    PubMed

    Borstnik, Urban; Hodoscek, Milan; Janezic, Dusanka

    2004-01-01

    In this article a procedure is derived to obtain a performance gain for molecular dynamics (MD) simulations on existing parallel clusters. Parallel clusters use a wide array of interconnection technologies to connect multiple processors together, often at different speeds, such as multiple processor computers and networking. It is demonstrated how to configure existing programs for MD simulations to efficiently handle collective communication on parallel clusters with processor interconnections of different speeds. PMID:15032512

  11. How the Microbial World Saved Evolution from the Scylla of Molecular Biology and the Charybdis of the Modern Synthesis

    PubMed Central

    Woese, Carl R.; Goldenfeld, Nigel

    2009-01-01

    Summary: In this commentary, we provide a personal overview of the conceptual history of microbiology and molecular biology over the course of the last hundred years, emphasizing the relationship of these fields to the problem of evolution. We argue that despite their apparent success, all three reached an impasse that arose from the influence of dogmatic or overly narrow perspectives. Finally, we describe how recent developments in microbiology are realizing Beijerinck's vision of a field that is fully integrated with molecular biology, microbial ecology, thereby challenging and extending current thinking in evolution. PMID:19258530

  12. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    NASA Astrophysics Data System (ADS)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of

  13. Evolution in the charge injection efficiency of evaporated Au contacts on a molecularly doped polymer

    NASA Astrophysics Data System (ADS)

    Ioannidis, Andronique; Facci, John S.; Abkowitz, Martin A.

    1998-08-01

    Injection efficiency from evaporated Au contacts on a molecularly doped polymer (MDP) system has been previously observed to evolve from blocking to ohmic over time. In the present article this contact forming phenomenon is analyzed in detail. The initially blocking nature of the Au contact is in contrast with that expected from the relative workfunctions of Au and of the polymer which suggest Au should inject holes efficiently. It is also in apparent contrast to a differently prepared interface of the same materials. The phenomenon is not unique to this interface, having been confirmed also for evaporated Ag and mechanically made liquid Hg contacts on the same MDP. The MDP is a disordered solid state solution of electroactive triarylamine hole transporting TPD molecules in a polycarbonate matrix. The trap-free hole-transport MDP provides a model system for the study of metal/polymer interfaces by enabling the use of a recently developed technique that gives a quantitative measure of contact injection efficiency. The technique combines field-dependent steady state injection current measurements at a contact under test with time-of-flight (TOF) mobility measurements made on the same sample. In the present case, MDP films were prepared with two top vapor-deposited contacts, one of Au (test contact) and one of Al (for TOF), and a bottom carbon-loaded polymer electrode which is known to be ohmic for hole injection. The samples were aged at various temperatures below the glass transition of the MDP (85 °C) and the evolution of current versus field and capacitance versus frequency behaviors are followed in detail over time and analyzed. Control measurements ensure that the evolution of the electrical properties is due to the Au/polymer interface behavior and not the bulk. All evaporated Au contacts eventually achieved ohmic injection. The evaporated Au/MDP interface was also investigated by transmission electron microscopy as a function of time and showed no evidence of

  14. Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution.

    PubMed

    Galtier, Nicolas; Duret, Laurent

    2007-06-01

    The analysis of evolutionary rates is a popular approach to characterizing the effect of natural selection at the molecular level. Sequences contributing to species adaptation are expected to evolve faster than nonfunctional sequences because favourable mutations have a higher fixation probability than neutral ones. Such an accelerated rate of evolution might be due to factors other than natural selection, in particular GC-biased gene conversion. This is true of neutral sequences, but also of constrained sequences, which can be illustrated using the mouse Fxy gene. Several criteria can discriminate between the natural selection and biased gene conversion models. These criteria suggest that the recently reported human accelerated regions are most likely the result of biased gene conversion. We argue that these regions, far from contributing to human adaptation, might represent the Achilles' heel of our genome. PMID:17418442

  15. Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory

    NASA Technical Reports Server (NTRS)

    Mehandru, S. P.; Anderson, Alfred B.

    1989-01-01

    Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.

  16. Dynamics of the Eigen and the Crow-Kimura models for molecular evolution.

    PubMed

    Saakian, David B; Rozanova, Olga; Akmetzhanov, Andrei

    2008-10-01

    We introduce an alternative way to study molecular evolution within well-established Hamilton-Jacobi formalism, showing that for a broad class of fitness landscapes it is possible to derive dynamics analytically within the 1N accuracy, where N is the genome length. For a smooth and monotonic fitness function this approach gives two dynamical phases: smooth dynamics and discontinuous dynamics. The latter phase arises naturally with no explicite singular fitness function, counterintuitively. The Hamilton-Jacobi method yields straightforward analytical results for the models that utilize fitness as a function of Hamming distance from a reference genome sequence. We also show the way in which this method gives dynamical phase structure for multipeak fitness. PMID:18999456

  17. Compact structure and proteins of pasta retard in vitro digestive evolution of branched starch molecular structure.

    PubMed

    Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G

    2016-11-01

    The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)<100nm; this protein(s) was susceptible to proteolysis. Thus the compact structure of pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm. PMID:27516291

  18. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    PubMed Central

    Malik, Waqas; Iqbal, Muhammad Zaffar; Ali Khan, Asif; Qayyum, Abdul; Ali Abid, Muhammad; Noor, Etrat; Qadir Ahmad, Muhammad; Hasan Abbasi, Ghulam

    2014-01-01

    Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low- and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands. PMID:25401149

  19. Molecular markers and cotton genetic improvement: current status and future prospects.

    PubMed

    Malik, Waqas; Ashraf, Javaria; Iqbal, Muhammad Zaffar; Khan, Asif Ali; Qayyum, Abdul; Ali Abid, Muhammad; Noor, Etrat; Ahmad, Muhammad Qadir; Abbasi, Ghulam Hasan

    2014-01-01

    Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low- and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands. PMID:25401149

  20. Molecular Evolution and Phylodynamics of Acute Hepatitis B Virus in Japan

    PubMed Central

    Lin, Serena Y. C.; Toyoda, Hidenori; Kumada, Takashi; Liu, Hsin-Fu

    2016-01-01

    Hepatitis B virus (HBV) is prevalent worldwide and causes liver diseases, including acute and chronic hepatitis. Ten HBV genotypes (A–J) with distinct geographic distributions have been reported. Cases of acute HBV infection with genotype A have increased in Japan nationwide since the 1990s, mainly through sexual transmission. To investigate the molecular evolution and phylodynamics of HBV genotypes, we collected acute HBV isolates acquired in Japan from 1992–2002. Full genomes were obtained for comprehensive phylogenetic and phylodynamic analysis, with other Japanese HBV sequences from GenBank that were isolated during 1991–2010. HBV genotypes were classified using the maximum-likelihood and Bayesian methods. The GMRF Bayesian Skyride was used to estimate the evolution and population dynamics of HBV. Four HBV genotypes (A, B, C, and H) were identified, of which C was the major genotype. The phylodynamic results indicated an exponential growth between the 1960s and early 1990s; this was followed by a population bottleneck after 1995, possibly linked with successful implementation of a nationwide vaccination program. However, HBV/A increased from 1990 to 2003–2004, and then started to decrease. The prevalence of genotype A has increased over the past 10 years. Phylodynamic inference clearly demonstrates a steady population growth compatible with an ongoing subepidemic; this might be due to the loss of immunity to HBV in adolescents and people being born before the vaccination program. This is the first phylodynamic study of HBV infection in Japan and will facilitate understanding the molecular epidemiology and long-term evolutionary dynamics of this virus in Japan. PMID:27280441

  1. Molecular Evolution and Functional Divergence of Trace Amine–Associated Receptors

    PubMed Central

    Eyun, Seong-il; Moriyama, Hideaki; Hoffmann, Federico G.; Moriyama, Etsuko N.

    2016-01-01

    Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors. PMID:26963722

  2. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    PubMed

    Eyun, Seong-Il; Moriyama, Hideaki; Hoffmann, Federico G; Moriyama, Etsuko N

    2016-01-01

    Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors. PMID:26963722

  3. Cosmic Structure and Galaxy Evolution through Intensity Mapping of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Keating, Garrett K.; Marrone, Daniel P.; YT Lee Array Team, SZA Team

    2016-01-01

    The origin and evolution of structure in the Universe is one of the major challenges of observational astronomy. How does baryonic structure trace the underlying dark matter? How have galaxies evolved to produce the present day Universe? A multi-wavelength, multi-tool approach is necessary to provide the complete story of the evolution of structure in the Universe. Intensity mapping, which relies on the ability to detect many objects at once through their integrated emission rather than direct detection of individual objects, is a critical part of this mosaic. In particular, our understanding of the molecular gas component of massive galaxies is being revolutionized by ALMA and EVLA but the population of smaller, star-forming galaxies, which provide the bulk of star formation cannot be individually probed by these instruments.In this talk, I will summarize two intensity mapping experiments to detect molecular gas through the carbon monoxide (CO) rotational transition. We have completed sensitive observations with the Sunyaev-Zel'dovic Array (SZA) telescope at a wavelength of 1 cm that are sensitive to emission at redshifts 2.3 to 3.3. The SZA experiments sets strong limits on models for the CO emission and demonstrates the ability to reject foregrounds and telescope systematics in very deep integrations. I also describe the development of an intensity mapping capability for the Y.T. Lee Array, a 13-element interferometer located on Mauna Loa. In its first phase, this project focuses on detection of CO at redshifts 2.4 - 3.0 with detection via power spectrum and cross-correlation with other surveys. The project includes a major technical upgrade, a new digital correlator and IF electronics component to be deployed in 2015/2016. The Y.T. Lee Array observations will be more sensitive and extend to larger angular scales than the SZA observations.

  4. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs)

    PubMed Central

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar

    2012-01-01

    Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general. PMID:23226151

  5. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    PubMed

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information. PMID:26947218

  6. Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution

    SciTech Connect

    Hou, Yidong

    2011-11-08

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo{sub 3}S{sub 4}) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory calculations of the Mo{sub 3}S{sub 4} clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site.

  7. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution.

    PubMed

    Hou, Yidong; Abrams, Billie L; Vesborg, Peter C K; Björketun, Mårten E; Herbst, Konrad; Bech, Lone; Setti, Alessandro M; Damsgaard, Christian D; Pedersen, Thomas; Hansen, Ole; Rossmeisl, Jan; Dahl, Søren; Nørskov, Jens K; Chorkendorff, Ib

    2011-06-01

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo(3)S(4)) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by density functional theory calculations of the Mo(3)S(4) clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site. PMID:21516095

  8. The Global Evolution of Giant Molecular Clouds. II. The Role of Accretion

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-09-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc-2, in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  9. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus

    2015-08-01

    Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt-nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt-N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s-1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols.

  10. Patterns of molecular evolution of an avian neo-sex chromosome.

    PubMed

    Pala, Irene; Hasselquist, Dennis; Bensch, Staffan; Hansson, Bengt

    2012-12-01

    Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after ~42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after ~39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs. PMID:22826461

  11. The relation between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster.

    PubMed

    Campos, José L; Halligan, Daniel L; Haddrill, Penelope R; Charlesworth, Brian

    2014-04-01

    Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill-Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over. We carried out a comprehensive study of the benefits of recombination in Drosophila melanogaster, both by contrasting five independent genomic regions that lack crossing over with the rest of the genome and by comparing regions with different rates of crossing over, using data on DNA sequence polymorphisms from an African population that is geographically close to the putatively ancestral population for the species, and on sequence divergence from a related species. We observed reductions in sequence diversity in noncrossover (NC) regions that are inconsistent with the effects of hard selective sweeps in the absence of recombination. Overall, the observed patterns suggest that the recombination rate experienced by a gene is positively related to an increase in the efficiency of both positive and purifying selection. The results are consistent with a BGS model with interference among selected sites in NC regions, and joint effects of BGS, selective sweeps, and a past population expansion on variability in regions of the genome that experience crossing over. In such crossover regions, the X chromosome exhibits a higher rate of adaptive protein sequence evolution than the autosomes, implying a Faster-X effect. PMID:24489114

  12. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC).

    PubMed

    Stenkova, Anna M; Bystritskaya, Evgeniya P; Guzev, Konstantin V; Rakin, Alexander V; Isaeva, Marina P

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system. PMID:27578962

  13. Molecular Evolution of the Yersinia Major Outer Membrane Protein C (OmpC)

    PubMed Central

    Stenkova, Anna M.; Bystritskaya, Evgeniya P.; Guzev, Konstantin V.; Rakin, Alexander V.; Isaeva, Marina P.

    2016-01-01

    The genus Yersinia includes species with a wide range of eukaryotic hosts (from fish, insects, and plants to mammals and humans). One of the major outer membrane proteins, the porin OmpC, is preferentially expressed in the host gut, where osmotic pressure, temperature, and the concentrations of nutrients and toxic products are relatively high. We consider here the molecular evolution and phylogeny of Yersinia ompC. The maximum likelihood gene tree reflects the macroevolution processes occurring within the genus Yersinia. Positive selection and horizontal gene transfer are the key factors of ompC diversification, and intraspecies recombination was revealed in two Yersinia species. The impact of recombination on ompC evolution was different from that of another major porin gene, ompF, possibly due to the emergence of additional functions and conservation of the basic transport function. The predicted antigenic determinants of OmpC were located in rapidly evolving regions, which may indicate the evolutionary mechanisms of Yersinia adaptation to the host immune system. PMID:27578962

  14. Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution

    PubMed Central

    Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus

    2015-01-01

    Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt–nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt–N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s−1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols. PMID:26250525

  15. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  16. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  17. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  18. Molecular evidence-based medicine: evolution and integration of information in the genomic era.

    PubMed

    Ioannidis, J P A

    2007-05-01

    Evidence-based medicine and molecular medicine have both been influential in biomedical research in the last 15 years. Despite following largely parallel routes to date, the goals and principles of evidence-based and molecular medicine are complementary and they should be converging. I define molecular evidence-based medicine as the study of medical information that makes sense of the advances of molecular biological disciplines and where errors and biases are properly appreciated and placed in context. Biomedical measurement capacity improves very rapidly. The exponentially growing mass of hypotheses being tested requires a new approach to both statistical and biological inference. Multidimensional biology requires careful exact replication of research findings, but indirect corroboration is often all that is achieved at best. Besides random error, bias remains a major threat. It is often difficult to separate bias from the spirit of scientific inquiry to force data into coherent and 'significant' biological stories. Transparency and public availability of protocols, data, analyses and results may be crucial to make sense of the complex biology of human disease and avoid being flooded by spurious research findings. Research efforts should be integrated across teams in an open, sharing environment. Most research in the future may be designed, performed, and integrated in the public cyberspace. PMID:17461979

  19. Molecular phylogeny and evolution of Scomber (Teleostei: Scombridae) based on mitochondrial and nuclear DNA sequences

    NASA Astrophysics Data System (ADS)

    Cheng, Jiao; Gao, Tianxiang; Miao, Zhenqing; Yanagimoto, Takashi

    2011-03-01

    A molecular phylogenetic analysis of the genus Scomber was conducted based on mitochondrial (COI, Cyt b and control region) and nuclear (5S rDNA) DNA sequence data in multigene perspective. A variety of phylogenetic analytic methods were used to clarify the current taxonomic Classification and to assess phylogenetic relationships and the evolutionary history of this genus. The present study produced a well-resolved phylogeny that strongly supported the monophyly of Scomber. We confirmed that S. japonicus and S. colias were genetically distinct. Although morphologically and ecologically similar to S. colias, the molecular data showed that S. japonicus has a greater molecular affinity with S. australasicus, which conflicts with the traditional taxonomy. This phylogenetic pattern was corroborated by the mtDNA data, but incompletely by the nuclear DNA data. Phylogenetic concordance between the mitochondrial and nuclear DNA regions for the basal nodes Supports an Atlantic origin for Scomber. The present-day geographic ranges of the species were compared with the resultant molecular phylogeny derived from partition Bayesian analyses of the combined data sets to evaluate possible dispersal routes of the genus. The present-day geographic distribution of Scomber species might be best ascribed to multiple dispersal events. In addition, our results suggest that phylogenies derived from multiple genes and long sequences exhibited improved phylogenetic resolution, from which we conclude that the phylogenetic reconstruction is a reliable representation of the evolutionary history of Scomber.

  20. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments

    PubMed Central

    Pizzarello, Sandra; Davidowski, Stephen K.; Holland, Gregory P.; Williams, Lynda B.

    2013-01-01

    The composition of the Sutter’s Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography–mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter’s Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials. PMID:24019471

  1. Dolphin genome provides evidence for adaptive evolution of nervous system genes and a molecular rate slowdown

    PubMed Central

    McGowen, Michael R.; Grossman, Lawrence I.; Wildman, Derek E.

    2012-01-01

    Cetaceans (dolphins and whales) have undergone a radical transformation from the original mammalian bodyplan. In addition, some cetaceans have evolved large brains and complex cognitive capacities. We compared approximately 10 000 protein-coding genes culled from the bottlenose dolphin genome with nine other genomes to reveal molecular correlates of the remarkable phenotypic features of these aquatic mammals. Evolutionary analyses demonstrated that the overall synonymous substitution rate in dolphins has slowed compared with other studied mammals, and is within the range of primates and elephants. We also discovered 228 genes potentially under positive selection (dN/dS > 1) in the dolphin lineage. Twenty-seven of these genes are associated with the nervous system, including those related to human intellectual disabilities, synaptic plasticity and sleep. In addition, genes expressed in the mitochondrion have a significantly higher mean dN/dS ratio in the dolphin lineage than others examined, indicating evolution in energy metabolism. We encountered selection in other genes potentially related to cetacean adaptations such as glucose and lipid metabolism, dermal and lung development, and the cardiovascular system. This study underlines the parallel molecular trajectory of cetaceans with other mammalian groups possessing large brains. PMID:22740643

  2. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies

    PubMed Central

    Dardick, Chris; Callahan, Ann M.

    2014-01-01

    Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant family a staggering variety of fruit types can be found such as fleshy fruits including berries, pomes, and drupes and dry fruit structures like achenes, capsules, and follicles. What are the evolutionary mechanisms that enable such dramatic shifts to occur in a relatively short period of time? This remains a fundamental question of plant biology today. On the surface it seems that these extreme differences in form and function must be the consequence of very different developmental programs that require unique sets of genes. Yet as we begin to decipher the molecular and genetic basis underlying fruit form it is becoming apparent that simple genetic changes in key developmental regulatory genes can have profound anatomical effects. In this review, we discuss recent advances in understanding the molecular mechanisms of fruit endocarp tissue differentiation that have contributed to species diversification within three plant lineages. PMID:25009543

  3. The Convergent Evolution of Blue Iris Pigmentation in Primates Took Distinct Molecular Paths

    PubMed Central

    Meyer, Wynn K; Zhang, Sidi; Hayakawa, Sachiko; Imai, Hiroo; Przeworski, Molly

    2013-01-01

    How many distinct molecular paths lead to the same phenotype? One approach to this question has been to examine the genetic basis of convergent traits, which likely evolved repeatedly under a shared selective pressure. We investigated the convergent phenotype of blue iris pigmentation, which has arisen independently in four primate lineages: humans, blue-eyed black lemurs, Japanese macaques, and spider monkeys. Characterizing the phenotype across these species, we found that the variation within the blue-eyed subsets of each species occupies strongly overlapping regions of CIE L*a*b* color space. Yet whereas Japanese macaques and humans display continuous variation, the phenotypes of blue-eyed black lemurs and their sister species (whose irises are brown) occupy more clustered subspaces. Variation in an enhancer of OCA2 is primarily responsible for the phenotypic difference between humans with blue and brown irises. In the orthologous region, we found no variant that distinguishes the two lemur species or associates with quantitative phenotypic variation in Japanese macaques. Given the high similarity between the blue iris phenotypes in these species and that in humans, this finding implies that evolution has used different molecular paths to reach the same end. Am J Phys Anthropol 151:398–407, 2013.© 2013 Wiley Periodicals, Inc. PMID:23640739

  4. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  5. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti.

    PubMed

    Small, Scott T; Tisch, Daniel J; Zimmerman, Peter A

    2014-12-01

    Wuchereria bancrofti (Wb) is the most widely distributed of the three nematodes known to cause lymphatic filariasis (LF), the other two being Brugia malayi and Brugia timori. Current tools available to monitor LF are limited to diagnostic tests targeting DNA repeats, filarial antigens, and anti-filarial antibodies. While these tools are useful for detection and surveillance, elimination programs have yet to take full advantage of molecular typing for inferring infection history, strain fingerprinting, and evolution. To date, molecular typing approaches have included whole mitochondrial genomes, genotyping, targeted sequencing, and random amplified polymorphic DNA (RAPDs). These studies have revealed much about Wb biology. For example, in one study in Papua New Guinea researchers identified 5 major strains that were widespread and many minor strains some of which exhibit geographic stratification. Genome data, while rare, has been utilized to reconstruct evolutionary relationships among taxa of the Onchocercidae (the clade of filarial nematodes) and identify gene synteny. Their phylogeny reveals that speciation from the common ancestor of both B. malayi and Wb occurred around 5-6 millions years ago with shared ancestry to other filarial nematodes as recent as 15 million years ago. These discoveries hold promise for gene discovery and identifying drug targets in species that are more amenable to in vivo experiments. Continued technological developments in whole genome sequencing and data analysis will likely replace many other forms of molecular typing, multiplying the amount of data available on population structure, genetic diversity, and phylogenetics. Once widely available, the addition of population genetic data from genomic studies should hasten the elimination of LF parasites like Wb. Infectious disease control programs have benefited greatly from population genetics data and recently from population genomics data. However, while there is currently a surplus

  6. Improved Molecular Technique for the Differentiation of Neotropical Anopheline Species

    PubMed Central

    Matson, Ryan; Rios, Carlos Tong; Chavez, Cesar Banda; Gilman, Robert H.; Florin, David; Sifuentes, Victor Lopez; Greffa, Roldan Cardenas; Yori, Pablo Peñataro; Fernandez, Roberto; Portocarrero, Daniel Velasquez; Vinetz, Joseph M.; Kosek, Margaret

    2008-01-01

    We evaluated a PCR-RFLP of the ribosomal internal transcribed spacer 2 region (ITS2) to distinguish species of Anopheles commonly reported in the Amazon and validated this method using reared F1 offspring. The following species of Anopheles were used for molecular analysis: An. (Nys.) benarrochi, An. (Nys.) darlingi, An. (Nys.) nuneztovari, An. (Nys.) konderi, An. (Nys.) rangeli, and An. (Nys.) triannulatus sensu lato (s.l.). In addition, three species of the subgenus Anopheles, An. (Ano.) forattini, An. (Ano.) mattogrossensis, and An. (Ano.) peryassui were included for testing. Each of the nine species tested yielded diagnostic banding patterns. The PCR-RFLP method was successful in identifying all life stages including exuviae with small fractions of the sample. The assay is rapid and can be applied as an unbiased confirmatory method for identification of morphologic variants, disputed samples, imperfectly preserved specimens, and life stages from which taxonomic keys do not allow for definitive species determination. PMID:18337348

  7. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor.

    PubMed

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G; Boffi, Juan C; Millar, Neil S; Fuchs, Paul A; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-12-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  8. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    NASA Astrophysics Data System (ADS)

    Li, Ying; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-03-01

    The formation and aging of organic aerosols (OA) proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  9. Molecular characterization of insulin from squamate reptiles reveals sequence diversity and possible adaptive evolution.

    PubMed

    Yamagishi, Genki; Yoshida, Ayaka; Kobayashi, Aya; Park, Min Kyun

    2016-01-01

    The Squamata are the most adaptive and prosperous group among ectothermic amniotes, reptiles, due to their species-richness and geographically wide habitat. Although the molecular mechanisms underlying their prosperity remain largely unknown, unique features have been reported from hormones that regulate energy metabolism. Insulin, a central anabolic hormone, is one such hormone, as its roles and effectiveness in regulation of blood glucose levels remain to be examined in squamates. In the present study, cDNAs coding for insulin were isolated from multiple species that represent various groups of squamates. The deduced amino acid sequences showed a high degree of divergence, with four lineages showing obviously higher number of amino acid substitutions than most of vertebrates, from teleosts to mammals. Among 18 sites presented to comprise the two receptor binding surfaces (one with 12 sites and the other with 6 sites), substitutions were observed in 13 sites. Among them was the substitution of HisB10, which results in the loss of the ability to hexamerize. Furthermore, three of these substitutions were reported to increase mitogenicity in human analogues. These substitutions were also reported from insulin of hystricomorph rodents and agnathan fishes, whose mitogenic potency have been shown to be increased. The estimated value of the non-synonymous-to-synonymous substitution ratio (ω) for the Squamata clade was larger than those of the other reptiles and aves. Even higher values were estimated for several lineages among squamates. These results, together with the regulatory mechanisms of digestion and nutrient assimilation in squamates, suggested a possible adaptive process through the molecular evolution of squamate INS. Further studies on the roles of insulin, in relation to the physiological and ecological traits of squamate species, will provide an insight into the molecular mechanisms that have led to the adaptivity and prosperity of squamates. PMID:26344944

  10. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index

    NASA Astrophysics Data System (ADS)

    Zhao, Huaying; Magone, M. Teresa; Schuck, Peter

    2011-08-01

    Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5-10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins.

  11. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti

    PubMed Central

    Small, Scott T.; Tisch, Daniel J.; Zimmerman, Peter A.

    2014-01-01

    Wuchereria bancrofti (Wb) is the most widely distributed of the three nematodes known to cause lymphatic filariasis (LF), the other two being Brugia malayi and B. timori. Current tools available to monitor LF are limited to diagnostic tests targeting DNA repeats, filarial antigens, and anti-filarial antibodies. While these tools are useful for detection and surveillance, elimination programs have yet to take full advantage of molecular typing for inferring infection history, strain fingerprinting, and evolution. To date, molecular typing approaches have included whole mitochondrial genomes, genotyping, targeted sequencing, and random amplified polymorphic DNA (RAPDs). These studies have revealed much about Wb biology. For example, in one study in Papua New Guinea researchers identified 5 major strains that were widespread and many minor strains some of which exhibit geographic stratification. Genome data, while rare, has been utilized to reconstruct evolutionary relationships among taxa of the Onchocercidae (the clade of filarial nematodes) and identify gene synteny. Their phylogeny reveals that speciation from the common ancestor of both B. malayi and Wb occurred around 5–6 millions years ago with shared ancestry to other filarial nematodes as recent as 15 million years ago. These discoveries hold promise for gene discovery and identifying drug targets in species that are more amenable to in vivo experiments. Continued technological developments in whole genome sequencing and data analysis will likely replace many other forms of molecular typing, multiplying the amount of data available on population structure, genetic diversity, and phylogenetics. Once widely available, the addition of population genetic data from genomic studies should hasten the elimination of LF parasites like Wb. PMID:25176600

  12. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  13. Deceptive Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges

    PubMed Central

    Schuster, Astrid; Erpenbeck, Dirk; Pisera, Andrzej; Hooper, John; Bryce, Monika; Fromont, Jane; Wörheide, Gert

    2015-01-01

    Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera). ‘Lithistida’, a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas) that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically) comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of ‘lithistid’ demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous ‘order Lithistida’. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences), we show that 8 out of 13 ‘Lithistida’ families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae – we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different

  14. Pteros 2.0: Evolution of the fast parallel molecular analysis library for C++ and python.

    PubMed

    Yesylevskyy, Semen O

    2015-07-15

    Pteros is the high-performance open-source library for molecular modeling and analysis of molecular dynamics trajectories. Starting from version 2.0 Pteros is available for C++ and Python programming languages with very similar interfaces. This makes it suitable for writing complex reusable programs in C++ and simple interactive scripts in Python alike. New version improves the facilities for asynchronous trajectory reading and parallel execution of analysis tasks by introducing analysis plugins which could be written in either C++ or Python in completely uniform way. The high level of abstraction provided by analysis plugins greatly simplifies prototyping and implementation of complex analysis algorithms. Pteros is available for free under Artistic License from http://sourceforge.net/projects/pteros/. PMID:25974373

  15. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    PubMed Central

    2011-01-01

    forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. Reviewers This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier. PMID:21639885

  16. Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Pi-ta gene has been effectively used to control rice blast disease caused by Magnaporthe oryzae in many rice growing regions in the world. A number of studies have characterized the molecular evolution of the Pi-ta gene in cultivated rice, O. sativa, and its wild ancestor O. rufipogon; however,...

  17. Oxygen Tolerance of a Molecular Engineered Cathode for Hydrogen Evolution Based on a Cobalt Diimine-Dioxime Catalyst.

    PubMed

    Kaeffer, Nicolas; Morozan, Adina; Artero, Vincent

    2015-10-29

    We report here that a bioinspired cobalt diimine-dioxime molecular catalyst for hydrogen evolution immobilized onto carbon nanotube electrodes proves tolerant toward oxygen. The cobalt complex catalyzes O2 reduction with an onset potential of +0.55 V vs RHE. In this process, a mixture of water and hydrogen peroxide is produced in a 3:1 ratio. Our study evidences that such side-reductions have little impact on effectiveness of proton reduction by the grafted molecular catalyst which still displays good activity for H2 evolution in the presence of O2. The presence of O2 in the media is not detrimental toward H2 evolution under the conditions used, which simulate turn-on conditions of a water-splitting device. PMID:25993343

  18. Implementing and Improving Automated Electronic Tumor Molecular Profiling.

    PubMed

    Rioth, Matthew J; Staggs, David B; Hackett, Lauren; Haberman, Erich; Tod, Mike; Levy, Mia; Warner, Jeremy

    2016-03-01

    Oncology practice increasingly requires the use of molecular profiling of tumors to inform the use of targeted therapeutics. However, many oncologists use third-party laboratories to perform tumor genomic testing, and these laboratories may not have electronic interfaces with the provider's electronic medical record (EMR) system. The resultant reporting mechanisms, such as plain-paper faxing, can reduce report fidelity, slow down reporting procedures for a physician's practice, and make reports less accessible. Vanderbilt University Medical Center and its genomic laboratory testing partner have collaborated to create an automated electronic reporting system that incorporates genetic testing results directly into the clinical EMR. This system was iteratively tested, and causes of failure were discovered and addressed. Most errors were attributable to data entry or typographical errors that made reports unable to be linked to the correct patient in the EMR. By providing direct feedback to providers, we were able to significantly decrease the rate of transmission errors (from 6.29% to 3.84%; P < .001). The results and lessons of 1 year of using the system and transmitting 832 tumor genomic testing reports are reported. PMID:26813927

  19. Molecular Rationale for Improved Dynamic Nuclear Polarization of Biomembranes.

    PubMed

    Smith, Adam N; Twahir, Umar T; Dubroca, Thierry; Fanucci, Gail E; Long, Joanna R

    2016-08-18

    Dynamic nuclear polarization (DNP) enhanced solid-state NMR can provide orders of magnitude in signal enhancement. One of the most important aspects of obtaining efficient DNP enhancements is the optimization of the paramagnetic polarization agents used. To date, the most utilized polarization agents are nitroxide biradicals. However, the efficiency of these polarization agents is diminished when used with samples other than small molecule model compounds. We recently demonstrated the effectiveness of nitroxide labeled lipids as polarization agents for lipids and a membrane embedded peptide. Here, we systematically characterize, via electron paramagnetic (EPR), the dynamics of and the dipolar couplings between nitroxide labeled lipids under conditions relevant to DNP applications. Complemented by DNP enhanced solid-state NMR measurements at 600 MHz/395 GHz, a molecular rationale for the efficiency of nitroxide labeled lipids as DNP polarization agents is developed. Specifically, optimal DNP enhancements are obtained when the nitroxide moiety is attached to the lipid choline headgroup and local nitroxide concentrations yield an average e(-)-e(-) dipolar coupling of 47 MHz. On the basis of these measurements, we propose a framework for development of DNP polarization agents optimal for membrane protein structure determination. PMID:27434371

  20. A cobalt-NHC complex as an improved catalyst for photochemical hydrogen evolution from water.

    PubMed

    Kawano, Ken; Yamauchi, Kosei; Sakai, Ken

    2014-09-01

    A macrocyclic N-heterocyclic carbene (NHC)-cobalt complex was found to act as an improved H2-evolving catalyst in a [Ru(bpy)3](2+)-sensitized photosystem using methylviologen as a redox acceptor (MV(2+) + e(-) → MV(+)˙, MV(2+) = N,N'-dimethyl-4,4'-bipyridinium), which provides a driving force of only 150 meV for H2 evolution at pH 5.0. PMID:25025392

  1. Improvement of Contact Resistance with Molecular Ion Implantation

    SciTech Connect

    Lee, Kyung Won; Lee, Jin Ku; Oh, Jae Geun; Ju, Min Ae; Jeon, Seung Joon; Ku, Ja Chun; Park, Sung Ki; Huh, Tae Hoon; Kim, Steve; Ra, Geum Joo; Harris, Mark A.; Reece, Ronald N.; Yoon, Dae Ho

    2008-11-03

    Basic characteristics of ClusterBoron (B{sub 18}H{sub 22}) implantation were investigated for improving contact resistance in DRAM devices. Generally, {sup 49}BF{sub 2} has been widely used for contact implant application in DRAM manufacturing because of its higher productivity compared to monomer boron ({sup 11}B). However, because of limited activation in a low thermal budget ({approx}800 deg. C) anneal, the sheet resistance was saturated for doses over 5x10{sup 15} ions/cm{sup 2}. Although many investigations have been reported, such as {sup 30}BF implant mixed implant with monomer boron etc., no practical solution has been found for dramatic improvement of contact resistance in a productive manner. B{sub 18}H{sub 22} was developed to overcome the productivity limitations encountered in low energy, high dose boron implantation and the limited activation of {sup 49}BF{sub 2} due to co-implanted fluorine. In this study, basic characterization of the B{sub 18}H{sub 22} contact implant was performed through sheet resistance, SIMS (Secondary Ion Mass Spectrometry) and XTEM (cross-sectional transmission electron microscopy). The B{sub 18}H{sub 22} implants showed lower sheet resistance than conventional {sup 49}BF{sub 2} for 5x10{sup 15} ions/cm{sup 2} on bare wafer tests. Through XTEM study, we found the activation behavior of both B{sub 18}H{sub 22} and {sup 49}BF{sub 2} were directly related with the amorphous layer thickness and residual defects from low thermal budget anneal. PMOS contact resistance in the sub-70 nm device by B{sub 18}H{sub 22} implantation showed considerable improvement (about 30%), showing B{sub 18}H{sub 22} could replace the BF{sub 2} for contact implant in contact resistance implant.

  2. Does probabilistic modelling of linkage disequilibrium evolution improve the accuracy of QTL location in animal pedigree?

    PubMed Central

    2010-01-01

    Background Since 2001, the use of more and more dense maps has made researchers aware that combining linkage and linkage disequilibrium enhances the feasibility of fine-mapping genes of interest. So, various method types have been derived to include concepts of population genetics in the analyses. One major drawback of many of these methods is their computational cost, which is very significant when many markers are considered. Recent advances in technology, such as SNP genotyping, have made it possible to deal with huge amount of data. Thus the challenge that remains is to find accurate and efficient methods that are not too time consuming. The study reported here specifically focuses on the half-sib family animal design. Our objective was to determine whether modelling of linkage disequilibrium evolution improved the mapping accuracy of a quantitative trait locus of agricultural interest in these populations. We compared two methods of fine-mapping. The first one was an association analysis. In this method, we did not model linkage disequilibrium evolution. Therefore, the modelling of the evolution of linkage disequilibrium was a deterministic process; it was complete at time 0 and remained complete during the following generations. In the second method, the modelling of the evolution of population allele frequencies was derived from a Wright-Fisher model. We simulated a wide range of scenarios adapted to animal populations and compared these two methods for each scenario. Results Our results indicated that the improvement produced by probabilistic modelling of linkage disequilibrium evolution was not significant. Both methods led to similar results concerning the location accuracy of quantitative trait loci which appeared to be mainly improved by using four flanking markers instead of two. Conclusions Therefore, in animal half-sib designs, modelling linkage disequilibrium evolution using a Wright-Fisher model does not significantly improve the accuracy of the

  3. The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils?

    PubMed Central

    Douzery, Emmanuel J. P.; Snell, Elizabeth A.; Bapteste, Eric; Delsuc, Frédéric; Philippe, Hervé

    2004-01-01

    The use of nucleotide and amino acid sequences allows improved understanding of the timing of evolutionary events of life on earth. Molecular estimates of divergence times are, however, controversial and are generally much more ancient than suggested by the fossil record. The limited number of genes and species explored and pervasive variations in evolutionary rates are the most likely sources of such discrepancies. Here we compared concatenated amino acid sequences of 129 proteins from 36 eukaryotes to determine the divergence times of several major clades, including animals, fungi, plants, and various protists. Due to significant variations in their evolutionary rates, and to handle the uncertainty of the fossil record, we used a Bayesian relaxed molecular clock simultaneously calibrated by six paleontological constraints. We show that, according to 95% credibility intervals, the eukaryotic kingdoms diversified 950–1,259 million years ago (Mya), animals diverged from choanoflagellates 761–957 Mya, and the debated age of the split between protostomes and deuterostomes occurred 642–761 Mya. The divergence times appeared to be robust with respect to prior assumptions and paleontological calibrations. Interestingly, these relaxed clock time estimates are much more recent than those obtained under the assumption of a global molecular clock, yet bilaterian diversification appears to be ≈100 million years more ancient than the Cambrian boundary. PMID:15494441

  4. Molecular Phylogenetic Evaluation of Classification and Scenarios of Character Evolution in Calcareous Sponges (Porifera, Class Calcarea)

    PubMed Central

    Voigt, Oliver; Wülfing, Eilika; Wörheide, Gert

    2012-01-01

    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a

  5. Evolution of prolate molecular clouds at H II boundaries - II. Formation of BRCs of asymmetrical morphology

    NASA Astrophysics Data System (ADS)

    Kinnear, T. M.; Miao, J.; White, G. J.; Sugitani, K.; Goodwin, S.

    2015-06-01

    A systematic investigation on the evolution of a prolate cloud at an H II boundary is conducted using smoothed particle hydrodynamics in order to understand the mechanism for a variety of irregular morphological structures found at the boundaries of various H II regions. The prolate molecular clouds in this investigation are set with their semimajor axes at inclinations between 0° and 90° to a plane-parallel ionizing radiation flux. A set of four parameters, the number density n, the ratio of major to minor axis γ, the inclination angle ϕ and the incident flux FEUV, are used to define the initial state of the simulated clouds. The dependence of the evolution of a prolate cloud under radiation-driven implosion (RDI) on each of the four parameters is investigated. It is found that (i) in addition to the well-studied standard type A, B or C bright-rimmed clouds (BRCs), many other types such as asymmetrical BRCs, filamentary structures and irregular horse-head structures could also be developed at H II boundaries with only simple initial conditions; (ii) the final morphological structures are very sensitive to the four initial parameters, especially to the initial density and the inclination; (iii) the previously defined ionizing radiation penetration depth can still be used as a good indicator of the final morphology. Based on the simulation results, the formation time-scales and masses of the early RDI-triggered star formation from clouds of different initial conditions are also estimated. Finally a unified mechanism for the various morphological structures found in many different H II boundaries is suggested.

  6. Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera, Class Calcarea).

    PubMed

    Voigt, Oliver; Wülfing, Eilika; Wörheide, Gert

    2012-01-01

    Calcareous sponges (Phylum Porifera, Class Calcarea) are known to be taxonomically difficult. Previous molecular studies have revealed many discrepancies between classically recognized taxa and the observed relationships at the order, family and genus levels; these inconsistencies question underlying hypotheses regarding the evolution of certain morphological characters. Therefore, we extended the available taxa and character set by sequencing the complete small subunit (SSU) rDNA and the almost complete large subunit (LSU) rDNA of additional key species and complemented this dataset by substantially increasing the length of available LSU sequences. Phylogenetic analyses provided new hypotheses about the relationships of Calcarea and about the evolution of certain morphological characters. We tested our phylogeny against competing phylogenetic hypotheses presented by previous classification systems. Our data reject the current order-level classification by again finding non-monophyletic Leucosolenida, Clathrinida and Murrayonida. In the subclass Calcinea, we recovered a clade that includes all species with a cortex, which is largely consistent with the previously proposed order Leucettida. Other orders that had been rejected in the current system were not found, but could not be rejected in our tests either. We found several additional families and genera polyphyletic: the families Leucascidae and Leucaltidae and the genus Leucetta in Calcinea, and in Calcaronea the family Amphoriscidae and the genus Ute. Our phylogeny also provided support for the vaguely suspected close relationship of several members of Grantiidae with giantortical diactines to members of Heteropiidae. Similarly, our analyses revealed several unexpected affinities, such as a sister group relationship between Leucettusa (Leucaltidae) and Leucettidae and between Leucascandra (Jenkinidae) and Sycon carteri (Sycettidae). According to our results, the taxonomy of Calcarea is in desperate need of a

  7. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae

    PubMed Central

    2013-01-01

    Background Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. Results Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. Conclusions We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship. PMID:23497266

  8. Directed evolution of a 13-hydroperoxide lyase (CYP74B) for improved process performance.

    PubMed

    Brühlmann, Fredi; Bosijokovic, Bojan; Ullmann, Christophe; Auffray, Pascal; Fourage, Laurent; Wahler, Denis

    2013-02-10

    The performance of a 13-hydroperoxide lyase from guava, an enzyme of the CYP74 family, which is of interest for the industrial production of saturated and unsaturated C6-aldehydes and their derivatives, was improved by directed evolution. Four rounds of gene shuffling and random mutagenesis improved the functional expression in E. coli by offering a 15-fold higher product yield factor. The increased product yield factor relates to an improved total turnover number of the variant enzyme, which also showed higher solubility and increased heme content. Thermal stability was also dramatically improved even though there was no direct selection pressure applied for evolving this trait. A structure based sequence alignment with the recently solved allene oxide synthase of Arabidopsis thaliana showed that most amino acid alterations occurred on the surface of the protein, distant of the active site and often outside of secondary structures. These results demonstrate the power of directed evolution for improving a complex trait such as the total turnover number of a cytochrome P450, a critical parameter for process performance that is difficult to predict even with good structural information at hand. PMID:23183385

  9. Molecular approaches for improved clotting factors for hemophilia

    PubMed Central

    Powell, Jerry S.

    2013-01-01

    Hemophilia is caused by a functional deficiency of one of the coagulation proteins. Therapy for no other group of genetic diseases has seen the progress that has been made for hemophilia over the past 40 years, from a life expectancy in 1970 of ∼20 years for a boy born with severe hemophilia to essentially a normal life expectancy in 2013 with current prophylaxis therapy. However, these therapies are expensive and require IV infusions 3 to 4 times each week. These are exciting times for hemophilia because several new technologies that promise extended half-lives for factor products, with potential for improvements in quality of life for persons with hemophilia, are in late-phase clinical development. PMID:24065241

  10. Systematic Improvement of a Classical Molecular Model of Water

    PubMed Central

    Wang, Lee-Ping; Head-Gordon, Teresa; Ponder, Jay W.; Ren, Pengyu; Chodera, John D.; Eastman, Peter K.; Martinez, Todd J.; Pande, Vijay S.

    2013-01-01

    We report the iAMOEBA (i.e. “inexpensive AMOEBA”) classical polarizable water model. iAMOEBA uses a direct approximation to describe electronic polarizability, which reduces the computational cost relative to a fully polarizable model such as AMOEBA. The model is parameterized using ForceBalance, a systematic optimization method that simultaneously utilizes training data from experimental measurements and high-level ab initio calculations. We show that iAMOEBA is a highly accurate model for water in the solid, liquid, and gas phases, with the ability to fully capture the effects of electronic polarization and predict a comprehensive set of water properties beyond the training data set including the phase diagram. The increased accuracy of iAMOEBA over the fully polarizable AMOEBA model demonstrates ForceBalance as a method that allows the researcher to systematically improve empirical models by optimally utilizing the available data. PMID:23750713

  11. Efficient and limiting reactions in aqueous light-induced hydrogen evolution systems using molecular catalysts and quantum dots.

    PubMed

    Gimbert-Suriñach, Carolina; Albero, Josep; Stoll, Thibaut; Fortage, Jérôme; Collomb, Marie-Noëlle; Deronzier, Alain; Palomares, Emilio; Llobet, Antoni

    2014-05-28

    Hydrogen produced from water and solar energy holds much promise for decreasing the fossil fuel dependence. It has recently been proven that the use of quantum dots as light harvesters in combination with catalysts is a valuable strategy to obtain photogenerated hydrogen. However, the light to hydrogen conversion efficiency of these systems is reported to be lower than 40%. The low conversion efficiency is mainly due to losses occurring at the different interfacial charge-transfer reactions taking place in the multicomponent system during illumination. In this work we have analyzed all the involved reactions in the hydrogen evolution catalysis of a model system composed of CdTe quantum dots, a molecular cobalt catalyst and vitamin C as sacrificial electron donor. The results demonstrate that the electron transfer from the quantum dots to the catalyst occurs fast enough and efficiently (nanosecond time scale), while the back electron transfer and catalysis are much slower (millisecond and microsecond time scales). Further improvements of the photodriven proton reduction should focus on the catalytic rate enhancement, which should be at least in the hundreds of nanoseconds time scale. PMID:24799030

  12. Molecular evolution patterns reveal life history features of mycoplasma-related endobacteria associated with arbuscular mycorrhizal fungi.

    PubMed

    Toomer, Kevin H; Chen, Xiuhua; Naito, Mizue; Mondo, Stephen J; den Bakker, Henk C; VanKuren, Nicholas W; Lekberg, Ylva; Morton, Joseph B; Pawlowska, Teresa E

    2015-07-01

    The mycoplasma-related endobacteria (MRE), representing a recently discovered lineage of Mollicutes, are widely distributed across arbuscular mycorrhizal fungi (AMF, Glomeromycota). AMF colonize roots of most terrestrial plants and improve plant mineral nutrient uptake in return for plant-assimilated carbon. The role of MRE in the biology of their fungal hosts is unknown. To start characterizing this association, we assessed partitioning of MRE genetic diversity within AMF individuals and across the AMF phylogeographic range. We further used molecular evolution patterns to make inferences about MRE codivergence with AMF, their lifestyle and antiquity of the Glomeromycota-MRE association. While we did not detect differentiation between MRE derived from different continents, high levels of diversity were apparent in MRE populations within AMF host individuals. MRE exhibited significant codiversification with AMF over ecological time and the absence of codivergence over evolutionary time. Moreover, genetic recombination was evident in MRE. These patterns indicate that, while MRE transmission is predominantly vertical, their complex intrahost populations are likely generated by horizontal transmission and recombination. Based on predictions of evolutionary theory, we interpreted these observations as a suggestion that MRE may be antagonists of AMF. Finally, we detected a marginally significant signature of codivergence of MRE with Glomeromycota and the Endogone lineage of Mucoromycotina, implying that the symbiosis between MRE and fungi may predate the divergence between these two groups of fungi. PMID:26011293

  13. Molecular Evolution and Phylogeography of Co-circulating IHNV and VHSV in Italy

    PubMed Central

    Abbadi, Miriam; Fusaro, Alice; Ceolin, Chiara; Casarotto, Claudia; Quartesan, Rosita; Dalla Pozza, Manuela; Cattoli, Giovanni; Toffan, Anna; Holmes, Edward C.; Panzarin, Valentina

    2016-01-01

    Infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) are the most important viral pathogens impacting rainbow trout farming. These viruses are persistent in Italy, where they are responsible for severe disease outbreaks (epizootics) that affect the profitability of the trout industry. Despite the importance of IHNV and VHSV, little is known about their evolution at a local scale, although this is likely to be important for virus eradication and control. To address this issue we performed a detailed molecular evolutionary and epidemiological analysis of IHNV and VHSV in trout farms from northern Italy. Full-length glycoprotein gene sequences of a selection of VHSV (n = 108) and IHNV (n = 89) strains were obtained. This revealed that Italian VHSV strains belong to sublineages Ia1 and Ia2 of genotype Ia and are distributed into 7 genetic clusters. In contrast, all Italian IHNV isolates fell within genogroup E, for which only a single genetic cluster was identified. More striking was that IHNV has evolved more rapidly than VHSV (mean rates of 11 and 7.3 × 10−4 nucleotide substitutions per site, per year, respectively), indicating that these viruses exhibit fundamentally different evolutionary dynamics. The time to the most recent common ancestor of both IHNV and VHSV was consistent with the first reports of these pathogens in Italy. By combining sequence data with epidemiological information it was possible to identify different patterns of virus spread among trout farms, in which adjacent facilities can be infected by either genetically similar or different viruses, and farms located in different water catchments can be infected by identical strains. Overall, these findings highlight the importance of combining molecular and epidemiological information to identify the determinants of IHN and VHS spread, and to provide data that is central to future surveillance strategies and possibly control. PMID:27602026

  14. Molecular Evolution of Viruses of the Family Filoviridae Based on 97 Whole-Genome Sequences

    PubMed Central

    Carroll, Serena A.; Towner, Jonathan S.; Sealy, Tara K.; McMullan, Laura K.; Khristova, Marina L.; Burt, Felicity J.; Swanepoel, Robert; Rollin, Pierre E.

    2013-01-01

    Viruses in the Ebolavirus and Marburgvirus genera (family Filoviridae) have been associated with large outbreaks of hemorrhagic fever in human and nonhuman primates. The first documented cases occurred in primates over 45 years ago, but the amount of virus genetic diversity detected within bat populations, which have recently been identified as potential reservoir hosts, suggests that the filoviruses are much older. Here, detailed Bayesian coalescent phylogenetic analyses are performed on 97 whole-genome sequences, 55 of which are newly reported, to comprehensively examine molecular evolutionary rates and estimate dates of common ancestry for viruses within the family Filoviridae. Molecular evolutionary rates for viruses belonging to different species range from 0.46 × 10−4 nucleotide substitutions/site/year for Sudan ebolavirus to 8.21 × 10−4 nucleotide substitutions/site/year for Reston ebolavirus. Most recent common ancestry can be traced back only within the last 50 years for Reston ebolavirus and Zaire ebolavirus species and suggests that viruses within these species may have undergone recent genetic bottlenecks. Viruses within Marburg marburgvirus and Sudan ebolavirus species can be traced back further and share most recent common ancestors approximately 700 and 850 years before the present, respectively. Examination of the whole family suggests that members of the Filoviridae, including the recently described Lloviu virus, shared a most recent common ancestor approximately 10,000 years ago. These data will be valuable for understanding the evolution of filoviruses in the context of natural history as new reservoir hosts are identified and, further, for determining mechanisms of emergence, pathogenicity, and the ongoing threat to public health. PMID:23255795

  15. Bacillus anthracis: molecular taxonomy, population genetics, phylogeny and patho-evolution.

    PubMed

    Pilo, Paola; Frey, Joachim

    2011-08-01

    Bacillus anthracis, the etiological agent of anthrax, manifests a particular bimodal lifestyle. This bacterial species alternates between short replication phases of 20-40 generations that strictly require infection of the host, normally causing death, interrupted by relatively long, mostly dormant phases as spores in the environment. Hence, the B. anthracis genome is highly homogeneous. This feature and the fact that strains from nearly all parts of the world have been analysed for canonical single nucleotide polymorphisms (canSNPs) and variable number tandem repeats (VNTRs) has allowed the development of molecular epidemiological and molecular clock models to estimate the age of major diversifications in the evolution of B. anthracis and to trace the global spread of this pathogen, which was mostly promoted by movement of domestic cattle with settlers and by international trade of contaminated animal products. From a taxonomic and phylogenetic point of view, B. anthracis is a member of the Bacillus cereus group. The differentiation of B. anthracis from B. cereus sensu stricto, solely based on chromosomal markers, is difficult. However, differences in pathogenicity clearly differentiate B. anthracis from B. cereus and are marked by the strict presence of virulence genes located on the two virulence plasmids pXO1 and pXO2, which both are required by the bacterium to cause anthrax. Conversely, anthrax-like symptoms can also be caused by organisms with chromosomal features that are more closely related to B. cereus, but which carry these virulence genes on two plasmids that largely resemble the B. anthracis virulence plasmids. PMID:21640849

  16. Comparative molecular phylogeny and evolution of sex chromosome DNA sequences in the family Canidae (Mammalia: Carnivora).

    PubMed

    Tsubouchi, Ayako; Fukui, Daisuke; Ueda, Miya; Tada, Kazumi; Toyoshima, Shouji; Takami, Kazutoshi; Tsujimoto, Tsunenori; Uraguchi, Kohji; Raichev, Evgeniy; Kaneko, Yayoi; Tsunoda, Hiroshi; Masuda, Ryuichi

    2012-03-01

    To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation. PMID:22379982

  17. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    PubMed Central

    2008-01-01

    Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9) might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria. PMID:18325105

  18. Molecular Evolution and Phylogeography of Co-circulating IHNV and VHSV in Italy.

    PubMed

    Abbadi, Miriam; Fusaro, Alice; Ceolin, Chiara; Casarotto, Claudia; Quartesan, Rosita; Dalla Pozza, Manuela; Cattoli, Giovanni; Toffan, Anna; Holmes, Edward C; Panzarin, Valentina

    2016-01-01

    Infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV) are the most important viral pathogens impacting rainbow trout farming. These viruses are persistent in Italy, where they are responsible for severe disease outbreaks (epizootics) that affect the profitability of the trout industry. Despite the importance of IHNV and VHSV, little is known about their evolution at a local scale, although this is likely to be important for virus eradication and control. To address this issue we performed a detailed molecular evolutionary and epidemiological analysis of IHNV and VHSV in trout farms from northern Italy. Full-length glycoprotein gene sequences of a selection of VHSV (n = 108) and IHNV (n = 89) strains were obtained. This revealed that Italian VHSV strains belong to sublineages Ia1 and Ia2 of genotype Ia and are distributed into 7 genetic clusters. In contrast, all Italian IHNV isolates fell within genogroup E, for which only a single genetic cluster was identified. More striking was that IHNV has evolved more rapidly than VHSV (mean rates of 11 and 7.3 × 10(-4) nucleotide substitutions per site, per year, respectively), indicating that these viruses exhibit fundamentally different evolutionary dynamics. The time to the most recent common ancestor of both IHNV and VHSV was consistent with the first reports of these pathogens in Italy. By combining sequence data with epidemiological information it was possible to identify different patterns of virus spread among trout farms, in which adjacent facilities can be infected by either genetically similar or different viruses, and farms located in different water catchments can be infected by identical strains. Overall, these findings highlight the importance of combining molecular and epidemiological information to identify the determinants of IHN and VHS spread, and to provide data that is central to future surveillance strategies and possibly control. PMID:27602026

  19. Dimeric [Mo2 S12 ](2-) Cluster: A Molecular Analogue of MoS2 Edges for Superior Hydrogen-Evolution Electrocatalysis.

    PubMed

    Huang, Zhongjie; Luo, Wenjia; Ma, Lu; Yu, Mingzhe; Ren, Xiaodi; He, Mingfu; Polen, Shane; Click, Kevin; Garrett, Benjamin; Lu, Jun; Amine, Khalil; Hadad, Christopher; Chen, Weilin; Asthagiri, Aravind; Wu, Yiying

    2015-12-01

    Proton reduction is one of the most fundamental and important reactions in nature. MoS2 edges have been identified as the active sites for hydrogen evolution reaction (HER) electrocatalysis. Designing molecular mimics of MoS2 edge sites is an attractive strategy to understand the underlying catalytic mechanism of different edge sites and improve their activities. Herein we report a dimeric molecular analogue [Mo2 S12 ](2-) , as the smallest unit possessing both the terminal and bridging disulfide ligands. Our electrochemical tests show that [Mo2 S12 ](2-) is a superior heterogeneous HER catalyst under acidic conditions. Computations suggest that the bridging disulfide ligand of [Mo2 S12 ](2-) exhibits a hydrogen adsorption free energy near zero (-0.05 eV). This work helps shed light on the rational design of HER catalysts and biomimetics of hydrogen-evolving enzymes. PMID:26482571

  20. Dimeric [Mo₂S₁₂]²⁻ Cluster: A Molecular Analogue of MoS₂ Edges for Superior Hydrogen-Evolution Electrocatalysis

    SciTech Connect

    Huang, Zhongjie; Luo, Wenjia; Ma, Lu; Yu, Mingzhe; Ren, Xiaodi; He, Mingfu; Polen, Shan; Click, Kevin; Garrett, Benjamin R.; Lu, Jun; Amine, Khalil

    2015-12-07

    Proton reduction is one of the most fundamental and important reactions in nature. MoS2 edges have been identified as the active sites for hydrogen evolution reaction (HER) electrocatalysis. Designing molecular mimics of MoS2 edge sites is an attractive strategy to understand the underlying catalytic mechanism of different edge sites and improve their activities. Herein we report a dimeric molecular analogue [Mo₂S₁₂]²⁻, as the smallest unit possessing both the terminal and bridging disulfide ligands. Our electrochemical tests show that [Mo₂S₁₂]²⁻ is a superior heterogeneous HER catalyst under acidic conditions. Computations suggest that the bridging disulfide ligand of [Mo₂S₁₂]²⁻ exhibits a hydrogen adsorption free energy near zero (-0.05eV). This work helps shed light on the rational design of HER catalysts and biomimetics of hydrogen-evolving enzymes.

  1. Vaccine adjuvants--understanding molecular mechanisms to improve vaccines.

    PubMed

    Egli, Adrian; Santer, Deanna; Barakat, Khaled; Zand, Martin; Levin, Aviad; Vollmer, Madeleine; Weisser, Maja; Khanna, Nina; Kumar, Deepali; Tyrrell, Lorne; Houghton, Michael; Battegay, Manuel; O'Shea, Daire

    2014-01-01

    Infectious pathogens are responsible for high utilisation of healthcare resources globally. Attributable morbidity and mortality remains exceptionally high. Vaccines offer the potential to prime a pathogen-specific immune response and subsequently reduce disease burden. Routine vaccination has fundamentally altered the natural history of many frequently observed and serious infections. Vaccination is also recommended for persons at increased risk of severe vaccine-preventable disease. Many current nonadjuvanted vaccines are poorly effective in the elderly and immunocompromised populations, resulting in nonprotective postvaccine antibody titres, which serve as surrogate markers for protection. The vaccine-induced immune response is influenced by: (i.) vaccine factors i.e., type and composition of the antigen(s), (ii.) host factors i.e., genetic differences in immune-signalling or senescence, and (iii.) external factors such as immunosuppressive drugs or diseases. Adjuvanted vaccines offer the potential to compensate for a lack of stimulation and improve pathogen-specific protection. In this review we use influenza vaccine as a model in a discussion of the different mechanisms of action of the available adjuvants. In addition, we will appraise new approaches using "vaccine-omics" to discover novel types of adjuvants. PMID:24844935

  2. Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach

    PubMed Central

    Jiménez, Sergio; Lawton-Rauh, Amy L; Reighard, Gregory L; Abbott, Albert G; Bielenberg, Douglas G

    2009-01-01

    Background Dormancy associated MADS-box (DAM) genes are candidates for the regulation of growth cessation and terminal bud formation in peach. These genes are not expressed in the peach mutant evergrowing, which fails to cease growth and enter dormancy under dormancy-inducing conditions. We analyzed the phylogenetic relationships among and the rates and patterns of molecular evolution within DAM genes in the phylogenetic context of the MADS-box gene family. Results The peach DAM genes grouped with the SVP/StMADS11 lineage of type II MIKCC MADS-box genes. Phylogenetic analyses suggest that the peach SVP/StMADS11-like gene family, which contains significantly more members than annual model plants, expanded through serial tandem gene duplication. We found evidence of strong purifying selection acting to constrain functional divergence among the peach DAM genes and only a single codon, located in the C-terminal region, under significant positive selection. Conclusion Because all DAM genes are expressed in peach and are subjected to strong purifying selection we suggest that the duplicated genes have been maintained by subfunctionalization and/or neofunctionalization. In addition, this pattern of selection suggests that the DAM genes are important for peach growth and development. PMID:19558704

  3. Reproductive mode evolution in nematodes: insights from molecular phylogenies and recently discovered species.

    PubMed

    Denver, D R; Clark, K A; Raboin, M J

    2011-11-01

    The Phylum Nematoda has long been known to contain a great diversity of species that vary in reproductive mode, though our understanding of the evolutionary origins, causes and consequences of nematode reproductive mode change have only recently started to mature. Here we bring together and analyze recent progress on reproductive mode evolution throughout the phylum, resulting from the application of molecular phylogenetic approaches and newly discovered nematode species. Reproductive mode variation is reviewed in multiple free-living, animal-parasitic and plant-parasitic nematode groups. Discussion ranges from the model nematode Caenorhabditis elegans and its close relatives, to the plant-parasitic nematodes of the Meloidogyne genus where there is extreme variation in reproductive mode between and even within species, to the vertebrate-parasitic genus Strongyloides and related genera where reproductive mode varies across generations (heterogony). Multiple evolutionary transitions from dioecous (obligately outcrossing) to hermaphroditism and parthenogenesis in the phylum are discussed, along with one case of an evolutionary transition from hermaphroditism to doioecy in the Oscheius genus. We consider the roles of underlying genetic mechanisms in promoting reproductive plasticity in this phylum, as well as the potential evolutionary forces promoting transitions in reproductive mode. PMID:21787872

  4. Understanding the Evolution of Microstructure: What is the Role of Molecular Dynamics?

    NASA Astrophysics Data System (ADS)

    Foiles, Stephen

    2013-03-01

    The microstructure of a material, as characterized for example by grain size, determines a wide range of materials properties such as strength, toughness, and corrosion resistance. Understanding how the microstructure influences properties and how to obtain a desired microstructure are some of the enduring central problems of materials science. This challenge is inherently multi-scale since the fundamental mechanisms by which microstructures change occur at the atomic scale while the network of interfaces is on a scale of microns and up. In this talk, the role of molecular dynamics (MD) simulations in understanding the evolution of microstructure will be examined. The successes and outstanding challenges of using MD simulations to determine the properties of grain boundaries, in particular free energy and mobility, will be described. Further, microstructures with nanoscale grains evolve in times accessible to MD simulation. The insights into grain growth and deformation that can be obtained from such simulations will be described. Sandia National Laboratories isa multi-program laboratory managed and operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Molecular evolution and sequence divergence of plant chalcone synthase and chalcone synthase-Like genes.

    PubMed

    Han, Yingying; Zhao, Wenwen; Wang, Zhicui; Zhu, Jingying; Liu, Qisong

    2014-06-01

    Plant chalcone synthase (CHS) and CHS-Like (CHSL) proteins are polyketide synthases. In this study, we evaluated the molecular evolution of this gene family using representative types of CHSL genes, including stilbene synthase (STS), 2-pyrone synthase (2-PS), bibenzyl synthase (BBS), acridone synthase (ACS), biphenyl synthase (BIS), benzalacetone synthase, coumaroyl triacetic acid synthase (CTAS), and benzophenone synthase (BPS), along with their CHS homologs from the same species of both angiosperms and gymnosperms. A cDNA-based phylogeny indicated that CHSLs had diverse evolutionary patterns. STS, ACS, and 2-PS clustered with CHSs from the same species (late diverged pattern), while CTAS, BBS, BPS, and BIS were distant from their CHS homologs (early diverged pattern). The amino-acid phylogeny suggested that CHS and CHSL proteins formed clades according to enzyme function. The CHSs and CHSLs from Polygonaceae and Arachis had unique evolutionary histories. Synonymous mutation rates were lower in late diverged CHSLs than in early diverged ones, indicating that gene duplications occurred more recently in late diverged CHSLs than in early diverged ones. Relative rate tests proved that late diverged CHSLs had unequal rates to CHSs from the same species when using fatty acid synthase, which evolved from the common ancestor with the CHS superfamily, as the outgroup, while the early diverged lineages had equal rates. This indicated that late diverged CHSLs experienced more frequent mutation than early diverged CHSLs after gene duplication, allowing obtaining new functions in relatively short period of time. PMID:24849013

  6. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  7. Iron and molecular opacities and the evolution of Population I stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-Wen

    1993-01-01

    Effects of recent opacity revisions on the evolution of Population I stars are explored over the range 1.5-60 solar masses. Opacity parameters considered include the angular momentum coupling scheme for iron, the relative iron abundance, the total metal abundance, and diatomic and triatomic molecular sources. Only the total metal abundance exerts an important control over the evolutionary tracks. Blue loops on the H-R diagram during core helium burning can be very sensitive to opacity, but only insofar as the simple formation or suppression of a blue loop is concerned. The blue loops are most robust for stellar masses around 10 solar masses. We confirm, from a comparison of stellar models with observational data, that the total metal abundance is close to solar and that convective core overshooting is likely to be very slight. The new models predict the existence of an iron convection zone in the envelope and a great widening of the main-sequence band in the H-R diagram at luminosities brighter than 100,000 solar luminosities.

  8. Molecular epidemiology and evolution of human enterovirus 71 and hand, foot and mouth disease.

    PubMed

    Zhifang, Liu; Juanjuan, Gui; Qihang, Hua; Changzheng, Dong

    2015-05-01

    Human enterovirus 71(EV71), one of the major pathogens of the hand, foot and mouth disease (HFMD), causes skin rashes in palms, feet and mouth ulcers and complication in the central nervous system such as aseptic meningitis and acute flaccid paralysis that may lead to death. EV71 infection has been reported to be associated with many outbreaks of HFMD worldwide, especially the great outbreaks that occurred in the Asia-Pacific region and caused numerous death since 1997. The studies of molecular epidemiology and evolution of EV71 are important for the prevention and control of HFMD since no vaccines and antiviral drugs have been developed except symptomatic treatment for HFMD. In this review, we summarize genotype classification, temporal and spatial distribution, evolutionary characteristics and modes of EV71 as well as typical EV71 epidemics. Further studies on EV71 and HFMD may lead to better understanding of pathological mechanisms of EV71, development of antiviral drugs and prevention and control of HFMD. PMID:25998430

  9. Molecular development of fibular reduction in birds and its evolution from dinosaurs.

    PubMed

    Botelho, João Francisco; Smith-Paredes, Daniel; Soto-Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O

    2016-03-01

    Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo-tibial disparity. PMID:26888088

  10. Periodic Vesicle Formation in Tectonic Fault Zones--an Ideal Scenario for Molecular Evolution.

    PubMed

    Mayer, Christian; Schreiber, Ulrich; Dávila, María J

    2015-06-01

    Tectonic fault systems in the continental crust offer huge networks of interconnected channels and cavities. Filled mainly with water and carbon dioxide (CO2), containing a wide variety of hydrothermal chemistry and numerous catalytic surfaces, they may offer ideal reaction conditions for prebiotic chemistry. In these systems, an accumulation zone for organic compounds will develop at a depth of approximately 1 km where CO2 turns sub-critical and dissolved components precipitate. At this point, periodic pressure changes caused for example by tidal influences or geyser activity may generate a cyclic process involving repeated phase transitions of carbon dioxide. In the presence of amphiphilic compounds, this will necessarily lead to the transient formation of coated water droplets in the gas phase and corresponding vesicular structures in the aqueous environment. During this process, the concentration of organic components inside the droplets and vesicles would be drastically increased, allowing for favorable reaction conditions and, in case of the vesicles generated, large trans-membrane concentration gradients. Altogether, the process of periodic formation and destruction of vesicles could offer a perfect environment for molecular evolution in small compartments and for the generation of protocells. The basic process of vesicle formation is reproduced experimentally with a lipid in a water/CO2 system. PMID:25716918

  11. Periodic Vesicle Formation in Tectonic Fault Zones—an Ideal Scenario for Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Mayer, Christian; Schreiber, Ulrich; Dávila, María J.

    2015-06-01

    Tectonic fault systems in the continental crust offer huge networks of interconnected channels and cavities. Filled mainly with water and carbon dioxide (CO2), containing a wide variety of hydrothermal chemistry and numerous catalytic surfaces, they may offer ideal reaction conditions for prebiotic chemistry. In these systems, an accumulation zone for organic compounds will develop at a depth of approximately 1 km where CO2 turns sub-critical and dissolved components precipitate. At this point, periodic pressure changes caused for example by tidal influences or geyser activity may generate a cyclic process involving repeated phase transitions of carbon dioxide. In the presence of amphiphilic compounds, this will necessarily lead to the transient formation of coated water droplets in the gas phase and corresponding vesicular structures in the aqueous environment. During this process, the concentration of organic components inside the droplets and vesicles would be drastically increased, allowing for favorable reaction conditions and, in case of the vesicles generated, large trans-membrane concentration gradients. Altogether, the process of periodic formation and destruction of vesicles could offer a perfect environment for molecular evolution in small compartments and for the generation of protocells. The basic process of vesicle formation is reproduced experimentally with a lipid in a water/CO2 system.

  12. Molecular mechanisms of adaptation emerging from the physics and evolution of nucleic acids and proteins

    PubMed Central

    Goncearenco, Alexander; Ma, Bin-Guang; Berezovsky, Igor N.

    2014-01-01

    DNA, RNA and proteins are major biological macromolecules that coevolve and adapt to environments as components of one highly interconnected system. We explore here sequence/structure determinants of mechanisms of adaptation of these molecules, links between them, and results of their mutual evolution. We complemented statistical analysis of genomic and proteomic sequences with folding simulations of RNA molecules, unraveling causal relations between compositional and sequence biases reflecting molecular adaptation on DNA, RNA and protein levels. We found many compositional peculiarities related to environmental adaptation and the life style. Specifically, thermal adaptation of protein-coding sequences in Archaea is characterized by a stronger codon bias than in Bacteria. Guanine and cytosine load in the third codon position is important for supporting the aerobic life style, and it is highly pronounced in Bacteria. The third codon position also provides a tradeoff between arginine and lysine, which are favorable for thermal adaptation and aerobicity, respectively. Dinucleotide composition provides stability of nucleic acids via strong base-stacking in ApG dinucleotides. In relation to coevolution of nucleic acids and proteins, thermostability-related demands on the amino acid composition affect the nucleotide content in the second codon position in Archaea. PMID:24371267

  13. Molecular evidence for convergent evolution and allopolyploid speciation within the Physcomitrium-Physcomitrella species complex

    PubMed Central

    2014-01-01

    Background The moss Physcomitrella patens (Hedw.) Bruch & Schimp. is an important experimental model system for evolutionary-developmental studies. In order to shed light on the evolutionary history of Physcomitrella and related species within the Funariaceae, we analyzed the natural genetic diversity of the Physcomitrium-Physcomitrella species complex. Results Molecular analysis of the nuclear single copy gene BRK1 reveals that three Physcomitrium species feature larger genome sizes than Physcomitrella patens and encode two expressed BRK1 homeologs (polyploidization-derived paralogs), indicating that they may be allopolyploid hybrids. Phylogenetic analyses of BRK1 as well as microsatellite simple sequence repeat (SSR) data confirm a polyphyletic origin for three Physcomitrella lineages. Differences in the conservation of mitochondrial editing sites further support hybridization and cryptic speciation within the Physcomitrium-Physcomitrella species complex. Conclusions We propose a revised classification of the previously described four subspecies of Physcomitrella patens into three distinct species, namely Physcomitrella patens, Physcomitrella readeri and Physcomitrella magdalenae. We argue that secondary reduction of sporophyte complexity in these species is due to the establishment of an ecological niche, namely spores resting in mud and possible spore dispersal by migratory birds. Besides the Physcomitrium-Physcomitrella species complex, the Funariaceae are host to their type species, Funaria hygrometrica, featuring a sporophyte morphology which is more complex. Their considerable developmental variation among closely related lineages and remarkable trait evolution render the Funariaceae an interesting group for evolutionary and genetic research. PMID:25015729

  14. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-08-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments.

  15. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA. PMID:26578760

  16. Entropy and charge in molecular evolution--the case of phosphate

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.; Sales, B.; Mojzsis, S.; Lee, T.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Biopoesis, the creation of life, implies molecular evolution from simple components, randomly distributed and in a dilute state, to form highly organized, concentrated systems capable of metabolism, replication and mutation. This chain of events must involve environmental processes that can locally lower entropy in several steps; by specific selection from an indiscriminate mixture, by concentration from dilute solution, and in the case of the mineral-induced processes, by particular effectiveness in ordering and selective reaction, directed toward formation of functional biomolecules. Numerous circumstances provide support for the notion that negatively charged molecules were functionally required and geochemically available for biopoesis. Sulfite ion may have been important in bisulfite complex formation with simple aldehydes, facilitating the initial concentration by sorption of aldehydes in positively charged surface active minerals. Borate ion may have played a similar, albeit less investigated role in forming charged sugar complexes. Among anionic species, oligophosphate ions and charged phosphate esters are likely to have been of even more wide ranging importance, reflected in the continued need for phosphate in a proposed RNA world, and extending its central role to evolved biochemistry. Phosphorylation is shown to result in selective concentration by surface sorption of compounds, otherwise too dilute to support condensation reactions. It provides protection against rapid hydrolysis of sugars and, by selective concentration, induces the oligomerization of aldehydes. As a manifestation of life arisen, phosphate already appears in an organic context in the oldest preserved sedimentary record.

  17. Molecular phylogeny, systematics and morphological evolution of the acorn barnacles (Thoracica: Sessilia: Balanomorpha).

    PubMed

    Pérez-Losada, Marcos; Høeg, Jens T; Simon-Blecher, Noa; Achituv, Yair; Jones, Diana; Crandall, Keith A

    2014-12-01

    The Balanomorpha are the largest group of barnacles and rank among the most diverse, commonly encountered and ecologically important marine crustaceans in the world. Paradoxically, despite their relevance and extensive study for over 150years, their evolutionary relationships are still unresolved. Classical morphological systematics was often based on non-cladistic approaches, while modern phylogenetic studies suffer from severe undersampling of taxa and characters (both molecular and morphological). Here we present a phylogenetic analysis of the familial relationships within the Balanomorpha. We estimate divergence times and examine morphological diversity based on five genes, 156 specimens, 10 fossil calibrations, and six key morphological characters. Two balanomorphan superfamilies, eight families and twelve genera were identified as polyphyletic. Chthamaloids, chionelasmatoid and pachylasmatoids split first from the pedunculated ancestors followed by a clade of tetraclitoids and coronuloids, and most of the balanoids. The Balanomorpha split from the Verrucidae (outgroup) in the Lower Cretaceous (139.6 Mya) with all the main lineages, except Pachylasmatoidea, having emerged by the Paleocene (60.9 Mya). Various degrees of convergence were observed in all the assessed morphological characters except the maxillipeds, which suggests that classical interpretations of balanomorphan morphological evolution need to be revised and reinterpreted. PMID:25261121

  18. Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features.

    PubMed

    Dong, Songyu; Kumazawa, Yoshinori

    2005-07-01

    Complete mitochondrial DNA (mtDNA) sequences were determined for representative species from six snake families: the acrochordid little file snake, the bold boa constrictor, the cylindrophiid red pipe snake, the viperid himehabu, the pythonid ball python, and the xenopeltid sunbeam snake. Thirteen protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNALeu gene were two notable features of the snake mtDNAs. The duplicate control regions had nearly identical nucleotide sequences within species but they were divergent among species, suggesting concerted sequence evolution of the two control regions. In addition, the duplicate control regions appear to have facilitated an interchange of some flanking tRNA genes in the viperid lineage. Phylogenetic analyses were conducted using a large number of sites (9570 sites in total) derived from the complete mtDNA sequences. Our data strongly suggested a new phylogenetic relationship among the major families of snakes: ((((Viperidae, Colubridae), Acrochordidae), (((Pythonidae, Xenopeltidae), Cylindrophiidae), Boidae)), Leptotyphlopidae). This conclusion was distinct from a widely accepted view based on morphological characters in denying the sister-group relationship of boids and pythonids, as well as the basal divergence of nonmacrostomatan cylindrophiids. These results imply the significance to reconstruct the snake phylogeny with ample molecular data, such as those from complete mtDNA sequences. PMID:16007493

  19. Peptidylprolyl cis/trans isomerase activity and molecular evolution of vertebrate Cyclophilin A.

    PubMed

    Liqian, Ren; Wei, Liu; Wenbo, Li; Wenjun, Liu; Lei, Sun

    2016-08-01

    Peptidylprolyl isomerases (PPIase) cyclophilin A (CypA, encoded by PPIA) is a typical member of the Cyclophilin family and is involved in protein folding/translocation, signal transduction, inflammation, immune system regulation, apoptosis and virus replication. In the present study, we investigated the PPIase activity and genetic variation of vertebrate CypA. According to the GenBank reference sequences, vertebrate PPIA genes were cloned, among which the bat (Myotis davidi) and duck (Anas platyrhynchos) PPIA genes were reported for the first time. Then PPIA genes were sub-cloned into the expression vector pGEX-6p-1 and expressed in Escherichia coli. Recombinant CypA proteins were purified by using sepharose 4B affinity chromatography and the GST tag was cleaved, followed by gel filtration. The PPIase activity assay indicated that there was no significant difference in the catalytic activity of prolyl peptide bond isomerization among 12 different vertebrate CypA proteins. In addition, the genetic variation and molecular evolution analysis showed that these vertebrate CypA proteins had the same CsA binding site and the PPIase active sites. Furthermore, the predicted structure and gene localization were remarkable conserved. Our data suggested that the important residues of CypA were highly conserved, which is crucial for its PPIase activity and cellular functions. PMID:27531612

  20. Molecular evolution of the fusion protein gene in human respiratory syncytial virus subgroup A.

    PubMed

    Kimura, Hirokazu; Nagasawa, Koo; Tsukagoshi, Hiroyuki; Matsushima, Yuki; Fujita, Kiyotaka; Yoshida, Lay Myint; Tanaka, Ryota; Ishii, Haruyuki; Shimojo, Naoki; Kuroda, Makoto; Ryo, Akihide

    2016-09-01

    We studied the molecular evolution of the fusion protein (F) gene in the human respiratory syncytial virus subgroup A (HRSV-A). We performed time-scaled phylogenetic analyses using the Bayesian Markov chain Monte Carlo (MCMC) method. We also conducted genetic distance (p-distance), positive/negative selection, and Bayesian skyline plot analyses. Furthermore, we mapped the amino acid substitutions of the protein. The MCMC-constructed tree indicated that the HRSV F gene diverged from the bovine RSV (BRSV) gene approximately 550years ago and had a relatively low substitution rate (7.59×10(-4) substitutions/site/year). Moreover, a common ancestor of HRSV-A and -B diverged approximately 280years ago, which has since formed four distinct clusters. The present HRSV-A strains were assigned six genotypes based on F gene sequences and attachment glycoprotein gene sequences. The present strains exhibited high F gene sequence similarity values and low genetic divergence. No positive selection sites were identified; however, 50 negative selection sites were identified. F protein amino acid substitutions at 17 sites were distributed in the F protein. The effective population size of the gene has remained relatively constant, but the population size of the prevalent genotype (GA2) has increased in the last 10years. These results suggest that the HRSV-AF gene has evolved independently and formed some genotypes. PMID:27291709

  1. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    SciTech Connect

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  2. Clean Donor Oxidation Enhances the H2 Evolution Activity of a Carbon Quantum Dot-Molecular Catalyst Photosystem.

    PubMed

    Martindale, Benjamin C M; Joliat, Evelyne; Bachmann, Cyril; Alberto, Roger; Reisner, Erwin

    2016-08-01

    Carbon quantum dots (CQDs) are new-generation light absorbers for photocatalytic H2 evolution in aqueous solution, but the performance of CQD-molecular catalyst systems is currently limited by the decomposition of the molecular component. Clean oxidation of the electron donor by donor recycling prevents the formation of destructive radical species and non-innocent oxidation products. This approach allowed a CQD-molecular nickel bis(diphosphine) photocatalyst system to reach a benchmark lifetime of more than 5 days and a record turnover number of 1094±61 molH2  (molNi )(-1) for a defined synthetic molecular nickel catalyst in purely aqueous solution under AM1.5G solar irradiation. PMID:27355200

  3. The environmental and molecular sciences laboratory project: Continuous evolution in leadership

    SciTech Connect

    Knutson, D.E.; McClusky, J.K.

    1995-09-01

    The United States is embarking on an environmental cleanup effort that dwarfs previous scientific enterprise. Using current best available technology, the projected costs of cleaning up the tens of abounds of toxic waste sites, including DOE sites, is estimated to exceed one trillion dollars. That level of expenditure contains no guarantee that the sites can be restored to their original condition, and no consensus on ``how clean is clean enough.`` ``Ultimately, the scientific challenge is to determine as accurately as possible each term in the path that links the source of the contaminant with the particular biological end points or health effects and to understand the mechanisms that connect them. However, the present state of scientific knowledge regarding the effects of exogenous chemicals on human biology is very limited. Understanding the connections at the molecular level is, at best, a blurred picture and often a black box.`` Long term environmental research at the molecular level is needed to resolve the concerns, and form the building blocks for a structure of cost effective process improvement and regulatory reform.

  4. Improved drug-like properties of therapeutic proteins by directed evolution.

    PubMed

    Buchanan, Andrew; Ferraro, Franco; Rust, Steven; Sridharan, Sudharsan; Franks, Ruth; Dean, Greg; McCourt, Matthew; Jermutus, Lutz; Minter, Ralph

    2012-10-01

    Many natural human proteins have functional properties that make them useful as therapeutic drugs. However, not all these proteins are compatible with large-scale manufacturing processes or sufficiently stable to be stored for long periods prior to use. In this study, we focus on small four-helix bundle proteins and employ ribosome display in conjunction with three parallel selection pressures to favour the isolation of variant proteins with improved expression, solubility and stability. This in vitro evolution strategy was applied to two human proteins with known drug development issues, granulocyte colony-stimulating factor (G-CSF) and erythropoietin (EPO). In the case of G-CSF, the soluble expression levels in Escherichia coli were improved 1000-fold, while for EPO the level of aggregation in an accelerated shelf-life study was reduced from over 80% to undetectable levels. These results exemplify the general utility of our in vitro evolution strategy for improving the drug-like properties of therapeutic proteins. PMID:22942395

  5. Molecular evolution of NASP and conserved histone H3/H4 transport pathway

    PubMed Central

    2014-01-01

    Background NASP is an essential protein in mammals that functions in histone transport pathways and maintenance of a soluble reservoir of histones H3/H4. NASP has been studied exclusively in Opisthokonta lineages where some functional diversity has been reported. In humans, growing evidence implicates NASP miss-regulation in the development of a variety of cancers. Although a comprehensive phylogenetic analysis is lacking, NASP-family proteins that possess four TPR motifs are thought to be widely distributed across eukaryotes. Results We characterize the molecular evolution of NASP by systematically identifying putative NASP orthologs across diverse eukaryotic lineages ranging from excavata to those of the crown group. We detect extensive silent divergence at the nucleotide level suggesting the presence of strong purifying selection acting at the protein level. We also observe a selection bias for high frequencies of acidic residues which we hypothesize is a consequence of their critical function(s), further indicating the role of functional constraints operating on NASP evolution. Our data indicate that TPR1 and TPR4 constitute the most rapidly evolving functional units of NASP and may account for the functional diversity observed among well characterized family members. We also show that NASP paralogs in ray-finned fish have different genomic environments with clear differences in their GC content and have undergone significant changes at the protein level suggesting functional diversification. Conclusion We draw four main conclusions from this study. First, wide distribution of NASP throughout eukaryotes suggests that it was likely present in the last eukaryotic common ancestor (LECA) possibly as an important innovation in the transport of H3/H4. Second, strong purifying selection operating at the protein level has influenced the nucleotide composition of NASP genes. Further, we show that selection has acted to maintain a high frequency of functionally relevant

  6. Genomic variability and molecular evolution of Asian isolates of sugarcane streak mosaic virus.

    PubMed

    Liang, Shan-Shan; Alabi, Olufemi J; Damaj, Mona B; Fu, Wei-Lin; Sun, Sheng-Ren; Fu, Hua-Ying; Chen, Ru-Kai; Mirkov, T Erik; Gao, San-Ji

    2016-06-01

    Sugarcane streak mosaic virus (SCSMV), an economically important causal agent of mosaic disease of sugarcane, is a member of the newly created genus Poacevirus in the family Potyviridae. In this study, we report the molecular characterization of three new SCSMV isolates from China (YN-YZ211 and HN-YZ49) and Myanmar (MYA-Formosa) and their genetic variation and phylogenetic relationship to SCSMV isolates from Asia and the type members of the family Potyviridae. The complete genome of each of the three isolates was determined to be 9781 nucleotides (nt) in size, excluding the 3' poly(A) tail. Phylogenetic analysis of the complete polyprotein amino acid (aa) sequences (3130 aa) revealed that all SCSMV isolates clustered into a phylogroup specific to the genus Poacevirus and formed two distinct clades designated as group I and group II. Isolates YN-YZ211, HN-YZ49 and MYA-Formosa clustered into group I, sharing 96.8-99.5 % and 98.9-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, among themselves and 81.2-98.8 % and 94.0-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, with the corresponding sequences of seven Asian SCSMV isolates. Population genetic analysis revealed greater between-group (0.190 ± 0.004) than within-group (group I = 0.025 ± 0.001 and group II = 0.071 ± 0.003) evolutionary divergence values, further supporting the results of the phylogenetic analysis. Further analysis indicated that natural selection might have contributed to the evolution of isolates belonging to the two identified SCSMV clades, with infrequent genetic exchanges occurring between them over time. These findings provide a comprehensive analysis of the population genetic structure and driving forces for the evolution of SCSMV with implications for global exchange of sugarcane germplasm. PMID:26973230

  7. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae)

    PubMed Central

    Wang, Nian; McAllister, Hugh A.; Bartlett, Paul R.; Buggs, Richard J. A.

    2016-01-01

    Background and Aims Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Methods Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. Key Results As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera. Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa. Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the

  8. Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules

    PubMed Central

    2013-01-01

    Background The depletion of fossil fuels and the rising need to meet global energy demands have led to a growing interest in microbial biofuel synthesis, particularly in Escherichia coli, due to its tractable characteristics. Besides engineering more efficient metabolic pathways for synthesizing biofuels, efforts to improve production yield by engineering efflux systems to overcome toxicity problems is also crucial. This study aims to enhance hydrocarbon efflux capability in E. coli by engineering a native inner membrane transporter, AcrB, using the directed evolution approach. Results We developed a selection platform based on competitive growth using a toxic substrate surrogate, which allowed rapid selection of AcrB variants showing enhanced efflux of linear and cyclic fuel molecule candidates, n-octane and α-pinene. Two mutants exhibiting increased efflux efficiency for n-octane and α-pinene by up to 47% and 400%, respectively, were isolated. Single-site mutants based on the mutations found in the isolated variants were synthesized and the amino acid substitutions N189H, T678S, Q737L and M844L were identified to have conferred improvement in efflux efficiency. The locations of beneficial mutations in AcrB suggest their contributions in widening the substrate channel, altering the dynamics of substrate efflux and promoting the assembly of AcrB with the outer membrane channel protein TolC for more efficient substrate export. It is interesting to note that three of the four beneficial mutations were located relatively distant from the known substrate channels, thus exemplifying the advantage of directed evolution over rational design. Conclusions Using directed evolution, we have isolated AcrB mutants with improved efflux efficiency for n-octane and α-pinene. The utilization of such optimized native efflux pumps will increase productivity of biofuels synthesis and alleviate toxicity and difficulties in production scale-up in current microbial platforms. PMID

  9. Genetic subdivisions within Trypanosoma cruzi (Discrete Typing Units) and their relevance for molecular epidemiology and experimental evolution

    PubMed Central

    Tibayrenc, Michel

    2003-01-01

    Background This paper summarizes the main results obtained on Trypanosoma cruzi genetic diversity and population structure since this parasite became the theme of many genetic and molecular studies in the early seventies. Results T. cruzi exibits a paradigmatic pattern of long-term, clonal evolution, which has structured its natural populations into several discrete genetic subdivisions or "Discrete Typing Units" (DTU). Rare hybridization events are nevertheless detectable in natural populations and have been recently obtained in the laboratory. Conclusions The DTUs and natural clones of T. cruzi constitute relevant units for molecular epidemiology and experimental evolution. Experimental mating opens the way to an in-depth knowledge of this parasite's formal genetics. PMID:14613498

  10. The dynamical evolution of molecular clouds near the Galactic Centre - I. Orbital structure and evolutionary timeline

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik; Dale, James E.; Longmore, Steven N.

    2015-02-01

    We recently proposed that the star-forming potential of dense molecular clouds in the Central Molecular Zone (CMZ, i.e. the central few 100 pc) of the Milky Way is intimately linked to their orbital dynamics, potentially giving rise to an absolute-time sequence of star-forming clouds. In this paper, we present an orbital model for the gas stream(s) observed in the CMZ. The model is obtained by integrating orbits in the empirically constrained gravitational potential and represents a good fit (χ _red^2=2.0) to the observed position-velocity distribution of dense (n > several 103 cm-3) gas, reproducing all of its key properties. The orbit is also consistent with observational constraints not included in the fitting process, such as the 3D space velocities of Sgr B2 and the Arches and Quintuplet clusters. It differs from previous, parametric models in several respects: (1) the orbit is open rather than closed due to the extended mass distribution in the CMZ, (2) its orbital velocity (100-200 km s-1) is twice as high as in previous models, and (3) Sgr A* coincides with the focus of the (eccentric) orbit rather than being offset. Our orbital solution supports the recently proposed scenario in which the dust ridge between G0.253+0.016 (`the Brick') and Sgr B2 represents an absolute-time sequence of star-forming clouds, of which the condensation was triggered by the tidal compression during their most recent pericentre passage. We position the clouds on a common timeline and find that their pericentre passages occurred 0.30-0.74 Myr ago. Given their short free-fall times (tff ˜ 0.34 Myr), the quiescent cloud G0.253+0.016 and the vigorously star-forming complex Sgr B2 are separated by a single free-fall time of evolution, implying that star formation proceeds rapidly once collapse has been initiated. We provide the complete orbital solution, as well as several quantitative predictions of our model (e.g. proper motions and the positions of star formation `hotspots'). The

  11. Improved fast-rotating black hole evolution simulations with modified Baumgarte-Shapiro-Shibata-Nakamura formulation

    NASA Astrophysics Data System (ADS)

    Yo, Hwei-Jang; Cao, Zhoujian; Lin, Chun-Yu; Pan, Hsing-Po

    2015-07-01

    Different formulations of Einstein's equations used in numerical relativity can affect not only the stability but also the accuracy of numerical simulations. In the original Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation, the loss of the angular momentum, J , is non-negligible in highly spinning single black hole evolutions. This loss also appears, usually right after the merger, in highly spinning binary black hole simulations, The loss of J may be attributed to some unclear numerical dissipation. Reducing unphysical dissipation is expected to result in more stable and accurate evolutions. In the previous work [H.-J. Yo et al., Phys. Rev. D 86, 064027 (2012).] we proposed several modifications which are able to prevent black hole evolutions from the unphysical dissipation, and the resulting simulations are more stable than in the traditional BSSN formulation. Specifically, these three modifications (M1, M2, and M3) enhance the effects of stability, hyperbolicity, and dissipation of the formulation. We experiment further in this work with these modifications, and demonstrate that these modifications improve the accuracy and also effectively suppress the loss of J , particularly in the black hole simulations with an initially large ratio of J and a square of the ADM mass.

  12. Machine learning for molecular scattering dynamics: Gaussian Process models for improved predictions of molecular collision observables

    NASA Astrophysics Data System (ADS)

    Krems, Roman; Cui, Jie; Li, Zhiying

    2016-05-01

    We show how statistical learning techniques based on kriging (Gaussian Process regression) can be used for improving the predictions of classical and/or quantum scattering theory. In particular, we show how Gaussian Process models can be used for: (i) efficient non-parametric fitting of multi-dimensional potential energy surfaces without the need to fit ab initio data with analytical functions; (ii) obtaining scattering observables as functions of individual PES parameters; (iii) using classical trajectories to interpolate quantum results; (iv) extrapolation of scattering observables from one molecule to another; (v) obtaining scattering observables with error bars reflecting the inherent inaccuracy of the underlying potential energy surfaces. We argue that the application of Gaussian Process models to quantum scattering calculations may potentially elevate the theoretical predictions to the same level of certainty as the experimental measurements and can be used to identify the role of individual atoms in determining the outcome of collisions of complex molecules. We will show examples and discuss the applications of Gaussian Process models to improving the predictions of scattering theory relevant for the cold molecules research field. Work supported by NSERC of Canada.

  13. Evolution

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  14. Rapid molecular evolution across amniotes of the IIS/TOR network

    PubMed Central

    McGaugh, Suzanne E.; Bronikowski, Anne M.; Kuo, Chih-Horng; Reding, Dawn M.; Addis, Elizabeth A.; Flagel, Lex E.; Janzen, Fredric J.

    2015-01-01

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861

  15. Molecular Analysis of a Leprosy Immunotherapeutic Bacillus Provides Insights into Mycobacterium Evolution

    PubMed Central

    Raghuvanshi, Saurabh; Khurana, Jitendra P.; Tyagi, Akhilesh K.; Tyagi, Anil K.; Hasnain, Seyed E.

    2007-01-01

    Background Evolutionary dynamics plays a central role in facilitating the mechanisms of species divergence among pathogenic and saprophytic mycobacteria. The ability of mycobacteria to colonize hosts, to proliferate and to cause diseases has evolved due to its predisposition to various evolutionary forces acting over a period of time. Mycobacterium indicus pranii (MIP), a taxonomically unknown ‘generalist’ mycobacterium, acts as an immunotherapeutic against leprosy and is approved for use as a vaccine against it. The large-scale field trials of this MIP based leprosy vaccine coupled with its demonstrated immunomodulatory and adjuvant property has led to human clinical evaluations of MIP in interventions against HIV-AIDS, psoriasis and bladder cancer. MIP, commercially available as ‘Immuvac’, is currently the focus of advanced phase III clinical trials for its antituberculosis efficacy. Thus a comprehensive analysis of MIP vis-à-vis evolutionary path, underpinning its immanent immunomodulating properties is of the highest desiderata. Principal Findings Genome wide comparisons together with molecular phylogenetic analyses by fluorescent amplified fragment length polymorphism (FAFLP), enterobacterial repetitive intergenic consensus (ERIC) based genotyping and candidate orthologues sequencing revealed that MIP has been the predecessor of highly pathogenic Mycobacterium avium intracellulare complex (MAIC) that did not resort to parasitic adaptation by reductional gene evolution and therefore, preferred a free living life-style. Further analysis suggested a shared aquatic phase of MAIC bacilli with the early pathogenic forms of Mycobacterium, well before the latter diverged as ‘specialists’. Conclusions/Significance This evolutionary paradigm possibly affirms to marshal our understanding about the acquisition and optimization of virulence in mycobacteria and determinants of boundaries therein. PMID:17912347

  16. Molecular Evolution of Multiple-Level Control of Heme Biosynthesis Pathway in Animal Kingdom

    PubMed Central

    Tzou, Wen-Shyong; Chu, Ying; Lin, Tzung-Yi; Hu, Chin-Hwa; Pai, Tun-Wen; Liu, Hsin-Fu; Lin, Han-Jia; Cases, Ildeofonso; Rojas, Ana; Sanchez, Mayka; You, Zong-Ye; Hsu, Ming-Wei

    2014-01-01

    Adaptation of enzymes in a metabolic pathway can occur not only through changes in amino acid sequences but also through variations in transcriptional activation, mRNA splicing and mRNA translation. The heme biosynthesis pathway, a linear pathway comprised of eight consecutive enzymes in animals, provides researchers with ample information for multiple types of evolutionary analyses performed with respect to the position of each enzyme in the pathway. Through bioinformatics analysis, we found that the protein-coding sequences of all enzymes in this pathway are under strong purifying selection, from cnidarians to mammals. However, loose evolutionary constraints are observed for enzymes in which self-catalysis occurs. Through comparative genomics, we found that in animals, the first intron of the enzyme-encoding genes has been co-opted for transcriptional activation of the genes in this pathway. Organisms sense the cellular content of iron, and through iron-responsive elements in the 5′ untranslated regions of mRNAs and the intron-exon boundary regions of pathway genes, translational inhibition and exon choice in enzymes may be enabled, respectively. Pathway product (heme)-mediated negative feedback control can affect the transport of pathway enzymes into the mitochondria as well as the ubiquitin-mediated stability of enzymes. Remarkably, the positions of these controls on pathway activity are not ubiquitous but are biased towards the enzymes in the upstream portion of the pathway. We revealed that multiple-level controls on the activity of the heme biosynthesis pathway depend on the linear depth of the enzymes in the pathway, indicating a new strategy for discovering the molecular constraints that shape the evolution of a metabolic pathway. PMID:24489775

  17. Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants.

    PubMed

    Ma, Sheng; Martin-Laffon, Jacqueline; Mininno, Morgane; Gigarel, Océane; Brugière, Sabine; Bastien, Olivier; Tardif, Marianne; Ravanel, Stéphane; Alban, Claude

    2016-04-01

    Rubisco and fructose-1,6-bisphosphate aldolases (FBAs) are involved in CO2 fixation in chloroplasts. Both enzymes are trimethylated at a specific lysine residue by the chloroplastic protein methyltransferase LSMT. Genes coding LSMT are present in all plant genomes but the methylation status of the substrates varies in a species-specific manner. For example, chloroplastic FBAs are naturally trimethylated in both Pisum sativum and Arabidopsis thaliana, whereas the Rubisco large subunit is trimethylated only in the former species. The in vivo methylation status of aldolases and Rubisco matches the catalytic properties of AtLSMT and PsLSMT, which are able to trimethylate FBAs or FBAs and Rubisco, respectively. Here, we created chimera and site-directed mutants of monofunctional AtLSMT and bifunctional PsLSMT to identify the molecular determinants responsible for substrate specificity. Our results indicate that the His-Ala/Pro-Trp triad located in the central part of LSMT enzymes is the key motif to confer the capacity to trimethylate Rubisco. Two of the critical residues are located on a surface loop outside the methyltransferase catalytic site. We observed a strict correlation between the presence of the triad motif and the in vivo methylation status of Rubisco. The distribution of the motif into a phylogenetic tree further suggests that the ancestral function of LSMT was FBA trimethylation. In a recent event during higher plant evolution, this function evolved in ancestors of Fabaceae, Cucurbitaceae, and Rosaceae to include Rubisco as an additional substrate to the archetypal enzyme. Our study provides insight into mechanisms by which SET-domain protein methyltransferases evolve new substrate specificity. PMID:26785049

  18. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize

    PubMed Central

    Han, Guomin; Zhou, Lingyan; Ali, Asif; Zhu, Suwen; Li, Xiaoyu

    2016-01-01

    The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses. PMID:27560803

  19. Rapid molecular evolution across amniotes of the IIS/TOR network.

    PubMed

    McGaugh, Suzanne E; Bronikowski, Anne M; Kuo, Chih-Horng; Reding, Dawn M; Addis, Elizabeth A; Flagel, Lex E; Janzen, Fredric J; Schwartz, Tonia S

    2015-06-01

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades. PMID:25991861

  20. Molecular Evolution and Genetic Variation of G2-Like Transcription Factor Genes in Maize.

    PubMed

    Liu, Fang; Xu, Yunjian; Han, Guomin; Zhou, Lingyan; Ali, Asif; Zhu, Suwen; Li, Xiaoyu

    2016-01-01

    The productivity of maize (Zea mays L.) depends on the development of chloroplasts, and G2-like transcription factors play a central role in regulating chloroplast development. In this study, we identified 59 G2-like genes in the B73 maize genome and systematically analyzed these genes at the molecular and evolutionary levels. Based on gene structure character, motif compositions and phylogenetic analysis, maize G2-like genes (ZmG1- ZmG59) were divided into seven groups (I-VII). By synteny analysis, 18 collinear gene pairs and strongly conserved microsyntny among regions hosting G2-like genes across maize and sorghum were found. Here, we showed that the vast majority of ZmG gene duplications resulted from whole genome duplication events rather than tandem duplications. After gene duplication events, some ZmG genes were silenced. The functions of G2-like genes were multifarious and most genes that are expressed in green tissues may relate to maize photosynthesis. The qRT-PCR showed that the expression of these genes was sensitive to low temperature and drought. Furthermore, we analyzed differences of ZmGs specific to cultivars in temperate and tropical regions at the population level. Interestingly, the single nucleotide polymorphism (SNP) analysis revealed that nucleotide polymorphism associated with different temperature zones. Above all, G2-like genes were highly conserved during evolution, but polymorphism could be caused due to a different geographical location. Moreover, G2-like genes might be related to cold and drought stresses. PMID:27560803

  1. GIANT MOLECULAR CLOUD EVOLUTIONS IN THE NEARBY SPIRAL GALAXY M33

    SciTech Connect

    Miura, Rie E.; Espada, Daniel; Hwang, Narae; Okumura, Sachiko K.; Komugi, Shinya; Nakanishi, Kouichiro; Sawada, Tsuyoshi; Kohno, Kotaro; Tosaki, Tomoka; Kuno, Nario; Hirota, Akihiko; Onodera, Sachiko; Kaneko, Hiroyuki; Kawabe, Ryohei; Muraoka, Kazuyuki; Minamidani, Tetsuhiro

    2012-12-10

    We present a giant molecular cloud (GMC) catalog of M33, containing 71 GMCs in total, based on wide-field and high-sensitivity CO(J = 3-2) observations with a spatial resolution of 100 pc using the ASTE 10 m telescope. Employing archival optical data, we identify 75 young stellar groups (YSGs) from the excess of the surface stellar density, and estimate their ages by comparing with stellar evolution models. A spatial comparison among the GMCs, YSGs, and H II regions enable us to classify GMCs into four categories: Type A, showing no sign of massive star formation (SF); Type B, being associated only with H II regions; Type C, with both H II regions and <10 Myr old YSGs; and Type D, with both H II regions and 10-30 Myr YSGs. Out of 65 GMCs (discarding those at the edges of the observed fields), 1 (1%), 13 (20%), 29 (45%), and 22 (34%) are Types A, B, C, and D, respectively. We interpret these categories as stages in a GMC evolutionary sequence. Assuming that the timescale for each evolutionary stage is proportional to the number of GMCs, the lifetime of a GMC with a mass >10{sup 5} M{sub Sun} is estimated to be 20-40 Myr. In addition, we find that the dense gas fraction as traced by the CO(J = 3-2)/CO(J = 1-0) ratio is enhanced around SF regions. This confirms a scenario where dense gas is preferentially formed around previously generated stars, and will be the fuel for the next stellar generation. In this way, massive SF gradually propagates in a GMC until gas is exhausted.

  2. Ecology has contrasting effects on genetic variation within species versus rates of molecular evolution across species in water beetles.

    PubMed

    Fujisawa, Tomochika; Vogler, Alfried P; Barraclough, Timothy G

    2015-01-22

    Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution. PMID:25621335

  3. Ecology has contrasting effects on genetic variation within species versus rates of molecular evolution across species in water beetles

    PubMed Central

    Fujisawa, Tomochika; Vogler, Alfried P.; Barraclough, Timothy G.

    2015-01-01

    Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution. PMID:25621335

  4. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  5. On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2004-01-01

    Differential Evolution (DE) is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. These approaches are implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.

  6. Using Molecular Phenotyping to Guide Improvements in the Histologic Diagnosis of T Cell-Mediated Rejection.

    PubMed

    Reeve, J; Chang, J; Salazar, I D R; Lopez, M Merino; Halloran, P F

    2016-04-01

    Recognition that some lesions typical of T cell-mediated rejection (TCMR) also occur in antibody-mediated rejection requires revision of the histologic TCMR definition. To guide this process, we assessed the relative importance of various lesions and the performance of new histology diagnostic algorithms, using molecular TCMR scores as histology-independent estimates of true TCMR. In 703 indication biopsies, random forest analysis and logistic regression indicated that interstitial infiltrate (i-lesions) and tubulitis (t-lesions) were the key histologic predictors of molecular TCMR, with arteritis (v-lesions) having less importance. Histology predicted molecular TCMR more accurately when diagnoses were assigned by strictly applying the Banff rules to the lesion scores and redefining isolated v-lesion TCMR. This improved prediction from area under the curve (AUC) 0.70 with existing rules to AUC 0.80. Further improvements were achieved by introducing more categories to reflect inflammation (AUC 0.84), by summing the lesion scores (AUC 0.85) and by logistic regression (AUC 0.90). We concluded that histologic assessment of TCMR can be improved by placing more emphasis on i- and t-lesions and incorporating new algorithms for diagnosis. Nevertheless, some discrepancies between histologic and molecular diagnoses persist, partially due to the inherent nonspecificity of i- and t-lesions, and molecular methods will be required to help resolve these cases. PMID:26730747

  7. Directed Evolution of Brain-Derived Neurotrophic Factor for Improved Folding and Expression in Saccharomyces cerevisiae

    PubMed Central

    Burns, Michael L.; Malott, Thomas M.; Metcalf, Kevin J.; Hackel, Benjamin J.; Chan, Jonah R.

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in nervous system function and has therapeutic potential. Microbial production of BDNF has resulted in a low-fidelity protein product, often in the form of large, insoluble aggregates incapable of binding to cognate TrkB or p75 receptors. In this study, employing Saccharomyces cerevisiae display and secretion systems, it was found that BDNF was poorly expressed and partially inactive on the yeast surface and that BDNF was secreted at low levels in the form of disulfide-bonded aggregates. Thus, for the purpose of increasing the compatibility of yeast as an expression host for BDNF, directed-evolution approaches were employed to improve BDNF folding and expression levels. Yeast surface display was combined with two rounds of directed evolution employing random mutagenesis and shuffling to identify BDNF mutants that had 5-fold improvements in expression, 4-fold increases in specific TrkB binding activity, and restored p75 binding activity, both as displayed proteins and as secreted proteins. Secreted BDNF mutants were found largely in the form of soluble homodimers that could stimulate TrkB phosphorylation in transfected PC12 cells. Site-directed mutagenesis studies indicated that a particularly important mutational class involved the introduction of cysteines proximal to the native cysteines that participate in the BDNF cysteine knot architecture. Taken together, these findings show that yeast is now a viable alternative for both the production and the engineering of BDNF. PMID:25015885

  8. Molecular Evidence for Convergence and Parallelism in Evolution of Complex Brains of Cephalopod Molluscs: Insights from Visual Systems.

    PubMed

    Yoshida, M A; Ogura, A; Ikeo, K; Shigeno, S; Moritaki, T; Winters, G C; Kohn, A B; Moroz, L L

    2015-12-01

    Coleoid cephalopods show remarkable evolutionary convergence with vertebrates in their neural organization, including (1) eyes and visual system with optic lobes, (2) specialized parts of the brain controlling learning and memory, such as vertical lobes, and (3) unique vasculature supporting such complexity of the central nervous system. We performed deep sequencing of eye transcriptomes of pygmy squids (Idiosepius paradoxus) and chambered nautiluses (Nautilus pompilius) to decipher the molecular basis of convergent evolution in cephalopods. RNA-seq was complemented by in situ hybridization to localize the expression of selected genes. We found three types of genomic innovations in the evolution of complex brains: (1) recruitment of novel genes into morphogenetic pathways, (2) recombination of various coding and regulatory regions of different genes, often called "evolutionary tinkering" or "co-option", and (3) duplication and divergence of genes. Massive recruitment of novel genes occurred in the evolution of the "camera" eye from nautilus' "pinhole" eye. We also showed that the type-2 co-option of transcription factors played important roles in the evolution of the lens and visual neurons. In summary, the cephalopod convergent morphological evolution of the camera eyes was driven by a mosaic of all types of gene recruitments. In addition, our analysis revealed unexpected variations of squids' opsins, retinochromes, and arrestins, providing more detailed information, valuable for further research on intra-ocular and extra-ocular photoreception of the cephalopods. PMID:26002349

  9. Symbiosis between hydra and chlorella: molecular phylogenetic analysis and experimental study provide insight into its origin and evolution.

    PubMed

    Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka

    2013-03-01

    Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. PMID:23219706

  10. IMPROVED METHOD FOR ESTIMATING MOLECULAR WEIGHTS OF VOLATILE ORGANIC COMPOUNDS FROM LOW RESOLUTION MASS SPECTRA

    EPA Science Inventory

    An improved method of estimating molecular weights of volatile organic compound from their mass spectra has been developed and implemented with an expert system. he method is based on the strong correlation of MAXMASS, the highest mass with an intensity of 5% of the base peak in ...

  11. Spiranic BODIPYs: a ground-breaking design to improve the energy transfer in molecular cassettes.

    PubMed

    Sánchez-Carnerero, Esther M; Gartzia-Rivero, Leire; Moreno, Florencio; Maroto, Beatriz L; Agarrabeitia, Antonia R; Ortiz, María J; Bañuelos, Jorge; López-Arbeloa, Íñigo; de la Moya, Santiago

    2014-10-28

    Boosted excitation energy transfer in spiranic O-BODIPY/polyarene cassettes, when compared with the parent non-spiranic (flexible) system, is highlighted as a proof for the ability of a new structural design to improve the energy transfer in molecular cassettes. PMID:25207836

  12. The Effects of Molecular Properties on Ready Biodegradation of Aromatic Compounds in the OECD 301B CO2 Evolution Test.

    PubMed

    He, Mei; Mei, Cheng-Fang; Sun, Guo-Ping; Li, Hai-Bei; Liu, Lei; Xu, Mei-Ying

    2016-07-01

    Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds. PMID:26498763

  13. An Effective Approach to Improving Cadmium Telluride (111)A Surface by Molecular-Beam-Epitaxy Growth of Tellurium Monolayer.

    PubMed

    Ren, Jie; Fu, Li; Bian, Guang; Su, Jie; Zhang, Hao; Velury, Saavanth; Yukawa, Ryu; Zhang, Longxiang; Wang, Tao; Zha, Gangqiang; Guo, Rongrong; Miller, Tom; Hasan, M Zahid; Chiang, Tai-Chang

    2016-01-13

    The surface cleansing treatment of non-natural cleavage planes of semiconductors is usually performed in vacuum using ion sputtering and subsequent annealing. In this Research Article, we report on the evolution of surface atomic structure caused by different ways of surface treatment as monitored by in situ core-level photoemission measurements of Cd-4d and Te-4d atomic levels and reflection high-energy electron diffraction (RHEED). Sputtering of surface increases the density of the dangling bonds by 50%. This feature and the less than ideal ordering can be detrimental to device applications. An effective approach is employed to improve the quality of this surface. One monolayer (ML) of Te grown by the method of molecular beam epitaxy (MBE) on the target surface with heating at 300 °C effectively improves the surface quality as evidenced by the improved sharpness of RHEED pattern and a reduced diffuse background in the spectra measured by high-resolution ultraviolet photoemission spectroscopy (HRUPS). Calculations have been performed for various atomic geometries by employing first-principles geometry optimization. In conjunction with an analysis of the core level component intensities in terms the layer-attenuation model, we propose a "vacancy site" model of the modified 1 ML-Te/CdTe(111)A (2 × 2) surface. PMID:26672795

  14. The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history

    PubMed Central

    Kroll, Oliver; Hershler, Robert; Albrecht, Christian; Terrazas, Edmundo M; Apaza, Roberto; Fuentealba, Carmen; Wolff, Christian; Wilke, Thomas

    2012-01-01

    Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had a complex history that included at least five major hydrological phases during the Pleistocene. It is generally assumed that these physical events helped shape the evolutionary history of the lake's biota. Herein, we study an endemic species assemblage in Lake Titicaca, composed of members of the microgastropod genus Heleobia, to determine whether the lake has functioned as a reservoir of relic species or the site of local diversification, to evaluate congruence of the regional paleohydrology and the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses indicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital taxa) forms a species flock. A molecular clock analysis suggests that the most recent common ancestor (MRCAs) of the Altiplano taxa evolved 0.53 (0.28–0.80) My ago and the MRCAs of the Altiplano taxa and their extralimital sister group 0.92 (0.46–1.52) My ago. The endemic species of Lake Titicaca are younger than the lake itself, implying primarily intralacustrine speciation. Moreover, the timing of evolutionary branching events and the ages of two precursors of Lake Titicaca, lakes Cabana and Ballivián, is congruent. Although Lake Titicaca appears to have been the principal site of speciation for the regional Heleobia fauna, the contemporary spatial patterns of endemism have been masked by immigration and/or emigration events of local riverine taxa, which we attribute to the unstable hydrographic history of the Altiplano. Thus, a hierarchical distribution of endemism is not evident, but instead there is a single genetic break between two regional clades. We also discuss our findings in relation to studies of other regional biota and suggest that salinity tolerance

  15. Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants

    PubMed Central

    Aklilu, Behailu B.; Culligan, Kevin M.

    2016-01-01

    Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species. PMID:26858742

  16. FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. III. THE EFFECT OF DUST AND GAS ENERGETICS

    SciTech Connect

    Martel, Hugo; Urban, Andrea; Evans, Neal J. II

    2012-09-20

    Dust and gas energetics are incorporated into a cluster-scale simulation of star formation in order to study the effect of heating and cooling on the star formation process. We build on our previous work by calculating separately the dust and gas temperatures. The dust temperature is set by radiative equilibrium between heating by embedded stars and radiation from dust. The gas temperature is determined using an energy-rate balance algorithm which includes molecular cooling, dust-gas collisional energy transfer, and cosmic-ray ionization. The fragmentation proceeds roughly similarly to simulations in which the gas temperature is set to the dust temperature, but there are differences. The structure of regions around sink particles has properties similar to those of Class 0 objects, but the infall speeds and mass accretion rates are, on average, higher than those seen for regions forming only low-mass stars. The gas and dust temperature have complex distributions not well modeled by approximations that ignore the detailed thermal physics. There is no simple relationship between density and kinetic temperature. In particular, high-density regions have a large range of temperatures, determined by their location relative to heating sources. The total luminosity underestimates the star formation rate at these early stages, before ionizing sources are included, by an order of magnitude. As predicted in our previous work, a larger number of intermediate-mass objects form when improved thermal physics is included, but the resulting initial mass function (IMF) still has too few low-mass stars. However, if we consider recent evidence on core-to-star efficiencies, the match to the IMF is improved.

  17. The Henry Ford Production System: LEAN Process Redesign Improves Service in the Molecular Diagnostic Laboratory

    PubMed Central

    Cankovic, Milena; Varney, Ruan C.; Whiteley, Lisa; Brown, Ron; D'Angelo, Rita; Chitale, Dhananjay; Zarbo, Richard J.

    2009-01-01

    Accurate and timely molecular test results play an important role in patient management; consequently, there is a customer expectation of short testing turnaround times. Baseline data analysis revealed that the greatest challenge to timely result generation occurred in the preanalytic phase of specimen collection and transport. Here, we describe our efforts to improve molecular testing turnaround times by focusing primarily on redesign of preanalytic processes using the principles of LEAN production. Our goal was to complete greater than 90% of the molecular tests in less than 3 days. The project required cooperation from different laboratory disciplines as well as individuals outside of the laboratory. The redesigned processes involved defining and standardizing the protocols and approaching blood and tissue specimens as analytes for molecular testing. The LEAN process resulted in fewer steps, approaching the ideal of a one-piece flow for specimens through collection/retrieval, transport, and different aspects of the testing process. The outcome of introducing the LEAN process has been a 44% reduction in molecular test turnaround time for tissue specimens, from an average of 2.7 to 1.5 days. In addition, extending LEAN work principles to the clinician suppliers has resulted in a markedly increased number of properly collected and shipped blood specimens (from 50 to 87%). These continuous quality improvements were accomplished by empowered workers in a blame-free environment and are now being sustained with minimal management involvement. PMID:19661386

  18. Molecular Evolution of Antibody Cross-Reactivity for Two Subtypes of Type a Botulinum Neurotoxin

    SciTech Connect

    Garcia-Rodriguez, C.; Levy, R.; Arndt, J.W.; Forsyth, C.M.; Razai, A.; Lou, J.; Geren, I.; Stevens, R.C.; Marks, J.D.; /UC, San Francisco /Scripps Res. Inst.

    2007-07-09

    Broadening antibody specificity without compromising affinity should facilitate detection and neutralization of toxin and viral subtypes. We used yeast display and a co-selection strategy to increase cross-reactivity of a single chain (sc) Fv antibody to botulinum neurotoxin type A (BoNT/A). Starting with a scFv that binds the BoNT/A1 subtype with high affinity (136 pM) and the BoNT/A2 subtype with low affinity (109 nM), we increased its affinity for BoNT/A2 1,250-fold, to 87 pM, while maintaining high-affinity binding to BoNT/A1 (115 pM). To find the molecular basis for improved cross-reactivity, we determined the X-ray co-crystal structures of wild-type and cross-reactive antibodies complexed to BoNT/A1 at resolutions up to 2.6 A, and measured the thermodynamic contribution of BoNT/A1 and A2 amino acids to wild-type and cross-reactive antibody binding. The results show how an antibody can be engineered to bind two different antigens despite structural differences in the antigen-antibody interface and may provide a general strategy for tuning antibody specificity and cross-reactivity.

  19. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    PubMed

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding. PMID:21584678

  20. Fast molecular beacon hybridization in organic solvents with improved target specificity.

    PubMed

    Dave, Neeshma; Liu, Juewen

    2010-12-01

    DNA hybridization is of tremendous importance in biology, bionanotechnology, and biophysics. Molecular beacons are engineered DNA hairpins with a fluorophore and a quencher labeled on each of the two ends. A target DNA can open the hairpin to give an increased fluorescence signal. To date, the majority of molecular beacon detections have been performed only in aqueous buffers. We describe herein DNA detection in nine different organic solvents, methanol, ethanol, isopropanol, acetonitrile, formamide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylene glycol, and glycerol, varying each up to 75% (v/v). In comparison with detection in water, the detection in organic solvents showed several important features. First, the molecular beacon hybridizes to its target DNA in the presence of all nine solvents up to a certain percentage. Second, the rate of this hybridization was significantly faster in most organic solvents compared with water. For example, in 56% ethanol, the beacon showed a 70-fold rate enhancement. Third, the ability of the molecular beacon to discriminate single-base mismatch is still maintained. Lastly, the DNA melting temperature in the organic solvents showed a solvent concentration-dependent decrease. This study suggests that molecular beacons can be used for applications where organic solvents must be involved or organic solvents can be intentionally added to improve the molecular beacon performance. PMID:21062084

  1. Protein Evolution by Molecular Tinkering: Diversification of the Nuclear Receptor Superfamily from a Ligand-Dependent Ancestor

    PubMed Central

    Bridgham, Jamie T.; Eick, Geeta N.; Larroux, Claire; Deshpande, Kirti; Harms, Michael J.; Gauthier, Marie E. A.; Ortlund, Eric A.; Degnan, Bernard M.; Thornton, Joseph W.

    2010-01-01

    Understanding how protein structures and functions have diversified is a central goal in molecular evolution. Surveys of very divergent proteins from model organisms, however, are often insufficient to determine the features of ancestral proteins and to reveal the evolutionary events that yielded extant diversity. Here we combine genomic, biochemical, functional, structural, and phylogenetic analyses to reconstruct the early evolution of nuclear receptors (NRs), a diverse superfamily of transcriptional regulators that play key roles in animal development, physiology, and reproduction. By inferring the structure and functions of the ancestral NR, we show—contrary to current belief—that NRs evolved from a ligand-activated ancestral receptor that existed near the base of the Metazoa, with fatty acids as possible ancestral ligands. Evolutionary tinkering with this ancestral structure generated the extraordinary diversity of modern receptors: sensitivity to different ligands evolved because of subtle modifications of the internal cavity, and ligand-independent activation evolved repeatedly because of various mutations that stabilized the active conformation in the absence of ligand. Our findings illustrate how a mechanistic dissection of protein evolution in a phylogenetic context can reveal the deep homology that links apparently “novel” molecular functions to a common ancestral form. PMID:20957188

  2. Structural Evolution of Polylactide Molecular Bottlebrushes: Kinetics Study by Size Exclusion Chromatography, Small Angle Neutron Scattering and Simulations

    SciTech Connect

    Pickel, Deanna L; Kilbey, II, S Michael; Uhrig, David; Hong, Kunlun; Carrillo, Jan-Michael Y; Sumpter, Bobby G; Ahn, Suk-Kyun; Han, Youngkyu; Kim, Dr. Tae-Hwan; Smith, Gregory Scott; Do, Changwoo

    2014-01-01

    Structural evolution from poly(lactide) (PLA) macromonomer to resultant PLA molecular bottlebrush during ring opening metathesis polymerization (ROMP) was investigated for the first time by combining size exclusion chromatography (SEC), small-angle neutron scattering (SANS) and coarse-grained molecular dynamics (CG-MD) simulations. Multiple aliquots were collected at various reaction times during ROMP, and subsequently analyzed by SEC and SANS. The two complementary techniques enable the understanding of systematic changes in conversion, molecular weight and dispersity as well as structural details of PLA molecular bottlebrushes. CG-MD simulation not only predicts the experimental observations, but it also provides further insight into the analysis and interpretation of data obtained in SEC and SANS experiments. We find that PLA molecular bottlebrushes undergo three conformational transitions with increasing conversion (i.e., increasing the backbone length): (1) from an elongated to a globular shape due to longer side chain at lower conversion, (2) from a globular to an elongated shape at intermediate conversion caused by excluded volume of PLA side chain, and (3) the saturation of contour length at higher conversion due to chain transfer reactions.

  3. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla

    PubMed Central

    Fontanillas, Eric; Welch, John J; Thomas, Jessica A; Bromham, Lindell

    2007-01-01

    Background Molecular clock dates, which place the origin of animal phyla deep in the Precambrian, have been used to reject the hypothesis of a rapid evolutionary radiation of animal phyla supported by the fossil record. One possible explanation of the discrepancy is the potential for fast substitution rates early in the metazoan radiation. However, concerted rate variation, occurring simultaneously in multiple lineages, cannot be detected by "clock tests", and so another way to explore such variation is to look for correlated changes between rates and other biological factors. Here we investigate two possible causes of fast early rates: change in average body size or diversification rate of deep metazoan lineages. Results For nine genes for phylogenetically independent comparisons between 50 metazoan phyla, orders, and classes, we find a significant correlation between average body size and rate of molecular evolution of mitochondrial genes. The data also indicate that diversification rate may have a positive effect on rates of mitochondrial molecular evolution. Conclusion If average body sizes were significantly smaller in the early history of the Metazoa, and if rates of diversification were much higher, then it is possible that mitochondrial genes have undergone a slow-down in evolutionary rate, which could affect date estimates made from these genes. PMID:17592650

  4. Improved Gauge Conditions and Evolution Techniques for Puncture Black Hole Simulations

    NASA Astrophysics Data System (ADS)

    Etienne, Zachariah; Baker, John; Paschalidis, Vasileios; Shapiro, Stuart; Kelly, Bernard

    2014-03-01

    Robust spacetime gauge conditions are critically important to the stability and accuracy of numerical relativity (NR) simulations involving puncture black holes. Most of the NR community continues to use the highly-robust--though nearly decade-old--``moving-puncture gauge conditions'' for such simulations. We present improved gauge conditions and evolution techniques that reduce constraint violations by more than an order of magnitude on adaptive-mesh refinement (AMR) grids. It has been found that high-frequency waves propagating away from puncture black holes (e.g., in binary systems) cross progressively lower levels of refinement until they become under-resolved and reflect off an AMR boundary, leading to noisy gravitational waveforms. Such noise does not converge away cleanly with increasing resolution, effectively setting a hard upper limit on waveform accuracy using puncture techniques at computationally feasible resolutions. We demonstrate that our improved puncture gauge conditions reduce this noise by nearly an order of magnitude, and point to possible directions for future improvements.

  5. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction.

    PubMed

    Ye, Gonglan; Gong, Yongji; Lin, Junhao; Li, Bo; He, Yongmin; Pantelides, Sokrates T; Zhou, Wu; Vajtai, Robert; Ajayan, Pulickel M

    2016-02-10

    MoS2 is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS2. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2. PMID:26761422

  6. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate.

    PubMed

    Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L

    2016-03-01

    We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. PMID:26505145

  7. Punctuated equilibrium and shock waves in molecular models of biological evolution.

    PubMed

    Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way. PMID:25215763

  8. Punctuated equilibrium and shock waves in molecular models of biological evolution

    NASA Astrophysics Data System (ADS)

    Saakian, David B.; Ghazaryan, Makar H.; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.

  9. Evolution of OH and CO-Dark Molecular Gas Fraction across a Molecular Cloud Boundary in Taurus

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Li, Di; Yue, Nannan; Goldsmith, Paul F.

    2016-03-01

    We present observations of 12CO J = 1-0, 13CO J = 1-0, H i, and all four ground-state transitions of the hydroxyl (OH) radical toward a sharp boundary region of the Taurus molecular cloud. Based on a photodissociation region (PDR) model that reproduces CO and [C i] emission from the same region, we modeled the three OH transitions, 1612, 1665, and 1667 MHz successfully through escape probability non-local thermal equilibrium radiative transfer model calculations. We could not reproduce the 1720 MHz observations, due to unmodeled pumping mechanisms, of which the most likely candidate is a C-shock. The abundance of OH and CO-dark molecular gas is well-constrained. The OH abundance [OH]/[H2] decreases from 8× {10}-7 to 1× {10}-7 as Av increases from 0.4 to 2.7 mag following an empirical law: which is higher than PDR model predictions for low-extinction regions by a factor of 80. The overabundance of OH at extinctions at or below 1 mag is likely the result of a C-shock. The dark gas fraction (DGF, defined as the fraction of molecular gas without detectable CO emission) decreases from 80% to 20% following a Gaussian profile: This trend of the DGF is consistent with our understanding that the DGF drops at low visual extinction due to photodissociation of H2 and drops at high visual extinction due to CO formation. The DGF peaks in the extinction range where H2 has already formed and achieved self-shielding but 12CO has not. Two narrow velocity components with a peak-to-peak spacing of ˜1 km s-1 were clearly identified. Their relative intensity and variation in space and frequency suggest colliding streams or gas flows at the boundary region.

  10. May Diet and Dietary Supplements Improve the Wellness of Multiple Sclerosis Patients? A Molecular Approach

    PubMed Central

    Riccio, Paolo; Rossano, Rocco; Liuzzi, Grazia Maria

    2010-01-01

    Multiple sclerosis is a complex and multifactorial neurological disease, and nutrition is one of the environmental factors possibly involved in its pathogenesis. At present, the role of nutrition is unclear, and MS therapy is not associated to a particular diet. MS clinical trials based on specific diets or dietary supplements are very few and in some cases controversial. To understand how diet can influence the course of MS and improve the wellness of MS patients, it is necessary to identify the dietary molecules, their targets and the molecular mechanisms involved in the control of the disease. The aim of this paper is to provide a molecular basis for the nutritional intervention in MS by evaluating at molecular level the effect of dietary molecules on the inflammatory and autoimmune processes involved in the disease. PMID:21461338

  11. Congruence and indifference between two molecular markers for understanding oral evolution in the Marynidae sensu lato (Ciliophora, Colpodea)

    PubMed Central

    Dunthorn, Micah; Katz, Laura A.; Stoeck, Thorsten; Foissner, Wilhelm

    2012-01-01

    Our understanding of the evolution of oral structures within the Colpodida is confounded by the low number of morphological characters that can be used in constructing hypotheses, and by the low taxon and character sampling in molecular phylogenetic analyses designed to assess these hypotheses. Here we increase character sampling by sequencing the mitochondrial SSU-rDNA locus for three isolates of the Marynidae sensu lato. We show that the inferred mitochondrial and nuclear SSU-rDNA trees, as well as concatenated and constrained analyses, are congruent in not recovering a monophyletic Marynidae. However, due to low node support, the trees are indifferent to whether the morphological characters used to unite the Marynidae are the result of retention of ancestral states or convergence. In light of this indifference and an increased amount of nuclear and mitochondrial SSU-rDNA data, alternative hypotheses of oral evolution in the Colpodida are presented. PMID:22356924

  12. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii

    PubMed Central

    Galindo, Enrique; Peña, Carlos; Núñez, Cinthia; Segura, Daniel; Espín, Guadalupe

    2007-01-01

    Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. One of these mutants has been shown to produce the alginate with the highest mean molecular mass so far reported. Recent work has also shed light on the factors determining molecular mass distribution; the most important of these being identified as; dissolved oxygen tension and specific growth rate. The use of specific mutants has been very useful for the correct analysis and interpretation of the factors affecting polymerization. Recent scale-up/down work on alginate production has shown that oxygen limitation is crucial for producing alginate of high molecular mass, a condition which is optimized in shake flasks and which can now be reproduced in stirred fermenters. It is clear that the phenotypes of mutants grown on plates are not necessarily reproducible when the strains are tested in lab or bench scale fermenters. In the case of PHB, A. vinelandii has shown itself able to produce relatively large amounts of this polymer of high molecular weight on cheap substrates, even allowing for simple extraction processes. The development of fermentation strategies has also shown promising results in terms of improving productivity. The understanding of the regulatory mechanisms involved in the control of PHB synthesis, and of its metabolic relationships, has increased considerably, making way for new potential strategies for the further improvement of PHB production. Overall, the use of a multidisciplinary approach, integrating molecular and bioengineering aspects is a necessity for optimizing alginate and PHB production in A. vinelandii. PMID:17306024

  13. Molecular evolution of the clustered MMIC-3 multigene family of Gossypium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniqueness, content, localization, and defense-related features of the root-knot nematode resistance-associated MIC-3 supergene cluster in the genus Gossypium are all of interest for molecular evolutionary studies of duplicate supergenes in allopolyploids. Here we report molecular evolutionary rates...

  14. Molecular Evolution of Clustered MIC-3 (Meloidogyne Induced Cotton -3) Multigene Family of Gossypium Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uniqueness, content, localization, and defense-related features of the root-knot nematode resistance-associated MIC-3 multigene cluster in the genus Gossypium are all of interest for molecular evolutionary studies of duplicate genes in allopolyploids. Here we report molecular evolutionary rates of t...

  15. Active transport improves the precision of linear long distance molecular signalling

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2016-09-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

  16. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions

    NASA Astrophysics Data System (ADS)

    Andreiadis, Eugen S.; Jacques, Pierre-André; Tran, Phong D.; Leyris, Adeline; Chavarot-Kerlidou, Murielle; Jousselme, Bruno; Matheron, Muriel; Pécaut, Jacques; Palacin, Serge; Fontecave, Marc; Artero, Vincent

    2013-01-01

    The viability of a hydrogen economy depends on the design of efficient catalytic systems based on earth-abundant elements. Innovative breakthroughs for hydrogen evolution based on molecular tetraimine cobalt compounds have appeared in the past decade. Here we show that such a diimine-dioxime cobalt catalyst can be grafted to the surface of a carbon nanotube electrode. The resulting electrocatalytic cathode material mediates H2 generation (55,000 turnovers in seven hours) from fully aqueous solutions at low-to-medium overpotentials. This material is remarkably stable, which allows extensive cycling with preservation of the grafted molecular complex, as shown by electrochemical studies, X-ray photoelectron spectroscopy and scanning electron microscopy. This clearly indicates that grafting provides an increased stability to these cobalt catalysts, and suggests the possible application of these materials in the development of technological devices.

  17. Molecular microscope strategy to improve risk stratification in early antibody-mediated kidney allograft rejection.

    PubMed

    Loupy, Alexandre; Lefaucheur, Carmen; Vernerey, Dewi; Chang, Jessica; Hidalgo, Luis G; Beuscart, Thibaut; Verine, Jerome; Aubert, Olivier; Dubleumortier, Sébastien; Duong van Huyen, Jean-Paul; Jouven, Xavier; Glotz, Denis; Legendre, Christophe; Halloran, Philip F

    2014-10-01

    Antibody-mediated rejection (ABMR) is the leading cause of kidney allograft loss. We investigated whether the addition of gene expression measurements to conventional methods could serve as a molecular microscope to identify kidneys with ABMR that are at high risk for failure. We studied 939 consecutive kidney recipients at Necker Hospital (2004-2010; principal cohort) and 321 kidney recipients at Saint Louis Hospital (2006-2010; validation cohort) and assessed patients with ABMR in the first 1 year post-transplant. In addition to conventional features, we assessed microarray-based gene expression in transplant biopsy specimens using relevant molecular measurements: the ABMR Molecular Score and endothelial donor-specific antibody-selective transcript set. The main outcomes were kidney transplant loss and progression to chronic transplant injury. We identified 74 patients with ABMR in the principal cohort and 54 patients with ABMR in the validation cohort. Conventional features independently associated with failure were donor age and humoral histologic score (g+ptc+v+cg+C4d). Adjusting for conventional features, ABMR Molecular Score (hazard ratio [HR], 2.22; 95% confidence interval [95% CI], 1.37 to 3.58; P=0.001) and endothelial donor-specific antibody-selective transcripts (HR, 3.02; 95% CI, 1.00 to 9.16; P<0.05) independently associated with an increased risk of graft loss. The results were replicated in the independent validation group. Adding a gene expression assessment to a traditional risk model improved the stratification of patients at risk for graft failure (continuous net reclassification improvement, 1.01; 95% CI, 0.57 to 1.46; P<0.001; integrated discrimination improvement, 0.16; P<0.001). Compared with conventional assessment, the addition of gene expression measurement in kidney transplants with ABMR improves stratification of patients at high risk for graft loss. PMID:24700874

  18. Cryptic Species in Tropic Sands - Interactive 3D Anatomy, Molecular Phylogeny and Evolution of Meiofaunal Pseudunelidae (Gastropoda, Acochlidia)

    PubMed Central

    Neusser, Timea P.; Jörger, Katharina M.; Schrödl, Michael

    2011-01-01

    Background Towards realistic estimations of the diversity of marine animals, tiny meiofaunal species usually are underrepresented. Since the biological species concept is hardly applicable on exotic and elusive animals, it is even more important to apply a morphospecies concept on the best level of information possible, using accurate and efficient methodology such as 3D modelling from histological sections. Molecular approaches such as sequence analyses may reveal further, cryptic species. This is the first case study on meiofaunal gastropods to test diversity estimations from traditional taxonomy against results from modern microanatomical methodology and molecular systematics. Results The examined meiofaunal Pseudunela specimens from several Indo-Pacific islands cannot be distinguished by external features. Their 3D microanatomy shows differences in the organ systems and allows for taxonomic separation in some cases. Additional molecular analyses based on partial mitochondrial cytochrome c oxidase subunit I (COI) and 16S rRNA markers revealed considerable genetic structure that is largely congruent with anatomical or geographical patterns. Two new species (Pseudunela viatoris and P. marteli spp. nov.) are formally described integrating morphological and genetic analyses. Phylogenetic analysis using partial 16S rRNA, COI and the nuclear 18S rRNA markers shows a clade of Pseudunelidae species as the sister group to limnic Acochlidiidae. Within Pseudunela, two subtypes of complex excretory systems occur. A complex kidney already evolved in the ancestor of Hedylopsacea. Several habitat shifts occurred during hedylopsacean evolution. Conclusions Cryptic species occur in tropical meiofaunal Pseudunela gastropods, and likely in other meiofaunal groups with poor dispersal abilities, boosting current diversity estimations. Only a combined 3D microanatomical and molecular approach revealed actual species diversity within Pseudunela reliably. Such integrative methods are

  19. Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs).

    PubMed

    Brahmbhatt, H; Poma, A; Pendergraff, H M; Watts, J K; Turner, N W

    2016-02-01

    High affinity and specific binding are cardinal properties of nucleic acids in relation to their biological function and their role in biotechnology. To this end, structural preorganization of oligonucleotides can significantly improve their binding performance, and numerous examples of this can be found in Nature as well as in artificial systems. Here we describe the production and characterization of hybrid DNA-polymer nanoparticles (oligoMIP NPs) as a system in which we have preorganized the oligonucleotide binding by molecular imprinting technology. Molecularly imprinted polymers (MIPs) are cost-effective "smart" polymeric materials capable of antibody-like detection, but characterized by superior robustness and the ability to work in extreme environmental conditions. Especially in the nanoparticle format, MIPs are dubbed as one of the most suitable alternatives to biological antibodies due to their selective molecular recognition properties, improved binding kinetics as well as size and dispersibility. Nonetheless, there have been very few attempts at DNA imprinting in the past due to structural complexity associated with these templates. By introducing modified thymine bases into the oligonucleotide sequences, which allow establishing covalent bonds between the DNA and the polymer, we demonstrate that such hybrid oligoMIP NPs specifically recognize their target DNA, and that the unique strategy of incorporating the complementary DNA strands as "preorganized selective monomers" improves the recognition properties without affecting the NPs physical properties such as size, shape or dispersibility. PMID:26509192

  20. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    SciTech Connect

    Bagwell, C.

    2015-10-14

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared to traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.

  1. Effects of DNA Methylation and Chromatin State on Rates of Molecular Evolution in Insects

    PubMed Central

    Glastad, Karl M.; Goodisman, Michael A. D.; Yi, Soojin V.; Hunt, Brendan G.

    2015-01-01

    Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution. PMID:26637432

  2. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction.

    PubMed

    Lu, Zhiyi; Wang, Haotian; Kong, Desheng; Yan, Kai; Hsu, Po-Chun; Zheng, Guangyuan; Yao, Hongbin; Liang, Zheng; Sun, Xiaoming; Cui, Yi

    2014-01-01

    Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we demonstrate a method for electrochemical lithium tuning of catalytic materials in organic electrolyte for subsequent enhancement of the catalytic activity in aqueous solution. By continuously extracting lithium ions out of LiCoO2, a popular cathode material in lithium ion batteries, to Li0.5CoO2 in organic electrolyte, the catalytic activity is significantly improved. This enhancement is ascribed to the unique electronic structure after the delithiation process. The general efficacy of this methodology is demonstrated in several mixed metal oxides with similar improvements. The electrochemically delithiated LiCo0.33Ni0.33Fe0.33O2 exhibits a notable performance, better than the benchmark iridium/carbon catalyst. PMID:24993836

  3. Electrodeposition modeling and optimization to improve thin film patterning with orchestrated structure evolution

    NASA Astrophysics Data System (ADS)

    Abbasi, Shaghayegh; Kitayaporn, Sathana; Siedlik, Michael J.; Schwartz, Daniel T.; Böhringer, Karl F.

    2012-08-01

    Orchestrated structure evolution is an alternative nanomanufacturing approach that combines the advantages of top-down patterning and bottom-up self-organizing growth. It relies upon tool-directed patterning to create ‘seed’ locations on a surface from which a subsequent deposition process produces the final, merged film. Despite its demonstrated ability to reduce patterning time by orders of magnitude, our prior reliance on mass transfer limited deposition and square seed arrays resulted in extraneous film growth along pattern edges, thereby limiting the pattern quality of the final film. Here, quality improvements are demonstrated by modeling and tuning the growth mechanism of the deposition step to include charge transfer effects. In addition, a seed positioning optimization technique derived from simulated annealing is introduced as a method for relocating the seeds to minimize film overgrowth at the pattern edges. These improvements enable OSE to maintain geometric quality while substantially reducing the time and cost compared to traditional direct-write manufacturing methods.

  4. Improving Kinetic or Thermodynamic Stability of an Azoreductase by Directed Evolution

    PubMed Central

    Brissos, Vânia; Gonçalves, Nádia; Melo, Eduardo P.; Martins, Lígia O.

    2014-01-01

    Protein stability arises from a combination of factors which are often difficult to rationalise. Therefore its improvement is better addressed through directed evolution than by rational design approaches. In this study, five rounds of mutagenesis/recombination followed by high-throughput screening (≈10,000 clones) yielded the hit 1B6 showing a 300-fold higher half life at 50°C than that exhibited by the homodimeric wild type PpAzoR azoreductase from Pseudomonas putida MET94. The characterization using fluorescence, calorimetry and light scattering shows that 1B6 has a folded state slightly less stable than the wild type (with lower melting and optimal temperatures) but in contrast is more resistant to irreversible denaturation. The superior kinetic stability of 1B6 variant was therefore related to an increased resistance of the unfolded monomers to aggregation through the introduction of mutations that disturbed hydrophobic patches and increased the surface net charge of the protein. Variants 2A1 and 2A1-Y179H with increased thermodynamic stability (10 to 20°C higher melting temperature than wild type) were also examined showing the distinctive nature of mutations that lead to improved structural robustness: these occur in residues that are mostly involved in strengthening the solvent-exposed loops or the inter-dimer interactions of the folded state. PMID:24475252

  5. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyi; Wang, Haotian; Kong, Desheng; Yan, Kai; Hsu, Po-Chun; Zheng, Guangyuan; Yao, Hongbin; Liang, Zheng; Sun, Xiaoming; Cui, Yi

    2014-07-01

    Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we demonstrate a method for electrochemical lithium tuning of catalytic materials in organic electrolyte for subsequent enhancement of the catalytic activity in aqueous solution. By continuously extracting lithium ions out of LiCoO2, a popular cathode material in lithium ion batteries, to Li0.5CoO2 in organic electrolyte, the catalytic activity is significantly improved. This enhancement is ascribed to the unique electronic structure after the delithiation process. The general efficacy of this methodology is demonstrated in several mixed metal oxides with similar improvements. The electrochemically delithiated LiCo0.33Ni0.33Fe0.33O2 exhibits a notable performance, better than the benchmark iridium/carbon catalyst.

  6. Directed evolution of leucine dehydrogenase for improved efficiency of L-tert-leucine synthesis.

    PubMed

    Zhu, Lin; Wu, Zhe; Jin, Jian-Ming; Tang, Shuang-Yan

    2016-07-01

    L-tert-Leucine and its derivatives are used as synthetic building blocks for pharmaceutical active ingredients, chiral auxiliaries, and ligands. Leucine dehydrogenase (LeuDH) is frequently used to prepare L-tert-leucine from the α-keto acid precursor trimethylpyruvate (TMP). In this study, a high-throughput screening method for the L-tert-leucine synthesis reaction based on a spectrophotometric approach was developed. Directed evolution strategy was applied to engineer LeuDH from Lysinibacillus sphaericus for improved efficiency of L-tert-leucine synthesis. After two rounds of random mutagenesis, the specific activity of LeuDH on the substrate TMP was enhanced by more than two-fold, compared with that of the wild-type enzyme, while the activity towards its natural substrate, leucine, decreased. The catalytic efficiencies (k cat/K m) of the best mutant enzyme, H6, on substrates TMP and NADH were all enhanced by more than five-fold as compared with that of the wild-type enzyme. The efficiency of L-tert-leucine synthesis by mutant H6 was significantly improved. A productivity of 1170 g/l/day was achieved for the mutant enzyme H6, compared with 666 g/l/day for the wild-type enzyme. PMID:26898942

  7. Improved electron ionization ion source for the detection of supersonic molecular beams

    NASA Astrophysics Data System (ADS)

    Amirav, Aviv; Fialkov, Alexander; Gordin, Alexander

    2002-08-01

    An improved electron ionization (EI) ion source is described, based on the modification of a Brink-type EI ion source through the addition of a second cage with a fine mesh outside the ion chamber. The added outer cage shields the inner ion cage (ionization zone) against the penetration of the filament and electron repeller potentials, and thus results in the provision of ions with narrower ion energy distribution, hence improved ion-beam quality. The closer to zero electrical field inside the ion cage enables improved filtration (rejection) of ions that are produced from vacuum background compounds, based on difference in ion energies of beam and background species. The improved background ion filtration and ion-beam quality resulted in 2.6 times higher mass spectrometric ion signal, combined with 6.4 times better signal to noise ratio, in comparison with the same ion source having a single cage. The dual cage ion source further provides a smaller or no reduction of the electron emission current upon lowering the electron energy for achieving softer EI and/or electron attachment ionization. It also improves the long-term mass spectral and signal reproducibility and enables fast, automated change of the electron energy. Consequently, the dual cage EI ion source is especially effective for use with gas chromatography mass spectrometry with supersonic molecular beams (SMB), liquid chromatography mass spectrometry with SMB, ion guns with SMB, and any other experimental systems with SMB or nonthermal molecular beams.

  8. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment

    PubMed Central

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  9. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment.

    PubMed

    Suenaga, Hikaru

    2015-01-01

    Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose. PMID:26441940

  10. Tracking adaptive evolution in the structure, function and molecular phylogeny of haemoglobin in non-Antarctic notothenioid fish species

    NASA Astrophysics Data System (ADS)

    Verde, Cinzia; Parisi, Elio; di Prisco, Guido

    2006-04-01

    With the notable exception of Antarctic icefishes, haemoglobin (Hb) is present in all vertebrates. In polar fish, Hb evolution has included adaptations with implications at the biochemical, physiological and molecular levels. Cold adaptation has been shown to be also linked to small changes in primary structure and post-translational modifications in proteins, including hydrophobic remodelling and increased flexibility. A wealth of knowledge is available on the oxygen-transport system of fish inhabiting Antarctic waters, but very little is known on the structure and function of Hb of non-Antarctic notothenioid fishes. The comparison of the biochemical and physiological adaptations between cold-adapted and non-cold-adapted species is a powerful tool to understand whether (and to what extent) extreme environments require specific adaptations or simply select for phenotypically different life styles. This study focuses on structure, function and molecular phylogeny of Hb in Antarctic and non-Antarctic notothenioid fishes. The rationale is to use the primary structure of Hb as tool of choice to gain insight into the pathways of the evolution history of α and β globins of notothenioids and also as a basis for reconstructing the phylogenetic relationships among Antarctic and non-Antarctic species.

  11. Molecular evolution and gene expression differences within the HD-Zip transcription factor family of Zea mays L.

    PubMed

    Mao, Hude; Yu, Lijuan; Li, Zhanjie; Liu, Hui; Han, Ran

    2016-04-01

    Homeodomain-leucine zipper (HD-Zip) transcription factors regulate developmental processes and stress responses in plants, and they vary widely in gene number and family structure. In this study, 55 predicted maize HD-Zip genes were systematically analyzed with respect to their phylogenetic relationships, molecular evolution, and gene expression in order to understand the functional diversification within the family. Phylogenetic analysis of HD-Zip proteins from Zea mays, Oryza sativa, Arabidopsis thaliana, Vitis vinifera, and Physcomitrella patens showed that they group into four classes. We inferred that the copy numbers of classes I and III genes were relatively conserved in all five species. The 55 maize HD-Zip genes are distributed randomly on the ten chromosomes, with 15 segmental duplication and 4 tandem duplication events, suggesting that segmental duplications were the major contributors in the expansion of the maize HD-Zip gene family. Expression analysis of the 55 maize HD-Zip genes in different tissues and drought conditions revealed differences in the expression levels and patterns between the four classes. Promoter analysis revealed that a number of stress response-, hormone response-, light response-, and development-related cis-acting elements were present in their promoters. Our results provide novel insights into the molecular evolution and gene expression within the HD-Zip gene family in maize, and provide a solid foundation for future functional study of the HD-Zip genes in maize. PMID:26979310

  12. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    USGS Publications Warehouse

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P.; Goerlitz, D.F.

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-1990). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater. ?? 1994.

  13. Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program.

    PubMed

    Ikmi, Aissam; Gaertner, Bjoern; Seidel, Christopher; Srivastava, Mansi; Zeitlinger, Julia; Gibson, Matthew C

    2014-06-01

    Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene yes-associated protein (Yap)/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling. PMID:24509725

  14. Spiraling into History: A Molecular Phylogeny and Investigation of Biogeographic Origins and Floral Evolution for the Genus Costus

    PubMed Central

    Salzman, Shayla; Driscoll, Heather E.; Renner, Tanya; André, Thiago; Shen, Stacy; Specht, Chelsea D.

    2015-01-01

    Rapid radiations are notoriously difficult to resolve, yet understanding phylogenetic patterns in such lineages can be useful for investigating evolutionary processes associated with bursts of speciation and morphological diversification. Here we present an expansive molecular phylogeny of Costus L. (Costaceae Nakai) with a focus on the Neotropical species within the clade, sampling 47 of the known 51 Neotropical species and including five molecular markers for phylogenetic analysis (ITS, ETS, rps16, trnL-F, and CaM). We use the phylogenetic results to investigate shifts in pollination syndrome, with the intention of addressing potential mechanisms leading to the rapid radiation documented for this clade. Our ancestral reconstruction of pollination syndrome presents the first evidence in this genus of an evolutionary toggle in pollination morphologies, demonstrating both the multiple independent evolutions of ornithophily (bird pollination) as well as reversals to melittophily (bee pollination). We show that the ornithophilous morphology has evolved at least eight times independently with four potential reversals to melittophilous morphology, and confirm prior work showing that neither pollination syndrome defines a monophyletic lineage. Based on the current distribution for the Neotropical and African species, we reconstruct the ancestral distribution of the Neotropical clade as the Pacific Coast of Mexico and Central America. Our results indicate an historic dispersal of a bee-pollinated taxon from Africa to the Pacific Coast of Mexico/Central America, with subsequent diversification leading to the evolution of a bird-pollinated floral morphology in multiple derived lineages. PMID:26146450

  15. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater

    SciTech Connect

    Cozzarelli, I.M.; Baedecker, M.J.; Eganhouse, R.P. ); Goerlitz, D.F. )

    1994-01-01

    The geochemical evolution of low-molecular-weight organic acids in groundwater downgradient from a crude-oil spill near Bemidji, Minnesota, was studied over a five year period (1986-90). The organic acids are metabolic intermediates of the degradation of components of the crude oil and are structurally related to hydrocarbon precursors. The concentrations of organic acids, particularly aliphatic acids, increase as the microbial alteration of hydrocarbons progresses. The organic-acid pool changes in composition and concentration over time and in space as the degradation processes shift from Fe(III) reduction to methanogenesis. Over time, the aquifer system evolves into one in which the groundwater contains more oxidized products of hydrocarbon degradation and the reduced forms of iron, manganese, and nitrogen. Laboratory microcosm experiments with aquifer material support the hypothesis that organic acids observed in the groundwater originate from the microbial degradation of aromatic hydrocarbons under anoxic conditions. The geochemistry of two other shallow aquifers in coastal plain sediments, one contaminated with creosote waste and the other with gasoline, were compared to the Bemidji site. The geochemical evolution of the low-molecular-weight organic acid pool in these systems is controlled, in part, by the presence of electron acceptors available for microbially mediated electron-transfer reactions. The depletion of electron acceptors in aquifers leads to the accumulation of aliphatic organic acids in anoxic groundwater.

  16. Molecular Evolution of the Yap/Yorkie Proto-Oncogene and Elucidation of Its Core Transcriptional Program

    PubMed Central

    Ikmi, Aissam; Gaertner, Bjoern; Seidel, Christopher; Srivastava, Mansi; Zeitlinger, Julia; Gibson, Matthew C.

    2014-01-01

    Throughout Metazoa, developmental processes are controlled by a surprisingly limited number of conserved signaling pathways. Precisely how these signaling cassettes were assembled in early animal evolution remains poorly understood, as do the molecular transitions that potentiated the acquisition of their myriad developmental functions. Here we analyze the molecular evolution of the proto-oncogene yes-associated protein (Yap)/Yorkie, a key effector of the Hippo signaling pathway that controls organ size in both Drosophila and mammals. Based on heterologous functional analysis of evolutionarily distant Yap/Yorkie orthologs, we demonstrate that a structurally distinct interaction interface between Yap/Yorkie and its partner TEAD/Scalloped became fixed in the eumetazoan common ancestor. We then combine transcriptional profiling of tissues expressing phylogenetically diverse forms of Yap/Yorkie with ChIP-seq validation to identify a common downstream gene expression program underlying the control of tissue growth in Drosophila. Intriguingly, a subset of the newly identified Yorkie target genes are also induced by Yap in mammalian tissues, thus revealing a conserved Yap-dependent gene expression signature likely to mediate organ size control throughout bilaterian animals. Combined, these experiments provide new mechanistic insights while revealing the ancient evolutionary history of Hippo signaling. PMID:24509725

  17. In Situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries.

    PubMed

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Rama Sesha; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R; Wang, Chong-Min

    2015-09-01

    Dynamic structural and chemical evolution at solid-liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe a solid-liquid interface under reaction conditions. We describe the creation and usage of in situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid-liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to be depleted of the salt anions and with reduced concentration of Li(+) ions, essentially leading to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributing to the overpotential of the cell. This observation provides unprecedented molecular level dynamic information on the initial formation of the solid electrolyte interphase (SEI) layer. The present work also ultimately opens new avenues for implanting the in situ liquid SIMS concept to probe the chemical reaction process that intimately involves solid-liquid interface, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization. PMID:26287361

  18. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bumble bees are a longstanding model system for studies on behavior, ecology, and evolution, due to their well-studied social lifestyle, invaluable roles as both wild and managed pollinators, and their ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of ...

  19. "DNA Re-EvolutioN": A Game for Learning Molecular Genetics and Evolution

    ERIC Educational Resources Information Center

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game "DNA Re-EvolutioN" as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular…

  20. Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant f...

  1. Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer

    PubMed Central

    Kwon, Inchan

    2007-01-01

    Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. “Shielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating ‘designer’ gene delivery vectors with enhanced properties. PMID:17763830

  2. Molecular evolution analysis of WUSCHEL-related homeobox transcription factor family reveals functional divergence among clades in the homeobox region.

    PubMed

    Segatto, Ana Lúcia A; Thompson, Claudia E; Freitas, Loreta B

    2016-07-01

    Gene families have been shown to play important roles in plant evolution and are associated with diversification and speciation. Genes of WUSCHEL-related homeobox family of transcription factors have important functions in plant development and are correlated with the appearance of evolutionary novelties. There are several published studies related to this family, but little is known about the relationships among the main clades in the phylogeny and the molecular evolution of the family. In this study, we obtained a well-resolved Bayesian phylogenetic tree establishing the relationships among the main clades and determining the position of Selaginella moellendorffii WOX genes. Moreover, a correlation was identified between the number of genes in the genomes and the events of whole-genome duplications. The intron-exon structure is more consistent across the modern clade, which appeared more recently in the WOX evolutionary history, and coincides with the development of higher complexity in plant species. No positive selection was detected among sites through the branches in the tree. However, with regard to the main clades, functional divergence among certain amino acids in the homeodomain region was found. Relaxed purifying selection could be the main driving force in the evolution of these genes and in agreement with some genes have been demonstrated to be functionally redundant. PMID:27150824

  3. A model of compensatory molecular evolution involving multiple sites in RNA molecules.

    PubMed

    Kusumi, Junko; Ichinose, Motoshi; Takefu, Masasuke; Piskol, Robert; Stephan, Wolfgang; Iizuka, Masaru

    2016-01-01

    Consider two sites under compensatory fitness interaction, such as a Watson-Crick base pair in an RNA helix or two interacting residues in a protein. A mutation at any one of these two sites may reduce the fitness of an individual. However, fitness may be restored by the occurrence of a second mutation at the other site. Kimura modeled this process using a two-locus haploid fitness scheme with two alleles at each locus. He predicted that compensatory evolution following this model is very rare unless selection against the deleterious single mutations is weak and linkage between the interacting sites is tight. Here we investigate the question whether the rate of compensatory evolution increases if we take the context of the two directly interacting sites into account. By "context", we mean the effect of neighboring sites in an RNA helix. Interaction between the focal pair of sites under consideration and the context may lead to so-called indirect compensation. Thus, extending Kimura's classical model of compensatory evolution, we study the effects of both direct and indirect compensation on the rate of compensatory evolution. It is shown that the effects of indirect compensation are very strong. We find that recombination does not slow down the rate of compensatory evolution as predicted by the classical model. Instead, compensatory substitutions may be relatively frequent, even if linkage between the focal interacting sites is loose, selection against deleterious mutations is strong, and mutation rate is low. We compare our theoretical results with data on RNA secondary structures from vertebrate introns. PMID:26506471

  4. Intra-molecular Triplet Energy Transfer is a General Approach to Improve Organic Fluorophore Photostability

    PubMed Central

    Zheng, Qinsi; Jockusch, Steffen; Rodríguez-Calero, Gabriel G.; Zhou, Zhou; Zhao, Hong; Altman, Roger B.; Abruña, Héctor D.; Blanchard, Scott C.

    2015-01-01

    Bright, long-lasting and non-phototoxic organic fluorophores are essential to the continued advancement of biological imaging. Traditional approaches towards achieving photostability, such as the removal of molecular oxygen and the use of small-molecule additives in solution, suffer from potentially toxic side effects, particularly in the context of living cells. The direct conjugation of small-molecule triplet state quenchers, such as cyclooctatetraene (COT), to organic fluorophores has the potential to bypass these issues by restoring reactive fluorophore triplet states to the ground state through intra-molecular triplet energy transfer. Such methods have enabled marked improvement in cyanine fluorophore photostability spanning the visible spectrum. However, the generality of this strategy to chemically and structurally diverse fluorophore species has yet to be examined. Here, we show that the proximal linkage of COT increases the photon yield of a diverse range of organic fluorophores widely used in biological imaging applications, demonstrating that the intra-molecular triplet energy transfer mechanism is a potentially general approach for improving organic fluorophore performance and photostability. PMID:26700693

  5. Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition

    NASA Astrophysics Data System (ADS)

    Grzybowska, K.; Grzybowski, A.; Pawlus, S.; Pionteck, J.; Paluch, M.

    2015-06-01

    In this paper, we investigate how changes in the system entropy influence the characteristic time scale of the system molecular dynamics near the glass transition. Independently of any model of thermodynamic evolution of the time scale, against some previous suppositions, we show that the system entropy S is not sufficient to govern the time scale defined by structural relaxation time τ. In the density scaling regime, we argue that the decoupling between τ and S is a consequence of different values of the scaling exponents γ and γS in the density scaling laws, τ =f (ργ/T ) and S =h (ργS/T ) , where ρ and T denote density and temperature, respectively. It implies that the proper relation between τ and S requires supplementing with a density factor, u (ρ), i.e., τ =g ( u (ρ )w (S ) ) . This meaningful finding additionally demonstrates that the density scaling idea can be successfully used to separate physically relevant contributions to the time scale of molecular dynamics near the glass transition. The relation reported by us between τ and S constitutes a general pattern based on nonconfigurational quantities for describing the thermodynamic evolution of the characteristic time scale of molecular dynamics near the glass transition in the density scaling regime, which is a promising alternative to the approaches based as the Adam-Gibbs model on the configurational entropy that is difficult to evaluate in the entire thermodynamic space. As an example, we revise the Avramov entropic model of the dependence τ(T ,ρ), giving evidence that its entropic basis has to be extended by the density dependence of the maximal energy barrier for structural relaxation. We also discuss the excess entropy Sex, the density scaling of which is found to mimic the density scaling of the total system entropy S .

  6. Molecular mimicry: its evolution from concept to mechanism as a cause of autoimmune diseases.

    PubMed

    Oldstone, Michael B A

    2014-06-01

    On a clonal level, certain antibodies and T cells can interact with dissimilar antigens found in microbes and in host cells. More than 5% of over 800 monoclonal antibodies derived from multiple RNA and DNA viruses, as well as from a large number of T cell clones, engage in such interactions. Several of these cross-reactions, which we termed molecular mimicry, are against unique host proteins involved in autoimmune responses and diseases. Thus, molecular mimicry initiated as a host response to a virus or a microbial infection, but alternatively cross-reacting with an appropriate host-antigen, can be a mechanism for instigating an autoimmune disease. Molecular mimicry provides an explanation for the genetic observation that identical twins rarely manifest the same autoimmune disease and the documented epidemiologic evidence that microbial and/or viral infections often precede autoimmune disorders. PMID:24694269

  7. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Da; Fey, George Ting-Kuo

    The shape change and redistribution of zinc anode material over the electrode during repeated cycling have been identified as the main factors that can limit the life of alkaline zinc-air batteries. Li 2O-2B 2O 3 (lithium boron oxide, LBO) glass with high Li + conductivity and stability can be coated on the surface of zinc powders. The structures of the surface-treated and pristine zinc powders were characterized by XRD, SEM, TEM, ESCA and BET analyses. XRD patterns of LBO-coated zinc powders revealed that the coating did not affect the crystal structure. TEM images of LBO-coated on the zinc particles were compact with an average passivation layer of about 250 nm. The LBO layer can prevent zinc from coming into direct contact with the KOH electrolyte and minimize the side reactions within the batteries. The 0.1 wt.% LBO-coated zinc anode material provided an initial discharge capacity of 1.70 Ah at 0.5 V, while the pristine zinc electrode delivered only 1.57 Ah. A surface-treated zinc electrode can increase discharge capacity, decrease hydrogen evolution reaction, and reduce self-discharge. The results indicated that surface treatment should be effective for improving the comprehensive properties of anode materials for zinc-air batteries.

  8. Update on the protective molecular pathways improving pancreatic beta-cell dysfunction.

    PubMed

    Puddu, Alessandra; Sanguineti, Roberta; Mach, François; Dallegri, Franco; Viviani, Giorgio Luciano; Montecucco, Fabrizio

    2013-01-01

    The primary function of pancreatic beta-cells is to produce and release insulin in response to increment in extracellular glucose concentrations, thus maintaining glucose homeostasis. Deficient beta-cell function can have profound metabolic consequences, leading to the development of hyperglycemia and, ultimately, diabetes mellitus. Therefore, strategies targeting the maintenance of the normal function and protecting pancreatic beta-cells from injury or death might be crucial in the treatment of diabetes. This narrative review will update evidence from the recently identified molecular regulators preserving beta-cell mass and function recovery in order to suggest potential therapeutic targets against diabetes. This review will also highlight the relevance for novel molecular pathways potentially improving beta-cell dysfunction. PMID:23737653

  9. Improving the Description of Nonmagnetic and Magnetic Molecular Crystals via the van der Waals Density Functional

    NASA Astrophysics Data System (ADS)

    Obata, Masao; Nakamura, Makoto; Hamada, Ikutaro; Oda, Tatsuki

    2015-02-01

    We have derived and implemented a stress tensor formulation for the van der Waals density functional (vdW-DF) with spin-polarization-dependent gradient correction (GC) recently proposed by the authors [J. Phys. Soc. Jpn. 82, 093701 (2013)] and applied it to nonmagnetic and magnetic molecular crystals under ambient condition. We found that the cell parameters of the molecular crystals obtained with vdW-DF show an overall improvement compared with those obtained using local density and generalized gradient approximations. In particular, the original vdW-DF with GC gives the equilibrium structural parameters of solid oxygen in the α-phase, which are in good agreement with the experiment.

  10. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    PubMed

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  11. Anticorrelation between the Evolution of Molecular Dipole Moments and Induced Work Function Modifications

    PubMed Central

    2013-01-01

    We explore the limits of modifying metal work functions with large molecular dipoles by systematically increasing the dipole moment of archetype donor–acceptor molecules in self-assembled monolayers on gold. Contrary to intuition, we find that enhancing the dipoles leads to a reduction of the adsorption-induced change of the work function. Using atomistic simulations, we show that large dipoles imply electronic localization and level shifts that drive the interface into a thermodynamically unstable situation and trigger compensating charge reorganizations working against the molecular dipoles. Under certain circumstances, these are even found to overcompensate the effect that increasing the dipoles has for the work function. PMID:24163725

  12. Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family.

    PubMed

    Cioffi, M B; Liehr, T; Trifonov, V; Molina, W F; Bertollo, L A C

    2013-01-01

    The Erythrinidae fish family is an excellent model for analyzing the evolution of sex chromosomes. Different stages of sex chromosome differentiation from homomorphic to highly differentiated ones can be found among the species of this family. Here, whole chromosome painting, together with the cytogenetic mapping of repetitive DNAs, highlighted the evolutionary relationships of the sex chromosomes among different erythrinid species and genera. It was demonstrated that the sex chromosomes can follow distinct evolutionary pathways inside this family. Reciprocal hybridizations with whole sex chromosome probes revealed that different autosomal pairs have evolved as the sex pair, even among closely related species. In addition, distinct origins and different patterns of differentiation were found for the same type of sex chromosome system. These features expose the high plasticity of the sex chromosome evolution in lower vertebrates, in contrast to that occurring in higher ones. A possible role of this sex chromosome turnover in the speciation processes is also discussed. PMID:23919986

  13. Genome-Wide Molecular Clock and Horizontal Gene Transfer in Bacterial Evolution

    PubMed Central

    Novichkov, Pavel S.; Omelchenko, Marina V.; Gelfand, Mikhail S.; Mironov, Andrei A.; Wolf, Yuri I.; Koonin, Eugene V.

    2004-01-01

    We describe a simple theoretical framework for identifying orthologous sets of genes that deviate from a clock-like model of evolution. The approach used is based on comparing the evolutionary distances within a set of orthologs to a standard intergenomic distance, which was defined as the median of the distribution of the distances between all one-to-one orthologs. Under the clock-like model, the points on a plot of intergenic distances versus intergenomic distances are expected to fit a straight line. A statistical technique to identify significant deviations from the clock-like behavior is described. For several hundred analyzed orthologous sets representing three well-defined bacterial lineages, the α-Proteobacteria, the γ-Proteobacteria, and the Bacillus-Clostridium group, the clock-like null hypothesis could not be rejected for ∼70% of the sets, whereas the rest showed substantial anomalies. Subsequent detailed phylogenetic analysis of the genes with the strongest deviations indicated that over one-half of these genes probably underwent a distinct form of horizontal gene transfer, xenologous gene displacement, in which a gene is displaced by an ortholog from a different lineage. The remaining deviations from the clock-like model could be explained by lineage-specific acceleration of evolution. The results indicate that although xenologous gene displacement is a major force in bacterial evolution, a significant majority of orthologous gene sets in three major bacterial lineages evolved in accordance with the clock-like model. The approach described here allows rapid detection of deviations from this mode of evolution on the genome scale. PMID:15375139

  14. Molecular Evolution and Functional Divergence of Soluble Starch Synthase Genes in Cassava (Manihot Esculenta Crantz)

    PubMed Central

    Yang, Zefeng; Wang, Yifan; Xu, Shuhui; Xu, Chenwu; Yan, Changjie

    2013-01-01

    Soluble starch synthases (SSs) are major enzymes involved in starch biosynthesis in plants. Cassava starch has many remarkable characteristics, which should be influenced by the evolution of SS genes in this starchy root crop. In this work, we performed a comprehensive phylogenetic and evolutionary analysis of the soluble starch synthases in cassava. Genome-wide identification showed that there are 9 genes encoding soluble starch synthases in cassava. All of the soluble starch synthases encoded by these genes contain both Glyco_transf_5 and Glycos_transf_1 domains, and a correlation analysis showed evidence of coevolution between these 2 domains in cassava SS genes. The SS genes in land plants can be divided into 6 subfamilies that were formed before the origin of seed plants, and species-specific expansion has contributed to the evolution of this family in cassava. A functional divergence analysis for this family provided statistical evidence for shifted evolutionary rates between the subfamilies of land plant soluble starch synthases. Although the main selective pressure acting on land plant SS genes was purifying selection, our results also revealed that point mutation with positive selection contributed to the evolution of 2 SS genes in cassava. The remarkable cassava starch characteristics might be the result of both the duplication and adaptive selection of SS genes. PMID:23888108

  15. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    SciTech Connect

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  16. Temporal dynamics of intrahost molecular evolution for a plant RNA virus.

    PubMed

    Cuevas, José M; Willemsen, Anouk; Hillung, Julia; Zwart, Mark P; Elena, Santiago F

    2015-05-01

    Populations of plant RNA viruses are highly polymorphic in infected plants, which may allow rapid within-host evolution. To understand tobacco etch potyvirus (TEV) evolution, longitudinal samples from experimentally evolved populations in the natural host tobacco and from the alternative host pepper were phenotypically characterized and genetically analyzed. Temporal and compartmental variabilities of TEV populations were quantified using high throughput Illumina sequencing and population genetic approaches. Of the two viral phenotypic traits measured, virulence increased in the novel host but decreased in the original one, and viral load decreased in both hosts, though to a lesser extent in the novel one. Dynamics of population genetic diversity were also markedly different among hosts. Population heterozygosity increased in the ancestral host, with a dominance of synonymous mutations fixed, whereas it did not change or even decreased in the new host, with an excess of nonsynonymous mutations. All together, these observations suggest that directional selection is the dominant evolutionary force in TEV populations evolving in a novel host whereas either diversifying selection or random genetic drift may play a fundamental role in the natural host. To better understand these evolutionary dynamics, we developed a computer simulation model that incorporates the effects of mutation, selection, and drift. Upon parameterization with empirical data from previous studies, model predictions matched the observed patterns, thus reinforcing our idea that the empirical patterns of mutation accumulation represent adaptive evolution. PMID:25660377

  17. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages.

    PubMed

    Jacques, Pierre-André; Artero, Vincent; Pécaut, Jacques; Fontecave, Marc

    2009-12-01

    Hydrogen production through the reduction of water appears to be a convenient solution for the long-run storage of renewable energies. However, economically viable hydrogen production requests platinum-free catalysts, because this expensive and scarce (only 37 ppb in the Earth's crust) metal is not a sustainable resource [Gordon RB, Bertram M, Graedel TE (2006) Proc Natl Acad Sci USA 103:1209-1214]. Here, we report on a new family of cobalt and nickel diimine-dioxime complexes as efficient and stable electrocatalysts for hydrogen evolution from acidic nonaqueous solutions with slightly lower overvoltages and much larger stabilities towards hydrolysis as compared to previously reported cobaloxime catalysts. A mechanistic study allowed us to determine that hydrogen evolution likely proceeds through a bimetallic homolytic pathway. The presence of a proton-exchanging site in the ligand, furthermore, provides an exquisite mechanism for tuning the electrocatalytic potential for hydrogen evolution of these compounds in response to variations of the acidity of the solution, a feature only reported for native hydrogenase enzymes so far. PMID:19948953

  18. Cobalt and nickel diimine-dioxime complexes as molecular electrocatalysts for hydrogen evolution with low overvoltages

    PubMed Central

    Jacques, Pierre-André; Artero, Vincent; Pécaut, Jacques; Fontecave, Marc

    2009-01-01

    Hydrogen production through the reduction of water appears to be a convenient solution for the long-run storage of renewable energies. However, economically viable hydrogen production requests platinum-free catalysts, because this expensive and scarce (only 37 ppb in the Earth's crust) metal is not a sustainable resource [Gordon RB, Bertram M, Graedel TE (2006) Proc Natl Acad Sci USA 103:1209–1214]. Here, we report on a new family of cobalt and nickel diimine-dioxime complexes as efficient and stable electrocatalysts for hydrogen evolution from acidic nonaqueous solutions with slightly lower overvoltages and much larger stabilities towards hydrolysis as compared to previously reported cobaloxime catalysts. A mechanistic study allowed us to determine that hydrogen evolution likely proceeds through a bimetallic homolytic pathway. The presence of a proton-exchanging site in the ligand, furthermore, provides an exquisite mechanism for tuning the electrocatalytic potential for hydrogen evolution of these compounds in response to variations of the acidity of the solution, a feature only reported for native hydrogenase enzymes so far. PMID:19948953

  19. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis.

    PubMed

    Liang, Ying; Yu, Youjian; Shen, Xiuping; Dong, Heng; Lyu, Meiling; Xu, Liai; Ma, Zhiming; Liu, Tingting; Cao, Jiashu

    2015-12-01

    Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches. PMID:26506823

  20. Nucleotide sequences of immunoglobulin eta genes of chimpanzee and orangutan: DNA molecular clock and hominoid evolution

    SciTech Connect

    Sakoyama, Y.; Hong, K.J.; Byun, S.M.; Hisajima, H.; Ueda, S.; Yaoita, Y.; Hayashida, H.; Miyata, T.; Honjo, T.

    1987-02-01

    To determine the phylogenetic relationships among hominoids and the dates of their divergence, the complete nucleotide sequences of the constant region of the immunoglobulin eta-chain (C/sub eta1/) genes from chimpanzee and orangutan have been determined. These sequences were compared with the human eta-chain constant-region sequence. A molecular clock (silent molecular clock), measured by the degree of sequence divergence at the synonymous (silent) positions of protein-encoding regions, was introduced for the present study. From the comparison of nucleotide sequences of ..cap alpha../sub 1/-antitrypsin and ..beta..- and delta-globulin genes between humans and Old World monkeys, the silent molecular clock was calibrated: the mean evolutionary rate of silent substitution was determined to be 1.56 x 10/sup -9/ substitutions per site per year. Using the silent molecular clock, the mean divergence dates of chimpanzee and orangutan from the human lineage were estimated as 6.4 +/- 2.6 million years and 17.3 +/- 4.5 million years, respectively. It was also shown that the evolutionary rate of primate genes is considerably slower than those of other mammalian genes.

  1. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  2. Autonomous Agents: The Origins and Co-Evolution of Reproducing Molecular Systems

    NASA Technical Reports Server (NTRS)

    Kauffman, Stuart

    1999-01-01

    The central aim of this award concerned an investigation into, and adequate formulation of, the concept of an "autonomous agent." If we consider a bacterium swimming upstream in a glucose gradient, we are willing to say of the bacterium that it is going to get food. That is, we are willing, and do, describe the bacterium as acting on its own behalf in an environment. All free living cells are, in this sense, autonomous agents. But the bacterium is "just" a set of molecules. We define an autonomous agent as a physical system able to act on its own behalf in an environment, then ask, "What must a physical system be to be an autonomous agent?" The tentative definition for a molecular autonomous agent is that it must be self-reproducing and carry out at least one thermodynamic work cycle. The work carried out in this grant involved, among other features, the development of a detailed model of a molecular autonomous agent, and study of the kinetics of this system. In particular, a molecular autonomous agent must, by the above tentative definition, not only reproduce, but must carry out at least one work cycle. I took, as a simple example of a self-reproducing molecular system, the single-stranded DNA hexamer 3'CCGCGG5' which can line up and ligate its two complementary trimers, 5'CCG3' and 5'CGG3'. But the two ligated trimers constitute the same molecular sequence in the 3' to 5' direction as the initial hexamer, hence this system is autocatalytic. On the other hand the above system is not yet an autonomous agent. At the minimum, autonomous agents, as I have defined them, are a new class of chemical reaction network. At a maximum, they may constitute a proper definition of life itself.

  3. Nanoscale switch based on interacting molecular dipoles: Cooperativity can improve the device characteristics

    NASA Astrophysics Data System (ADS)

    Mafé, , Salvador; Manzanares, , José A.; Reiss, Howard

    2011-02-01

    We propose a nanoscale switch, giving a nonlinear function with two conductive states separated by a sharp transition region, on the basis of an array of molecular dipoles. We show theoretically that the local interactions between dipoles result in cooperative phenomena that can significantly improve the switching characteristics. We demonstrate the general validity of the concept in the cases of (i) an electrical switch robust to the finite size and variability effects inherent to the nanoscale and (ii) a sensing layer based on the voltage and ligand concentration dependence of the dipole array conductance.

  4. Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves.

    PubMed

    Zhang, Aihua; Sun, Shouli; Komon, Zachary J A; Osterwalder, Neil; Gadewar, Sagar; Stoimenov, Peter; Auerbach, Daniel J; Stucky, Galen D; McFarland, Eric W

    2011-02-21

    As an alternative to the partial oxidation of methane to synthesis gas followed by methanol synthesis and the subsequent generation of olefins, we have studied the production of light olefins (ethylene and propylene) from the reaction of methyl bromide over various modified microporous silico-aluminophosphate molecular-sieve catalysts with an emphasis on SAPO-34. Some comparisons of methyl halides and methanol as reaction intermediates in their conversion to olefins are presented. Increasing the ratio of Si/Al and incorporation of Co into the catalyst framework improved the methyl bromide yield of light olefins over that obtained using standard SAPO-34. PMID:21203621

  5. Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life

    PubMed Central

    Faddeeva, A.; Studer, R. A.; Kraaijeveld, K.; Sie, D.; Ylstra, B.; Mariën, J.; op den Camp, H. J. M.; Datema, E.; den Dunnen, J. T.; van Straalen, N. M.; Roelofs, D.

    2015-01-01

    Background Collembola (springtails) represent a soil-living lineage of hexapods in between insects and crustaceans. Consequently, their genomes may hold key information on the early processes leading to evolution of Hexapoda from a crustacean ancestor. Method We assembled and annotated transcriptomes of the Collembola Folsomia candida and Orchesella cincta, and performed comparative analysis with protein-coding gene sequences of three crustaceans and three insects to identify adaptive signatures associated with the evolution of hexapods within the pancrustacean clade. Results Assembly of the springtail transcriptomes resulted in 37,730 transcripts with predicted open reading frames for F. candida and 32,154 for O. cincta, of which 34.2% were functionally annotated for F. candida and 38.4% for O. cincta. Subsequently, we predicted orthologous clusters among eight species and applied the branch-site test to detect episodic positive selection in the Hexapoda and Collembola lineages. A subset of 250 genes showed significant positive selection along the Hexapoda branch and 57 in the Collembola lineage. Gene Ontology categories enriched in these genes include metabolism, stress response (i.e. DNA repair, immune response), ion transport, ATP metabolism, regulation and development-related processes (i.e. eye development, neurological development). Conclusions We suggest that the identified gene families represent processes that have played a key role in the divergence of hexapods within the pancrustacean clade that eventually evolved into the most species-rich group of all animals, the hexapods. Furthermore, some adaptive signatures in collembolans may provide valuable clues to understand evolution of hexapods on land. PMID:26075903

  6. New Molecular Insight into Mechanism of Evolution of Mammalian Synthetic Prions.

    PubMed

    Makarava, Natallia; Savtchenko, Regina; Alexeeva, Irina; Rohwer, Robert G; Baskakov, Ilia V

    2016-04-01

    Previous studies established that transmissible prion diseases could be induced by in vitro-produced recombinant prion protein (PrP) fibrils with structures that are fundamentally different from that of authentic PrP scrapie isoform (PrP(Sc)). To explain evolution of synthetic prions, a new mechanism referred to as deformed templating was introduced. Here, we asked whether an increase in expression level of the cellular form of PrP (PrP(C)) speeds up the evolution of synthetic strains in vivo. We found that in transgenic mice that overexpress hamster PrP(C), PrP(C) overexpression accelerated recombinant PrP fibril-induced conversion of PrP(C) to the abnormal proteinase K-resistant state, referred to as atypical PrPres, which was the first product of PrP(C) misfolding in vivo. However, overexpression of PrP(C) did not facilitate the second step of synthetic strain evolution-transition from atypical PrPres to PrP(Sc), which is attributed to the stochastic nature of rare deformed templating events. In addition, the potential of atypical PrPres to interfere with replication of a short-incubation time prion strain was investigated. Atypical PrPres was found to interfere strongly with replication of 263K in vitro; however, it did not delay prion disease in animals. The rate of deformed templating does not depend on the concentration of substrate and is hence more likely to be controlled by the intrinsic rate of conformational errors in templating alternative self-propagating states. PMID:26873446

  7. Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates

    PubMed Central

    2008-01-01

    Background Many electron transport chain (ETC) genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains. Results In a dataset comprising 29 vertebrate taxa, including representatives from all major groups of primates, there is nearly 100% conservation of the COX5A amino acid sequence among extant, non-anthropoid placental mammals. The most recent common ancestor of these species lived about 100 million years (MY) ago. In contrast, anthropoid primates show markedly elevated rates of nonsynonymous evolution. In particular, branch site tests identify five positively selected codons in anthropoids, and ancestral reconstructions infer that substitutions in these codons occurred predominantly on stem lineages (anthropoid, ape and New World monkey) and on the human terminal branch. Examination of catarrhine brain samples by immunohistochemistry characterizes for the first time COX5A protein distribution in the primate neocortex, and suggests that the protein is most abundant in the mitochondria of large-size projection neurons. Real time quantitative PCR supports previous microarray results showing COX5A is expressed in cerebral cortical tissue at a higher level in human than in chimpanzee or gorilla. Conclusion Taken together, these results suggest that both protein structural and gene regulatory changes contributed to COX5A evolution during humankind's ancestry. Furthermore, these findings are consistent with the hypothesis that adaptations in ETC genes contributed to the emergence of the energetically expensive anthropoid neocortex. PMID:18197981

  8. Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Yongquan; Shen, Tong; Lu, Xionggang

    2013-03-01

    A structural evolution during solidification and melting processes of nanoparticle Fe9577 was investigated from MD simulations. A perfect lamellar structure, consisting alternately of fcc and hcp layers, was obtained from solidification process. A structural heredity of early embryo is proposed to explain the structural preference of solidification. Defects were found inside the solid core and play the same role as surface premelting on melting. hcp was found more stable than fcc in high temperature. The difference between melting and solidification points can be deduced coming fully from the overcoming of thermodynamic energy barrier, instead of kinetic delay of structural relaxation.

  9. Molecular Architecture and Evolution of a Modular Spider Silk Protein Gene

    NASA Astrophysics Data System (ADS)

    Hayashi, Cheryl Y.; Lewis, Randolph V.

    2000-02-01

    Spider flagelliform silk is one of the most elastic natural materials known. Extensive sequencing of spider silk genes has shown that the exons and introns of the flagelliform gene underwent intragenic concerted evolution. The intron sequences are more homogenized within a species than are the exons. This pattern can be explained by extreme mutation and recombination pressures on the internally repetitive exons. The iterated sequences within exons encode protein structures that are critical to the function of silks. Therefore, attributes that make silks exceptional biomaterials may also hinder the fixation of optimally adapted protein sequences.

  10. Cognitive neuroepigenetics: the next evolution in our understanding of the molecular mechanisms underlying learning and memory?

    PubMed Central

    Marshall, Paul; Bredy, Timothy W.

    2016-01-01

    A complete understanding of the fundamental mechanisms of learning and memory continues to elude neuroscientists. Although many important discoveries have been made, the question of how memories are encoded and maintained at the molecular level remains. To date, this issue has been framed within the context of one of the most dominant concepts in molecular biology, the central dogma, and the result has been a protein-centric view of memory. Here we discuss the evidence supporting a role for neuroepigenetic mechanisms, which constitute dynamic and reversible, state-dependent modifications at all levels of control over cellular function, and their role in learning and memory. This neuroepigenetic view suggests that DNA, RNA and protein each influence one another to produce a holistic cellular state that contributes to the formation and maintenance of memory, and predicts a parallel and distributed system for the consolidation, storage and retrieval of the engram. PMID:27512601

  11. Molecular Dynamics Simulations of the Time Evolution of Irradiation Induced Defects

    SciTech Connect

    Sopu, Daniel; Girtu, Mihai A.

    2007-04-23

    We present here molecular dynamics simulations of collision cascades in various metals irradiated with ions having the initial kinetic energy of 500 eV. We find that although during the collision cascade some regions of the sample become amorphous, after the thermal spike, the crystal starts to recrystallize. The multiple vacancy clusters tend to break into smaller fragments and to migrate towards the surface, leaving behind only a small number of defects.

  12. A multilocus timescale for oomycete evolution estimated under three distinct molecular clock models

    PubMed Central

    2014-01-01

    Background Molecular clock methodologies allow for the estimation of divergence times across a variety of organisms; this can be particularly useful for groups lacking robust fossil histories, such as microbial eukaryotes with few distinguishing morphological traits. Here we have used a Bayesian molecular clock method under three distinct clock models to estimate divergence times within oomycetes, a group of fungal-like eukaryotes that are ubiquitous in the environment and include a number of devastating pathogenic species. The earliest fossil evidence for oomycetes comes from the Lower Devonian (~400 Ma), however the taxonomic affinities of these fossils are unclear. Results Complete genome sequences were used to identify orthologous proteins among oomycetes, diatoms, and a brown alga, with a focus on conserved regulators of gene expression such as DNA and histone modifiers and transcription factors. Our molecular clock estimates place the origin of oomycetes by at least the mid-Paleozoic (~430-400 Ma), with the divergence between two major lineages, the peronosporaleans and saprolegnialeans, in the early Mesozoic (~225-190 Ma). Divergence times estimated under the three clock models were similar, although only the strict and random local clock models produced reliable estimates for most parameters. Conclusions Our molecular timescale suggests that modern pathogenic oomycetes diverged well after the origin of their respective hosts, indicating that environmental conditions or perhaps horizontal gene transfer events, rather than host availability, may have driven lineage diversification. Our findings also suggest that the last common ancestor of oomycetes possessed a full complement of eukaryotic regulatory proteins, including those involved in histone modification, RNA interference, and tRNA and rRNA methylation; interestingly no match to canonical DNA methyltransferases could be identified in the oomycete genomes studied here. PMID:24884411

  13. Observational Approach to Molecular Cloud Evolutation with the Submillimeter-Wave CI Lines

    NASA Astrophysics Data System (ADS)

    Oka, T.; Yamamoto, S.

    Neutral carbon atoms (CI) play important roles both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to obtain information on formation processes and thermal balance of molecular clouds. However, observations of the submillimeter-wave CI lines have been limited to small areas around some representative objects. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter-wave CI lines, 3 P1 -3 P0 (492GHz) and 3 P2 -3 P1 (809 GHz), of atomic carbon. A superconductor-insulator-superconductor (SIS) mixer receiver was equipped on the Nasmyth focus of the telescope. The receiver noise temperatures [Trx(DSB)] are 300 K and 1000 K for the 492 GHz and the 809 GHz mixers, respectively. The intermediate frequency is centered at 2 GHz, having a 700 MHz bandwidth. An acousto-optical spectrometer (AOS) with 1024 channel outputs is used as a receiver backend. The telescope was installed at Nishi-yasugawara (alt. 3725 m), which is 200 m north of the highest peak, Kengamine (3776 m), in July 1998. It has b en operatede successfully during 4 observing seasons in a remote way from the Hongo campus of the University of Tokyo. We have already observed more than 40 square degrees of the sky with the CI 492 GHz line. The distribution of CI emission is found to be different from those of the 13 CO or C1 8 O emission in some clouds. These differences are discussed in relation to formation processes of molecular clouds.

  14. Improving the sampling efficiency of Monte Carlo molecular simulations: an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Leblanc, Benoit; Braunschweig, Bertrand; Toulhoat, Hervé; Lutton, Evelyne

    We present a new approach in order to improve the convergence of Monte Carlo (MC) simulations of molecular systems belonging to complex energetic landscapes: the problem is redefined in terms of the dynamic allocation of MC move frequencies depending on their past efficiency, measured with respect to a relevant sampling criterion. We introduce various empirical criteria with the aim of accounting for the proper convergence in phase space sampling. The dynamic allocation is performed over parallel simulations by means of a new evolutionary algorithm involving 'immortal' individuals. The method is bench marked with respect to conventional procedures on a model for melt linear polyethylene. We record significant improvement in sampling efficiencies, thus in computational load, while the optimal sets of move frequencies are liable to allow interesting physical insights into the particular systems simulated. This last aspect should provide a new tool for designing more efficient new MC moves.

  15. Precision genetic modifications: a new era in molecular biology and crop improvement.

    PubMed

    Fichtner, Franziska; Urrea Castellanos, Reynel; Ülker, Bekir

    2014-04-01

    Recently, the use of programmable DNA-binding proteins such as ZFP/ZFNs, TALE/TALENs and CRISPR/Cas has produced unprecedented advances in gene targeting and genome editing in prokaryotes and eukaryotes. These advances allow researchers to specifically alter genes, reprogram epigenetic marks, generate site-specific deletions and potentially cure diseases. Unlike previous methods, these precision genetic modification techniques (PGMs) are specific, efficient, easy to use and economical. Here we discuss the capabilities and pitfalls of PGMs and highlight the recent, exciting applications of PGMs in molecular biology and crop genetic engineering. Further improvement of the efficiency and precision of PGM techniques will enable researchers to precisely alter gene expression and biological/chemical pathways, probe gene function, modify epigenetic marks and improve crops by increasing yield, quality and tolerance to limiting biotic and abiotic stress conditions. PMID:24510124

  16. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    PubMed

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  17. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae.

    PubMed

    Diaz, Maureen H; Winchell, Jonas M

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen. PMID:27014191

  18. The Evolution of Advanced Molecular Diagnostics for the Detection and Characterization of Mycoplasma pneumoniae

    PubMed Central

    Diaz, Maureen H.; Winchell, Jonas M.

    2016-01-01

    Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen. PMID:27014191

  19. Oldest cingulate skulls provide congruence between morphological and molecular scenarios of armadillo evolution

    PubMed Central

    Billet, Guillaume; Hautier, Lionel; de Muizon, Christian; Valentin, Xavier

    2011-01-01

    The cingulates of the mammalian order Xenarthra present a typical case of disagreement between molecular and morphological phylogenetic studies. We report here the discovery of two new skulls from the Late Oligocene Salla Beds of Bolivia (approx. 26 Ma), which are the oldest known well-preserved cranial remains of the group. A new taxon is described: Kuntinaru boliviensis gen. et sp. nov. A phylogenetic analysis clusters K. boliviensis together with the armadillo subfamily Tolypeutinae. These skulls document an early spotty occurrence for the Tolypeutinae at 26 Ma, in agreement with the temporal predictions of previous molecular studies. The fossil record of tolypeutines is now characterized by a unique occurrence in the Late Oligocene, and a subsequent 12 Myr lack in the fossil record. It is noteworthy that the tolypeutines remain decidedly marginal in the Late Palaeogene and Early Neogene deposits, whereas other cingulate groups diversify. Also, the anatomical phylogenetic analysis herein, which includes K. boliviensis, is congruent with recent molecular phylogenetic analyses. Kuntinaru boliviensis is the oldest confident calibration point available for the whole Cingulata. PMID:21288952

  20. Molecular and regulatory properties of a public good shape the evolution of cooperation

    PubMed Central

    Kümmerli, Rolf; Brown, Sam P.

    2010-01-01

    Public goods cooperation abounds in nature, occurring in organisms ranging from bacteria to humans. Although previous research focused on the behavioral and ecological conditions favoring cooperation, the question of whether the molecular and regulatory properties of the public good itself can influence selection for cooperation has received little attention. Using a metapopulation model, we show that extended molecular durability of a public good—allowing multiple reuse across generations—greatly reduces selection for cheating if (and only if) the production of the public good is facultatively regulated. To test the apparent synergy between public goods durability and facultative regulation, we examined the production of iron-scavenging pyoverdin molecules by the bacterium Pseudomonas aeruginosa, a cooperative behavior that is facultatively regulated in response to iron availability. We show that pyoverdin is a very durable public good and that extended durability significantly enhances fitness. Consistent with our model, we found that nonsiderophore-producing mutants (cheats) had a relative fitness advantage over siderophore producers (cooperators) when pyoverdin durability was low but not when durability was high. This was because cooperators facultatively reduced their investment in pyoverdin production when enough pyoverdin had accumulated in the media—a cost-saving strategy that minimized the ability of cheats to invade. These findings show how molecular properties of cooperative acts can shape the costs and benefits of cooperation. PMID:20944065

  1. Molecular simulation of AG nanoparticle nucleation from solution: redox-reactions direct the evolution of shape and structure.

    PubMed

    Milek, Theodor; Zahn, Dirk

    2014-08-13

    The association of Ag(+) ions and the early stage of Ag nanoparticle nucleation are investigated from molecular dynamics simulations. Combining special techniques for tackling crystal nucleation from solution with efficient approaches to model redox-reactions, we unravel the structural evolution of forming silver nanoparticles as a function of the redox-potential in the solution. Within a range of only 1 eV, the redox-potential is demonstrated to have a drastic effect on both the inner structure and the overall shape of the forming particles. On the basis of our simulations we identify surface charge and its distribution as an atomic scale mechanism that accounts for creating/avoiding 5-fold coordination polyhedra and thus the degree of (multiple)-twinning in silver nanoparticles. PMID:25078975

  2. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity.

    PubMed

    Royce, Liam A; Yoon, Jong Moon; Chen, Yingxi; Rickenbach, Emily; Shanks, Jacqueline V; Jarboe, Laura R

    2015-05-01

    Carboxylic acids are an attractive biorenewable chemical, but as with many biorenewables, their toxicity to microbial biocatalysts limits their fermentative production. While it is generally accepted that membrane damage is the main mechanism of fatty acid toxicity, previous metabolic engineering efforts that increased membrane integrity did not enable increased carboxylic acid production. Here we used an evolutionary approach to improve tolerance to exogenous octanoic acid, with the goal of learning design strategies from this evolved strain. This evolution of an Escherichia coli MG1655 derivative at neutral pH in minimal media produced a strain with increased tolerance not only to octanoic acid, but also to hexanoic acid, decanoic acid, n-butanol and isobutanol. This evolved strain also produced carboxylic acids at a 5-fold higher titer than its parent strain when expressing the Anaerococcus tetradius thioesterase. While it has been previously suggested that intracellular acidification may contribute to carboxylic acid toxicity, we saw no evidence that the evolved strain has increased resistance to this acidification. Characterization of the evolved strain membrane showed that it had significantly altered membrane polarization (fluidity), integrity (leakage) and composition relative to its parent. The changes in membrane composition included a significant increase in average lipid length in a variety of growth conditions, including 30°C, 42°C, carboxylic acid challenge and ethanol challenge. The evolved strain has a more dynamic membrane composition, showing both a larger number of significant changes and larger fold changes in the relative abundance of membrane lipids. These results highlight the importance of the cell membrane in increasing microbial tolerance and production of biorenewable fuels and chemicals. PMID:25839166

  3. Conserved or lost: molecular evolution of the key gene GULO in vertebrate vitamin C biosynthesis.

    PubMed

    Yang, Hongwen

    2013-06-01

    L-gulono-gamma-lactone oxidase (GULO) catalyzes the final step in vertebrate vitamin C biosynthesis. Vitamin C-incapable vertebrates lack the GULO gene. Gene structure and phylogenetic analyses showed that vertebrate GULO genes are 64-95% identical at the amino acid level and consist of 11 conserved exons. GULO pseudogenes have multiple indel mutations and premature stop codons in higher primates, guinea pigs, and some bats. No GULO-like sequences were identified in teleost fishes. During animal GULO evolution, exon F was subdivided into F1 and F2. Additional GULO retropseudogenes were identified in dogs, cats, and giant pandas. GULO-flanking genome regions acquired frequent segment translocations and inversions during vertebrate evolution. Purifying selection was detected across vertebrate GULO genes (d(N)/d(S) = 0.069), except for some positively selected sites identified in sharks and frogs. These positive sites demonstrated little functional significance when mapped onto the three-dimensional GULO protein structure. Vertebrate GULO genes are conserved except for those that are lost. PMID:23404229

  4. Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives.

    PubMed Central

    Kuratani, S; Nobusada, Y; Horigome, N; Shigetani, Y

    2001-01-01

    Evolution of the vertebrate jaw has been reviewed and discussed based on the developmental pattern of the Japanese marine lamprey, Lampetra japonica. Though it never forms a jointed jaw apparatus, the L. japonica embryo exhibits the typical embryonic structure as well as the conserved regulatory gene expression patterns of vertebrates. The lamprey therefore shares the phylotype of vertebrates, the conserved embryonic pattern that appears at pharyngula stage, rather than representing an intermediate evolutionary state. Both gnathostomes and lampreys exhibit a tripartite configuration of the rostral-most crest-derived ectomesenchyme, each part occupying an anatomically equivalent site. Differentiated oral structure becomes apparent in post-pharyngula development. Due to the solid nasohypophyseal plate, the post-optic ectomesenchyme of the lamprey fails to grow rostromedially to form the medial nasal septum as in gnathostomes, but forms the upper lip instead. The gnathostome jaw may thus have arisen through a process of ontogenetic repatterning, in which a heterotopic shift of mesenchyme-epithelial relationships would have been involved. Further identification of shifts in tissue interaction and expression of regulatory genes are necessary to describe the evolution of the jaw fully from the standpoint of evolutionary developmental biology. PMID:11604127

  5. Biomedical applications and studies of molecular evolution: a proposal for a primate genomic library resource.

    PubMed

    Eichler, Evan E; DeJong, Pieter J

    2002-05-01

    The anticipated completion of two of the most biomedically relevant genomes, mouse and human, within the next three years provides an unparalleled opportunity for the large-scale exploration of genome evolution. Targeted sequencing of genomic regions in a panel of primate species and comparison to reference genomes will provide critical insight into the nature of single-base pair variation, mechanisms of chromosomal rearrangement, patterns of selection, and species adaptation. Although not recognized as model "genetic organisms" because of their longevity and low fecundity, 30 of the approximately 300 primate species are targets of biomedical research. The existence of a human reference sequence and genomic primate BAC libraries greatly facilitates the recovery of genes/genomic regions of high biological interest because of an estimated maximum neutral nucleotide sequence divergence of 25%. Primate species, therefore, may be regarded as the ideal model "genomic organisms". Based on existing BAC library resources, we propose the construction of a panel of primate BAC libraries from phylogenetic anchor species for the purpose of comparative medicine as well as studies of genome evolution. PMID:11997334

  6. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution.

    PubMed

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F Alex; Lemke, Cornelia; Tong, Eric J; Chen, Cuixia; Wai, Ching Man; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray

    2012-08-21

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y(h)). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y(h) chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y(h) chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  7. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution

    PubMed Central

    Wang, Jianping; Na, Jong-Kuk; Yu, Qingyi; Gschwend, Andrea R.; Han, Jennifer; Zeng, Fanchang; Aryal, Rishi; VanBuren, Robert; Murray, Jan E.; Zhang, Wenli; Navajas-Pérez, Rafael; Feltus, F. Alex; Lemke, Cornelia; Tong, Eric J.; Chen, Cuixia; Man Wai, Ching; Singh, Ratnesh; Wang, Ming-Li; Min, Xiang Jia; Alam, Maqsudul; Charlesworth, Deborah; Moore, Paul H.; Jiang, Jiming; Paterson, Andrew H.; Ming, Ray

    2012-01-01

    Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Yh). To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Yh chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Yh chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution. PMID:22869747

  8. Selection by differential molecular survival: a possible mechanism of early chemical evolution.

    PubMed Central

    de Duve, C

    1987-01-01

    A model is proposed to account for selective chemical evolution, progressing from a relatively simple initial set of abiotic synthetic phenomena up to the elaborately sophisticated processes that are almost certainly required to produce the complex molecules, such as replicatable RNA-like oligonucleotides, needed for a Darwinian form of selection to start operating. The model makes the following assumptions: (i) that a small number of micromolecular substances were present at high concentration; (ii) that a random assembly mechanism combined these molecules into a variety of multimeric compounds comprising a wide repertoire of rudimentary catalytic activities; and (iii) that a lytic system capable of breaking down the assembled products existed. The model assumes further that catalysts supplied with substrates were significantly protected against breakdown. It is shown that, by granting these assumptions, an increasingly complex network of metabolic pathways would progressively be established. At the same time, the catalysts concerned would accumulate selectively to become choice substrates for elongation and other modifications that could enhance their efficiency, as well as their survival. Chemical evolution would thus proceed by a dual process of metabolic extension and catalytic innovation. Such a process should be largely deterministic and predictable from initial conditions. PMID:3479788

  9. The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites.

    PubMed

    Van Leeuwen, Thomas; Dermauw, Wannes

    2016-03-11

    Chelicerate mites diverged from other arthropod lineages more than 400 million years ago and subsequently developed specific and remarkable xenobiotic adaptations. The study of the two-spotted spider mite, Tetranychus urticae, for which a high-quality Sanger-sequenced genome was first available, revealed expansions and radiations in all major detoxification gene families, including P450 monooxygenases, carboxyl/cholinesterases, glutathione-S-transferases, and ATP-binding cassette transporters. Novel gene families that are not well studied in other arthropods, such as major facilitator family transporters and lipocalins, also reflect the evolution of xenobiotic adaptation. The acquisition of genes by horizontal gene transfer provided new routes to handle toxins, for example, the β-cyanoalanine synthase enzyme that metabolizes cyanide. The availability of genomic resources for other mite species has allowed researchers to study the lineage specificity of these gene family expansions and the distinct evolution of genes involved in xenobiotic metabolism in mites. Genome-based tools have been crucial in supporting the idiosyncrasies of mite detoxification and will further support the expanding field of mite-plant interactions. PMID:26982444

  10. The molecular evolution of terminal ear1, a regulatory gene in the genus Zea.

    PubMed Central

    White, S E; Doebley, J F

    1999-01-01

    Nucleotide diversity in the terminal ear1 (te1) gene, a regulatory locus hypothesized to be involved in the morphological evolution of maize (Zea mays ssp. mays), was investigated for evidence of past selection. Nucleotide polymorphism in a 1.4-kb region of te1 was analyzed for a sample of 26 sequences isolated from 12 maize lines, five populations of the maize progenitor, Z. mays ssp. parviglumis, six other Zea populations, and two Tripsacum species. Although nucleotide diversity in te1 in maize is reduced relative to ssp. parviglumis, phylogenetic and statistical analyses of the pattern of polymorphism among these sequences provided no evidence of past selection, indicating that the region of the gene studied was probably not involved in maize evolution. The level of reduction in genetic diversity in te1 in maize relative to its progenitor is comparable to that found in previous reports for isozymes and other neutrally evolving maize genes and is consistent with a genome-wide reduction of genetic diversity resulting from a domestication bottleneck. An estimate of the age (1.2-1.4 million yr) of the maize gene pool based on te1 is roughly consistent with previous estimates based on other neutral genes, but may be biased by the apparently slow synonymous substitution rate at te1. PMID:10545473

  11. Slow molecular evolution in 18S rDNA, rbcL and nad5 genes of mosses compared with higher plants.

    PubMed

    Stenøien, H K

    2008-03-01

    The evolutionary potential of bryophytes (mosses, liverworts and hornworts) has been debated for decades. Fossil record and biogeographical distribution patterns suggest very slow morphological evolution and the retainment of several ancient traits since the split with vascular plants some 450 million years ago. Many have argued that bryophytes may evolve as rapidly as higher plants on the molecular level, but this hypothesis has not been tested so far. Here, it is shown that mosses have experienced significantly lower rates of molecular evolution than higher plants within 18S rDNA (nuclear), rbcL (chloroplast) and nad5 (mitochondrial) genes. Mosses are on an average evolving 2-3 times slower than ferns, gymnosperms and angiosperms; and also green algae seem to be evolving faster than nonvascular plants. These results support the observation of a general correlation between morphological and molecular evolutionary rates in plants and also show that mosses are 'evolutionary sphinxes' regarding both morphological and molecular evolutionary potential. PMID:18205784

  12. Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever

    PubMed Central

    Walker, Jay B.; Sytsma, Kenneth J.

    2007-01-01

    Background and Aims The genus Salvia has traditionally included any member of the tribe Mentheae (Lamiaceae) with only two stamens and with each stamen expressing an elongate connective. The recent demonstration of the non-monophyly of the genus presents interesting implications for staminal evolution in the tribe Mentheae. In the context of a molecular phylogeny, the staminal morphology of the various lineages of Salvia and related genera is characterized and an evolutionary interpretation of staminal variation within the tribe Mentheae is presented. Methods Two molecular analyses are presented in order to investigate phylogenetic relationships in the tribe Mentheae and the genus Salvia. The first presents a tribal survey of the Mentheae and the second concentrates on Salvia and related genera. Schematic sketches are presented for the staminal morphology of each major lineage of Salvia and related genera. Key Results These analyses suggest an independent origin of the staminal elongate connective on at least three different occasions within the tribe Mentheae, each time with a distinct morphology. Each independent origin of the lever mechanism shows a similar progression of staminal change from slight elongation of the connective tissue separating two fertile thecae to abortion of the posterior thecae and fusion of adjacent posterior thecae. A monophyletic lineage within the Mentheae is characterized consisting of the genera Lepechinia, Melissa, Salvia, Dorystaechas, Meriandra, Zhumeria, Perovskia and Rosmarinus. Conclusions Based on these results the following are characterized: (1) the independent origin of the staminal lever mechanism on at least three different occasions in Salvia, (2) that Salvia is clearly polyphyletic, with five other genera intercalated within it, and (3) staminal evolution has proceeded in different ways in each of the three lineages of Salvia but has resulted in remarkably similar staminal morphologies. PMID:16926227

  13. Molecular phylogeny and chromosome evolution among the creeping herbaceous Oxalis species of sections Corniculatae and Ripariae (Oxalidaceae).

    PubMed

    Vaio, M; Gardner, A; Emshwiller, E; Guerra, M

    2013-08-01

    Oxalis sections Corniculatae DC. and Ripariae Lourteig are composed mainly of creeping herbs. They not only share strong morphological similarities, such as the presence of a reptant stem but also some cytogenetic characteristics. Several species in section Corniculatae share a base chromosome number x=5 with species in section Ripariae, while other species in the former have a x=6. We used a molecular and cytogenetic approach to determine the phylogenetic relationships, test the previous taxonomic classification and study the genome rearrangements that led to the differences in chromosome size and basic chromosome number between both sections. Phylogenetic relationships were inferred based on DNA sequences from chloroplast and nuclear ribosomal ITS. The molecular phylogenetic analyses found that neither of the sections are monophyletic, but do support two clades. The first group contains diploid species with x=5, large chromosomes and high DNA content and the second diploid and polyploidy species with x=6, small chromosomes and low DNA content. The x=5 clade comprises species of both sections, while the x=6 clade was formed mainly by section Corniculatae species and O. serpens from section Ripariae. Our results suggest that x=5 and high DNA content are derived conditions, which may have resulted from descendent disploidy and proliferation of transposable elements. Thus, cytogenetic data superimposed on the phylogeny have shown two different modes of chromosome evolution in both lineages: (1) chromosome rearrangements and increase in genome size in the x=5 lineage and (2) polyploidy playing the main role in chromosome evolution among species in the x=6 species. A taxonomic revision for the two sections is suggested. PMID:23562801

  14. Co-Evolution of Somatic Variation in Primary and Metastatic Colorectal Cancer May Expand Biopsy Indications in the Molecular Era

    PubMed Central

    Kim, Richard; Schell, Michael J.; Teer, Jamie K.; Greenawalt, Danielle M.; Yang, Mingli; Yeatman, Timothy J.

    2015-01-01

    Introduction Metastasis is thought to be a clonal event whereby a single cell initiates the development of a new tumor at a distant site. However the degree to which primary and metastatic tumors differ on a molecular level remains unclear. To further evaluate these concepts, we used next generation sequencing (NGS) to assess the molecular composition of paired primary and metastatic colorectal cancer tissue specimens. Methods 468 colorectal tumor samples from a large personalized medicine initiative were assessed by targeted gene sequencing of 1,321 individual genes. Eighteen patients produced genomic profiles for 17 paired primary:metastatic (and 2 metastatic:metastatic) specimens. Results An average of 33.3 mutations/tumor were concordant (shared) between matched samples, including common well-known genes (APC, KRAS, TP53). An average of 2.3 mutations/tumor were discordant (unshared) among paired sites. KRAS mutational status was always concordant. The overall concordance rate for mutations was 93.5%; however, nearly all (18/19 (94.7%)) paired tumors showed at least one mutational discordance. Mutations were seen in: TTN, the largest gene (5 discordant pairs), ADAMTS20, APC, MACF1, RASA1, TP53, and WNT2 (2 discordant pairs), SMAD2, SMAD3, SMAD4, FBXW7, and 66 others (1 discordant pair). Conclusions Whereas primary and metastatic tumors displayed little variance overall, co-evolution produced incremental mutations in both. These results suggest that while biopsy of the primary tumor alone is likely sufficient in the chemotherapy-naïve patient, additional biopsies of primary or metastatic disease may be necessary to precisely tailor therapy following chemotherapy resistance or insensitivity in order to adequately account for tumor evolution. PMID:25974029

  15. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  16. Improvement on Fermionic properties and new isotope production in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Wu, Tong; Zeng, Jie; Yang, Yongxu; Ou, Li

    2016-06-01

    By considering momentum transfer in the Fermi constraint procedure, the stability of the initial nuclei and fragments produced in heavy-ion collisions can be further improved in quantum molecular dynamics simulations. The case of a phase-space occupation probability larger than one is effectively reduced with the proposed procedure. Simultaneously, the energy conservation can be better described for both individual nuclei and heavy-ion reactions. With the revised version of the improved quantum molecular dynamics model, the fusion excitation functions of 16O+186W and the central collisions of Au+Au at 35 AMeV are re-examined. The fusion cross sections at sub-barrier energies and the charge distribution of fragments are relatively better reproduced due to the reduction of spurious nucleon emission. The charge and isotope distribution of fragments in Xe+Sn, U+U and Zr+Sn at intermediate energies are also predicted. More unmeasured extremely neutron-rich fragments with Z = 16–28 are observed in the central collisions of 238U+238U than that of 96Zr+124Sn, which indicates that multi-fragmentation of U+U may offer a fruitful pathway to new neutron-rich isotopes.

  17. Thermal evolution and sintering of chondritic planetesimals. II. Improved treatment of the compaction process

    NASA Astrophysics Data System (ADS)

    Gail, Hans-Peter; Henke, Stephan; Trieloff, Mario

    2015-04-01

    calculating compaction to the evolution of the parent body of the H chondrites and determine an improved optimised set of model parameters for this body. Conclusions: Appendices are available in electronic form at http://www.aanda.org

  18. An improved approach for predicting drug-target interaction: proteochemometrics to molecular docking.

    PubMed

    Shaikh, Naeem; Sharma, Mahesh; Garg, Prabha

    2016-02-23

    Proteochemometric (PCM) methods, which use descriptors of both the interacting species, i.e. drug and the target, are being successfully employed for the prediction of drug-target interactions (DTI). However, unavailability of non-interacting dataset and determining the applicability domain (AD) of model are a main concern in PCM modeling. In the present study, traditional PCM modeling was improved by devising novel methodologies for reliable negative dataset generation and fingerprint based AD analysis. In addition, various types of descriptors and classifiers were evaluated for their performance. The Random Forest and Support Vector Machine models outperformed the other classifiers (accuracies >98% and >89% for 10-fold cross validation and external validation, respectively). The type of protein descriptors had negligible effect on the developed models, encouraging the use of sequence-based descriptors over the structure-based descriptors. To establish the practical utility of built models, targets were predicted for approved anticancer drugs of natural origin. The molecular recognition interactions between the predicted drug-target pair were quantified with the help of a reverse molecular docking approach. The majority of predicted targets are known for anticancer therapy. These results thus correlate well with anticancer potential of the selected drugs. Interestingly, out of all predicted DTIs, thirty were found to be reported in the ChEMBL database, further validating the adopted methodology. The outcome of this study suggests that the proposed approach, involving use of the improved PCM methodology and molecular docking, can be successfully employed to elucidate the intricate mode of action for drug molecules as well as repositioning them for new therapeutic applications. PMID:26822863

  19. Evolution and molecular epidemiology of classical swine fever virus during a multi-annual outbreak amongst European wild boar.

    PubMed

    Goller, Katja V; Gabriel, Claudia; Dimna, Mireille Le; Le Potier, Marie-Frédérique; Rossi, Sophie; Staubach, Christoph; Merboth, Matthias; Beer, Martin; Blome, Sandra

    2016-03-01

    Classical swine fever is a viral disease of pigs that carries tremendous socio-economic impact. In outbreak situations, genetic typing is carried out for the purpose of molecular epidemiology in both domestic pigs and wild boar. These analyses are usually based on harmonized partial sequences. However, for high-resolution analyses towards the understanding of genetic variability and virus evolution, full-genome sequences are more appropriate. In this study, a unique set of representative virus strains was investigated that was collected during an outbreak in French free-ranging wild boar in the Vosges-du-Nord mountains between 2003 and 2007. Comparative sequence and evolutionary analyses of the nearly full-length sequences showed only slow evolution of classical swine fever virus strains over the years and no impact of vaccination on mutation rates. However, substitution rates varied amongst protein genes; furthermore, a spatial and temporal pattern could be observed whereby two separate clusters were formed that coincided with physical barriers. PMID:26684209

  20. A reappraisal of the evolution of Asian snakehead fishes (Pisces, Channidae) using molecular data from multiple genes and fossil calibration.

    PubMed

    Adamson, Eleanor A S; Hurwood, David A; Mather, Peter B

    2010-08-01

    Freshwater snakehead fishes (Channidae) provide an interesting target for phylogenetic analysis for the following reasons, their unusual biology, potential for cryptic diversity and availability of a good fossil record. Here, a multi-locus molecular phylogeny was constructed and calibrated using two fossil dates to estimate divergence times within the family. Sampling aimed to explore interspecific divergence of Channa species across Southeast Asia and intra-specific variation where species possessed natural geographical ranges that were extensive. Results contradict divergence times estimated previously independently from single locus mitochondrial data or the fossil record and suggest that after divergence from African taxa 40-50 Ma, evolution of Asian snakeheads has been heavily influenced by multiple broad scale dispersal events across India and Southeast Asia. A similar pattern of divergence within multiple clades suggests that west-east dispersal was limited for many taxa during the Miocene. Deep intra-specific divergence was inferred for C. striata, indicating that long historical periods of isolation ( approximately 8Ma) have not resulted in the evolution of reproductive isolation within this species. Results support suggestions that C. marulia like fishes in northern Cambodia may constitute an undescribed species, and that Indian C. diplogramma warrants taxonomic recognition as being distinct from Southeast Asian C. micropeltes, with the two taxa last sharing a common ancestor in the mid- to late-Miocene. PMID:20359539

  1. Hydrogen evolution from formic acid in an ionic liquid solvent: a mechanistic study by ab initio molecular dynamics.

    PubMed

    Bhargava, B L; Yasaka, Yoshiro; Klein, Michael L

    2011-12-01

    The reversible decomposition of formic acid (HCOOH ⇌ CO(2) + H(2)) has been attracting attention for its potential utility in hydrogen storage and production. It is therefore of interest to explore the influence of solvents on the decomposition reaction. To this end, Born-Oppenheimer (BO) molecular dynamics (MD) calculations have been performed to explore the mechanism involved in hydrogen (H(2)) evolution from formic acid decomposition in an ionic liquid solvent. Specifically, for a solvent consisting of 1,3-dimethylimidazolium cations and formate anions, evolution of hydrogen (H(2)) and carbon dioxide (CO(2)) was observed within a few picoseconds when BO-MD trajectories were carried out at an elevated temperature of 3000 K. The observed dehydrogenation involved a reaction between a formic acid solute and a nearby so