Science.gov

Sample records for molecular evolutionary mechanisms

  1. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    PubMed Central

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  2. Evolutionary Mechanisms for Loneliness

    PubMed Central

    Cacioppo, John T.; Cacioppo, Stephanie; Boomsma, Dorret I.

    2013-01-01

    Robert Weiss (1973) conceptualized loneliness as perceived social isolation, which he described as a gnawing, chronic disease without redeeming features. On the scale of everyday life, it is understandable how something as personally aversive as loneliness could be regarded as a blight on human existence. However, evolutionary time and evolutionary forces operate at such a different scale of organization than we experience in everyday life that personal experience is not sufficient to understand the role of loneliness in human existence. Research over the past decade suggests a very different view of loneliness than suggested by personal experience, one in which loneliness serves a variety of adaptive functions in specific habitats. We review evidence on the heritability of loneliness and outline an evolutionary theory of loneliness, with an emphasis on its potential adaptive value in an evolutionary timescale. PMID:24067110

  3. Evolutionary mechanisms for establishing eukaryotic cellular complexity.

    PubMed

    Mast, Fred D; Barlow, Lael D; Rachubinski, Richard A; Dacks, Joel B

    2014-07-01

    Through a comparative approach, evolutionary cell biology makes use of genomics, bioinformatics, and cell biology of non-model eukaryotes to provide new avenues for understanding basic cellular processes. This approach has led to proposed mechanisms underpinning the evolution of eukaryotic cellular organization including endosymbiotic and autogenous processes and neutral and adaptive processes. Together these mechanisms have contributed to the genesis and complexity of organelles, molecular machines, and genome architecture. We review these mechanisms and suggest that a greater appreciation of the diversity in eukaryotic form has led to a more complete understanding of the evolutionary connections between organelles and the unexpected routes by which this diversity has been reached. PMID:24656655

  4. Investigating Evolutionary Questions Using Online Molecular Databases.

    ERIC Educational Resources Information Center

    Puterbaugh, Mary N.; Burleigh, J. Gordon

    2001-01-01

    Recommends using online molecular databases as teaching tools to illustrate evolutionary questions and concepts while introducing students to public molecular databases. Provides activities in which students make molecular comparisons between species. (YDS)

  5. Evolutionary mechanism unifies the hallmarks of cancer.

    PubMed

    Horne, Steven D; Pollick, Sarah A; Heng, Henry H Q

    2015-05-01

    The basis for the gene mutation theory of cancer that dominates current molecular cancer research consists of: the belief that gene-level aberrations such as mutations are the main cause of cancers, the concept that stepwise gene mutation accumulation drives cancer progression, and the hallmarks of cancer. The research community swiftly embraced the hallmarks of cancer, as such synthesis has supported the notions that common cancer genes are responsible for the majority of cancers and the complexity of cancer can be dissected into simplified molecular principles. The gene/pathway classification based on individual hallmarks provides explanation for the large number of diverse gene mutations, which is in contrast to the original estimation that only a handful of gene mutations would be discovered. Further, these hallmarks have been highly influential as they also provide the rationale and research direction for continued gene-based cancer research. While the molecular knowledge of these hallmarks is drastically increasing, the clinical implication remains limited, as cancer dynamics cannot be summarized by a few isolated/fixed molecular principles. Furthermore, the highly heterogeneous genetic signature of cancers, including massive stochastic genome alterations, challenges the utility of continuously studying each individual gene mutation under the framework of these hallmarks. It is therefore necessary to re-evaluate the concept of cancer hallmarks through the lens of cancer evolution. In this analysis, the evolutionary basis for the hallmarks of cancer will be discussed and the evolutionary mechanism of cancer suggested by the genome theory will be employed to unify the diverse molecular mechanisms of cancer. PMID:24957955

  6. Molecular Mechanics

    PubMed Central

    Vanommeslaeghe, Kenno; Guvench, Olgun; MacKerell, Alexander D.

    2014-01-01

    Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and weaknesses. Variations and recent developments such as polarizable force fields are discussed. The section ends with a brief overview of common force fields in CSBDD. PMID:23947650

  7. Molecular selection in a unified evolutionary sequence

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1986-01-01

    With guidance from experiments and observations that indicate internally limited phenomena, an outline of unified evolutionary sequence is inferred. Such unification is not visible for a context of random matrix and random mutation. The sequence proceeds from Big Bang through prebiotic matter, protocells, through the evolving cell via molecular and natural selection, to mind, behavior, and society.

  8. Algorithmic Mechanism Design of Evolutionary Computation

    PubMed Central

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  9. Algorithmic Mechanism Design of Evolutionary Computation.

    PubMed

    Pei, Yan

    2015-01-01

    We consider algorithmic design, enhancement, and improvement of evolutionary computation as a mechanism design problem. All individuals or several groups of individuals can be considered as self-interested agents. The individuals in evolutionary computation can manipulate parameter settings and operations by satisfying their own preferences, which are defined by an evolutionary computation algorithm designer, rather than by following a fixed algorithm rule. Evolutionary computation algorithm designers or self-adaptive methods should construct proper rules and mechanisms for all agents (individuals) to conduct their evolution behaviour correctly in order to definitely achieve the desired and preset objective(s). As a case study, we propose a formal framework on parameter setting, strategy selection, and algorithmic design of evolutionary computation by considering the Nash strategy equilibrium of a mechanism design in the search process. The evaluation results present the efficiency of the framework. This primary principle can be implemented in any evolutionary computation algorithm that needs to consider strategy selection issues in its optimization process. The final objective of our work is to solve evolutionary computation design as an algorithmic mechanism design problem and establish its fundamental aspect by taking this perspective. This paper is the first step towards achieving this objective by implementing a strategy equilibrium solution (such as Nash equilibrium) in evolutionary computation algorithm. PMID:26257777

  10. Molecular Mechanisms and Evolutionary Processes Contributing to Accelerated Divergence of Gene Expression on the Drosophila X Chromosome.

    PubMed

    Coolon, Joseph D; Stevenson, Kraig R; McManus, C Joel; Yang, Bing; Graveley, Brenton R; Wittkopp, Patricia J

    2015-10-01

    In species with a heterogametic sex, population genetics theory predicts that DNA sequences on the X chromosome can evolve faster than comparable sequences on autosomes. Both neutral and nonneutral evolutionary processes can generate this pattern. Complex traits like gene expression are not predicted to have accelerated evolution by these theories, yet a "faster-X" pattern of gene expression divergence has recently been reported for both Drosophila and mammals. Here, we test the hypothesis that accelerated adaptive evolution of cis-regulatory sequences on the X chromosome is responsible for this pattern by comparing the relative contributions of cis- and trans-regulatory changes to patterns of faster-X expression divergence observed between strains and species of Drosophila with a range of divergence times. We find support for this hypothesis, especially among male-biased genes, when comparing different species. However, we also find evidence that trans-regulatory differences contribute to a faster-X pattern of expression divergence both within and between species. This contribution is surprising because trans-acting regulators of X-linked genes are generally assumed to be randomly distributed throughout the genome. We found, however, that X-linked transcription factors appear to preferentially regulate expression of X-linked genes, providing a potential mechanistic explanation for this result. The contribution of trans-regulatory variation to faster-X expression divergence was larger within than between species, suggesting that it is more likely to result from neutral processes than positive selection. These data show how accelerated evolution of both coding and noncoding sequences on the X chromosome can lead to accelerated expression divergence on the X chromosome relative to autosomes. PMID:26041937

  11. Evo-Devo: evolutionary developmental mechanisms.

    PubMed

    Hall, Brian K

    2003-01-01

    Evolutionary developmental biology (Evo-Devo) as a discipline is concerned, among other things, with discovering and understanding the role of changes in developmental mechanisms in the evolutionary origin of aspects of the phenotype. In a very real sense, Evo-Devo opens the black box between genotype and phenotype, or more properly, phenotypes as multiple life history stages arise in many organisms from a single genotype. Changes in the timing or positioning of an aspect of development in a descendant relative to an ancestor (heterochrony and heterotopy) were two evolutionary developmental mechanisms identified by Ernst Haeckel in the 1870s. Many more have since been identified, in large part because of our enhanced understanding of development and because new mechanisms emerge as development proceeds: the transfer from maternal to zygotic genomic control; cell-to-cell interactions; cell differentiation and cell migration; embryonic inductions; functional interactions at the tissue and organ levels; growth. Within these emergent processes, gene networks and gene cascades (genetic modules) link the genotype with morphogenetic units (cellular modules, namely germ layers, embryonic fields or cellular condensations), while epigenetic processes such as embryonic inductions, tissue interactions and functional integration, link morphogenetic units to the phenotype. Evolutionary developmental mechanisms also include interactions between individuals of the same species, individuals of different species, and species and their biotic and/or abiotic environment. Such interactions link ecological communities. Importantly, there is little to distinguish the causality that underlies these interactions from that which underlies inductive interactions within embryos. PMID:14756324

  12. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history.

    PubMed

    Bhullar, Bhart-Anjan S; Morris, Zachary S; Sefton, Elizabeth M; Tok, Atalay; Tokita, Masayoshi; Namkoong, Bumjin; Camacho, Jasmin; Burnham, David A; Abzhanov, Arhat

    2015-07-01

    The avian beak is a key evolutionary innovation whose flexibility has permitted birds to diversify into a range of disparate ecological niches. We approached the problem of the mechanism behind this innovation using an approach bridging paleontology, comparative anatomy, and experimental developmental biology. First, we used fossil and extant data to show the beak is distinctive in consisting of fused premaxillae that are geometrically distinct from those of ancestral archosaurs. To elucidate underlying developmental mechanisms, we examined candidate gene expression domains in the embryonic face: the earlier frontonasal ectodermal zone (FEZ) and the later midfacial WNT-responsive region, in birds and several reptiles. This permitted the identification of an autapomorphic median gene expression region in Aves. To test the mechanism, we used inhibitors of both pathways to replicate in chicken the ancestral amniote expression. Altering the FEZ altered later WNT responsiveness to the ancestral pattern. Skeletal phenotypes from both types of experiments had premaxillae that clustered geometrically with ancestral fossil forms instead of beaked birds. The palatal region was also altered to a more ancestral phenotype. This is consistent with the fossil record and with the tight functional association of avian premaxillae and palate in forming a kinetic beak. PMID:25964090

  13. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences.

    PubMed

    Pérez-Losada, Marcos; Arenas, Miguel; Galán, Juan Carlos; Palero, Ferran; González-Candelas, Fernando

    2015-03-01

    Recombination is a pervasive process generating diversity in most viruses. It joins variants that arise independently within the same molecule, creating new opportunities for viruses to overcome selective pressures and to adapt to new environments and hosts. Consequently, the analysis of viral recombination attracts the interest of clinicians, epidemiologists, molecular biologists and evolutionary biologists. In this review we present an overview of three major areas related to viral recombination: (i) the molecular mechanisms that underlie recombination in model viruses, including DNA-viruses (Herpesvirus) and RNA-viruses (Human Influenza Virus and Human Immunodeficiency Virus), (ii) the analytical procedures to detect recombination in viral sequences and to determine the recombination breakpoints, along with the conceptual and methodological tools currently used and a brief overview of the impact of new sequencing technologies on the detection of recombination, and (iii) the major areas in the evolutionary analysis of viral populations on which recombination has an impact. These include the evaluation of selective pressures acting on viral populations, the application of evolutionary reconstructions in the characterization of centralized genes for vaccine design, and the evaluation of linkage disequilibrium and population structure. PMID:25541518

  14. Plant grafting: new mechanisms, evolutionary implications.

    PubMed

    Goldschmidt, Eliezer E

    2014-01-01

    Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The 'graft hybrid' historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species, indicating

  15. Plant grafting: new mechanisms, evolutionary implications

    PubMed Central

    Goldschmidt, Eliezer E.

    2014-01-01

    Grafting, an old plant propagation practice, is still widely used with fruit trees and in recent decades also with vegetables. Taxonomic proximity is a general prerequisite for successful graft-take and long-term survival of the grafted, composite plant. However, the mechanisms underlying interspecific graft incompatibility are as yet insufficiently understood. Hormonal signals, auxin in particular, are believed to play an important role in the wound healing and vascular regeneration within the graft union zone. Incomplete and convoluted vascular connections impede the vital upward and downward whole plant transfer routes. Long-distance protein, mRNA and small RNA graft-transmissible signals currently emerge as novel mechanisms which regulate nutritional and developmental root/top relations and may play a pivotal role in grafting physiology. Grafting also has significant pathogenic projections. On one hand, stock to scion mechanical contact enables the spread of diseases, even without a complete graft union. But, on the other hand, grafting onto resistant rootstocks serves as a principal tool in the management of fruit tree plagues and vegetable soil-borne diseases. The ‘graft hybrid’ historic controversy has not yet been resolved. Recent evidence suggests that epigenetic modification of DNA-methylation patterns may account for certain graft-transformation phenomena. Root grafting is a wide spread natural phenomenon; both intraspecific and interspecific root grafts have been recorded. Root grafts have an evolutionary role in the survival of storm-hit forest stands as well as in the spread of devastating diseases. A more fundamental evolutionary role is hinted by recent findings that demonstrate plastid and nuclear genome transfer between distinct Nicotiana species in the graft union zone, within a tissue culture system. This has led to the formation of alloploid cells that, under laboratory conditions, gave rise to a novel, alloploid Nicotiana species

  16. “The Environment is Everything That Isn't Me”: Molecular Mechanisms and Evolutionary Dynamics of Insect Clocks in Variable Surroundings

    PubMed Central

    Rivas, Gustavo B. S.; Bauzer, Luiz G. S. da R.; Meireles-Filho, Antonio C. A.

    2016-01-01

    Circadian rhythms are oscillations in behavior, metabolism and physiology that have a period close to 24 h. These rhythms are controlled by an internal pacemaker that evolved under strong selective pressures imposed by environmental cyclical changes, mainly of light and temperature. The molecular nature of the circadian pacemaker was extensively studied in a number of organisms under controlled laboratory conditions. But although these studies were fundamental to our understanding of the circadian clock, most of the environmental conditions used resembled rather crudely the relatively constant situation at lower latitudes. At higher latitudes light-dark and temperature cycles vary considerably across different seasons, with summers having long and hot days and winters short and cold ones. Considering these differences and other external cues, such as moonlight, recent studies in more natural and semi-natural situations revealed unexpected features at both molecular and behavioral levels, highlighting the dramatic influence of multiple environmental variables in the molecular clockwork. This emphasizes the importance of studying the circadian clock in the wild, where seasonal environmental changes fine-tune the underlying circadian mechanism, affecting population dynamics and impacting the geographical variation in clock genes. Indeed, latitudinal clines in clock gene frequencies suggest that natural selection and demography shape the circadian clock over wide geographical ranges. In this review we will discuss the recent advances in understanding the molecular underpinnings of the circadian clock, how it resonates with the surrounding variables (both in the laboratory and in semi-natural conditions) and its impact on population dynamics and evolution. In addition, we will elaborate on how next-generation sequencing technologies will complement classical reductionist approaches by identifying causal variants in natural populations that will link genetic variation to

  17. Anticipatory Mechanisms in Evolutionary Living Systems

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.; Holmberg, Stig C.

    2010-11-01

    This paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word "evolution", but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of "Natura non facit saltum". He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the "Evolutionary Synthesis" in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word "program" comes from "pro-gram" meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence

  18. The CHAIN program: forging evolutionary links to underlying mechanisms.

    PubMed

    Neuwald, Andrew F

    2007-11-01

    Proteins evolve new functions by modifying and extending the molecular machinery of an ancestral protein. Such changes show up as divergent sequence patterns, which are conserved in descendent proteins that maintain the divergent function. After multiply-aligning a set of input sequences, the CHAIN program partitions the sequences into two functionally divergent groups and then outputs an alignment that is annotated to reveal the selective pressures imposed on divergent residue positions. If atomic coordinates are also provided, hydrogen bonds and other atomic interactions associated with various categories of divergent residues are graphically displayed. Such analyses establish links between protein evolutionary divergence and functionally crucial atomic features and, as a result, can suggest plausible molecular mechanisms for experimental testing. This is illustrated here by its application to bacterial clamp-loader ATPases. PMID:17962021

  19. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.

    PubMed

    Tamura, Koichiro; Stecher, Glen; Peterson, Daniel; Filipski, Alan; Kumar, Sudhir

    2013-12-01

    We announce the release of an advanced version of the Molecular Evolutionary Genetics Analysis (MEGA) software, which currently contains facilities for building sequence alignments, inferring phylogenetic histories, and conducting molecular evolutionary analysis. In version 6.0, MEGA now enables the inference of timetrees, as it implements the RelTime method for estimating divergence times for all branching points in a phylogeny. A new Timetree Wizard in MEGA6 facilitates this timetree inference by providing a graphical user interface (GUI) to specify the phylogeny and calibration constraints step-by-step. This version also contains enhanced algorithms to search for the optimal trees under evolutionary criteria and implements a more advanced memory management that can double the size of sequence data sets to which MEGA can be applied. Both GUI and command-line versions of MEGA6 can be downloaded from www.megasoftware.net free of charge. PMID:24132122

  20. Mechanical sensitivity reveals evolutionary dynamics of mechanical systems

    PubMed Central

    Anderson, P. S. L.; Patek, S. N.

    2015-01-01

    A classic question in evolutionary biology is how form–function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity—the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form–function systems. PMID:25716791

  1. Automatic Molecular Design using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

  2. Transposable elements as a molecular evolutionary force

    NASA Technical Reports Server (NTRS)

    Fedoroff, N. V.

    1999-01-01

    This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.

  3. Molecular Evolutionary Consequences of Island Colonization

    PubMed Central

    James, Jennifer E.; Lanfear, Robert; Eyre-Walker, Adam

    2016-01-01

    Island endemics are expected to have low effective population sizes (Ne), first because some may experience population bottlenecks when they are founded, and second because they have restricted ranges. Therefore, we expect island species to have reduced genetic diversity, inefficient selection, and reduced adaptive potential compared with their mainland counterparts. We used both polymorphism and substitution data to address these predictions, improving on the approach of recent studies that only used substitution data. This allowed us to directly test the assumption that island species have small values of Ne. We found that island species had significantly less genetic diversity than mainland species; however, this pattern could be attributed to a subset of island species that appeared to have undergone a recent population bottleneck. When these species were excluded from the analysis, island and mainland species had similar levels of genetic diversity, despite island species occupying considerably smaller areas than their mainland counterparts. We also found no overall difference between island and mainland species in terms of the effectiveness of selection or the mutation rate. Our evidence suggests that island colonization has no lasting impact on molecular evolution. This surprising result highlights gaps in our knowledge of the relationship between census and effective population size. PMID:27358424

  4. Molecular Evolutionary Consequences of Island Colonization.

    PubMed

    James, Jennifer E; Lanfear, Robert; Eyre-Walker, Adam

    2016-01-01

    Island endemics are expected to have low effective population sizes (Ne), first because some may experience population bottlenecks when they are founded, and second because they have restricted ranges. Therefore, we expect island species to have reduced genetic diversity, inefficient selection, and reduced adaptive potential compared with their mainland counterparts. We used both polymorphism and substitution data to address these predictions, improving on the approach of recent studies that only used substitution data. This allowed us to directly test the assumption that island species have small values of Ne We found that island species had significantly less genetic diversity than mainland species; however, this pattern could be attributed to a subset of island species that appeared to have undergone a recent population bottleneck. When these species were excluded from the analysis, island and mainland species had similar levels of genetic diversity, despite island species occupying considerably smaller areas than their mainland counterparts. We also found no overall difference between island and mainland species in terms of the effectiveness of selection or the mutation rate. Our evidence suggests that island colonization has no lasting impact on molecular evolution. This surprising result highlights gaps in our knowledge of the relationship between census and effective population size. PMID:27358424

  5. Evolutionary mechanism as a template for protein engineering.

    PubMed

    Eisenbeis, Simone; Höcker, Birte

    2010-10-01

    The goal of a protein engineer is to adjust a protein to a specified new function. This is exactly what natural evolution has achieved many times. By studying evolutionary mechanisms, we can learn about ways to use the adaptability of proteins and to build new proteins. In fact, many techniques used in engineering are successfully mimicking evolutionary processes. We introduce the fundamental evolutionary mechanisms, take a closer look at duplication and fusion, recombination, and circular permutation and discuss their influence on protein engineering. Some important techniques are presented and illustrated with examples. PMID:20862721

  6. Molecular mechanisms of epilepsy

    PubMed Central

    Staley, Kevin

    2015-01-01

    Decades of experimental work have established an imbalance of excitation and inhibition as the leading mechanism of the transition from normal brain function to seizure. In epilepsy, these transitions are rare and abrupt. Transition processes incorporating positive feedback, such as activity-dependent disinhibition, could provide these unique timing features. A rapidly expanding array of genetic etiologies will help delineate the molecular mechanism(s). This delineation will entail quite a bit of cell biology. The genes discovered to date are currently more remarkable for their diversity than their similarities. PMID:25710839

  7. Moving beyond molecular mechanisms

    PubMed Central

    2015-01-01

    A major goal in cell biology is to bridge the gap in our understanding of how molecular mechanisms contribute to cell and organismal physiology. Approaches well established in the physical sciences could be instrumental in achieving this goal. A better integration of the physical sciences with cell biology will therefore be an important step in our quest to decipher how cells work together to construct a living organism. PMID:25601400

  8. Evolutionary significance of osmoregulatory mechanisms in cyanobacteria

    NASA Technical Reports Server (NTRS)

    Yopp, J. H.; Pavlicek, J. H.; Sibley, M. H.

    1986-01-01

    Physiological processes of all life forms on this planet are intrinsically related to their intracellular water potential. The overall goal was the elucidation of the mechanism(s) whereby the first oxygenic phtoautotrophs (the cyanobacteria) adjust their water potential to that of a changing external water potential (that is, osmoregulate). Osmoregulation is achieved by intracellular adjustment of inorganic and/or organic solutes (osmolytes) involving specific biochemical mechanisms. Structural and biochemical evolution within the cyanobacteria is believed completed (and fixed in present day forms) by the end of the Precambrain eon. Therefore, research using cyanobacteria of all three structural types (unicellular, filamentous, and branched), each grown in the photoautotrophic (PA), photoheterotrophic (PG), and chemotrophic (CH) modes of nutrition, should provide insight into the origin and evolution of the photosynthetically related osmoregulatory mechanisms of eukaryotic organisms. The chloroplasts of these organisms are phylogenetically related to the cyanobacteria.

  9. Comparative approaches in evolutionary psychology: molecular neuroscience meets the mind.

    PubMed

    Panksepp, Jaak; Moskal, Joseph R; Panksepp, Jules B; Kroes, Roger A

    2002-12-01

    Evolutionary psychologists often overlook a wealth of information existing between the proximate genotypic level and the ultimate phenotypic level. This commonly ignored level of biological organization is the ongoing activity of neurobiological systems. In this paper, we extend our previous arguments concerning strategic weaknesses of evolutionary psychology by advocating a foundational view that focuses on similarities in brain, behavior, and various basic psychological features across mammalian species. Such an approach offers the potential to link the emerging discipline of evolutionary psychology to its parent scientific disciplines such as biochemistry, physiology, molecular genetics, developmental biology and the neuroscientific analysis of animal behavior. We detail an example of this through our impending work using gene microarray technology to characterize gene expression patterns in rats during aggressive and playful social interactions. Through a focus on functional homologies and the experimental analysis of conserved, subcortical emotional and motivational brain systems, neuroevolutionary psychobiology can reveal ancient features of the human mind that are still shared with other animals. Claims regarding evolved, uniquely human, psychological constructs should be constrained by the rigorous evidentiary standards that are routine in other sciences. PMID:12496741

  10. Evolutionary molecular cytogenetics of catarrhine primates: past, present and future.

    PubMed

    Stanyon, R; Rocchi, M; Bigoni, F; Archidiacono, N

    2012-01-01

    The catarrhine primates were the first group of species studied with comparative molecular cytogenetics. Many of the fundamental techniques and principles of analysis were initially applied to comparisons in these primates, including interspecific chromosome painting, reciprocal chromosome painting and the extensive use of cloned DNA probes for evolutionary analysis. The definition and importance of chromosome syntenies and associations for a correct cladistics analysis of phylogenomic relationships were first applied to catarrhines. These early chromosome painting studies vividly illustrated a striking conservation of the genome between humans and macaques. Contemporarily, it also revealed profound differences between humans and gibbons, a group of species more closely related to humans, making it clear that chromosome evolution did not follow a molecular clock. Chromosome painting has now been applied to more that 60 primate species and the translocation history has been mapped onto the major taxonomic divisions in the tree of primate evolution. In situ hybridization of cloned DNA probes, primarily BAC-FISH, also made it possible to more precisely map breakpoints with spanning and flanking BACs. These studies established marker order and disclosed intrachromosomal rearrangements. When applied comparatively to a range of primate species, they led to the discovery of evolutionary new centromeres as an important new category of chromosome evolution. BAC-FISH studies are intimately connected to genome sequencing, and probes can usually be assigned to a precise location in the genome assembly. This connection ties molecular cytogenetics securely to genome sequencing, assuring that molecular cytogenetics will continue to have a productive future in the multidisciplinary science of phylogenomics. PMID:22710640

  11. Evolutionary Ecology of Prokaryotic Immune Mechanisms.

    PubMed

    van Houte, Stineke; Buckling, Angus; Westra, Edze R

    2016-09-01

    Bacteria have a range of distinct immune strategies that provide protection against bacteriophage (phage) infections. While much has been learned about the mechanism of action of these defense strategies, it is less clear why such diversity in defense strategies has evolved. In this review, we discuss the short- and long-term costs and benefits of the different resistance strategies and, hence, the ecological conditions that are likely to favor the different strategies alone and in combination. Finally, we discuss some of the broader consequences, beyond resistance to phage and other genetic elements, resulting from the operation of different immune strategies. PMID:27412881

  12. MOLECULAR MECHANISMS OF PREECLAMPSIA

    PubMed Central

    Mutter, Walter P.; Karumanchi, S. Ananth

    2008-01-01

    Preeclampsia is a major cause of maternal, fetal, and neonatal mortality worldwide. The mechanisms that initiate preeclampsia in humans have been elusive, but some parts of the puzzle have begun to come together. A key discovery in the field was the realization that its major phenotypes, such as hypertension and proteinuria, are due to excess circulating soluble fms-like tyrosine kinase-1 (sFlt-1, also referred to as sVEGFR-1). sFlt-1 is an endogenous anti-angiogenic protein that is made by the placenta and acts by neutralizing the pro-angiogenic proteins vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). More recently, soluble endoglin, another circulating anti-angiogenic protein was found to synergize with sFlt1 and contribute to the pathogenesis of preeclampsia. Abnormalities in these circulating angiogenic proteins are not only present during clinical preeclampsia, but also antedate clinical symptoms by several weeks. This review will summarize our current understanding of the molecular mechanism of preeclampsia, with an emphasis on the recently characterized circulating anti-angiogenic proteins. PMID:17553534

  13. Time Dependency of Molecular Evolutionary Rates? Yes and No

    PubMed Central

    Subramanian, Sankar; Lambert, David M.

    2011-01-01

    Some previous studies have suggested that rates of evolution inferred using molecular sequences vary substantially depending on the time frame over which they are measured, whereas a number of other studies have argued against this proposition. We examined this issue by separating positions of primate mitochondrial genomes that are under different levels of selection constraints. Our results revealed an order of magnitude variation in the evolutionary rates at constrained sites (including nonsynonymous sites, D-loop, and RNA) and virtually an identical rate of evolution at synonymous sites, independent of the timescales over which they were estimated. Although the evolutionary rate at nonsynonymous sites obtained using the European (H1 haplogroup) mitogenomes is 9–15 times higher than that estimated using the human–chimpanzee pair, in contrast, the rates at synonymous sites are similar between these comparisons. We also show that the ratio of divergence at nonsynonymous to synonymous sites estimated using intra- and interspecific comparisons vary up to nine times, which corroborates our results independent of calibration times. PMID:22016336

  14. Time dependency of molecular evolutionary rates? Yes and no.

    PubMed

    Subramanian, Sankar; Lambert, David M

    2011-01-01

    Some previous studies have suggested that rates of evolution inferred using molecular sequences vary substantially depending on the time frame over which they are measured, whereas a number of other studies have argued against this proposition. We examined this issue by separating positions of primate mitochondrial genomes that are under different levels of selection constraints. Our results revealed an order of magnitude variation in the evolutionary rates at constrained sites (including nonsynonymous sites, D-loop, and RNA) and virtually an identical rate of evolution at synonymous sites, independent of the timescales over which they were estimated. Although the evolutionary rate at nonsynonymous sites obtained using the European (H1 haplogroup) mitogenomes is 9-15 times higher than that estimated using the human-chimpanzee pair, in contrast, the rates at synonymous sites are similar between these comparisons. We also show that the ratio of divergence at nonsynonymous to synonymous sites estimated using intra- and interspecific comparisons vary up to nine times, which corroborates our results independent of calibration times. PMID:22016336

  15. Gaseous CO Abundance—An Evolutionary Tracer for Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Wu, Yuefang; Zhang, Huawei

    2013-09-01

    Planck cold clumps are among the most promising objects to investigate the initial conditions of the evolution of molecular clouds. In this work, by combing the dust emission data from the survey of the Planck satellite with the molecular data of 12CO/13CO/C18O (1-0) lines from observations with the Purple Mountain Observatory 13.7 m telescope, we investigate the CO abundance, CO depletion, and CO-to-H2 conversion factor of 674 clumps in the early cold cores sample. The median and mean values of the CO abundance are 0.89 × 10-4 and 1.28 × 10-4, respectively. The mean and median of CO depletion factor are 1.7 and 0.9, respectively. The median value of X_{CO\\scriptsize {{-}to\\scriptsize {{-}}H_{2}}} for the whole sample is 2.8 × 1020 cm-2 K-1 km-1 s. The CO abundance, CO depletion factor, and CO-to-H2 conversion factor are strongly (anti-)correlated to other physical parameters (e.g., dust temperature, dust emissivity spectral index, column density, volume density, and luminosity-to-mass ratio). To conclude, the gaseous CO abundance can be used as an evolutionary tracer for molecular clouds.

  16. GASEOUS CO ABUNDANCE-AN EVOLUTIONARY TRACER FOR MOLECULAR CLOUDS

    SciTech Connect

    Liu Tie; Wu Yuefang; Zhang Huawei E-mail: ywu@pku.edu.cn

    2013-09-20

    Planck cold clumps are among the most promising objects to investigate the initial conditions of the evolution of molecular clouds. In this work, by combing the dust emission data from the survey of the Planck satellite with the molecular data of {sup 12}CO/{sup 13}CO/C{sup 18}O (1-0) lines from observations with the Purple Mountain Observatory 13.7 m telescope, we investigate the CO abundance, CO depletion, and CO-to-H{sub 2} conversion factor of 674 clumps in the early cold cores sample. The median and mean values of the CO abundance are 0.89 Multiplication-Sign 10{sup -4} and 1.28 Multiplication-Sign 10{sup -4}, respectively. The mean and median of CO depletion factor are 1.7 and 0.9, respectively. The median value of X{sub CO-to-H{sub 2}} for the whole sample is 2.8 Multiplication-Sign 10{sup 20} cm{sup -2} K{sup -1} km{sup -1} s. The CO abundance, CO depletion factor, and CO-to-H{sub 2} conversion factor are strongly (anti-)correlated to other physical parameters (e.g., dust temperature, dust emissivity spectral index, column density, volume density, and luminosity-to-mass ratio). To conclude, the gaseous CO abundance can be used as an evolutionary tracer for molecular clouds.

  17. Molecular mechanisms of cancer.

    PubMed Central

    Koeffler, H. P.; McCormick, F.; Denny, C.

    1991-01-01

    Cancer is caused by specific DNA damage. Several common mechanisms that cause DNA damage result in specific malignant disorders: First, proto-oncogenes can be activated by translocations. For example, translocation of the c-myc proto-oncogene from chromosome 8 to one of the immunoglobulin loci on chromosomes 2, 14, or 22 results in Burkitt's lymphomas. Translocation of the c-abl proto-oncogene from chromosome 9 to the BCR gene located on chromosome 22 produces a hybrid BCR/ABL protein resulting in chronic myelogenous leukemia. Second, proto-oncogenes can be activated by point mutations. For example, point mutations of genes coding for guanosine triphosphate-binding proteins, such as H-, K-, or N-ras or G proteins, can be oncogenic as noted in a large variety of malignant neoplasms. Proteins from these mutated genes are constitutively active rather than being faithful second messengers of periodic extracellular signals. Third, mutations that inactivate a gene can result in tumors if the product of the gene normally constrains cellular proliferation. Functional loss of these "tumor suppressor genes" is found in many tumors such as colon and lung cancers. The diagnosis, classification, and treatment of cancers will be greatly enhanced by understanding their abnormalities at the molecular level. PMID:1815390

  18. Mechanisms of bacterial morphogenesis: Evolutionary cell biology approaches provide new insights

    PubMed Central

    Jiang, Chao; Caccamo, Paul D.; Brun, Yves V.

    2015-01-01

    How Darwin’s “endless forms most beautiful” have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating “evolutionary thinking” into bacterial cell biology in the genomic era. PMID:25664446

  19. Genomic organization of plant terpene synthases and molecular evolutionary implications.

    PubMed Central

    Trapp, S C; Croteau, R B

    2001-01-01

    Terpenoids are the largest, most diverse class of plant natural products and they play numerous functional roles in primary metabolism and in ecological interactions. The first committed step in the formation of the various terpenoid classes is the transformation of the prenyl diphosphate precursors, geranyl diphosphate, farnesyl diphosphate, and geranylgeranyl diphosphate, to the parent structures of each type catalyzed by the respective monoterpene (C(10)), sesquiterpene (C(15)), and diterpene synthases (C(20)). Over 30 cDNAs encoding plant terpenoid synthases involved in primary and secondary metabolism have been cloned and characterized. Here we describe the isolation and analysis of six genomic clones encoding terpene synthases of conifers, [(-)-pinene (C(10)), (-)-limonene (C(10)), (E)-alpha-bisabolene (C(15)), delta-selinene (C(15)), and abietadiene synthase (C(20)) from Abies grandis and taxadiene synthase (C(20)) from Taxus brevifolia], all of which are involved in natural products biosynthesis. Genome organization (intron number, size, placement and phase, and exon size) of these gymnosperm terpene synthases was compared to eight previously characterized angiosperm terpene synthase genes and to six putative terpene synthase genomic sequences from Arabidopsis thaliana. Three distinct classes of terpene synthase genes were discerned, from which assumed patterns of sequential intron loss and the loss of an unusual internal sequence element suggest that the ancestral terpenoid synthase gene resembled a contemporary conifer diterpene synthase gene in containing at least 12 introns and 13 exons of conserved size. A model presented for the evolutionary history of plant terpene synthases suggests that this superfamily of genes responsible for natural products biosynthesis derived from terpene synthase genes involved in primary metabolism by duplication and divergence in structural and functional specialization. This novel molecular evolutionary approach focused

  20. Sharing the sandbox: Evolutionary mechanisms that maintain bacterial cooperation

    PubMed Central

    Bruger, Eric; Waters, Christopher

    2015-01-01

    Microbes are now known to participate in an extensive repertoire of cooperative behaviors such as biofilm formation, production of extracellular public-goods, group motility, and higher-ordered multicellular structures. A fundamental question is how these cooperative tasks are maintained in the face of non-cooperating defector cells. Recently, a number of molecular mechanisms including facultative participation, spatial sorting, and policing have been discovered to stabilize cooperation. Often these different mechanisms work in concert to reinforce cooperation. In this review, we describe bacterial cooperation and the current understanding of the molecular mechanisms that maintain it. PMID:26918128

  1. Sharing the sandbox: Evolutionary mechanisms that maintain bacterial cooperation.

    PubMed

    Bruger, Eric; Waters, Christopher

    2015-01-01

    Microbes are now known to participate in an extensive repertoire of cooperative behaviors such as biofilm formation, production of extracellular public-goods, group motility, and higher-ordered multicellular structures. A fundamental question is how these cooperative tasks are maintained in the face of non-cooperating defector cells. Recently, a number of molecular mechanisms including facultative participation, spatial sorting, and policing have been discovered to stabilize cooperation. Often these different mechanisms work in concert to reinforce cooperation. In this review, we describe bacterial cooperation and the current understanding of the molecular mechanisms that maintain it. PMID:26918128

  2. Molecular mechanism of preconditioning.

    PubMed

    Das, Manika; Das, Dipak K

    2008-04-01

    During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2-3 h) and (ii) late preconditioning (starting at 24 h lasting until 72-96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of K(ATP) channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion. PMID:18344203

  3. Evolutionary, Physicochemical, and Functional Mechanisms of Protein Homooligomerization

    PubMed Central

    Nishi, Hafumi; Hashimoto, Kosuke; Madej, Thomas; Panchenko, Anna R.

    2013-01-01

    Protein homooligomers afford several important benefits for the cell; they mediate and regulate gene expression, activity of many enzymes, ion channels, receptors, and cell–cell adhesion processes. The evolutionary and physical mechanisms of oligomer formation are very diverse and are not well understood. Certain homooligomeric states may be conserved within protein subfamilies and between different subfamilies, therefore providing the specificity to particular substrates while minimizing interactions with unwanted partners. In addition, transitions between different oligomeric states may regulate protein activity and support the switch between different pathways. In this chapter, we summarize the biological importance of homooligomeric assemblies, physicochemical properties of their interfaces, experimental methods for their identification, their evolution, and role in human diseases. PMID:23663963

  4. Interferons and viruses: an evolutionary arms race of molecular interactions

    PubMed Central

    Hoffmann, Hans-Heinrich; Schneider, William M.; Rice, Charles M.

    2015-01-01

    Over half a century has passed since interferons (IFNs) were discovered and shown to inhibit virus infection in cultured cells. Since then, researchers have steadily brought to light the molecular details of IFN signaling, catalogued their pleiotropic effects on cells, and harnessed their therapeutic potential for a variety of maladies. While advances have been plentiful, several fundamental questions have yet to be answered and much complexity remains to be unraveled. We explore the current knowledge surrounding four main questions: are type I IFN subtypes differentially produced in response to distinct pathogens? How are IFN subtypes distinguished by cells? What are the mechanisms and consequences of viral antagonism? Lastly, how can the IFN response be harnessed to improve vaccine efficacy? PMID:25704559

  5. Molecular Mechanism of Water Evaporation

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-01

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  6. Patterns and Mechanisms of Evolutionary Transitions between Genetic Sex-Determining Systems

    PubMed Central

    Sander van Doorn, G.

    2014-01-01

    The diversity and patchy phylogenetic distribution of genetic sex-determining mechanisms observed in some taxa is thought to have arisen by the addition, modification, or replacement of regulators at the upstream end of the sex-determining pathway. Here, I review the various evolutionary forces acting on upstream regulators of sexual development that can cause transitions between sex-determining systems. These include sex-ratio selection and pleiotropic benefits, as well as indirect selection mechanisms involving sex-linked sexually antagonistic loci or recessive deleterious mutations. Most of the current theory concentrates on the population–genetic aspects of sex-determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the development of mechanistic models that can clarify how selection and developmental architecture interact to direct the evolution of sex-determination genes. PMID:24993578

  7. SPICA/SAFARI Fourier transform spectrometer mechanism evolutionary design

    NASA Astrophysics Data System (ADS)

    van den Dool, Teun C.; Kruizinga, Bob; Braam, Ben C.; Hamelinck, Roger F. M. M.; Loix, Nicolas; Van Loon, Dennis; Dams, Johan

    2012-09-01

    TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI1 Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme2 in 2022. JAXA3 leads the development of the SPICA satellite and SRON is the prime investigator of the Safari instrument. The FTS scanning mechanism (FTSM) has to meet a 35 mm stroke requirement with an Optical Path Difference resolution of less then 15 nm and must fit in a small volume. It consists of two back-to-back roof-top mirrors mounted on a small carriage, which is moved using a magnetic bearing linear guiding system in combination with a magnetic linear motor serving as the OPD actuator. The FTSM will be used at cryogenic temperatures of 4 Kelvin inducing challenging requirements on the thermal power dissipation and heat leak. The magnetic bearing enables movements over a scanning stroke of 35.5 mm in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, with sub-nanometer accuracy. This solution is based on the design of the breadboard ODL (Optical Delay Line) developed for the ESA Darwin mission4 and the MABE mechanism developed by Micromega Dynamics. During the last couple of years the initial design of the SAFARI instrument, as described in an earlier SPIE 2010 paper5, was adapted by the SAFARI team in an evolutionary way to meet the changing requirements of the SPICA payload module. This presentation will focus on the evolution of the FTSM to meet these changing requirements. This work is supported by the Netherlands Space Office (NSO).

  8. Molecular Mechanisms of Arterial Stiffening

    PubMed Central

    Cecelja, Marina; Chowienczyk, Phil

    2016-01-01

    Stiffening of large arteries is a hallmark of vascular aging and one of the most important determinants of the age-related increase in blood pressure and cardiovascular disease events. Despite a substantial genetic component, the molecular mechanisms underlying phenotypic variability in arterial stiffness remain unknown. Previous genetic studies have identified several genetic variants that are associated with measures of arterial stiffness. Here, we review the relevant advances in the identification of pathways underlying arterial stiffness from genomic studies. PMID:27493903

  9. Molecular Mechanisms of Nickel Allergy

    PubMed Central

    Saito, Masako; Arakaki, Rieko; Yamada, Akiko; Tsunematsu, Takaaki; Kudo, Yasusei; Ishimaru, Naozumi

    2016-01-01

    Allergic contact hypersensitivity to metals is a delayed-type allergy. Although various metals are known to produce an allergic reaction, nickel is the most frequent cause of metal allergy. Researchers have attempted to elucidate the mechanisms of metal allergy using animal models and human patients. Here, the immunological and molecular mechanisms of metal allergy are described based on the findings of previous studies, including those that were recently published. In addition, the adsorption and excretion of various metals, in particular nickel, is discussed to further understand the pathogenesis of metal allergy. PMID:26848658

  10. Superspreading: mechanisms and molecular design.

    PubMed

    Theodorakis, Panagiotis E; Müller, Erich A; Craster, Richard V; Matar, Omar K

    2015-03-01

    The intriguing ability of certain surfactant molecules to drive the superspreading of liquids to complete wetting on hydrophobic substrates is central to numerous applications that range from coating flow technology to enhanced oil recovery. Despite significant experimental efforts, the precise mechanisms underlying superspreading remain unknown to date. Here, we isolate these mechanisms by analyzing coarse-grained molecular dynamics simulations of surfactant molecules of varying molecular architecture and substrate affinity. We observe that for superspreading to occur, two key conditions must be simultaneously satisfied: the adsorption of surfactants from the liquid-vapor surface onto the three-phase contact line augmented by local bilayer formation. Crucially, this must be coordinated with the rapid replenishment of liquid-vapor and solid-liquid interfaces with surfactants from the interior of the droplet. This article also highlights and explores the differences between superspreading and conventional surfactants, paving the way for the design of molecular architectures tailored specifically for applications that rely on the control of wetting. PMID:25658859

  11. Molecular Mechanism of TRP Channels

    PubMed Central

    Zheng, Jie

    2013-01-01

    Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation. PMID:23720286

  12. Evolutionary transitions between sex-determining mechanisms: a review of theory.

    PubMed

    van Doorn, G S

    2014-01-01

    The extraordinary diversity of sex-determining mechanisms found in nature is thought to have arisen by the addition, modification or replacement of regulators at the upstream end of the sex-determining pathway. The spread of a novel regulator of sex determination can manifest itself by an evolutionary transition between environmental and genetic sex determination, for example, or between male and female heterogamety. Both kinds of transition have occurred frequently in the course of evolution. In this paper, various evolutionary forces acting on sex-determining mutations that can bias transitions in one direction or the other are reviewed. Furthermore, the adaptive significance of the main modes of sex determination are discussed, and the common principle underlying ultimate explanations for environmental sex determination, genetic sex determination and maternal control over sex determination in the offspring are highlighted. Most of the current theory concentrates on the population-genetic aspects of sex determination transitions, using models that do not reflect the developmental mechanisms involved in sex determination. However, the increasing availability of molecular data creates opportunities for the future development of mechanistic models that will further clarify how selection and developmental architecture interact to direct the evolution of sex determination genes. PMID:24335102

  13. Molecular Mechanisms of Synaptic Specificity

    PubMed Central

    Margeta, Milica A.; Shen, Kang

    2011-01-01

    Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity. PMID:19969086

  14. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  15. Molecular mechanisms of temperature adaptation.

    PubMed

    Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-08-15

    Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a 'choir' of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. PMID:25433072

  16. Molecular mechanisms of temperature adaptation

    PubMed Central

    Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a ‘choir’ of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. PMID:25433072

  17. The Evolution of Different Forms of Sociality: Behavioral Mechanisms and Eco-Evolutionary Feedback

    PubMed Central

    van der Post, Daniel J.; Verbrugge, Rineke; Hemelrijk, Charlotte K.

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from “leader-follower” societies to “fission-fusion” societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality. PMID:25629313

  18. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    PubMed

    van der Post, Daniel J; Verbrugge, Rineke; Hemelrijk, Charlotte K

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality. PMID:25629313

  19. Molecular mechanisms of microglial activation.

    PubMed

    Zielasek, J; Hartung, H P

    1996-01-01

    Microglial cells are brain macrophages which serve specific functions in the defense of the central nervous system (CNS) against microorganisms, the removal of tissue debris in neurodegenerative diseases or during normal development, and in autoimmune inflammatory disorders of the brain. In cultured microglial cells, several soluble inflammatory mediators such as cytokines and bacterial products like lipopolysaccharide (LPS) were demonstrated to induce a wide range of microglial activities, e.g. increased phagocytosis, chemotaxis, secretion of cytokines, activation of the respiratory burst and induction of nitric oxide synthase. Since heightened microglial activation was shown to play a role in the pathogenesis of experimental inflammatory CNS disorders, understanding the molecular mechanisms of microglial activation may lead to new treatment strategies for neurodegenerative disorders, multiple sclerosis and bacterial or viral infections of the nervous system. PMID:8876774

  20. Molecular Mechanisms of Bacterial Pathogenicity

    NASA Astrophysics Data System (ADS)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  1. Ferric Enterochelin Transport in Yersinia enterocolitica: Molecular and Evolutionary Aspects

    PubMed Central

    Schubert, S.; Fischer, D.; Heesemann, J.

    1999-01-01

    Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of the Yersinia fep-fes gene cluster orthologous to the Escherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded by fepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD, fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD or fes genes abrogates enterochelin-supported growth of Y. enterocolitica on iron-chelated media. In contrast to E. coli, the fep-fes gene cluster in Y. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, and Yersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the family Enterobacteriaceae. PMID:10515929

  2. Ferric enterochelin transport in Yersinia enterocolitica: molecular and evolutionary aspects.

    PubMed

    Schubert, S; Fischer, D; Heesemann, J

    1999-10-01

    Yersinia enterocolitica is well equipped for siderophore piracy, encompassing the utilization of siderophores such as ferrioxamine, ferrichrome, and ferrienterochelin. In this study, we report on the molecular and functional characterization of the Yersinia fep-fes gene cluster orthologous to the Escherichia coli ferrienterochelin transport genes (fepA, fepDGC, and fepB) and the esterase gene fes. In vitro transcription-translation analysis identified polypeptides of 30 and 35 kDa encoded by fepC and fes, respectively. A frameshift mutation within the fepA gene led to expression of a truncated polypeptide of 40 kDa. The fepD, fepG, and fes genes of Y. enterocolitica were shown to complement corresponding E. coli mutants. Insertional mutagenesis of fepD or fes genes abrogates enterochelin-supported growth of Y. enterocolitica on iron-chelated media. In contrast to E. coli, the fep-fes gene cluster in Y. enterocolitica consists solely of genes required for uptake and utilization of enterochelin (fep) and not of enterochelin synthesis genes such as entF. By Southern hybridization, fepDGC and fes sequences could be detected in Y. enterocolitica biotypes IB, IA, and II but not in biotype IV strains, Yersinia pestis, and Yersinia pseudotuberculosis strains. According to sequence alignment data and the coherent structure of the Yersinia fep-fes gene cluster, we suggest early genetic divergence of ferrienterochelin uptake determinants among species of the family Enterobacteriaceae. PMID:10515929

  3. Molecular mechanisms of pancreatic carcinogenesis.

    PubMed

    Furukawa, Toru; Sunamura, Makoto; Horii, Akira

    2006-01-01

    Pancreatic ductal adenocarcinoma is one of the most fatal malignancies. Intensive investigation of molecular pathogenesis might lead to identifying useful molecules for diagnosis and treatment of the disease. Pancreatic ductal adenocarcinoma harbors complicated aberrations of alleles including losses of 1p, 6q, 9p, 12q, 17p, 18q, and 21q, and gains of 8q and 20q. Pancreatic cancer is usually initiated by mutation of KRAS and aberrant expression of SHH. Overexpression of AURKA mapping on 20q13.2 may significantly enhance overt tumorigenesity. Aberrations of tumor suppressor genes synergistically accelerate progression of the carcinogenic pathway through pancreatic intraepithelial neoplasia (PanIN) to invasive ductal adenocarcinoma. Abrogation of CDKN2A occurs in low-grade/early PanIN, whereas aberrations of TP53 and SMAD4 occur in high-grade/late PanIN. SMAD4 may play suppressive roles in tumorigenesis by inhibition of angiogenesis. Loss of 18q precedes SMAD4 inactivation, and restoration of chromosome 18 in pancreatic cancer cells results in tumor suppressive phenotypes regardless of SMAD4 status, indicating the possible existence of a tumor suppressor gene(s) other than SMAD4 on 18q. DUSP6 at 12q21-q22 is frequently abrogated by loss of expression in invasive ductal adenocarcinomas despite fairly preserved expression in PanIN, which suggests that DUSP6 works as a tumor suppressor in pancreatic carcinogenesis. Restoration of chromosome 12 also suppresses growths of pancreatic cancer cells despite the recovery of expression of DUSP6; the existence of yet another tumor suppressor gene on 12q is strongly suggested. Understanding the molecular mechanisms of pancreatic carcinogenesis will likely provide novel clues for preventing, detecting, and ultimately curing this life-threatening disease. PMID:16367914

  4. Molecular mechanisms of statin intolerance

    PubMed Central

    Franczyk, Beata; Toth, Peter P.; Rysz, Jacek; Banach, Maciej

    2016-01-01

    Statins reduce cardiovascular morbidity and mortality in primary and secondary prevention. Despite their efficacy, many persons are unable to tolerate statins due to adverse events such as hepatotoxicity and myalgia/myopathy. In the case of most patients, it seems that mild-to-moderate abnormalities in liver and muscle enzymes are not serious adverse effects and do not outweigh the benefits of coronary heart disease risk reduction. The risk for mortality or permanent organ damage ascribed to statin use is very small and limited to cases of myopathy and rhabdomyolysis. Statin-induced muscle-related adverse events comprise a highly heterogeneous clinical disorder with numerous, complex etiologies and a variety of genetic backgrounds. Every patient who presents with statin-related side effects cannot undergo the type of exhaustive molecular characterization that would include all of these mechanisms. Frequently the only solution is to either discontinue statin therapy/reduce the dose or attempt intermittent dosing strategies at a low dose. PMID:27279860

  5. Molecular Evolutionary Dynamics of Respiratory Syncytial Virus Group A in Recurrent Epidemics in Coastal Kenya

    PubMed Central

    Agoti, Charles N.; Gitahi, Caroline W.; Bett, Ann; Ngama, Mwanajuma; Medley, Graham F.; Cane, Patricia A.; Nokes, D. James

    2016-01-01

    ABSTRACT The characteristic recurrent epidemics of human respiratory syncytial virus (RSV) within communities may result from the genetic variability of the virus and associated evolutionary adaptation, reducing the efficiency of preexisting immune responses. We analyzed the molecular evolutionary changes in the attachment (G) glycoprotein of RSV-A viruses collected over 13 epidemic seasons (2000 to 2012) in Kilifi (n = 649), Kenya, and contemporaneous sequences (n = 1,131) collected elsewhere within Kenya and 28 other countries. Genetic diversity in the G gene in Kilifi was dynamic both within and between epidemics, characterized by frequent new variant introductions and limited variant persistence between consecutive epidemics. Four RSV-A genotypes were detected in Kilifi: ON1 (11.9%), GA2 (75.5%), GA5 (12.3%), and GA3 (0.3%), with predominant genotype replacement of GA5 by GA2 and then GA2 by ON1. Within these genotypes, there was considerable variation in potential N-glycosylation sites, with GA2 and ON1 viruses showing up to 15 different patterns involving eight possible sites. Further, we identified 15 positively selected and 34 genotype-distinguishing codon sites, with six of these sites exhibiting both characteristics. The mean substitution rate of the G ectodomain for the Kilifi data set was estimated at 3.58 × 10−3 (95% highest posterior density interval = 3.04 to 4.16) nucleotide substitutions/site/year. Kilifi viruses were interspersed in the global phylogenetic tree, clustering mostly with Kenyan and European sequences. Our findings highlight ongoing genetic evolution and high diversity of circulating RSV-A strains, locally and globally, with potential antigenic differences. Taken together, these provide a possible explanation on the nature of recurrent local RSV epidemics. IMPORTANCE The mechanisms underlying recurrent epidemics of RSV are poorly understood. We observe high genetic diversity in circulating strains within and between epidemics in

  6. Molecular Mechanics: Illustrations of Its Application.

    ERIC Educational Resources Information Center

    Cox, Philip J.

    1982-01-01

    The application of molecular mechanics (a nonquantum mechanical method for solving problems concerning molecular geometries) to calculate force fields for n-butane and cyclohexane is discussed. Implications regarding the stable conformations of the example molecules are also discussed. (Author/SK)

  7. Dense cores in Ophiuchus and Chamaeleon molecular clouds: detection and evolutionary trends

    NASA Astrophysics Data System (ADS)

    Benedettini, Milena; Burton, Michael; Busquet, Gemma; Caselli, Paola; Pezzuto, Stefano; Viti, Serena

    2012-04-01

    We propose to map the densest regions of the Ophiucus, Chamaeleon I and Chamaeleon III molecular clouds in high density tracers in order to derive the distribution of the dense cores and their evolutionary stage with the aim to study the core mass function and its relationship to the stellar initial mass function. Spectroscopic surveys of star forming regions in chemical species copiously produced in the first stages of star formation are essential to derive the kinematics and the physical conditions of the pre- and proto-stellar cores, as well as their evolutionary stage. A previous study of the Lupus molecular cloud carried out with Mopra has shown the high potential of the multi-line spectroscopic surveys in identifying the dense condensations and their evolutionary stage. We ask to observe several key species: HCN, HNC, HC3N, N2H+ and HCO+ whose chemical abundance ratios are good chemical clocks for the first stages of the star formation process. The Mopra antenna is ideal for observations at 3mm of the close-by, high southern declination Ophiucus and Chamaeleon clouds since the beam size at 90GHz corresponds to about 0.03pc, well-matched to sampling the dense cores with typical sizes of 0.1pc.

  8. Time-dependent estimates of molecular evolutionary rates: evidence and causes.

    PubMed

    Ho, Simon Y W; Duchêne, Sebastián; Molak, Martyna; Shapiro, Beth

    2015-12-01

    We are writing in response to a recent critique by Emerson & Hickerson (2015), who challenge the evidence of a time-dependent bias in molecular rate estimates. This bias takes the form of a negative relationship between inferred evolutionary rates and the ages of the calibrations on which these estimates are based. Here, we present a summary of the evidence obtained from a broad range of taxa that supports a time-dependent bias in rate estimates, with a consideration of the potential causes of these observed trends. We also describe recent progress in improving the reliability of evolutionary rate estimation and respond to the concerns raised by Emerson & Hickerson (2015) about the validity of rates estimated from time-structured sequence data. In doing so, we hope to dispel some misconceptions and to highlight several research directions that will improve our understanding of time-dependent biases in rate estimates. PMID:26769402

  9. Ab initio NMR Confirmed Evolutionary Structure Prediction for Organic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pham, Cong-Huy; Kucukbenli, Emine; de Gironcoli, Stefano

    2015-03-01

    Ab initio crystal structure prediction of even small organic compounds is extremely challenging due to polymorphism, molecular flexibility and difficulties in addressing the dispersion interaction from first principles. We recently implemented vdW-aware density functionals and demonstrated their success in energy ordering of aminoacid crystals. In this work we combine this development with the evolutionary structure prediction method to study cholesterol polymorphs. Cholesterol crystals have paramount importance in various diseases, from cancer to atherosclerosis. The structure of some polymorphs (e.g. ChM, ChAl, ChAh) have already been resolved while some others, which display distinct NMR spectra and are involved in disease formation, are yet to be determined. Here we thoroughly assess the applicability of evolutionary structure prediction to address such real world problems. We validate the newly predicted structures with ab initio NMR chemical shift data using secondary referencing for an improved comparison with experiments.

  10. Teaching Evolutionary Mechanisms: Genetic Drift and M&M's.

    ERIC Educational Resources Information Center

    Staub, Nancy L.

    2002-01-01

    Describes a classroom activity that teaches the mechanism of genetic drift to undergraduates. Illustrates a number of concepts that are critical in developing evolution literacy by sampling M&M milk chocolate candies. (MM)

  11. Evolutionary variation in the mechanics of fiddler crab claws

    PubMed Central

    2013-01-01

    Background Fiddler crabs, genus Uca, are classic examples of how intense sexual selection can produce exaggerated male traits. Throughout the genus the enlarged “major” cheliped (claw) of the male fiddler crab is used both as a signal for attracting females and as a weapon for combat with other males. However, the morphology of the major claw is highly variable across the approximately 100 species within the genus. Here we address variation, scaling, and correlated evolution in the mechanics of the major claw by analyzing the morphology and mechanical properties of the claws of 21 species of fiddler crabs from the Pacific, Gulf and Atlantic coasts of the Americas. Results We find that the mechanics that produce claw closing forces, the sizes of claws and the mechanical strength of the cuticle of claws are all highly variable across the genus. Most variables scale isometrically with body size across species but claw force production scales allometrically with body size. Using phylogenetically independent contrasts, we find that the force that a claw can potentially produce is positively correlated with the strength of the cuticle on the claw where forces are delivered in a fight. There is also a negative correlation between the force that a claw can potentially produce and the size of the claw corrected for the mass of the claw. Conclusions These relationships suggest that there has been correlated evolution between force production and armoring, and that there is a tradeoff between claw mechanics for signaling and claw mechanics for fighting. PMID:23855770

  12. Construction of molecular evolutionary phylogenetic trees from DNA sequences based on minimum complexity principle.

    PubMed

    Ren, F; Tanaka, H; Gojobori, T

    1995-02-01

    Ever since the discovery of a molecular clock, many methods have been developed to reconstruct the molecular evolutionary phylogenetic trees. In this paper, we deal with the problem from the viewpoint of an inductive inference and apply Rissanen's minimum description length principle to extract the minimum complexity phylogenetic tree. Our method describes the complexity of the molecular phylogenetic tree by three terms which are related to the tree topology, the sum of the branch lengths and the difference between the model and the data measured by logarithmic likelihood. Five mitochondrial DNA sequences, from the human, the common chimpanzee, the pygmy chimpanzee, the gorilla and the orangutan, are used for investigating the validity of this method. It is suggested that this method might be superior to the traditional method in that it still shows good accuracy even near the root of phylogenetic trees. PMID:7796581

  13. Polarization effects in molecular mechanical force fields

    PubMed Central

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2014-01-01

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594

  14. Polarization effects in molecular mechanical force fields.

    PubMed

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594

  15. Driving Mechanisms for Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Downes, Turlough P.

    Molecular outflows are observed to be closely associated with star formation. The cumulative momentum and the momentum injection rate in these outflows are important parameters in theories of star formation. The cumulative momentum in an outflow is a measure of the feed-back from star formation on molecular cloud turbulence. The level of turbulence in a cloud also effects the formation of further stars and, indeed, the survival of the cloud itself (e.g. [15]). In addition the rate of injection of momentum is an important constraint for theoretical models of outflows from young stars [10, 18]. Hence, while these outflows are interesting in themselves, it is also critical to understand their origin and behaviour as part of the general study of how stars themselves form.

  16. Symmetry-based reciprocity: evolutionary constraints on a proximate mechanism

    PubMed Central

    Campennì, Marco

    2016-01-01

    Background. While the evolution of reciprocal cooperation has attracted an enormous attention, the proximate mechanisms underlying the ability of animals to cooperate reciprocally are comparatively neglected. Symmetry-based reciprocity is a hypothetical proximate mechanism that has been suggested to be widespread among cognitively unsophisticated animals. Methods. We developed two agent-based models of symmetry-based reciprocity (one relying on an arbitrary tag and the other on interindividual proximity) and tested their ability both to reproduce significant emergent features of cooperation in group living animals and to promote the evolution of cooperation. Results. Populations formed by agents adopting symmetry-based reciprocity showed differentiated “social relationships” and a positive correlation between cooperation given and received: two common aspects of animal cooperation. However, when reproduction and selection across multiple generations were added to the models, agents adopting symmetry-based reciprocity were outcompeted by selfish agents that never cooperated. Discussion. In order to evolve, hypothetical proximate mechanisms must be able to stand competition from alternative strategies. While the results of our simulations require confirmation using analytical methods, we provisionally suggest symmetry-based reciprocity is to be abandoned as a possible proximate mechanism underlying the ability of animals to reciprocate cooperative interactions. PMID:26998412

  17. Molecular mechanisms involved in convergent crop domestication.

    PubMed

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. PMID:24035234

  18. Evolutionary Trends in the Jaw Adductor Mechanics of Ornithischian Dinosaurs.

    PubMed

    Nabavizadeh, Ali

    2016-03-01

    Jaw mechanics in ornithischian dinosaurs have been widely studied for well over a century. Most of these studies, however, use only one or few taxa within a given ornithischian clade as a model for feeding mechanics across the entire clade. In this study, mandibular mechanical advantages among 52 ornithischian genera spanning all subclades are calculated using 2D lever arm methods. These lever arm calculations estimate the effect of jaw shape and difference in adductor muscle line of action on relative bite forces along the jaw. Results show major instances of overlap between taxa in tooth positions at which there was highest mechanical advantage. A relatively low bite force is seen across the tooth row among thyreophorans (e.g., stegosaurs and ankylosaurs), with variation among taxa. A convergent transition occurs from a more evenly distributed bite force along the jaw in basal ornithopods and basal marginocephalians to a strong distal bite force in hadrosaurids and ceratopsids, respectively. Accordingly, adductor muscle vector angles show repeated trends from a mid-range caudodorsal orientation in basal ornithischians to a decrease in vector angles indicating more caudally oriented jaw movements in derived taxa (e.g., derived thyreophorans, basal ornithopods, lambeosaurines, pachycephalosaurs, and derived ceratopsids). Analyses of hypothetical jaw morphologies were also performed, indicating that both the coronoid process and lowered jaw joint increase moment arm length therefore increasing mechanical advantage of the jaw apparatus. Adaptive trends in craniomandibular anatomy show that ornithischians evolved more complex feeding apparatuses within different clades as well as morphological convergences between clades. PMID:26692539

  19. The evolutionary roots of creativity: mechanisms and motivations

    PubMed Central

    Wiggins, Geraint A.; Tyack, Peter; Scharff, Constance; Rohrmeier, Martin

    2015-01-01

    We consider the evolution of cognition and the emergence of creative behaviour, in relation to vocal communication. We address two key questions: (i) what cognitive and/or social mechanisms have evolved that afford aspects of creativity?; (ii) has natural and/or sexual selection favoured human behaviours considered ‘creative’? This entails analysis of ‘creativity’, an imprecise construct: comparable properties in non-humans differ in magnitude and teleology from generally agreed human creativity. We then address two apparent problems: (i) the difference between merely novel productions and ‘creative’ ones; (ii) the emergence of creative behaviour in spite of high cost: does it fit the idea that females choose a male who succeeds in spite of a handicap (costly ornament); or that creative males capable of producing a large and complex song repertoire grew up under favourable conditions; or a demonstration of generally beneficial heightened reasoning capacity; or an opportunity to continually reinforce social bonding through changing communication tropes; or something else? We illustrate and support our argument by reference to whale and bird song; these independently evolved biological signal mechanisms objectively share surface properties with human behaviours generally called ‘creative’. Studying them may elucidate mechanisms underlying human creativity; we outline a research programme to do so. PMID:25646522

  20. The evolutionary roots of creativity: mechanisms and motivations.

    PubMed

    Wiggins, Geraint A; Tyack, Peter; Scharff, Constance; Rohrmeier, Martin

    2015-03-19

    We consider the evolution of cognition and the emergence of creative behaviour, in relation to vocal communication. We address two key questions: (i) what cognitive and/or social mechanisms have evolved that afford aspects of creativity?; (ii) has natural and/or sexual selection favoured human behaviours considered 'creative'? This entails analysis of 'creativity', an imprecise construct: comparable properties in non-humans differ in magnitude and teleology from generally agreed human creativity. We then address two apparent problems: (i) the difference between merely novel productions and 'creative' ones; (ii) the emergence of creative behaviour in spite of high cost: does it fit the idea that females choose a male who succeeds in spite of a handicap (costly ornament); or that creative males capable of producing a large and complex song repertoire grew up under favourable conditions; or a demonstration of generally beneficial heightened reasoning capacity; or an opportunity to continually reinforce social bonding through changing communication tropes; or something else? We illustrate and support our argument by reference to whale and bird song; these independently evolved biological signal mechanisms objectively share surface properties with human behaviours generally called 'creative'. Studying them may elucidate mechanisms underlying human creativity; we outline a research programme to do so. PMID:25646522

  1. Molecular mechanisms of hepatic apoptosis

    PubMed Central

    Wang, K

    2014-01-01

    Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis. PMID:24434519

  2. Molecular Mechanisms Underlying Pituitary Pathogenesis.

    PubMed

    Sapochnik, Melanie; Nieto, Leandro Eduardo; Fuertes, Mariana; Arzt, Eduardo

    2016-04-01

    During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors. PMID:26718581

  3. Cellular and molecular mechanisms in kidney fibrosis

    PubMed Central

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution. PMID:24892703

  4. Molecular mechanisms of induced pluripotency

    PubMed Central

    Wróblewska, Joanna; Mazurek, Sylwia; Liszewska, Ewa

    2015-01-01

    Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types. PMID:25691818

  5. Molecular pathogenesis and mechanisms of thyroid cancer

    PubMed Central

    Xing, Mingzhao

    2013-01-01

    Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. PMID:23429735

  6. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process

    PubMed Central

    Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-01-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution. PMID:26177190

  7. Mechanisms of Resistance in Bacteria: An Evolutionary Approach

    PubMed Central

    Martins, Ana; Hunyadi, Attila; Amaral, Leonard

    2013-01-01

    Acquisition of resistance is one of the major causes of failure in therapy of bacterial infections. According to the World Health Organization (WHO), thousands of deaths caused by Salmonella sp., Escherichia coli, Staphylococcus aureus or Mycobacteria tuberculosis are due to failure in therapy caused by resistance to the chemotherapeutic agents. Understanding the mechanisms of resistance acquisition by the bacterial strains is therefore essential to prevent and overcome resistance. However, it is very difficult to extrapolate from in vitro studies, where the variables are far less and under constant control, as compared to what happens in vivo where the chosen chemotherapeutic, its effective dose, and the patient’s immune system are variables that differ substantially case-by-case. The aim of this review is to provide a new perspective on the possible ways by which resistance is acquired by the bacterial strains within the patient, with a special emphasis on the adaptive response of the infecting bacteria to the administered antibiotic. PMID:23560029

  8. Molecular mechanism of sweetness sensation.

    PubMed

    DuBois, Grant E

    2016-10-01

    The current understanding of peripheral molecular events involved in sweet taste sensation in humans is reviewed. Included are discussions of the sweetener receptor T1R2/T1R3, its agonists, antagonists, positive allosteric modulators, the transduction of its activation in taste bud cells and the coding of its signaling to the CNS. Areas of incomplete understanding include 1) signal communication with afferent nerve fibers, 2) contrasting concentration/response (C/R) functions for high-potency (HP) sweeteners (hyperbolic) and carbohydrate (CHO) sweeteners (linear), 3) contrasting temporal profiles for HP sweeteners (delayed onset and extinction) and CHO sweeteners (rapid onset and extinction) and 4) contrasting adaptation behaviors for HP sweeteners (moderate to strong adaptation) and CHO sweeteners (low adaptation). Evidence based on the sweet water aftertastes of several novel sweetness inhibitors is presented providing new support for constitutive activity in T1R2/T1R3. And a model is developed to rationalize the linear C/R functions of CHO sweeteners and hyperbolic C/R functions of HP sweeteners, where the former may activate T1R2/T1R3 by both binding and constitutive activity modulation (i.e., without binding) and the latter activate T1R2/T1R3 only by binding. PMID:26992959

  9. Molecular mechanism of cholangiocarcinoma carcinogenesis.

    PubMed

    Maemura, Kosei; Natsugoe, Shoji; Takao, Sonshin

    2014-10-01

    Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with a poor prognosis, which often arises from conditions causing long-term inflammation, injury, and reparative biliary epithelial cell proliferation. Several conditions are known to be major risk factors for cancer in the biliary tract or gallbladder, including primary sclerosing cholangitis, liver fluke infection, pancreaticobiliary maljunction, and chemical exposure in proof-printing workers. Abnormalities in various signaling cascades, molecules, and genetic mutations are involved in the pathogenesis of CCA. CCA is characterized by a series of highly recurrent mutations in genes, including KRAS, BRF, TP53, Smad, and p16(INK4a) . Cytokines that are affected by inflammatory environmental conditions, such as interleukin-6 (IL-6), transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and platelet-derived growth factor (PDGF), play an important role in cancer pathogenesis. Prominent signaling pathways important in carcinogenesis include TGF-β/Smad, IL-6/STAT-3, PI3K/AKT, Wnt, RAF/MEK/MAPK, and Notch. Additionally, some microRNAs regulate targets in critical pathways of CCA development and progression. This review article provides the understanding of the genetic and epigenetic mechanism(s) of carcinogenesis in CCA, which leads to the development of new therapeutic targets for the prevention and treatment of this devastating cancer. PMID:24895231

  10. Molecular evolutionary analysis of the high-affinity K+ transporter gene family in angiosperms.

    PubMed

    Yang, P; Hua, C; Zhou, F; Zhang, B-J; Cai, X-N; Chen, Q-Z; Wang, R-L

    2016-01-01

    The high-affinity K(+) transporter (HKT) family comprises a group of multifunctional cation transporters widely distributed in organisms ranging from Bacteria to Eukarya. In angiosperms, the HKT family consists primarily of nine types, whose evolutionary relationships are not fully understood. The available sequences from 31 plant species were used to perform a comprehensive evolutionary analysis, including an examination of selection pressure and estimating phylogenetic tree and gene duplication events. Our results show that a gene duplication in the HKT1;5/HKT1;4 cluster might have led to the divergence of the HKT1;5 and HKT1;4 subfamilies. Additionally, maximum likelihood analysis revealed that the HKT family has undergone a strong purifying selection. An analysis of the amino acids provided strong statistical evidence for a functional divergence between subfamilies 1 and 2. Our study was the first to provide evidence of this functional divergence between these two subfamilies. Analysis of co-evolution in HKT identified 25 co-evolved groups. These findings expanded our understanding of the evolutionary mechanisms driving functional diversification of HKT proteins. PMID:27525850

  11. Molecular mechanisms of ventricular hypoplasia.

    PubMed

    Srivastava, D; Gottlieb, P D; Olson, E N

    2002-01-01

    We have established the beginnings of a road map to understand how ventricular cells become specified, differentiate, and expand into a functional cardiac chamber (Fig. 5). The transcriptional networks described here provide clear evidence that disruption of pathways affecting ventricular growth could be the underlying etiology in a subset of children born with malformation of the right or left ventricle. As we learn details of the precise mechanisms through which the critical factors function, the challenge will lie in devising innovative methods to augment or modify the effects of gene mutations on ventricular development. Because most congenital heart disease likely occurs in a setting of heterozygous, predisposing mutations of one or more genes, modulation of activity of critical pathways in a preventive fashion may be useful in averting disease in genetically susceptible individuals. PMID:12858532

  12. Modern evolutionary mechanics theories and resolving the programmed/non-programmed aging controversy.

    PubMed

    Goldsmith, Theodore C

    2014-10-01

    Modern programmed (adaptive) theories of biological aging contend that organisms including mammals have generally evolved mechanisms that purposely limit their lifespans in order to obtain an evolutionary benefit. Modern non-programmed theories contend that mammal aging generally results from natural deteriorative processes, and that lifespan differences between species are explained by differences in the degree to which they resist those processes. Originally proposed in the 19th century, programmed aging in mammals has historically been widely summarily rejected as obviously incompatible with the mechanics of the evolution process. However, relatively recent and continuing developments described here have dramatically changed this situation, and programmed mammal aging now has a better evolutionary basis than non-programmed aging. Resolution of this issue is critically important to medical research because the two theories predict that very different biological mechanisms are ultimately responsible for age-related diseases and conditions. PMID:25519063

  13. 70% efficiency of bistate molecular machines explained by information theory, high dimensional geometry and evolutionary convergence

    PubMed Central

    Schneider, Thomas D.

    2010-01-01

    The relationship between information and energy is key to understanding biological systems. We can display the information in DNA sequences specifically bound by proteins by using sequence logos, and we can measure the corresponding binding energy. These can be compared by noting that one of the forms of the second law of thermodynamics defines the minimum energy dissipation required to gain one bit of information. Under the isothermal conditions that molecular machines function this is joules per bit ( is Boltzmann's constant and T is the absolute temperature). Then an efficiency of binding can be computed by dividing the information in a logo by the free energy of binding after it has been converted to bits. The isothermal efficiencies of not only genetic control systems, but also visual pigments are near 70%. From information and coding theory, the theoretical efficiency limit for bistate molecular machines is ln 2 = 0.6931. Evolutionary convergence to maximum efficiency is limited by the constraint that molecular states must be distinct from each other. The result indicates that natural molecular machines operate close to their information processing maximum (the channel capacity), and implies that nanotechnology can attain this goal. PMID:20562221

  14. A molecular mechanics force field for lignin

    SciTech Connect

    Petridis, Loukas; Smith, Jeremy C

    2009-02-01

    A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this lignin force field will enable full simulations of lignocellulose.

  15. Improving the sampling efficiency of Monte Carlo molecular simulations: an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Leblanc, Benoit; Braunschweig, Bertrand; Toulhoat, Hervé; Lutton, Evelyne

    We present a new approach in order to improve the convergence of Monte Carlo (MC) simulations of molecular systems belonging to complex energetic landscapes: the problem is redefined in terms of the dynamic allocation of MC move frequencies depending on their past efficiency, measured with respect to a relevant sampling criterion. We introduce various empirical criteria with the aim of accounting for the proper convergence in phase space sampling. The dynamic allocation is performed over parallel simulations by means of a new evolutionary algorithm involving 'immortal' individuals. The method is bench marked with respect to conventional procedures on a model for melt linear polyethylene. We record significant improvement in sampling efficiencies, thus in computational load, while the optimal sets of move frequencies are liable to allow interesting physical insights into the particular systems simulated. This last aspect should provide a new tool for designing more efficient new MC moves.

  16. Molecular evidence from ascidians for the evolutionary origin of vertebrate cranial sensory placodes.

    PubMed

    Mazet, Francoise; Shimeld, Sebastian M

    2005-07-15

    Cranial sensory placodes are specialised areas of the head ectoderm of vertebrate embryos that contribute to the formation of the cranial sense organs and associated ganglia. Placodes are often considered a vertebrate innovation, and their evolution has been hypothesised as one key adaptation underlying the evolution of active predation by primitive vertebrates. Here, we review recent molecular evidence pertinent to understanding the evolutionary origin of placodes. The development of vertebrate placodes is regulated by numerous genes, including members of the Pax, Six, Eya, Fox, Phox, Neurogenin and Pou gene families. In the sea squirt Ciona intestinalis (a basal chordate and close relative of the vertebrates), orthologues of these genes are deployed in the development of the oral and atrial siphons, structures used for filter feeding by the sessile adult. Our interpretation of these findings is that vertebrate placodes and sea squirt siphon primordia have evolved from the same patches of specialised ectoderm present in the common ancestor of the chordates. PMID:15981200

  17. Molecular Cores in Different Evolutionary Stages near Luminous IRAS Sources and UC HII Regions

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Wu, Yue-Fang

    2007-06-01

    We report the results of 12CO and 13CO J=1 0 observations of eight candidates of Ultra-Compact (UC) HII regions with the Purple Mountain Observatory (PMO) Qinghai 13.7 -m telescope, which resulted in revealing 11 molecular cores. Their masses range from 130 to 1.7×104 Modot, with different spatial scales (1~ 6 pc). Also presented are the relevant HCO+ J=1 0 maps, which enabled us to investigate more detailed structures of these cores. Further comparisons show that four of the cores deviated from the centers of infrared (MIR) emission of Midcourse Space Experiment (MSX), while others correspond either to bright MIR sources or diffuse MIR background. This indicates various evolutionary phases of the cores, including quite early ones for those without MIR sources.

  18. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

    PubMed

    Kumar, Sudhir; Stecher, Glen; Tamura, Koichiro

    2016-07-01

    We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge. PMID:27004904

  19. Molecular phylogeny of the Indian Ocean Terpsiphone paradise flycatchers: undetected evolutionary diversity revealed amongst island populations.

    PubMed

    Bristol, Rachel M; Fabre, Pierre-Henri; Irestedt, Martin; Jønsson, Knud A; Shah, Nirmal J; Tatayah, Vikash; Warren, Ben H; Groombridge, Jim J

    2013-05-01

    We construct a molecular phylogeny of Terpsiphone flycatchers of the Indian Ocean and use this to investigate their evolutionary relationships. A total of 4.4 kb of mitochondrial (cyt-b, ND3, ND2, control region) and nuclear (G3PDH, MC1R) sequence data were obtained from all species, sub-species and island populations of the region. Colonisation of the western Indian Ocean has been within the last two million years and greatly postdates the formation of the older islands of the region. A minimum of two independent continent-island colonisation events must have taken place in order to explain the current distribution and phylogenetic placement of Terpsiphone in this region. While five well-diverged Indian Ocean clades are detected, the relationship between them is unclear. Short intermodal branches are indicative of rapid range expansion across the region, masking exact routes and chronology of colonisation. The Indian Ocean Terpsiphone taxa fall into five well supported clades, two of which (the Seychelles paradise flycatcher and the Mascarene paradise flycatcher) correspond with currently recognised species, whilst a further three (within the Madagascar paradise flycatcher) are not entirely predicted by taxonomy, and are neither consistent with distance-based nor island age-based models of colonisation. We identify the four non-Mascarene clades as Evolutionarily Significant Units (ESUs), while the Mascarene paradise flycatcher contains two ESUs corresponding to the Mauritius and Réunion subspecies. All six ESUs are sufficiently diverged to be worthy of management as if they were separate species. This phylogenetic reconstruction highlights the importance of sub-specific molecular phylogenetic reconstructions in complex island archipelago settings in clarifying phylogenetic history and ESUs that may otherwise be overlooked and inadvertently lost. Our phylogenetic reconstruction has identified hidden pockets of evolutionary distinctiveness, which provide a valuable

  20. Osteoarthritis Pathogenesis: A Review of Molecular Mechanisms

    PubMed Central

    Xia, Bingjiang; Chen, Di; Zhang, Jushi; Hu, Songfeng; Jin, Hongting; Tong, Peijian

    2016-01-01

    Osteoarthritis (OA), the most prevalent chronic joint disease, increases in prevalence with age, and affects majority of individuals over the age of 65 and is a leading musculoskeletal cause of impaired mobility in the elderly. Because the precise molecular mechanisms which are involved in the degradation of cartilage matrix and development of OA are poorly understood and there are currently no effective interventions to decelerate the progression of OA or retard the irreversible degradation of cartilage except for total joint replacement surgery. In this paper, the important molecular mechanisms related to OA pathogenesis will be summarized and new insights into potential molecular targets for the prevention and treatment of OA will be provided. PMID:25311420

  1. Disease resistance: Molecular mechanisms and biotechnological applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue “Disease resistance: molecular mechanisms and biotechnological applications” contains 11 review articles and four original research papers. Research in the area of engineering for disease resistance continues to progress although only 10% of the transgenic plants registered for ...

  2. Ocular diseases: immunological and molecular mechanisms

    PubMed Central

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation. PMID:27275439

  3. [Molecular mechanisms for AMPA receptor trafficking].

    PubMed

    Fukata, Masaki; Fukata, Yuko

    2008-06-01

    Finely tuned synaptic transmission in the brain provides the molecular basis for learning and memory. The misregulation of synaptic transmission is involved in the pathogenesis of various neurological disorders like epilepsy. AMPA-typed glutamate receptors (AMPARs) mediate the most prominent form of excitatory neurotransmission in the brain. Dynamic regulation of AMPARs is thought to be a primary mechanism for controlling synaptic strength. We have analyzed the molecular mechanism for AMPAR-trafficking and function by focusing on PSD-95, a major postsynaptic scaffolding protein. Here, we review the novel regulatory mechanisms of AMPARs by 1) the PSD-95 palmitoylating enzyme, which determines the position of PSD-95 at postsynapses, and 2) the epilepsy related ligand/receptor, LGI1/ADAM22, identified as the PSD-95-interacting protein. PMID:18646599

  4. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution. PMID:27494227

  5. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    SciTech Connect

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineral surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.

  6. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGESBeta

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  7. Embryonic development of goldfish (Carassius auratus): A model for the study of evolutionary change in developmental mechanisms by artificial selection

    PubMed Central

    Tsai, Hsin-Yuan; Chang, Mariann; Liu, Shih-Chieh; Abe, Gembu; Ota, Kinya G

    2013-01-01

    Background: Highly divergent morphology among the different goldfish strains (Carassius auratus) may make it a suitable model for investigating how artificial selection has altered developmental mechanisms. Here we describe the embryological development of the common goldfish (the single fin Wakin), which retains the ancestral morphology of this species. Results: We divided goldfish embryonic development into seven periods consisting of 34 stages, using previously reported developmental indices of zebrafish and goldfish. Although several differences were identified in terms of their yolk size, epiboly process, pigmentation patterns, and development rate, our results indicate that the embryonic features of these two teleost species are highly similar in their overall morphology from the zygote to hatching stage. Conclusions: These results provide an opportunity for further study of the evolutionary relationship between domestication and development, through applying well-established zebrafish molecular biological resources to goldfish embryos. Developmental Dynamics 242:1262–1283, 2013. © 2013 Wiley Periodicals, Inc. Key findings This study provides the first reliable descriptions of normal embryonic stages of wild-type goldfish. The embryonic features of goldfish and zebrafish are almost directly comparable. Goldfish embryos provide a novel model for the investigation of the evolutionary relationship between domestication and development. PMID:23913853

  8. Unraveling the evolutionary radiation of the families of the Zingiberales using morphological and molecular evidence.

    PubMed

    Kress, W J; Prince, L M; Hahn, W J; Zimmer, E A

    2001-01-01

    The Zingiberales are a tropical group of monocotyledons that includes bananas, gingers, and their relatives. The phylogenetic relationships among the eight families currently recognized are investigated here by using parsimony and maximum likelihood analyses of four character sets: morphological features (1), and sequence data of the (2) chloroplast rbcL gene, (3) chloroplast atpB gene, and (4) nuclear 18S rDNA gene. Outgroups for the analyses include the closely related Commelinaceae + Philydraceae + Haemodoraceae + Pontederiaceae + Hanguanaceae as well as seven more distantly related monocots and paleoherbs. Only slightly different estimates of evolutionary relationships result from the analysis of each character set. The morphological data yield a single fully resolved most-parsimonious tree. None of the molecular datasets alone completely resolves interfamilial relationships. The analyses of the combined molecular dataset provide more resolution than do those of individual genes, and the addition of the morphological data provides a well-supported estimate of phylogenetic relationships: (Musaceae ((Strelitziaceae, Lowiaceae) (Heliconiaceae ((Zingiberaceae, Costaceae) (Cannaceae, Marantaceae))))). Evidence from branch lengths in the parsimony analyses and from the fossil record suggests that the Zingiberales originated in the Early Cretaceous and underwent a rapid radiation in the mid-Cretaceous, by which time most extant family lineages had diverged. PMID:12116641

  9. Evolutionary animation: how do molecular phylogenies compare to Mayr's reconstruction of speciation patterns in the sea?

    PubMed

    Palumbi, Stephen R; Lessios, H A

    2005-05-01

    Ernst Mayr used the geography of closely related species in various stages of increasing divergence to "animate" the process of geographic, or allopatric, speciation. This approach was applied to a wide set of taxa, and a seminal paper by Mayr used it to explore speciation patterns in tropical sea urchins. Since then, taxonomic information in several of these genera has been augmented by detailed molecular phylogenies. We compare Mayr's animation with the phylogenies of eight sea urchin genera placed by Mayr into four speciation groups. True to Mayr's predictions, early-stage genera have on average lower species divergence and more polytypic species than genera in later stages. For six of these genera, we also have information about the evolution of the gamete recognition protein bindin, which is critical to reproductive isolation. These comparisons show that later-stage genera with many sympatric species tend to be those with rapid bindin evolution. By contrast, early-stage genera with few sympatric species are not necessarily earlier in the divergence process; they happen to be those with slow rates of bindin evolution. These results show that the rate of speciation in sea urchins does not only depend on the steady accumulation of genome divergence over time, but also on the rate of evolution of gamete recognition proteins. The animation method used by Mayr is generally supported by molecular phylogenies. However, the existence of multiple rates in the acquisition of reproductive isolation complicates placement of different genera in an evolutionary series. PMID:15851681

  10. Molecular Phylogeny of Echiuran Worms (Phylum: Annelida) Reveals Evolutionary Pattern of Feeding Mode and Sexual Dimorphism

    PubMed Central

    Goto, Ryutaro; Okamoto, Tomoko; Ishikawa, Hiroshi; Hamamura, Yoichi; Kato, Makoto

    2013-01-01

    The Echiura, or spoon worms, are a group of marine worms, most of which live in burrows in soft sediments. This annelid-like animal group was once considered as a separate phylum because of the absence of segmentation, although recent molecular analyses have placed it within the annelids. In this study, we elucidate the interfamily relationships of echiuran worms and their evolutionary pattern of feeding mode and sexual dimorphism, by performing molecular phylogenetic analyses using four genes (18S, 28S, H3, and COI) of representatives of all extant echiuran families. Our results suggest that Echiura is monophyletic and comprises two unexpected groups: [Echiuridae+Urechidae+Thalassematidae] and [Bonelliidae+Ikedidae]. This grouping agrees with the presence/absence of marked sexual dimorphism involving dwarf males and the paired/non-paired configuration of the gonoducts (genital sacs). Furthermore, the data supports the sister group relationship of Echiuridae and Urechidae. These two families share the character of having anal chaetae rings around the posterior trunk as a synapomorphy. The analyses also suggest that deposit feeding is a basal feeding mode in echiurans and that filter feeding originated once in the common ancestor of Urechidae. Overall, our results contradict the currently accepted order-level classification, especially in that Echiuroinea is polyphyletic, and provide novel insights into the evolution of echiuran worms. PMID:23457618

  11. Fossil and molecular evidence constrain scenarios for the early evolutionary and biogeographic history of hystricognathous rodents.

    PubMed

    Sallam, Hesham M; Seiffert, Erik R; Steiper, Michael E; Simons, Elwyn L

    2009-09-29

    The early evolutionary and paleobiogeographic history of the diverse rodent clade Hystricognathi, which contains Hystricidae (Old World porcupines), Caviomorpha (the endemic South American rodents), and African Phiomorpha (cane rats, dassie rats, and blesmols) is of great interest to students of mammalian evolution, but remains poorly understood because of a poor early fossil record. Here we describe the oldest well-dated hystricognathous rodents from an earliest late Eocene (approximately 37 Ma) fossil locality in the Fayum Depression of northern Egypt. These taxa exhibit a combination of primitive and derived features, the former shared with Asian "baluchimyine" rodents, and the latter shared with Oligocene phiomorphs and caviomorphs. Phylogenetic analysis incorporating morphological, temporal, geographic, and molecular information places the new taxa as successive sister groups of crown Hystricognathi, and supports an Asian origin for stem Hystricognathi and an Afro-Arabian origin for crown Hystricognathi, stem Hystricidae, and stem Caviomorpha. Molecular dating of early divergences within Hystricognathi, using a Bayesian "relaxed clock" approach and multiple fossil calibrations, suggests that the split between Hystricidae and the phiomorph-caviomorph clade occurred approximately 39 Ma, and that phiomorphs and caviomorphs diverged approximately 36 Ma. These results are remarkably congruent with our phylogenetic results and the fossil record of hystricognathous rodent evolution in Afro-Arabia and South America. PMID:19805363

  12. Molecular mechanisms underlying alcohol-drinking behaviours.

    PubMed

    Ron, Dorit; Barak, Segev

    2016-09-01

    The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term 'stop pathways', and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term 'go pathways'. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways. PMID:27444358

  13. Molecular Mechanisms of Inherited Demyelinating Neuropathies

    PubMed Central

    SCHERER, STEVEN S.; WRABETZ, LAWRENCE

    2008-01-01

    The past 15 years have witnessed the identification of more than 25 genes responsible for inherited neuropathies in humans, many associated with primary alterations of the myelin sheath. A remarkable body of work in patients, as well as animal and cellular models, has defined the clinical and molecular genetics of these illnesses and shed light on how mutations in associated genes produce the heterogeneity of dysmyelinating and demyelinating phenotypes. Here, we review selected recent developments from work on the molecular mechanisms of these disorders and their implications for treatment strategies. PMID:18803325

  14. Cellular and molecular mechanisms underlying presynapse formation

    PubMed Central

    Chia, Poh Hui; Li, Pengpeng

    2013-01-01

    Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation. PMID:24127213

  15. Cellular and molecular mechanisms underlying muscular dystrophy

    PubMed Central

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes. PMID:23671309

  16. Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis genes of Rhodobacter capsulatus

    SciTech Connect

    Burke-Agueero, D.H.

    1992-08-01

    Rhodobacter capsulatus, purple bacterium capable of either aerobic or photosynthetic growth, has proven to be very useful in genetic studies of photosynthesis. Forty-four genes clustered together within a 46 kilobase region are required to establish photosynthetic ability in R. capsulatus. Approximately twenty of these genes are involved in bacteriochlorophyll synthesis of which eight ``bch`` genes are the subject of this thesis. Six of these genes were found to code for the two ring reductases. The first converts protochlorophyllide (PChlide) into a chlorin, the immediate precursor to chlorophyll a, and then into a bacteriochlorin. Each reductase is shown to be made up of three subunits. PChlide reductase is coded by the genes bchN, bchB, and bchL. Proteins with amino acid sequences markedly similar to those of bchN and bchL have been shown in other organisms to be required for chlorophyll synthesis; hence, their designation as chlN and chlB. A third chloroplast-encoded gene of heretofore unknown function shares amino acid identities with bchB and is probably the third subunit of the plant PChlide reductase. The bchA locus, which encodes the chlorin reductase, is found to be made up of three separate, translationally coupled genes, referred to as bchX, bchY, and bchZ. Amino acid similarities between bchX, bchL, and the nitrogenase reductase protein nifH suggest that all three classes of proteins share certain three-dimensional structural features, including elements that are central to the enzymatic mechanism of nifH. PChlide reductase and chlorin reductase are clearly derived from a common ancestor. Several lines of analysis suggests the ancestor of both enzyme systems reduced PChlide twice to produce bacteriochlorophyll supporting the concept bacteriochlorophyll as the ancestral reaction center pigment.

  17. Molecular genetic and molecular evolutionary studies on the bacteriochlorophyll synthesis genes of Rhodobacter capsulatus

    SciTech Connect

    Burke-Agueero, D.H.

    1992-08-01

    Rhodobacter capsulatus, purple bacterium capable of either aerobic or photosynthetic growth, has proven to be very useful in genetic studies of photosynthesis. Forty-four genes clustered together within a 46 kilobase region are required to establish photosynthetic ability in R. capsulatus. Approximately twenty of these genes are involved in bacteriochlorophyll synthesis of which eight bch'' genes are the subject of this thesis. Six of these genes were found to code for the two ring reductases. The first converts protochlorophyllide (PChlide) into a chlorin, the immediate precursor to chlorophyll a, and then into a bacteriochlorin. Each reductase is shown to be made up of three subunits. PChlide reductase is coded by the genes bchN, bchB, and bchL. Proteins with amino acid sequences markedly similar to those of bchN and bchL have been shown in other organisms to be required for chlorophyll synthesis; hence, their designation as chlN and chlB. A third chloroplast-encoded gene of heretofore unknown function shares amino acid identities with bchB and is probably the third subunit of the plant PChlide reductase. The bchA locus, which encodes the chlorin reductase, is found to be made up of three separate, translationally coupled genes, referred to as bchX, bchY, and bchZ. Amino acid similarities between bchX, bchL, and the nitrogenase reductase protein nifH suggest that all three classes of proteins share certain three-dimensional structural features, including elements that are central to the enzymatic mechanism of nifH. PChlide reductase and chlorin reductase are clearly derived from a common ancestor. Several lines of analysis suggests the ancestor of both enzyme systems reduced PChlide twice to produce bacteriochlorophyll supporting the concept bacteriochlorophyll as the ancestral reaction center pigment.

  18. Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.

    1992-03-01

    The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.

  19. Learning from evolutionary optimisation: what are toughening mechanisms good for in dentine, a nonrepairing bone tissue?

    PubMed

    Zaslansky, Paul; Currey, John D; Fleck, Claudia

    2016-01-01

    The main mass of material found in teeth is dentine, a bone-like tissue, riddled with micron-sized tubules and devoid of living cells. It provides support to the outer wear-resistant layer of enamel, and exhibits toughening mechanisms which contribute to crack resistance. And yet unlike most bone tissues, dentine does not remodel and consequently any accumulated damage does not 'self repair'. Because damage containment followed by tissue replacement is a prime reason for the crack-arresting microstructures found in most bones, the occurrence of toughening mechanisms without the biological capability to repair is puzzling. Here we consider the notion that dentine might be overdesigned for strength, because it has to compensate for the lack of cell-mediated healing mechanisms. Based on our own and on literature-reported observations, including quasistatic and fatigue properties, dentine design principles are discussed in light of the functional conditions under which teeth evolved. We conclude that dentine is only slightly overdesigned for everyday cyclic loading because usual mastication stresses may come close to its endurance strength. The in-built toughening mechanisms constitute an evolutionary benefit because they prevent catastrophic failure during rare overload events, which was probably very advantageous in our hunter gatherer ancestor times. From a bio-inspired perspective, understanding the extent of evolutionary overdesign might be useful for optimising biomimetic structures used for load bearing. PMID:27615450

  20. Immune function across generations: integrating mechanism and evolutionary process in maternal antibody transmission.

    PubMed Central

    Grindstaff, Jennifer L; Brodie, Edmund D; Ketterson, Ellen D

    2003-01-01

    The past 30 years of immunological research have revealed much about the proximate mechanisms of maternal antibody transmission and utilization, but have not adequately addressed how these issues are related to evolutionary and ecological theory. Much remains to be learned about individual differences within a species in maternal antibody transmission as well as differences among species in transmission or utilization of antibodies. Similarly, maternal-effects theory has generally neglected the mechanisms by which mothers influence offspring phenotype. Although the environmental cues that generate maternal effects and the consequent effects for offspring phenotype are often well characterized, the intermediary physiological and developmental steps through which the maternal effect is transmitted are generally unknown. Integration of the proximate mechanisms of maternal antibody transmission with evolutionary theory on maternal effects affords an important opportunity to unite mechanism and process by focusing on the links between genetics, environment and physiology, with the ultimate goal of explaining differences among individuals and species in the transfer of immune function from one generation to the next. PMID:14667346

  1. Molecular mechanisms of membrane interaction at implantation.

    PubMed

    Davidson, Lien M; Coward, Kevin

    2016-03-01

    Successful pregnancy is dependent upon the implantation of a competent embryo into a receptive endometrium. Despite major advancement in our understanding of reproductive medicine over the last few decades, implantation failure still occurs in both normal pregnancies and those created artificially by assisted reproductive technology (ART). Consequently, there is significant interest in elucidating the etiology of implantation failure. The complex multistep process of implantation begins when the developing embryo first makes contact with the plasma membrane of epithelial cells within the uterine environment. However, although this biological interaction marks the beginning of a fundamental developmental process, our knowledge of the intricate physiological and molecular processes involved remains sparse. In this synopsis, we aim to provide an overview of our current understanding of the morphological changes which occur to the plasma membrane of the uterine endothelium, and the molecular mechanisms that control communication between the early embryo and the endometrium during implantation. A multitude of molecular factors have been implicated in this complex process, including endometrial integrins, extracellular matrix molecules, adhesion molecules, growth factors, and ion channels. We also explore the development of in vitro models for embryo implantation to help researchers investigate mechanisms which may underlie implantation failure. Understanding the precise molecular pathways associated with implantation failure could help us to generate new prognostic/diagnostic biomarkers, and may identify novel therapeutic targets. PMID:26969610

  2. Autocatalytic Decomposition Mechanisms in Energetic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija; Rashkeev, Sergey

    2009-06-01

    Atomic scale mechanisms of the initiation of chemical processes in energetic molecular crystals, which lead to the decomposition and ultimately to an explosive chain reaction, are still far from being understood. In this work, we investigate the onset of the initiation processes in two high explosive crystals - diamino-dinitroethylene (DADNE) and triamino- trinitrobenzene (TATB). We found that an autocatalytic decomposition mechanism is likely to take place in DADNE crystal that consists of corrugated, dashboard-shaped molecular layers. The presence of a dissociated NO2 group in the interstitial space between two layers induces a significant shear-strain between these layers, which, in turn, facilitates the further dissociation of NO2 groups from surrounding molecules through lowering the C-NO2 decomposition barrier. Unlike this, in TATB (that consists of flat, graphite-like molecular layers), an interstitial NO2 group positioned between two layers tends to produce a tensile stress (rather than a shear-strain), which leads to local molecular disorder in these layers without any significant modification of the C-NO2 decomposition barrier. The observed differences between the two materials are discussed in terms of their structural, electronic, and chemical properties.

  3. Mechanisms and Molecular Probes of Sirtuins

    PubMed Central

    Smith, Brian C.; Hallows, William C.; Denu, John M.

    2008-01-01

    Summary Sirtuins are critical regulators of many cellular processes including insulin secretion, the cell cycle, and apoptosis. Sirtuins are associated with a variety of age-associated diseases such as type II diabetes, obesity, and Alzheimer’s disease. A thorough understanding of sirtuin chemical mechanisms will aid toward developing novel therapeutics that regulate metabolic disorders and combat associated diseases. In this review, we discuss the unique deacetylase mechanism of sirtuins and how this information might be employed to develop inhibitors and other molecular probes for therapeutic and basic research applications. We also cover physiological regulation of sirtuin activity and how these modes of regulation may be exploited to manipulate sirtuin activity in live cells. Development of molecular probes and drugs that specifically target sirtuins will further understanding of sirtuin biology and potentially afford new treatments of several human diseases. PMID:18940661

  4. Molecular Mechanism of Biological Proton Transport

    SciTech Connect

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  5. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    SciTech Connect

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  6. Molecular regulatory mechanism of tooth root development

    PubMed Central

    Huang, Xiao-Feng; Chai, Yang

    2012-01-01

    The root is crucial for the physiological function of the tooth, and a healthy root allows an artificial crown to function as required clinically. Tooth crown development has been studied intensively during the last few decades, but root development remains not well understood. Here we review the root development processes, including cell fate determination, induction of odontoblast and cementoblast differentiation, interaction of root epithelium and mesenchyme, and other molecular mechanisms. This review summarizes our current understanding of the signaling cascades and mechanisms involved in root development. It also sets the stage for de novo tooth regeneration. PMID:23222990

  7. Molecular mechanism of magnet formation in bacteria.

    PubMed

    Matsunaga, T; Sakaguchi, T

    2000-01-01

    Magnetic bacteria have an ability to synthesize intracellular ferromagnetic crystalline particles consisting of magnetite (Fe3O4) or greigite (Fe3S4) which occur within a specific size range (50-100 nm). Bacterial magnetic particles (BMPs) can be distinguished by the regular morphology and the presence of an thin organic membrane enveloping crystals from abiologically formed magnetite. The particle is the smallest magnetic crystal that has a regular morphology within the single domain size. Therefore, BMPs have an unfathomable amount of potential value for various technological applications not only scientific interests. However, the molecular and genetic mechanism of magnetite biomineralization is hardly understood although iron oxide formation occurs widely in many higher animals as well as microorganisms. In order to elucidate the molecular and genetic mechanisms of magnetite biomineralization, a magnetic bacterium Magnetospirillum sp. AMB-1, for which gene transfer and transposon mutagenesis techniques had been recently developed, has been used as a model organism. Several findings and information on the BMPs formation process have been obtained within this decade by means of studies with this model organism and its related one. Biomineralization mechanism and potential availability in biotechnology of bacterial magnets have been elucidated through molecular and genetic approach. PMID:16232810

  8. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    PubMed

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism among terrestrial animals. Numerous studies have made Nephilidae, particularly Nephila, a model lineage in evolutionary research. However, a poorly understood phylogeny of this lineage, relying only on morphology, has prevented thorough evolutionary syntheses of nephilid biology. We here use three nuclear and five mitochondrial genes for 28 out of 40 nephilid species to provide a more robust nephilid phylogeny and infer clade ages in a fossil-calibrated Bayesian framework. We complement the molecular analyses with total evidence analysis including morphology. All analyses find strong support for nephilid monophyly and exclusivity and the monophyly of the genera Herennia and Clitaetra. The inferred phylogenetic structure within Nephilidae is novel and conflicts with morphological phylogeny and traditional taxonomy. Nephilengys species fall into two clades, one with Australasian species (true Nephilengys) as sister to Herennia, and another with Afrotropical species (Nephilingis Kuntner new genus) as sister to a clade containing Clitaetra plus most currently described Nephila. Surprisingly, Nephila is also diphyletic, with true Nephila containing N. pilipes+N. constricta, and the second clade with all other species sister to Clitaetra; this "Nephila" clade is further split into an Australasian clade that also contains the South American N. sexpunctata and the Eurasian N. clavata, and an African clade that also contains the Panamerican N. clavipes. An approximately unbiased test constraining the monophyly of Nephilengys, Nephila, and Nephilinae (Nephila, Nephilengys, Herennia), respectively, rejected Nephilengys monophyly, but not that of Nephila and Nephilinae. Further data are therefore necessary to robustly test these two new, but inconclusive findings, and also to further test the precise placement of Nephilidae within the Araneoidea. For divergence date estimation

  9. Molecular and cellular mechanisms of cardiotoxicity.

    PubMed Central

    Kang, Y J

    2001-01-01

    Cardiotoxicity resulting from detrimental environmental insults has been recognized for a long time. However, extensive studies of the mechanisms involved had not been undertaken until recent years. Advances in molecular biology provide powerful tools and make such studies possible. We are gathering information about cellular events, signaling pathways, and molecular mechanisms of myocardial toxicologic responses to environmental toxicants and pollutants. Severe acute toxic insults cause cardiac cell death instantly. In the early response to mild environmental stimuli, biochemical changes such as alterations in calcium homeostasis occur. These may lead to cardiac arrhythmia, which most often is reversible. Prolonged stimuli activate transcription factors such as activator protein-1 through elevation of intracellular calcium and the subsequent activation of calcineurin. Upregulation by activated transcription factors of hypertrophic genes results in heart hypertrophy, which is a short-term adaptive response to detrimental factors. However, further development of hypertrophy will lead to severe and irreversible cardiomyopathy, and eventually heart failure. From cardiac hypertrophy to heart failure, myocardial cells undergo extensive biochemical and molecular changes. Cardiac hypertrophy causes tissue hypoperfusion, which activates compensatory mechanisms such as production of angiotensin II and norepinephrine. Both further stimulate cardiac hypertrophy and, importantly, activate counterregulatory mechanisms including overexpression of atrial natriuretic peptide and b-type natriuretic peptide, and production of cytokines such as tumor necrosis factor-alpha. This counterregulation leads to myocardial remodeling as well as cell death through apoptosis and necrosis. Cell death through activation of mitochondrial factors and other pathways constitutes an important cellular mechanism of heart failure. Our current knowledge of cardiotoxicity is limited. Further extensive

  10. A computational kinematics and evolutionary approach to model molecular flexibility for bionanotechnology

    NASA Astrophysics Data System (ADS)

    Brintaki, Athina N.

    Modeling molecular structures is critical for understanding the principles that govern the behavior of molecules and for facilitating the exploration of potential pharmaceutical drugs and nanoscale designs. Biological molecules are flexible bodies that can adopt many different shapes (or conformations) until they reach a stable molecular state that is usually described by the minimum internal energy. A major challenge in modeling flexible molecules is the exponential explosion in computational complexity as the molecular size increases and many degrees of freedom are considered to represent the molecules' flexibility. This research work proposes a novel generic computational geometric approach called enhanced BioGeoFilter (g.eBGF) that geometrically interprets inter-atomic interactions to impose geometric constraints during molecular conformational search to reduce the time for identifying chemically-feasible conformations. Two new methods called Kinematics-Based Differential Evolution ( kDE) and Biological Differential Evolution ( BioDE) are also introduced to direct the molecular conformational search towards low energy (stable) conformations. The proposed kDE method kinematically describes a molecule's deformation mechanism while it uses differential evolution to minimize the intra-molecular energy. On the other hand, the proposed BioDE utilizes our developed g.eBGF data structure as a surrogate approximation model to reduce the number of exact evaluations and to speed the molecular conformational search. This research work will be extremely useful in enabling the modeling of flexible molecules and in facilitating the exploration of nanoscale designs through the virtual assembly of molecules. Our research work can also be used in areas such as molecular docking, protein folding, and nanoscale computer-aided design where rapid collision detection scheme for highly deformable objects is essential.

  11. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  12. A mechanical micro molecular mass sensor

    PubMed Central

    Kurhekar, A. S.; Apte, P. R.

    2014-01-01

    One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon <100> wafer, with the resonating frequency of 7000 cycles per second. This thin-flimsy-oxide micro-cantilever has a typical shape, and the tip of the micro-cantilever is dip-coated with chemically and biologically active material. The change in mass, due to adsorption, is detected by measuring the change in spring constant. The Force-Distance spectroscopy is used to detect the change in spring constant. The experimental results, show that the mechanical sensing scheme used, permit this surface functionalized micro machined micro cantilever to be used as a molecular mass sensor. The mechanical spring behaviour of a micro-cantilever, a micro-mechanical device can be used to develop ultra-tech micro-mechanical system using computer interface. PMID:24459585

  13. Evolutionary public goods games on scale-free networks with unequal payoff allocation mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Yang, Hanxin; Du, Wenbo; Wang, Binghong; Cao, Xianbin

    2010-03-01

    In this paper, we bring an unequal payoff allocation mechanism into evolutionary public goods game on scale-free networks and focus on the cooperative behavior of the system. The unequal mechanism can be tuned by one parameter α: if α>0, the hub nodes can use its degree advantage to collect more payoff; if α<0, numerous non-hub nodes will obtain more payoff in a single round game. Simulation results show that the cooperation level has a non-trivial dependence on α. For the small enhancement factor r, the cooperator frequency can be promoted by both negative and positive α. For large r, there exists an optimal α that can obtain the highest cooperation level. Our results may sharpen the understanding of the emergence of cooperation induced by the unequal payoff allocation mechanism.

  14. Exploiting Genomic Knowledge in Optimising Molecular Breeding Programmes: Algorithms from Evolutionary Computing

    PubMed Central

    O'Hagan, Steve; Knowles, Joshua; Kell, Douglas B.

    2012-01-01

    Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any ‘prior knowledge’ of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information). PMID:23185279

  15. Molecular evidence from Ciona intestinalis for the evolutionary origin of vertebrate sensory placodes.

    PubMed

    Mazet, Françoise; Hutt, James A; Milloz, Josselin; Millard, John; Graham, Anthony; Shimeld, Sebastian M

    2005-06-15

    Cranial sensory placodes are focused areas of the head ectoderm of vertebrates that contribute to the development of the cranial sense organs and their associated ganglia. Placodes have long been considered a key character of vertebrates, and their evolution is proposed to have been essential for the evolution of an active predatory lifestyle by early vertebrates. Despite their importance for understanding vertebrate origins, the evolutionary origin of placodes has remained obscure. Here, we use a panel of molecular markers from the Six, Eya, Pax, Dach, FoxI, COE and POUIV gene families to examine the tunicate Ciona intestinalis for evidence of structures homologous to vertebrate placodes. Our results identify two domains of Ciona ectoderm that are marked by the genetic cascade that regulates vertebrate placode formation. The first is just anterior to the brain, and we suggest this territory is equivalent to the olfactory/adenohypophyseal placodes of vertebrates. The second is a bilateral domain adjacent to the posterior brain and includes cells fated to form the atrium and atrial siphon of adult Ciona. We show this bares most similarity to placodes fated to form the vertebrate acoustico-lateralis system. We interpret these data as support for the hypothesis that sensory placodes did not arise de novo in vertebrates, but evolved from pre-existing specialised areas of ectoderm that contributed to sensory organs in the common ancestor of vertebrates and tunicates. PMID:15950613

  16. AN EVOLUTIONARY MODEL FOR COLLAPSING MOLECULAR CLOUDS AND THEIR STAR FORMATION ACTIVITY

    SciTech Connect

    Zamora-Aviles, Manuel; Vazquez-Semadeni, Enrique; Colin, Pedro

    2012-05-20

    We present an idealized, semi-empirical model for the evolution of gravitationally contracting molecular clouds (MCs) and their star formation rate (SFR) and efficiency (SFE). The model assumes that the instantaneous SFR is given by the mass above a certain density threshold divided by its free-fall time. The instantaneous number of massive stars is computed assuming a Kroupa initial mass function. These stars feed back on the cloud through ionizing radiation, eroding it. The main controlling parameter of the evolution turns out to be the maximum cloud mass, M{sub max}. This allows us to compare various properties of the model clouds against their observational counterparts. A giant molecular cloud (GMC) model (M{sub max} {approx} 10{sup 5} M{sub Sun }) adheres very well to the evolutionary scenario recently inferred by Kawamura et al. for GMCs in the Large Magellanic Cloud. A model cloud with M{sub max} Almost-Equal-To 2000 M{sub Sun} evolves in the Kennicutt-Schmidt diagram, first passing through the locus of typical low-to-intermediate-mass star-forming clouds, and then moving toward the locus of high-mass star-forming ones over the course of {approx}10 Myr. Also, the stellar age histograms for this cloud a few Myr before its destruction agree very well with those observed in the {rho}-Oph stellar association, whose parent cloud has a similar mass, and imply that the SFR of the clouds increases with time. Our model thus agrees well with various observed properties of star-forming MCs, suggesting that the scenario of gravitationally collapsing MCs, with their SFR regulated by stellar feedback, is entirely feasible and in agreement with key observed properties of MCs.

  17. Evolutionary and molecular facts link the WWC protein family to Hippo signaling.

    PubMed

    Wennmann, Dirk Oliver; Schmitz, Jürgen; Wehr, Michael C; Krahn, Michael P; Koschmal, Nora; Gromnitza, Sascha; Schulze, Ulf; Weide, Thomas; Chekuri, Anil; Skryabin, Boris V; Gerke, Volker; Pavenstädt, Hermann; Duning, Kerstin; Kremerskothen, Joachim

    2014-07-01

    The scaffolding protein KIBRA (also called WWC1) is involved in the regulation of important intracellular transport processes and the establishment of cell polarity. Furthermore, KIBRA/WWC1 is an upstream regulator of the Hippo signaling pathway that controls cell proliferation and organ size in animals. KIBRA/WWC1 represents only one member of the WWC protein family that also includes the highly similar proteins WWC2 and WWC3. Although the function of KIBRA/WWC1 was studied intensively in cells and animal models, the importance of WWC2 and WWC3 was not yet elucidated. Here, we describe evolutionary, molecular, and functional aspects of the WWC family. We show that the WWC genes arose in the ancestor of bilateral animals (clades such as insects and vertebrates) from a single founder gene most similar to the present KIBRA/WWC1-like sequence of Drosophila. This situation was still maintained until the common ancestor of lancelet and vertebrates. In fish, a progenitor-like sequence of mammalian KIBRA/WWC1 and WWC2 is expressed together with WWC3. Finally, in all tetrapods, the three family members, KIBRA/WWC1, WWC2, and WWC3, are found, except for a large genomic deletion including WWC3 in Mus musculus. At the molecular level, the highly conserved WWC proteins share a similar primary structure, the ability to form homo- and heterodimers and the interaction with a common set of binding proteins. Furthermore, all WWC proteins negatively regulate cell proliferation and organ growth due to a suppression of the transcriptional activity of YAP, the major effector of the Hippo pathway. PMID:24682284

  18. Molecular phylogenetics and evolutionary history of ariid catfishes revisited: a comprehensive sampling

    PubMed Central

    Betancur-R, Ricardo

    2009-01-01

    Background Ariids or sea catfishes are one of the two otophysan fish families (out of about 67 families in four orders) that inhabit mainly marine and brackish waters (although some species occur strictly in fresh waters). The group includes over 150 species placed in ~29 genera and two subfamilies (Galeichthyinae and Ariinae). Despite their global distribution, ariids are largely restricted to the continental shelves due in part to their specialized reproductive behavior (i.e., oral incubation). Thus, among marine fishes, ariids offer an excellent opportunity for inferring historical biogeographic scenarios. Phylogenetic hypotheses available for ariids have focused on restricted geographic areas and comprehensive phylogenies are still missing. This study inferred phylogenetic hypotheses for 123 ariid species in 28 genera from different biogeographic provinces using both mitochondrial and nuclear sequences (up to ~4 kb). Results While the topologies obtained support the monophyly of basal groups, up to ten genera validated in previous morphological studies were incongruent with the molecular topologies. New World ariines were recovered as paraphyletic and Old World ariines were grouped into a well-supported clade that was further divided into subclades mainly restricted to major Gondwanan landmasses. A general area cladogram derived from the area cladograms of ariines and three other fish groups was largely congruent with the geological area cladogram of Gondwana. Nonetheless, molecular clock estimations provided variable results on the timing of ariine diversification (~105-41 mya). Conclusion This study provides the most comprehensive phylogeny of sea catfishes to date and highlights the need for re-assessment of their classification. While from a topological standpoint the evolutionary history of ariines is mostly congruent with vicariance associated with the sequence of events during Gondwanan fragmentation, ambiguous divergence time estimations hinders

  19. Beyond fossil calibrations: realities of molecular clock practices in evolutionary biology

    PubMed Central

    Hipsley, Christy A.; Müller, Johannes

    2014-01-01

    Molecular-based divergence dating methods, or molecular clocks, are the primary neontological tool for estimating the temporal origins of clades. While the appropriate use of vertebrate fossils as external clock calibrations has stimulated heated discussions in the paleontological community, less attention has been given to the quality and implementation of other calibration types. In lieu of appropriate fossils, many studies rely on alternative sources of age constraints based on geological events, substitution rates and heterochronous sampling, as well as dates secondarily derived from previous analyses. To illustrate the breadth and frequency of calibration types currently employed, we conducted a literature survey of over 600 articles published from 2007 to 2013. Over half of all analyses implemented one or more fossil dates as constraints, followed by geological events and secondary calibrations (15% each). Vertebrate taxa were subjects in nearly half of all studies, while invertebrates and plants together accounted for 43%, followed by viruses, protists and fungi (3% each). Current patterns in calibration practices were disproportionate to the number of discussions on their proper use, particularly regarding plants and secondarily derived dates, which are both relatively neglected in methodological evaluations. Based on our survey, we provide a comprehensive overview of the latest approaches in clock calibration, and outline strengths and weaknesses associated with each. This critique should serve as a call to action for researchers across multiple communities, particularly those working on clades for which fossil records are poor, to develop their own guidelines regarding selection and implementation of alternative calibration types. This issue is particularly relevant now, as time-calibrated phylogenies are used for more than dating evolutionary origins, but often serve as the backbone of investigations into biogeography, diversity dynamics and rates of

  20. Molecular Mechanisms of Renal Ischemic Conditioning Strategies.

    PubMed

    Kierulf-Lassen, Casper; Nieuwenhuijs-Moeke, Gertrude J; Krogstrup, Nicoline V; Oltean, Mihai; Jespersen, Bente; Dor, Frank J M F

    2015-01-01

    Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized. PMID:26330099

  1. Molecular mechanisms for protein-encoded inheritance

    SciTech Connect

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  2. Mechanically induced luminescence changes in molecular assemblies.

    PubMed

    Sagara, Yoshimitsu; Kato, Takashi

    2009-11-01

    Altering the shape and properties of a material through external factors such as heat, light, pressure, pH, electric or magnetic fields, or the introduction of a guest molecule, is an attractive prospect. In this Perspective, piezochromic luminescent materials - which change the colour of their luminescence in response to mechanical stimuli - are described. Such piezochromism has been observed for a few molecular materials that contain luminescent cores in liquid-crystalline and crystalline solid states, as well as for polymeric materials doped with dyes. These changes in photoluminescent colour can be activated by various types of mechanical pressure such as shearing, grinding or elongation, which can trigger different mechanisms of producing the colour. Such stimuli-responsive materials have potential for various applications, including sensors, memory and displays. PMID:21378953

  3. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  4. Molecular mechanism of viscoelasticity in aligned polyethylene

    NASA Astrophysics Data System (ADS)

    Hammad, Ali; Hasan, Hikmatyar; Swinburne, Thomas; Del Rosso, Stefano; Iannucci, Lorenzo; Sutton, Adrian

    2014-03-01

    Aligned polyethylene is used in industrial and medical applications due to its low density and high tensile strength. Extensive experimental work has been done to determine its mechanical properties, notably its viscoelasticity. However, the molecular processes that underlie these macroscopic properties are poorly understood. We develop a united atom model of aligned chains, in which intermolecular interactions are modelled by a Lennard-Jones potential, and the elastic energy within chains is modelled with harmonic springs. Using this simple model, we demonstrate the nucleation of solitons from chain ends, as one molecular chain is stretched with respect to another, and how load is transferred between chains in disregistry by intermolecular interactions. We develop an equation of motion for the movement of solitons along molecular chains, allowing us to replace a collection of aligned chains with a gas of solitons. Although solitons have been invoked to account for dielectric relaxation in crystalline regions of polyethylene, we believe this may be the first time they are discussed in the context of mechanical properties of aligned polyethylene.

  5. Molecular Mechanisms of Prolactin and Its Receptor

    PubMed Central

    2012-01-01

    Prolactin and the prolactin receptors are members of a family of hormone/receptor pairs which include GH, erythropoietin, and other ligand/receptor pairs. The mechanisms of these ligand/receptor pairs have broad similarities, including general structures, ligand/receptor stoichiometries, and activation of several common signaling pathways. But significant variations in the structural and mechanistic details are present among these hormones and their type 1 receptors. The prolactin receptor is particularly interesting because it can be activated by three sequence-diverse human hormones: prolactin, GH, and placental lactogen. This system offers a unique opportunity to compare the detailed molecular mechanisms of these related hormone/receptor pairs. This review critically evaluates selected literature that informs these mechanisms, compares the mechanisms of the three lactogenic hormones, compares the mechanism with those of other class 1 ligand/receptor pairs, and identifies information that will be required to resolve mechanistic ambiguities. The literature describes distinct mechanistic differences between the three lactogenic hormones and their interaction with the prolactin receptor and describes more significant differences between the mechanisms by which other related ligands interact with and activate their receptors. PMID:22577091

  6. Molecular pathways mediating mechanical signaling in bone

    PubMed Central

    Rubin, Janet; Rubin, Clinton; Jacobs, Christopher Rae

    2013-01-01

    Bone tissue has the capacity to adapt to its functional environment such that its morphology is “optimized” for the mechanical demand. The adaptive nature of the skeleton poses an interesting set of biological questions (e.g., how does bone sense mechanical signals, what cells are the sensing system, what are the mechanical signals that drive the system, what receptors are responsible for transducing the mechanical signal, what are the molecular responses to the mechanical stimuli). Studies of the characteristics of the mechanical environment at the cellular level, the forces that bone cells recognize, and the integrated cellular responses are providing new information at an accelerating speed. This review first considers the mechanical factors that are generated by loading in the skeleton, including strain, stress and pressure. Mechanosensitive cells placed to recognize these forces in the skeleton, osteoblasts, osteoclasts, osteocytes and cells of the vasculature are reviewed. The identity of the mechanoreceptor(s) is approached, with consideration of ion channels, integrins, connexins, the lipid membrane including caveolar and noncaveolar lipid rafts and the possibility that altering cell shape at the membrane or cytoskeleton alters integral signaling protein associations. The distal intracellular signaling systems on-line after the mechanoreceptor is activated are reviewed, including those emanating from G-proteins (e.g., intracellular calcium shifts), MAPKs, and nitric oxide. The ability to harness mechanical signals to improve bone health through devices and exercise is broached. Increased appreciation of the importance of the mechanical environment in regulating and determining the structural efficacy of the skeleton makes this an exciting time for further exploration of this area. PMID:16361069

  7. Molecular mechanisms of intercellular communication: transmembrane signaling

    SciTech Connect

    Bitensky, M.W.; George, J.S.; Siegel, H.N.; McGregor, D.M.

    1982-01-01

    This short discussion of transmembrane signaling depicts a particular class of signaling devices whose functional characteristics may well be representative of broader classes of membrane switches. These multicomponent aggregates are characterized by tight organization of interacting components which function by conformational interactions to provide sensitive, amplified, rapid, and modulated responses. It is clear that the essential role of such switches in cell-cell interactions necessitated their appearance early in the history of the development of multicellular organisms. It also seems clear that once such devices made their appearance, the conformationally interactive moieties were firmly locked into a regulatory relationship. Since modification of interacting components could perturb or interfere with the functional integrity of the whole switch, genetic drift was only permitted at the input and outflow extremes. However, the GTP binding moiety and its interacting protein domains on contiguous portions of the receptor and readout components were highly conserved. The observed stringent evolutionary conservation of the molecular features of these membrane switches thus applies primarily to the central (GTP binding) elements. An extraordinary degree of variation was permitted within the domains of signal recognition and enzymatic output. Thus, time and evolution have adapted the central logic of the regulatory algorithm to serve a great variety of cellular purposes and to recognize a great variety of chemical and physical signals. This is exemplified by the richness of the hormonal and cellular dialogues found in primates such as man. Here the wealth of intercellular communiation can support the composition and performance of symphonies and the study of cellular immunology.

  8. Cellular and Molecular Mechanisms of AKI.

    PubMed

    Agarwal, Anupam; Dong, Zheng; Harris, Raymond; Murray, Patrick; Parikh, Samir M; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-05-01

    In this article, we review the current evidence for the cellular and molecular mechanisms of AKI, focusing on epithelial cell pathobiology and related cell-cell interactions, using ischemic AKI as a model. Highlighted are the clinical relevance of cellular and molecular targets that have been investigated in experimental models of ischemic AKI and how such models might be improved to optimize translation into successful clinical trials. In particular, development of more context-specific animal models with greater relevance to human AKI is urgently needed. Comorbidities that could alter patient susceptibility to AKI, such as underlying diabetes, aging, obesity, cancer, and CKD, should also be considered in developing these models. Finally, harmonization between academia and industry for more clinically relevant preclinical testing of potential therapeutic targets and better translational clinical trial design is also needed to achieve the goal of developing effective interventions for AKI. PMID:26860342

  9. Molecular mechanisms of ageing and related diseases.

    PubMed

    Liu, Jun-Ping

    2014-07-01

    Human and other multicellular life species age, and ageing processes become dominant during the late phase of life. Recent studies challenge this dogma, suggesting that ageing does not occur in some animal species. In mammals, cell replicative senescence occurs as early as before birth (i.e. in embryos) under physiological conditions. How the molecular machinery operates and why ageing cells dominate under some circumstances are intriguing questions. Recent studies show that cell ageing involves extensive cellular remodelling, including telomere attrition, heterochromatin formation, endoplasmic reticulum stress, mitochondrial disorders and lysosome processing organelles and chromatins. This article provides an update on the molecular mechanisms underlying the ageing of various cell types, the newly described developmental and programmed replicative senescence and the critical roles of cellular organelles and effectors in Parkinson's disease, diabetes, hypertension and dyskeratosis congenita. PMID:24798238

  10. Molecular mechanics conformational analysis of tylosin

    NASA Astrophysics Data System (ADS)

    Ivanov, Petko M.

    1998-01-01

    The conformations of the 16-membered macrolide antibiotic tylosin were studied with molecular mechanics (AMBER∗ force field) including modelling of the effect of the solvent on the conformational preferences (GB/SA). A Monte Carlo conformational search procedure was used for finding the most probable low-energy conformations. The present study provides complementary data to recently reported analysis of the conformations of tylosin based on NMR techniques. A search for the low-energy conformations of protynolide, a 16-membered lactone containing the same aglycone as tylosin, was also carried out, and the results were compared with the observed conformation in the crystal as well as with the most probable conformations of the macrocyclic ring of tylosin. The dependence of the results on force field was also studied by utilizing the MM3 force field. Some particular conformations were computed with the semiempirical molecular orbital methods AM1 and PM3.

  11. Molecular mechanisms of the EHF bioeffect

    SciTech Connect

    Serikov, A.A.

    1994-07-01

    A generalizing theoretical analysis of models of mechanisms of interaction of biological macromolecules with EHF electromagnetic fields is performed. It is shown that nonthermal EHF radiation has a biological effect when the dipole-active oscillation Q of the primary receptors is greater than or equal to 10{sup 3}-10{sup 4}, which is of the same magnitude as the corresponding characteristic of individual peaks in the radiation spectrum. From the analysis of model equations of the kinetics of synthesis and dissociation of molecular associates, an explanation of the EHF bioeffect is proposed that is based on the phenomenon of high sensitivity to external actions of responses in which high-molecular-weight aggregates participate.

  12. Molecular Mechanics of Tip-Link Cadherins

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P.

    2011-11-01

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is likely composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their complete molecular structure, elasticity, and deafness-related structural defects remain largely unknown. We present crystal structures of extracellular (EC) tip-link cadherin repeats involved in hereditary deafness and tip link formation. In addition, we show that the deafness mutation D101G, in the linker region between the repeats EC1 and EC2 of cadherin-23, causes a slight bend between repeats and decreases Ca2+ affinity. Molecular dynamics simulations suggest that tip-link cadherin repeats are stiff and that either removing Ca2+ or mutating Ca2+-binding residues reduces rigidity and unfolding strength. The structures and simulations also suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with protocadherin-15 to form the tip link.

  13. Molecular Mechanisms of Sex Determination in Reptiles

    PubMed Central

    Rhen, T.; Schroeder, A.

    2010-01-01

    Charles Darwin first provided a lucid explanation of how gender differences evolve nearly 140 years ago. Yet, a disconnect remains between his theory of sexual selection and the mechanisms that underlie the development of males and females. In particular, comparisons between representatives of different phyla (i.e., flies and mice) reveal distinct genetic mechanisms for sexual differentiation. Such differences are hard to comprehend unless we study organisms that bridge the phylogenetic gap. Analysis of variation within monophyletic groups (i.e., amniotes) is just as important if we hope to elucidate the evolution of mechanisms underlying sexual differentiation. Here we review the molecular, cellular, morphological, and physiological changes associated with sex determination in reptiles. Most research on the molecular biology of sex determination in reptiles describes expression patterns for orthologs of mammalian sex-determining genes. Many of these genes have evolutionarily conserved expression profiles (i.e., DMRT1 and SOX9 are expressed at a higher level in developing testes vs. developing ovaries in all species), which suggests functional conservation. However, expression profiling alone does not test gene function and will not identify novel sex-determining genes or gene interactions. For that reason, we provide a prospectus on various techniques that promise to reveal new sex-determining genes and regulatory interactions among these genes. We offer specific examples of novel candidate genes and a new signaling pathway in support of these techniques. PMID:20145384

  14. Evolutionary mechanisms of habitat invasions, using the copepod Eurytemora affinis as a model system.

    PubMed

    Lee, Carol Eunmi

    2016-01-01

    The study of the copepod Eurytemora affinis has provided unprecedented insights into mechanisms of invasive success. In this invited review, I summarize a subset of work from my laboratory to highlight key insights gained from studying E. affinis as a model system. Invasive species with brackish origins are overrepresented in freshwater habitats. The copepod E. affinis is an example of such a brackish invader, and has invaded freshwater habitats multiple times independently in recent years. These invasions were accompanied by the evolution of physiological tolerance and plasticity, increased body fluid regulation, and evolutionary shifts in ion transporter (V-type H(+) ATPase, Na(+), K(+)-ATPase) activity and expression. These evolutionary changes occurred in parallel across independent invasions in nature and in laboratory selection experiments. Selection appears to act on standing genetic variation during invasions, and maintenance of this variation is likely facilitated through 'beneficial reversal of dominance' in salinity tolerance across habitats. Expression of critical ion transporters is localized in newly discovered Crusalis leg organs. Increased freshwater tolerance is accompanied by costs to development time and greater requirements for food. High-food concentration increases low-salinity tolerance, allowing saline populations to invade freshwater habitats. Mechanisms observed here likely have relevance for other taxa undergoing fundamental niche expansions. PMID:27087851

  15. Plasticity of oxidative metabolism in variable climates: molecular mechanisms.

    PubMed

    Seebacher, Frank; Brand, Martin D; Else, Paul L; Guderley, Helga; Hulbert, Anthony J; Moyes, Christopher D

    2010-01-01

    Converting food to chemical energy (ATP) that is usable by cells is a principal requirement to sustain life. The rate of ATP production has to be sufficient for housekeeping functions, such as protein synthesis and maintaining membrane potentials, as well as for growth and locomotion. Energy metabolism is temperature sensitive, and animals respond to environmental variability at different temporal levels, from within-individual to evolutionary timescales. Here we review principal molecular mechanisms that underlie control of oxidative ATP production in response to climate variability. Nuclear transcription factors and coactivators control expression of mitochondrial proteins and abundance of mitochondria. Fatty acid and phospholipid concentrations of membranes influence the activity of membrane-bound proteins as well as the passive leak of protons across the mitochondrial membrane. Passive proton leak as well as protein-mediated proton leak across the inner mitochondrial membrane determine the efficacy of ATP production but are also instrumental in endothermic heat production and as a defense against reactive oxygen species. Both transcriptional mechanisms and membrane composition interact with environmental temperature and diet, and this interaction between diet and temperature in determining mitochondrial function links the two major environmental variables that are affected by changing climates. The limits to metabolic plasticity could be set by the production of reactive oxygen species leading to cellular damage, limits to substrate availability in mitochondria, and a disproportionally large increase in proton leak over ATP production. PMID:20586603

  16. Proteomics in evolutionary ecology.

    PubMed

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  17. Mouse tetrad analysis provides insights into recombination mechanisms and hotspot evolutionary dynamics

    PubMed Central

    Cole, Francesca; Baudat, Frédéric; Grey, Corinne; Keeney, Scott; de Massy, Bernard; Jasin, Maria

    2014-01-01

    The ability to examine all chromatids from a single meiosis in yeast tetrads has been indispensable for defining mechanisms of homologous recombination initiated by DNA double-strand breaks (DSBs). Using a broadly applicable strategy for the analysis of chromatids from a single meiosis at two recombination hotspots in mouse oocytes and spermatocytes, we demonstrate here the unidirectional transfer of information — gene conversion — in both crossovers and noncrossovers. Whereas gene conversion in crossovers is associated with reciprocal exchange, the unbroken chromatid is not altered in noncrossover gene conversions, providing strong evidence that noncrossovers arise from a distinct pathway. Gene conversion frequently spares the binding site of the hotspot-specifying protein PRDM9 with the result that erosion of the hotspot is slowed. Thus, mouse tetrad analysis demonstrates how unique aspects of mammalian recombination mechanisms shape hotspot evolutionary dynamics. PMID:25151354

  18. Hybridization of Evolutionary Mechanisms for Feature Subset Selection in Unsupervised Learning

    NASA Astrophysics Data System (ADS)

    Torres, Dolores; Ponce-de-León, Eunice; Torres, Aurora; Ochoa, Alberto; Díaz, Elva

    Feature subset selection for unsupervised learning, is a very important topic in artificial intelligence because it is the base for saving computational resources. In this implementation we use a typical testor’s methodology in order to incorporate an importance index for each variable. This paper presents the general framework and the way two hybridized meta-heuristics work in this NP-complete problem. The evolutionary mechanisms are based on the Univariate Marginal Distribution Algorithm (UMDA) and the Genetic Algorithm (GA). GA and UMDA - Estimation of Distribution Algorithm (EDA) use a very useful rapid operator implemented for finding typical testors on a very large dataset and also, both algorithms, have a local search mechanism for improving time and fitness. Experiments show that EDA is faster than GA because it has a better exploitation performance; nevertheless, GA’ solutions are more consistent.

  19. The effect of asymmetric payoff mechanism on evolutionary networked prisoner’s dilemma game

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Cao, Xian-Bin; Hu, Mao-Bin

    2009-12-01

    In social and biological systems, there are obvious individual divergence and asymmetric payoff phenomenon due to the strength, power and influence differences. In this paper, we introduce an asymmetric payoff mechanism to evolutionary Prisoner’s Dilemma Game (PDG) on scale-free networks. The co-effects of individual diversity and asymmetric payoff mechanism on the evolution of cooperation and the wealth distribution under different updating rules are investigated. Numerical results show that the cooperation is highly promoted when the hub nodes are favored in the payoff matrix, which seems to harm the interest of the majority. But the inequality of social wealth distribution grows with the unbalanced payoff rule. However, when the node difference is eliminated in the learning strategy, the asymmetric payoff rule will not affect the cooperation level. Our work may sharpen the understanding of the cooperative behavior and wealth inequality in the society.

  20. [The evolutionary role of predatory mammals and mechanisms of its realization].

    PubMed

    Severtsov, A S; Shubkina, A V

    2015-01-01

    Considered are the interactions within food chains that allow to refine the mechanisms of selective prey taking, which is important for better understanding of the evolutionary role of predation. By use of greyhounds, the hunting by wild canids is modelled for the purpose of repeated reproduction of searching for, chasing, and taking off the prey. It is found out that parameters of chasing (i.e., speed, distance, duration) are important for hunting but not determinative. There can be a high actual selectivity determined by prey conditions and, at the same time, low success of chasing. The mechanisms of recognition of potential prey availability or unavailability are analyzed. The data are presented that indicate that superficial microflora can be considered as a common marker of various, deviations in the state of a prey. Unlike stabilizing selection, which preserves separate traits, selection by predation stabilizes the phenotype as a whole. PMID:26606789

  1. Evolutionary prisoner's dilemma on Newman-Watts social networks with an asymmetric payoff distribution mechanism

    NASA Astrophysics Data System (ADS)

    Du, Wen-Bo; Cao, Xian-Bin; Yang, Han-Xin; Hu, Mao-Bin

    2010-01-01

    In this paper, we introduce an asymmetric payoff distribution mechanism into the evolutionary prisoner's dilemma game (PDG) on Newman-Watts social networks, and study its effects on the evolution of cooperation. The asymmetric payoff distribution mechanism can be adjusted by the parameter α: if α > 0, the rich will exploit the poor to get richer; if α < 0, the rich are forced to offer part of their income to the poor. Numerical results show that the cooperator frequency monotonously increases with α and is remarkably promoted when α > 0. The effects of updating order and self-interaction are also investigated. The co-action of random updating and self-interaction can induce the highest cooperation level. Moreover, we employ the Gini coefficient to investigate the effect of asymmetric payoff distribution on the the system's wealth distribution. This work may be helpful for understanding cooperative behaviour and wealth inequality in society.

  2. Molecular Mechanisms of Chemoresistance in Oral Cancer.

    PubMed

    Wang, Cheng; Liu, Xi Qiang; Hou, Jin Song; Wang, Jian Ning; Huang, Hong Zhang

    2016-03-01

    Oral cancer is an aggressive disease with the propensity for local recurrence and distal metastasis in the head and neck region. Currently, cisplatin-based chemotherapy or concurrent radiochemotherapy is still the first choice to treat the advanced stage cancers, in particular, the unresectable tumours. Unfortunately, innate and acquired resistance to chemotherapy agent greatly limited its effectiveness and often led to treatment failure in these patients. Hence, it is urgent to clarify the mechanisms underlying the development of chemoresistance in patients with oral cancer. In this article, the current understandings on molecular mechanisms of chemoresistance in oral cancer were reviewed, including drug efflux, apoptosis, DNA damage and repair, epithelial mesenchymal transition, autophagy and miRNA. PMID:26981604

  3. Emerging paramyxoviruses: molecular mechanisms and antiviral strategies

    PubMed Central

    Aguilar, Hector C.; Lee, Benhur

    2011-01-01

    In recent years, several paramyxoviruses have emerged to infect humans, including previously unidentified zoonoses. Hendra and Nipah virus (henipavirus (HNV)) zoonoses were first identified in 1994 or 1998, causing deaths in animals and humans in Australia or Malaysia, respectively. Other paramyxoviruses, such as menangle virus, tioman virus, human metapneumovirus, and avian paramyxovirus-1, with less morbidity in humans, have also been recently identified. Although the Paramyxoviridae family of viruses has been previously recognized as biomedically and veterinarily important, the recent emergence of these paramyxoviruses has increased our attention to this family. Antiviral drugs can be designed to target specific important determinants of the viral/cell life cycle. Therefore, identifying and understanding the mechanistic underpinnings of viral entry, replication, assembly, and budding will be critical in the development of antiviral therapeutic agents. This review focuses on the molecular mechanisms discovered and the antiviral strategies pursued in recent years for emerging paramyxoviruses, with a concentration on viral entry and exit mechanisms. PMID:21345285

  4. Molecular inhibitory mechanism of tricin on tyrosinase.

    PubMed

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-15

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation. PMID:23434549

  5. Molecular Mechanisms of Thoracic Aortic Dissection

    PubMed Central

    Wu, Darrell; Shen, Ying H.; Russell, Ludivine; Coselli, Joseph S.; LeMaire, Scott A.

    2013-01-01

    Thoracic aortic dissection (TAD) is a highly lethal vascular disease. In many patients with TAD, the aorta progressively dilates and ultimately ruptures. Dissection formation, progression, and rupture cannot be reliably prevented pharmacologically because the molecular mechanisms of aortic wall degeneration are poorly understood. The key histopathologic feature of TAD is medial degeneration, a process characterized by smooth muscle cell depletion and extracellular matrix degradation. These structural changes have a profound impact on the functional properties of the aortic wall and can result from excessive protease-mediated destruction of the extracellular matrix, altered signaling pathways, and altered gene expression. Review of the literature reveals differences in the processes that lead to ascending versus descending and sporadic versus hereditary TAD. These differences add to the complexity of this disease. Although tremendous progress has been made in diagnosing and treating TAD, a better understanding of the molecular, cellular, and genetic mechanisms that cause this disease is necessary to developing more effective preventative and therapeutic treatment strategies. PMID:23856125

  6. Molecular inhibitory mechanism of tricin on tyrosinase

    NASA Astrophysics Data System (ADS)

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-01

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation.

  7. Hyperinsulinemic Hypoglycemia – The Molecular Mechanisms

    PubMed Central

    Nessa, Azizun; Rahman, Sofia A.; Hussain, Khalid

    2016-01-01

    Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5–5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretion from the β-cells. At this moment, in time genetic abnormalities in nine genes (ABCC8, KCNJ11, GCK, SCHAD, GLUD1, SLC16A1, HNF1A, HNF4A, and UCP2) have been described that lead to the congenital forms of HH. Perinatal stress, intrauterine growth retardation, maternal diabetes mellitus, and a large number of developmental syndromes are also associated with HH in the neonatal period. In older children and adult’s insulinoma, non-insulinoma pancreatogenous hypoglycemia syndrome and post bariatric surgery are recognized causes of HH. This review article will focus mainly on describing the molecular mechanisms that lead to unregulated insulin secretion. PMID:27065949

  8. Understanding the molecular mechanisms of reprogramming.

    PubMed

    Krause, Marie N; Sancho-Martinez, Ignacio; Izpisua Belmonte, Juan Carlos

    2016-05-01

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called "Pioneer TFs", play an important role during the stochastic phase of iPSC reprogramming [2-6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. PMID:26655812

  9. Molecular Cloning, Functional Characterization, and Evolutionary Analysis of Vitamin D Receptors Isolated from Basal Vertebrates

    PubMed Central

    Kollitz, Erin M.; Zhang, Guozhu; Hawkins, Mary Beth; Whitfield, G. Kerr; Reif, David M.; Kullman, Seth W.

    2015-01-01

    The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been

  10. Molecular cloning, functional characterization, and evolutionary analysis of vitamin D receptors isolated from basal vertebrates.

    PubMed

    Kollitz, Erin M; Zhang, Guozhu; Hawkins, Mary Beth; Whitfield, G Kerr; Reif, David M; Kullman, Seth W

    2015-01-01

    The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been

  11. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries.

    PubMed

    Sevov, Christo S; Brooner, Rachel E M; Chénard, Etienne; Assary, Rajeev S; Moore, Jeffrey S; Rodríguez-López, Joaquín; Sanford, Melanie S

    2015-11-18

    The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e(-)) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e(-)), and undergoes two reversible 1e(-) reductions in the presence of LiBF4 to form reduced products that are stable over days in solution. PMID:26514666

  12. Molecular characterization and evolutionary origins of farinin genes in Brachypodium distachyon L.

    PubMed

    Subburaj, Saminathan; Luo, Nana; Lu, Xiaobing; Li, Xiaohui; Cao, Hui; Hu, Yingkao; Li, Jiarui; Yan, Yueming

    2016-08-01

    Farinins are one of the oldest members of the gluten family in wheat and Aegilops species, and they influence dough properties. Here, we performed the first detailed molecular genetic study on farinin genes in Brachypodium distachyon L., the model species for Triticum aestivum. A total of 51 b-type farinin genes were cloned and characterized, including 27 functional and 24 non-functional pseudogenes from 14 different B. distachyon accessions. All genes were highly similar to those previously reported from wheat and Aegilops species. The identification of deduced amino acid sequences showed that b-type farinins across Triticeae genomes could be classified as b1-, b2-, b3-, and b4-type farinins; however, B. distachyon had only b3- and b4-type farinins. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) revealed that farinin genes are transcribed into mRNA in B. distachyon at much lower levels than in Triticeae, despite the presence of cis-acting elements in promoter regions. Phylogenetic analysis suggested that Brachypodium farinins may have closer relationships with common wheat and further confirmed four different types of b-type farinins in Triticeae and Brachypodium genomes, corresponding to b1, b2, b3 (group 1), and b4 (group 2). A putative evolutionary origin model of farinin genes in Brachypodium, Triticum, and the related species suggests that all b-type farinins diverged from their common ancestor ~3.2 million years ago (MYA). The b3 and b4 types could be considered older in the farinin family. The results explain the loss of b1- and b2-type farinin alleles in Brachypodium. PMID:26519166

  13. Molecular mechanisms regulating macrophage response to hypoxia.

    PubMed

    Rahat, Michal A; Bitterman, Haim; Lahat, Nitza

    2011-01-01

    Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ. PMID:22566835

  14. Molecular Mechanisms Regulating Macrophage Response to Hypoxia

    PubMed Central

    Rahat, Michal A.; Bitterman, Haim; Lahat, Nitza

    2011-01-01

    Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ. PMID:22566835

  15. Differential gene retention as an evolutionary mechanism to generate biodiversity and adaptation in yeasts

    PubMed Central

    Morel, Guillaume; Sterck, Lieven; Swennen, Dominique; Marcet-Houben, Marina; Onesime, Djamila; Levasseur, Anthony; Jacques, Noémie; Mallet, Sandrine; Couloux, Arnaux; Labadie, Karine; Amselem, Joëlle; Beckerich, Jean-Marie; Henrissat, Bernard; Van de Peer, Yves; Wincker, Patrick; Souciet, Jean-Luc; Gabaldón, Toni; Tinsley, Colin R.; Casaregola, Serge

    2015-01-01

    The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi–yeasts split concomitant with the yeasts’ genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts. PMID:26108467

  16. Molecular phylogeny and evolutionary history of the Eurasiatic orchid genus Himantoglossum s.l. (Orchidaceae)

    PubMed Central

    Sramkó, Gábor; Attila, Molnár V.; Hawkins, Julie A.; Bateman, Richard M.

    2014-01-01

    Background and Aims Lizard orchids of the genus Himantoglossum include many of Eurasia's most spectacular orchids, producing substantial spikes of showy flowers. However, until recently the genus had received only limited, and entirely traditional, systematic study. The aim of the current work was to provide a more robust molecular phylogeny in order to better understand the evolutionary relationships among species of particular conservation concern. Methods All putative species of Himantoglossum s.l. were sampled across its geographical range. A large subsample of the 153 populations studied contributed to an initial survey of nuclear ribosomal internal transcribed spacer (nrITS) ribotypes. Smaller subsets were then sequenced for four plastid regions and the first intron of the low-copy-number nuclear gene LEAFY. Rooted using Steveniella as outgroup, phylogenetic trees were generated using parsimony and Bayesian methods from each of the three datasets, supplemented with a ribotype network. Key Results The resulting trees collectively determined the order of branching of the early divergent taxa as Himantoglossum comperianum > H. robertianum group > H. formosum, events that also involved significant morphological divergence. Relaxed molecular clock dating suggested that these divergences preceded the Pleistocene glaciations (the origin of the H. robertianum group may have coincided with the Messinian salinity crisis) and occurred in Asia Minor and/or the Caucasus. Among more controversial taxa of the H. hircinum-jankae clade, which are only subtly morphologically divergent, topological resolution was poorer and topological incongruence between datasets was consequently greater. Conclusions Plastid sequence divergence is broadly consistent with prior, morphologically circumscribed taxa and indicates a division between H. hircinum–adriaticum to the west of the Carpathians and H. jankae–caprinum (plus local endemics) to the east, a distinction also suggested by nr

  17. Cellular and molecular mechanisms of fibrosis.

    PubMed

    Wynn, T A

    2008-01-01

    Fibrosis is defined by the overgrowth, hardening, and/or scarring of various tissues and is attributed to excess deposition of extracellular matrix components including collagen. Fibrosis is the end result of chronic inflammatory reactions induced by a variety of stimuli including persistent infections, autoimmune reactions, allergic responses, chemical insults, radiation, and tissue injury. Although current treatments for fibrotic diseases such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis typically target the inflammatory response, there is accumulating evidence that the mechanisms driving fibrogenesis are distinct from those regulating inflammation. In fact, some studies have suggested that ongoing inflammation is needed to reverse established and progressive fibrosis. The key cellular mediator of fibrosis is the myofibroblast, which when activated serves as the primary collagen-producing cell. Myofibroblasts are generated from a variety of sources including resident mesenchymal cells, epithelial and endothelial cells in processes termed epithelial/endothelial-mesenchymal (EMT/EndMT) transition, as well as from circulating fibroblast-like cells called fibrocytes that are derived from bone-marrow stem cells. Myofibroblasts are activated by a variety of mechanisms, including paracrine signals derived from lymphocytes and macrophages, autocrine factors secreted by myofibroblasts, and pathogen-associated molecular patterns (PAMPS) produced by pathogenic organisms that interact with pattern recognition receptors (i.e. TLRs) on fibroblasts. Cytokines (IL-13, IL-21, TGF-beta1), chemokines (MCP-1, MIP-1beta), angiogenic factors (VEGF), growth factors (PDGF), peroxisome proliferator-activated receptors (PPARs), acute phase proteins (SAP), caspases, and components of the renin-angiotensin-aldosterone system (ANG II) have been identified as important regulators of fibrosis and are being

  18. Cellular and molecular mechanisms of fibrosis

    PubMed Central

    Wynn, TA

    2009-01-01

    Fibrosis is defined by the overgrowth, hardening, and/or scarring of various tissues and is attributed to excess deposition of extracellular matrix components including collagen. Fibrosis is the end result of chronic inflammatory reactions induced by a variety of stimuli including persistent infections, autoimmune reactions, allergic responses, chemical insults, radiation, and tissue injury. Although current treatments for fibrotic diseases such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis typically target the inflammatory response, there is accumulating evidence that the mechanisms driving fibrogenesis are distinct from those regulating inflammation. In fact, some studies have suggested that ongoing inflammation is needed to reverse established and progressive fibrosis. The key cellular mediator of fibrosis is the myofibroblast, which when activated serves as the primary collagen-producing cell. Myofibroblasts are generated from a variety of sources including resident mesenchymal cells, epithelial and endothelial cells in processes termed epithelial/endothelial-mesenchymal (EMT/EndMT) transition, as well as from circulating fibroblast-like cells called fibrocytes that are derived from bone-marrow stem cells. Myofibroblasts are activated by a variety of mechanisms, including paracrine signals derived from lymphocytes and macrophages, autocrine factors secreted by myofibroblasts, and pathogen-associated molecular patterns (PAMPS) produced by pathogenic organisms that interact with pattern recognition receptors (i.e. TLRs) on fibroblasts. Cytokines (IL-13, IL-21, TGF-β1), chemokines (MCP-1, MIP-1β), angiogenic factors (VEGF), growth factors (PDGF), peroxisome proliferator-activated receptors (PPARs), acute phase proteins (SAP), caspases, and components of the renin–angiotensin–aldosterone system (ANG II) have been identified as important regulators of fibrosis and are being

  19. Molecular and cellular mechanisms of anthracycline cardiotoxicity.

    PubMed

    Chen, Billy; Peng, Xuyang; Pentassuglia, Laura; Lim, Chee Chew; Sawyer, Douglas B

    2007-01-01

    The molecular and cellular mechanisms that cause cumulative dose-dependent anthracycline-cardiotoxicity remain controversial and incompletely understood. Studies examining the effects of anthracyclines in cardiac myocytes inA vitro have demonstrated several forms of cellular injury. Cell death in response to anthracyclines can be observed by one of several mechanisms including apoptosis and necrosis. Cell death by apoptosis can be inhibited by dexrazoxane, the iron chelator that is known to prevent clinical development of heart failure at high cumulative anthracycline exposure. Together with clinical evidence for myocyte death after anthracycline exposure, in the form of elevations in serum troponin, make myocyte cell death a probable mechanism for anthracycline-induced cardiac injury. Other mechanisms of myocyte injury include the development of cellular \\'sarcopenia\\' characterized by disruption of normal sarcomere structure. Anthracyclines suppress expression of several cardiac transcription factors, and this may play a role in the development of myocyte death as well as sarcopenia. Degradation of the giant myofilament protein titin may represent an important proximal step that leads to accelerated myofilament degradation. Titin is an entropic spring element in the sarcomere that regulates length-dependent calcium sensitivity. Thus titin degradation may lead to impaired diastolic as well as systolic dysfunction, as well as potentiate the effect of suppression of transcription of sarcomere proteins. An interesting interaction has been noted clinically between anthracyclines and newer cancer therapies that target the erbB2 receptor tyrosine kinase. Studies of erbB2 function in viro suggest that signaling through erbB2 by the growth factor neuregulin may regulate cardiac myocyte sarcomere turnover, as well as myocyte-myocyte/myocyte-matrix force coupling. A combination of further in vitro studies, with more careful monitoring of cardiac function after exposure to

  20. Screened Electrostatic Interactions in Molecular Mechanics.

    PubMed

    Wang, Bo; Truhlar, Donald G

    2014-10-14

    In a typical application of molecular mechanics (MM), the electrostatic interactions are calculated from parametrized partial atomic charges treated as point charges interacting by radial Coulomb potentials. This does not usually yield accurate electrostatic interactions at van der Waals distances, but this is compensated by additional parametrized terms, for example Lennard-Jones potentials. In the present work, we present a scheme involving radial screened Coulomb potentials that reproduces the accurate electrostatics much more accurately. The screening accounts for charge penetration of one subsystem's charge cloud into that of another subsystem, and it is incorporated into the interaction potential in a way similar to what we proposed in a previous article (J. Chem. Theory Comput. 2010, 6, 3330) for combined quantum mechanical and molecular mechanical (QM/MM) simulations, but the screening parameters are reoptimized for MM. The optimization is carried out with electrostatic-potential-fitted partial atomic charges, but the optimized parameters should be useful with any realistic charge model. In the model we employ, the charge density of an atom is approximated as the sum of a point charge representing the nucleus and inner electrons and a smeared charge representing the outermost electrons; in particular, for all atoms except hydrogens, the smeared charge represents the two outermost electrons in the present model. We find that the charge penetration effect can cause very significant deviations from the popular point-charge model, and by comparison to electrostatic interactions calculated by symmetry-adapted perturbation theory, we find that the present results are considerably more accurate than point-charge electrostatic interactions. The mean unsigned error in electrostatics for a large and diverse data set (192 interaction energies) decreases from 9.2 to 3.3 kcal/mol, and the error in the electrostatics for 10 water dimers decreases from 1.7 to 0.5 kcal

  1. Measuring the mechanical properties of molecular conformers

    PubMed Central

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-01-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules. PMID:26388232

  2. Molecular and evolutionary insights into the structural organization of cation chloride cotransporters

    PubMed Central

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2015-01-01

    Cation chloride cotransporters (CCC) play an essential role for neuronal chloride homeostasis. K+-Cl− cotransporter (KCC2), is the principal Cl−-extruder, whereas Na+-K+-Cl− cotransporter (NKCC1), is the major Cl−-uptake mechanism in many neurons. As a consequence, the action of the inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine strongly depend on the activity of these two transporters. Knowledge of the mechanisms involved in ion transport and regulation is thus of great importance to better understand normal and disturbed brain function. Although no overall 3-dimensional crystal structures are yet available, recent molecular and phylogenetic studies and modeling have provided new and exciting insights into structure-function relationships of CCC. Here, we will summarize our current knowledge of the gross structural organization of the proteins, their functional domains, ion binding and translocation sites, and the established role of individual amino acids (aa). A major focus will be laid on the delineation of shared and distinct organizational principles between KCC2 and NKCC1. Exploiting the richness of recently generated genome data across the tree of life, we will also explore the molecular evolution of these features. PMID:25653592

  3. Molecular Mechanisms of Neonatal Brain Injury

    PubMed Central

    Thornton, Claire; Rousset, Catherine I.; Kichev, Anton; Miyakuni, Yasuka; Vontell, Regina; Baburamani, Ana A.; Fleiss, Bobbi; Gressens, Pierre; Hagberg, Henrik

    2012-01-01

    Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult. PMID:22363841

  4. [Molecular mechanisms of niclosamide antitumor activity].

    PubMed

    Moskaleva, E Yu; Perevozchikova, V G; Zhirnik, A S; Severin, S E

    2015-01-01

    In this review the recent data regarding the antitumor activity of niclosamide and the molecular mechanisms of its antitumor activity are presented. Niclosamide has been used in the clinic for the treatment of intestinal parasite infections. In recent years in several screening investigations of various drugs and chemical compounds niclosamide was identified as a potential anticancer agent. Niclosamide not only inhibits the Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways, but also targets mitochondria in cancer cells to induce growth inhibition and apoptosis. A number of studies have established the anticancer activity of niclosamide in both in vitro and in vivo in xenotransplantation models using human tumors and immunodeficient mice. It is important that niclosamide is active not only against tumor cells but also cancer stem cells. Normal cells are resistant to niclosamide. The accumulated experimental data suggest niclosamide is a promising drug for the treatment of various types of cancer. PMID:26716739

  5. Molecular Mechanisms of Mouse Skin Tumor Promotion

    PubMed Central

    Rundhaug, Joyce E.; Fischer, Susan M.

    2010-01-01

    Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion. PMID:21297902

  6. Pilocytic astrocytoma: pathology, molecular mechanisms and markers.

    PubMed

    Collins, V Peter; Jones, David T W; Giannini, Caterina

    2015-06-01

    Pilocytic astrocytomas (PAs) were recognized as a discrete clinical entity over 70 years ago. They are relatively benign (WHO grade I) and have, as a group, a 10-year survival of over 90%. Many require merely surgical removal and only very infrequently do they progress to more malignant gliomas. While most show classical morphology, they may present a spectrum of morphological patterns, and there are difficult cases that show similarities to other gliomas, some of which are malignant and require aggressive treatment. Until recently, almost nothing was known about the molecular mechanisms involved in their development. The use of high-throughput sequencing techniques interrogating the whole genome has shown that single abnormalities of the mitogen-activating protein kinase (MAPK) pathway are exclusively found in almost all cases, indicating that PA represents a one-pathway disease. The most common mechanism is a tandem duplication of a ≈2 Mb-fragment of #7q, giving rise to a fusion between two genes, resulting in a transforming fusion protein, consisting of the N-terminus of KIAA1549 and the kinase domain of BRAF. Additional infrequent fusion partners have been identified, along with other abnormalities of the MAP-K pathway, affecting tyrosine kinase growth factor receptors at the cell surface (e.g., FGFR1) as well as BRAF V600E, KRAS, and NF1 mutations among others. However, while the KIAA1549-BRAF fusion occurs in all areas, the incidence of the various other mutations identified differs in PAs that develop in different regions of the brain. Unfortunately, from a diagnostic standpoint, almost all mutations found have been reported in other brain tumor types, although some retain considerable utility. These molecular abnormalities will be reviewed, and the difficulties in their potential use in supporting a diagnosis of PA, when the histopathological findings are equivocal or in the choice of individualized therapy, will be discussed. PMID:25792358

  7. Sex Ratio Meiotic Drive as a Plausible Evolutionary Mechanism for Hybrid Male Sterility

    PubMed Central

    Zhang, Linbin; Xiao, Hailian; Tao, Yun

    2015-01-01

    Biological diversity on Earth depends on the multiplication of species or speciation, which is the evolution of reproductive isolation such as hybrid sterility between two new species. An unsolved puzzle is the exact mechanism(s) that causes two genomes to diverge from their common ancestor so that some divergent genes no longer function properly in the hybrids. Here we report genetic analyses of divergent genes controlling male fertility and sex ratio in two very young fruitfly species, Drosophila albomicans and D. nasuta. A majority of the genetic divergence for both traits is mapped to the same regions by quantitative trait loci mappings. With introgressions, six major loci are found to contribute to both traits. This genetic colocalization implicates that genes for hybrid male sterility have evolved primarily for controlling sex ratio. We propose that genetic conflicts over sex ratio may operate as a perpetual dynamo for genome divergence. This particular evolutionary mechanism may largely contribute to the rapid evolution of hybrid male sterility and the disproportionate enrichment of its underlying genes on the X chromosome – two patterns widely observed across animals. PMID:25822261

  8. The current status of REH theory. [Random Evolutionary Hits in biological molecular evolution

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Jukes, T. H.

    1981-01-01

    A response is made to the evaluation of Fitch (1980) of REH (random evolutionary hits) theory for the evolutionary divergence of proteins and nucleic acids. Correct calculations for the beta hemoglobin mRNAs of the human, mouse and rabbit in the absence and presence of selective constraints are summarized, and it is shown that the alternative evolutionary analysis of Fitch underestimates the total fixed mutations. It is further shown that the model used by Fitch to test for the completeness of the count of total base substitutions is in fact a variant of REH theory. Considerations of the variance inherent in evolutionary estimations are also presented which show the REH model to produce no more variance than other evolutionary models. In the reply, it is argued that, despite the objections raised, REH theory applied to proteins gives inaccurate estimates of total gene substitutions. It is further contended that REH theory developed for nucleic sequences suffers from problems relating to the frequency of nucleotide substitutions, the identity of the codons accepting silent and amino acid-changing substitutions, and estimate uncertainties.

  9. Molecular mechanism of phototropin light signaling.

    PubMed

    Okajima, Koji

    2016-03-01

    Phototropin (phot) is a blue light (BL) receptor kinase involved in the BL responses of several species, ranging from green algae to higher plants. Phot converts BL signals from the environment into biochemical signals that trigger cellular responses. In phot, the LOV1 and LOV2 domains of the N-terminal region utilize BL for cyclic photoreactions and regulate C-terminal serine/threonine kinase (STK) activity. LOV2-STK peptides are the smallest functional unit of phot and are useful for understanding regulation mechanisms. The combined analysis of spectroscopy and STK activity assay in Arabidopsis phots suggests that the decay speed of the photo-intermediate S390 in LOV2 is one of the factors contributing to light sensitive kinase activity. LOV2 and STK are thought to be adjacent to each other in LOV2-STK with small angle scattering (SAXS). BL irradiation induces LOV2-STK elongation, resulting in LOV2 shifting away from STK. The N- and C-terminal lateral regions of LOV2, A'α-helix, Jα-helix, and A'α/Aβ gap are responsible for the propagation of the BL signal to STK via conformational changes. The comparison between LOV2-STK and full-length phot from Chlamydomonas suggests that LOV1 is directly adjacent to LOV2 in LOV2-STK; therefore, LOV1 may indirectly regulate STK. The molecular mechanism of phot is discussed. PMID:26815763

  10. Insulin Resistance and Heart Failure: Molecular Mechanisms

    PubMed Central

    Aroor, Annayya R.; Mandavia, Chirag H.; Sowers, James R.

    2012-01-01

    Insulin resistance and associated reductions in cardiac insulin metabolic signaling is emerging as a major factor for the development of heart failure and assumes more importance because of an epidemic increase in obesity and the cardiorenal metabolic syndrome and our aging population. Major factors contributing to the development of cardiac insulin resistance are oxidative stress, hyperglycemia, hyperlipidemia, dysregulated secretion of adipokines/cytokines and inappropriate activation of renin-angiotensin II-aldosterone system (RAAS) and the sympathetic nervous system. The effects of cardiac insulin resistance are exacerbated by metabolic, endocrine and cytokine alterations associated with systemic insulin resistance. The aggregate of these various alterations leads to an insulin resistant phenotype with metabolic inflexibility, impaired calcium handling, mitochondrial dysfunction and oxidative stress, dysregulated myocardial-endothelial interactions resulting in energy deficiency, impaired diastolic dysfunction, myocardial cell death and cardiac fibrosis. Therefore, understanding the molecular mechanisms linking insulin resistance and heart failure may help to design new and more effective mechanism-based drugs to improve myocardial and systemic insulin resistance. PMID:22999243

  11. Evolutionary mechanisms of persistence and diversification of a calicivirus within endemically infected natural host populations.

    PubMed

    Coyne, Karen P; Gaskell, Rosalind M; Dawson, Susan; Porter, Carol J; Radford, Alan D

    2007-02-01

    In order to understand the evolutionary mechanisms of persistence and diversification within the Caliciviridae, we have been exploiting endemic infection of feline calicivirus within five geographically distinct household groups of cats. By sequencing immunodominant and variable regions of the capsid gene, we identified the relative contribution of the different evolutionary processes employed by the virus to ensure its long-term survival in the host population. Such strategies included progressive evolution of a given variant of a strain through mutation accumulation within an individual, sequential reinfection with either a variant of the same strain or with a different strain, and mixed infection. Recombination between different strains in this study has been reported in detail elsewhere (K. P. Coyne et al., J. Gen. Virol. 87:921-926, 2006). Here, we provide evidence to suggest that true long-term persistent infection in individuals is relatively rare, with the majority of apparent viral carriers undergoing a combination of progressive evolution and cyclical reinfection. Progressive evolution at the individual level and variant reinfection at both the individual and population levels were associated with positive selection. Two measures of evolution rate were determined; for a virus progressively evolving within an individual (1.32 x 10(-2) to 2.64 x 10(-2) substitutions per nucleotide per year, i.e., no transmission) and for a strain circulating within a population (3.84 x 10(-2) to 4.56 x 10(-2) substitutions per nucleotide per year, i.e., including transmission). Reiteration of both progressive evolution and variant reinfection appeared to lead to a gradual increase in the diversity of a given strain of virus, both in the individual and in the population, until eventually new strains emerged. PMID:17151126

  12. Human creativity, evolutionary algorithms, and predictive representations: The mechanics of thought trials.

    PubMed

    Dietrich, Arne; Haider, Hilde

    2015-08-01

    Creative thinking is arguably the pinnacle of cerebral functionality. Like no other mental faculty, it has been omnipotent in transforming human civilizations. Probing the neural basis of this most extraordinary capacity, however, has been doggedly frustrated. Despite a flurry of activity in cognitive neuroscience, recent reviews have shown that there is no coherent picture emerging from the neuroimaging work. Based on this, we take a different route and apply two well established paradigms to the problem. First is the evolutionary framework that, despite being part and parcel of creativity research, has no informed experimental work in cognitive neuroscience. Second is the emerging prediction framework that recognizes predictive representations as an integrating principle of all cognition. We show here how the prediction imperative revealingly synthesizes a host of new insights into the way brains process variation-selection thought trials and present a new neural mechanism for the partial sightedness in human creativity. Our ability to run offline simulations of expected future environments and action outcomes can account for some of the characteristic properties of cultural evolutionary algorithms running in brains, such as degrees of sightedness, the formation of scaffolds to jump over unviable intermediate forms, or how fitness criteria are set for a selection process that is necessarily hypothetical. Prospective processing in the brain also sheds light on how human creating and designing - as opposed to biological creativity - can be accompanied by intentions and foresight. This paper raises questions about the nature of creative thought that, as far as we know, have never been asked before. PMID:25304474

  13. Blending Determinism with Evolutionary Computing: Applications to the Calculation of the Molecular Electronic Structure of Polythiophene.

    PubMed

    Sarkar, Kanchan; Sharma, Rahul; Bhattacharyya, S P

    2010-03-01

    A density matrix based soft-computing solution to the quantum mechanical problem of computing the molecular electronic structure of fairly long polythiophene (PT) chains is proposed. The soft-computing solution is based on a "random mutation hill climbing" scheme which is modified by blending it with a deterministic method based on a trial single-particle density matrix [P((0))(R)] for the guessed structural parameters (R), which is allowed to evolve under a unitary transformation generated by the Hamiltonian H(R). The Hamiltonian itself changes as the geometrical parameters (R) defining the polythiophene chain undergo mutation. The scale (λ) of the transformation is optimized by making the energy [E(λ)] stationary with respect to λ. The robustness and the performance levels of variants of the algorithm are analyzed and compared with those of other derivative free methods. The method is further tested successfully with optimization of the geometry of bipolaron-doped long PT chains. PMID:26613302

  14. Structure and scale of the mechanics of mammalian dental enamel viewed from an evolutionary perspective.

    PubMed

    Lucas, Peter W; Philip, Swapna M; Al-Qeoud, Dareen; Al-Draihim, Nuha; Saji, Sreeja; van Casteren, Adam

    2016-01-01

    Mammalian enamel, the contact dental tissue, is something of an enigma. It is almost entirely made of hydroxyapatite, yet exhibits very different mechanical behavior to a homogeneous block of the same mineral. Recent approaches suggest that its hierarchical composite form, similar to other biological hard tissues, leads to a mechanical performance that depends very much on the scale of measurement. The stiffness of the material is predicted to be highest at the nanoscale, being sacrificed to produce a high toughness at the largest scale, that is, at the level of the tooth crown itself. Yet because virtually all this research has been conducted only on human (or sometimes "bovine") enamel, there has been little regard for structural variation of the tissue considered as evolutionary adaptation to diet. What is mammalian enamel optimized for? We suggest that there are competing selective pressures. We suggest that the structural characteristics that optimize enamel to resist large-scale fractures, such as crown failures, are very different to those that resist wear (small-scale fracture). While enamel is always designed for damage tolerance, this may be suboptimal in the enamel of some species, including modern humans (which have been the target of most investigations), in order to counteract wear. The experimental part of this study introduces novel techniques that help to assess resistance at the nanoscale. PMID:26763592

  15. Remembering the Forest While Viewing the Trees: Evolutionary Thinking in the Teaching of Molecular Biology

    ERIC Educational Resources Information Center

    Saraswati, Sitaraman; Sitaraman, Ramakrishnan

    2014-01-01

    Given the centrality of evolutionary theory to the study of biology, we present a strategy for reinforcing its importance by appropriately recontextualizing classic and well-known experiments that are not explicitly linked with evolution in conventional texts. This exercise gives students an appreciation of the applicability of the theory of…

  16. Molecular mechanisms of muscle plasticity with exercise.

    PubMed

    Hoppeler, Hans; Baum, Oliver; Lurman, Glenn; Mueller, Matthias

    2011-07-01

    The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity. PMID:23733647

  17. Decomposition of Amino Diazeniumdiolates (NONOates): Molecular Mechanisms

    SciTech Connect

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to slowly release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a qualitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = -N(C2H5)2 (1), -N(C3H4NH2)2 (2), or -N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1-H, 3.5 and 83 x 10-3 s-1 for 2-H, and 3.8 and 3.3 x 10-3 s-1 for 3-H. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~0.01%, for 1) undergoes the N-N heterolytic bond cleavage (k ~102 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all these NONOates are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.

  18. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms

    DOE PAGESBeta

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = —N(C2H5)2(1), —N(C3H4NH2)2(2), or —N(C2H4NH2)2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with the apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1; 3.5 and 0.083 s-1 for 2; andmore » 3.8 and 0.0033 s-1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~ 10-7, for 1) undergoes the N—N heterolytic bond cleavage (kd ~ 107 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.« less

  19. Molecular mechanism of pore formation by actinoporins.

    PubMed

    Kristan, Katarina Crnigoj; Viero, Gabriella; Dalla Serra, Mauro; Macek, Peter; Anderluh, Gregor

    2009-12-15

    Actinoporins are effective pore-forming toxins produced by sea anemones. These extremely potent, basic 20 kDa proteins readily form pores in membranes that contain sphingomyelin. Much has been learned about the molecular basis of their pore-forming mechanism in recent years. Pore formation is a multi-step process that involves recognition of membrane sphingomyelin, firm binding to the membrane accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerisation of three to four monomers. The final conductive pathway is formed by amphipathic alpha-helices, hence actinoporins are an important example of so-called alpha-helical pore-forming toxins. Actinoporins have become useful model proteins to study protein-membrane interactions, specific recognition of lipids in the membrane, and protein oligomerisation in the lipid milieu. Recent sequence and structural data of proteins similar to actinoporins indicate that they are not a unique family restricted to sea anemones as was long believed. An AF domain superfamily (abbreviated from actinoporin-like proteins and fungal fruit-body lectins) was defined and shown to contain members from three animal and two plant phyla. On the basis of functional properties of some members we hypothesise that AF domain proteins are peripheral membrane proteins. Finally, ability of actinoporins to form transmembrane pores has been exploited in some novel biomedical applications. PMID:19268680

  20. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis

    PubMed Central

    Strippoli, Raffaele; Moreno-Vicente, Roberto; Battistelli, Cecilia; Cicchini, Carla; Noce, Valeria; Amicone, Laura; Marchetti, Alessandra; del Pozo, Miguel Angel; Tripodi, Marco

    2016-01-01

    Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane. PMID:26941801

  1. Molecular Mechanisms Underlying Psychological Stress and Cancer.

    PubMed

    Shin, Kyeong Jin; Lee, Yu Jin; Yang, Yong Ryoul; Park, Seorim; Suh, Pann-Ghill; Follo, Matilde Yung; Cocco, Lucio; Ryu, Sung Ho

    2016-01-01

    Psychological stress is an emotion experienced when people are under mental pressure or encounter unexpected problems. Extreme or repetitive stress increases the risk of developing human disease, including cardiovascular disease (CVD), immune diseases, mental disorders, and cancer. Several studies have shown an association between psychological stress and cancer growth and metastasis in animal models and case studies of cancer patients. Stress induces the secretion of stress-related mediators, such as catecholamine, cortisol, and oxytocin, via the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis or the sympathetic nervous system (SNS). These stress-related hormones and neurotransmitters adversely affect stress-induced tumor progression and cancer therapy. Catecholamine is the primary factor that influences tumor progression. It can regulate diverse cellular signaling pathways through adrenergic receptors (ADRs), which are expressed by several types of cancer cells. Activated ADRs enhance the proliferation and invasion abilities of cancer cells, alter cell activity in the tumor microenvironment, and regulate the interaction between cancer and its microenvironment to promote tumor progression. Additionally, other stress mediators, such as glucocorticoids and oxytocin, and their cognate receptors are involved in stress-induced cancer growth and metastasis. Here, we will review how each receptor-mediated signal cascade contributes to tumor initiation and progression and discuss how we can use these molecular mechanisms for cancer therapy. PMID:26916018

  2. Cellular and molecular mechanisms in liver fibrogenesis.

    PubMed

    Novo, Erica; Cannito, Stefania; Paternostro, Claudia; Bocca, Claudia; Miglietta, Antonella; Parola, Maurizio

    2014-04-15

    Liver fibrogenesis is a dynamic and highly integrated molecular, tissue and cellular process, potentially reversible, that drives the progression of chronic liver diseases (CLD) towards liver cirrhosis and hepatic failure. Hepatic myofibroblasts (MFs), the pro-fibrogenic effector cells, originate mainly from activation of hepatic stellate cells and portal fibroblasts being characterized by a proliferative and survival attitude. MFs also contract in response to vasoactive agents, sustain angiogenesis and recruit and modulate activity of cells of innate or adaptive immunity. Chronic activation of wound healing and oxidative stress as well as derangement of epithelial-mesenchymal interactions are "major" pro-fibrogenic mechanisms, whatever the etiology. However, literature has outlined a complex network of pro-fibrogenic factors and mediators proposed to modulate CLD progression, with some of them being at present highly debated in the field, including the role of epithelial to mesenchymal transition and Hedgehog signaling pathways. Hypoxia and angiogenesis as well as inflammasomes are recently emerged as ubiquitous pro-inflammatory and pro-fibrogenic determinants whereas adipokines are mostly involved in CLD related to metabolic disturbances (metabolic syndrome and/or obesity and type 2 diabetes). Finally, autophagy as well as natural killer and natural killer-T cells have been recently proposed to significantly affect fibrogenic CLD progression. PMID:24631571

  3. Molecular mechanism of anaerobic ammonium oxidation.

    PubMed

    Kartal, Boran; Maalcke, Wouter J; de Almeida, Naomi M; Cirpus, Irina; Gloerich, Jolein; Geerts, Wim; Op den Camp, Huub J M; Harhangi, Harry R; Janssen-Megens, Eva M; Francoijs, Kees-Jan; Stunnenberg, Hendrik G; Keltjens, Jan T; Jetten, Mike S M; Strous, Marc

    2011-11-01

    Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle. PMID:21964329

  4. Molecular Insights Into the Evolutionary Pathway of Vibrio cholerae O1 Atypical El Tor Variants

    PubMed Central

    Kim, Eun Jin; Lee, Dokyung; Moon, Se Hoon; Lee, Chan Hee; Kim, Sang Jun; Lee, Jae Hyun; Kim, Jae Ouk; Song, Manki; Das, Bhabatosh; Clemens, John D.; Pape, Jean William; Nair, G. Balakrish; Kim, Dong Wook

    2014-01-01

    Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor. PMID:25233006

  5. An Evolutionary Perspective of Nutrition and Inflammation as Mechanisms of Cardiovascular Disease

    PubMed Central

    Rubio-Ruiz, María Esther; Peredo-Escárcega, Ana Elena; Cano-Martínez, Agustina; Guarner-Lans, Verónica

    2015-01-01

    When cardiovascular diseases are viewed from an evolutionary biology perspective, a heightened thrifty and an inflammatory design could be their mechanisms. Human ancestors confronted a greater infectious load and were subjected to the selection for proinflammatory genes and a strong inflammatory function. Ancestors also faced starvation periods that pressed for a thrifty genotype which caused fat accumulation. The pressure of sustaining gluconeogenesis during periods of poor nourishment selected individuals with insulin resistance. Obesity induces a proinflammatory state due to the secretion of adipokines which underlie cardiometabolic diseases. Our actual lifestyle needs no more of such proinflammatory and thrifty genotypes and these ancestral genes might increase predisposition to diseases. Risk factors for atherosclerosis and diabetes are based on inflammatory and genetic foundations that can be accounted for by excess fat. Longevity has also increased in recent times and is related to a proinflammatory response with cardiovascular consequences. If human ancestral lifestyle could be recovered by increasing exercise and adapting a calorie restriction diet, obesity would decrease and the effects on chronic low-grade inflammation would be limited. Thereby, the rates of both atherosclerosis and diabetes could be reduced. PMID:26693381

  6. Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences.

    PubMed

    Chapman, Jason W; Reynolds, Don R; Wilson, Kenneth

    2015-03-01

    Myriad tiny insect species take to the air to engage in windborne migration, but entomology also has its 'charismatic megafauna' of butterflies, large moths, dragonflies and locusts. The spectacular migrations of large day-flying insects have long fascinated humankind, and since the advent of radar entomology much has been revealed about high-altitude night-time insect migrations. Over the last decade, there have been significant advances in insect migration research, which we review here. In particular, we highlight: (1) notable improvements in our understanding of lepidopteran navigation strategies, including the hitherto unsuspected capabilities of high-altitude migrants to select favourable winds and orientate adaptively, (2) progress in unravelling the neuronal mechanisms underlying sun compass orientation and in identifying the genetic complex underpinning key traits associated with migration behaviour and performance in the monarch butterfly, and (3) improvements in our knowledge of the multifaceted interactions between disease agents and insect migrants, in terms of direct effects on migration success and pathogen spread, and indirect effects on the evolution of migratory systems. We conclude by highlighting the progress that can be made through inter-phyla comparisons, and identify future research areas that will enhance our understanding of insect migration strategies within an eco-evolutionary perspective. PMID:25611117

  7. Neuroendocrine mechanisms underlying behavioral stability: implications for the evolutionary origin of personality.

    PubMed

    Duckworth, Renée A

    2015-12-01

    Personality traits are behaviors that show limited flexibility over time and across contexts, and thus understanding their origin requires an understanding of what limits behavioral flexibility. Here, I suggest that insight into the evolutionary origin of personality traits requires determining the relative importance of selection and constraint in producing limits to behavioral flexibility. Natural selection as the primary cause of limits to behavioral flexibility assumes that the default state of behavior is one of high flexibility and predicts that personality variation arises through evolution of buffering mechanisms to stabilize behavioral expression, whereas the constraint hypothesis assumes that the default state is one of limited flexibility and predicts that the neuroendocrine components that underlie personality variation are those most constrained in flexibility. Using recent work on the neurobiology of sensitive periods and maternal programming of offspring behavior, I show that some of the most stable aspects of the neuroendocrine system are structural components and maternally induced epigenetic effects. Evidence of numerous constraints to changes in structural features of the neuroendocrine system and far fewer constraints to flexibility of epigenetic systems suggests that structural constraints play a primary role in the origin of behavioral stability and that epigenetic programming may be more important in generating adaptive variation among individuals. PMID:26096675

  8. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism

    NASA Astrophysics Data System (ADS)

    Morse, D. E.; Weaver, J. C.

    2001-12-01

    substitutions of specific amino acid sidechains, in conjunction with computer-assisted molecular modeling and biomimetic synthesis, allowed us to probe the determinants of catalytic activity and confirm the identification of the amino acid sidechains required for hydrolysis of the silicon alkoxides. If, as suggested by the data of others, silicic acid is conjugated with organic moieties after its transport into the cell, the catalytic mechanism described here may be important in biosilicification by sponges. As is often the case, we have been better able to answer mechanistic questions about "how" silica can be formed biologically, than "why" the diversity of structures is elaborated. Studies of spicule formation during cellular regeneration in Tethya aurantia reveal that synthesis of the larger silica needles (megascleres) and smaller starburst-shaped microscleres may be independently regulated, presumably at the genetic level. The spatial segregation of these morphologically-distinct spicule types within the sponge further suggests an adaptive significance of the different skeletal elements.

  9. The Evolutionary Connection Bewtween z~2-3 Submillimeter Galaxies and AGN as Probed by Molecular Gas Excitation

    NASA Astrophysics Data System (ADS)

    Sharon, Chelsea E.; Riechers, Dominik A.; Carilli, Chris Luke; Hodge, Jacqueline; Walter, Fabian

    2016-01-01

    Theoretical work has suggested that active galactic nuclei (AGN) play an important role in quenching star formation in massive galaxies. Direct evidence for AGN affecting the molecular ISM has so far been limited to detections of molecular outflows in low-redshift systems and extreme excitation regions which represent a tiny fraction of the total gas. Indirect evidence for AGN's impact on their host galaxies' cold gas phase may be provided by measurements of the gas excitation and dynamics. At z~2-3, the peak epoch of star formation and AGN activity, previous observations of the CO(1-0) line revealed that submillimeter galaxies (SMGs) have multi-phase molecular gas, including substantial reservoirs of cold-phase gas. However, the entirety of the molecular gas in AGN-host galaxies appears highly excited, potentially supporting an evolutionary connection between these two populations. I will present a new VLA sample that nearly doubles the number of CO(1-0) detections in z~2-3 SMGs and AGN-host galaxies that allows us to better compare the cold gas properties of these systems and further investigate evidence for the effects of AGN on the star-forming molecular gas.

  10. Molecular Gas Excitation and the Evolutionary Connection Between Submillimeter Galaxies and AGN at z~2-3

    NASA Astrophysics Data System (ADS)

    Sharon, Chelsea; Riechers, Dominik Alexander; Carilli, Christopher; Hodge, Jacqueline; Walter, Fabian

    2015-08-01

    Theoretical work has suggested that active galactic nuclei (AGN) may play an important role in quenching star formation in massive galaxies. Due to sensitivity demands, direct evidence for AGN affecting the molecular ISM (the gas phase that fuels star formation) has so far been limited to detections of molecular outflows in low-redshift systems. Indirect evidence for an interplay between AGN and their host galaxies' cold gas phase may be provided by measurements of the gas excitation (and dynamics). At z~2-3, the peak epoch of star formation and AGN activity, previous observations of the CO(1-0) line revealed that submillimeter galaxies have substantial reservoirs of cold molecular gas. However, the molecular gas in AGN-host galaxies appears highly excited, potentially supporting an evolutionary connection between these two populations. We will present a new larger Karl G. Jansky Very Large Array sample that nearly doubles the number of CO(1-0) detections in z~2-3 submillimeter galaxies and AGN-host galaxies with existing CO(3-2) detections (from 13 to 23, plus four new upper limits) that allows us to better compare the low-excitation molecular gas properties of these systems and further investigate potential evidence for gas excitation due to active black holes.

  11. The Evolution and Origin of Animal Toll-Like Receptor Signaling Pathway Revealed by Network-Level Molecular Evolutionary Analyses

    PubMed Central

    Qin, Sheng; Chen, Liming; Ma, Fei

    2012-01-01

    Genes carry out their biological functions through pathways in complex networks consisting of many interacting molecules. Studies on the effect of network architecture on the evolution of individual proteins will provide valuable information for understanding the origin and evolution as well as functional conservation of signaling pathways. However, the relationship between the network architecture and the individual protein sequence evolution is yet little known. In current study, we carried out network-level molecular evolution analysis on TLR (Toll-like receptor ) signaling pathway, which plays an important role in innate immunity in insects and mammals, and we found that: 1) The selection constraint of genes was negatively correlated with its position along TLR signaling pathway; 2) all genes in TLR signaling pathway were highly conserved and underwent strong purifying selection; 3) the distribution of selective pressure along the pathway was driven by differential nonsynonymous substitution levels; 4) The TLR signaling pathway might present in a common ancestor of sponges and eumetazoa, and evolve via the TLR, IKK, IκB and NF-κB genes underwent duplication events as well as adaptor molecular enlargement, and gene structure and conservation motif of NF-κB genes shifted in their evolutionary history. Our results will improve our understanding on the evolutionary history of animal TLR signaling pathway as well as the relationship between the network architecture and the sequences evolution of individual protein. PMID:23236523

  12. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    SciTech Connect

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  13. Evolutionary dynamics of adult stem cells: Comparison of random and immortal-strand segregation mechanisms

    NASA Astrophysics Data System (ADS)

    Tannenbaum, Emmanuel; Sherley, James L.; Shakhnovich, Eugene I.

    2005-04-01

    This paper develops a point-mutation model describing the evolutionary dynamics of a population of adult stem cells. Such a model may prove useful for quantitative studies of tissue aging and the emergence of cancer. We consider two modes of chromosome segregation: (1) random segregation, where the daughter chromosomes of a given parent chromosome segregate randomly into the stem cell and its differentiating sister cell and (2) “immortal DNA strand” co-segregation, for which the stem cell retains the daughter chromosomes with the oldest parent strands. Immortal strand co-segregation is a mechanism, originally proposed by [Cairns Nature (London) 255, 197 (1975)], by which stem cells preserve the integrity of their genomes. For random segregation, we develop an ordered strand pair formulation of the dynamics, analogous to the ordered strand pair formalism developed for quasispecies dynamics involving semiconservative replication with imperfect lesion repair (in this context, lesion repair is taken to mean repair of postreplication base-pair mismatches). Interestingly, a similar formulation is possible with immortal strand co-segregation, despite the fact that this segregation mechanism is age dependent. From our model we are able to mathematically show that, when lesion repair is imperfect, then immortal strand co-segregation leads to better preservation of the stem cell lineage than random chromosome segregation. Furthermore, our model allows us to estimate the optimal lesion repair efficiency for preserving an adult stem cell population for a given period of time. For human stem cells, we obtain that mispaired bases still present after replication and cell division should be left untouched, to avoid potentially fixing a mutation in both DNA strands.

  14. Molecular Mechanics: The Method and Its Underlying Philosophy.

    ERIC Educational Resources Information Center

    Boyd, Donald B.; Lipkowitz, Kenny B.

    1982-01-01

    Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…

  15. Molecular and Evolutionary Bases of Within-Patient Genotypic and Phenotypic Diversity in Escherichia coli Extraintestinal Infections

    PubMed Central

    Levert, Maxime; Zamfir, Oana; Clermont, Olivier; Bouvet, Odile; Lespinats, Sylvain; Hipeaux, Marie Claire; Branger, Catherine; Picard, Bertrand; Saint-Ruf, Claude; Norel, Françoise; Balliau, Thierry; Zivy, Michel; Le Nagard, Hervé; Cruvellier, Stéphane; Chane-Woon-Ming, Béatrice; Nilsson, Susanna; Gudelj, Ivana; Phan, Katherine; Ferenci, Thomas; Tenaillon, Olivier; Denamur, Erick

    2010-01-01

    Although polymicrobial infections, caused by combinations of viruses, bacteria, fungi and parasites, are being recognised with increasing frequency, little is known about the occurrence of within-species diversity in bacterial infections and the molecular and evolutionary bases of this diversity. We used multiple approaches to study the genomic and phenotypic diversity among 226 Escherichia coli isolates from deep and closed visceral infections occurring in 19 patients. We observed genomic variability among isolates from the same site within 11 patients. This diversity was of two types, as patients were infected either by several distinct E. coli clones (4 patients) or by members of a single clone that exhibit micro-heterogeneity (11 patients); both types of diversity were present in 4 patients. A surprisingly wide continuum of antibiotic resistance, outer membrane permeability, growth rate, stress resistance, red dry and rough morphotype characteristics and virulence properties were present within the isolates of single clones in 8 of the 11 patients showing genomic micro-heterogeneity. Many of the observed phenotypic differences within clones affected the trade-off between self-preservation and nutritional competence (SPANC). We showed in 3 patients that this phenotypic variability was associated with distinct levels of RpoS in co-existing isolates. Genome mutational analysis and global proteomic comparisons in isolates from a patient revealed a star-like relationship of changes amongst clonally diverging isolates. A mathematical model demonstrated that multiple genotypes with distinct RpoS levels can co-exist as a result of the SPANC trade-off. In the cases involving infection by a single clone, we present several lines of evidence to suggest diversification during the infectious process rather than an infection by multiple isolates exhibiting a micro-heterogeneity. Our results suggest that bacteria are subject to trade-offs during an infectious process and that

  16. Mechanism of a molecular electronic photoswitch

    NASA Astrophysics Data System (ADS)

    Zhuang, Min; Ernzerhof, Matthias

    2005-08-01

    We present a simple non-self-consistent method for the calculation of the molecular conductance under finite bias voltage. Our approach is applied to a molecular photoswitch that has recently been investigated in break junction experiments [D. Dulić , Phys. Rev. Lett. 91, 207402 (2003)]. We obtain I-V characteristics that are qualitatively in agreement with experimental measurements. Employing our electronic structure calculations, we provide a detailed explanation for the switching behavior observed in experiment.

  17. Molecular evolutionary analysis of vertebrate transducins: a role for amino acid variation in photoreceptor deactivation.

    PubMed

    Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W

    2013-12-01

    Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems. PMID:24145862

  18. Divergent evolutionary mechanisms of co-located Tak/Lrk and Glu-D3 loci revealed by comparative analysis of grass genomes.

    PubMed

    Wang, Zi-Ning; Banik, Mitali; Cloutier, Sylvie

    2013-04-01

    Seed storage and disease resistance proteins are major traits of wheat. The study of their gene organization and evolution has some implications in breeding. In this study, we characterized the hexaploid wheat D-genome BAC clone TaBAC703A9 that contains a low molecular weight glutenin locus (Glu-D3) and a resistance gene analogue cluster. With a gene density of one gene per 4.8 kb, the cluster contains four resistance gene analogues, namely Tak703-1, Lrr703, Tak703, and Lrk703. This structural cluster unit was conserved across nine grass genomes, but divergent evolutionary mechanisms have been involved in shaping the Tak/Lrk loci in the different species. Gene duplication was the major force for the Tak/Lrk evolution in oats, maize, barley, wheat, sorghum, and Brachypodium, while tandem duplication drove the expansion of this locus in japonica rice. Despite the close proximity of the Glu-D3 and the Tak/Lrk loci in wheat, the evolutionary mechanisms that drove their amplification differ. The Glu-D3 region had a lower gene density, and its amplification was driven by retroelements. PMID:23706072

  19. The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms.

    PubMed

    Auld, S K J R; Tinsley, M C

    2015-02-01

    Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups-from single-celled bacteria to multicellular flatworms-yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host-parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. Finally, we emphasise four key areas where new research approaches will provide fertile opportunities to advance this field. PMID:25227255

  20. Brain mechanisms of acoustic communication in humans and nonhuman primates: an evolutionary perspective.

    PubMed

    Ackermann, Hermann; Hage, Steffen R; Ziegler, Wolfram

    2014-12-01

    Any account of "what is special about the human brain" (Passingham 2008) must specify the neural basis of our unique ability to produce speech and delineate how these remarkable motor capabilities could have emerged in our hominin ancestors. Clinical data suggest that the basal ganglia provide a platform for the integration of primate-general mechanisms of acoustic communication with the faculty of articulate speech in humans. Furthermore, neurobiological and paleoanthropological data point at a two-stage model of the phylogenetic evolution of this crucial prerequisite of spoken language: (i) monosynaptic refinement of the projections of motor cortex to the brainstem nuclei that steer laryngeal muscles, presumably, as part of a "phylogenetic trend" associated with increasing brain size during hominin evolution; (ii) subsequent vocal-laryngeal elaboration of cortico-basal ganglia circuitries, driven by human-specific FOXP2 mutations.;>This concept implies vocal continuity of spoken language evolution at the motor level, elucidating the deep entrenchment of articulate speech into a "nonverbal matrix" (Ingold 1994), which is not accounted for by gestural-origin theories. Moreover, it provides a solution to the question for the adaptive value of the "first word" (Bickerton 2009) since even the earliest and most simple verbal utterances must have increased the versatility of vocal displays afforded by the preceding elaboration of monosynaptic corticobulbar tracts, giving rise to enhanced social cooperation and prestige. At the ontogenetic level, the proposed model assumes age-dependent interactions between the basal ganglia and their cortical targets, similar to vocal learning in some songbirds. In this view, the emergence of articulate speech builds on the "renaissance" of an ancient organizational principle and, hence, may represent an example of "evolutionary tinkering" (Jacob 1977). PMID:24827156

  1. The evolutionary ecology of complex lifecycle parasites: linking phenomena with mechanisms

    PubMed Central

    Auld, S KJR; Tinsley, M C

    2015-01-01

    Many parasitic infections, including those of humans, are caused by complex lifecycle parasites (CLPs): parasites that sequentially infect different hosts over the course of their lifecycle. CLPs come from a wide range of taxonomic groups—from single-celled bacteria to multicellular flatworms—yet share many common features in their life histories. Theory tells us when CLPs should be favoured by selection, but more empirical studies are required in order to quantify the costs and benefits of having a complex lifecycle, especially in parasites that facultatively vary their lifecycle complexity. In this article, we identify ecological conditions that favour CLPs over their simple lifecycle counterparts and highlight how a complex lifecycle can alter transmission rate and trade-offs between growth and reproduction. We show that CLPs participate in dynamic host–parasite coevolution, as more mobile hosts can fuel CLP adaptation to less mobile hosts. Then, we argue that a more general understanding of the evolutionary ecology of CLPs is essential for the development of effective frameworks to manage the many diseases they cause. More research is needed identifying the genetics of infection mechanisms used by CLPs, particularly into the role of gene duplication and neofunctionalisation in lifecycle evolution. We propose that testing for signatures of selection in infection genes will reveal much about how and when complex lifecycles evolved, and will help quantify complex patterns of coevolution between CLPs and their various hosts. Finally, we emphasise four key areas where new research approaches will provide fertile opportunities to advance this field. PMID:25227255

  2. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings.

    PubMed

    Woods, C Geoffrey; Bond, Jacquelyn; Enard, Wolfgang

    2005-05-01

    Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder. It is characterized by two principal features, microcephaly present at birth and nonprogressive mental retardation. The microcephaly is the consequence of a small but architecturally normal brain, and it is the cerebral cortex that shows the greatest size reduction. There are at least seven MCPH loci, and four of the genes have been identified: MCPH1, encoding Microcephalin; MCPH3, encoding CDK5RAP2; MCPH5, encoding ASPM; and MCPH6, encoding CENPJ. These findings are starting to have an impact on the clinical management of families affected with MCPH. Present data suggest that MCPH is the consequence of deficient neurogenesis within the neurogenic epithelium. Evolutionary interest in MCPH has been sparked by the suggestion that changes in the MCPH genes might also be responsible for the increase in brain size during human evolution. Indeed, evolutionary analyses of Microcephalin and ASPM reveal evidence for positive selection during human and great ape evolution. So an understanding of this rare genetic disorder may offer us significant insights into neurogenic mitosis and the evolution of the most striking differences between us and our closest living relatives: brain size and cognitive ability. PMID:15806441

  3. The cognitive life of mechanical molecular models.

    PubMed

    Charbonneau, Mathieu

    2013-12-01

    The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations. PMID:23910718

  4. Hybrid Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of HIV-1 Integrase/Inhibitor Complexes

    PubMed Central

    Nunthaboot, Nadtanet; Pianwanit, Somsak; Parasuk, Vudhichai; Ebalunode, Jerry O.; Briggs, James M.; Kokpol, Sirirat

    2007-01-01

    Human immunodeficiency virus (HIV)-1 integrase (IN) is an attractive target for development of acquired immunodeficiency syndrome chemotherapy. In this study, conventional and coupled quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations of HIV-1 IN complexed with 5CITEP (IN-5CITEP) were carried out. In addition to differences in the bound position of 5CITEP, significant differences at the two levels of theory were observed in the metal coordination geometry and the areas involving residues 116–119 and 140–166. In the conventional MD simulation, the coordination of Mg2+ was found to be a near-perfect octahedral geometry whereas a distorted octahedral complex was observed in QM/MM. All of the above reasons lead to a different pattern of protein-ligand salt link formation that was not observed in the classical MD simulation. Furthermore to provide a theoretical understanding of inhibition mechanisms of 5CITEP and its derivative (DKA), hybrid QM/MM MD simulations of the two complexes (IN-5CITEP and IN-DKA) have been performed. The results reveal that areas involving residues 60–68, 116–119, and 140–149 were substantially different among the two systems. The two systems show similar pattern of metal coordination geometry, i.e., a distorted octahedron. In IN-DKA, both OD1 and OD2 of Asp-64 coordinate the Mg2+ in a monodentate fashion whereas only OD1 is chelated to the metal as observed in IN-5CITEP. The high potency of DKA as compared to 5CITEP is supported by a strong salt link formed between its carboxylate moiety and the ammonium group of Lys-159. Detailed comparisons between HIV-1 IN complexed with DKA and with 5CITEP provide information about ligand structure effects on protein-ligand interactions in particular with the Lys-159. This is useful for the design of new selective HIV-1 IN inhibitors. PMID:17693479

  5. Developing accurate molecular mechanics force fields for conjugated molecular systems.

    PubMed

    Do, Hainam; Troisi, Alessandro

    2015-10-14

    A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel. PMID:26349916

  6. Brief Communication: Quantitative- and molecular-genetic differentiation in humans and chimpanzees: implications for the evolutionary processes underlying cranial diversification.

    PubMed

    Weaver, Timothy D

    2014-08-01

    Estimates of the amount of genetic differentiation in humans among major geographic regions (e.g., Eastern Asia vs. Europe) from quantitative-genetic analyses of cranial measurements closely match those from classical- and molecular-genetic markers. Typically, among-region differences account for ∼10% of the total variation. This correspondence is generally interpreted as evidence for the importance of neutral evolutionary processes (e.g., genetic drift) in generating among-region differences in human cranial form, but it was initially surprising because human cranial diversity was frequently assumed to show a strong signature of natural selection. Is the human degree of similarity of cranial and DNA-sequence estimates of among-region genetic differentiation unusual? How do comparisons with other taxa illuminate the evolutionary processes underlying cranial diversification? Chimpanzees provide a useful starting point for placing the human results in a broader comparative context, because common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the extant species most closely related to humans. To address these questions, I used 27 cranial measurements collected on a sample of 861 humans and 263 chimpanzees to estimate the amount of genetic differentiation between pairs of groups (between regions for humans and between species or subspecies for chimpanzees). Consistent with previous results, the human cranial estimates are quite similar to published DNA-sequence estimates. In contrast, the chimpanzee cranial estimates are much smaller than published DNA-sequence estimates. It appears that cranial differentiation has been limited in chimpanzees relative to humans. PMID:24827671

  7. TOPICAL REVIEW: Polarization effects in molecular mechanical force fields

    NASA Astrophysics Data System (ADS)

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2009-08-01

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations.

  8. The evolutionary history of placodes: a molecular genetic investigation of the larvacean urochordate Oikopleura dioica.

    PubMed

    Bassham, Susan; Postlethwait, John H

    2005-10-01

    The evolutionary origin of vertebrate placodes remains controversial because divergent morphologies in urochordates, cephalochordates and vertebrates make it difficult to recognize organs that are clearly homologous to placode-derived features, including the olfactory organ, adenohypophysis, lens, inner ear, lateral line and cranial ganglia. The larvacean urochordate Oikopleura dioica possesses organs that morphologically resemble the vertebrate olfactory organ and adenohypophysis. We tested the hypothesis that orthologs of these vertebrate placodes exist in a larvacean urochordate by analyzing the developmental expression of larvacean homologs of the placode-marking gene families Eya, Pitx and Six. We conclude that extant chordates inherited olfactory and adenohypophyseal placodes from their last common ancestor, but additional independent proliferation and perhaps loss of placode types probably occurred among the three subphyla of Chordata. PMID:16120641

  9. Hidden diversity and evolutionary trends in malacosporean parasites (Cnidaria: Myxozoa) identified using molecular phylogenetics.

    PubMed

    Bartošová-Sojková, Pavla; Hrabcová, Martina; Pecková, Hana; Patra, Sneha; Kodádková, Alena; Jurajda, Pavel; Tyml, Tomáš; Holzer, Astrid Sibylle

    2014-07-01

    Malacosporeans represent a small fraction of myxozoan biodiversity with only two genera and three species described. They cycle between bryozoans and freshwater fish. In this study, we (i) microscopically examine and screen different freshwater/marine fish species from various geographic locations and habitats for the presence of malacosporeans using PCR; (ii) study the morphology, prevalence, host species/habitat preference and distribution of malacosporeans; (iii) perform small subunit/large subunit rDNA and Elongation factor 2 based phylogenetic analyses of newly gathered data, together with all available malacosporean data in GenBank; and (iv) investigate the evolutionary trends of malacosporeans by mapping the morphology of bryozoan-related stages, host species, habitat and geographic data on the small subunit rDNA-based phylogenetic tree. We reveal a high prevalence and diversity of malacosporeans in several fish hosts in European freshwater habitats by adding five new species of Buddenbrockia and Tetracapsuloides from cyprinid and perciform fishes. Comprehensive phylogenetic analyses revealed that, apart from Buddenbrockia and Tetracapsuloides clades, a novel malacosporean lineage (likely a new genus) exists. The fish host species spectrum was extended for Buddenbrockia plumatellae and Buddenbrockia sp. 2. Co-infections of up to three malacosporean species were found in individual fish. The significant increase in malacosporean species richness revealed in the present study points to a hidden biodiversity in this parasite group. This is most probably due to the cryptic nature of malacosporean sporogonic and presporogonic stages and mostly asymptomatic infections in the fish hosts. The potential existence of malacosporean life cycles in the marine environment as well as the evolution of worm- and sac-like morphology is discussed. This study improves the understanding of the biodiversity, prevalence, distribution, habitat and host preference of malacosporeans

  10. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A.; Alvarez, Susana; de Lera, Angel R.; Kuraku, Shigehiro; Bourguet, William; Laudet, Vincent

    2016-01-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication–degeneration–complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor–ligand interactions of NRs following WGDs. PMID:27069642

  11. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A; Alvarez, Susana; de Lera, Angel R; Kuraku, Shigehiro; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2016-03-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs. PMID:27069642

  12. Identifying the mechanisms of polymer friction through molecular dynamics simulation.

    PubMed

    Dai, Ling; Minn, M; Satyanarayana, N; Sinha, Sujeet K; Tan, V B C

    2011-12-20

    Mechanisms governing the tribological behavior of polymer-on-polymer sliding were investigated by molecular dynamics simulations. Three main mechanisms governing frictional behavior were identified. Interfacial "brushing" of molecular chain ends over one another was observed as the key contribution to frictional forces. With an increase of the sliding speed, fluctuations in frictional forces reduced in both magnitude and periodicity, leading to dynamic frictional behavior. While "brushing" remained prevalent, two additional irreversible mechanisms, "combing" and "chain scission", of molecular chains were observed when the interfaces were significantly diffused. PMID:22044344

  13. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences☆

    PubMed Central

    Maan, Martine E.; Sefc, Kristina M.

    2013-01-01

    Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity. PMID:23665150

  14. Molecular chaperones: functional mechanisms and nanotechnological applications.

    PubMed

    Fernández-Fernández, M Rosario; Sot, Begoña; Valpuesta, José María

    2016-08-12

    Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures. PMID:27363314

  15. Molecular chaperones: functional mechanisms and nanotechnological applications

    NASA Astrophysics Data System (ADS)

    Rosario Fernández-Fernández, M.; Sot, Begoña; María Valpuesta, José

    2016-08-01

    Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.

  16. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome

    PubMed Central

    2011-01-01

    Background The carnivorous plant Utricularia gibba (bladderwort) is remarkable in having a minute genome, which at ca. 80 megabases is approximately half that of Arabidopsis. Bladderworts show an incredible diversity of forms surrounding a defined theme: tiny, bladder-like suction traps on terrestrial, epiphytic, or aquatic plants with a diversity of unusual vegetative forms. Utricularia plants, which are rootless, are also anomalous in physiological features (respiration and carbon distribution), and highly enhanced molecular evolutionary rates in chloroplast, mitochondrial and nuclear ribosomal sequences. Despite great interest in the genus, no genomic resources exist for Utricularia, and the substitution rate increase has received limited study. Results Here we describe the sequencing and analysis of the Utricularia gibba transcriptome. Three different organs were surveyed, the traps, the vegetative shoot bodies, and the inflorescence stems. We also examined the bladderwort transcriptome under diverse stress conditions. We detail aspects of functional classification, tissue similarity, nitrogen and phosphorus metabolism, respiration, DNA repair, and detoxification of reactive oxygen species (ROS). Long contigs of plastid and mitochondrial genomes, as well as sequences for 100 individual nuclear genes, were compared with those of other plants to better establish information on molecular evolutionary rates. Conclusion The Utricularia transcriptome provides a detailed genomic window into processes occurring in a carnivorous plant. It contains a deep representation of the complex metabolic pathways that characterize a putative minimal plant genome, permitting its use as a source of genomic information to explore the structural, functional, and evolutionary diversity of the genus. Vegetative shoots and traps are the most similar organs by functional classification of their transcriptome, the traps expressing hydrolytic enzymes for prey digestion that were previously

  17. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle.

    PubMed

    Sharma, Punita; Das De, Tanwee; Sharma, Swati; Kumar Mishra, Ashwani; Thomas, Tina; Verma, Sonia; Kumari, Vandana; Lata, Suman; Singh, Namita; Valecha, Neena; Chand Pandey, Kailash; Dixit, Rajnikant

    2015-01-01

    In prokaryotes, horizontal gene transfer (HGT) has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs) are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito. PMID:26998230

  18. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle

    PubMed Central

    Sharma, Punita; Das De, Tanwee; Sharma, Swati; Kumar Mishra, Ashwani; Thomas, Tina; Verma, Sonia; Kumari, Vandana; Lata, Suman; Singh, Namita; Valecha, Neena; Chand Pandey, Kailash; Dixit, Rajnikant

    2015-01-01

    In prokaryotes, horizontal gene transfer (HGT) has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs) are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito. PMID:26998230

  19. Molecular Mechanisms of External Genitalia Development

    PubMed Central

    Blaschko, Sarah D.; Cunha, Gerald R.; Baskin, Laurence S.

    2012-01-01

    External genitalia development occurs through a combination of hormone independent, hormone dependent, and endocrine pathways. Perturbation of these pathways can lead to abnormal external genitalia development. We review human and animal mechanisms of normal and abnormal external genitalia development, and we evaluate abnormal mechanisms that lead to hypospadias. We also discuss recent laboratory findings that further our understanding of animal models of hypospadias. PMID:22790208

  20. Symposium on molecular and cellular mechanisms of mutagenesis

    SciTech Connect

    Not Available

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  1. Uncovering the evolutionary origin of plant molecular processes: comparison of Coleochaete (Coleochaetales) and Spirogyra (Zygnematales) transcriptomes

    PubMed Central

    2010-01-01

    Background The large and diverse land plant lineage is nested within a clade of fresh water green algae, the charophytes. Collection of genome-scale data for land plants and other organisms over the past decade has invigorated the field of evolutionary biology. One of the core questions in the field asks: how did a colonization event by a green algae over 450 mya lead to one of the most successful lineages on the tree of life? This question can best be answered using the comparative method, the first step of which is to gather genome-scale data across closely related lineages to land plants. Before sequencing an entire genome it is useful to first gather transcriptome data: it is less expensive, it targets the protein coding regions of the genome, and provides support for gene models for future genome sequencing. We built Expressed Sequence Tag (EST) libraries for two charophyte species, Coleochaete orbicularis (Coleochaetales) and Spirogyra pratensis (Zygnematales). We used both Sanger sequencing and next generation 454 sequencing to cover as much of the transcriptome as possible. Results Our sequencing effort for Spirogyra pratensis yielded 9,984 5' Sanger reads plus 598,460 GS FLX Standard 454 sequences; Coleochaete orbicularis yielded 4,992 5' Sanger reads plus 673,811 GS FLX Titanium 454 sequences. After clustering S. pratensis yielded 12,000 unique transcripts, or unigenes, and C. orbicularis yielded 19,000. Both transcriptomes were very plant-like, i.e. most of the transcripts were more similar to streptophytes (land plants + charophyte green algae) than to other green algae in the sister group chlorophytes. BLAST results of several land plant genes hypothesized to be important in early land plant evolution resulted in high quality hits in both transcriptomes revealing putative orthologs ripe for follow-up studies. Conclusions Two main conclusions were drawn from this study. One illustrates the utility of next generation sequencing for transcriptome studies

  2. History of Molecular Beam Research: Personal Reminiscences of the Important Evolutionary Period 1919-1933

    ERIC Educational Resources Information Center

    Estermann, Immanuel

    1975-01-01

    Describes the early historical period of the molecular beam method, including the Stern-Gerlach experiment, the work of Davisson and Germer, and the magnetic moment determinations for the proton, neutron, and deuteron. Contains some amusing historical sidelights on the research personalities that dominated that period. (MLH)

  3. Molecular Signatures for the PVC Clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of Bacteria Provide Insights into Their Evolutionary Relationships

    PubMed Central

    Gupta, Radhey S.; Bhandari, Vaibhav; Naushad, Hafiz Sohail

    2012-01-01

    The PVC superphylum is an amalgamation of species from the phyla Planctomycetes, Verrucomicrobia, and Chlamydiae, along with the Lentisphaerae, Poribacteria, and two other candidate divisions. The diverse species of this superphylum lack any significant marker that differentiates them from other bacteria. Recently, genome sequences for 37 species covering all of the main PVC groups of bacteria have become available. We have used these sequences to construct a phylogenetic tree based upon concatenated sequences for 16 proteins and identify molecular signatures in protein sequences that are specific for the species from these phyla or those providing molecular links among them. Of the useful molecular markers identified in the present work, six conserved signature indels (CSIs) in the proteins Cyt c oxidase, UvrD helicase, urease, and a helicase-domain containing protein are specific for the species from the Verrucomicrobia phylum; three other CSIs in an ABC transporter protein, cobyrinic acid ac-diamide synthase, and SpoVG protein are specific for the Planctomycetes species. Additionally, a 3 aa insert in the RpoB protein is uniquely present in all sequenced Chlamydiae, Verrucomicrobia, and Lentisphaerae species, providing evidence for the shared ancestry of the species from these three phyla. Lastly, we have also identified a conserved protein of unknown function that is exclusively found in all sequenced species from the phyla Chlamydiae, Verrucomicrobia, Lentisphaerae, and Planctomycetes suggesting a specific linkage among them. The absence of this protein in Poribacteria, which branches separately from other members of the PVC clade, indicates that it is not specifically related to the PVC clade of bacteria. The molecular markers described here in addition to clarifying the evolutionary relationships among the PVC clade of bacteria also provide novel tools for their identification and for genetic and biochemical studies on these organisms. PMID:23060863

  4. Molecular Signatures for the PVC Clade (Planctomycetes, Verrucomicrobia, Chlamydiae, and Lentisphaerae) of Bacteria Provide Insights into Their Evolutionary Relationships.

    PubMed

    Gupta, Radhey S; Bhandari, Vaibhav; Naushad, Hafiz Sohail

    2012-01-01

    The PVC superphylum is an amalgamation of species from the phyla Planctomycetes, Verrucomicrobia, and Chlamydiae, along with the Lentisphaerae, Poribacteria, and two other candidate divisions. The diverse species of this superphylum lack any significant marker that differentiates them from other bacteria. Recently, genome sequences for 37 species covering all of the main PVC groups of bacteria have become available. We have used these sequences to construct a phylogenetic tree based upon concatenated sequences for 16 proteins and identify molecular signatures in protein sequences that are specific for the species from these phyla or those providing molecular links among them. Of the useful molecular markers identified in the present work, six conserved signature indels (CSIs) in the proteins Cyt c oxidase, UvrD helicase, urease, and a helicase-domain containing protein are specific for the species from the Verrucomicrobia phylum; three other CSIs in an ABC transporter protein, cobyrinic acid ac-diamide synthase, and SpoVG protein are specific for the Planctomycetes species. Additionally, a 3 aa insert in the RpoB protein is uniquely present in all sequenced Chlamydiae, Verrucomicrobia, and Lentisphaerae species, providing evidence for the shared ancestry of the species from these three phyla. Lastly, we have also identified a conserved protein of unknown function that is exclusively found in all sequenced species from the phyla Chlamydiae, Verrucomicrobia, Lentisphaerae, and Planctomycetes suggesting a specific linkage among them. The absence of this protein in Poribacteria, which branches separately from other members of the PVC clade, indicates that it is not specifically related to the PVC clade of bacteria. The molecular markers described here in addition to clarifying the evolutionary relationships among the PVC clade of bacteria also provide novel tools for their identification and for genetic and biochemical studies on these organisms. PMID:23060863

  5. Molecular phylogenetics unveils the ancient evolutionary origins of the enigmatic fairy armadillos.

    PubMed

    Delsuc, Frédéric; Superina, Mariella; Tilak, Marie-Ka; Douzery, Emmanuel J P; Hassanin, Alexandre

    2012-02-01

    Fairy armadillos or pichiciegos (Xenarthra, Dasypodidae) are among the most elusive mammals. Due to their subterranean and nocturnal lifestyle, their basic biology and evolutionary history remain virtually unknown. Two distinct species with allopatric distributions are recognized: Chlamyphorus truncatus is restricted to central Argentina, while Calyptophractus retusus occurs in the Gran Chaco of Argentina, Paraguay, and Bolivia. To test their monophyly and resolve their phylogenetic affinities within armadillos, we obtained sequence data from modern and museum specimens for two mitochondrial genes (12S RNA [MT-RNR1] and NADH dehydrogenase 1 [MT-ND1]) and two nuclear exons (breast cancer 1 early onset exon 11 [BRCA1] and von Willebrand factor exon 28 [VWF]). Phylogenetic analyses provided a reference phylogeny and timescale for living xenarthran genera. Our results reveal monophyletic pichiciegos as members of a major armadillo subfamily (Chlamyphorinae). Their strictly fossorial lifestyle probably evolved as a response to the Oligocene aridification that occurred in South America after their divergence from Tolypeutinae around 32 million years ago (Mya). The ancient divergence date (∼17Mya) for separation between the two species supports their taxonomic classification into distinct genera. The synchronicity with Middle Miocene marine incursions along the Paraná river basin suggests a vicariant origin for pichiciegos by the disruption of their ancestral range. Their phylogenetic distinctiveness and rarity in the wild argue in favor of high conservation priority. PMID:22122941

  6. De novo design of drug-like molecules by a fragment-based molecular evolutionary approach.

    PubMed

    Kawai, Kentaro; Nagata, Naoya; Takahashi, Yoshimasa

    2014-01-27

    This paper describes a similarity-driven simple evolutionary approach to producing candidate molecules of new drugs. The aim of the method is to explore the candidates that are structurally similar to the reference molecule and yet somewhat different in not only peripheral chains but also their scaffolds. The method employs a known active molecule of our interest as a reference molecule which is used to navigate a huge chemical space. The reference molecule is also used to obtain seed fragments. An initial set of individual structures is prepared with the seed fragments and additional fragments using several connection rules. The fragment library is preferably prepared from a collection of known molecules related to the target of the reference molecule. Every fragment of the library can be used for fragment-based mutation. All the fragments are categorized into three classes; rings, linkers, and side chains. New individuals are produced by the crossover and the fragment-based mutation with the fragment library. Computer experiments with our own fragment library prepared from GPCR SARfari verified the feasibility of our approach to drug discovery. PMID:24372539

  7. Molecular and cellular mechanisms of pulmonary fibrosis

    PubMed Central

    2012-01-01

    Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096

  8. Molecular mechanisms of STIM/Orai communication

    PubMed Central

    Derler, Isabella; Jardin, Isaac

    2016-01-01

    Ca2+ entry into the cell via store-operated Ca2+ release-activated Ca2+ (CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca2+ channels open after depletion of intracellular Ca2+ stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca2+ sensor, while Orai forms a highly Ca2+-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca2+ permeation into the cell. PMID:26825122

  9. Molecular mechanisms of STIM/Orai communication.

    PubMed

    Derler, Isabella; Jardin, Isaac; Romanin, Christoph

    2016-04-15

    Ca(2+)entry into the cell via store-operated Ca(2+)release-activated Ca(2+)(CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca(2+)channels open after depletion of intracellular Ca(2+)stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca(2+)sensor, while Orai forms a highly Ca(2+)-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca(2+)permeation into the cell. PMID:26825122

  10. Molecular and Mechanical Behavior of Elastomers.

    ERIC Educational Resources Information Center

    Etzel, A. J.; And Others

    1986-01-01

    Describes an experiment in which stretching a rubber band can be used to compare the statistical theory of rubber elasticity with its continuum mechanics counterpart. Employs the use of the equation of the state of rubber elasticity and the Mooney-Rivlin equation. (TW)