Science.gov

Sample records for molecular functions targeted

  1. Molecular target discovery for neural repair in the functional genomics era.

    PubMed

    Verhaagen, Joost; Van Kesteren, Ronald E; Bossers, Koen A M; Macgillavry, Harold D; Mason, Matthew R; Smit, August B

    2012-01-01

    A comprehensive understanding of the molecular pathways activated by traumatic neural injury is of major importance for the development of treatments for spinal cord injury (SCI). High-throughput gene expression profiling is a powerful approach to reveal genome-wide changes in gene expression during a specific biological process. Microarray analysis of injured nerves or neurons would ideally generate new hypotheses concerning the progression or deregulation of injury- and repair-related biological processes, such as neural scar formation and axon regeneration. These hypotheses should subsequently be tested experimentally and would eventually provide the molecular substrates for the development of novel therapeutics. Over the last decade, this approach has elucidated numerous extrinsic (mostly neural scar-associated) as well as neuron-intrinsic genes that are regulated following an injury. To date, the main challenge is to translate the observed injury-induced gene expression changes into a mechanistic framework to understand their functional implications. To achieve this, research on neural repair will have to adopt the conceptual advances and analytical tools provided by the functional genomics and systems biology revolution. Based on progress made in bioinformatics, high-throughput and high-content functional cellular screening, and in vivo gene transfer technology, we propose a multistep "roadmap" that provides an integrated strategy for molecular target discovery for repair of the injured spinal cord. PMID:23098739

  2. Molecular design and nanoparticle-mediated intracellular delivery of functional proteins to target cellular pathways

    NASA Astrophysics Data System (ADS)

    Shah, Dhiral Ashwin

    Intracellular delivery of specific proteins and peptides represents a novel method to influence stem cells for gain-of-function and loss-of-function. Signaling control is vital in stem cells, wherein intricate control of and interplay among critical pathways directs the fate of these cells into either self-renewal or differentiation. The most common route to manipulate cellular function involves the introduction of genetic material such as full-length genes and shRNA into the cell to generate (or prevent formation of) the target protein, and thereby ultimately alter cell function. However, viral-mediated gene delivery may result in relatively slow expression of proteins and prevalence of oncogene insertion into the cell, which can alter cell function in an unpredictable fashion, and non-viral delivery may lead to low efficiency of genetic delivery. For example, the latter case plagues the generation of induced pluripotent stem cells (iPSCs) and hinders their use for in vivo applications. Alternatively, introducing proteins into cells that specifically recognize and influence target proteins, can result in immediate deactivation or activation of key signaling pathways within the cell. In this work, we demonstrate the cellular delivery of functional proteins attached to hydrophobically modified silica (SiNP) nanoparticles to manipulate specifically targeted cell signaling proteins. In the Wnt signaling pathway, we have targeted the phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta) by designing a chimeric protein and delivering it in neural stem cells. Confocal imaging indicates that the SiNP-chimeric protein conjugates were efficiently delivered to the cytosol of human embryonic kidney cells and rat neural stem cells, presumably via endocytosis. This uptake impacted the Wnt signaling cascade, indicated by the elevation of beta-catenin levels, and increased transcription of Wnt target genes, such as c-MYC. The results presented here suggest that

  3. An Overview on the Marine Neurotoxin, Saxitoxin: Genetics, Molecular Targets, Methods of Detection and Ecological Functions

    PubMed Central

    Cusick, Kathleen D.; Sayler, Gary S.

    2013-01-01

    Marine neurotoxins are natural products produced by phytoplankton and select species of invertebrates and fish. These compounds interact with voltage-gated sodium, potassium and calcium channels and modulate the flux of these ions into various cell types. This review provides a summary of marine neurotoxins, including their structures, molecular targets and pharmacologies. Saxitoxin and its derivatives, collectively referred to as paralytic shellfish toxins (PSTs), are unique among neurotoxins in that they are found in both marine and freshwater environments by organisms inhabiting two kingdoms of life. Prokaryotic cyanobacteria are responsible for PST production in freshwater systems, while eukaryotic dinoflagellates are the main producers in marine waters. Bioaccumulation by filter-feeding bivalves and fish and subsequent transfer through the food web results in the potentially fatal human illnesses, paralytic shellfish poisoning and saxitoxin pufferfish poisoning. These illnesses are a result of saxitoxin’s ability to bind to the voltage-gated sodium channel, blocking the passage of nerve impulses and leading to death via respiratory paralysis. Recent advances in saxitoxin research are discussed, including the molecular biology of toxin synthesis, new protein targets, association with metal-binding motifs and methods of detection. The eco-evolutionary role(s) PSTs may serve for phytoplankton species that produce them are also discussed. PMID:23535394

  4. Molecular functions of the TLE tetramerization domain in Wnt target gene repression

    PubMed Central

    Chodaparambil, Jayanth V; Pate, Kira T; Hepler, Margretta R D; Tsai, Becky P; Muthurajan, Uma M; Luger, Karolin; Waterman, Marian L; Weis, William I

    2014-01-01

    Wnt signaling activates target genes by promoting association of the co-activator β-catenin with TCF/LEF transcription factors. In the absence of β-catenin, target genes are silenced by TCF-mediated recruitment of TLE/Groucho proteins, but the molecular basis for TLE/TCF-dependent repression is unclear. We describe the unusual three-dimensional structure of the N-terminal Q domain of TLE1 that mediates tetramerization and binds to TCFs. We find that differences in repression potential of TCF/LEFs correlates with their affinities for TLE-Q, rather than direct competition between β-catenin and TLE for TCFs as part of an activation–repression switch. Structure-based mutation of the TLE tetramer interface shows that dimers cannot mediate repression, even though they bind to TCFs with the same affinity as tetramers. Furthermore, the TLE Q tetramer, not the dimer, binds to chromatin, specifically to K20 methylated histone H4 tails, suggesting that the TCF/TLE tetramer complex promotes structural transitions of chromatin to mediate repression. PMID:24596249

  5. Targeted molecular imaging in oncology.

    PubMed

    Yang, David J; Kim, E Edmund; Inoue, Tomio

    2006-01-01

    Improvement of scintigraphic tumor imaging is extensively determined by the development of more tumor specific radiopharmaceuticals. Thus, to improve the differential diagnosis, prognosis, planning and monitoring of cancer treatment, several functional pharmaceuticals have been developed. Application of molecular targets for cancer imaging, therapy and prevention using generator-produced isotopes is the major focus of ongoing research projects. Radionuclide imaging modalities (positron emission tomography, PET; single photon emission computed tomography, SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled radiotracers. 99mTc- and 68Ga-labeled agents using ethylenedicysteine (EC) as a chelator were synthesized and their potential uses to assess tumor targets were evaluated. 99mTc (t1/2 = 6 hr, 140 keV) is used for SPECT and 68Ga (t1/2 = 68 min, 511 keV) for PET. Molecular targets labeled with Tc-99m and Ga-68 can be utilized for prediction of therapeutic response, monitoring tumor response to treatment and differential diagnosis. Molecular targets for oncological research in (1) cell apoptosis, (2) gene and nucleic acid-based approach, (3) angiogenesis (4) tumor hypoxia, and (5) metabolic imaging are discussed. Numerous imaging ligands in these categories have been developed and evaluated in animals and humans. Molecular targets were imaged and their potential to redirect optimal cancer diagnosis and therapeutics were demonstrated. PMID:16485568

  6. Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis.

    PubMed

    Lee, Younghee; Yang, Xinan; Huang, Yong; Fan, Hanli; Zhang, Qingbei; Wu, Youngfei; Li, Jianrong; Hasina, Rifat; Cheng, Chao; Lingen, Mark W; Gerstein, Mark B; Weichselbaum, Ralph R; Xing, H Rosie; Lussier, Yves A

    2010-04-01

    Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1-22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates

  7. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    SciTech Connect

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.

  8. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGESBeta

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; et al

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  9. Receptor Tyrosine Kinase EphA5 Is a Functional Molecular Target in Human Lung Cancer*

    PubMed Central

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; Dobroff, Andrey S.; Edwards, Julianna K.; Cimino, Daniel F.; Moeller, Benjamin J.; Kelly, Patrick; Nunez, Maria I.; Tang, Ximing; Liu, Diane D.; Lee, J. Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R. M.; Lobb, Roy R.; Edelman, Martin J.; Sidman, Richard L.; Wistuba, Ignacio I.; Arap, Wadih; Pasqualini, Renata

    2015-01-01

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. PMID:25623065

  10. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    NASA Technical Reports Server (NTRS)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  11. Phage display identification of functional binding peptides against 4-acetamidophenol (Paracetamol): an exemplified approach to target low molecular weight organic molecules.

    PubMed

    Smith, Mathew W; Smith, Jonathan W; Harris, Charlotte; Brancale, Andrea; Allender, Christopher J; Gumbleton, Mark

    2007-06-22

    Peptide-phage display has been widely used to explore protein-protein interactions, however, despite the potential range of applications the use of this technology to identify peptides that bind low molecular weight organic molecules has not been explored. In this current study, we identified a phage clone (PARA-061) displaying the cyclic 7-mer peptide sequence N' AC-NPNNLSH-CGGGS C' that binds the low molecular weight organic molecule 4-acetamidophenol (4-AAP; paracetamol). To avoid occupancy of key functional groups on the target 4-AAP molecule our panning strategy was directed against insoluble complexes of 4-AAP rather than against the target linked to a stationary support or bearing an affinity tag. To augment the panning procedure we deleted phage that also bound the 4-AAP isomers, 2-AAP and 3-AAP. The identified PARA-061 peptide-phage clone displayed functional binding properties against 4-AAP in solution, able in a peptide sequence-dependant manner to prevent the in vitro hepatotoxicity of 4-AAP and reduce ( approximately 20%) the permeability of 4-AAP across a semi-permeable membrane. Molecular dynamic simulations generated a stable binding conformation between the PARA-061 peptide sequence and 4-AAP. In conclusion, we show that a phage display library can be used to identify peptide sequence-specific clones able to modulate the functional binding of a low molecular weight organic molecule. Such peptides may be expected to find utility in the next generation of hybrid polymer-based biosensing devices. PMID:17482566

  12. [Anti-angiogenesis and molecular targeted therapies].

    PubMed

    Miyanaga, Akihiko; Gemma, Akihiko

    2015-08-01

    Tumor angiogenesis contributes to the development of tumor progression. Several vascular endothelial growth factor(VEGF)-targeted agents, administered either as single agents or in combination with chemotherapy, have been shown to benefit patients with advanced-stage malignancies. In particular, bevacizumab is a humanized monoclonal antibody that specifically targets VEGF, inhibiting angiogenesis, thereby impeding tumor growth and survival. It is also possible that combined VEGF and the epidermal growth factor (EGFR) pathway blockade could further enhance antitumor efficacy and help prevent resistance to therapy. Preclinical and clinical studies have shown new various molecular targets and the functional characteristics of tumor angiogenesis, which may provide strategies for improving the therapeutic benefit. PMID:26281687

  13. Molecular Targets for Antiepileptic Drug Development

    PubMed Central

    Meldrum, Brian S.; Rogawski, Michael A.

    2007-01-01

    Summary This review considers how recent advances in the physiology of ion channels and other potential molecular targets, in conjunction with new information on the genetics of idiopathic epilepsies, can be applied to the search for improved antiepileptic drugs (AEDs). Marketed AEDs predominantly target voltage-gated cation channels (the α subunits of voltage-gated Na+ channels and also T-type voltage-gated Ca2+ channels) or influence GABA-mediated inhibition. Recently, α2–δ voltage-gated Ca2+ channel subunits and the SV2A synaptic vesicle protein have been recognized as likely targets. Genetic studies of familial idiopathic epilepsies have identified numerous genes associated with diverse epilepsy syndromes, including genes encoding Na+ channels and GABAA receptors, which are known AED targets. A strategy based on genes associated with epilepsy in animal models and humans suggests other potential AED targets, including various voltage-gated Ca2+ channel subunits and auxiliary proteins, A- or M-type voltage-gated K+ channels, and ionotropic glutamate receptors. Recent progress in ion channel research brought about by molecular cloning of the channel subunit proteins and studies in epilepsy models suggest additional targets, including G-protein-coupled receptors, such as GABAB and metabotropic glutamate receptors; hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits, responsible for hyperpolarization-activated current Ih; connexins, which make up gap junctions; and neurotransmitter transporters, particularly plasma membrane and vesicular transporters for GABA and glutamate. New information from the structural characterization of ion channels, along with better understanding of ion channel function, may allow for more selective targeting. For example, Na+ channels underlying persistent Na+ currents or GABAA receptor isoforms responsible for tonic (extrasynaptic) currents represent attractive targets. The growing understanding of the

  14. Hepatotoxicity of molecular targeted therapy

    PubMed Central

    Sałek-Zań, Agata

    2014-01-01

    A constant increase in occurrence of neoplasms is observed; hence new methods of therapy are being intensively researched. One of the methods of antineoplastic treatment is molecular targeted therapy, which aims to influence individual processes occurring in cells. Using this type of medications is associated with unwanted effects resulting from the treatment. Liver damage is a major adverse effect diagnosed during targeted therapy. Drug-induced liver damage can occur as necrosis of hepatocytes, cholestatic liver damage and cirrhosis. Hepatotoxicity is evaluated on the basis of International Consensus Criteria. Susceptibility of the liver to injury is connected not only with toxicity of the used medications but also with metastasis, coexistence of viral infections or other chronic diseases as well as the patient's age. It has been proven that in most cases the liver injury is caused by treatment with multikinase inhibitors, in particular tyrosine kinase inhibitors. The Food and Drug Administration (FDA) ordered the inclusion of additional labels – so-called “black box warnings” – indicating increased risk of liver injury when treating with pazopanib, sunitinib, lapatinib and regorafenib. A meta-analysis published in 2013 showed that treating neoplastic patients with tyrosine kinase inhibitors can increase the risk of drug-induced liver damage at least twofold. Below the mechanisms of drug-induced liver injury and hepatotoxic effects of molecular targeted therapy are described. PMID:26034384

  15. Combined Antiviral Therapy Using Designed Molecular Scaffolds Targeting Two Distinct Viral Functions, HIV-1 Genome Integration and Capsid Assembly

    PubMed Central

    Khamaikawin, Wannisa; Saoin, Somphot; Nangola, Sawitree; Chupradit, Koollawat; Sakkhachornphop, Supachai; Hadpech, Sudarat; Onlamoon, Nattawat; Ansari, Aftab A; Byrareddy, Siddappa N; Boulanger, Pierre; Hong, Saw-See; Torbett, Bruce E; Tayapiwatana, Chatchai

    2015-01-01

    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (AnkGAG1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder AnkGAG1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)AnkGAG1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)AnkGAG1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)AnkGAG1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)AnkGAG1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy. PMID:26305555

  16. Functional Molecular Ecological Networks

    PubMed Central

    Zhou, Jizhong; Deng, Ye; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-01-01

    Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all microbial biodiversity research focuses on “species” richness and abundance but not on their interactions. Although a network approach is powerful in describing ecological interactions among species, defining the network structure in a microbial community is a great challenge. Also, although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly understood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological networks was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a long-term grassland FACE (free air, CO2 enrichment) experiment. Our results indicate that RMT is powerful in identifying functional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO2 and ambient CO2 (aCO2) possessed the general characteristics of complex systems such as scale free, small world, modular, and hierarchical. However, the topological structures of the functional molecular ecological networks are distinctly different between eCO2 and aCO2, at the levels of the entire communities, individual functional gene categories/groups, and functional genes/sequences, suggesting that eCO2 dramatically altered the network interactions among different microbial functional genes/populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidating network interactions in microbial communities and their responses to environmental changes is fundamentally important for research in microbial ecology, systems microbiology, and global change. PMID:20941329

  17. Functional molecular ecological networks.

    PubMed

    Zhou, Jizhong; Deng, Ye; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-01-01

    Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all microbial biodiversity research focuses on "species" richness and abundance but not on their interactions. Although a network approach is powerful in describing ecological interactions among species, defining the network structure in a microbial community is a great challenge. Also, although the stimulating effects of elevated CO(2) (eCO(2)) on plant growth and primary productivity are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly understood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological networks was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a long-term grassland FACE (free air, CO(2) enrichment) experiment. Our results indicate that RMT is powerful in identifying functional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO(2) and ambient CO(2) (aCO(2)) possessed the general characteristics of complex systems such as scale free, small world, modular, and hierarchical. However, the topological structures of the functional molecular ecological networks are distinctly different between eCO(2) and aCO(2), at the levels of the entire communities, individual functional gene categories/groups, and functional genes/sequences, suggesting that eCO(2) dramatically altered the network interactions among different microbial functional genes/populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidating network interactions in microbial communities and their responses to environmental changes is fundamentally important for research in microbial ecology, systems microbiology, and global change. PMID:20941329

  18. Tamoxifen Resistance: Emerging Molecular Targets

    PubMed Central

    Rondón-Lagos, Milena; Villegas, Victoria E.; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G.

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  19. Tamoxifen Resistance: Emerging Molecular Targets.

    PubMed

    Rondón-Lagos, Milena; Villegas, Victoria E; Rangel, Nelson; Sánchez, Magda Carolina; Zaphiropoulos, Peter G

    2016-01-01

    17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM's biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein-coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer. PMID:27548161

  20. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy.

    PubMed

    Fang, Bernard A; Kovačević, Žaklina; Park, Kyung Chan; Kalinowski, Danuta S; Jansson, Patric J; Lane, Darius J R; Sahni, Sumit; Richardson, Des R

    2014-01-01

    N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein. PMID:24269900

  1. Ovarian cancer: emerging molecular-targeted therapies

    PubMed Central

    Sourbier, Carole

    2012-01-01

    With about 22,000 new cases estimated in 2012 in the US and 15,500 related deaths, ovarian cancer is a heterogeneous and aggressive disease. Even though most of patients are sensitive to chemotherapy treatment following surgery, recurring disease is almost always lethal, and only about 30% of the women affected will be cured. Thanks to a better understanding of the molecular mechanisms underlying ovarian cancer malignancy, new therapeutic options with molecular-targeted agents have become available. This review discusses the rationale behind molecular-targeted therapies and examines how newly identified molecular targets may enhance personalized therapies for ovarian cancer patients. PMID:22807625

  2. Molecular targets of luteolin in cancer

    PubMed Central

    2016-01-01

    Many food-derived phytochemical compounds and their derivatives represent a cornucopia of new anticancer compounds. Despite extensive study of luteolin, the literature has no information on the exact mechanisms or molecular targets through which it deters cancer progression. This review discusses existing data on luteolin’s anticancer activities and then offers possible explanations for and molecular targets of its cancer-preventive action. Luteolin prevents tumor development largely by inactivating several signals and transcription pathways essential for cancer cells. This review also offers insights into the molecular mechanisms and targets through which luteolin either prevents cancer or mediates cancer cell death. PMID:25714651

  3. Inhibition of Simian Virus 40 replication by targeting the molecular chaperone function and ATPase activity of T antigen

    PubMed Central

    Wright, Christine M.; Seguin, Sandlin P.; Fewell, Sheara W.; Zhang, Haijiang; Ishwad, Chandra; Vats, Abhay; Lingwood, Cifford A.; Wipf, Peter; Fanning, Ellen; Pipas, James M.; Brodsky, Jeffrey L.

    2009-01-01

    Polyomaviruses such as BK virus and JC virus have been linked to several diseases, but treatments that thwart their propagation are limited in part because of slow growth and cumbersome culturing conditions. In contrast, the replication of one member of this family, Simian Virus 40 (SV40), is robust and has been well-characterized. SV40 replication requires two domains within the viral-encoded large tumor antigen (TAg): The ATPase domain and the N-terminal J domain, which stimulates the ATPase activity of the Hsp70 chaperone. To assess whether inhibitors of polyomavirus replication could be identified, we examined a recently described library of small molecules, some of which inhibit chaperone function. One compound, MAL2-11B, inhibited both TAg’s endogenous ATPase activity and the TAg-mediated activation of Hsp70. MAL2-11B also reduced SV40 propagation in plaque assays and compromised DNA replication in cell culture and in vitro. Furthermore, the compound significantly reduced the growth of BK virus in a human kidney cell line. These data indicate that pharmacological inhibition of TAg’s chaperone and ATPase activities may provide a route to combat polyomavirus-mediated disease. PMID:19200446

  4. Conotoxins: Molecular and Therapeutic Targets

    NASA Astrophysics Data System (ADS)

    Lewis, Richard J.

    Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.

  5. Molecular Targets of Cannabidiol in Neurological Disorders.

    PubMed

    Ibeas Bih, Clementino; Chen, Tong; Nunn, Alistair V W; Bazelot, Michaël; Dallas, Mark; Whalley, Benjamin J

    2015-10-01

    Cannabis has a long history of anecdotal medicinal use and limited licensed medicinal use. Until recently, alleged clinical effects from anecdotal reports and the use of licensed cannabinoid medicines are most likely mediated by tetrahydrocannabinol by virtue of: 1) this cannabinoid being present in the most significant quantities in these preparations; and b) the proportion:potency relationship between tetrahydrocannabinol and other plant cannabinoids derived from cannabis. However, there has recently been considerable interest in the therapeutic potential for the plant cannabinoid, cannabidiol (CBD), in neurological disorders but the current evidence suggests that CBD does not directly interact with the endocannabinoid system except in vitro at supraphysiological concentrations. Thus, as further evidence for CBD's beneficial effects in neurological disease emerges, there remains an urgent need to establish the molecular targets through which it exerts its therapeutic effects. Here, we conducted a systematic search of the extant literature for original articles describing the molecular pharmacology of CBD. We critically appraised the results for the validity of the molecular targets proposed. Thereafter, we considered whether the molecular targets of CBD identified hold therapeutic potential in relevant neurological diseases. The molecular targets identified include numerous classical ion channels, receptors, transporters, and enzymes. Some CBD effects at these targets in in vitro assays only manifest at high concentrations, which may be difficult to achieve in vivo, particularly given CBD's relatively poor bioavailability. Moreover, several targets were asserted through experimental designs that demonstrate only correlation with a given target rather than a causal proof. When the molecular targets of CBD that were physiologically plausible were considered for their potential for exploitation in neurological therapeutics, the results were variable. In some cases

  6. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  7. The molecular targets of resveratrol.

    PubMed

    Kulkarni, Sameer S; Cantó, Carles

    2015-06-01

    Resveratrol has emerged in recent years as a compound conferring strong protection against metabolic, cardiovascular and other age-related complications, including neurodegeneration and cancer. This has generated the notion that resveratrol treatment acts as a calorie-restriction mimetic, based on the many overlapping health benefits observed upon both interventions in diverse organisms, including yeast, worms, flies and rodents. Though studied for over a decade, the molecular mechanisms governing the therapeutic properties of resveratrol still remain elusive. Elucidating how resveratrol exerts its effects would provide not only new insights in its fundamental biological actions but also new avenues for the design and development of more potent drugs to efficiently manage metabolic disorders. In this review we will cover the most recent advances in the field, with special focus on the metabolic actions of resveratrol and the potential role of SIRT1 and AMPK. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes. PMID:25315298

  8. Pharmacological differentiation of opioid receptor antagonists by molecular and functional imaging of target occupancy and food reward-related brain activation in humans

    PubMed Central

    Rabiner, E A; Beaver, J; Makwana, A; Searle, G; Long, C; Nathan, P J; Newbould, R D; Howard, J; Miller, S R; Bush, M A; Hill, S; Reiley, R; Passchier, J; Gunn, R N; Matthews, P M; Bullmore, E T

    2011-01-01

    Opioid neurotransmission has a key role in mediating reward-related behaviours. Opioid receptor (OR) antagonists, such as naltrexone (NTX), can attenuate the behaviour-reinforcing effects of primary (food) and secondary rewards. GSK1521498 is a novel OR ligand, which behaves as an inverse agonist at the μ-OR sub-type. In a sample of healthy volunteers, we used [11C]-carfentanil positron emission tomography to measure the OR occupancy and functional magnetic resonance imaging (fMRI) to measure activation of brain reward centres by palatable food stimuli before and after single oral doses of GSK1521498 (range, 0.4–100 mg) or NTX (range, 2–50 mg). GSK1521498 had high affinity for human brain ORs (GSK1521498 effective concentration 50=7.10 ng ml−1) and there was a direct relationship between receptor occupancy (RO) and plasma concentrations of GSK1521498. However, for both NTX and its principal active metabolite in humans, 6-β-NTX, this relationship was indirect. GSK1521498, but not NTX, significantly attenuated the fMRI activation of the amygdala by a palatable food stimulus. We thus have shown how the pharmacological properties of OR antagonists can be characterised directly in humans by a novel integration of molecular and functional neuroimaging techniques. GSK1521498 was differentiated from NTX in terms of its pharmacokinetics, target affinity, plasma concentration–RO relationships and pharmacodynamic effects on food reward processing in the brain. Pharmacological differentiation of these molecules suggests that they may have different therapeutic profiles for treatment of overeating and other disorders of compulsive consumption. PMID:21502953

  9. Hox Targets and Cellular Functions

    PubMed Central

    Sánchez-Herrero, Ernesto

    2013-01-01

    Hox genes are a group of genes that specify structures along the anteroposterior axis in bilaterians. Although in many cases they do so by modifying a homologous structure with a different (or no) Hox input, there are also examples of Hox genes constructing new organs with no homology in other regions of the body. Hox genes determine structures though the regulation of targets implementing cellular functions and by coordinating cell behavior. The genetic organization to construct or modify a certain organ involves both a genetic cascade through intermediate transcription factors and a direct regulation of targets carrying out cellular functions. In this review I discuss new data from genome-wide techniques, as well as previous genetic and developmental information, to describe some examples of Hox regulation of different cell functions. I also discuss the organization of genetic cascades leading to the development of new organs, mainly using Drosophila melanogaster as the model to analyze Hox function. PMID:24490109

  10. [Molecular based targets and endometrial cancer].

    PubMed

    Stoyanov, St; Ananiev, J; Ivanova, K; Velev, V; Todorova, M; Gulubova, M

    2015-01-01

    In recent years, increasing attention has been paid to the rate of spread of endometrial carcinoma, especially in the postmenopausal period. Along with routine diagnostic methods, giving information on the location and progression of the disease, there are some morphological methods determining very accurately the correlations in the development of this type of cancer and his prognosis. Moreover--in recent years, the accumulated information about the molecular profile of this type of cancer made it possible to implement a number of new drugs against the so-called molecular therapy -'targets' in the neoplastic process. Significant proportion of cases show response rates, it is more hope in the development of more successful formulas and target -based therapy. In this review, we present and discuss the role of certain molecular markers as potential indicators of prognosis and development, as well as determining the target treatment of endometrial carcinoma. PMID:25909140

  11. Endocrine disruptors targeting ERbeta function.

    PubMed

    Swedenborg, E; Pongratz, I; Gustafsson, J-A

    2010-04-01

    Endocrine disruptive chemicals (EDCs) circulating in the environment constitute a risk to ecosystems, wildlife and human health. Oestrogen receptor (ER) alpha and beta are targeted by various kinds of EDCs but the molecular mechanisms and long-term consequences of exposure are largely unknown. Some biological effects of EDCs are mediated by the aryl hydrocarbon receptor (AhR), which is a key player in the cellular defence against xenobiotic substances. Adding complexity to the picture, there is also accumulating evidence that AhR-ER pathways have an intricate interplay at multiple levels. In this review, we discuss some EDCs that affect the oestrogen pathway by targeting ERbeta. Furthermore, we describe some effects of AhR activities on the oestrogen system. Mechanisms as well as potential adverse effects on human health are discussed. PMID:20050941

  12. Molecular Targeted Intervention for Pancreatic Cancer

    PubMed Central

    Mohammed, Altaf; Janakiram, Naveena B.; Pant, Shubham; Rao, Chinthalapally V.

    2015-01-01

    Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies. PMID:26266422

  13. Liposarcoma: molecular targets and therapeutic implications.

    PubMed

    Bill, Kate Lynn J; Casadei, Lucia; Prudner, Bethany C; Iwenofu, Hans; Strohecker, Anne M; Pollock, Raphael E

    2016-10-01

    Liposarcoma (LPS) is the most common soft tissue sarcoma and accounts for approximately 20 % of all adult sarcomas. Current treatment modalities (surgery, chemotherapy, and radiotherapy) all have limitations; therefore, molecularly driven studies are needed to improve the identification and increased understanding of genetic and epigenetic deregulations in LPS if we are to successfully target specific tumorigenic drivers. It can be anticipated that such biology-driven therapeutics will improve treatments by selectively deleting cancer cells while sparing normal tissues. This review will focus on several therapeutically actionable molecular markers identified in well-differentiated LPS and dedifferentiated LPS, highlighting their potential clinical applicability. PMID:27173057

  14. High Efficiency Diffusion Molecular Retention Tumor Targeting

    PubMed Central

    Guo, Yanyan; Yuan, Hushan; Cho, Hoonsung; Kuruppu, Darshini; Jokivarsi, Kimmo; Agarwal, Aayush; Shah, Khalid; Josephson, Lee

    2013-01-01

    Here we introduce diffusion molecular retention (DMR) tumor targeting, a technique that employs PEG-fluorochrome shielded probes that, after a peritumoral (PT) injection, undergo slow vascular uptake and extensive interstitial diffusion, with tumor retention only through integrin molecular recognition. To demonstrate DMR, RGD (integrin binding) and RAD (control) probes were synthesized bearing DOTA (for 111 In3+), a NIR fluorochrome, and 5 kDa PEG that endows probes with a protein-like volume of 25 kDa and decreases non-specific interactions. With a GFP-BT-20 breast carcinoma model, tumor targeting by the DMR or IV methods was assessed by surface fluorescence, biodistribution of [111In] RGD and [111In] RAD probes, and whole animal SPECT. After a PT injection, both probes rapidly diffused through the normal and tumor interstitium, with retention of the RGD probe due to integrin interactions. With PT injection and the [111In] RGD probe, SPECT indicated a highly tumor specific uptake at 24 h post injection, with 352%ID/g tumor obtained by DMR (vs 4.14%ID/g by IV). The high efficiency molecular targeting of DMR employed low probe doses (e.g. 25 ng as RGD peptide), which minimizes toxicity risks and facilitates clinical translation. DMR applications include the delivery of fluorochromes for intraoperative tumor margin delineation, the delivery of radioisotopes (e.g. toxic, short range alpha emitters) for radiotherapy, or the delivery of photosensitizers to tumors accessible to light. PMID:23505478

  15. Molecular Pathophysiology of Priapism: Emerging Targets

    PubMed Central

    Anele, Uzoma A.; Morrison, Belinda F.; Burnett, Arthur L.

    2015-01-01

    Priapism is an erectile disorder involving uncontrolled, prolonged penile erection without sexual purpose, which can lead to erectile dysfunction. Ischemic priapism, the most common of the variants, occurs with high prevalence in patients with sickle cell disease. Despite the potentially devastating complications of this condition, management of recurrent priapism episodes historically has commonly involved reactive treatments rather than preventative strategies. Recently, increasing elucidation of the complex molecular mechanisms underlying this disorder, principally involving dysregulation of nitric oxide signaling, has allowed for greater insights and exploration into potential therapeutic targets. In this review, we discuss the multiple molecular regulatory pathways implicated in the pathophysiology of priapism. We also identify the roles and mechanisms of molecular effectors in providing the basis for potential future therapies. PMID:25392014

  16. [Molecular alterations in melanoma and targeted therapies].

    PubMed

    Mourah, Samia; Lebbé, Céleste

    2014-12-01

    Melanoma is a skin cancer whose incidence is increasing steadily. The recent discovery of frequent and recurrent genetic alterations in cutaneous melanoma allowed a molecular classification of tumors into distinct subgroups, and paved the way for targeted therapy. Several signaling pathways are involved in the progression of this disease with oncogenic mutations affecting signaling pathways: MAPK, PI3K, cAMP and cyclin D1/CDK4. In each of these pathways, several potential therapeutic targets have been identified and specific inhibitors have already been developed and have shown clinical efficacy. The use of these inhibitors is often conditioned by tumors genotyping. In France, melanomas genotyping is supported by the platforms of the National Cancer Institute (INCA), which implemented a national program ensuring access to innovation for personalized medicine. The identification of new targets in melanoma supplies a very active dynamic development of innovative molecules contributing to changing the therapeutic landscape of this pathology. PMID:25776766

  17. Functionalized gold nanorods for molecular optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Eghtedari, Mohammad; Oraevsky, Alexander; Conjusteau, Andre; Copland, John A.; Kotov, Nicholas A.; Motamedi, Massoud

    2007-02-01

    The development of gold nanoparticles for molecular optoacoustic imaging is a very promising area of research and development. Enhancement of optoacoustic imaging for molecular detection of tumors requires the engineering of nanoparticles with geometrical and molecular features that can enhance selective targeting of malignant cells while optimizing the sensitivity of optoacoustic detection. In this article, cylindrical gold nanoparticles (i.e. gold nanorods) were fabricated with a plasmon resonance frequency in the near infra-red region of the spectrum, where deep irradiation of tissue is possible using an Alexandrite laser. Gold nanorods (Au-NRs) were functionalized by covalent attachment of Poly(ethylene glycol) to enhance their biocompatibility. These particles were further functionalized with the aim of targeting breast cancer cells using monoclonal antibodies that binds to Her2/neu receptors, which are over expressed on the surface of breast cancer cells. A custom Laser Optoacoustic Imaging System (LOIS) was designed and employed to image nanoparticle-targeted cancer cells in a phantom and PEGylated Au-NRs that were injected subcutaneously into a nude mouse. The results of our experiments show that functionalized Au-NRs with a plasmon resonance frequency at near infra-red region of the spectrum can be detected and imaged in vivo using laser optoacoustic imaging system.

  18. MR Molecular Imaging of Tumor Vasculature and Vascular Targets

    PubMed Central

    Pathak, Arvind P.; Penet, Marie-France; Bhujwalla, Zaver M.

    2016-01-01

    Tumor angiogenesis and the ability of cancer cells to induce neovasculature continue to be a fascinating area of research. As the delivery network that provides substrates and nutrients, as well as chemotherapeutic agents to cancer cells, but allows cancer cells to disseminate, the tumor vasculature is richly primed with targets and mechanisms that can be exploited for cancer cure or control. The spatial and temporal heterogeneity of tumor vasculature, and the heterogeneity of response to targeting, make noninvasive imaging essential for understanding the mechanisms of tumor angiogenesis, tracking vascular targeting, and detecting the efficacy of antiangiogenic therapies. With its noninvasive characteristics, exquisite spatial resolution and range of applications, magnetic resonance imaging (MRI) techniques have provided a wealth of functional and molecular information on tumor vasculature in applications spanning from “bench to bedside”. The integration of molecular biology and chemistry to design novel imaging probes ensures the continued evolution of the molecular capabilities of MRI. In this review, we have focused on developments in the characterization of tumor vasculature with functional and molecular MRI. PMID:20807600

  19. Molecular Targets for Treating Cognitive Dysfunction in Schizophrenia

    PubMed Central

    Gray, John A.; Roth, Bryan L.

    2007-01-01

    Cognitive impairment is a core feature of schizophrenia as deficits are present in the majority of patients, frequently precede the onset of other positive symptoms, persist even with successful treatment of positive symptoms, and account for a significant portion of functional impairment in schizophrenia. While the atypical antipsychotics have produced incremental improvements in the cognitive function of patients with schizophrenia, overall treatment remains inadequate. In recent years, there has been an increased interest in developing novel strategies for treating the cognitive deficits in schizophrenia, focusing on ameliorating impairments in working memory, attention, and social cognition. Here we review various molecular targets that are actively being explored for potential drug discovery efforts in schizophrenia and cognition. These molecular targets include dopamine receptors in the prefrontal cortex, nicotinic and muscarinic acetylcholine receptors, the glutamatergic excitatory synapse, various serotonin receptors, and the γ-aminobutyric acid (GABA) system. PMID:17617664

  20. MOLECULAR TARGETED THERAPIES FOR PANCREATIC CANCER

    PubMed Central

    Borja-Cacho, Daniel; Jensen, Eric Hans; Saluja, Ashok Kumar; Buchsbaum, Donald J; Vickers, Selwyn Maurice

    2008-01-01

    Background Pancreatic cancer cells express different mutations that increase the aggressiveness and confer resistance to conventional chemo- and radiotherapy. Molecules that selectively bind and inhibit these mutations are effective in other solid tumors and are now emerging as a complementary therapy in pancreatic cancer. The objective of this review is to describe the effect of drugs that inhibit specific mutations present in pancreatic cancer with special emphasis in clinical trials. Data sources We reviewed the English-language literature (Medline) addressing the role of drugs that target mutations present in pancreatic cancer. Both preclinical and clinical studies were included. Conclusions The preclinical evidence supports the combination of conventional approved therapies plus drugs that block EGFR, VEGF or induce apoptosis. However, most of the current clinical evidence is limited to small phase I trials evaluating the toxicity and safety of these regimens. The results of additional randomized trials that are still undergoing will clarify the role of these drugs in pancreatic cancer. Mini-abstract The role of molecular targeting in the treatment of pancreatic cancer is expanding. In this review, we summarize the most promising therapeutic targets as well as the current status of ongoing clinical trials. PMID:18718222

  1. Potential molecular targets for Ewing's sarcoma therapy.

    PubMed

    Jully, Babu; Rajkumar, Thangarajan

    2012-10-01

    Ewing's sarcoma (ES) is a highly malignant tumor of children and young adults. Modern therapy for Ewing's sarcoma combines high-dose chemotherapy for systemic control of disease, with advanced surgical and/or radiation therapeutic approaches for local control. Despite optimal management, the cure rate for localized disease is only approximately 70%, whereas the cure rate for metastatic disease at presentation is less than 30%. Patients who experience long-term disease-free survival are at risk for significant side-effects of therapy, including infertility, limb dysfunction and an increased risk for second malignancies. The identification of new targets for innovative therapeutic approaches is, therefore, strongly needed for its treatment. Many new pharmaceutical agents have been tested in early phases of clinical trials in ES patients who have recurrent disease. While some agents led to partial response or stable disease, the percentages of drugs eliciting responses or causing an overall effect have been minimal. Furthermore, of the new pharmaceuticals being introduced to clinical practice, the most effective agents also have dose-limiting toxicities. Novel approaches are needed to minimize non-specific toxicity, both for patients with recurrence and at diagnosis. This report presents an overview of the potential molecular targets in ES and highlights the possibility that they may serve as therapeutic targets for the disease. Although additional investigations are required before most of these approaches can be assessed in the clinic, they provide a great deal of hope for patients with Ewing's sarcoma. PMID:23580819

  2. Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer

    PubMed Central

    Cho, C.F.; Sourabh, S.; Simpson, E.J.; Steinmetz, N.F.; Luyt, L.G.; Lewis, J.D.

    2015-01-01

    Viral nanoparticles (VNPs) are a novel class of bionanomaterials that harness the natural biocompatibility of viruses for the development of therapeutics, vaccines, and imaging tools. The plant virus, cowpea mosaic virus (CPMV), has been successfully engineered to create novel cancer-targeted imaging agents by incorporating fluorescent dyes, polyethylene glycol (PEG) polymers, and targeting moieties. Using straightforward conjugation strategies, VNPs with high selectivity for cancer-specific molecular targets can be synthesized for in vivo imaging of tumors. Here we describe the synthesis and purification of CPMV-based VNPs, the functionalization of these VNPs using click chemistry, and their use for imaging xenograft tumors in animal models. VNPs decorated with fluorescent dyes, PEG, and targeting ligands can be synthesized in one day, and imaging studies can be performed over hours, days, or weeks, depending on the application. PMID:24243252

  3. Protein-targeted corona phase molecular recognition

    PubMed Central

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890

  4. Protein-targeted corona phase molecular recognition

    NASA Astrophysics Data System (ADS)

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications.

  5. Drugs That Target Dynamic Microtubules: A New Molecular Perspective

    PubMed Central

    Stanton, Richard A.; Gernert, Kim M.; Nettles, James H.; Aneja, Ritu

    2011-01-01

    Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These “biological vectors” can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work. PMID:21381049

  6. Apoptosis and Molecular Targeting Therapy in Cancer

    PubMed Central

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  7. Treatment planning for molecular targeted radionuclide therapy.

    PubMed

    Siantar, Christine Hartmann; Vetter, Kai; DeNardo, Gerald L; DeNardo, Sally J

    2002-06-01

    Molecular targeted radionuclide therapy promises to expand the usefulness of radiation to successfully treat widespread cancer. The unique properties of radioactive tags make it possible to plan treatments by predicting the radiation absorbed dose to both tumors and normal organs, using a pre-treatment test dose of radiopharmaceutical. This requires a combination of quantitative, high-resolution, radiation-detection hardware and computerized dose-estimation software, and would ideally include biological dose-response data in order to translate radiation absorbed dose into biological effects. Data derived from conventional (external beam) radiation therapy suggests that accurate assessment of the radiation absorbed dose in dose-limiting normal organs could substantially improve the observed clinical response for current agents used in a myeloablative regimen, enabling higher levels of tumor control at lower tumor-to-normal tissue therapeutic indices. Treatment planning based on current radiation detection and simulations technology is sufficient to impact on clinical response. The incorporation of new imaging methods, combined with patient-specific radiation transport simulations, promises to provide unprecedented levels of resolution and quantitative accuracy, which are likely to increase the impact of treatment planning in targeted radionuclide therapy. PMID:12136519

  8. Gene mutations and molecularly targeted therapies in acute myeloid leukemia

    PubMed Central

    Hatzimichael, Eleftheria; Georgiou, Georgios; Benetatos, Leonidas; Briasoulis, Evangelos

    2013-01-01

    Acute myelogenous leukemia (AML) can progress quickly and without treatment can become fatal in a short period of time. However, over the last 30 years fine-tuning of therapeutics have increased the rates of remission and cure. Cytogenetics and mutational gene profiling, combined with the option of allogeneic hematopoietic stem cell transplantation offered in selected patients have further optimized AML treatment on a risk stratification basis in younger adults. However there is still an unmet medical need for effective therapies in AML since disease relapses in almost half of adult patients becoming refractory to salvage therapy. Improvements in the understanding of molecular biology of cancer and identification of recurrent mutations in AML provide opportunities to develop targeted therapies and improve the clinical outcome. In the spectrum of identified gene mutations, primarily targetable lesions are gain of function mutations of tyrosine kinases FLT3, JAK2 and cKIT for which specific, dual and multi-targeted small molecule inhibitors have been developed. A number of targeted compounds such as sorafenib, quizartinib, lestaurtinib, midostaurin, pacritinib, PLX3397 and CCT137690 are in clinical development. For loss-of-function gene mutations, which are mostly biomarkers of favorable prognosis, combined therapeutic approaches can maximize the therapeutic efficacy of conventional therapy. Apart from mutated gene products, proteins aberrantly overexpressed in AML appear to be clinically significant therapeutic targets. Such a molecule for which targeted inhibitors are currently in clinical development is PLK1. We review characteristic gene mutations, discuss their biological functions and clinical significance and present small molecule compounds in clinical development, which are expected to have a role in treating AML subtypes with characteristic molecular alterations. PMID:23358589

  9. Application of Monte Carlo Methods in Molecular Targeted Radionuclide Therapy

    SciTech Connect

    Hartmann Siantar, C; Descalle, M-A; DeNardo, G L; Nigg, D W

    2002-02-19

    Targeted radionuclide therapy promises to expand the role of radiation beyond the treatment of localized tumors. This novel form of therapy targets metastatic cancers by combining radioactive isotopes with tumor-seeking molecules such as monoclonal antibodies and custom-designed synthetic agents. Ultimately, like conventional radiotherapy, the effectiveness of targeted radionuclide therapy is limited by the maximum dose that can be given to a critical, normal tissue, such as bone marrow, kidneys, and lungs. Because radionuclide therapy relies on biological delivery of radiation, its optimization and characterization are necessarily different than for conventional radiation therapy. We have initiated the development of a new, Monte Carlo transport-based treatment planning system for molecular targeted radiation therapy as part of the MINERVA treatment planning system. This system calculates patient-specific radiation dose estimates using a set of computed tomography scans to describe the 3D patient anatomy, combined with 2D (planar image) and 3D (SPECT, or single photon emission computed tomography) to describe the time-dependent radiation source. The accuracy of such a dose calculation is limited primarily by the accuracy of the initial radiation source distribution, overlaid on the patient's anatomy. This presentation provides an overview of MINERVA functionality for molecular targeted radiation therapy, and describes early validation and implementation results of Monte Carlo simulations.

  10. [Mechanism and clinical progress of molecular targeted cancer therapy].

    PubMed

    Hu, Hong-xiang; Wang, Xue-qing; Zhang, Hua; Zhang, Qiang

    2015-10-01

    Molecular target-based cancer therapy is playing a more and more important role in cancer therapy because of its high specificity, good tolerance and so on. There are different kinds of molecular targeted drugs such as monoclonal antibodies and small molecular kinase inhibitors, and more than 50 drugs have been approved since 1997. When the first monoclonal antibody, rituximab, was on the market. The development of molecular target-based cancer therapeutics has become the main approach. Based on this, we summarized the drugs approved by FDA and introduced their mechanism of actions and clinical applications. In order to incorporate most molecular targeted drugs and describe clearly various characteristics, we divided them into four categories: drugs related to EGFR, drugs related to antiangiogenesis, drugs related to specific antigen and other targeted drugs. The purpose of this review is to provide a current status of this field and discover the main problems in the molecular targeted therapy. PMID:26837167

  11. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma.

    PubMed

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  12. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma

    PubMed Central

    Wachsmann, Jason; Peng, Fangyu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC. PMID:26755872

  13. Molecular mechanisms for vascular complications of targeted cancer therapies.

    PubMed

    Gopal, Srila; Miller, Kenneth B; Jaffe, Iris Z

    2016-10-01

    Molecularly targeted anti-cancer therapies have revolutionized cancer treatment by improving both quality of life and survival in cancer patients. However, many of these drugs are associated with cardiovascular toxicities that are sometimes dose-limiting. Moreover, the long-term cardiovascular consequences of these drugs, some of which are used chronically, are not yet known. Although the scope and mechanisms of the cardiac toxicities are better defined, the mechanisms for vascular toxicities are only beginning to be elucidated. This review summarizes what is known about the vascular adverse events associated with three classes of novel anti-cancer therapies: vascular endothelial growth factor (VEGF) inhibitors, breakpoint cluster-Abelson (BCR-ABL) kinase inhibitors used to treat chronic myelogenous leukaemia (CML) and immunomodulatory agents (IMiDs) used in myeloma therapeutics. Three of the best described vascular toxicities are reviewed including hypertension, increased risk of acute cardiovascular ischaemic events and arteriovenous thrombosis. The available data regarding the mechanism by which each therapy causes vascular complication are summarized. When data are limited, potential mechanisms are inferred from the known effects of inhibiting each target on vascular cell function and disease. Enhanced understanding of the molecular mechanisms of vascular side effects of targeted cancer therapy is necessary to effectively manage cancer patients and to design safer targeted cancer therapies for the future. PMID:27612952

  14. Evolving molecular targets in the treatment of nonmalignant gastrointestinal diseases.

    PubMed

    Katzka, D A; Loftus, E V; Camilleri, M

    2012-09-01

    Novel treatments for gastrointestinal (GI) diseases are based on molecular targets. Novel pharmacologic and biological agents with greater selectivity and specificity are being developed for a variety of epithelial diseases, including eosinophilic esophagitis (EoE), gastroesophageal reflux disease (GERD), celiac disease, short bowel syndrome (SBS), and inflammatory bowel diseases (IBDs; Crohn's disease and ulcerative colitis). Motility and secretory agents are being developed for gastroparesis, irritable bowel syndrome (IBS), functional constipation, and diarrhea. Here we focus on data from clinical trials involving validated pharmacodynamic or patient response outcomes. PMID:22828717

  15. Molecular targets of aspirin and cancer prevention.

    PubMed

    Alfonso, L; Ai, G; Spitale, R C; Bhat, G J

    2014-07-01

    Salicylates from plant sources have been used for centuries by different cultures to treat a variety of ailments such as inflammation, fever and pain. A chemical derivative of salicylic acid, aspirin, was synthesised and mass produced by the end of the 19th century and is one of the most widely used drugs in the world. Its cardioprotective properties are well established; however, recent evidence shows that it can also act as a chemopreventive agent. Its antithrombotic and anti-inflammatory actions occur through the inhibition of cyclooxygenases. The precise mechanisms leading to its anticancer effects are not clearly established, although multiple mechanisms affecting enzyme activity, transcription factors, cellular signalling and mitochondrial functions have been proposed. This review presents a brief account of the major COX-dependent and independent pathways described in connection with aspirin's anticancer effects. Aspirin's unique ability to acetylate biomolecules besides COX has not been thoroughly investigated nor have all the targets of its primary metabolite, salicylic acid been identified. Recent reports on the ability of aspirin to acetylate multiple cellular proteins warrant a comprehensive study to investigate the role of this posttranslational modification in its anticancer effects. In this review, we also raise the intriguing possibility that aspirin may interact and acetylate cellular molecules such as RNA, and metabolites such as CoA, leading to a change in their function. Research in this area will provide a greater understanding of the mechanisms of action of this drug. PMID:24874482

  16. Molecular targets in cerebral ischemia for developing novel therapeutics.

    PubMed

    Mehta, Suresh L; Manhas, Namratta; Raghubir, Ram

    2007-04-01

    Cerebral ischemia (stroke) triggers a complex series of biochemical and molecular mechanisms that impairs the neurologic functions through breakdown of cellular integrity mediated by excitotoxic glutamatergic signalling, ionic imbalance, free-radical reactions, etc. These intricate processes lead to activation of signalling mechanisms involving calcium/calmodulin-dependent kinases (CaMKs) and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The distribution of these transducers bring them in contact with appropriate molecular targets leading to altered gene expression, e.g. ERK and JNK mediated early gene induction, responsible for activation of cell survival/damaging mechanisms. Moreover, inflammatory reactions initiated at the neurovascular interface and alterations in the dynamic communication between the endothelial cells, astrocytes and neurons are thought to substantially contribute to the pathogenesis of the disease. The damaging mechanisms may proceed through rapid nonspecific cell lysis (necrosis) or by active form of cell demise (apoptosis or necroptosis), depending upon the severity and duration of the ischemic insult. A systematic understanding of these molecular mechanisms with prospect of modulating the chain of events leading to cellular survival/damage may help to generate the potential strategies for neuroprotection. This review briefly covers the current status on the molecular mechanisms of stroke pathophysiology with an endeavour to identify potential molecular targets such as targeting postsynaptic density-95 (PSD-95)/N-methyl-d-aspartate (NMDA) receptor interaction, certain key proteins involved in oxidative stress, CaMKs and MAPKs (ERK, p38 and JNK) signalling, inflammation (cytokines, adhesion molecules, etc.) and cell death pathways (caspases, Bcl-2 family proteins, poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor (AIF), inhibitors of

  17. Immunotoxins, ligand-toxin conjugates and molecular targeting.

    PubMed

    Soria, M

    1989-01-01

    Biotechnology provides tools for therapeutic exploitation following advances in the elucidation of protein-to-cell and cell-to-cell interactions. Molecular targeting of bacterial and plant toxins to the desired district of action can be achieved through effector molecules like monoclonal antibodies or protein ligands. Biochemical conjugation of these effectors to SO-6, a single-chain Ribosome Inactivating Protein from Saponaria officinalis, yielded powerful cytotoxic agents that are attractive candidates for therapeutic evaluation. Cloning of the gene for this plant toxin has been achieved. Technologies for expression of protein ligands, such as apolipoproteins or several growth factors, are available in recombinant microorganisms, providing adequate partners for the assembly of targeted chimaeras. Domain engineering of structural and functional regions in effector proteins is now possible and will be carried out with the available technologies to improve existing therapy. PMID:2698471

  18. Functional molecular markers for crop improvement.

    PubMed

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered. PMID:26171816

  19. Functional and molecular effects of mercury compounds on the human OCTN1 cation transporter: C50 and C136 are the targets for potent inhibition.

    PubMed

    Galluccio, Michele; Pochini, Lorena; Peta, Valentina; Iannì, Maria; Scalise, Mariafrancesca; Indiveri, Cesare

    2015-03-01

    The effect of mercury compounds has been tested on the organic cation transporter, hOCTN1. MeHg(+), Hg(2+), or Cd(2+) caused strong inhibition of transport. 1,4-Dithioerythritol (DTE), cysteine (Cys), and N-acetyl-l-cysteine reversed (NAC) the inhibition at different extents. 2-Aminoethyl methanethiosulfonate hydrobromide (MTSEA), a prototype SH reagent, exerted inhibition of transport similar to that observed for the mercurial agents. To investigate the mechanism of action of mercurials, mutants of hOCTN1 in which each of the Cys residues was substituted by Ala have been constructed, over-expressed in Escherichia coli, and purified. Tetraethylammonium chloride (TEA) uptake mediated by each mutant in proteoliposomes was comparable to that of wild type (WT). IC50 values of the WT and mutants for the mercury compounds were derived from dose-response analyses. The mutants C50A and C136A showed significant increase of IC50 indicating that the 2 Cys residues were involved in the interaction with the mercury compounds and inhibition of the transporter. The double mutant C50A/C136A was constructed; the lack of inhibition confirmed that the 2 Cys residues are the targets of mercury compounds. MTSEA showed similar behavior with respect to the mercurial reagents with the difference that increased IC50 was observed also in the C81A mutant. Similar results were obtained when transport was measured as acetylcholine uptake. Ethyl mercury (Thimerosal) inhibited hOCTN1 as well. C50A, C50A/C136A and, at very lower extent, C136A showed increased IC50 indicating that C50 was the major target of this mercury compound. The homology model of hOCTN1 was built using as template PiPT and validated by the experimental data on mutant proteins. PMID:25490951

  20. Multiple Molecular Pathways in Melanomagenesis: Characterization of Therapeutic Targets

    PubMed Central

    Palmieri, Giuseppe; Ombra, MariaNeve; Colombino, Maria; Casula, Milena; Sini, MariaCristina; Manca, Antonella; Paliogiannis, Panagiotis; Ascierto, Paolo Antonio; Cossu, Antonio

    2015-01-01

    Molecular mechanisms involved in pathogenesis of malignant melanoma have been widely studied and novel therapeutic treatments developed in recent past years. Molecular targets for therapy have mostly been recognized in the RAS–RAF–MEK–ERK and PI3K–AKT signaling pathways; small-molecule inhibitors were drawn to specifically target key kinases. Unfortunately, these targeted drugs may display intrinsic or acquired resistance and various evidences suggest that inhibition of a single effector of the signal transduction cascades involved in melanoma pathogenesis may be ineffective in blocking the tumor growth. In this sense, a wider comprehension of the multiple molecular alterations accounting for either response or resistance to treatments with targeted inhibitors may be helpful in assessing, which is the most effective combination of such therapies. In the present review, we summarize the known molecular mechanisms underlying either intrinsic and acquired drug resistance either alternative roads to melanoma pathogenesis, which may become targets for innovative anticancer approaches. PMID:26322273

  1. Comprehensive transcriptomic analysis of molecularly targeted drugs in cancer for target pathway evaluation

    PubMed Central

    Mashima, Tetsuo; Ushijima, Masaru; Matsuura, Masaaki; Tsukahara, Satomi; Kunimasa, Kazuhiro; Furuno, Aki; Saito, Sakae; Kitamura, Masami; Soma-Nagae, Taeko; Seimiya, Hiroyuki; Dan, Shingo; Yamori, Takao; Tomida, Akihiro

    2015-01-01

    Targeted therapy is a rational and promising strategy for the treatment of advanced cancer. For the development of clinical agents targeting oncogenic signaling pathways, it is important to define the specificity of compounds to the target molecular pathway. Genome-wide transcriptomic analysis is an unbiased approach to evaluate the compound mode of action, but it is still unknown whether the analysis could be widely applicable to classify molecularly targeted anticancer agents. We comprehensively obtained and analyzed 129 transcriptomic datasets of cancer cells treated with 83 anticancer drugs or related agents, covering most clinically used, molecularly targeted drugs alongside promising inhibitors of molecular cancer targets. Hierarchical clustering and principal component analysis revealed that compounds targeting similar target molecules or pathways were clustered together. These results confirmed that the gene signatures of these drugs reflected their modes of action. Of note, inhibitors of oncogenic kinase pathways formed a large unique cluster, showing that these agents affect a shared molecular pathway distinct from classical antitumor agents and other classes of agents. The gene signature analysis further classified kinome-targeting agents depending on their target signaling pathways, and we identified target pathway-selective signature gene sets. The gene expression analysis was also valuable in uncovering unexpected target pathways of some anticancer agents. These results indicate that comprehensive transcriptomic analysis with our database (http://scads.jfcr.or.jp/db/cs/) is a powerful strategy to validate and re-evaluate the target pathways of anticancer compounds. PMID:25911996

  2. Molecular Motions as a Drug Target: Mechanistic Simulations of Anthrax Toxin Edema Factor Function Led to the Discovery of Novel Allosteric Inhibitors

    PubMed Central

    Laine, Élodie; Martínez, Leandro; Ladant, Daniel; Malliavin, Thérèse; Blondel, Arnaud

    2012-01-01

    Edema Factor (EF) is a component of Bacillus anthracis toxin essential for virulence. Its adenylyl cyclase activity is induced by complexation with the ubiquitous eukaryotic cellular protein, calmodulin (CaM). EF and its complexes with CaM, nucleotides and/or ions, have been extensively characterized by X-ray crystallography. Those structural data allowed molecular simulations analysis of various aspects of EF action mechanism, including the delineation of EF and CaM domains through their association energetics, the impact of calcium binding on CaM, and the role of catalytic site ions. Furthermore, a transition path connecting the free inactive form to the CaM-complexed active form of EF was built to model the activation mechanism in an attempt to define an inhibition strategy. The cavities at the surface of EF were determined for each path intermediate to identify potential sites where the binding of a ligand could block activation. A non-catalytic cavity (allosteric) was found to shrink rapidly at early stages of the path and was chosen to perform virtual screening. Amongst 18 compounds selected in silico and tested in an enzymatic assay, 6 thiophen ureidoacid derivatives formed a new family of EF allosteric inhibitors with IC50 as low as 2 micromolars. PMID:23012649

  3. Functionalized Nanosystems for Targeted Mitochondrial Delivery

    PubMed Central

    Durazo, Shelley A.; Kompella, Uday B.

    2011-01-01

    Mitochondrial dysfunction including oxidative stress and DNA mutations underlies the pathology of various diseases including Alzheimer’s disease and diabetes, necessitating the development of mitochondria targeted therapeutic agents. Nanotechnology offers unique tools and materials to target therapeutic agents to mitochondria. As discussed in this paper, a variety of functionalized nanosystems including polymeric and metallic nanoparticles as well as liposomes are more effective than plain drug and non-functionalized nanosystems in delivering therapeutic agents to mitochondria. Although the field is in its infancy, studies to date suggest the superior therapeutic activity of functionalized nanosystems for treating mitochondrial defects. PMID:22138492

  4. Molecular diagnosis for personalized target therapy in gastric cancer.

    PubMed

    Cho, Jae Yong

    2013-09-01

    Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy. PMID:24156032

  5. Functional genomics and cancer drug target discovery.

    PubMed

    Moody, Susan E; Boehm, Jesse S; Barbie, David A; Hahn, William C

    2010-06-01

    The recent development of technologies for whole-genome sequencing, copy number analysis and expression profiling enables the generation of comprehensive descriptions of cancer genomes. However, although the structural analysis and expression profiling of tumors and cancer cell lines can allow the identification of candidate molecules that are altered in the malignant state, functional analyses are necessary to confirm such genes as oncogenes or tumor suppressors. Moreover, recent research suggests that tumor cells also depend on synthetic lethal targets, which are not mutated or amplified in cancer genomes; functional genomics screening can facilitate the discovery of such targets. This review provides an overview of the tools available for the study of functional genomics, and discusses recent research involving the use of these tools to identify potential novel drug targets in cancer. PMID:20521217

  6. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  7. Molecular dynamics and protein function

    PubMed Central

    Karplus, M.; Kuriyan, J.

    2005-01-01

    A fundamental appreciation for how biological macromolecules work requires knowledge of structure and dynamics. Molecular dynamics simulations provide powerful tools for the exploration of the conformational energy landscape accessible to these molecules, and the rapid increase in computational power coupled with improvements in methodology makes this an exciting time for the application of simulation to structural biology. In this Perspective we survey two areas, protein folding and enzymatic catalysis, in which simulations have contributed to a general understanding of mechanism. We also describe results for the F1 ATPase molecular motor and the Src family of signaling proteins as examples of applications of simulations to specific biological systems. PMID:15870208

  8. Molecular mechanisms of membrane targeting antibiotics.

    PubMed

    Epand, Richard M; Walker, Chelsea; Epand, Raquel F; Magarvey, Nathan A

    2016-05-01

    The bacterial membrane provides a target for antimicrobial peptides. There are two groups of bacteria that have characteristically different surface membranes. One is the Gram-negative bacteria that have an outer membrane rich in lipopolysaccharide. Several antimicrobials have been found to inhibit the synthesis of this lipid, and it is expected that more will be developed. In addition, antimicrobial peptides can bind to the outer membrane of Gram-negative bacteria and block passage of solutes between the periplasm and the cell exterior, resulting in bacterial toxicity. In Gram-positive bacteria, the major bacterial lipid component, phosphatidylglycerol can be chemically modified by bacterial enzymes to convert the lipid from anionic to cationic or zwitterionic form. This process leads to increased levels of resistance of the bacteria against polycationic antimicrobial agents. Inhibitors of this enzyme would provide protection against the development of bacterial resistance. There are antimicrobial agents that directly target a component of bacterial cytoplasmic membranes that can act on both Gram-negative as well as Gram-positive bacteria. Many of these are cyclic peptides with a rigid binding site capable of binding a lipid component. This binding targets antimicrobial agents to bacteria, rather than being toxic to host cells. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. PMID:26514603

  9. Targeted molecular therapies in thyroid carcinoma.

    PubMed

    Romagnoli, Serena; Moretti, Sonia; Voce, Pasquale; Puxeddu, Efisio

    2009-12-01

    Thyroid cancer incidence has significantly increased in the last three decades and many patients seek medical attention for its treatment every year. Among follicular cell-derived tumors, the majority are differentiated thyroid carcinomas (DTC), whose prognosis is very good with only 15% of the cases presenting disease persistence or recurrence after initial treatment. Medullary thyroid carcinoma has a worse prognosis, especially in patients with diffused cancers at the time of initial surgery. Traditional treatment options for persistent or recurrent disease include additional surgery, radioiodine treatment and TSH-suppression in DTC patients; external beam radiotherapy, and cytotoxic chemotherapy, often have low efficacy and many patients with advanced disease ultimately die. In the last two decades many of the molecular events involved in cancer formation have been uncovered. This knowledge has prompted the development of novel therapeutic strategies mainly based on the inhibition of key molecular mediators of the tumorigenic process. In particular the class of small-molecule tyrosine kinase inhibitors was enriched by many compounds that have reached clinical trials and in some cases have had approval for clinical use in specific cancers. Many of these compounds entered clinical trials also for locally advanced or metastatic thyroid carcinomas showing very promising results. PMID:20126863

  10. Molecular targeting in childhood malignancies using nanoparticles

    NASA Astrophysics Data System (ADS)

    Satake, Noriko; Barisone, Gustavo; Diaz, Elva; Nitin, Nitin; Nolta, Jan; Lam, Kit

    2012-06-01

    The goal of our project is to develop a new therapy for childhood malignancies using nanoformulated siRNA targeting Mxd3, a molecule in the Sonic Hedgehog signaling pathway, which we believe is important for cell survival. We plan to use cancer-specific ligands and superparamagnetic iron oxide nanoparticles (SPIO NPs) to carry siRNA. This delivery system will be tested in mouse xenograft models that we developed with primary cancer tissues. Our current focus is acute lymphoblastic leukemia (ALL), the most common cancer in children. We report our progress to date.

  11. Molecular pathways and therapeutic targets in lung cancer

    PubMed Central

    Shtivelman, Emma; Hensing, Thomas; Simon, George R.; Dennis, Phillip A.; Otterson, Gregory A.; Bueno, Raphael; Salgia, Ravi

    2014-01-01

    Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review. PMID:24722523

  12. Molecular Targeted Therapies of Aggressive Thyroid Cancer

    PubMed Central

    Ferrari, Silvia Martina; Fallahi, Poupak; Politti, Ugo; Materazzi, Gabriele; Baldini, Enke; Ulisse, Salvatore; Miccoli, Paolo; Antonelli, Alessandro

    2015-01-01

    Differentiated thyroid carcinomas (DTCs) that arise from follicular cells account >90% of thyroid cancer (TC) [papillary thyroid cancer (PTC) 90%, follicular thyroid cancer (FTC) 10%], while medullary thyroid cancer (MTC) accounts <5%. Complete total thyroidectomy is the treatment of choice for PTC, FTC, and MTC. Radioiodine is routinely recommended in high-risk patients and considered in intermediate risk DTC patients. DTC cancer cells, during tumor progression, may lose the iodide uptake ability, becoming resistant to radioiodine, with a significant worsening of the prognosis. The lack of specific and effective drugs for aggressive and metastatic DTC and MTC leads to additional efforts toward the development of new drugs. Several genetic alterations in different molecular pathways in TC have been shown in the past few decades, associated with TC development and progression. Rearranged during transfection (RET)/PTC gene rearrangements, RET mutations, BRAF mutations, RAS mutations, and vascular endothelial growth factor receptor 2 angiogenesis pathways are some of the known pathways determinant in the development of TC. Tyrosine kinase inhibitors (TKIs) are small organic compounds inhibiting tyrosine kinases auto-phosphorylation and activation, most of them are multikinase inhibitors. TKIs act on the aforementioned molecular pathways involved in growth, angiogenesis, local, and distant spread of TC. TKIs are emerging as new therapies of aggressive TC, including DTC, MTC, and anaplastic thyroid cancer, being capable of inducing clinical responses and stabilization of disease. Vandetanib and cabozantinib have been approved for the treatment of MTC, while sorafenib and lenvatinib for DTC refractory to radioiodine. These drugs prolong median progression-free survival, but until now no significant increase has been observed on overall survival; side effects are common. New efforts are made to find new more effective and safe compounds and to personalize the therapy in

  13. Characterization of TP53 and PI3K signaling pathways as molecular targets in gynecologic malignancies.

    PubMed

    Oda, Katsutoshi; Ikeda, Yuji; Kashiyama, Tomoko; Miyasaka, Aki; Inaba, Kanako; Fukuda, Tomohiko; Asada, Kayo; Sone, Kenbun; Wada-Hiraike, Osamu; Kawana, Kei; Osuga, Yutaka; Fujii, Tomoyuki

    2016-07-01

    Recent developments in genomic analysis have unveiled the key signaling pathways in human cancer. However, only a limited number of molecular-targeted drugs are applicable for clinical use in gynecologic malignancies. TP53 signaling and phosphatidylinositol 3 kinase pathways are frequently mutated in cancer, and have received much attention as molecular targets in human cancers. In this review, we mainly focus on the functions of these pathways, and discuss the molecular-targeted drugs under clinical trials. The molecular-targeted drugs described in this review include dual phosphatidylinositol 3 kinase/mTOR inhibitors (NVP-BEZ235, DS-7423, SAR245409), an mTOR inhibitor (everolimus), an MEK inhibitor (pimasertib), an autophagy inhibitor (chloroquine), a cyclin-dependent kinases 4/6 inhibitor (PD0332991), and a poly (ADP-ribose) polymerase inhibitor (olaparib). PMID:27094348

  14. Adrenaline and noradrenaline: protectors against oxidative stress or molecular targets?

    PubMed

    Álvarez-Diduk, Ruslán; Galano, Annia

    2015-02-26

    Density functional theory was used to investigate the potential role of neurotransmitters adrenaline and noradrenaline regarding oxidative stress. It is predicted that they can be efficient as free radical scavengers both in lipid and aqueous media, with the main reaction mechanism being the hydrogen transfer and the sequential proton loss electron transfer, respectively. Despite the polarity of the environment, adrenaline and noradrenaline react with (•)OOH faster than Trolox, which suggests that they are better peroxyl radical scavengers than the reference compound. Both catecholamines are also proposed to be capable of efficiently inhibiting the oxidative stress induced by copper(II)-ascorbate mixtures, and the (•)OH production via Haber-Weiss reaction, albeit the effects on the later are only partial. They exert such beneficial effects by sequestering Cu(II) ions. In summary, these catecholamines can be capable of reducing oxidative stress, by scavenging free radicals and by sequestering metal ions. However, at the same time they might lose their functions in the process due to the associated structural modifications. Consequently, adrenaline and noradrenaline can be considered as both protectors and molecular targets of oxidative stress. Fortunately, under the proper conditions, both catecholamines can be regenerated to their original form so their functions are restored. PMID:25646569

  15. Molecular pathways and targets in prostate cancer

    PubMed Central

    Shtivelman, Emma; Beer, Tomasz M.; Evans, Christopher P.

    2014-01-01

    Prostate cancer co-opts a unique set of cellular pathways in its initiation and progression. The heterogeneity of prostate cancers is evident at earlier stages, and has led to rigorous efforts to stratify the localized prostate cancers, so that progression to advanced stages could be predicted based upon salient features of the early disease. The deregulated androgen receptor signaling is undeniably most important in the progression of the majority of prostate tumors. It is perhaps because of the primacy of the androgen receptor governed transcriptional program in prostate epithelium cells that once this program is corrupted, the consequences of the ensuing changes in activity are pleotropic and could contribute to malignancy in multiple ways. Following localized surgical and radiation therapies, 20-40% of patients will relapse and progress, and will be treated with androgen deprivation therapies. The successful development of the new agents that inhibit androgen signaling has changed the progression free survival in hormone resistant disease, but this has not changed the almost ubiquitous development of truly resistant phenotypes in advanced prostate cancer. This review summarizes the current understanding of the molecular pathways involved in localized and metastatic prostate cancer, with an emphasis on the clinical implications of the new knowledge. PMID:25277175

  16. Diverse Molecular Targets for Chalcones with Varied Bioactivities

    PubMed Central

    Zhou, Bo; Xing, Chengguo

    2015-01-01

    Natural or synthetic chalcones with different substituents have revealed a variety of biological activities that may benefit human health. The underlying mechanisms of action, particularly with respect to the direct cellular targets and the modes of interaction with the targets, have not been rigorously characterized, which imposes challenges to structure-guided rational development of therapeutic agents or chemical probes with acceptable target-selectivity profile. This review summarizes literature evidence on chalcones’ direct molecular targets in the context of their biological activities. PMID:26798565

  17. MOLECULAR TARGETS AND MECHANISMS FOR ETHANOL ACTION IN GLYCINE RECEPTORS

    PubMed Central

    Perkins, Daya I.; Trudell, James R.; Crawford, Daniel K.; Alkana, Ronald L.; Davies, Daryl L.

    2010-01-01

    Glycine receptors (GlyRs) are recognized as the primary mediators of neuronal inhibition in the spinal cord, brain stem and higher brain regions known to be sensitive to ethanol. Building evidence supports the notion that ethanol acting on GlyRs causes at least a subset of its behavioral effects and may be involved in modulating ethanol intake. For over two decades, GlyRs have been studied at the molecular level as targets for ethanol action. Despite the advances in understanding the effects of ethanol in vivo and in vitro, the precise molecular sites and mechanisms of action for ethanol in ligand-gated ion channels in general, and in GlyRs specifically, are just now starting to become understood. The present review focuses on advances in our knowledge produced by using molecular biology, pressure antagonism, electrophysiology and molecular modeling strategies over the last two decades to probe, identify and model the initial molecular sites and mechanisms of ethanol action in GlyRs. The molecular targets on the GlyR are covered on a global perspective, which includes the intracellular, transmembrane and extracellular domains. The latter has received increasing attention in recent years. Recent molecular models of the sites of ethanol action in GlyRs and their implications to our understanding of possible mechanism of ethanol action and novel targets for drug development in GlyRs are discussed. PMID:20399807

  18. Functional and molecular image guidance in radiotherapy treatment planning optimization.

    PubMed

    Das, Shiva K; Ten Haken, Randall K

    2011-04-01

    Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters, such as metabolism, proliferation, hypoxia, perfusion, and ventilation, onto anatomically imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high-functioning subregions of normal organs or dose escalation to selected subregions of the tumor as well as the potential to adapt radiotherapy to functional changes that occur during the course of treatment. The practical use of functional/molecular imaging in radiotherapy optimization must take into cautious consideration several factors whose influences are still not clearly quantified or well understood including patient positioning differences between the planning computed tomography and functional/molecular imaging sessions, image reconstruction parameters and techniques, image registration, target/normal organ functional segmentation, the relationship governing the dose escalation/sparing warranted by the functional/molecular image intensity map, and radiotherapy-induced changes in the image intensity map over the course of treatment. The clinical benefit of functional/molecular image guidance in the form of improved local control or decreased normal organ toxicity has yet to be shown and awaits prospective clinical trials addressing this issue. PMID:21356479

  19. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron

    PubMed Central

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons. PMID:27570482

  20. Signaling pathway/molecular targets and new targeted agents under development in hepatocellular carcinoma

    PubMed Central

    Kudo, Masatoshi

    2012-01-01

    Advances in molecular cell biology over the last decade have clarified the mechanisms involved in cancer growth, invasion, and metastasis, and enabled the development of molecular-targeted agents. To date, sorafenib is the only molecular-targeted agent whose survival benefit has been demonstrated in two global phase III randomized controlled trials, and has been approved worldwide. Phase III clinical trials of other molecular targeted agents comparing them with sorafenib as first-line treatment agents are ongoing. Those agents target the vascular endothelial growth factor, platelet-derived growth factor receptors, as well as target the epidermal growth factor receptor, insulin-like growth factor receptor and mammalian target of rapamycin, in addition to other molecules targeting other components of the signal transduction pathways. In addition, the combination of sorafenib with standard treatment, such as resection, ablation, transarterial embolization, and hepatic arterial infusion chemotherapy are ongoing. This review outlines the main pathways involved in the development and progression of hepatocellular carcinoma and the new agents that target these pathways. Finally, the current statuses of clinical trials of new agents or combination therapy with sorafenib and standard treatment will also be discussed. PMID:23155330

  1. Hepatocellular Carcinoma: Novel Molecular Targets in Carcinogenesis for Future Therapies

    PubMed Central

    Bertino, Gaetano; Demma, Shirin; Ardiri, Annalisa; Proiti, Maria; Gruttadauria, Salvatore; Toro, Adriana; Malaguarnera, Giulia; Bertino, Nicoletta; Malaguarnera, Michele; Malaguarnera, Mariano; Di Carlo, Isidoro

    2014-01-01

    Background. Hepatocellular carcinoma is one of the most common and lethal malignant tumors worldwide. Over the past 15 years, the incidence of HCC has more than doubled. Due to late diagnosis and/or advanced underlying liver cirrhosis, only limited treatment options with marginal clinical benefit are available in up to 70% of patients. During the last decades, no effective conventional cytotoxic systemic therapy was available contributing to the dismal prognosis in patients with HCC. A better knowledge of molecular hepatocarcinogenesis provides today the opportunity for targeted therapy. Materials and Methods. A search of the literature was made using cancer literature, the PubMed, Scopus, and Web of Science (WOS) database for the following keywords: “hepatocellular carcinoma,” “molecular hepatocarcinogenesis,” “targeted therapy,” and “immunotherapy.” Discussion and Conclusion. Treatment decisions are complex and dependent upon tumor staging, presence of portal hypertension, and the underlying degree of liver dysfunction. The knowledge of molecular hepatocarcinogenesis broadened the horizon for patients with advanced HCC. During the last years, several molecular targeted agents have been evaluated in clinical trials in advanced HCC. In the future, new therapeutic options will be represented by a blend of immunotherapy-like vaccines and T-cell modulators, supplemented by molecularly targeted inhibitors of tumor signaling pathways. PMID:25089265

  2. Integration of Mitochondrial Targeting for Molecular Cancer Therapeutics

    PubMed Central

    Marchetti, Philippe; Guerreschi, Pierre; Mortier, Laurent; Kluza, Jerome

    2015-01-01

    Mitochondrial metabolism greatly influences cancer cell survival, invasion, metastasis, and resistance to many anticancer drugs. Furthermore, molecular-targeted therapies (e.g., oncogenic kinase inhibitors) create a dependence of surviving cells on mitochondrial metabolism. For these reasons, inhibition of mitochondrial metabolism represents promising therapeutic pathways in cancer. This review provides an overview of mitochondrial metabolism in cancer and discusses the limitations of mitochondrial inhibition for cancer treatment. Finally, we present preclinical evidence that mitochondrial inhibition could be associated with oncogenic “drivers” inhibitors, which may lead to innovative drug combinations for improving the efficacy of molecular-targeted therapy. PMID:26713093

  3. [Progress in molecularly targeted therapies for acute myeloid leukemia].

    PubMed

    Tomita, Akihiro

    2015-02-01

    Genetic abnormalities including specific point mutations have recently been confirmed by applying comprehensive genome sequencing analyses. Molecular targeting therapies, which focus on the mutated proteins and over-expressed proteins in acute myeloid leukemia (AML) cells, are now being developed in clinical studies and/or based on in vitro analyses. This manuscript summarizes the genetic abnormalities in AML cells and some of the current molecular targeting therapies including FLT3 inhibitors (e.g. AC220; Quizartinib), Polo like kinase 1 (PLK1) inhibitors (e.g. BI-6727; Volasertib), IDH2 inhibitors (e.g. AG-221), and XPO1 inhibitors (e.g. KPT-330; Selinexor). PMID:25765792

  4. New strategy for monitoring targeted therapy: molecular imaging

    PubMed Central

    Teng, Fei-Fei; Meng, Xue; Sun, Xin-Dong; Yu, Jin-Ming

    2013-01-01

    Targeted therapy is becoming an increasingly important component in the treatment of cancer. How to accurately monitor targeted therapy has been crucial in clinical practice. The traditional approach to monitor treatment through imaging has relied on assessing the change of tumor size by refined World Health Organization criteria, or more recently, by the Response Evaluation Criteria in Solid Tumors. However, these criteria, which are based on the change of tumor size, show some limitations for evaluating targeted therapy. Currently, genetic alterations are identified with prognostic as well as predictive potential concerning the use of molecularly targeted drugs. Conversely, considering the limitations of invasiveness and the issue of expression heterogeneity, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively, and has been a particularly attractive tool for monitoring treatment in clinical cancer practice. This review focuses on the applications of different kinds of molecular imaging including positron emission tomography-, magnetic resonance imaging-, ultrasonography-, and computed tomography-based imaging strategies on monitoring targeted therapy. In addition, the key challenges of molecular imaging are addressed to successfully translate these promising techniques in the future. PMID:24124361

  5. Molecular Targeted α-Particle Therapy for Oncologic Applications

    PubMed Central

    Wadas, Thaddeus J.; Pandya, Darpan N.; Solingapuram Sai, Kiran Kumar; Mintz, Akiva

    2015-01-01

    OBJECTIVE A significant challenge facing traditional cancer therapies is their propensity to significantly harm normal tissue. The recent clinical success of targeting therapies by attaching them to antibodies that are specific to tumor-restricted biomarkers marks a new era of cancer treatments. CONCLUSION In this article, we highlight the recent developments in α-particle therapy that have enabled investigators to exploit this highly potent form of therapy by targeting tumor-restricted molecular biomarkers. PMID:25055256

  6. Molecular genetics and targeted therapeutics in biliary tract carcinoma

    PubMed Central

    Marks, Eric I; Yee, Nelson S

    2016-01-01

    The primary malignancies of the biliary tract, cholangiocarcinoma and gallbladder cancer, often present at an advanced stage and are marginally sensitive to radiation and chemotherapy. Accumulating evidence indicates that molecularly targeted agents may provide new hope for improving treatment response in biliary tract carcinoma (BTC). In this article, we provide a critical review of the pathogenesis and genetic abnormalities of biliary tract neoplasms, in addition to discussing the current and emerging targeted therapeutics in BTC. Genetic studies of biliary tumors have identified the growth factors and receptors as well as their downstream signaling pathways that control the growth and survival of biliary epithelia. Target-specific monoclonal antibodies and small molecules inhibitors directed against the signaling pathways that drive BTC growth and invasion have been developed. Numerous clinical trials designed to test these agents as either monotherapy or in combination with conventional chemotherapy have been completed or are currently underway. Research focusing on understanding the molecular basis of biliary tumorigenesis will continue to identify for targeted therapy the key mutations that drive growth and invasion of biliary neoplasms. Additional strategies that have emerged for treating this malignant disease include targeting the epigenetic alterations of BTC and immunotherapy. By integrating targeted therapy with molecular profiles of biliary tumor, we hope to provide precision treatment for patients with malignant diseases of the biliary tract. PMID:26819503

  7. Molecular Targets for the Treatment of Juvenile Myelomonocytic Leukemia

    PubMed Central

    Liu, Xiaoling; Sabnis, Himalee; Bunting, Kevin D.; Qu, Cheng-Kui

    2012-01-01

    Significant advances in our understanding of the genetic defects and the pathogenesis of juvenile myelomonocytic leukemia (JMML) have been achieved in the last several years. The information gathered tremendously helps us in designing molecular targeted therapies for this otherwise fatal disease. Various approaches are being investigated to target defective pathways/molecules in this disease. However, effective therapy is still lacking. Development of specific target-based drugs for JMML remains a big challenge and represents a promising direction in this field. PMID:22162691

  8. Molecular Targeted Approaches to Cancer Therapy and Prevention Using Chalcones

    PubMed Central

    Jandial, Danielle D.; Blair, Christopher A.; Zhang, Saiyang; Krill, Lauren S.; Zhang, Yan-Bing; Zi, Xiaolin

    2014-01-01

    There is an emerging paradigm shift in oncology that seeks to emphasize molecularly targeted approaches for cancer prevention and therapy. Chalcones (1,3-diphenyl-2-propen-1-ones), naturally-occurring compounds with widespread distribution in spices, tea, beer, fruits and vegetables, consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. Due to their structural diversity, relative ease of chemical manipulation and reaction of α, β-unsaturated carbonyl moiety with cysteine residues in proteins, some lead chalcones from both natural products and synthesis have been identified in a variety of screening assays for modulating important pathways or molecular targets in cancers. These pathways and targets that are affected by chalcones include MDM2/p53, tubulin, proteasome, NF-kappa B, TRIAL/death receptors and mitochondria mediated apoptotic pathways, cell cycle, STAT3, AP-1, NRF2, AR, ER, PPAR-γ and β-catenin/Wnt. Compared to current cancer targeted therapeutic drugs, chalcones have the advantages of being inexpensive, easily available and less toxic; the ease of synthesis of chalcones from substituted benzaldehydes and acetophenones also makes them an attractive drug scaffold. Therefore, this review is focused on molecular targets of chalcones and their potential implications in cancer prevention and therapy. PMID:24467530

  9. Molecular targeting of intracellular compartments specifically in cancer cells.

    PubMed

    Pandya, Hetal; Gibo, Denise M; Debinski, Waldemar

    2010-05-01

    We have implemented a strategy in which a genetically engineered, single-chain protein specifically recognizes cancer cells and is trafficked to a targeted subcellular compartment, such as the nucleus. The recombinant protein termed IL-13.E13K-D2-NLS has a triple functional property: (1) it binds a cancer-associated receptor, interleukin 13 receptor alpha 2 (IL-13Rα2), using modified IL-13 ligand, IL-13.E13K; (2) it exports its C-terminal portion out of the endosomal compartment using Pseudomonas aeruginosa exotoxin A (PE) translocation domain (D2); and (3) it travels to and accumulates in the nucleus guided by the nuclear localization signal (NLS). Here, we have demonstrated that this protein is transported into the brain tumor cells' nucleus, using 3 different methods of protein conjugation to dyes for the purpose of direct visualization of the protein's intracellular trafficking. IL-13.E13K-D2-NLS, and not the controls such as IL-13.E13K-D2, IL-13.E13K-NLS, or IL-13.E13K, accumulated in nuclei very efficiently, which increased with the time the cells were exposed to the protein. Also, IL-13.E13K-D2-NLS did not exhibit nuclear transport in cells with low expression levels of IL-13Rα2. Thus, it is possible to recognize cancer cells through their specific receptors and deliver a conjugated protein that travels specifically to the nucleus. Hence, our molecular targeting strategy succeeded in generating a single-chain proteinaceous agent capable of delivering drugs/labels needed to be localized to the cells' nuclei or potentially any other subcellular compartment, for their optimal efficacy or ability to exert their specific action. PMID:20740056

  10. Molecular Targeting of Intracellular Compartments Specifically in Cancer Cells

    PubMed Central

    Pandya, Hetal; Gibo, Denise M.; Debinski, Waldemar

    2010-01-01

    We have implemented a strategy in which a genetically engineered, single-chain protein specifically recognizes cancer cells and is trafficked to a targeted subcellular compartment, such as the nucleus. The recombinant protein termed IL-13.E13K-D2-NLS has a triple functional property: (1) it binds a cancer-associated receptor, interleukin 13 receptor alpha 2 (IL-13Rα2), using modified IL-13 ligand, IL-13.E13K; (2) it exports its C-terminal portion out of the endosomal compartment using Pseudomonas aeruginosa exotoxin A (PE) translocation domain (D2); and (3) it travels to and accumulates in the nucleus guided by the nuclear localization signal (NLS). Here, we have demonstrated that this protein is transported into the brain tumor cells’ nucleus, using 3 different methods of protein conjugation to dyes for the purpose of direct visualization of the protein’s intracellular trafficking. IL-13.E13K-D2-NLS, and not the controls such as IL-13.E13K-D2, IL-13.E13K-NLS, or IL-13.E13K, accumulated in nuclei very efficiently, which increased with the time the cells were exposed to the protein. Also, IL-13.E13K-D2-NLS did not exhibit nuclear transport in cells with low expression levels of IL-13Rα2. Thus, it is possible to recognize cancer cells through their specific receptors and deliver a conjugated protein that travels specifically to the nucleus. Hence, our molecular targeting strategy succeeded in generating a single-chain proteinaceous agent capable of delivering drugs/labels needed to be localized to the cells’ nuclei or potentially any other subcellular compartment, for their optimal efficacy or ability to exert their specific action. PMID:20740056

  11. Clinical Challenges to Current Molecularly Targeted Therapies in Lung Cancer

    PubMed Central

    Chhabra, Gagan; Eggert, Ashley; Puri, Neelu

    2016-01-01

    Lung cancer is difficult to treat with a poor prognosis and a five year survival of 15%. Current molecularly targeted therapies are initially effective in non-small cell lung cancer (NSCLC) patients; however, they are plagued with difficulties including induced resistance and small therapeutically responsive populations. This mini review describes the mechanism of resistance to several molecularly targeted therapies which are currently being used to treat NSCLC. The major targets discussed are c-Met, EGFR, HER2, ALK, VEGFR, and BRAF. The first generation tyrosine kinase inhibitors (TKIs) resulted in resistance; however, second and third generation TKIs are being developed, which are generally more efficacious and have potential to treat NSCLC patients with resistance to first generation TKIs. Combination therapies could also be effective in preventing TKI resistance in NSCLC patients.

  12. Molecular motors and their functions in plants

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.

    2001-01-01

    Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory

  13. Molecular chaperones: functional mechanisms and nanotechnological applications

    NASA Astrophysics Data System (ADS)

    Rosario Fernández-Fernández, M.; Sot, Begoña; María Valpuesta, José

    2016-08-01

    Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.

  14. Molecular chaperones: functional mechanisms and nanotechnological applications.

    PubMed

    Fernández-Fernández, M Rosario; Sot, Begoña; Valpuesta, José María

    2016-08-12

    Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures. PMID:27363314

  15. Chemical designs of functional photoactive molecular assemblies.

    PubMed

    Yan, Qifan; Luo, Zhouyang; Cai, Kang; Ma, Yuguo; Zhao, Dahui

    2014-06-21

    Molecular assemblies with well-defined structures capable of photo-induced electron transfer and charge transport or photochemical reactions are reviewed. Hierarchical supramolecular architectures, which assemble the modular units into specific spatial arrangements and facilitate them to work cooperatively, are vital for the achievement of photo-functions in these systems. The chemical design of molecular building blocks and noncovalent interactions exploited to realize supramolecular organizations are particularly discussed. Reviewing and recapitulating the chemical evolution traces of these accomplished systems will hopefully delineate certain fundamental design principles and guidelines useful for developing more advanced functions in the future. PMID:24492680

  16. Molecularly targeted therapies for malignant glioma: rationale for combinatorial strategies

    PubMed Central

    Thaker, Nikhil G; Pollack, Ian F

    2010-01-01

    Median survival of patients with malignant glioma (MG) from time of diagnosis is approximately 1 year, despite surgery, irradiation and conventional chemotherapy. Improving patient outcome relies on our ability to develop more effective therapies that are directed against the unique molecular aberrations within a patient’s tumor. Such molecularly targeted therapies may provide novel treatments that are more effective than conventional chemotherapeutics. Recently developed therapeutic strategies have focused on targeting several core glioma signaling pathways, including pathways mediated by growth-factors, PI3K/Akt/PTEN/mTOR, Ras/Raf/MEK/MAPK and other vital pathways. However, given the molecular diversity, heterogeneity and diverging and converging signaling pathways associated with MG, it is unlikely that any single agent will have efficacy in more than a subset of tumors. Overcoming these therapeutic barriers will require multiple agents that can simultaneously inhibit these processes, providing a rationale for combination therapies. This review summarizes the currently implemented single-agent and combination molecularly targeted therapies for MG. PMID:19951140

  17. Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets.

    PubMed

    Kapphahn, Rebecca J; Giwa, Babatomiwa M; Berg, Kristin M; Roehrich, Heidi; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2006-07-01

    The reactive aldehyde, 4-hydroxynonenal (HNE), is a product of lipid peroxidation that can covalently modify and inactivate proteins. Previously, we reported increased HNE modification of select retinal proteins resolved by one-dimensional gel electrophoresis in aged Fisher 344 x Brown Norway rats (Louie, J.L., Kapphahn, R.J., Ferrington, D.A., 2002. Proteasome function and protein oxidation in the aged retina. Exp. Eye Res. 75, 271-284). In the current study, quantitative assessment of HNE molar content using slot blot immunoassays showed HNE content is increased 30% in aged rat retina. In contrast, there was no age-related difference in HNE content in individual spots resolved by 2D gel electrophoresis suggesting the increased modification is likely on membrane proteins that are missing on 2D gels. The HNE-immunoreactive proteins resolved by 2D gel electrophoresis were identified by MALDI-TOF mass spectrometry. These proteins are involved in metabolism, chaperone function, and fatty acid transport. Proteins that were frequently modified and had the highest molar content of HNE included triosephosphate isomerase, alpha enolase, heat shock cognate 70 and betaB2 crystallin. Immunochemical detection of HNE adducts on retinal sections showed greater immune reaction in ganglion cells, photoreceptor inner segment, and the inner plexiform layer. Identification of HNE modified proteins in two alternative model systems, human retinal pigment epithelial cells in culture (ARPE19) and human donor eyes, indicated that triosephosphate isomerase and alpha enolase are generally modified. These results identify a common subset of proteins that contain HNE adducts and suggest that select retinal proteins are molecular targets for HNE modification. PMID:16530755

  18. The Proteasome Is a Molecular Target of Environmental Toxic Organotins

    PubMed Central

    Shi, Guoqing; Chen, Di; Zhai, Guangshu; Chen, Marina S.; Cui, Qiuzhi Cindy; Zhou, Qunfang; He, Bin; Dou, Q. Ping; Jiang, Guibin

    2009-01-01

    Background Because of the vital importance of the proteasome pathway, chemicals affecting proteasome activity could disrupt essential cellular processes. Although the toxicity of organotins to both invertebrates and vertebrates is well known, the essential cellular target of organotins has not been well identified. We hypothesize that the proteasome is a molecular target of environmental toxic organotins. Objectives Our goal was to test the above hypothesis by investigating whether organotins could inhibit the activity of purified and cellular proteasomes and, if so, the involved molecular mechanisms and downstream events. Results We found that some toxic organotins [e.g., triphenyltin (TPT)] can potently and preferentially inhibit the chymotrypsin-like activity of purified 20S proteasomes and human breast cancer cellular 26S proteasomes. Direct binding of tin atoms to cellular proteasomes is responsible for the observed irreversible inhibition. Inhibition of cellular proteasomes by TPT in several human cell lines results in the accumulation of ubiquitinated proteins and natural proteasome target proteins, accompanied by induction of cell death. Conclusions The proteasome is one of the molecular targets of environmental toxic organotins in human cells, and proteasome inhibition by organotins contributes to their cellular toxicity. PMID:19337512

  19. Molecular Targets of Omega 3 and Conjugated Linoleic Fatty Acids – “Micromanaging” Cellular Response

    PubMed Central

    Visioli, Francesco; Giordano, Elena; Nicod, Nathalie Marie; Dávalos, Alberto

    2012-01-01

    Essential fatty acids cannot be synthesized de novo by mammals and need to be ingested either with the diet or through the use of supplements/functional foods to ameliorate cardiovascular prognosis. This review focus on the molecular targets of omega 3 fatty acids and conjugated linoleic acid, as paradigmatic molecules that can be exploited both as nutrients and as pharmacological agents, especially as related to cardioprotection. In addition, we indicate novel molecular targets, namely microRNAs that might contribute to the observed biological activities of such essential fatty acids. PMID:22393325

  20. Magnetomotive molecular probes for targeted contrast enhancement and therapy

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2011-03-01

    The diagnostic, interrogational, and therapeutic potential of molecular probes is rapidly being investigated and exploited across virtually every biomedical imaging modality. While many types of probes enhance contrast or delivery therapy by static localization to targeted sites, significant potential exists for utilizing dynamic molecular probes. Recent examples include molecular beacons, photoactivatable probes, or controlled switchable drug-releasing particles, to name a few. In this review, we describe a novel class of dynamic molecular probes that rely on the application and control of localized external magnetic fields. These magnetomotive molecular probes can provide optical image contrast through a modulated scattering signal, can interrogate the biomechanical properties of their viscoelastic microenvironment by tracking their underdamped oscillatory step-response to applied fields, and can potentially delivery therapy through nanometer-to-micrometer mechanical displacement or local hyperthermia. This class of magnetomotive agents includes not only magnetic iron-oxide nanoparticles, but also new magnetomotive microspheres or nanostructures with embedded iron-oxide agents. In vitro three-dimensional cell assays and in vivo targeting studies in animal tumor models have demonstrated the potential for multimodal detection and imaging, using magnetic resonance imaging for whole-body localization, and magnetomotive optical coherence tomography for high-resolution localization and imaging.

  1. Targeted Molecular Imaging in Oncology: Focus on Radiation Therapy

    PubMed Central

    Nimmagadda, Sridhar; Ford, Eric C.; Wong, John W.; Pomper, Martin G.

    2008-01-01

    Anatomically based technologies (CT, MR, etc.) are in routine use in radiotherapy for planning and assessment purposes. Even with improvements in imaging, however, radiotherapy is still limited in efficacy and toxicity in certain applications. Further advances may be provided by technologies that image the molecular activities of tumors and normal tissues. Possible uses for molecular imaging include better localization of tumor regions and early assay for the radiation response of tumors and normal tissues. Critical to the success of this approach is the identification and validation of molecular probes that are suitable in the radiotherapy context. Recent developments in molecular imaging probes and integration of functional imaging with radiotherapy are promising. This review focuses on recent advances in molecular imaging strategies and probes that may aid in improving the efficacy of radiotherapy. PMID:18314068

  2. The emerging molecular machinery and therapeutic targets of metastasis

    PubMed Central

    Sun, Yutong; Ma, Li

    2015-01-01

    Metastasis is a 100-year-old research topic. Technological advancements during the past few decades have led to significant progress in our understanding of metastatic disease. However, metastasis remains the leading cause of cancer-related mortalities. The lack of appropriate clinical trials for metastasis preventive drugs and incomplete understanding of the molecular machinery are major obstacles in metastasis prevention and treatment. A number of processes, factors, and signaling pathways are involved in regulating metastasis. Here, we discuss recent progress in metastasis research, including epithelial-mesenchymal plasticity, cancer stem cells, emerging molecular determinants and therapeutic targets, and the link between metastasis and therapy resistance. PMID:25939811

  3. Treatment of advanced thyroid cancer: role of molecularly targeted therapies.

    PubMed

    Covell, Lorinda L; Ganti, Apar Kishor

    2015-09-01

    Advanced thyroid cancer is not amenable to therapy with conventional cytotoxic chemotherapy. However, newer advances in the understanding of the molecular pathogenesis of different subtypes of thyroid cancer have provided new opportunities for the evaluation of molecularly targeted therapies. This has led to multiple clinical trials using various multi-kinase inhibitors and the subsequent US FDA approval of sorafenib for differentiated thyroid cancer and vandetanib and cabozantinib for medullary thyroid carcinoma. This review provides a summary of the current literature for the treatment of advanced thyroid carcinoma and future directions in this disease. PMID:26335853

  4. Computational molecular biology approaches to ligand-target interactions

    PubMed Central

    Lupieri, Paola; Nguyen, Chuong Ha Hung; Bafghi, Zhaleh Ghaemi; Giorgetti, Alejandro; Carloni, Paolo

    2009-01-01

    Binding of small molecules to their targets triggers complex pathways. Computational approaches are keys for predictions of the molecular events involved in such cascades. Here we review current efforts at characterizing the molecular determinants in the largest membrane-bound receptor family, the G-protein-coupled receptors (GPCRs). We focus on odorant receptors, which constitute more than half GPCRs. The work presented in this review uncovers structural and energetic aspects of components of the cellular cascade. Finally, a computational approach in the context of radioactive boron-based antitumoral therapies is briefly described. PMID:20119480

  5. The molecular targets of approved treatments for pulmonary arterial hypertension

    PubMed Central

    Humbert, Marc; Ghofrani, Hossein-Ardeschir

    2016-01-01

    Until recently, three classes of medical therapy were available for the treatment of pulmonary arterial hypertension (PAH)—prostanoids, endothelin receptor antagonists and phosphodiesterase type 5 (PDE5) inhibitors. With the approval of the soluble guanylate cyclase stimulator riociguat, an additional drug class has become available targeting a distinct molecular target in the same pathway as PDE5 inhibitors. Treatment recommendations currently include the use of all four drug classes to treat PAH, but there is a lack of comparative data for these therapies. Therefore, an understanding of the mechanistic differences between these agents is critical when making treatment decisions. Combination therapy is often used to treat PAH and it is therefore important that physicians understand how the modes of action of these drugs may interact to work as complementary partners, or potentially with unwanted consequences. Furthermore, different patient phenotypes mean that patients respond differently to treatment; while a certain monotherapy may be adequate for some patients, for others it will be important to consider alternating or combining compounds with different molecular targets. This review describes how the four currently approved drug classes target the complex pathobiology of PAH and will consider the distinct target molecules of each drug class, their modes of action, and review the pivotal clinical trial data supporting their use. It will also discuss the rationale for combining drugs (or not) from the different classes, and review the clinical data from studies on combination therapy. PMID:26219978

  6. Targeting Functional Biomarkers in Schizophrenia with Neuroimaging.

    PubMed

    Wylie, Korey P; Smucny, Jason; Legget, Kristina T; Tregellas, Jason R

    2016-01-01

    Many of the most debilitating symptoms for psychiatric disorders such as schizophrenia remain poorly treated. As such, the development of novel treatments is urgently needed. Unfortunately, the costs associated with high failure rates for investigational compounds as they enter clinical trials has led to pharmaceutical companies downsizing or eliminating research programs needed to develop these drugs. One way of increasing the probability of success for investigational compounds is to incorporate alternative methods of identifying biological targets in order to more effectively screen new drugs. A promising method of accomplishing this goal for psychiatric drugs is to use functional magnetic resonance imaging (fMRI). fMRI investigates neural circuits, shedding light on the biology that generates symptoms such as hallucinations. Once identified, relevant neural circuits can be targeted with pharmacologic interventions and the response to these drugs measured with fMRI. This review describes the early use of fMRI in this context, and discusses the alpha7 nicotinic receptor agonist 3-(2,4-dimethoxybenzylidene) anabaseine (DMXB-A), as an example of the potential value of fMRI for psychiatric drug development. PMID:26818860

  7. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor.

    PubMed

    Schröder, Leif; Lowery, Thomas J; Hilty, Christian; Wemmer, David E; Pines, Alexander

    2006-10-20

    A magnetic resonance approach is presented that enables high-sensitivity, high-contrast molecular imaging by exploiting xenon biosensors. These sensors link xenon atoms to specific biomolecular targets, coupling the high sensitivity of hyperpolarized nuclei with the specificity of biochemical interactions. We demonstrated spatial resolution of a specific target protein in vitro at micromolar concentration, with a readout scheme that reduces the required acquisition time by >3300-fold relative to direct detection. This technique uses the signal of free hyperpolarized xenon to dramatically amplify the sensor signal via chemical exchange saturation transfer (CEST). Because it is approximately 10,000 times more sensitive than previous CEST methods and other molecular magnetic resonance imaging techniques, it marks a critical step toward the application of xenon biosensors as selective contrast agents in biomedical applications. PMID:17053143

  8. Molecular and Functional Imaging of Internet Addiction

    PubMed Central

    Zhu, Yunqi; Zhang, Hong; Tian, Mei

    2015-01-01

    Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) and single photon emission computed tomography (SPECT). MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC) could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition. PMID:25879023

  9. [Development of molecular targeted therapies in lung cancers].

    PubMed

    Suda, Kenichi; Mitsudomi, Tetsuya

    2014-05-01

    Human cancers usually possess cumulative genetic aberrations. However, recent studies have revealed that the proliferation and survival of specific subsets of lung cancer depend on a few somatic mutation(s), so-called driver mutations. Representative driver mutations include the EGFR mutation and ALK translocation identified in about 40% and 3% of lung adenocarcinomas in Japan, respectively. These tumors are extremely sensitive to the respective tyrosine kinase inhibitors. This sensitivity has encouraged researchers and clinicians to explore novel driver mutations in lung cancers as future molecular targets. Driver mutations reported so far include the HER2 mutation, BRAF mutation, ROS1 translocation, RET translocation, and NTRK translocation in lung adenocarcinomas, and FGFR1 amplification, DDR2 mutation, and FGFR3 translocation in lung squamous cell carcinomas. However, despite initial dramatic responses, the acquisition of resistance to molecular targeted drugs is almost inevitable. Overcoming resistance to molecular targeted drugs, the key drugs at this time, is an urgent issue to improve the outcomes of lung cancer patients. PMID:24946519

  10. Multimodality molecular imaging--from target description to clinical studies.

    PubMed

    Schober, O; Rahbar, K; Riemann, B

    2009-02-01

    This highlight lecture was presented at the closing session of the Annual Congress of the European Association of Nuclear Medicine (EANM) in Munich on 15 October 2008. The Congress was a great success: there were more than 4,000 participants, and 1,597 abstracts were submitted. Of these, 1,387 were accepted for oral or poster presentation, with a rejection rate of 14%. In this article a choice was made from 100 of the 500 lectures which received the highest scores by the scientific review panel. This article outlines the major findings and trends at the EANM 2008, and is only a brief summary of the large number of outstanding abstracts presented. Among the great number of oral and poster presentations covering nearly all fields of nuclear medicine some headlines have to be defined highlighting the development of nuclear medicine in the 21st century. This review focuses on the increasing impact of molecular and multimodality imaging in the field of nuclear medicine. In addition, the question may be asked as to whether the whole spectrum of nuclear medicine is nothing other than molecular imaging and therapy. Furthermore, molecular imaging will and has to go ahead to multimodality imaging. In view of this background the review was structured according to the single steps of molecular imaging, i.e. from target description to clinical studies. The following topics are addressed: targets, radiochemistry and radiopharmacy, devices and computer science, animals and preclinical evaluations, and patients and clinical evaluations. PMID:19130054

  11. Unmixing multiple adjacent fluorescent targets with multispectral excited fluorescence molecular tomography.

    PubMed

    Zhou, Yuan; Guang, Huizhi; Pu, Huangsheng; Zhang, Jiulou; Luo, Jianwen

    2016-06-20

    Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and unmix multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. A method based on independent component analysis for multispectral excited FMT was proposed in our previous study. It showed that double fluorescent targets with certain edge-to-edge distance (EED) could be unmixed by the method. In this study, the situation is promoted to unmix multiple adjacent fluorescent targets (i.e., more than two fluorescent targets and EED=0). Phantom experiments on the resolving ability of the proposed algorithm demonstrate that the algorithm performs well in unmixing multiple adjacent fluorescent targets in both lateral and axial directions. And also, we recovered the locational information of each independent fluorescent target and described the variable trends of the corresponding fluorescent targets under the excitation spectrum. This method is capable of unmixing multiple fluorescent targets with small EED but labeled with the same fluorochrome, and may be used in imaging of nonspecific probe targeting and metabolism of drugs. PMID:27409108

  12. Renal Cell Carcinoma: Molecular Biology and Targeted Therapy

    PubMed Central

    Su, Daniel; Stamatakis, Lambros; Singer, Eric A.; Srinivasan, Ramaprasad

    2014-01-01

    Purpose of review Renal cell carcinoma (RCC) continues to be the subject of vigorous clinical and translational investigation. Advances in systemic targeted therapies, new molecular pathways, and immunotherapy approaches will be discussed. Recent findings Agents targeting the vascular endothelial growth factor (VEGF) and/or the mammalian target of rapamycin (mTOR) pathways continue to be the mainstay for treating metastatic RCC (mRCC). Although enhanced target specificity has improved the toxicity profile associated with newer VEGF-pathway antagonists, durable complete responses remain the exception. Identification of novel pathways/agents, as well as the optimal sequencing and combination of existing targeted agents, remain areas of active study. In addition, emerging data from early clinical trials has reinvigorated interest in immunomodulatory agents. Summary The therapeutic armamentarium available to genitourinary oncologists continues to grow but much work remains to be done to fully realize the potential of pathway-specific targeted strategies and immune-based approaches for mRCC. PMID:24675233

  13. Novel molecular targets for prevention of obesity and osteoporosis.

    PubMed

    Rayalam, Srujana; Yang, Jeong-Yeh; Della-Fera, Mary Anne; Baile, Clifton A

    2011-12-01

    Evidence from both epidemiological studies and basic research suggests that obesity and osteoporosis are interrelated. Though there is an increase in the prevalence of these disorders, a limited number of treatments are available, one of the reasons being the complexity of the pathways involved and difficulty in identifying a single molecular target. Due to adverse effects of pharmaceuticals, intake of herbal drugs by patients without a physician's recommendation is increasing globally. Lack of success with targeted monotherapy has encouraged scientists to determine whether combinations of phytochemicals that interfere with numerous cell-signaling pathways can be a more effective approach to treat complex diseases. For example, evidence is emerging that specific combinations of phytochemicals are far more effective than single compounds in decreasing adipogenesis and promoting bone formation. Since multiple pathways are dysfunctional in obesity and osteoporosis, an ideal approach for preventing and treating these diseases may be to use a combination of phytochemicals to address several targets simultaneously. PMID:21429725

  14. Signal Transduction and Molecular Targets of Selected Flavonoids

    PubMed Central

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  15. Functionalizing Soft Matter for Molecular Communication

    PubMed Central

    2016-01-01

    The information age was enabled by advances in microfabrication and communication theory that allowed information to be processed by electrons and transmitted by electromagnetic radiation. Despite immense capabilities, microelectronics has limited abilities to access and participate in the molecular-based communication that characterizes our biological world. Here, we use biological materials and methods to create components and fabricate devices to perform simple molecular communication functions based on bacterial quorum sensing (QS). Components were created by protein engineering to generate a multidomain fusion protein capable of sending a molecular QS signal, and by synthetic biology to engineer E. coli to receive and report this QS signal. The device matrix was formed using stimuli-responsive hydrogel-forming biopolymers (alginate and gelatin). Assembly of the components within the device matrix was achieved by physically entrapping the cell-based components, and covalently conjugating the protein-based components using the enzyme microbial transglutaminase. We demonstrate simple devices that can send or receive a molecular QS signal to/from the surrounding medium, and a two-component device in which one component generates the signal (i.e., issues a command) that is acted upon by the second component. These studies illustrate the broad potential of biofabrication to generate molecular communication devices. PMID:26501127

  16. Multispectral excitation based multiple fluorescent targets resolving in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Guang, Huizhi; Pu, Huangsheng; Zhang, Jiulou; Bai, Jing; Luo, Jianwen

    2016-04-01

    Fluorescence molecular tomography (FMT) can visualize biological activities at cellular and molecular levels in vivo, and has been extensively used in drug delivery and tumor detection research of small animals. The ill-posedness of the FMT inverse problem makes it difficult to reconstruct and resolve multiple adjacent fluorescent targets that have different functional features but are labeled with the same fluorochrome. An algorithm based on independent component analysis (ICA) for multispectral excited FMT is proposed to resolve multiple fluorescent targets in this study. Fluorescent targets are excited by multispectral excitation, and the three-dimensional distribution of fluorescent yields under the excitation spectrum is reconstructed by an iterative Tikhonov regularization algorithm. Subsequently, multiple fluorescent targets are resolved from mixed fluorescence signals by employing ICA. Simulations were performed and the results demonstrate that multiple adjacent fluorescent targets can be resolved if the number of excitation wavelengths is not smaller than that of fluorescent targets with different concentrations. The algorithm obtains both independent components that provide spatial information of different fluorescent targets and spectral courses that reflect variation trends of fluorescent yields along with the excitation spectrum. By using this method, it is possible to visualize the metabolism status of drugs in different structure organs, and quantitatively depict the variation trends of fluorescent yields of each functional organ under the excitation spectrum. This method may provide a pattern for tumor detection, drug delivery and treatment monitoring in vivo.

  17. Chemotherapy and molecular targeting therapy for recurrent cervical cancer

    PubMed Central

    Tsuda, Naotake; Watari, Hidemichi; Ushijima, Kimio

    2016-01-01

    For patients with primary stage ⅣB, persistent, or recurrent cervical cancer, chemotherapy remains the standard treatment, although it is neither curative nor associated with long-term disease control. In this review, we summarized the history of treatment of recurrent cervical cancer, and the current recommendation for chemotherapy and molecular targeted therapy. Eligible articles were identified by a search of the MEDLINE bibliographical database for the period up to November 30, 2014. The search strategy included the following any or all of the keywords: “uterine cervical cancer”, “chemotherapy”, and “targeted therapies”. Since cisplatin every 21 days was considered as the historical standard treatment for recurrent cervical cancer, subsequent trials have evaluated and demonstrated activity for other agents including paclitaxel, gemcitabine, topotecan and vinorelbine among others. Accordingly, promising agents were incorporated into phase Ⅲ trials. To examine the best agent to combine with cisplatin, several landmark phase Ⅲ clinical trials were conducted by Gynecologic Oncology Group (GOG) and Japan Clinical Oncology Group (JCOG). Through, GOG204 and JCOG0505, paclitaxel/cisplatin (TP) and paclitaxel/carboplatin (TC) are now considered to be the recommended therapies for recurrent cervical cancer patients. However, the prognosis of patients who are already resistant to chemotherapy, are very poor. Therefore new therapeutic strategies are urgently required. Molecular targeted therapy will be the most hopeful candidate of these strategies. From the results of GOG240, bevacizumab combined with TP reached its primary endpoint of improving overall survival (OS). Although, the prognosis for recurrent cervical cancer patients is still poor, the results of GOG240 shed light on the usefulness of molecular target agents to chemotherapy in cancer patients. Recurrent cervical cancer is generally considered incurable and current chemotherapy regiments

  18. Molecular Analysis of Sarcoidosis Granulomas Reveals Antimicrobial Targets.

    PubMed

    Rotsinger, Joseph E; Celada, Lindsay J; Polosukhin, Vasiliy V; Atkinson, James B; Drake, Wonder P

    2016-07-01

    Sarcoidosis is a granulomatous disease of unknown cause. Prior molecular and immunologic studies have confirmed the presence of mycobacterial virulence factors, such as catalase peroxidase and superoxide dismutase A, within sarcoidosis granulomas. Molecular analysis of granulomas can identify targets of known antibiotics classes. Currently, major antibiotics are directed against DNA synthesis, protein synthesis, and cell wall formation. We conducted molecular analysis of 40 sarcoidosis diagnostic specimens and compared them with 33 disease control specimens for the presence of mycobacterial genes that encode antibiotic targets. We assessed for genes involved in DNA synthesis (DNA gyrase A [gyrA] and DNA gyrase B), protein synthesis (RNA polymerase subunit β), cell wall synthesis (embCAB operon and enoyl reductase), and catalase peroxidase. Immunohistochemical analysis was conducted to investigate the locale of mycobacterial genes such as gyrA within 12 sarcoidosis specimens and 12 disease controls. Mycobacterial DNA was detected in 33 of 39 sarcoidosis specimens by quantitative real-time polymerase chain reaction compared with 2 of 30 disease control specimens (P < 0.001, two-tailed Fisher's test). Twenty of 39 were positive for three or more mycobacterial genes, compared with 1 of 30 control specimens (P < 0.001, two-tailed Fisher's test). Immunohistochemistry analysis localized mycobacterial gyrA nucleic acids to sites of granuloma formation in 9 of 12 sarcoidosis specimens compared with 1 of 12 disease controls (P < 0.01). Microbial genes encoding enzymes that can be targeted by currently available antimycobacterial antibiotics are present in sarcoidosis specimens and localize to sites of granulomatous inflammation. Use of antimicrobials directed against target enzymes may be an innovative treatment alternative. PMID:26807608

  19. Chemotherapy and molecular targeting therapy for recurrent cervical cancer.

    PubMed

    Tsuda, Naotake; Watari, Hidemichi; Ushijima, Kimio

    2016-04-01

    For patients with primary stage ⅣB, persistent, or recurrent cervical cancer, chemotherapy remains the standard treatment, although it is neither curative nor associated with long-term disease control. In this review, we summarized the history of treatment of recurrent cervical cancer, and the current recommendation for chemotherapy and molecular targeted therapy. Eligible articles were identified by a search of the MEDLINE bibliographical database for the period up to November 30, 2014. The search strategy included the following any or all of the keywords: "uterine cervical cancer", "chemotherapy", and "targeted therapies". Since cisplatin every 21 days was considered as the historical standard treatment for recurrent cervical cancer, subsequent trials have evaluated and demonstrated activity for other agents including paclitaxel, gemcitabine, topotecan and vinorelbine among others. Accordingly, promising agents were incorporated into phase Ⅲ trials. To examine the best agent to combine with cisplatin, several landmark phase Ⅲ clinical trials were conducted by Gynecologic Oncology Group (GOG) and Japan Clinical Oncology Group (JCOG). Through, GOG204 and JCOG0505, paclitaxel/cisplatin (TP) and paclitaxel/carboplatin (TC) are now considered to be the recommended therapies for recurrent cervical cancer patients. However, the prognosis of patients who are already resistant to chemotherapy, are very poor. Therefore new therapeutic strategies are urgently required. Molecular targeted therapy will be the most hopeful candidate of these strategies. From the results of GOG240, bevacizumab combined with TP reached its primary endpoint of improving overall survival (OS). Although, the prognosis for recurrent cervical cancer patients is still poor, the results of GOG240 shed light on the usefulness of molecular target agents to chemotherapy in cancer patients. Recurrent cervical cancer is generally considered incurable and current chemotherapy regiments offer only

  20. Confirming an integrated pathology of diabetes and its complications by molecular biomarker-target network analysis.

    PubMed

    Zhao, Zide; Zhang, Yingying; Gai, Fengchun; Wang, Ying

    2016-09-01

    Despite ongoing research into diabetes and its complications, the underlying molecular associations remain to be elucidated. The systematic identification of molecular interactions in associated diseases may be approached using a network analysis strategy. The biomarker-target interrelated molecules associated with diabetes and its complications were identified via the Comparative Toxicogenomics Database (CTD); the Search Tool for Recurring Instances of Neighboring Genes was utilized for network construction. Functional enrichment analysis was performed with Database for Annotation, Visualization and Integrated Discovery software to investigate connections between diabetes and its complications. A total of 142 (including 122 biomarkers, 10 therapeutic targets and 10 overlapping molecules) biomarker-target interrelated molecules associated with diabetes and its complications were identified via the CTD database, and analysis of the network yielded 1,087 biological processes and fifteen Kyoto Encyclopedia of Genes and Genomes pathways with significant P‑values. Various critical aspects of the networks were examined in the present study: a) Intermolecular horizontal and vertical combinations in biomarkers and therapeutic targets associated with diabetes and its complicationb) network topology properties associated with molecular pathological responsec) contribution of key molecules to integrated regulation; and d) crosstalk between multiple pathways. Based on a multi-dimensional analysis, it was concluded that the integrated molecular pathological development of diabetes and its complications does not proceed randomly, which suggests a requirement for integrated, multi-target intervention. PMID:27430657

  1. Pancreatic cancer: molecular pathogenesis and new therapeutic targets

    PubMed Central

    Wong, Han H.; Lemoine, Nicholas R.

    2010-01-01

    Patients with pancreatic cancer normally present with advanced disease that is lethal and notoriously difficult to treat. Survival has not improved dramatically, despite routine use of chemotherapy and radiotherapy; this situation signifies an urgent need for novel therapeutic approaches. Over the past decade, a large number of studies that aimed to target the molecular abnormalities implicated in pancreatic tumor growth, invasion, metastasis, angiogenesis and resistance to apoptosis have been published. This research is of particular importance, as recent data suggest that a large number of genetic alterations affect only a few major signaling pathways and processes involved in pancreatic tumorigenesis. Although laboratory results of targeted therapies have been impressive, until now only erlotinib, an epidermal growth-factor receptor tyrosine kinase inhibitor, has demonstrated modest survival benefit in combination with gemcitabine in a phase III clinical trial. Whilst the failures of targeted therapies in the clinical setting are discouraging, lessons have been learnt and new therapeutic targets that hold promise for the future management of the disease are continuously emerging. This Review describes some of the important developments and targeted agents for pancreatic cancer that have been tested in clinical trials. PMID:19506583

  2. XUV spectroscopy of laser plasma from molecular coated metal targets

    NASA Astrophysics Data System (ADS)

    Papanyan, Valeri O.; Nersisyan, Gagik T.; Tittel, Frank K.

    1999-12-01

    Metal targets covered by micrometer layers of metal- phthalocyanines or fullerenes are studied here. An increase in XUV yield due to the optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to produce an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to the theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique permits us to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne approximately equals 1018 cm-3 and Te approximately equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne molecular coated targets is greater by a factor of approximately 1.5 than measured from bulk solid metal targets.

  3. XUV spectroscopy of laser plasma from molecular coated metal targets

    NASA Astrophysics Data System (ADS)

    Papanyan, Valeri O.; Nersisyan, Gagik T.; Tittel, Frank K.

    1999-10-01

    Metal targets covered by micrometer layers of metal- phthalocyanines are studied here. An increase in EUV yield due to optimized absorption of the laser field is reported. Effects of high-temperature plasma rapid expansion (velocity about 106 cm/s) were observed. Moderate power nanosecond and picosecond neodymium lasers are used to product an incident intensity of 1011 to 1013 W/cm2 on the targets. The plasma electron density was measured by fitting observed spectral profiles to theoretical profiles. Collisional, Doppler, and Stark broadening mechanisms were considered in the calculations. Our measurement technique makes it possible to determine the electron density and temperature dependence on distances from the target surface from 1 mm (where Ne equals 2.0 (+/- 0.5)1018 cm-3 and Te equals 14 eV are measured for aluminum plasma) up to approximately 5 mm (where Ne molecular coated targets is greater by a factor of approximately 1.5 than measured from bulk solid metal targets.

  4. Molecular targets in Gastrointestinal Stromal Tumors (GIST) therapy.

    PubMed

    Braconi, C; Bracci, R; Cellerino, R

    2008-08-01

    Gastrointestinal Stromal Tumors (GISTs) are the most common mesenchimal tumors of the gastrointestinal tract. Such tumors usually have activating mutations in either KIT (75-80%) or Platelet Derived Growth Factor Receptor alpha (PDGFRa) (5-10%) which lead to ligand-independent signal transduction. Targeting these activated proteins with Imatinib mesylate, a small-molecule kinase inhibitor, has proven useful in the treatment of recurrent or metastatic GISTs. However, more than half of patients develop resistance to Imatinib after about 2 years. Therefore, other targets have been studying in order to implement the therapeutical armamentarium for this disease. Sunitinib malate is an oral multikinase inhibitor that targets several receptor tyrosine kinases and has proved to prolong survival in Imatinib-resistant patients. Other molecules, such as Nilotinib, Sorafenib and Dasatinib were shown to be useful in Imatinib resistant mutant cell lines and the results of their activity in humans are being awaited. Recent evidence suggests that GIST cells acquire the capability to escape from the control of KIT and PDGFRa through the activation of alternative pathways. Therefore, further effort should be invested in the discovery of new signaling pathways, such as AXL, MET, IGF-R, which might be involved in the evolution of the disease. After a description of KIT and PDGFRa as known targets of anti-GIST treatments, we review other mechanisms and mediators that might be potential targets of new therapies, providing a comprehensive revision of the new molecular strategies under investigation. PMID:18690842

  5. Target product selection - where can Molecular Pharming make the difference?

    PubMed

    Paul, Mathew J; Teh, Audrey Y H; Twyman, Richard M; Ma, Julian K-C

    2013-01-01

    Four major developments have taken place in the world of Molecular Pharming recently. In the USA, the DARPA initiative challenged plant biotechnology companies to develop strategies for the large-scale manufacture of influenza vaccines, resulting in a successful Phase I clinical trial; in Europe the Pharma-Planta academic consortium gained regulatory approval for a plant-derived monoclonal antibody and completed a first-in-human phase I clinical trial; the Dutch pharmaceutical company Synthon acquired the assets of Biolex Therapeutics, an established Molecular Pharming company with several clinical candidates produced in their proprietary LEX system based on aquatic plants; and finally, the Israeli biotechnology company Protalix Biotherapeutics won FDA approval for the commercial release of a recombinant form of the enzyme glucocerebrosidase produced in carrot cells, the first plant biotechnology-derived biopharmaceutical in the world approved for the market. Commercial momentum is gathering pace with additional candidates now undergoing or awaiting approval for phase III clinical trials. Filling the product pipeline is vital to establish commercial sustainability, and the selection of appropriate target products for Molecular Pharming will be a critical factor. An interesting feature of the four stories outlined above is that they span the use of very different platform technologies addressing different types of molecules which aim to satisfy distinct market demands. In each case, Molecular Pharming was an economically and technically suitable approach, but this decisionmaking process is not necessarily straightforward. Although the various technologies available to Molecular Pharming are broad ranging and flexible, competing technologies are better established, so there needs to be a compelling reason to move into plants. It is most unlikely that plant biotechnology will be the answer for the whole biologics field. In this article, we discuss the current plant

  6. Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma.

    PubMed

    Moeini, Agrin; Sia, Daniela; Bardeesy, Nabeel; Mazzaferro, Vincenzo; Llovet, Josep M

    2016-01-15

    Intrahepatic cholangiocarcinoma (iCCA) is a molecularly heterogeneous hepatobiliary neoplasm with poor prognosis and limited therapeutic options. The incidence of this neoplasm is growing globally. One third of iCCA tumors are amenable to surgical resection, but most cases are diagnosed at advanced stages with chemotherapy as the only established standard of practice. No molecular therapies are currently available for the treatment of this neoplasm. The poor understanding of the biology of iCCA and the lack of known oncogenic addiction loops has hindered the development of effective targeted therapies. Studies with sophisticated animal models defined IDH mutation as the first gatekeeper in the carcinogenic process and led to the discovery of striking alternative cellular origins. RNA- and exome-sequencing technologies revealed the presence of recurrent novel fusion events (FGFR2 and ROS1 fusions) and somatic mutations in metabolic (IDH1/2) and chromatin-remodeling genes (ARID1A, BAP1). These latest advancements along with known mutations in KRAS/BRAF/EGFR and 11q13 high-level amplification have contributed to a better understanding of the landscape of molecular alterations in iCCA. More than 100 clinical trials testing molecular therapies alone or in combination with chemotherapy including iCCA patients have not reported conclusive clinical benefits. Recent discoveries have shown that up to 70% of iCCA patients harbor potential actionable alterations that are amenable to therapeutic targeting in early clinical trials. Thus, the first biomarker-driven trials are currently underway. PMID:26405193

  7. Cytoreductive surgery in the era of targeted molecular therapy

    PubMed Central

    Thomas, Arun Z.; Adibi, Mehrad; Borregales, Leonardo D.; Karam, Jose A.

    2015-01-01

    Cytoreductive nephrectomy (CN) was regarded standard of care for patients with metastatic renal cell carcinoma (mRCC) in the immunotherapy era. With the advent of targeted molecular therapy (TMT) for the treatment of mRCC, the routine use of CN has been questioned. Up to date evidence continues to suggest that CN remains an integral part of treatment in appropriately selected patients. This review details the original context in which the efficacy of CN was established and rationale for the continued use of cytoreductive surgery in the era of TMT. PMID:26815334

  8. Molecular targets in melanoma: time for `ethnic personalization'

    PubMed Central

    Morita, Shane Y; Markovic, Svetomir N

    2016-01-01

    Worldwide, the incidence of melanoma continues to rise. Although not the most common cutaneous malignancy, it is the most lethal. Until recently, while other oncologic patients benefited from the nuances of targeted therapy, those afflicted with melanoma lacked that option. In 2011, the US FDA approved an oral agent that targets the BRAF oncogene. As this information is promising, it is essential that other populations (in addition to Caucasians) are examined, in order to further comprehend the biology of melanoma. Recent studies profiling various ethnicities, including Asians, have provided novel data with respect to the molecular characterization (c-KIT, BRAF, NRAS) of melanoma. It is hopeful that the management of melanoma will be universally applicable to all ethnic groups. PMID:22594895

  9. Adiponectin signaling and function in insulin target tissues

    PubMed Central

    Ruan, Hong; Dong, Lily Q.

    2016-01-01

    Obesity-linked type 2 diabetes is one of the paramount causes of morbidity and mortality worldwide, posing a major threat on human health, productivity, and quality of life. Despite great progress made towards a better understanding of the molecular basis of diabetes, the available clinical counter-measures against insulin resistance, a defect that is central to obesity-linked type 2 diabetes, remain inadequate. Adiponectin, an abundant adipocyte-secreted factor with a wide-range of biological activities, improves insulin sensitivity in major insulin target tissues, modulates inflammatory responses, and plays a crucial role in the regulation of energy metabolism. However, adiponectin as a promising therapeutic approach has not been thoroughly explored in the context of pharmacological intervention, and extensive efforts are being devoted to gain mechanistic understanding of adiponectin signaling and its regulation, and reveal therapeutic targets. Here, we discuss tissue- and cell-specific functions of adiponectin, with an emphasis on the regulation of adiponectin signaling pathways, and the potential crosstalk between the adiponectin and other signaling pathways involved in metabolic regulation. Understanding better just why and how adiponectin and its downstream effector molecules work will be essential, together with empirical trials, to guide us to therapies that target the root cause(s) of type 2 diabetes and insulin resistance. PMID:26993044

  10. Novel molecular targets in cancer chemotherapy waiting for discovery.

    PubMed

    Kunick, Conrad

    2004-09-01

    Despite a number of advances in the past decades the medicinal cancer therapy is hampered by problems of severe unwanted side effects and the development of resistances. Many established anti-cancer drugs are directed toward targets that are not specific for cancer but are essential biochemical molecules in living cells. Because cancer cells do not only carry one but multiple genetic alterations which are more characteristic for the individual patient than for the tumor entity, an individualized medicinal approach could improve the success of a tumor therapy. A prerequisite for personalized tumor therapies is an upgrade of the array of anticancer drugs directed to different molecular targets. Therefore, a systematic search for anticancer drug targets should constitute a research priority. The database of fingerprints of new chemical entities generated in the National Cancer Institute's Anticancer Drug Screening is a rich source of novel targets which might be uncovered by the interdisciplinary application of methods from bioinformatics, biochemistry, chemistry, tumor biology and related sciences. PMID:15379696

  11. Some comments on molecular partition functions

    SciTech Connect

    Sharp, C.M.

    1987-03-01

    In models of cool stellar atmospheres where molecules are important, molecular spectroscopic data can be used to calculate partition functions, from which equilibrium constants hence abundances can be obtained. In this report, it is shown that simple analytic approximations can be used to calculate very easily the partition functions of diatomic molecules, and comparisons are made for the two particularly important astrophysical molecules, H/sub 2/ and CO, with other work where the partition functions are calculated by explicitly summing over a very large number of energy levels. It is found that these analytic approximations give excellent agreement with more detailed calculations and are certainly adequate for many purposes. This method is very convenient, as only a few spectroscopic constants are needed, and the analytic formulae are very easily evaluated.

  12. [Bioinformatics of tumor molecular targets from big data].

    PubMed

    Huang, Jinyan; Yu, Yingyan

    2015-01-01

    The big data from high throughput research disclosed 4V features: volume of data, variety of data, value for deep mining, and velocity of processing speed. Regarding the whole genome sequencing for human sample, at average 30x of coverage, a total of 100 GB of original data (compression FASTQ format) could be produced. Replying to the binary BAM format, a total of 150 GB data could be produced. In the analysis of high throughput data, we need to combine both clinical information and pathological features. In addition, the data sources of medical research involved in ethical and privacy of patients. At present, the costs are gradually cheaper. For example, a whole genome sequencing by Illumina X Ten with 30x coverage costs about 10,000 RMB, and RNA-seq costs 5000 RMB for a single sample. Therefore, cancer genome research provides opportunities for discovery of molecular targets, but also brings enormous challenges on the data integration and utilization. This article introduces methodologies for high throughput data analysis and processing, and explains possible application on molecular target discovery. PMID:25656022

  13. Molecular Multipole Potential Energy Functions for Water.

    PubMed

    Tan, Ming-Liang; Tran, Kelly N; Pickard, Frank C; Simmonett, Andrew C; Brooks, Bernard R; Ichiye, Toshiko

    2016-03-01

    Water is the most common liquid on this planet, with many unique properties that make it essential for life as we know it. These properties must arise from features in the charge distribution of a water molecule, so it is essential to capture these features in potential energy functions for water to reproduce its liquid state properties in computer simulations. Recently, models that utilize a multipole expansion located on a single site in the water molecule, or "molecular multipole models", have been shown to rival and even surpass site models with up to five sites in reproducing both the electrostatic potential around a molecule and a variety of liquid state properties in simulations. However, despite decades of work using multipoles, confusion still remains about how to truncate the multipole expansions efficiently and accurately. This is particularly important when using molecular multipole expansions to describe water molecules in the liquid state, where the short-range interactions must be accurate, because the higher order multipoles of a water molecule are large. Here, truncation schemes designed for a recent efficient algorithm for multipoles in molecular dynamics simulations are assessed for how well they reproduce results for a simple three-site model of water when the multipole moments and Lennard-Jones parameters of that model are used. In addition, the multipole analysis indicates that site models that do not account for out-of-plane electron density overestimate the stability of a non-hydrogen-bonded conformation, leading to serious consequences for the simulated liquid. PMID:26562223

  14. Molecular Pathways: Targeted α-Particle Radiation Therapy

    PubMed Central

    Baidoo, Kwamena E.; Yong, Kwon; Brechbiel, Martin W.

    2012-01-01

    An α-particle, a 4He nucleus, is exquisitely cytotoxic, and indifferent to many limitations associated with conventional chemo- and radiotherapy. The exquisite cytotoxicity of α radiation, the result of its high mean energy deposition (high linear energy transfer, LET) and limited range in tissue, provides for a highly controlled therapeutic modality that can be targeted to selected malignant cells (targeted α-therapy (TAT)) with minimal normal tissue effects. There is a burgeoning interest in the development of TAT that is buoyed by the increasing number of ongoing clinical trials worldwide. The short path length renders α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking, hematological cancers, infections, and compartmental cancers such as ovarian cancer or neoplastic meningitis. Yet, despite decades of study of high-LET radiation, the mechanistic pathways of the effects of this modality remain not well defined. The modality is effectively presumed to follow a simple therapeutic mechanism centered on catastrophic double strand (ds) DNA breaks without full examination of the actual molecular pathways and targets that are activated that directly impact cell survival or death. This Molecular Pathways article provides an overview of the mechanisms and pathways that are involved in the response to and repair of TAT induced DNA damage as currently understood. Finally, this article highlights the current state of clinical translation of TAT as well as other high-LET radionuclide radiation therapy using α-emitters such as 225Ac, 211At, 213Bi, 212Pb and 223Ra. PMID:23230321

  15. A targeted molecular probe for colorectal cancer imaging

    NASA Astrophysics Data System (ADS)

    Attramadal, T.; Bjerke, R.; Indrevoll, B.; Moestue, S.; Rogstad, A.; Bendiksen, R.; Healey, A.; Johannesen, E.

    2008-02-01

    Colorectal cancer is a major cause of cancer death. Morbidity, mortality and healthcare costs can be reduced if the disease can be detected at an early stage. Screening is a viable approach as there is a clear link to risk factors such as age. We have developed a fluorescent contrast agent for use during colonoscopy. The agent is administered intravenously and is targeted to an early stage molecular marker for colorectal cancer. The agent consists of a targeting section comprising a peptide, and a fluorescent reporter molecule. Clinical imaging of the agent is to be performed with a far red fluorescence imaging channel (635 nm excitation/660-700 nm emission) as an adjunct to white light colonoscopy. Preclinical proof of mechanism results are presented. The compound has a K d of ~3nM. Two human xenograft tumour models were used. Tumour cells were implanted and grown subcutaneously in nude mice. Imaging using a fluorescence reflectance imaging system and quantitative biodistribution studies were performed. Substances tested include the targeted agent, and a scrambled sequence of the peptide (no binding) used as a negative control. Competition studies were also performed by co-administration of 180 times excess unlabelled peptide. Positive imaging contrast was shown in the tumours, with a clear relationship to expression levels (confirmed with quantitative biodistribution data). There was a significant difference between the positive and negative control substances, and a significant reduction in contrast in the competition experiment.

  16. Molecular targets in osteoarthritis: metalloproteinases and their inhibitors.

    PubMed

    Burrage, P S; Brinckerhoff, C E

    2007-02-01

    The debilitating destruction of joint tissues seen in osteoarthritis (OA) is due, in large part, to the degradative activity of metalloproteinase (MP) enzymes that target extracellular matrix (ECM) components within articular cartilage. Although successful in suppressing the pain and inflammation associated with this disease, conventional OA therapeutics do not inhibit the underlying tissue catabolism, allowing the disease to progress into irreversible ECM loss and chronic disability. Therapeutic inhibition of metalloproteinase activity is not a new concept, however, its transfer into clinical use has been frustrating. Disappointing results from clinical trials with small molecule inhibitors of metalloproteinases have highlighted the critical importance of inhibitor specificity, and the need to identify the individual metalloproteinases responsible for joint destruction. We discuss strategies of inhibition using small molecule inhibitors and tissue inhibitors of metalloproteinases (TIMPs) engineered to increase inhibitory specificity, and present new data using of new reagents such as ribozymes and inhibitory RNAs that repress expression of specific enzymes. Recent data has implicated the disease stage-dependent involvement of matrix metalloproteinase-1, -2, -3, -9, -13, ADAM-17/TACE (tumor-necrosis factor-alpha converting enzyme), and ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin 1 motifs) as major in vivo mediators of the ECM degradation seen in OA, and as such, they represent promising therapeutic targets. We conclude that the concept of molecular polypharmacy, in which the relevant enzymes are selectively targeted with multiple directed therapies, may offer a new therapeutic strategy that prevents joint destruction and minimizes toxicities. PMID:17305507

  17. Targeting Neuroendocrine Prostate Cancer: Molecular and Clinical Perspectives

    PubMed Central

    Vlachostergios, Panagiotis J.; Papandreou, Christos N.

    2015-01-01

    Neuroendocrine prostate carcinoma, either co-present with the local adenocarcinoma disease or as a result of transdifferentiation later in time, was described as one major process of emerging resistance to androgen deprivation therapies, and at the clinical level it is consistent with the development of rapidly progressive visceral disease, often in the absence of elevated serum prostate-specific antigen level. Until present, platinum-based chemotherapy has been the only treatment modality, able to produce a fair amount of responses but of short duration. Recently, several efforts for molecular characterization of this lethal phenotype have resulted in identification of novel signaling factors involved in microenvironment interactions, mitosis, and neural reprograming as potential therapeutic targets. Ongoing clinical testing of specific inhibitors of these targets, for example, Aurora kinase A inhibitors, in carefully selected patients and exploitation of expression changes of the target before and after manipulation is anticipated to increase the existing data and facilitate therapeutic decision making at this late stage of the disease when hormonal manipulations, even with the newest androgen-directed therapies are no longer feasible. PMID:25699233

  18. Progress of molecular targeted therapies for prostate cancers

    PubMed Central

    Fu, Weihua; Madan, Elena; Yee, Marla; Zhang, Hongtao

    2011-01-01

    Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in men in the United States. The current standard of care consists of prostatectomy and radiation therapy, which may often be supplemented with hormonal therapies. Recurrence is common, and many develop metastatic prostate cancer for which chemotherapy is only moderately effective. It is clear that novel therapies are needed for the treatment of the malignant forms of prostate cancer that recur after initial therapies, such as hormone refractory (HRPC) or castration resistant prostate cancer (CRPC). With advances in understanding of the molecular mechanisms of cancer, we have witnessed unprecedented progress in developing new forms of targeted therapy. Several targeted therapeutic agents have been developed and clinically used for the treatment of solid tumors such as breast cancer, non-small cell lung cancer, and renal cancer. Some of these reagents modulate growth factors and/or their receptors, which are abundant in cancer cells. Other reagents target the downstream signal transduction, survival pathways, and angiogenesis pathways that are abnormally activated in transformed cells or metastatic tumors. We will review current developments in this field, focusing specifically on treatments that can be applied to prostate cancers. Finally we will describe aspects of the future direction of the field with respect to discovering biomarkers to aid in identifying responsive prostate cancer patients. PMID:22146293

  19. Molecular Approach to Targeted Therapy for Multiple Sclerosis.

    PubMed

    Sherbet, Gajanan V

    2016-01-01

    The development and evolution of targeted therapy to any disease require the identification of targets amenable to treatment of patients. Here the pathogenetic signalling systems involved in multiple sclerosis are scrutinised to locate nodes of deregulation and dysfunction in order to devise strategies of drug development for targeted intervention. Oliogoclonal bands (OCB) are isoelectric focusing profiles of immunoglobulins synthesised in the central nervous system. OCBs enable the diagnosis of multiple sclerosis with high sensitivity and specificity and are related to the course of the disease and progression. The OCB patterns can be linked with the expression of angiogenic molecular species. Angiogenic signalling which has also been implicated in demyelination provides the option of using angiogenesis inhibitors in disease control. The PI3K (phosphoinositide 3-kinase)/Akt axis has emerged with a key role in myelination with its demonstrable links with mTOR mediated transcription of downstream target genes. Inflammatory signals and innate and acquired immunity from the activation of NF-κB (nuclear factor κB) responsive genes are considered. NF-κB signalling could be implicated in myelination. The transcription factor STAT (signal transducers and activators of transcription) and the EBV (Epstein- Barr virus) transcription factor BZLF1 contributing significantly to the disease process are a major environmental factor linked to MS. EBV can activate TGF (transforming growth factor) and VEGF (vascular endothelial growth factor) signalling. EBV microRNAs are reviewed as signalling mediators of pathogenesis. Stem cell transplantation therapy has lately gained much credence, so the current status of mesenchymal and hematopoietic stem cell therapy is reviewed with emphasis on the differential expression immune-related genes and operation of signalling systems. PMID:26560895

  20. Identifying Molecular Targets of Lifestyle Modifications in Colon Cancer Prevention

    PubMed Central

    Derry, Molly M.; Raina, Komal; Agarwal, Chapla; Agarwal, Rajesh

    2013-01-01

    One in four deaths in the United States is cancer-related, and colorectal cancer (CRC) is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; approximately 20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological, and behavioral processes that could influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals. PMID:23675573

  1. Identification of Molecular Targets for Predicting Colon Adenocarcinoma.

    PubMed

    Wang, Yansheng; Zhang, Jun; Li, Li; Xu, Xin; Zhang, Yong; Teng, Zhaowei; Wu, Feihu

    2016-01-01

    BACKGROUND Colon adenocarcinoma mostly happens at the junction of the rectum and is a common gastrointestinal malignancy. Accumulated evidence has indicated that colon adenocarcinoma develops by genetic alterations and is a complicated disease. The aim of this study was to screen differentially expressed miRNAs (DEMs) and genes with diagnostic and prognostic potentials in colon adenocarcinoma. MATERIAL AND METHODS In this study we screened DEMs and their target genes (DEGs) between 100 colon adenocarcinoma and normal samples in The Cancer Genome Atlas (TCGA) database by using the DEseq toolkit in Bioconductor. Then Go enrichment and KEGG pathway analysis were performed on the selected differential genes by use of the DAVID online tool. A regulation network of miRNA-gene was constructed and analyzed by Cytoscape. Finally, we performed ROC analysis of 8 miRNAs and ROC curves were drawn. RESULTS A total of 159 DEMs and 1921 DEGs were screened, and 1881 pairs of miRNA-target genes with significant negative correlations were also obtained. A regulatory network of miRNA-gene, including 60 cancer-related genes and 47 miRNAs, was successfully constructed. In addition, 5 clusters with several miRNAs regulating a set of target genes simultaneously were identified through cluster analysis. There were 8 miRNAs involved in these 5 clusters, and these miRNAs could serve as molecular biomarkers to distinguish colon adenocarcinoma and normal samples indicated by ROC analysis. CONCLUSIONS The identified 8 miRNAs were closely associated with colon adenocarcinoma, which may have great clinical value as diagnostic and prognostic biomarkers and provide new ideas for targeted therapy. PMID:26868022

  2. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. PMID:27284048

  3. DNA ligase IV as a new molecular target for temozolomide

    SciTech Connect

    Kondo, Natsuko; Department of Neurosurgery, School of Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 ; Takahashi, Akihisa; Mori, Eiichiro; Ohnishi, Ken; McKinnon, Peter J.; Sakaki, Toshisuke; Nakase, Hiroyuki; Ohnishi, Takeo

    2009-10-02

    Temozolomide (TMZ) is a methylating agent used in chemotherapy against glioblastoma. This work was designed to clarify details in repair pathways acting to remove DNA double-strand breaks (DSBs) induced by TMZ. Cultured mouse embryonic fibroblasts were used which were deficient in DSB repair genes such as homologous recombination repair-related genes X-ray repair cross-complementing group 2 (XRCC2)and radiation sensitive mutant54 (Rad54), non-homologous end joining repair-related gene DNAligase IV (Lig4). Cell sensitivity to drug treatments was assessed using colony forming assays. The most effective molecular target which was correlated with TMZ cell sensitivity was Lig4. In addition, it was found that small interference RNAs (siRNA) for Lig4 efficiently enhanced cell lethality induced by TMZ in human glioblastoma A172 cells. These findings suggest that down regulation of Lig4 might provide a useful tool for cell sensitization during TMZ chemotherapy.

  4. Resonant Laser Incisions: Molecular Targets Using the Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Reinisch, Lou; Bryant, Grady; Ossoff, Robert H.

    1996-03-01

    Laser ablation of tissue for medical incisions is normally concerned with the energy absorption and the subsequent vaporization of intracellular water. Using Fourier transform infrared spectroscopy, we have identified specific non-water resonances within tissues. Then, using the Vanderbilt Free Electron Laser (wavelength tunable from 2 to 10 microns) and our Computer Assisted Surgical Techniques program (to standardize the laser delivery), we have targeted specific molecular resonances for laser incisions and tissue removal. Using both acute and chronic studies, we can map out the resonant action spectrum to improve surgical outcomes. We have modeled these ablation mechanisms and working to establish the link between these ablation mechanisms and wound healing. This work has been supported, in part, by a grant from the Department of Defense, Medical Free Electron Laser Program, ONR Grant #N000149411023.

  5. Human Fortilin Is A Molecular Target of Dihydroartemisinin

    PubMed Central

    Fujita, Takayuki; Felix, Kumar; Pinkaew, Decha; Liu, Zhihe; Fujise, Ken

    2009-01-01

    Dehydroartemisinin (DHA) is an effective anti-malaria agent. Fortilin is an anti-apoptotic molecule overexpressed in many human cancers. Here, we show that DHA binds human fortilin, increases the ubiquitination of fortilin, shortens fortilin’s half-life in a proteasome-dependent fashion, and reduces cellular levels of fortilin in varieties of cells. DHA induced DNA fragementation in U2OS cells in a fortilin-dependent manner. The fortilin-knocked-down cells were less susceptible—and fortilin-overexpressing cells more susceptible—to DHA than were wild type cells, suggesting that apoptotic effects of DHA are—at least partly—conferred through fortilin. Together, these data suggest that fortilin is a molecular target of DHA. DHA and its derivative may prove to be viable anti-cancer agents in fortilin-overexpressing cancers. (115 words) PMID:18325342

  6. Recent advances in developing molecular tools for targeted genome engineering of mammalian cells.

    PubMed

    Lim, Kwang-il

    2015-01-01

    Various biological molecules naturally existing in diversified species including fungi, bacteria, and bacteriophage have functionalities for DNA binding and processing. The biological molecules have been recently actively engineered for use in customized genome editing of mammalian cells as the molecule-encoding DNA sequence information and the underlying mechanisms how the molecules work are unveiled. Excitingly, multiple novel methods based on the newly constructed artificial molecular tools have enabled modifications of specific endogenous genetic elements in the genome context at efficiencies that are much higher than that of the conventional homologous recombination based methods. This minireview introduces the most recently spotlighted molecular genome engineering tools with their key features and ongoing modifications for better performance. Such ongoing efforts have mainly focused on the removal of the inherent DNA sequence recognition rigidity from the original molecular platforms, the addition of newly tailored targeting functions into the engineered molecules, and the enhancement of their targeting specificity. Effective targeted genome engineering of mammalian cells will enable not only sophisticated genetic studies in the context of the genome, but also widely-applicable universal therapeutics based on the pinpointing and correction of the disease-causing genetic elements within the genome in the near future. PMID:25104401

  7. Target Molecular Simulations of RecA Family Protein Filaments

    PubMed Central

    Su, Zhi-Yuan; Lee, Wen-Jay; Su, Wan-Sheng; Wang, Yeng-Tseng

    2012-01-01

    Modeling of the RadA family mechanism is crucial to understanding the DNA SOS repair process. In a 2007 report, the archaeal RadA proteins function as rotary motors (linker region: I71-K88) such as shown in Figure 1. Molecular simulations approaches help to shed further light onto this phenomenon. We find 11 rotary residues (R72, T75-K81, M84, V86 and K87) and five zero rotary residues (I71, K74, E82, R83 and K88) in the simulations. Inclusion of our simulations may help to understand the RadA family mechanism. PMID:22837683

  8. Nutraceuticals: Potential for Chondroprotection and Molecular Targeting of Osteoarthritis

    PubMed Central

    Leong, Daniel J.; Choudhury, Marwa; Hirsh, David M.; Hardin, John A.; Cobelli, Neil J.; Sun, Hui B.

    2013-01-01

    Osteoarthritis (OA) is a degenerative joint disease and a leading cause of adult disability. There is no cure for OA, and no effective treatments which arrest or slow its progression. Current pharmacologic treatments such as analgesics may improve pain relief but do not alter OA disease progression. Prolonged consumption of these drugs can result in severe adverse effects. Given the nature of OA, life-long treatment will likely be required to arrest or slow its progression. Consequently, there is an urgent need for OA disease-modifying therapies which also improve symptoms and are safe for clinical use over long periods of time. Nutraceuticals—food or food products that provide medical or health benefits, including the prevention and/or treatment of a disease—offer not only favorable safety profiles, but may exert disease- and symptom-modification effects in OA. Forty-seven percent of OA patients use alternative medications, including nutraceuticals. This review will overview the efficacy and mechanism of action of commonly used nutraceuticals, discuss recent experimental and clinical data on the effects of select nutraceuticals, such as phytoflavonoids, polyphenols, and bioflavonoids on OA, and highlight their known molecular actions and limitations of their current use. We will conclude with a proposed novel nutraceutical-based molecular targeting strategy for chondroprotection and OA treatment. PMID:24284399

  9. Molecular mechanisms and proposed targets for selected anticancer gold compounds.

    PubMed

    Casini, Angela; Messori, Luigi

    2011-01-01

    Nowadays, gold compounds constitute a family of very promising experimental agents for cancer treatment. Indeed, several gold(I) and gold(III) compounds were shown to manifest outstanding antiproliferative properties in vitro against selected human tumor cell lines and some of them performed remarkably well even in tumor models in vivo. Notably, the peculiar chemical properties of the gold centre impart innovative pharmacological profiles to gold-based metallodrugs most likely in relation to novel molecular mechanisms. The precise mechanisms through which cytotoxic gold compounds produce their biological effects are still largely unknown. Within this frame, the major aim of this review is to define the possible modes of action and the most probable biomolecular targets for a few representative gold compounds on which extensive biochemical and cellular data have been gathered. In particular, we will focus on auranofin and analogues, on gold(III) porphyrins and gold(III) dithiocarbamates. For these three families markedly distinct molecular mechanisms were recently invoked: a direct mitochondrial mechanism involving thioredoxin reductase inhibition in the case of the gold(I) complexes, the influence on some apoptotic proteins--i.e. MAPKs and Bcl-2--for gold(III) porphyrins, and the proteasome inhibition for gold(III) dithiocarbamates. In a few cases the distinct mechanisms may overlap. The general perspectives for the development of new gold compounds as effective anticancer agents with innovative modes of action are critically discussed. PMID:22039866

  10. Evolving molecularly targeted therapies for advanced-stage thyroid cancers.

    PubMed

    Bible, Keith C; Ryder, Mabel

    2016-07-01

    Increased understanding of disease-specific molecular targets of therapy has led to the regulatory approval of two drugs (vandetanib and cabozantinib) for the treatment of medullary thyroid cancer (MTC), and two agents (sorafenib and lenvatinib) for the treatment of radioactive- iodine refractory differentiated thyroid cancer (DTC) in both the USA and in the EU. The effects of these and other therapies on overall survival and quality of life among patients with thyroid cancer, however, remain to be more-clearly defined. When applied early in the disease course, intensive multimodality therapy seems to improve the survival outcomes of patients with anaplastic thyroid cancer (ATC), but salvage therapies for ATC are of uncertain benefit. Additional innovative, rationally designed therapeutic strategies are under active development both for patients with DTC and for patients with ATC, with multiple phase II and phase III randomized clinical trials currently ongoing. Continued effort is being made to identify further signalling pathways with potential therapeutic relevance in thyroid cancers, as well as to elaborate on the complex interactions between signalling pathways, with the intention of translating these discoveries into effective and personalized therapies. Herein, we summarize the progress made in molecular medicine for advanced-stage thyroid cancers of different histotypes, analyse how these developments have altered - and might further refine - patient care, and identify open questions for future research. PMID:26925962

  11. Bacteria-mimicking nanoparticle surface functionalization with targeting motifs

    NASA Astrophysics Data System (ADS)

    Lai, Mei-Hsiu; Clay, Nicholas E.; Kim, Dong Hyun; Kong, Hyunjoon

    2015-04-01

    In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargo to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host's antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between the micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the mixing of SpA-PA-coupled micelles with antibodies resulted in the coating of micelles with antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated with antibodies to VCAM-1 or integrin αv displayed a higher binding affinity to substrates coated with VCAM-1 and integrin αvβ3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage that this bacteria-inspired protein immobilization approach will be useful to improve the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers.In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various

  12. Molecular targets in arthritis and recent trends in nanotherapy

    PubMed Central

    Roy, Kislay; Kanwar, Rupinder Kaur; Kanwar, Jagat Rakesh

    2015-01-01

    Due to its severity and increasing epidemiology, arthritis needs no description. There are various forms of arthritis most of which are disabling, very painful, and common. In spite of breakthroughs in the field of drug discovery, there is no cure for arthritis that can eliminate the disease permanently and ease the pain. The present review focuses on some of the most successful drugs in arthritis therapy and their side effects. Potential new targets in arthritis therapy such as interleukin-1β, interleukin-17A, tumor necrosis factor alpha, osteopontin, and several others have been discussed here, which can lead to refinement of current therapeutic modalities. Mechanisms for different forms of arthritis have been discussed along with the molecules that act as potential biomarkers for arthritis. Due to the difficulty in monitoring the disease progression to detect the advanced manifestations of the diseases, drug-induced cytotoxicity, and problems with drug delivery; nanoparticle therapy has gained the attention of the researchers. The unique properties of nanoparticles make them highly attractive for the design of novel therapeutics or diagnostic agents for arthritis. The review also focuses on the recent trends in nanoformulation development used for arthritis therapy. This review is, therefore, important because it describes the relevance and need for more arthritis research, it brings forth a critical discussion of successful drugs in arthritis and analyses the key molecular targets. The review also identifies several knowledge gaps in the published research so far along with the proposal of new ideas and future directions in arthritis therapy. PMID:26345140

  13. Bacteria-mimicking nanoparticle surface functionalization with targeting motifs.

    PubMed

    Lai, Mei-Hsiu; Clay, Nicholas E; Kim, Dong Hyun; Kong, Hyunjoon

    2015-04-21

    In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargo to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host's antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between the micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the mixing of SpA-PA-coupled micelles with antibodies resulted in the coating of micelles with antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated with antibodies to VCAM-1 or integrin αv displayed a higher binding affinity to substrates coated with VCAM-1 and integrin αvβ3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage that this bacteria-inspired protein immobilization approach will be useful to improve the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers. PMID:25804130

  14. Bacterium-Mimicking Nanoparticle Surface Functionalization with Targeting Motifs

    PubMed Central

    Lai, Mei-Hsiu; Clay, Nicholas E.; Kim, Dong Hyun; Kong, Hyunjoon

    2015-01-01

    In recent years, surface modification of nanocarriers with targeting motifs has been explored to modulate delivery of various diagnostic, sensing and therapeutic molecular cargos to desired sites of interest in in vitro bioengineering platforms and in vivo pathologic tissue. However, most surface functionalization approaches are often plagued by complex chemical modifications and effortful purifications. To resolve such challenges, this study demonstrates a unique method to immobilize antibodies that can act as targeting motifs on the surfaces of nanocarriers, inspired by a process that bacteria use for immobilization of the host’s antibodies. We hypothesized that alkylated Staphylococcus aureus protein A (SpA) would self-assemble with micelles and subsequently induce stable coupling of antibodies to the micelles. We examined this hypothesis by using poly(2-hydroxyethyl-co-octadecyl aspartamide) (PHEA-g-C18) as a model polymer to form micelles. The self-assembly between micelles and alkylated SpA became more thermodynamically favorable by increasing the degree of substitution of octadecyl chains to PHEA-g-C18, due to a positive entropy change. Lastly, the simple mixing of SpA-PA-coupled micelles with antibodies resulted in the micelles coated by antibodies, as confirmed with a fluorescence resonance energy transfer (FRET) assay. The micelles coated by antibodies to VCAM-1 or integrin αv displayed higher binding affinity to a substrate coated by VCAM-1 and integrin αvβ3, respectively, than other controls, as evaluated with surface plasmon resonance (SPR) spectroscopy and a circulation-simulating flow chamber. We envisage this bacterium-inspired protein immobilization approach will be useful to improving the quality of targeted delivery of nanoparticles, and can be extended to modify the surface of a wide array of nanocarriers. PMID:25804130

  15. Plant sex chromosomes: molecular structure and function.

    PubMed

    Jamilena, M; Mariotti, B; Manzano, S

    2008-01-01

    Recent molecular and genomic studies carried out in a number of model dioecious plant species, including Asparagus officinalis, Carica papaya, Silene latifolia, Rumex acetosa and Marchantia polymorpha, have shed light on the molecular structure of both homomorphic and heteromorphic sex chromosomes, and also on the gene functions they have maintained since their evolution from a pair of autosomes. The molecular structure of sex chromosomes in species from different plant families represents the evolutionary pathway followed by sex chromosomes during their evolution. The degree of Y chromosome degeneration that accompanies the suppression of recombination between the Xs and Ys differs among species. The primitive Ys of A. officinalis and C. papaya have only diverged from their homomorphic Xs in a short male-specific and non-recombining region (MSY), while the heteromorphic Ys of S. latifolia, R. acetosa and M. polymorpha have diverged from their respective Xs. As in the Y chromosomes of mammals and Drosophila, the accumulation of repetitive DNA, including both transposable elements and satellite DNA, has played an important role in the divergence and size enlargement of plant Ys, and consequently in reducing gene density. Nevertheless, the degeneration process in plants does not appear to have reached the Y-linked genes. Although a low gene density has been found in the sequenced Y chromosome of M. polymorpha, most of its genes are essential and are expressed in the vegetative and reproductive organs in both male and females. Similarly, most of the Y-linked genes that have been isolated and characterized up to now in S. latifolia are housekeeping genes that have X-linked homologues, and are therefore expressed in both males and females. Only one of them seems to be degenerate with respect to its homologous region in the X. Sequence analysis of larger regions in the homomorphic X and Y chromosomes of papaya and asparagus, and also in the heteromorphic sex chromosomes

  16. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.

    PubMed

    Medico, Enzo; Russo, Mariangela; Picco, Gabriele; Cancelliere, Carlotta; Valtorta, Emanuele; Corti, Giorgio; Buscarino, Michela; Isella, Claudio; Lamba, Simona; Martinoglio, Barbara; Veronese, Silvio; Siena, Salvatore; Sartore-Bianchi, Andrea; Beccuti, Marco; Mottolese, Marcella; Linnebacher, Michael; Cordero, Francesca; Di Nicolantonio, Federica; Bardelli, Alberto

    2015-01-01

    The development of molecularly targeted anticancer agents relies on large panels of tumour-specific preclinical models closely recapitulating the molecular heterogeneity observed in patients. Here we describe the mutational and gene expression analyses of 151 colorectal cancer (CRC) cell lines. We find that the whole spectrum of CRC molecular and transcriptional subtypes, previously defined in patients, is represented in this cell line compendium. Transcriptional outlier analysis identifies RAS/BRAF wild-type cells, resistant to EGFR blockade, functionally and pharmacologically addicted to kinase genes including ALK, FGFR2, NTRK1/2 and RET. The same genes are present as expression outliers in CRC patient samples. Genomic rearrangements (translocations) involving the ALK and NTRK1 genes are associated with the overexpression of the corresponding proteins in CRC specimens. The approach described here can be used to pinpoint CRCs with exquisite dependencies to individual kinases for which clinically approved drugs are already available. PMID:25926053

  17. Discrete Molecular Dynamics Distinguishes Nativelike Binding Poses from Decoys in Difficult Targets

    PubMed Central

    Proctor, Elizabeth A.; Yin, Shuangye; Tropsha, Alexander; Dokholyan, Nikolay V.

    2012-01-01

    Virtual screening is one of the major tools used in computer-aided drug discovery. In structure-based virtual screening, the scoring function is critical to identifying the correct docking pose and accurately predicting the binding affinities of compounds. However, the performance of existing scoring functions has been shown to be uneven for different targets, and some important drug targets have proven especially challenging. In these targets, scoring functions cannot accurately identify the native or near-native binding pose of the ligand from among decoy poses, which affects both the accuracy of the binding affinity prediction and the ability of virtual screening to identify true binders in chemical libraries. Here, we present an approach to discriminating native poses from decoys in difficult targets for which several scoring functions failed to correctly identify the native pose. Our approach employs Discrete Molecular Dynamics simulations to incorporate protein-ligand dynamics and the entropic effects of binding. We analyze a collection of poses generated by docking and find that the residence time of the ligand in the native and nativelike binding poses is distinctly longer than that in decoy poses. This finding suggests that molecular simulations offer a unique approach to distinguishing the native (or nativelike) binding pose from decoy poses that cannot be distinguished using scoring functions that evaluate static structures. The success of our method emphasizes the importance of protein-ligand dynamics in the accurate determination of the binding pose, an aspect that is not addressed in typical docking and scoring protocols. PMID:22225808

  18. Tea polyphenols, their biological effects and potential molecular targets

    PubMed Central

    Chen, Di; Milacic, Vesna; Chen, Marina Si; Wan, Sheng Biao; Lam, Wai Har; Huo, Congde; Landis-Piwowar, Kristin R.; Cui, Qiuzhi Cindy; Wali, Anil; Chan, Tak Hang; Dou, Q. Ping

    2013-01-01

    Summary Tea is the most popular beverage in the world, second only to water. Tea contains an infusion of the leaves from the Camellia sinensis plant rich in polyphenolic compounds known as catechins, the most abundant of which is (−)-EGCG. Although tea has been consumed for centuries, it has only recently been studied extensively as a health-promoting beverage that may act to prevent a number of chronic diseases and cancers. The results of several investigations indicate that green tea consumption may be of modest benefit in reducing the plasma concentration of cholesterol and preventing atherosclerosis. Additionally, the cancer-preventive effects of green tea are widely supported by results from epidemiological, cell culture, animal and clinical studies. In vitro cell culture studies show that tea polyphenols potently induce apoptotic cell death and cell cycle arrest in tumor cells but not in their normal cell counterparts. Green tea polyphenols were shown to affect several biological pathways, including growth factor-mediated pathway, the mitogen-activated protein (MAP) kinase-dependent pathway, and ubiquitin/proteasome degradation pathways. Various animal studies have revealed that treatment with green tea inhibits tumor incidence and multiplicity in different organ sites such as skin, lung, liver, stomach, mammary gland and colon. Recently, phase I and II clinical trials have been conducted to explore the anticancer effects of green tea in humans. A major challenge of cancer prevention is to integrate new molecular findings into clinical practice. Therefore, identification of more molecular targets and biomarkers for tea polyphenols is essential for improving the design of green tea trials and will greatly assist in a better understanding of the mechanisms underlying its anti-cancer activity. PMID:18228206

  19. Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    NASA Astrophysics Data System (ADS)

    Chen, Zhijin; Yu, Dexin; Wang, Shaojie; Zhang, Na; Ma, Chunhong; Lu, Zaijun

    2009-07-01

    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid-polyethylene glycol/gadolinium-diethylenetriamine-pentaacetic acid (PLA-PEG/Gd-DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA-PEG/Gd-DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA-PEG nanoparticles and the commercial contrast agent, Gd-DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA-PEG/Gd-DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was -12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA-PEG/Gd-DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed ( r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd-DTPA. PLA-PEG/Gd-DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA-PEG/Gd-DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent.

  20. Scientometrics of drug discovery efforts: pain-related molecular targets

    PubMed Central

    Kissin, Igor

    2015-01-01

    The aim of this study was to make a scientometric assessment of drug discovery efforts centered on pain-related molecular targets. The following scientometric indices were used: the popularity index, representing the share of articles (or patents) on a specific topic among all articles (or patents) on pain over the same 5-year period; the index of change, representing the change in the number of articles (or patents) on a topic from one 5-year period to the next; the index of expectations, representing the ratio of the number of all types of articles on a topic in the top 20 journals relative to the number of articles in all (>5,000) biomedical journals covered by PubMed over a 5-year period; the total number of articles representing Phase I–III trials of investigational drugs over a 5-year period; and the trial balance index, a ratio of Phase I–II publications to Phase III publications. Articles (PubMed database) and patents (US Patent and Trademark Office database) on 17 topics related to pain mechanisms were assessed during six 5-year periods from 1984 to 2013. During the most recent 5-year period (2009–2013), seven of 17 topics have demonstrated high research activity (purinergic receptors, serotonin, transient receptor potential channels, cytokines, gamma aminobutyric acid, glutamate, and protein kinases). However, even with these seven topics, the index of expectations decreased or did not change compared with the 2004–2008 period. In addition, publications representing Phase I–III trials of investigational drugs (2009–2013) did not indicate great enthusiasm on the part of the pharmaceutical industry regarding drugs specifically designed for treatment of pain. A promising development related to the new tool of molecular targeting, ie, monoclonal antibodies, for pain treatment has not yet resulted in real success. This approach has not yet demonstrated clinical effectiveness (at least with nerve growth factor) much beyond conventional analgesics

  1. Scientometrics of drug discovery efforts: pain-related molecular targets.

    PubMed

    Kissin, Igor

    2015-01-01

    The aim of this study was to make a scientometric assessment of drug discovery efforts centered on pain-related molecular targets. The following scientometric indices were used: the popularity index, representing the share of articles (or patents) on a specific topic among all articles (or patents) on pain over the same 5-year period; the index of change, representing the change in the number of articles (or patents) on a topic from one 5-year period to the next; the index of expectations, representing the ratio of the number of all types of articles on a topic in the top 20 journals relative to the number of articles in all (>5,000) biomedical journals covered by PubMed over a 5-year period; the total number of articles representing Phase I-III trials of investigational drugs over a 5-year period; and the trial balance index, a ratio of Phase I-II publications to Phase III publications. Articles (PubMed database) and patents (US Patent and Trademark Office database) on 17 topics related to pain mechanisms were assessed during six 5-year periods from 1984 to 2013. During the most recent 5-year period (2009-2013), seven of 17 topics have demonstrated high research activity (purinergic receptors, serotonin, transient receptor potential channels, cytokines, gamma aminobutyric acid, glutamate, and protein kinases). However, even with these seven topics, the index of expectations decreased or did not change compared with the 2004-2008 period. In addition, publications representing Phase I-III trials of investigational drugs (2009-2013) did not indicate great enthusiasm on the part of the pharmaceutical industry regarding drugs specifically designed for treatment of pain. A promising development related to the new tool of molecular targeting, ie, monoclonal antibodies, for pain treatment has not yet resulted in real success. This approach has not yet demonstrated clinical effectiveness (at least with nerve growth factor) much beyond conventional analgesics, when its

  2. Native functionality and therapeutic targeting of arenaviral glycoproteins.

    PubMed

    Crispin, Max; Zeltina, Antra; Zitzmann, Nicole; Bowden, Thomas A

    2016-06-01

    Surface glycoproteins direct cellular targeting, attachment, and membrane fusion of arenaviruses and are the primary target for neutralizing antibodies. Despite significant conservation of the glycoprotein architecture across the arenavirus family, there is considerable variation in the molecular recognition mechanisms used during host cell entry. We review recent progress in dissecting these infection events and describe how arenaviral glycoproteins can be targeted by small-molecule antivirals, the natural immune response, and immunoglobulin-based therapeutics. Arenaviral glycoprotein-mediated assembly and infection pathways present numerous opportunities and challenges for therapeutic intervention. PMID:27104809

  3. Membrane Transporters: Structure, Function and Targets for Drug Design

    NASA Astrophysics Data System (ADS)

    Ravna, Aina W.; Sager, Georg; Dahl, Svein G.; Sylte, Ingebrigt

    Current therapeutic drugs act on four main types of molecular targets: enzymes, receptors, ion channels and transporters, among which a major part (60-70%) are membrane proteins. This review discusses the molecular structures and potential impact of membrane transporter proteins on new drug discovery. The three-dimensional (3D) molecular structure of a protein contains information about the active site and possible ligand binding, and about evolutionary relationships within the protein family. Transporters have a recognition site for a particular substrate, which may be used as a target for drugs inhibiting the transporter or acting as a false substrate. Three groups of transporters have particular interest as drug targets: the major facilitator superfamily, which includes almost 4000 different proteins transporting sugars, polyols, drugs, neurotransmitters, metabolites, amino acids, peptides, organic and inorganic anions and many other substrates; the ATP-binding cassette superfamily, which plays an important role in multidrug resistance in cancer chemotherapy; and the neurotransmitter:sodium symporter family, which includes the molecular targets for some of the most widely used psychotropic drugs. Recent technical advances have increased the number of known 3D structures of membrane transporters, and demonstrated that they form a divergent group of proteins with large conformational flexibility which facilitates transport of the substrate.

  4. [Molecular target drugs for AML--current state and prospects for the future].

    PubMed

    Kohgo, Yutaka; Inamura, Junki; Shindo, Motohiro

    2014-06-01

    Acute myeloblastic leukemia (AML) is a disease which may be completely cured by intensive chemotherapy or stem cell transplantation. However, the prognoses are poor in elderly, refractory or recurrence cases. Molecular targeted drugs have been expected to improve the prognoses of patients with various cancers, but there are few kinds of molecular target drugs for AML. On the other hand, excellent drug exists such as tretinoin for acute promyelocytic leukemia. Molecular mechanisms have been elucidated in AML cells, and the molecules which can be the good target of the treatment have been identified. Novel molecular target drugs are also expected. PMID:25016805

  5. Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties

    PubMed Central

    Yoon, Joo-Heon

    2005-01-01

    There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process. PMID:16259055

  6. Revealing potential molecular targets bridging colitis and colorectal cancer based on multidimensional integration strategy

    PubMed Central

    Hu, Yongfei; Li, Xiaobo; Wang, Xishan; Fan, Huihui; Wang, Guiyu; Wang, Dong

    2015-01-01

    Chronic inflammation may play a vital role in the pathogenesis of inflammation-associated tumors. However, the underlying mechanisms bridging ulcerative colitis (UC) and colorectal cancer (CRC) remain unclear. Here, we integrated multidimensional interaction resources, including gene expression profiling, protein-protein interactions (PPIs), transcriptional and post-transcriptional regulation data, and virus-host interactions, to tentatively explore potential molecular targets that functionally link UC and CRC at a systematic level. In this work, by deciphering the overlapping genes, crosstalking genes and pivotal regulators of both UC- and CRC-associated functional module pairs, we revealed a variety of genes (including FOS and DUSP1, etc.), transcription factors (including SMAD3 and ETS1, etc.) and miRNAs (including miR-155 and miR-196b, etc.) that may have the potential to complete the connections between UC and CRC. Interestingly, further analyses of the virus-host interaction network demonstrated that several virus proteins (including EBNA-LP of EBV and protein E7 of HPV) frequently inter-connected to UC- and CRC-associated module pairs with their validated targets significantly enriched in both modules of the host. Together, our results suggested that multidimensional integration strategy provides a novel approach to discover potential molecular targets that bridge the connections between UC and CRC, which could also be extensively applied to studies on other inflammation-related cancers. PMID:26461477

  7. Molecular Approaches To Target GPCRs in Cancer Therapy

    PubMed Central

    Innamorati, Giulio; Valenti, Maria Teresa; Giovinazzo, Francesco; Carbonare, Luca Dalle; Parenti, Marco; Bassi, Claudio

    2011-01-01

    Hundreds of G protein coupled receptor (GPCR) isotypes integrate and coordinate the function of individual cells mediating signaling between different organs in our bodies. As an aberration of the normal relationships that organize cells' coexistence, cancer has to deceive cell-cell communication in order to grow and spread. GPCRs play a critical role in this process. Despite the fact that GPCRs represent one of the most common drug targets, current medical practice includes only a few anticancer compounds directly acting on their signaling. Many approaches can be envisaged to target GPCRs involved in oncology. Beyond interfering with GPCRs signaling by using agonists or antagonists to prevent cell proliferation, favor apoptosis, induce maturation, prevent migration, etc., the high specificity of the interaction between the receptors and their ligands can be exploited to deliver toxins, antineoplastic drugs or isotopes to transformed cells. In this review we describe the strategies that are in use, or appear promising, to act directly on GPCRs in the fight against neoplastic transformation and tumor progression.

  8. ROS1 Kinase Inhibitors for Molecular-Targeted Therapies.

    PubMed

    Al-Sanea, M M; Abdelazem, A Z; Park, B S; Yoo, K H; Sim, T; Kwon, Y J; Lee, S H

    2016-01-01

    ROS1 is a pivotal transmembrane receptor protein tyrosine kinase which regulates several cellular processes like apoptosis, survival, differentiation, proliferation, cell migration, and transformation. There is increasing evidence supporting that ROS1 plays an important role in different malignancies including glioblastoma, colorectal cancer, gastric adenocarcinoma, inflammatory myofibroblastic tumor, ovarian cancer, angiosarcoma, and non small cell lung cancer; thus, ROS1 has become a potential drug discovery target. ROS1 shares about 49% sequence homology with ALK primary structure; therefore, wide range of ALK kinase inhibitors have shown in vitro inhibitory activity against ROS1 kinase. After Crizotinib approval by FDA for the management of ALK-rearranged lung cancer, ROS1-positive tumors have been focused. Although significant advancements have been achieved in understanding ROS1 function and its signaling pathways plus recent discovery of small molecules modulating ROS1 protein, a vital need of medicinal chemistry efforts is still required to produce selective and potent ROS1 inhibitors as an important therapeutic strategy for different human malignancies. This review focuses on the current knowledge about different scaffolds targeting ROS1 rearrangements, methods to synthesis, and some biological data about the most potent compounds that have delivered various scaffold structures. PMID:26438251

  9. Proteasome as a Molecular Target of Microcystin-LR

    PubMed Central

    Zhu, Zhu; Zhang, Li; Shi, Guoqing

    2015-01-01

    Proteasome degrades proteins in eukaryotic cells. As such, the proteasome is crucial in cell cycle and function. This study proved that microcystin-LR (MC-LR), which is a toxic by-product of algal bloom, can target cellular proteasome and selectively inhibit proteasome trypsin-like (TL) activity. MC-LR at 1 nM can inhibit up to 54% of the purified 20S proteasome TL activity and 43% of the proteasome TL activity in the liver of the cyprinid rare minnow (Gobiocypris rarus). Protein degradation was retarded in GFP-CL1-transfected PC-3 cells because MC-LR inhibited the proteasome TL activity. Docking studies indicated that MC-LR blocked the active site of the proteasome β2 subunit; thus, the proteasome TL activity was inhibited. In conclusion, MC-LR can target proteasome, selectively inhibit proteasome TL activity, and retard protein degradation. This study may be used as a reference of future research on the toxic mechanism of MC-LR. PMID:26090622

  10. Modulation transfer function measurement using spatial noise targets

    NASA Astrophysics Data System (ADS)

    Boreman, Glenn D.

    1995-06-01

    In this paper, we consider the measurement of modulation transfer function (MTF) by means of spatially random, noise-like targets. We begin our discussion with the concept of shift- invariance and the measurement of MTF in pixelated systems. We then proceed to the methods for generation of these noise targets, using both laser speckle and transparency-based techniques.

  11. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics.

    PubMed

    Zhang, Wenjun; Wang, Ming L; Cranford, Steven W

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring. PMID:26750747

  12. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    PubMed Central

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring. PMID:26750747

  13. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring.

  14. Recent molecular approaches to understanding astrocyte function in vivo

    PubMed Central

    Davila, David; Thibault, Karine; Fiacco, Todd A.; Agulhon, Cendra

    2013-01-01

    Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions. PMID:24399932

  15. Five miRNAs Considered as Molecular Targets for Predicting Esophageal Cancer

    PubMed Central

    Zhao, Jia-ying; Wang, Fei; Li, Yi; Zhang, Xing-bo; Yang, Lei; Wang, Wei; Xu, Hao; Liu, Da-zhong; Zhang, Lin-you

    2015-01-01

    Background Esophageal cancer (EC) is one of the most aggressive malignant gastrointestinal tumors; however the traditional therapies for EC are not effective enough. Great improvements are needed to explore new and valid treatments for EC. We aimed to screen the differentially expressed miRNAs (DEMs) in esophageal cancer and explore the pathogenesis of esophageal cancer along with functions and pathways of the target genes. Material/Methods miRNA high-throughput sequencing data were downloaded from The Cancer Genome Atlas (TCGA), then the DEMs underwent principal component analysis (PCA) based on their expression value. Following that, TargetScan software was used to predict the target genes, and enrichment analysis and pathway annotation of these target genes were done by DAVID and KEGG, respectively. Finally, survival analysis between the DEMs and patient survival time was done, and the miRNAs with prediction potential were identified. Results A total of 140 DEMs were obtained, 113 miRNAs were up-regulated including hsa-mir-153-2, hsa-mir-92a-1 and hsa-mir-182; while 27 miRNAs were down-regulated including hsa-mir comprising 29a, hsa-mir-100 and hsa-mir-139 and so on. Five miRNAs (hsa-mir-103-1, hsa-mir-18a, hsa-mir-324, hsa-mir-369 and hsa-mir-320b-2) with diagnostic and preventive potential were significantly correlated with survival time. Conclusions The crucial molecular targets such as p53 may provide great clinical value in treatment, as well to provide new ideas for esophageal cancer therapy. The target genes of miRNA were found to play key roles in protein phosphorylation, and the functions of the target genes during protein phosphorylation should be further studied to explore novel treatment of EC. PMID:26498375

  16. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations

    PubMed Central

    Yang, Kecheng; Różycki, Bartosz; Cui, Fengchao; Shi, Ce; Chen, Wenduo; Li, Yunqi

    2016-01-01

    Sampling enrichment toward a target state, an analogue of the improvement of sampling efficiency (SE), is critical in both the refinement of protein structures and the generation of near-native structure ensembles for the exploration of structure-function relationships. We developed a hybrid molecular dynamics (MD)-Monte Carlo (MC) approach to enrich the sampling toward the target structures. In this approach, the higher SE is achieved by perturbing the conventional MD simulations with a MC structure-acceptance judgment, which is based on the coincidence degree of small angle x-ray scattering (SAXS) intensity profiles between the simulation structures and the target structure. We found that the hybrid simulations could significantly improve SE by making the top-ranked models much closer to the target structures both in the secondary and tertiary structures. Specifically, for the 20 mono-residue peptides, when the initial structures had the root-mean-squared deviation (RMSD) from the target structure smaller than 7 Å, the hybrid MD-MC simulations afforded, on average, 0.83 Å and 1.73 Å in RMSD closer to the target than the parallel MD simulations at 310K and 370K, respectively. Meanwhile, the average SE values are also increased by 13.2% and 15.7%. The enrichment of sampling becomes more significant when the target states are gradually detectable in the MD-MC simulations in comparison with the parallel MD simulations, and provide >200% improvement in SE. We also performed a test of the hybrid MD-MC approach in the real protein system, the results showed that the SE for 3 out of 5 real proteins are improved. Overall, this work presents an efficient way of utilizing solution SAXS to improve protein structure prediction and refinement, as well as the generation of near native structures for function annotation. PMID:27227775

  17. Molecular and Cell Signaling Targets for PTSD Pathophysiology and Pharmacotherapy

    PubMed Central

    Hauger, Richard L.; Olivares-Reyes, J. Alberto; Dautzenberg, Frank M.; Lohr, James B.; Braun, Sandra; Oakley, Robert H.

    2012-01-01

    The reasons for differences in vulnerability or resilience to the development of posttraumatic stress disorder (PTSD) are unclear. Here we review key genetic diatheses and molecular targets especially signaling pathways that mediate responses to trauma and severe stress and their potential contribution to the etiology of PTSD. Sensitization of glucocorticoid receptor (GR) signaling and dysregulation of GR modulators FKBP5, STAT5B, Bcl-2, and Bax have been implicated in PTSD pathophysiology. Furthermore, Akt, NFκB, MKP-1, and p11, which are G protein-coupled receptor (GPCR) pathway molecules, can promote or prevent sustained high anxiety and depressive-like behavior following severe stress. Agonist-induced activation of the corticotropin-releasing factor CRF1 receptor is crucial for survival in the context of serious danger or trauma, but persistent CRF1 receptor hypersignaling when a threatening or traumatic situation is no longer present is maladaptive. CRF1 receptor single nucleotide polymorphisms (SNPs) can confer susceptibility or resilience to childhood trauma while a SNP for the PAC1 receptor, another class B1 GPCR, has been linked genetically to PTSD. GRK3 phosphorylation of the CRF1 receptor protein and subsequent binding of βarrestin2 rapidly terminate Gs-coupled CRF1 receptor signaling by homologous desensitization. A deficient GRK-βarrestin2 mechanism would result in excessive CRF1 receptor signaling thereby contributing to PTSD and co-morbid posttraumatic depression. Clinical trials are needed to assess if small molecule CRF1 receptor antagonists are effective prophylactic agents when administered immediately after trauma. βarrestin2-biased agonists for CRF receptors and possibly other GPCRs implicated in PTSD, however, may prove to be novel pharmacotherapy with greater selectivity and therapeutic efficacy. PMID:22122881

  18. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    PubMed Central

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  19. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets.

    PubMed

    Safi, Sher Zaman; Qvist, Rajes; Kumar, Selva; Batumalaie, Kalaivani; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  20. Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets.

    PubMed

    Chan, K Ming; Gordon, Tessa; Zochodne, Douglas W; Power, Hollie A

    2014-11-01

    Peripheral nerve injury is common especially among young individuals. Although injured neurons have the ability to regenerate, the rate is slow and functional outcomes are often poor. Several potential therapeutic agents have shown considerable promise for improving the survival and regenerative capacity of injured neurons. These agents are reviewed within the context of their molecular mechanisms. The PI3K/Akt and Ras/ERK signaling cascades play a key role in neuronal survival. A number of agents that target these pathways, including erythropoietin, tacrolimus, acetyl-l-carnitine, n-acetylcysteine and geldanamycin have been shown to be effective. Trk receptor signaling events that up-regulate cAMP play an important role in enhancing the rate of axonal outgrowth. Agents that target this pathway including rolipram, testosterone, fasudil, ibuprofen and chondroitinase ABC hold considerable promise for human application. A tantalizing prospect is to combine different molecular targeting strategies in complementary pathways to optimize their therapeutic effects. Although further study is needed prior to human trials, these modalities could open a new horizon in the clinical arena that has so far been elusive. PMID:25220611

  1. A decade of cancer gene profiling: from molecular portraits to molecular function.

    PubMed

    Sara, Henri; Kallioniemi, Olli; Nees, Matthias

    2010-01-01

    Cancer gene profiling has greatly profited from the progress in high-throughput technologies, including microarray-, sequencing-, and bioinformatics-based methods. The flood of data generated during the last decade has provoked a panel of "-omics" fields that significantly changed our understanding of malignant diseases. However, while the terms "-omics" and "-ome" in principle refer to the completeness of a genetic approach, we are in fact far from a complete understanding of cancer progression. We may understand gene expression patterns better and successfully use gene signatures for outcome prediction and prognosis, but truly promising molecular targets still have to find their way into novel therapeutic concepts. In this chapter, we will show how more comprehensive strategies, integrating multiple layers of genetic information, might in the future provide a more profound functional understanding of cancer. PMID:19882258

  2. Molecular mechanism of L-DNase II activation and function as a molecular switch in apoptosis.

    PubMed

    Torriglia, Alicia; Leprêtre, Chloé; Padrón-Barthe, Laura; Chahory, Sabine; Martin, Elisabeth

    2008-12-01

    The discovery of caspase activation counts as one of the most important finds in the biochemistry of apoptosis. However, targeted disruption of caspases does not impair every type of apoptosis. Other proteases can replace caspases and several so called "caspase independent" pathways are now described. Here we review our current knowledge on one of these pathways, the LEI/L-DNase II. It is a serine protease-dependent pathway and its key event is the transformation of LEI (leukocyte elastase inhibitor, a serine protease inhibitor) into L-DNase II (an endonuclease). The molecular events leading to this change of enzymatic function as well as the cross-talk and interactions of this molecule with other apoptotic pathway, including caspases, are discussed. PMID:18761000

  3. Molecular cloning and functional characterization of a cell-permeable superoxide dismutase targeted to lung adenocarcinoma cells. Inhibition cell proliferation through the Akt/p27kip1 pathway.

    PubMed

    Lu, Min; Gong, Xingguo; Lu, Yuwen; Guo, Jianjun; Wang, Chenhui; Pan, Yuanjiang

    2006-05-12

    In clinical oncology, many trials with superoxide dismutase (SOD) have failed to demonstrate antitumor ability and in many cases even caused deleterious effects because of low tumor-targeting ability. In the current research, the Nostoc commune Fe-SOD coding sequence was amplified from genomic DNA. In addition, the single chain variable fragment (ScFv) was constructed from the cDNA of an LC-1 hybridoma cell line secreting anti-lung adenocarcinoma monoclonal antibody. After modification, the SOD and ScFv were fused and co-expressed, and the resulting fusion protein produced SOD and LC-1 antibody activity. Tracing SOD-ScFv by fluorescein isothiocyanate and superoxide anions (O2*-) in SPC-A-1 cells showed that the fusion protein could recognize and enter SPC-A-1 cells to eliminate O2*-. The lower oxidative stress resulting from the decrease in cellular O2*- delayed the cell cycle at G1 and significantly slowed SPC-A-1 cell growth in association with the dephosphorylation of the serine-threonine protein kinase Akt and expression of p27kip1. The tumor-targeting fusion protein resulting from this research overcomes two disadvantages of SODs previously used in the clinical setting, the inability to target tumor cells or permeate the cell membrane. These findings lay the groundwork for development of an efficient antitumor drug targeted by the ScFv. PMID:16551617

  4. Herbal bioactivation, molecular targets and the toxicity relevance.

    PubMed

    Chen, Xiao-Wu; Serag, Erini S; Sneed, Kevin B; Zhou, Shu-Feng

    2011-07-15

    There have been increasing reports on the adverse reactions associated with herbal consumption. For many of these adverse reactions, the underlying biochemical mechanisms are unknown, but bioactivation of herbal compounds to generate reactive intermediates have been implicated. This minireview updates our knowledge on metabolic activation of herbal compounds, molecular targets and the toxicity relevance. A number of studies have documented that some herbal compounds can be converted to toxic or even carcinogenic metabolites by Phase I [e.g. cytochrome P450s (CYPs)] and less frequently by Phase II enzymes. For example, aristolochic acids (AAs) in Aristolochia spp, which undergo reduction of the nitro group by hepatic CYP1A1/2 or peroxidases in extrahepatic tissues to generate highly reactive cyclic nitrenium ions. The latter can react with macromolecules (DNA and protein), resulting in activation of H-ras and myc oncogenes and gene mutation in renal cells and finally carcinogenesis of the kidneys. Teucrin A and teuchamaedryn A, two diterpenoids found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming herbal supplements that caused severe hepatotoxicity, are converted by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase and inactivate them. Some naturally occurring alkenylbenzenes (e.g. safrole, methyleugenol and estragole) and flavonoids (e.g. quercetin) can undergo bioactivation by sequential 1-hydroxylation and sulfation, resulting in reactive intermediates capable of forming DNA adducts. Extensive pulegone metabolism generated p-cresol that is a glutathione depletory. The hepatotoxicity of kava is possibly due to intracellular glutathione depletion and/or quinone formation. Moreover, several herbal compounds including capsaicin from chili peppers, dially sulfone in garlic, methysticin and dihydromethysticin in kava, oleuropein in olive oil, and resveratrol found in grape seeds are mechanism-based (suicide

  5. The Challenges and the Promise of Molecular Targeted Therapy in Malignant Gliomas1

    PubMed Central

    Wang, Hongxiang; Xu, Tao; Jiang, Ying; Xu, Hanchong; Yan, Yong; Fu, Da; Chen, Juxiang

    2015-01-01

    Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy. PMID:25810009

  6. Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background

    PubMed Central

    Ksiazek-Winiarek, Dominika Justyna; Szpakowski, Piotr; Glabinski, Andrzej

    2015-01-01

    Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets. PMID:26229689

  7. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  8. Molecular clock integration of brown adipose tissue formation and function.

    PubMed

    Nam, Deokhwa; Yechoor, Vijay K; Ma, Ke

    2016-01-01

    The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  9. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP

    NASA Astrophysics Data System (ADS)

    Czulak, J.; Guerreiro, A.; Metran, K.; Canfarotta, F.; Goddard, A.; Cowan, R. H.; Trochimczuk, A. W.; Piletsky, S.

    2016-05-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates.Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike

  10. Ultrasound Molecular Imaging of Tumor Angiogenesis with an Integrin Targeted Microbubble Contrast Agent

    PubMed Central

    Anderson, Christopher R.; Hu, Xiaowen; Tlaxca, Jose; Decleves, Anne-Emilie; Houghtaling, Robert; Sharma, Kumar; Lawrence, Michael; Ferrara, Katherine; Rychak, Joshua J.

    2010-01-01

    relative to non-targeted MB and cRAD-MB controls. Similarly, cRGD-MB showed significantly greater adhesion to bEnd.3 EC compared to non-targeted MB and cRAD-MB. In addition, cRGD-MB, but not non-targeted MB or cRAD-MB, showed significantly enhanced contrast signals with a high tumor-to-background ratio. The adhesion of cRGD-MB to bEnd.3 was reduced by 80% after using anti-αv monoclonal antibody to treat bEnd.3. The normalized image intensity amplitude was ~0.8 seven minutes after the administration of cRGD-MB relative to the intensity amplitude at the time of injection, while the spatial variance in image intensity improved the detection of bound agents. The accumulation of cRGD- MB was blocked by pre-administration with an anti-αv blocking antibody. Conclusion The results demonstrate the functionality of a novel microbubble contrast agent covalently coupled to an RGD peptide for ultrasound molecular imaging of αvβ3 integrin and the feasibility of quantitative molecular ultrasound imaging with a low mechanical index. PMID:21343825

  11. Genotoxicants Target Distinct Molecular Networks in Neonatal Neurons

    PubMed Central

    Kisby, Glen E.; Olivas, Antoinette; Standley, Melissa; Lu, Xinfang; Pattee, Patrick; O’Malley, Jean; Li, Xiaorong; Muniz, Juan; Nagalla, Srinavasa R.

    2006-01-01

    Background Exposure of the brain to environmental agents during critical periods of neuronal development is considered a key factor underlying many neurologic disorders. Objectives In this study we examined the influence of genotoxicants on cerebellar function during early development by measuring global gene expression changes. Methods We measured global gene expression in immature cerebellar neurons (i.e., granule cells) after treatment with two distinct alkylating agents, methylazoxymethanol (MAM) and nitrogen mustard (HN2). Granule cell cultures were treated for 24 hr with MAM (10–1,000 μM) or HN2 (0.1–20 μM) and examined for cell viability, DNA damage, and markers of apoptosis. Results Neuronal viability was significantly reduced (p < 0.01) at concentrations > 500 μM for MAM and > 1.0 μM for HN2; this correlated with an increase in both DNA damage and markers of apoptosis. Neuronal cultures treated with sublethal concentrations of MAM (100 μM) or HN2 (1.0 μM) were then examined for gene expression using large-scale mouse cDNA microarrays (27,648). Gene expression results revealed that a) global gene expression was predominantly up-regulated by both genotoxicants; b) the number of down-regulated genes was approximately 3-fold greater for HN2 than for MAM; and c) distinct classes of molecules were influenced by MAM (i.e, neuronal differentiation, the stress and immune response, and signal transduction) and HN2 (i.e, protein synthesis and apoptosis). Conclusions These studies demonstrate that individual genotoxicants induce distinct gene expression signatures. Further study of these molecular networks may explain the variable response of the developing brain to different types of environmental genotoxicants. PMID:17107856

  12. Engaging with Molecular Form to Understand Function

    ERIC Educational Resources Information Center

    Barber, Nicola C.; Stark, Louisa A.

    2014-01-01

    Cells are bustling factories with diverse and prolific arrays of molecular machinery. Remarkably, this machinery self-organizes to carry out the complex biochemical activities characteristic of life. When Watson and Crick published the structure of DNA, they noted that DNA base pairing creates a double-stranded form that provides a means of…

  13. Molecular photoacoustic imaging of breast cancer using an actively targeted conjugated polymer

    PubMed Central

    Balasundaram, Ghayathri; Ho, Chris Jun Hui; Li, Kai; Driessen, Wouter; Dinish, US; Wong, Chi Lok; Ntziachristos, Vasilis; Liu, Bin; Olivo, Malini

    2015-01-01

    Conjugated polymers (CPs) are upcoming optical contrast agents in view of their unique optical properties and versatile synthetic chemistry. Biofunctionalization of these polymer-based nanoparticles enables molecular imaging of biological processes. In this work, we propose the concept of using a biofunctionalized CP for noninvasive photoacoustic (PA) molecular imaging of breast cancer. In particular, after verifying the PA activity of a CP nanoparticle (CP dots) in phantoms and the targeting efficacy of a folate-functionalized version of the same (folate-CP dots) in vitro, we systemically administered the probe into a folate receptor-positive (FR+ve) MCF-7 breast cancer xenograft model to demonstrate the possible application of folate-CP dots for imaging FR+ve breast cancers in comparison to CP dots with no folate moieties. We observed a strong PA signal at the tumor site of folate-CP dots-administered mice as early as 1 hour after administration as a result of the active targeting of the folate-CP dots to the FR+ve tumor cells but a weak PA signal at the tumor site of CP-dots-administered mice as a result of the passive accumulation of the probe by enhanced permeability and retention effect. We also observed that folate-CP dots produced ~4-fold enhancement in the PA signal in the tumor, when compared to CP dots. These observations demonstrate the great potential of this active-targeting CP to be used as a contrast agent for molecular PA diagnostic imaging in various biomedical applications. PMID:25609951

  14. Molecular Platform for Design and Synthesis of Targeted Dual-Modality Imaging Probes

    PubMed Central

    2015-01-01

    We report a versatile dendritic structure based platform for construction of targeted dual-modality imaging probes. The platform contains multiple copies of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) branching out from a 1,4,7-triazacyclononane-N,N′,N″-triacetic acid (NOTA) core. The specific coordination chemistries of the NOTA and DOTA moieties offer specific loading of 68/67Ga3+ and Gd3+, respectively, into a common molecular scaffold. The platform also contains three amino groups which can potentiate targeted dual-modality imaging of PET/MRI or SPECT/MRI (PET: positron emission tomography; SPECT: single photon emission computed tomography; MRI: magnetic resonance imaging) when further functionalized by targeting vectors of interest. To validate this design concept, a bimetallic complex was synthesized with six peripheral Gd-DOTA units and one Ga-NOTA core at the center, whose ion T1 relaxivity per gadolinium atom was measured to be 15.99 mM–1 s–1 at 20 MHz. Further, the bimetallic agent demonstrated its anticipated in vivo stability, tissue distribution, and pharmacokinetic profile when labeled with 67Ga. When conjugated with a model targeting peptide sequence, the trivalent construct was able to visualize tumors in a mouse xenograft model by both PET and MRI via a single dose injection. PMID:25615011

  15. Targeted Delivery Systems for Molecular Therapy in Skeletal Disorders

    PubMed Central

    Dang, Lei; Liu, Jin; Li, Fangfei; Wang, Luyao; Li, Defang; Guo, Baosheng; He, Xiaojuan; Jiang, Feng; Liang, Chao; Liu, Biao; Badshah, Shaikh Atik; He, Bing; Lu, Jun; Lu, Cheng; Lu, Aiping; Zhang, Ge

    2016-01-01

    Abnormalities in the integral components of bone, including bone matrix, bone mineral and bone cells, give rise to complex disturbances of skeletal development, growth and homeostasis. Non-specific drug delivery using high-dose systemic administration may decrease therapeutic efficacy of drugs and increase the risk of toxic effects in non-skeletal tissues, which remain clinical challenges in the treatment of skeletal disorders. Thus, targeted delivery systems are urgently needed to achieve higher drug delivery efficiency, improve therapeutic efficacy in the targeted cells/tissues, and minimize toxicities in non-targeted cells/tissues. In this review, we summarize recent progress in the application of different targeting moieties and nanoparticles for targeted drug delivery in skeletal disorders, and also discuss the advantages, challenges and perspectives in their clinical translation. PMID:27011176

  16. Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations

    PubMed Central

    2013-01-01

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins. PMID:23298176

  17. New molecularly targeted therapies against advanced hepatocellular carcinoma: From molecular pathogenesis to clinical trials and future directions.

    PubMed

    Chuma, Makoto; Terashita, Katsumi; Sakamoto, Naoya

    2015-10-01

    Hepatocellular carcinoma (HCC) can be lethal due to its aggressive course and lack of effective systemic therapies for advanced disease. Sorafenib is the only systemic therapy that has demonstrated an overall survival benefit in patients with advanced HCC, and new agents for treatment of advanced HCC are needed. The multiple pathways involved in HCC oncogenesis, proliferation and survival provide many opportunities for the development of molecularly targeted therapies. Molecular targets of interest have expanded from angiogenesis to cancer cell-directed oncogenic signaling pathways for treatment of advanced HCC. Agents targeting vascular endothelial growth factor receptor, epidermal growth factor receptor, fibroblast growth factor receptor, platelet-derived growth factor receptor, c-mesenchymal-epithelial transition factor-1 and mammalian target of rapamycin signaling have been actively explored. This article focuses on the evaluation of molecular agents targeting pathogenic HCC and provides a review of recently completed phase III drug studies (e.g. involving sorafenib, sunitinib, brivanib, linifanib, erlotinib, everolimus, ramucirumab or orantinib) and ongoing drug studies (e.g. involving lenvatinib, regorafenib, tivantinib or cabozantinib) of molecularly targeted agents in advanced HCC, including a brief description of the biologic rationale behind these agents. PMID:25472913

  18. Functional Class and Targeted Therapy Are Related to the Survival in Patients with Pulmonary Arterial Hypertension

    PubMed Central

    Park, Yae Min; Choi, Deok Young; Baek, Han Joo; Jung, Sung Hwan; Choi, In Suck; Shin, Eak Kyun

    2014-01-01

    Purpose Pulmonary arterial hypertension (PAH) is an orphan disease showing poor prognosis. The purpose of study was to evaluate clinical factors influencing outcomes in PAH. Materials and Methods Patients who were diagnosed with PAH at a single center were reviewed retrospectively. Forty patients (34.9±14.5 years, 80% of female) were enrolled. Results Causes were congenital heart disease in 24 (60%), connective tissue disease in 8 (20%) and idiopathic PAH in 6 (15%). Sixteen patients (40%) were WHO functional class III or IV at the time of diagnosis. Twenty seven patients (67.5%) received molecular targeted therapy. During follow-up (53.6±45.5 months), 10 patients (25%) died and 1-, 2-, and 8 year survival rates were 91.3%, 78.7%, and 66.8%, respectively. As expected, median survival of patients with functional class I or II were significantly longer than patients with III or IV (p=0.041). Interestingly, patients with molecular targeted therapy showed longer survival than conventional therapy (p=0.021). Conclusion WHO functional class at the time of diagnosis was the strong predictor of survival, and molecular targeted therapy could significantly improve the survival. Therefore, early screening and intensive management would be crucial to improve the prognosis in the patient with PAH. PMID:25323888

  19. Ca(2+)-handling proteins and heart failure: novel molecular targets?

    PubMed

    Prestle, J; Quinn, F R; Smith, G L

    2003-06-01

    Calcium (Ca(2+)) ions are the currency of heart muscle activity. During excitation-contraction coupling Ca(2+) is rapidly cycled between the cytosol (where it activates the myofilaments) and the sarcoplasmic reticulum (SR), the Ca(2+) store. These fluxes occur by the transient activity of Ca(2+)-pumps and -channels. In the failing human heart, changes in activity and expression profile of Ca(2+)-handling proteins, in particular the SR Ca(2+)-ATPase (SERCA2a), are thought to cause an overall reduction in the amount of SR-Ca(2+) available for contraction. In the steady state, the Ca(2+)-content of the SR is essentially a balance between Ca(2+)-uptake via SERCA2a pump and Ca(2+)-release via the cardiac SR Ca(2+)-release channel complex (Ryanodine receptor, RyR2). This review discusses current pharmacological options available to enhance cardiac SR Ca(2+) content and the implications of this approach as an inotropic therapy in heart failure. Two options are considered: (i) activation of the SERCA2a pump to increase SR Ca(2+)-uptake, and (ii) reduction of SR Ca(2+)-leakage through RyR2. RyR2 forms a macromolecular complex with a number of regulatory proteins that either remain permanently bound or that interact in a time- and/or Ca(2+)-dependant manner. These regulatory proteins can dramatically affect RyR2 function, e.g. over-expression of the accessory protein FK 506-binding protein 12.6 (FKBP12.6) has recently been shown to reduce SR Ca(2+)-leak. Recent attempts to design positive inotropes for chronic administrations have focussed on the use of phosphodiesterase III inhibitors (PDE III inhibitors). These compounds, which increase intracellular cAMP-levels, have failed in clinical trials. Therefore medical researchers are seeking new drugs that act through alternative pathways. Novel cardiac inotropes targeting SR Ca(2+)-cycling proteins may have the potential to fill this gap. PMID:12678683

  20. Formation of target-specific binding sites in enzymes: solid-phase molecular imprinting of HRP.

    PubMed

    Czulak, J; Guerreiro, A; Metran, K; Canfarotta, F; Goddard, A; Cowan, R H; Trochimczuk, A W; Piletsky, S

    2016-06-01

    Here we introduce a new concept for synthesising molecularly imprinted nanoparticles by using proteins as macro-functional monomers. For a proof-of-concept, a model enzyme (HRP) was cross-linked using glutaraldehyde in the presence of glass beads (solid-phase) bearing immobilized templates such as vancomycin and ampicillin. The cross-linking process links together proteins and protein chains, which in the presence of templates leads to the formation of permanent target-specific recognition sites without adverse effects on the enzymatic activity. Unlike complex protein engineering approaches commonly employed to generate affinity proteins, the method proposed can be used to produce protein-based ligands in a short time period using native protein molecules. These affinity materials are potentially useful tools especially for assays since they combine the catalytic properties of enzymes (for signaling) and molecular recognition properties of antibodies. We demonstrate this concept in an ELISA-format assay where HRP imprinted with vancomycin and ampicillin replaced traditional enzyme-antibody conjugates for selective detection of templates at micromolar concentrations. This approach can potentially provide a fast alternative to raising antibodies for targets that do not require high assay sensitivities; it can also find uses as a biochemical research tool, as a possible replacement for immunoperoxidase-conjugates. PMID:27174700

  1. Development of molecularly targeted agents and immunotherapies in small cell lung cancer.

    PubMed

    Sharp, Adam; Bhosle, Jaishree; Abdelraouf, Fatma; Popat, Sanjay; O'Brien, Mary; Yap, Timothy A

    2016-06-01

    Small cell lung cancer (SCLC) is a smoking-induced malignancy with multiple toxin-associated mutations, which accounts for 15% of all lung cancers. It remains a clinical challenge with a rapid doubling time, early dissemination and poor prognosis. Despite multiple clinical trials in SCLC, platinum-based chemotherapy remains the mainstay of treatment in the first line advanced disease setting; good initial responses are nevertheless inevitably followed by disease relapse and survival ultimately remains poor. There are currently no molecularly targeted agents licenced for use in SCLC. Advances in sequencing the cancer genome and other high-throughput profiling technologies have identified aberrant pathways and mechanisms implicated in SCLC development and progression. Novel anti-tumour therapeutics that impact these putative targets are now being developed and investigated in SCLC. In this review, we discuss novel anti-tumour agents assessed in SCLC with reference to the complex molecular mechanisms implicated in SCLC development and progression. We focus on novel DNA damage response inhibitors, immune checkpoint modulators and antibody-drug conjugates that have shown promise in SCLC, and which may potentially transform treatment strategies in this disease. Finally, we envision the future management of SCLC and propose a biomarker-driven translational treatment paradigm for SCLC that incorporates next generation sequencing studies with patient tumours, circulating plasma DNA and functional imaging. Such modern strategies have the potential to transform the management and improve patient outcomes in SCLC. PMID:27060747

  2. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples.

    PubMed

    Qu, Guorun; Zheng, Sulian; Liu, Yumin; Xie, Wei; Wu, Aibo; Zhang, Dabing

    2009-10-01

    Molecularly imprinted polymers (MIPs) prepared in water-containing systems are more appropriate as adsorption materials in analyte extraction from biological samples. However, water as a polar solvent involved in the synthesis of MIPs frequently disrupts non-covalent interactions, and causes non-specific binding. In this study Fe(2+) was used as mediator to prepare MIPs, targeting tetracyclines (TCs) of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC), with TC as template molecule and methacrylic acid (MAA) as functional monomer. The subsequent binding assay indicated that Fe(2+) was responsible for substantially improved specific binding in recognition of TCs by decreasing the non-specific binding. Spectrophotometric analysis suggested the existence of the strong interactions among TC, metal ions and MAA in the mixture of methanol and water. Moreover, mass spectrometric measurements verified that Fe(2+) could bridge between TC and MAA to form a ternary complex of one TC, one Fe(2+) and four MAAs with a mass of 844.857. Furthermore, combined with molecularly imprinted solid-phase extraction (MISPE) for sample pretreatment, HPLC-UV analysis data revealed good performance of the obtained MIPs as adsorbents. The recoveries of TC, OTC and CTC in urine samples were 80.1-91.6%, 78.4-89.3% and 78.2-86.2%, respectively. This research strategy provides an example for preparation of desirable water-compatible MIPs extracting target drugs from aqueous samples by introducing metal ion as mediator into conventional polymerization system. PMID:19726243

  3. Nanomedicine strategies for molecular targets with MRI and optical imaging

    PubMed Central

    Pan, Dipanjan; Caruthers, Shelton D; Chen, Junjie; Winter, Patrick M; SenPan, Angana; Schmieder, Anne H; Wickline, Samuel A

    2010-01-01

    The science of ‘theranostics’ plays a crucial role in personalized medicine, which represents the future of patient management. Over the last decade an increasing research effort has focused on the development of nanoparticle-based molecular-imaging and drug-delivery approaches, emerging as a multidisciplinary field that shows promise in understanding the components, processes, dynamics and therapies of a disease at a molecular level. The potential of nanometer-sized agents for early detection, diagnosis and personalized treatment of diseases is extraordinary. They have found applications in almost all clinically relevant biomedical imaging modality. In this review, a number of these approaches will be presented with a particular emphasis on MRI and optical imaging-based techniques. We have discussed both established molecular-imaging approaches and recently developed innovative strategies, highlighting the seminal studies and a number of successful examples of theranostic nanomedicine, especially in the areas of cardiovascular and cancer therapy. PMID:20485473

  4. Molecular-Scale Electronics: From Concept to Function.

    PubMed

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics. PMID:26979510

  5. Molecular Targeted Approaches for Treatment of Pancreatic Cancer

    PubMed Central

    Huang, Z.Q.; Saluja, A.K.; Dudeja, V.; Vickers, S.M.; Buchsbaum, D.J.

    2012-01-01

    Human pancreatic cancer remains a highly malignant disease with almost similar incidence and mortality despite extensive research. Many targeted therapies are under development. However, clinical investigation showed that single targeted therapies and most combined therapies were not able to improve the prognosis of this disease, even though some of these therapies had excellent anti-tumor effects in pre-clinical models. Cross-talk between cell proliferation signaling pathways may be an important phenomenon in pancreatic cancer, which may result in cancer cell survival even though some pathways are blocked by targeted therapy. Pancreatic cancer may possess different characteristics and targets in different stages of pathogenesis, maintenance and metastasis. Sensitivity to therapy may also vary for cancer cells at different stages. The unique pancreatic cancer structure with abundant stroma creates a tumor microenvironment with hypoxia and low blood perfusion rate, which prevents drug delivery to cancer cells. In this review, the most commonly investigated targeted therapies in pancreatic cancer treatment are discussed. However, how to combine these targeted therapies and/or combine them with chemotherapy to improve the survival rate of pancreatic cancer is still a challenge. Genomic and proteomic studies using pancreatic cancer samples obtained from either biopsy or surgery are recommended to individualize tumor characters and to perform drug sensitivity study in order to design a tailored therapy with minimal side effects. These studies may help to further investigate tumor pathogenesis, maintenance and metastasis to create cellular expression profiles at different stages. Integration of the information obtained needs to be performed from multiple levels and dimensions in order to develop a successful targeted therapy. PMID:21777178

  6. RET-targeting molecular stratified non-small-cell lung cancers

    PubMed Central

    2013-01-01

    Recent advances in lung cancer genomics have successfully characterized therapeutic targets of lung cancer. RET fusion gene products are among the newest target molecules for lung adenocarcinoma. Preclinical findings and preliminary reports regarding potential tumor control by RET-targeting multi-kinase inhibitors encourage further clinical trials. The infrequent prevalence of RET fusion gene-positive cases may be a major obstacle hindering the development of RET-targeted therapy. Thus, it is necessary to recruit appropriate participants for trials to develop an efficient RET fusion gene detection system to achieve targeted therapy for lung adenocarcinomas stratified by this molecular target. PMID:25806272

  7. Synthesis and characterization of transferrin-targeted chemotherapeutic delivery systems prepared via RAFT copolymerization of high molecular weight PEG macromonomers

    PubMed Central

    Roy, Debashish; Berguig, Geoffrey Y; Ghosn, Bilal; Lane, Daniel; Braswell, Scott; Stayton, Patrick S; Convertine, Anthony J

    2014-01-01

    Reversible addition-fragmentation chain transfer (RAFT) polymerization was employed to prepare a nanoparticulate drug delivery system for chemotherapeutics. The nanoparticles contain a PEG “stealth” corona as well as reactive anhydride functionality designed for conjugating targeting proteins. The multifunctional carrier functionality was achieved by controlling the copolymerization of the hydrophobic monomer lauryl methacrylate (LMA), with a reactive anhydride functional methacrylate (TMA), and a large polyethyleneglycol methacrylate monomer (Mn~950 Da) (O950). RAFT polymerization kinetics of O950 were evaluated as a function of target degrees of polymerization (DP), initial chain transfer agent to initiator ratio ([CTA]o/[I]o), and solvent concentration. Excellent control over the polymerization was observed for target DPs of 25 and 50 at [CTA]o/[I]o ratio of 10 as evidenced by narrow and symmetric molecular weight distributions and the ability to prepare block copolymers. The TMA-functional copolymers were conjugated to the tumor targeting protein transferrin (Tf). The targeted copolymer was shown to encapsulate docetaxel at concentrations comparable to the commercial single vial formulation of docetaxel (Taxotere). In vitro cytotoxicity studies conducted in HeLa cells show that the Tf targeting enhances the cancer killing properties relative to the polymer encapsulated docetaxel formulation. PMID:25221630

  8. Targeted molecular trait stacking in cotton through targeted double-strand break induction

    PubMed Central

    D'Halluin, Kathleen; Vanderstraeten, Chantal; Van Hulle, Jolien; Rosolowska, Joanna; Van Den Brande, Ilse; Pennewaert, Anouk; D'Hont, Kristel; Bossut, Martine; Jantz, Derek; Ruiter, Rene; Broadhvest, Jean

    2013-01-01

    Recent developments of tools for targeted genome modification have led to new concepts in how multiple traits can be combined. Targeted genome modification is based on the use of nucleases with tailor-made specificities to introduce a DNA double-strand break (DSB) at specific target loci. A re-engineered meganuclease was designed for specific cleavage of an endogenous target sequence adjacent to a transgenic insect control locus in cotton. The combination of targeted DNA cleavage and homologous recombination–mediated repair made precise targeted insertion of additional trait genes (hppd, epsps) feasible in cotton. Targeted insertion events were recovered at a frequency of about 2% of the independently transformed embryogenic callus lines. We further demonstrated that all trait genes were inherited as a single genetic unit, which will simplify future multiple-trait introgression. PMID:23777410

  9. Selection of molecular targets for drug development against trypanosomatids.

    PubMed

    Smirlis, Despina; Soares, Milena Botelho Pereira

    2014-01-01

    Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of "druggability" and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the "target identification" and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design. PMID:24264240

  10. Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis

    PubMed Central

    Knoff, Jayne; Yang, Benjamin; Hung, Chien-Fu; Wu, T.-C.

    2014-01-01

    It is well known that human papillomavirus (HPV) is the causative agent of cervical cancer. The integration of HPV genes into the host genome causes the upregulation of E6 and E7 oncogenes. E6 and E7 proteins inactivate and degrade tumor suppressors p53 and retinoblastoma, respectively, leading to malignant progression. HPV E6 and E7 antigens are ideal targets for the development of therapies for cervical cancer and precursor lesions because they are constitutively expressed in infected cells and malignant tumors but not in normal cells and they are essential for cell immortalization and transformation. Immunotherapies are being developed to target E6/E7 by eliciting antigen-specific immune responses. siRNA technologies target E6/E7 by modulating the expression of the oncoproteins. Proteasome inhibitors and histone deacetylase inhibitors are being developed to indirectly target E6/E7 by interfering with their oncogenic activities. The ultimate goal for HPV-targeted therapies is the progression through clinical trials to commercialization. PMID:24533233

  11. Targeting molecular resistance in castration-resistant prostate cancer.

    PubMed

    Chandrasekar, Thenappan; Yang, Joy C; Gao, Allen C; Evans, Christopher P

    2015-01-01

    Multiple mechanisms of resistance contribute to the inevitable progression of hormone-sensitive prostate cancer to castration-resistant prostate cancer (CRPC). Currently approved therapies for CRPC include systemic chemotherapy (docetaxel and cabazitaxel) and agents targeting the resistance pathways leading to CRPC, including enzalutamide and abiraterone. While there is significant survival benefit, primary and secondary resistance to these therapies develops rapidly. Up to one-third of patients have primary resistance to enzalutamide and abiraterone; the remaining patients eventually progress on treatment. Understanding the mechanisms of resistance resulting in progression as well as identifying new targetable pathways remains the focus of current prostate cancer research. We review current knowledge of mechanisms of resistance to the currently approved treatments, development of adjunctive therapies, and identification of new pathways being targeted for therapeutic purposes. PMID:26329698

  12. Cancer stem cells: biological functions and therapeutically targeting.

    PubMed

    Ciurea, Marius Eugen; Georgescu, Ada Maria; Purcaru, Stefana Oana; Artene, Stefan-Alexandru; Emami, Ghazaleh Hooshyar; Boldeanu, Mihai Virgil; Tache, Daniela Elise; Dricu, Anica

    2014-01-01

    Almost all tumors are composed of a heterogeneous cell population, making them difficult to treat. A small cancer stem cell population with a low proliferation rate and a high tumorigenic potential is thought to be responsible for cancer development, metastasis and resistance to therapy. Stem cells were reported to be involved in both normal development and carcinogenesis, some molecular mechanisms being common in both processes. No less controversial, stem cells are considered to be important in treatment of malignant diseases both as targets and drug carriers. The efforts to understand the role of different signalling in cancer stem cells requires in depth knowledge about the mechanisms that control their self-renewal, differentiation and malignant potential. The aim of this paper is to discuss insights into cancer stem cells historical background and to provide a brief review of the new therapeutic strategies for targeting cancer stem cells. PMID:24821540

  13. Atlas-based identification of targets for functional radiosurgery

    SciTech Connect

    Stancanello, Joseph; Romanelli, Pantaleo; Modugno, Nicola; Cerveri, Pietro; Ferrigno, Giancarlo; Uggeri, Fulvio; Cantore, Giampaolo

    2006-06-15

    Functional disorders of the brain, such as Parkinson's disease, dystonia, epilepsy, and neuropathic pain, may exhibit poor response to medical therapy. In such cases, surgical intervention may become necessary. Modern surgical approaches to such disorders include radio-frequency lesioning and deep brain stimulation (DBS). The subthalamic nucleus (STN) is one of the most useful stereotactic targets available: STN DBS is known to induce substantial improvement in patients with end-stage Parkinson's disease. Other targets include the Globus Pallidus pars interna (GPi) for dystonia and Parkinson's disease, and the centromedian nucleus of the thalamus (CMN) for neuropathic pain. Radiosurgery is an attractive noninvasive alternative to treat some functional brain disorders. The main technical limitation to radiosurgery is that the target can be selected only on the basis of magnetic resonance anatomy without electrophysiological confirmation. The aim of this work is to provide a method for the correct atlas-based identification of the target to be used in functional neurosurgery treatment planning. The coordinates of STN, CMN, and GPi were identified in the Talairach and Tournoux atlas and transformed to the corresponding regions of the Montreal Neurological Institute (MNI) electronic atlas. Binary masks describing the target nuclei were created. The MNI electronic atlas was deformed onto the patient magnetic resonance imaging-T1 scan by applying an affine transformation followed by a local nonrigid registration. The first transformation was based on normalized cross correlation and the second on optimization of a two-part objective function consisting of similarity criteria and weighted regularization. The obtained deformation field was then applied to the target masks. The minimum distance between the surface of an implanted electrode and the surface of the deformed mask was calculated. The validation of the method consisted of comparing the electrode-mask distance to

  14. Progress of Molecular Targeted Therapies for Advanced Renal Cell Carcinoma

    PubMed Central

    Santoni, Matteo; Amantini, Consuelo; Burattini, Luciano; Berardi, Rossana; Santoni, Giorgio; Cascinu, Stefano; Muzzonigro, Giovanni

    2013-01-01

    Vascular endothelial growth factor (VEGF) plays a crucial role in tumor angiogenesis. VEGF expression in metastatic renal cell carcinoma (mRCC) is mostly regulated by hypoxia, predominantly via the hypoxia-induced factor (HIF)/Von Hippel-Lindau (VHL) pathway. Advances in our knowledge of VEGF role in tumor angiogenesis, growth, and progression have permitted development of new approaches for the treatment of mRCC, including several agents targeting VEGF and VEGF receptors: tyrosine kinase pathway, serine/threonine kinases, α5β1-integrin, deacetylase, CD70, mammalian target of rapamycin (mTOR), AKT, and phosphatidylinositol 3′-kinase (PI3K). Starting from sorafenib and sunitinib, several targeted therapies have been approved for mRCC treatment, with a long list of agents in course of evaluation, such as tivozanib, cediranib, and VEGF-Trap. Here we illustrate the main steps of tumor angiogenesis process, defining the pertinent therapeutic targets and the efficacy and toxicity profiles of these new promising agents. PMID:24093097

  15. Transcription factors: molecular targets for prostate cancer intervention by phytochemicals.

    PubMed

    Kaur, Manjinder; Agarwal, Rajesh

    2007-06-01

    With increasing incidence of cancer at most of the sites, and growing economic burden and associated psychological and emotional trauma, it is becoming clearer that more efforts are needed for cancer cure. Since most of the chemotherapeutic drugs are non-selective because they are also toxic to the normal cells, new and improved strategies are needed that selectively target the killing of cancer cells. Since aberrant activation of numerous signaling pathways is a key element of cancer cell survival and growth, blocking all of them is not that practical, which leads to the step where most of them commonly converge; the transcription factors. Recent research efforts, therefore, are also directed on targeting the activity and activation of transcription factors, which ultimately control the expression of genes that are involved in almost all aspects of cell biology. One class of agents that is becoming increasingly successful, not only in targeting signaling cascades, but also transcription factors is phytochemicals present in diet and those consumed as supplement. The added advantage with these agents is that they are mostly non-toxic when compared to chemotherapeutic agents. This review focuses on the efficacy of various phytochemicals in targeting transcription factors such as AR, Sp1, STATs, E2F, Egr1, c-Myc, HIF-1 alpha, NF-kappaB, AP-1, ETS2, GLI and p53 in the context of prostate cancer intervention. PMID:17979630

  16. Molecular and Physiological Mechanisms of Membrane Receptor Systems Functioning

    PubMed Central

    Severin, E.S.; Savvateeva, M.V.

    2011-01-01

    Molecular physiology is a new interdisciplinary field of knowledge that looks into how complicated biological systems function. The living cell is a relatively simple, but at the same time very sophisticated biological system. After the sequencing of the human genome, molecular physiology has endeavored to investigate the systems of cellular interactions at a completely new level based on knowledge of the spatial organization and functions of receptors, their ligands, and protein-protein interactions. In recent years, the achievements in molecular physiology have centered on the study of sensor reception mechanisms and intercellular data transfer, as well as the immune system physiology, amongst other processes. PMID:22649671

  17. Orbit targeting specialist function: Level C formulation requirements

    NASA Technical Reports Server (NTRS)

    Dupont, A.; Mcadoo, S.; Jones, H.; Jones, A. K.; Pearson, D.

    1978-01-01

    A definition of the level C requirements for onboard maneuver targeting software is provided. Included are revisions of the level C software requirements delineated in JSC IN 78-FM-27, Proximity Operations Software; Level C Requirements, dated May 1978. The software supports the terminal phase midcourse (TPM) maneuver, braking and close-in operations as well as supporting computation of the rendezvous corrective combination maneuver (NCC), and the terminal phase initiation (TPI). Specific formulation is contained here for the orbit targeting specialist function including the processing logic, linkage, and data base definitions for all modules. The crew interface with the software is through the keyboard and the ORBIT-TGT display.

  18. Imaging of Isotopically Enhanced Molecular Targeting Agents Final Report

    SciTech Connect

    Quong, J N

    2004-02-19

    The goal of this project is to develop experimental and computational protocols to use SIMS to image the chemical composition of biological samples, focusing on optimizing sample preparation protocols and developing multivariate data analysis methods. Our results on sample preparation, molecular imaging, and multivariate analysis have been presented at several meeting abstracts (UCRL151797ABS, UCRL151797ABSREV1, UCRL151426ABS, UCRL201277, UCRL154757). A refereed paper describing our results for sample preparation and molecular imaging of various endogenous biomolecules as well as the mutagen PhIP has been accepted for publication (UCRL-JC-151797). We are also preparing two additional papers describing our multivariate analysis methods to analyze spectral data. As these papers have not been submitted, their content is included in this final report.

  19. MOLECULAR AND FUNCTIONAL CHARACTERIZATIONS OF IL-17

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In mammals, the IL-17 family of cytokines (IL-17A-F) has a very distinct expression pattern and a different biological function. IL-17 is mainly secreted by activated CD4+ T cells and has been implicated in autoimmune and inflammatory diseases. IL-17 has been shown to exert an important role in host...

  20. Cellular and molecular basis of cholinergic function

    SciTech Connect

    Dowdall, M.J.; Hawthorne, J.N.

    1987-01-01

    This book contains 105 selections. Some of the titles are: Functional correlates of brain nicotine receptors; Muscarinic receptor subclasses; Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system; Developmentally regulated neurontrophic activities of Torpedo electric organ tissue; and Association of a regulatory peptide with cholinergic neurons.

  1. All-Atom Molecular Dynamics of Virus Capsids as Drug Targets.

    PubMed

    Perilla, Juan R; Hadden, Jodi A; Goh, Boon Chong; Mayne, Christopher G; Schulten, Klaus

    2016-05-19

    Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid-protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways. When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Here, the current challenges of performing all-atom capsid-drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets. PMID:27128262

  2. Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies

    PubMed Central

    Rajkumar, Shivshankari; Watson, Ian R

    2016-01-01

    Large-scale genomic analyses of cutaneous melanoma have revealed insights into the aetiology and heterogeneity of this disease, as well as opportunities to further personalise treatment for patients with targeted and immune therapies. Herein, we review the proposed genomic classification of cutaneous melanoma from large-scale next-generation sequencing studies, including the largest integrative analysis of melanoma from The Cancer Genome Atlas (TCGA) Network. We examine studies that have identified molecular features of melanomas linked to immune checkpoint inhibitor response. In addition, we draw attention to low-frequency actionable mutations and highlight frequent non-coding mutations in melanoma where little is known about their biological function that may provide novel avenues for the development of treatment strategies for melanoma patients. PMID:27336610

  3. All-Atom Molecular Dynamics of Virus Capsids as Drug Targets

    PubMed Central

    2016-01-01

    Virus capsids are protein shells that package the viral genome. Although their morphology and biological functions can vary markedly, capsids often play critical roles in regulating viral infection pathways. A detailed knowledge of virus capsids, including their dynamic structure, interactions with cellular factors, and the specific roles that they play in the replication cycle, is imperative for the development of antiviral therapeutics. The following Perspective introduces an emerging area of computational biology that focuses on the dynamics of virus capsids and capsid–protein assemblies, with particular emphasis on the effects of small-molecule drug binding on capsid structure, stability, and allosteric pathways. When performed at chemical detail, molecular dynamics simulations can reveal subtle changes in virus capsids induced by drug molecules a fraction of their size. Here, the current challenges of performing all-atom capsid–drug simulations are discussed, along with an outlook on the applicability of virus capsid simulations to reveal novel drug targets. PMID:27128262

  4. Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria.

    PubMed

    Agrawal, Anurag; Mabalirajan, Ulaganathan

    2016-01-15

    Altered bioenergetics with increased mitochondrial reactive oxygen species production and degradation of epithelial function are key aspects of pathogenesis in asthma and chronic obstructive pulmonary disease (COPD). This motif is not unique to obstructive airway disease, reported in related airway diseases such as bronchopulmonary dysplasia and parenchymal diseases such as pulmonary fibrosis. Similarly, mitochondrial dysfunction in vascular endothelium or skeletal muscles contributes to the development of pulmonary hypertension and systemic manifestations of lung disease. In experimental models of COPD or asthma, the use of mitochondria-targeted antioxidants, such as MitoQ, has substantially improved mitochondrial health and restored respiratory function. Modulation of noncoding RNA or protein regulators of mitochondrial biogenesis, dynamics, or degradation has been found to be effective in models of fibrosis, emphysema, asthma, and pulmonary hypertension. Transfer of healthy mitochondria to epithelial cells has been associated with remarkable therapeutic efficacy in models of acute lung injury and asthma. Together, these form a 3R model--repair, reprogramming, and replacement--for mitochondria-targeted therapies in lung disease. This review highlights the key role of mitochondrial function in lung health and disease, with a focus on asthma and COPD, and provides an overview of mitochondria-targeted strategies for rejuvenating cellular respiration and optimizing respiratory function in lung diseases. PMID:26566906

  5. Targeting G protein coupled receptor-related pathways as emerging molecular therapies

    PubMed Central

    Ghanemi, Abdelaziz

    2013-01-01

    G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties. PMID:25972730

  6. Advancing Treatment of Pituitary Adenomas through Targeted Molecular Therapies: The Acromegaly and Cushing Disease Paradigms

    PubMed Central

    Mooney, Michael A.; Simon, Elias D.; Little, Andrew S.

    2016-01-01

    The current treatment of pituitary adenomas requires a balance of conservative management, surgical resection, and in select tumor types, molecular therapy. Acromegaly treatment is an evolving field where our understanding of molecular targets and drug therapies has improved treatment options for patients with excess growth hormone levels. We highlight the use of molecular therapies in this disease process and advances in this field, which may represent a paradigm shift for the future of pituitary adenoma treatment. PMID:27517036

  7. T Cell Signaling Targets for Enhancing Regulatory or Effector Function

    PubMed Central

    Pan, Fan; Fan, Huimin; Liu, Zhongmin; Jiang, Shuiping

    2015-01-01

    To respond to infection, resting or naïve T cells must undergo activation, clonal expansion, and differentiation into specialized functional subsets of effector T cells. However, to prevent excessive or self-destructive immune responses, regulatory T cells (Tregs) are instrumental in suppressing the activation and function of effector cells, including effector T cells. The transcription factor Forkhead box P3 (Foxp3) regulates the expression of genes involved in the development and function of Tregs. Foxp3 interacts with other transcription factors and with epigenetic elements such as histone deacetylases (HDACs) and histone acetyltransferases. Treg suppressive function can be increased by exposure to HDAC inhibitors. The individual contributions of different HDAC family members to Treg function and their respective mechanisms of action, however, remain unclear. A study showed that HDAC6, HDAC9, and Sirtuin-1 had distinct effects on Foxp3 expression and function, suggesting that selectively targeting HDACs individually or in combination may enhance Treg stability and suppressive function. Another study showed that the receptor programmed death 1 (PD-1), a well-known inhibitor of T cell activation, halted cell cycle progression in effector T cells by inhibiting the transcription of the gene encoding the substrate-recognition component (Skp2) of the ubiquitin ligase SCFSkp2. Together, these findings reveal new signaling targets for enhancing Treg or effector T cell function that may be helpful in designing future therapies, either to increase Treg suppressive function in transplantation and autoimmune diseases or to block PD-1 function, thus increasing the magnitude of antiviral or antitumor immune responses of effector T cells. PMID:22855503

  8. A functional test of Neandertal and modern human mitochondrial targeting sequences

    SciTech Connect

    Gralle, Matthias; Schaefer, Ingo; Seibel, Peter; Paeaebo, Svante

    2010-11-26

    Research highlights: {yields} Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. {yields} The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. {yields} In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  9. Target Selection and Determination of Function in Structural Genomics

    PubMed Central

    Watson, James D.; Todd, Annabel E.; Bray, James; Laskowski, Roman A.; Edwards, Aled; Joachimiak, Andrzej; Orengo, Christine A.; Thornton, Janet M.

    2011-01-01

    Summary The first crucial step in any structural genomics project is the selection and prioritization of target proteins for structure determination. There may be a number of selection criteria to be satisfied, including that the proteins have novel folds, that they be representatives of large families for which no structure is known, and so on. The better the selection at this stage, the greater is the value of the structures obtained at the end of the experimental process. This value can be further enhanced once the protein structures have been solved if the functions of the given proteins can also be determined. Here we describe the methods used at either end of the experimental process: firstly, sensitive sequence comparison techniques for selecting a high-quality list of target proteins, and secondly the various computational methods that can be applied to the eventual 3D structures to determine the most likely biochemical function of the proteins in question. PMID:12880206

  10. Integrative systems medicine approaches to identify molecular targets in lymphoid malignancies.

    PubMed

    Frazzi, Raffaele; Auffray, Charles; Ferrari, Angela; Filippini, Perla; Rutella, Sergio; Cesario, Alfredo

    2016-01-01

    Although survival rates for lymphoproliferative disorders are steadily increasing both in the US and in Europe, there is need for optimizing front-line therapies and developing more effective salvage strategies. Recent advances in molecular genetics have highlighted the biological diversity of lymphoproliferative disorders. In particular, integrative approaches including whole genome sequencing, whole exome sequencing, and transcriptome or RNA sequencing have been instrumental to the identification of molecular targets for treatment. Herein, we will discuss how genomic, epigenomic and proteomic approaches in lymphoproliferative disorders have supported the discovery of molecular lesions and their therapeutic targeting in the clinic. PMID:27580852

  11. Targeting molecular interactions essential for Plasmodium sexual reproduction

    PubMed Central

    Vega-Rodriguez, Joel; Perez-Barreto, Davinia; Ruiz-Reyes, Antonio; Jacobs-Lorena, Marcelo

    2015-01-01

    Summary Malaria remains one of the most devastating infectious diseases, killing up to a million people every year. Whereas much progress has been made in understanding the life cycle of the parasite in the human host and in the mosquito vector, significant gaps of knowledge remain. Fertilization of malaria parasites, a process that takes place in the lumen of the mosquito midgut, is poorly understood and the molecular interactions (receptor–ligand) required for Plasmodium fertilization remain elusive. By use of a phage display library, we identified FG1 (Female Gamete peptide 1), a peptide that binds specifically to the surface of female Plasmodium berghei gametes. Importantly, FG1 but not a scrambled version of the peptide, strongly reduces P. berghei oocyst formation by interfering with fertilization. In addition, FG1 also inhibits P. falciparum oocyst formation suggesting that the peptide binds to a molecule on the surface of the female gamete whose structure is conserved. Identification of the molecular interactions disrupted by the FG1 peptide may lead to the development of novel malaria transmission-blocking strategies. PMID:25944054

  12. Selective targeting of Mycobacterium smegmatis with trehalose-functionalized nanoparticles†

    PubMed Central

    Jayawardana, Kalana W.; Jayawardena, H. Surangi N.; Wijesundera, Samurdhi A.; De Zoysa, Thareendra; Sundhoro, Madanodaya

    2015-01-01

    Silica and iron oxide nanoparticles with sizes ranging from 6 to 40 nm were functionalized with trehalose. The trehalose-conjugated nanoparticles showed strong interactions with Mycobacterium smegmatis (M. smegmatis) and minimal interactions with macrophage (RAW 264.7) or A549 cells. In addition, trehalose-conjugated silica nanoparticles selectively interacted with M. smegmatis on M. smegmatis-treated A549 cells, demonstrating high potential of trehalose in developing targeted therapy for treating mycobacterial infection. PMID:26121049

  13. The molecular basis of targeting protein kinases in cancer therapeutics.

    PubMed

    Tsai, Chung-Jung; Nussinov, Ruth

    2013-08-01

    In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers. PMID:23651790

  14. Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics

    PubMed Central

    Hellebust, Anne; Richards-Kortum, Rebecca

    2012-01-01

    Over the last three decades, our understanding of the molecular changes associated with cancer development and progression has advanced greatly. This has led to new cancer therapeutics targeted against specific molecular pathways; such therapies show great promise to reduce mortality, in part by enabling physicians to tailor therapy for patients based on a molecular profile of their tumor. Unfortunately, the tools for definitive cancer diagnosis – light microscopic examination of biopsied tissue stained with nonspecific dyes – remain focused on the analysis of tissue ex vivo. There is an important need for new clinical tools to support the molecular diagnosis of cancer. Optical molecular imaging is emerging as a technique to help meet this need. Targeted, optically active contrast agents can specifically label extra-and intracellular biomarkers of cancer. Optical images can be acquired in real time with high spatial resolution to image-specific molecular targets, while still providing morphologic context. This article reviews recent advances in optical molecular imaging, highlighting the advances in technology required to improve early cancer detection, guide selection of targeted therapy and rapidly evaluate therapeutic efficacy. PMID:22385200

  15. Cell-type-specific, Aptamer-functionalized Agents for Targeted Disease Therapy

    PubMed Central

    Zhou, Jiehua; Rossi, John J.

    2014-01-01

    One hundred years ago, Dr. Paul Ehrlich popularized the “magic bullet” concept for cancer therapy in which an ideal therapeutic agent would only kill the specific tumor cells it targeted. Since then, “targeted therapy” that specifically targets the molecular defects responsible for a patient's condition has become a long-standing goal for treating human disease. However, safe and efficient drug delivery during the treatment of cancer and infectious disease remains a major challenge for clinical translation and the development of new therapies. The advent of SELEX technology has inspired many groundbreaking studies that successfully adapted cell-specific aptamers for targeted delivery of active drug substances in both in vitro and in vivo models. By covalently linking or physically functionalizing the cell-specific aptamers with therapeutic agents, such as siRNA, microRNA, chemotherapeutics or toxins, or delivery vehicles, such as organic or inorganic nanocarriers, the targeted cells and tissues can be specifically recognized and the therapeutic compounds internalized, thereby improving the local concentration of the drug and its therapeutic efficacy. Currently, many cell-type-specific aptamers have been developed that can target distinct diseases or tissues in a cell-type-specific manner. In this review, we discuss recent advances in the use of cell-specific aptamers for targeted disease therapy, as well as conjugation strategies and challenges. PMID:24936916

  16. Metastatic cancer stem cells: new molecular targets for cancer therapy.

    PubMed

    Leirós, G J; Balañá, M E

    2011-11-01

    The cancer stem cell (CSC) hypothesis, predicts that a small subpopulation of cancer cells that possess "stem-like" characteristics, are responsible for initiating and maintaining cancer growth. According to the CSC model the many cell populations found in a tumour might represent diverse stages of differentiation. From the cellular point of view metastasis is considered a highly inefficient process and only a subset of tumour cells is capable of successfully traversing the entire metastatic cascade and eventually re-initiates tumour growth at distant sites. Some similar features of both normal and malignant stem cells suggest that CSCs are not only responsible for tumorigenesis, but also for metastases. The CSC theory proposes that the ability of a tumour to metastasize is an inherent property of a subset of CSCs. The similar biological characteristics shared by normal stem cells (NSCs) and CSCs mainly implicate self-renewal and differentiation potential, survival ability, niche-specific microenvironment requirements and specific homing to metastatic sites and may have important implications in terms of new approaches to cancer therapy in the metastatic setting. There are several agents targeting many of these CSC features that have shown to be effective both in vitro and in vivo. Although clinical trials results are still preliminary and continue under investigation, these new therapies are very promising. The identification of new therapeutic targets and drugs based on CSC model constitutes a great challenge. PMID:21470128

  17. Molecular Pathways: Targeting DNA Repair Pathway Defects Enriched in Metastasis.

    PubMed

    Corcoran, Niall M; Clarkson, Michael J; Stuchbery, Ryan; Hovens, Christopher M

    2016-07-01

    The maintenance of a pristine genome, free from errors, is necessary to prevent cellular transformation and degeneration. When errors in DNA are detected, DNA damage repair (DDR) genes and their regulators are activated to effect repair. When these DDR pathways are themselves mutated or aberrantly downregulated, cancer and neurodegenerative disorders can ensue. Multiple lines of evidence now indicate, however, that defects in key regulators of DNA repair pathways are highly enriched in human metastasis specimens and hence may be a key step in the acquisition of metastasis and the ability of localized disease to disseminate. Some of the key regulators of checkpoints in the DNA damage response are the TP53 protein and the PARP enzyme family. Targeting of these pathways, especially through PARP inhibition, is now being exploited therapeutically to effect significant clinical responses in subsets of individuals, particularly in patients with ovarian cancer or prostate cancer, including cancers with a marked metastatic burden. Targeting DNA repair-deficient tumors with drugs that take advantage of the fundamental differences between normal repair-proficient cells and repair-deficient tumors offers new avenues for treating advanced disease in the future. Clin Cancer Res; 22(13); 3132-7. ©2016 AACR. PMID:27169997

  18. Molecular targets of natural health products in arthritis.

    PubMed

    Khalifé, Sarah; Zafarullah, Muhammad

    2011-01-01

    Patients with rheumatoid arthritis (RA) and osteoarthritis (OA) consume 'natural health products' (NHPs) whose therapeutic efficacy, toxicity and mechanisms of action are poorly understood. In a previous issue of Arthritis Research and Therapy, Haqqi and colleagues characterized IL-1-activated mitogen-activated protein kinase kinase 3 (MKK3) and p38-mitogen-activated protein kinase (MAPK) isoforms in human OA chondrocytes. The cartilageprotective mechanisms of pomegranate extract involve diminishing MKK3-activated p38α, JNK, NF-κB and Runx2 pathways, which regulate inflammatory proteins and cartilage-destroying proteases. Epigallocatechin- 3-gallate, resveratrol, curcumin and other NHP active ingredients suppress multiple inflammatory and catabolic molecular mediators of arthritis. Non-toxicity, reduced severity and incidence of arthritis in animal models warrant testing NHP active ingredients for preventing human OA and RA. PMID:21345249

  19. MOLECULAR ALTERATIONS IN GLIOBLASTOMA: POTENTIAL TARGETS FOR IMMUNOTHERAPY

    PubMed Central

    Haque, Azizul; Banik, Naren L.; Ray, Swapan K.

    2015-01-01

    Glioblastoma is the most common and deadly brain tumor, possibly arising from genetic and epigenetic alterations in normal astroglial cells. Multiple cytogenetic, chromosomal, and genetic alterations have been identified in glioblastoma, with distinct expression of antigens (Ags) and biomarkers that may alter therapeutic potential of this aggressive cancer. Current therapy consists of surgical resection, followed by radiation therapy and chemotherapy. In spite of these treatments, the prognosis for glioblastoma patients is poor. Although recent studies have focused on the development of novel immunotherapeutics against glioblastoma, little is known about glioblastoma specific immune responses. A better understanding of the molecular interactions among glioblastoma tumors, host immune cells, and the tumor microenvironment may give rise to novel integrated approaches for the simultaneous control of tumor escape pathways and the activation of antitumor immune responses. This review provides a detailed overview concerning genetic alterations in glioblastoma, their effects on Ag and biomarker expression and the future design of chemoimmunotherapeutics against glioblastoma. PMID:21199773

  20. Molecular signaling and targets from itch: lessons for cough

    PubMed Central

    2013-01-01

    Itch is described as an unpleasant sensation that elicits the desire to scratch, which results in the removal of the irritant from the skin. The cough reflex also results from irritation, with the purpose of removing said irritant from the airway. Could cough then be similar to itch? Anatomically, both pathways are mediated by small-diameter sensory fibers. These cough and itch sensory fibers release neuropeptides upon activation, which leads to inflammation of the nerves. Both cough and itch also involve mast cells and their mediators, which are released upon degranulation. This common inflammation and interaction with mast cells are involved in the development of chronic conditions of itch and cough. In this review, we examine the anatomy and molecular mechanisms of itch and compare them to known mechanisms for cough. Highlighting the common aspects of itch and cough could lead to new thoughts and perspectives in both fields. PMID:23497684

  1. Molecular targets of epigenetic regulation and effectors of environmental influences

    SciTech Connect

    Choudhuri, Supratim; Cui Yue; Klaassen, Curtis D.

    2010-06-15

    The true understanding of what we currently define as epigenetics evolved over time as our knowledge on DNA methylation and chromatin modifications and their effects on gene expression increased. The current explosion of research on epigenetics and the increasing documentation of the effects of various environmental factors on DNA methylation, chromatin modification, as well as on the expression of small non-coding RNAs (ncRNAs) have expanded the scope of research on the etiology of various diseases including cancer. The current review briefly discusses the molecular mechanisms of epigenetic regulation and expands the discussion with examples on the role of environment, such as the immediate environment during development, in inducing epigenetic changes and modulating gene expression.

  2. idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach

    PubMed Central

    Wang, Jui-Chih; Chu, Pei-Ying; Chen, Chung-Ming; Lin, Jung-Hsin

    2012-01-01

    Identification of possible protein targets of small chemical molecules is an important step for unravelling their underlying causes of actions at the molecular level. To this end, we construct a web server, idTarget, which can predict possible binding targets of a small chemical molecule via a divide-and-conquer docking approach, in combination with our recently developed scoring functions based on robust regression analysis and quantum chemical charge models. Affinity profiles of the protein targets are used to provide the confidence levels of prediction. The divide-and-conquer docking approach uses adaptively constructed small overlapping grids to constrain the searching space, thereby achieving better docking efficiency. Unlike previous approaches that screen against a specific class of targets or a limited number of targets, idTarget screen against nearly all protein structures deposited in the Protein Data Bank (PDB). We show that idTarget is able to reproduce known off-targets of drugs or drug-like compounds, and the suggested new targets could be prioritized for further investigation. idTarget is freely available as a web-based server at http://idtarget.rcas.sinica.edu.tw. PMID:22649057

  3. Tyrosine kinase receptors as molecular targets In pheochromocytomas and paragangliomas

    PubMed Central

    Cassol, Clarissa A.; Winer, Daniel; Liu, Wei; Guo, Miao; Ezzat, Shereen; Asa, Sylvia L.

    2016-01-01

    Pheochromocytomas and paragangliomas are neuroendocrine tumors shown to be responsive to multi-targeted tyrosine kinase inhibitor treatment. Despite growing knowledge regarding their genetic basis, the ability to predict behavior in these tumors remains challenging. There is also limited knowledge of their tyrosine kinase receptor expression and whether the clinical response observed to the tyrosine kinase inhibitor Sunitinib relates only to its anti-angiogenic properties or also due to a direct effect on tumor cells. To answer these questions, an in vitro model of sunitinib treatment of a pheochromocytoma cell line was created. Sunitinib targets (VEGFRs, PDGFRs, C-KIT), FGFRs and cell cycle regulatory proteins were investigated in human tissue microarrays. SDHB immunohistochemistry was used as a surrogate marker for the presence of succinate dehydrogenase mutations. The FGFR4 G388R SNP was also investigated. Sunitinib treatment in vitro decreases cell proliferation mainly by targeting cell cycle, DNA metabolism, and cell organization genes. FGFR1, -2 and -4, VEGFR2, PDGFRα and p16 were overexpressed in primary human pheochromocytomas and paragangliomas. Discordant results were observed for VEGFR1, p27 and p21 (overexpressed in paragangliomas but underexpressed in pheochromoctyomas); PDGFRβ, Rb and Cyclin D1 (overexpressed in paragangliomas only) and FGFR3 (overexpressed in pheochromocytomas and underexpressed in paragangliomas). Low expression of C-KIT, p53, Aurora Kinase A and B was observed. Nuclear FGFR2 expression was associated with increased risk of metastasis (odds ratio [OR]=7.61; p=0.008), as was membranous PDGFRα (OR= 13.71, p=0.015), membranous VEGFR1 (OR=8.01; p=0.037), nuclear MIB1 (OR=1.26, p=0.008) and cytoplasmic p27 (OR=1.037, p=0.030). FGFR3, VEGFR2 and C-KIT levels were associated with decreased risk of metastasis. We provide new insights into the mechanistic actions of sunitinib in pheochromoctyomas and paragangliomas and support current

  4. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    PubMed Central

    Jiang, Feng; Liu, Biao; Lu, Jun; Li, Fangfei; Li, Defang; Liang, Chao; Dang, Lei; Liu, Jin; He, Bing; Atik Badshah, Shaikh; Lu, Cheng; He, Xiaojuan; Guo, Baosheng; Zhang, Xiao-Bing; Tan, Weihong; Lu, Aiping; Zhang, Ge

    2015-01-01

    Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX), are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems. PMID:26473828

  5. Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides.

    PubMed Central

    Matringe, M; Camadro, J M; Labbe, P; Scalla, R

    1989-01-01

    Diphenyl ether herbicides induce an accumulation of protoporphyrin IX in plant tissues. By analogy to human porphyria, the accumulation could be attributed to decreased (Mg or Fe)-chelatase or protoporphyrinogen oxidase activities. Possible effects of acifluorfen-methyl on these enzymes were investigated in isolated corn (maize, Zea mays) etioplasts, potato (Solanum tuberosum) and mouse mitochondria, and yeast mitochondrial membranes. Acifluorfen-methyl was strongly inhibitory to protoporphyrinogen oxidase activities whatever their origins [concn. causing 50% inhibition (IC50) = 4 nM for the corn etioplast enzyme]. By contrast, it was roughly 100,000 times less active on (Mg or Fe)-chelatase activities (IC50 = 80-100 microM). Our results lead us to propose protoporphyrinogen oxidase as a cellular target for diphenyl ether herbicides. PMID:2775186

  6. Curcumin: a Polyphenol with Molecular Targets for Cancer Control.

    PubMed

    Qadir, Muhammad Imran; Naqvi, Syeda Tahira Qousain; Muhammad, Syed Aun

    2016-01-01

    Curcumin, is a polyphenol from Curcuma longa (turmeric plant), is a polyphenol that belongs to the ginger family which has long been used in Ayurveda medicines to treat various diseases such as asthma, anorexia, coughing, hepatic diseases, diabetes, heart diseases, wound healing and Alzheimer's. Various studies have shown that curcumin has anti-infectious, anti-inflammatory, anti-oxidant, hepatoprotective, thrombosuppressive, cardio protective, anti-arthritic, chemo preventive and anti-carcinogenic activities. It may suppress both initiation and progression stages of cancer. Anticancer activity of curcumin is due to negative regulation of inflammatory cytokines, transcription factors, protein kinases, reactive oxygen species (ROS) and oncogenes. This review focuses on the different targets of curcumin to treat cancer. PMID:27356682

  7. [Depression and addiction comorbidity: towards a common molecular target?].

    PubMed

    Arango-Lievano, Margarita; Kaplitt, Michael G

    2015-05-01

    The comorbidity of depression and cocaine addiction suggests shared mechanisms and anatomical pathways. Specifically, the limbic structures, such as the nucleus accumbens (NAc), play a crucial role in both disorders. P11 (S100A10) is a promising target for manipulating depression and addiction in mice. We summarized the recent genetic and viral strategies used to determine how the titration of p11 levels within the NAc affects hedonic behavior and cocaine reward learning in mice. In particular, p11 in the ChAT+ cells or DRD1+ MSN of the NAc, controls depressive-like behavior or cocaine reward, respectively. Treatments to counter maladaptation of p11 levels in the NAc could provide novel therapeutic opportunities for depression and cocaine addiction in humans. PMID:26059306

  8. Novel molecular targeted therapies for refractory thyroid cancer.

    PubMed

    Perez, Cesar A; Santos, Edgardo S; Arango, Belisario A; Raez, Luis E; Cohen, Ezra E W

    2012-05-01

    The incidence of thyroid cancer continues to increase and this neoplasia remains the most common endocrine malignancy. No effective systemic treatment currently exists for iodine-refractory differentiated or medullary thyroid carcinoma, but recent advances in the pathogenesis of these diseases have revealed key targets that are now being evaluated in the clinical setting. RET (rearranged during transfection)/PTC (papillary thyroid carcinoma) gene rearrangements, B-Raf gene mutations, and vascular endothelial growth factor receptor 2 (VEGFR-2) angiogenesis pathways are some of the known genetic alterations playing a crucial role in the development of thyroid cancer. Several novel agents have demonstrated promising responses. Of the treatments studied, multi-kinase inhibitors such as axitinib, sorafenib, motesanib, and XL-184 have shown to be the most effective by inducing clinical responses and stabilizing the disease process. Randomized clinical trials are currently evaluating these agents, results that may soon change the management of thyroid cancer. PMID:21544895

  9. A Molecularly Targeted Theranostic Probe for Ovarian Cancer

    PubMed Central

    Chen, Wenxue; Bardhan, Rizia; Bartels, Marc; Perez-Torres, Carlos; Pautler, Robia G.; Halas, Naomi J.; Joshi, Amit

    2014-01-01

    Overexpression of the human epidermal growth factor receptor (HER) family has been implicated in ovarian cancer because of its participation in signaling pathway regulating cellular proliferation, differentiation, motility, and survival. Currently, effective diagnostic and therapeutic schemes are lacking for treating ovarian cancer and consequently ovarian cancer has a high mortality rate. While HER2 receptor expression does not usually affect the survival rates of ovarian cancer to the same extent as in breast cancer, it can be employed as a docking site for directed nanotherapies in cases with de novo or acquired chemotherapy resistance. In this study, we have exploited a novel gold nanoshell-based complex (nanocomplex) for targeting, dual modal imaging, and photothermal therapy of HER2 overexpressing and drug resistant ovarian cancer OVCAR3 cells in vitro. The nanocomplexes are engineered to simultaneously provide contrast as fluorescence optical imaging probe and a magnetic resonance imaging (MRI) agent. Both immunofluorescence staining and MRI successfully demonstrate that nanocomplex-anti-HER2 conjugates specifically bind to OVCAR3 cells as opposed to the control, MDA-MB-231 cells, which have low HER2 expression. In addition, nanocomplexes targeted to OVCAR3 cells, when irradiated with near infrared (NIR) laser result in selective destruction of cancer cells through photothermal ablation. We also demonstrate that NIR light therapy and the nanocomplexes by themselves are non-cytotoxic in vitro. To the best of our knowledge, this is the first demonstration of a successful integration of dual modal bioimaging with photothermal cancer therapy for treatment of ovarian cancer. Based on their efficacy in vitro, these nanocomplexes are highly promising for image guided photo-thermal therapy of ovarian cancer as well as other HER2 overexpressing cancers. PMID:20371708

  10. Molecular targets to promote central nervous system regeneration.

    PubMed

    Ferraro, Gino B; Alabed, Yazan Z; Fournier, Alyson E

    2004-01-01

    Trauma in the adult mammalian central nervous system (CNS) results in devastating clinical consequences due to the failure of injured axons to spontaneously regenerate. This regenerative failure can be attributed to both a lack of positive cues and to the presence of inhibitory cues that actively prevent regeneration. Substantial progress has been made in elucidating the molecular identity of negative cues present at the CNS injury site following injury. In the past several years, multiple myelin-associated inhibitors including Nogo, Myelin-associated glycoprotein and Oligodendrocyte-myelin glycoprotein have been characterized. Furthermore a neuronal receptor complex and several intracellular substrates leading to outgrowth inhibition have been identified. Rapid progress has also been made in identifying the role of neurotrophins and other positive cues in promoting axonal regrowth. The most recent advances in our understanding of positive stimuli for axon regeneration come from transplantation studies at the CNS lesion site. A number of artificial substrates, tissues, and cells including fetal cells, neural stem cells, Schwann cells and olfactory-ensheathing cells have been tested in animal models of CNS injury. Based on our expanded knowledge of inhibitory influences and on the positive characteristics of various transplants, a number of interventions have been tested to promote recovery in models of CNS trauma. These advances represent the first steps in developing a viable therapy to promote axon regeneration following CNS trauma. PMID:16181067

  11. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  12. Engineering and Assembly of Protein Modules into Functional Molecular Systems.

    PubMed

    Hirschi, Stephan; Stauffer, Mirko; Harder, Daniel; Müller, Daniel J; Meier, Wolfgang; Fotiadis, Dimitrios

    2016-01-01

    Synthetic biology approaches range from the introduction of unique features into organisms to the assembly of isolated biomacromolecules or synthetic building blocks into artificial biological systems with biomimetic or completely novel functionalities. Simple molecular systems can be based on containers on the nanoscale that are equipped with tailored functional modules for various applications in healthcare, industry or biological and medical research. The concept, or vision, of assembling native or engineered proteins and/or synthetic components as functional modules into molecular systems is discussed. The main focus is laid on the engineering of energizing modules generating chemical energy, transport modules using this energy to translocate molecules between compartments of a molecular system, and catalytic modules (bio-)chemically processing the molecules. Further key aspects of this discourse are possible approaches for the assembly of simple nanofactories and their applications in biotechnology and medical health. PMID:27363367

  13. Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes

    SciTech Connect

    Chantarawong, Wipa; Takeda, Kazuhisa; Sangartit, Weerapon; Yoshizawa, Miki; Pradermwong, Kantimanee; Shibahara, Shigeki

    2014-11-28

    Highlights: • In human melanocytes, cadmium decreases the expression of MITF-M and tyrosinase and their mRNAs. • In human melanoma cells, cadmium decreases the expression of MITF-M protein and tyrosinase mRNA. • Expression of MITF-H is less sensitive to cadmium toxicity in melanocyte-linage cells. • Cadmium does not decrease the expression of MITF-H in retinal pigment epithelial cells. • MITF-M is the molecular target of cadmium toxicity in melanocytes. - Abstract: Dietary intake of cadmium is inevitable, causing age-related increase in cadmium accumulation in many organs, including hair, choroid and retinal pigment epithelium (RPE). Cadmium has been implicated in the pathogenesis of hearing loss and macular degeneration. The functions of cochlea and retina are maintained by melanocytes and RPE, respectively, and the differentiation of these pigment cells is regulated by microphthalmia-associated transcription factor (MITF). In the present study, we explored the potential toxicity of cadmium in the cochlea and retina by using cultured human melanocytes and human RPE cell lines. MITF consists of multiple isoforms, including melanocyte-specific MITF-M and widely expressed MITF-H. Levels of MITF-M protein and its mRNA in human epidermal melanocytes and HMV-II melanoma cells were decreased significantly by cadmium. In parallel with the MITF reduction, mRNA levels of tyrosinase, the key enzyme of melanin biosynthesis that is regulated by MITF-M, were also decreased. In RPE cells, however, the levels of total MITF protein, constituting mainly MITF-H, were not decreased by cadmium. We thus identify MITF-M as the molecular target of cadmium toxicity in melanocytes, thereby accounting for the increased risk of disability from melanocyte malfunction, such as hearing and vision loss among people with elevated cadmium exposure.

  14. Molecular targets of androgen signaling that characterize skeletal muscle recovery and regeneration.

    PubMed

    MacKrell, James G; Yaden, Benjamin C; Bullock, Heather; Chen, Keyue; Shetler, Pamela; Bryant, Henry U; Krishnan, Venkatesh

    2015-01-01

    The high regenerative capacity of adult skeletal muscle relies on a self-renewing depot of adult stem cells, termed muscle satellite cells (MSCs). Androgens, known mediators of overall body composition and specifically skeletal muscle mass, have been shown to regulate MSCs. The possible overlapping function of androgen regulation of muscle growth and MSC activation has not been carefully investigated with regards to muscle regeneration.Therefore, the aim of this study was to examine coinciding androgen-mediated genetic changes in an in vitro MSC model and clinically relevant in vivo models. A gene signature was established via microarray analysis for androgen-mediated MSC engagement and highlighted several markers including follistatin (FST), IGF-1, C-X-C chemokine receptor 4 (CXCR4), hepatocyte growth factor (HGF) and glucocorticoid receptor (GR). In an in vivo muscle atrophy model, androgen re-supplementation significantly increased muscle size and expression of IGF-1, FST, and HGF, while significantly decreasing expression of GR. Biphasic gene expression profiles over the 7-day re-supplementation period identified temporal androgen regulation of molecular targets involved in satellite cell engagement into myogenesis. In a muscle injury model, removal of androgens resulted in delayed muscle recovery and regeneration. Modifications in the androgen signaling gene signature, along with reduced Pax7 and MyoD expression, suggested that limited MSC activation and increased inflammation contributed to the delayed regeneration. However, enhanced MSC activation in the androgen-deplete mouse injury model was driven by an androgen receptor (AR) agonist. These results provide novel in vitro and in vivo evidence describing molecular targets of androgen signaling, while also increasing support for translational use of AR agonists in skeletal muscle recovery and regeneration. PMID:26457071

  15. Topology of classical molecular optimal control landscapes for multi-target objectives

    SciTech Connect

    Joe-Wong, Carlee; Ho, Tak-San; Rabitz, Herschel; Wu, Rebing

    2015-04-21

    This paper considers laser-driven optimal control of an ensemble of non-interacting molecules whose dynamics lie in classical phase space. The molecules evolve independently under control to distinct final states. We consider a control landscape defined in terms of multi-target (MT) molecular states and analyze the landscape as a functional of the control field. The topology of the MT control landscape is assessed through its gradient and Hessian with respect to the control. Under particular assumptions, the MT control landscape is found to be free of traps that could hinder reaching the objective. The Hessian associated with an optimal control field is shown to have finite rank, indicating an inherent degree of robustness to control noise. Both the absence of traps and rank of the Hessian are shown to be analogous to the situation of specifying multiple targets for an ensemble of quantum states. Numerical simulations are presented to illustrate the classical landscape principles and further characterize the system behavior as the control field is optimized.

  16. Molecular dynamics simulation of liquid water: Hybrid density functionals

    SciTech Connect

    Todorova, T; Seitsonen, A; Hutter, J; Kuo, W; Mundy, C

    2005-09-12

    The structure, dynamical and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta functional, four gradient corrected functionals, the local density and Hartree-Fock approximation. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and under-structured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller averaged numbers of hydrogen bonds and similar hydrogen bond populations as pure density functionals. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than from the corresponding pure density functionals.

  17. Present Advances and Future Perspectives of Molecular Targeted Therapy for Osteosarcoma

    PubMed Central

    Shaikh, Atik Badshah; Li, Fangfei; Li, Min; He, Bing; He, Xiaojuan; Chen, Guofen; Guo, Baosheng; Li, Defang; Jiang, Feng; Dang, Lei; Zheng, Shaowei; Liang, Chao; Liu, Jin; Lu, Cheng; Liu, Biao; Lu, Jun; Wang, Luyao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Osteosarcoma (OS) is a bone cancer mostly occurring in pediatric population. Current treatment regime of surgery and intensive chemotherapy could cure about 60%–75% patients with primary osteosarcoma, however only 15% to 30% can be cured when pulmonary metastasis or relapse has taken place. Hence, novel precise OS-targeting therapies are being developed with the hope of addressing this issue. This review summarizes the current development of molecular mechanisms and targets for osteosarcoma. Therapies that target these mechanisms with updated information on clinical trials are also reviewed. Meanwhile, we further discuss novel therapeutic targets and OS-targeting drug delivery systems. In conclusion, a full insight in OS pathogenesis and OS-targeting strategies would help us explore novel targeted therapies for metastatic osteosarcoma. PMID:27058531

  18. Present Advances and Future Perspectives of Molecular Targeted Therapy for Osteosarcoma.

    PubMed

    Shaikh, Atik Badshah; Li, Fangfei; Li, Min; He, Bing; He, Xiaojuan; Chen, Guofen; Guo, Baosheng; Li, Defang; Jiang, Feng; Dang, Lei; Zheng, Shaowei; Liang, Chao; Liu, Jin; Lu, Cheng; Liu, Biao; Lu, Jun; Wang, Luyao; Lu, Aiping; Zhang, Ge

    2016-01-01

    Osteosarcoma (OS) is a bone cancer mostly occurring in pediatric population. Current treatment regime of surgery and intensive chemotherapy could cure about 60%-75% patients with primary osteosarcoma, however only 15% to 30% can be cured when pulmonary metastasis or relapse has taken place. Hence, novel precise OS-targeting therapies are being developed with the hope of addressing this issue. This review summarizes the current development of molecular mechanisms and targets for osteosarcoma. Therapies that target these mechanisms with updated information on clinical trials are also reviewed. Meanwhile, we further discuss novel therapeutic targets and OS-targeting drug delivery systems. In conclusion, a full insight in OS pathogenesis and OS-targeting strategies would help us explore novel targeted therapies for metastatic osteosarcoma. PMID:27058531

  19. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential

    PubMed Central

    Wang, Qi; Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka

    2015-01-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  20. Pan-Nematoda Transcriptomic Elucidation of Essential Intestinal Functions and Therapeutic Targets With Broad Potential.

    PubMed

    Wang, Qi; Rosa, Bruce A; Jasmer, Douglas P; Mitreva, Makedonka

    2015-09-01

    The nematode intestine is continuous with the outside environment, making it easily accessible to anthelmintics for parasite control, but the development of new therapeutics is impeded by limited knowledge of nematode intestinal cell biology. We established the most comprehensive nematode intestinal functional database to date by generating transcriptional data from the dissected intestines of three parasitic nematodes spanning the phylum, and integrating the results with the whole proteomes of 10 nematodes (including 9 pathogens of humans or animals) and 3 host species and 2 outgroup species. We resolved 10,772 predicted nematode intestinal protein families (IntFams), and studied their presence and absence within the different lineages (births and deaths) among nematodes. Conserved intestinal cell functions representing ancestral functions of evolutionary importance were delineated, and molecular features useful for selective therapeutic targeting were identified. Molecular patterns conserved among IntFam proteins demonstrated large potential as therapeutic targets to inhibit intestinal cell functions with broad applications towards treatment and control of parasitic nematodes. PMID:26501106

  1. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    PubMed Central

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  2. Targeting the latent reservoir to achieve functional HIV cure

    PubMed Central

    Cary, Daniele C.; Peterlin, B. Matija

    2016-01-01

    While highly active anti-retroviral therapy has greatly improved the lives of HIV-infected individuals, current treatments are unable to completely eradicate the virus. This is due to the presence of HIV latently infected cells which harbor transcriptionally silent HIV. Latent HIV does not replicate or produce viral proteins, thereby preventing efficient targeting by anti-retroviral drugs. Strategies to target the HIV latent reservoir include viral reactivation, enhancing host defense mechanisms, keeping latent HIV silent, and using gene therapy techniques to knock out or reactivate latent HIV. While research into each of these areas has yielded promising results, currently no one mechanism eradicates latent HIV. Instead, combinations of these approaches should be considered for a potential HIV functional cure. PMID:27303638

  3. The Natural Flavonoid Pinocembrin: Molecular Targets and Potential Therapeutic Applications.

    PubMed

    Lan, Xi; Wang, Wenzhu; Li, Qiang; Wang, Jian

    2016-04-01

    Pinocembrin is a natural flavonoid compound extracted from honey, propolis, ginger roots, wild marjoram, and other plants. In preclinical studies, it has shown anti-inflammatory and neuroprotective effects as well as the ability to reduce reactive oxygen species, protect the blood-brain barrier, modulate mitochondrial function, and regulate apoptosis. Considering these pharmaceutical characteristics, pinocembrin has potential as a drug to treat ischemic stroke and other clinical conditions. In this review, we summarize its pharmacologic characteristics and discuss its mechanisms of action and potential therapeutic applications. PMID:25744566

  4. Molecular Characterization of Head and Neck Cancer: How Close to Personalized Targeted Therapy?

    PubMed Central

    Worsham, Maria J.; Ali, Haythem; Dragovic, Jadranka; Schweitzer, Vanessa P.

    2013-01-01

    Molecular targeted therapy in squamous head and neck cancer (HNSCC) continues to make strides and holds much promise. Cetuximab remains the sole FDA-approved molecular targeted therapy available for HNSCC, though there are several new biological agents targeting the epidermal growth factor receptor (EGFR) and other pathways in the regulatory approval pipeline. While targeted therapies have the potential to be personalized, their current use in HNSCC is not personalized. This is illustrated for EGFR targeted drugs, where EGFR as a molecular target has yet to be individualized for HNSCC. Future research needs to identify factors that correlate with response (or lack of one) and the underlying genotype-phenotype relationship that dictates this response. Comprehensive exploration of genetic and epigenetic landscapes in HNSCC is opening new frontiers to further enlighten, mechanistically inform, and set a course for eventually translating these discoveries into therapies for patients. This opinion offers a snap shot of the evolution of molecular subytping in HNSCC, its current clinical applicability, as well as new emergent paradigms with implications for controlling this disease in the future. PMID:22873739

  5. Targeting Sirtuin-1 prolongs murine renal allograft survival and function.

    PubMed

    Levine, Matthew H; Wang, Zhonglin; Xiao, Haiyan; Jiao, Jing; Wang, Liqing; Bhatti, Tricia R; Hancock, Wayne W; Beier, Ulf H

    2016-05-01

    Current immunosuppressive medications used after transplantation have significant toxicities. Foxp3(+) T-regulatory cells can prevent allograft rejection without compromising protective host immunity. Interestingly, inhibiting the class III histone/protein deacetylase Sirtuin-1 can augment Foxp3(+) T-regulatory suppressive function through increasing Foxp3 acetylation. Here we determined whether Sirtuin-1 targeting can stabilize biological allograft function. BALB/c kidney allografts were transplanted into C57BL/6 recipients with a CD4-conditional deletion of Sirtuin-1 (Sirt1(fl/fl)CD4(cre)) or mice treated with a Sirtuin-1-specific inhibitor (EX-527), and the native kidneys removed. Blood chemistries and hematocrit were followed weekly. Sirt1(fl/fl)CD4(cre) recipients showed markedly longer survival and improved kidney function. Sirt1(fl/fl)CD4(cre) recipients exhibited donor-specific tolerance, accepted BALB/c, but rejected third-party C3H cardiac allografts. C57BL/6 recipients of BALB/c renal allografts that were treated with EX-527 showed improved survival and renal function at 1, but not 10 mg/kg/day. Pharmacologic inhibition of Sirtuin-1 also improved renal allograft survival and function with dosing effects having relevance to outcome. Thus, inhibiting Sirtuin-1 can be a useful asset in controlling T-cell-mediated rejection. However, effects on non-T cells that could adversely affect allograft survival and function merit consideration. PMID:27083279

  6. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells

    PubMed Central

    SOMASAGARA, RANGANATHA R.; DEEP, GAGAN; SHROTRIYA, SANGEETA; PATEL, MANISHA; AGARWAL, CHAPLA; AGARWAL, RAJESH

    2015-01-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy. PMID:25672620

  7. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells.

    PubMed

    Somasagara, Ranganatha R; Deep, Gagan; Shrotriya, Sangeeta; Patel, Manisha; Agarwal, Chapla; Agarwal, Rajesh

    2015-04-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy. PMID:25672620

  8. Computational design of intrinsic molecular rectifiers based on asymmetric functionalization of N-phenylbenzamide

    DOE PAGESBeta

    Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; Batra, Arunabh; Venkataraman, Latha; Negre, Christian F. A.; Brudvig, Gary W.; Crabtree, Robert H.; Schmuttenmaer, Charles A.; Batista, Victor S.

    2015-11-03

    Here, we report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findingsmore » are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.« less

  9. Computational design of intrinsic molecular rectifiers based on asymmetric functionalization of N-phenylbenzamide

    SciTech Connect

    Ding, Wendu; Koepf, Matthieu; Koenigsmann, Christopher; Batra, Arunabh; Venkataraman, Latha; Negre, Christian F. A.; Brudvig, Gary W.; Crabtree, Robert H.; Schmuttenmaer, Charles A.; Batista, Victor S.

    2015-11-03

    Here, we report a systematic computational search of molecular frameworks for intrinsic rectification of electron transport. The screening of molecular rectifiers includes 52 molecules and conformers spanning over 9 series of structural motifs. N-Phenylbenzamide is found to be a promising framework with both suitable conductance and rectification properties. A targeted screening performed on 30 additional derivatives and conformers of N-phenylbenzamide yielded enhanced rectification based on asymmetric functionalization. We demonstrate that electron-donating substituent groups that maintain an asymmetric distribution of charge in the dominant transport channel (e.g., HOMO) enhance rectification by raising the channel closer to the Fermi level. These findings are particularly valuable for the design of molecular assemblies that could ensure directionality of electron transport in a wide range of applications, from molecular electronics to catalytic reactions.

  10. Model-based HSF using by target point control function

    NASA Astrophysics Data System (ADS)

    Kim, Seongjin; Do, Munhoe; An, Yongbae; Choi, Jaeseung; Yang, Hyunjo; Yim, Donggyu

    2015-03-01

    As the technology node shrinks, ArF Immersion reaches the limitation of wafer patterning, furthermore weak point during the mask processing is generated easily. In order to make strong patterning result, the design house conducts lithography rule checking (LRC). Despite LRC processing, we found the weak point at the verification stage of optical proximity correction (OPC). It is called the hot spot point (HSP). In order to fix the HSP, many studies have been performed. One of the most general hot spot fixing (HSF) methods is that the modification bias which consists of "Line-Resizing" and "Space-Resizing". In addition to the general rule biasing method, resolution enhancement techniques (RET) which includes the inverse lithography technology (ILT) and model based assist feature (MBAF) have been adapted to remove the hot spot and to maximize the process window. If HSP is found during OPC verification stage, various HSF methods can be applied. However, HSF process added on regular OPC procedure makes OPC turn-around time (TAT) increased. In this paper, we introduce a new HSF method that is able to make OPC TAT shorter than the common HSF method. The new HSF method consists of two concepts. The first one is that OPC target point is controlled to fix HSP. Here, the target point should be moved to optimum position at where the edge placement error (EPE) can be 0 at critical points. Many parameters such as a model accuracy or an OPC recipe become the cause of larger EPE. The second one includes controlling of model offset error through target point adjustment. Figure 1 shows the case EPE is not 0. It means that the simulation contour was not targeted well after OPC process. On the other hand, Figure 2 shows the target point is moved -2.5nm by using target point control function. As a result, simulation contour is matched to the original layout. This function can be powerfully adapted to OPC procedure of memory and logic devices.

  11. Targeted therapies to improve CFTR function in cystic fibrosis.

    PubMed

    Brodlie, Malcolm; Haq, Iram J; Roberts, Katie; Elborn, J Stuart

    2015-01-01

    Cystic fibrosis is the most common genetically determined, life-limiting disorder in populations of European ancestry. The genetic basis of cystic fibrosis is well established to be mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for an apical membrane chloride channel principally expressed by epithelial cells. Conventional approaches to cystic fibrosis care involve a heavy daily burden of supportive treatments to combat lung infection, help clear airway secretions and maintain nutritional status. In 2012, a new era of precision medicine in cystic fibrosis therapeutics began with the licensing of a small molecule, ivacaftor, which successfully targets the underlying defect and improves CFTR function in a subgroup of patients in a genotype-specific manner. Here, we review the three main targeted approaches that have been adopted to improve CFTR function: potentiators, which recover the function of CFTR at the apical surface of epithelial cells that is disrupted in class III and IV genetic mutations; correctors, which improve intracellular processing of CFTR, increasing surface expression, in class II mutations; and production correctors or read-through agents, which promote transcription of CFTR in class I mutations. The further development of such approaches offers great promise for future therapeutic strategies in cystic fibrosis. PMID:26403534

  12. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin.

    PubMed

    Dai, Shao-Xing; Li, Wen-Xing; Li, Gong-Hua; Huang, Jing-Fei

    2016-01-01

    Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view. PMID:26989626

  13. Proteome-wide prediction of targets for aspirin: new insight into the molecular mechanism of aspirin

    PubMed Central

    Dai, Shao-Xing; Li, Wen-Xing

    2016-01-01

    Besides its anti-inflammatory, analgesic and anti-pyretic properties, aspirin is used for the prevention of cardiovascular disease and various types of cancer. The multiple activities of aspirin likely involve several molecular targets and pathways rather than a single target. Therefore, systematic identification of these targets of aspirin can help us understand the underlying mechanisms of the activities. In this study, we identified 23 putative targets of aspirin in the human proteome by using binding pocket similarity detecting tool combination with molecular docking, free energy calculation and pathway analysis. These targets have diverse folds and are derived from different protein family. However, they have similar aspirin-binding pockets. The binding free energy with aspirin for newly identified targets is comparable to that for the primary targets. Pathway analysis revealed that the targets were enriched in several pathways such as vascular endothelial growth factor (VEGF) signaling, Fc epsilon RI signaling and arachidonic acid metabolism, which are strongly involved in inflammation, cardiovascular disease and cancer. Therefore, the predicted target profile of aspirin suggests a new explanation for the disease prevention ability of aspirin. Our findings provide a new insight of aspirin and its efficacy of disease prevention in a systematic and global view. PMID:26989626

  14. Functional magnetic resonance imaging for defining the biological target volume

    PubMed Central

    Kauczor, Hans-Ulrich; Zechmann, Christian; Stieltjes, Bram; Weber, Marc-Andre

    2006-01-01

    Morphology as demonstrated by CT is the basis for radiotherapy planning. Intensity-modulated and adaptive radiotherapy techniques would greatly benefit from additional functional information allowing for definition of the biological target volume. MRI techniques include several which can characterize and quantify different tissue properties and their tumour-related changes. Results of perfusion MRI represent microvascular density and permeability; MR spectroscopy depicts particular metabolites; diffusion weighted imaging shows tissue at risk and tumour cellularity; while dynamic 3D acquisition (4D MRI) shows organ motion and the mobility of tumours within them. PMID:16766269

  15. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells

    PubMed Central

    Mac, Jenny T.; Nuñez, Vicente; Burns, Joshua M.; Guerrero, Yadir A.; Vullev, Valentine I.; Anvari, Bahman

    2016-01-01

    Constructs derived from mammalian cells are emerging as a new generation of nano-scale platforms for clinical imaging applications. Herein, we report successful engineering of hybrid nano-structures composed of erythrocyte-derived membranes doped with FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG), and surface-functionalized with antibodies to achieve molecular targeting. We demonstrate that these constructs can be used for targeted imaging of cancer cells in vitro. These erythrocyte-derived optical nano-probes may provide a potential platform for clinical translation, and enable molecular imaging of cancer biomarkers. PMID:27446657

  16. Molecular targets of (-)-epigallocatechin-3-gallate (EGCG): specificity and interaction with membrane lipid rafts.

    PubMed

    Patra, S K; Rizzi, F; Silva, A; Rugina, D O; Bettuzzi, S

    2008-12-01

    Proteomic studies on anticancer activity of Green Tea Catechins (specifically EGCG) are suggesting a large set of protein targets that may directly interact with EGCG and alter the physiology of diseased cells, including cancer. Of notice, benign cells are usually left untouched. Lipid rafts have been recently recognized as signal processing hubs and suggested to be involved in drug uptake by means of endocytosis. These findings are suggesting new insights on the molecular mechanisms of anticancer drugs action. In the membrane, EGCG is hijacked by the laminin receptor (LamR), a lipid raft protein. Similar to aplidin and edelfosin, EGCG alters membrane domains composition also preventing EGF binding to EGFR, imerization of EGFR and relocation of phosphorylated EGFR to lipid rafts. In vitro studies have recently shown that EGCG also binds both DNA and RNA in GpC-rich regions. This event may importantly affect genes function. Moreover, EGCG was shown to inhibit telomerase, topoisomerase II and DNA methyltransferase 1 (DNMT1), thus ultimately affecting chromatin maintenance and remodeling. But another important alternative pathway besides interaction with specific proteins may play an important role in EGCG action: direct targeting of bioactive membrane platforms, lipid rafts. Structural alteration of the platforms deeply impact (and often inactivates) important pathways involving MAP kinases. The key issue is that, important and specific differences in lipid rafts composition have been found in transformed versus benign cells and apoptotic versus non-apoptotic cells. We suggest here that the anticancer activity of Green Tea Catechins against different kind of cancers may find an explanation in direct targeting of lipid rafts by EGCG. PMID:19261982

  17. Porphyrins as Molecular Electronic Components of Functional Devices

    PubMed Central

    Jurow, Matthew; Schuckman, Amanda E.; Batteas, James D.; Drain, Charles Michael

    2010-01-01

    The proposal that molecules can perform electronic functions in devices such as diodes, rectifiers, wires, capacitors, or serve as functional materials for electronic or magnetic memory, has stimulated intense research across physics, chemistry, and engineering for over 35 years. Because biology uses porphyrins and metalloporphyrins as catalysts, small molecule transporters, electrical conduits, and energy transducers in photosynthesis, porphyrins are an obvious class of molecules to investigate for molecular electronic functions. Of the numerous kinds of molecules under investigation for molecular electronics applications, porphyrins and their related macrocycles are of particular interest because they are robust and their electronic properties can be tuned by chelation of a metal ion and substitution on the macrocycle. The other porphyrinoids have equally variable and adjustable photophysical properties, thus photonic applications are potentiated. At least in the near term, realistic architectures for molecular electronics will require self-organization or nanoprinting on surfaces. This review concentrates on self-organized porphyrinoids as components of working electronic devices on electronically active substrates with particular emphasis on the effect of surface, molecular design, molecular orientation and matrix on the detailed electronic properties of single molecules. PMID:20936084

  18. Targeting Artificial Tumor Stromal Targets for Molecular Imaging of Tumor Vascular Hypoxia

    PubMed Central

    Koonce, Nathan A.; Levy, Joseph; Hardee, Matthew E.; Jamshidi-Parsian, Azemat; Vang, Kieng B.; Sharma, Sunil; Raleigh, James A.; Dings, Ruud P. M.; Griffin, Robert J.

    2015-01-01

    Developed and tested for many years, a variety of tumor hypoxia detection methods have been inconsistent in their ability to predict treatment outcomes or monitor treatment efficacy, limiting their present prognostic capability. These variable results might stem from the fact that these approaches are based on inherently wide-ranging global tumor oxygenation levels based on uncertain influences of necrotic regions present in most solid tumors. Here, we have developed a novel non-invasive and specific method for tumor vessel hypoxia detection, as hypoxemia (vascular hypoxia) has been implicated as a key driver of malignant progression, therapy resistance and metastasis. This method is based on high-frequency ultrasound imaging of α-pimonidazole targeted-microbubbles to the exogenously administered hypoxia marker pimonidazole. The degree of tumor vessel hypoxia was assessed in three mouse models of mammary gland carcinoma (4T1, SCK and MMTV-Wnt-1) and amassed up to 20% of the tumor vasculature. In the 4T1 mammary gland carcinoma model, the signal strength of α-pimonidazole targeted-microbubbles was on average 8-fold fold higher in tumors of pimonidazole-injected mice than in non-pimonidazole injected tumor bearing mice or non-targeted microbubbles in pimonidazole-injected tumor bearing mice. Overall, this provides proof of principle for generating and targeting artificial antigens able to be ‘created’ on-demand under tumor specific microenvironmental conditions, providing translational diagnostic, therapeutic and treatment planning potential in cancer and other hypoxia-associated diseases or conditions. PMID:26308944

  19. ER–endosome contact sites: molecular compositions and functions

    PubMed Central

    Raiborg, Camilla; Wenzel, Eva M; Stenmark, Harald

    2015-01-01

    Recent studies have revealed the existence of numerous contact sites between the endoplasmic reticulum (ER) and endosomes in mammalian cells. Such contacts increase during endosome maturation and play key roles in cholesterol transfer, endosome positioning, receptor dephosphorylation, and endosome fission. At least 7 distinct contact sites between the ER and endosomes have been identified to date, which have diverse molecular compositions. Common to these contact sites is that they impose a close apposition between the ER and endosome membranes, which excludes membrane fusion while allowing the flow of molecular signals between the two membranes, in the form of enzymatic modifications, or ion, lipid, or protein transfer. Thus, ER–endosome contact sites ensure coordination of molecular activities between the two compartments while keeping their general compositions intact. Here, we review the molecular architectures and cellular functions of known ER–endosome contact sites and discuss their implications for human health. PMID:26041457

  20. Origin of molecular conformational stability: Perspectives from molecular orbital interactions and density functional reactivity theory

    SciTech Connect

    Liu, Shubin E-mail: schauer@unc.edu; Schauer, Cynthia K. E-mail: schauer@unc.edu

    2015-02-07

    To have a quantitative understanding about the origin of conformation stability for molecular systems is still an unaccomplished task. Frontier orbital interactions from molecular orbital theory and energy partition schemes from density functional reactivity theory are the two approaches available in the literature that can be used for this purpose. In this work, we compare the performance of these approaches for a total of 48 simple molecules. We also conduct studies to flexibly bend bond angles for water, carbon dioxide, borane, and ammonia molecules to obtain energy profiles for these systems over a wide range of conformations. We find that results from molecular orbital interactions using frontier occupied orbitals such as the highest occupied molecular orbital and its neighbors are only qualitatively, at most semi-qualitatively, trustworthy. To obtain quantitative insights into relative stability of different conformations, the energy partition approach from density functional reactivity theory is much more reliable. We also find that the electrostatic interaction is the dominant descriptor for conformational stability, and steric and quantum effects are smaller in contribution but their contributions are indispensable. Stable molecular conformations prefer to have a strong electrostatic interaction, small molecular size, and large exchange-correlation effect. This work should shed new light towards establishing a general theoretical framework for molecular stability.

  1. Target-to-background enhancement in multispectral endoscopy with background autofluorescence mitigation for quantitative molecular imaging

    NASA Astrophysics Data System (ADS)

    Yang, Chenying; Hou, Vivian W.; Girard, Emily J.; Nelson, Leonard Y.; Seibel, Eric J.

    2014-07-01

    Fluorescence molecular imaging with exogenous probes improves specificity for the detection of diseased tissues by targeting unambiguous molecular signatures. Additionally, increased diagnostic sensitivity is expected with the application of multiple molecular probes. We developed a real-time multispectral fluorescence-reflectance scanning fiber endoscope (SFE) for wide-field molecular imaging of fluorescent dye-labeled molecular probes at nanomolar detection levels. Concurrent multichannel imaging with the wide-field SFE also allows for real-time mitigation of the background autofluorescence (AF) signal, especially when fluorescein, a U.S. Food and Drug Administration approved dye, is used as the target fluorophore. Quantitative tissue AF was measured for the ex vivo porcine esophagus and murine brain tissues across the visible and near-infrared spectra. AF signals were then transferred to the unit of targeted fluorophore concentration to evaluate the SFE detection sensitivity for sodium fluorescein and cyanine. Next, we demonstrated a real-time AF mitigation algorithm on a tissue phantom, which featured molecular probe targeted cells of high-grade dysplasia on a substrate containing AF species. The target-to-background ratio was enhanced by more than one order of magnitude when applying the real-time AF mitigation algorithm. Furthermore, a quantitative estimate of the fluorescein photodegradation (photobleaching) rate was evaluated and shown to be insignificant under the illumination conditions of SFE. In summary, the multichannel laser-based flexible SFE has demonstrated the capability to provide sufficient detection sensitivity, image contrast, and quantitative target intensity information for detecting small precancerous lesions in vivo.

  2. Target-to-background enhancement in multispectral endoscopy with background autofluorescence mitigation for quantitative molecular imaging

    PubMed Central

    Yang, Chenying; Hou, Vivian W.; Girard, Emily J.; Nelson, Leonard Y.; Seibel, Eric J.

    2014-01-01

    Abstract. Fluorescence molecular imaging with exogenous probes improves specificity for the detection of diseased tissues by targeting unambiguous molecular signatures. Additionally, increased diagnostic sensitivity is expected with the application of multiple molecular probes. We developed a real-time multispectral fluorescence-reflectance scanning fiber endoscope (SFE) for wide-field molecular imaging of fluorescent dye-labeled molecular probes at nanomolar detection levels. Concurrent multichannel imaging with the wide-field SFE also allows for real-time mitigation of the background autofluorescence (AF) signal, especially when fluorescein, a U.S. Food and Drug Administration approved dye, is used as the target fluorophore. Quantitative tissue AF was measured for the ex vivo porcine esophagus and murine brain tissues across the visible and near-infrared spectra. AF signals were then transferred to the unit of targeted fluorophore concentration to evaluate the SFE detection sensitivity for sodium fluorescein and cyanine. Next, we demonstrated a real-time AF mitigation algorithm on a tissue phantom, which featured molecular probe targeted cells of high-grade dysplasia on a substrate containing AF species. The target-to-background ratio was enhanced by more than one order of magnitude when applying the real-time AF mitigation algorithm. Furthermore, a quantitative estimate of the fluorescein photodegradation (photobleaching) rate was evaluated and shown to be insignificant under the illumination conditions of SFE. In summary, the multichannel laser-based flexible SFE has demonstrated the capability to provide sufficient detection sensitivity, image contrast, and quantitative target intensity information for detecting small precancerous lesions in vivo. PMID:25027002

  3. Notch signaling deregulation in multiple myeloma: A rational molecular target

    PubMed Central

    Garavelli, Silvia; Platonova, Natalia; Paoli, Alessandro; Basile, Andrea; Taiana, Elisa; Neri, Antonino; Chiaramonte, Raffaella

    2015-01-01

    Despite recent therapeutic advances, multiple myeloma (MM) is still an incurable neoplasia due to intrinsic or acquired resistance to therapy. Myeloma cell localization in the bone marrow milieu allows direct interactions between tumor cells and non-tumor bone marrow cells which promote neoplastic cell growth, survival, bone disease, acquisition of drug resistance and consequent relapse. Twenty percent of MM patients are at high-risk of treatment failure as defined by tumor markers or presentation as plasma cell leukemia. Cumulative evidences indicate a key role of Notch signaling in multiple myeloma onset and progression. Unlike other Notch-related malignancies, where the majority of patients carry gain-of-function mutations in Notch pathway members, in MM cell Notch signaling is aberrantly activated due to an increased expression of Notch receptors and ligands; notably, this also results in the activation of Notch signaling in surrounding stromal cells which contributes to myeloma cell proliferation, survival and migration, as well as to bone disease and intrinsic and acquired pharmacological resistance. Here we review the last findings on the mechanisms and the effects of Notch signaling dysregulation in MM and provide a rationale for a therapeutic strategy aiming at inhibiting Notch signaling, along with a complete overview on the currently available Notch-directed approaches. PMID:26308486

  4. Molecular regulation of hypothalamic development and physiological functions.

    PubMed

    Gao, Yanxia; Sun, Tao

    2016-09-01

    The hypothalamus is composed of many heterogeneous nuclei that control distinct physiological functions. Investigating molecular mechanisms that regulate the specification of these nuclei and specific neuronal subtypes, and their contribution to diverse hypothalamic functions, is an exciting research focus. Here, we begin by summarizing the hypothalamic functions of feeding regulation, sleep-wake cycles, stress responses, and circadian rhythm, and describing their anatomical bases. Next, we review the molecular regulation of formation of hypothalamic territories, specification of nuclei and subnuclei, and generation of specific neurons. Finally, we highlight physiological and behavioral consequences of altered hypothalamic development. Identifying molecules that regulate hypothalamic development and function will increase our understanding of hypothalamus-related disorders, such as obesity and diabetes, and aid in the development of therapies aimed specifically at their etiologies. PMID:26223804

  5. Functionalized 2'-amino-alpha-L-LNA: directed positioning of intercalators for DNA targeting.

    PubMed

    Kumar, T Santhosh; Madsen, Andreas S; Østergaard, Michael E; Sau, Sujay P; Wengel, Jesper; Hrdlicka, Patrick J

    2009-02-01

    Chemically modified oligonucleotides are increasingly applied in nucleic acid based therapeutics and diagnostics. LNA (locked nucleic acid) and its diastereomer alpha-L-LNA are two promising examples thereof that exhibit increased thermal and enzymatic stability. Herein, the synthesis, biophysical characterization, and molecular modeling of N2'-functionalized 2'-amino-alpha-L-LNA is described. Chemoselective N2'-functionalization of protected amino alcohol 1 followed by phosphitylation afforded a structurally varied set of target phosphoramidites, which were incorporated into oligodeoxyribonucleotides. Incorporation of pyrene-functionalized building blocks such as 2'-N-(pyren-1-yl)carbonyl-2'-amino-alpha-L-LNA (monomer X) led to extraordinary increases in thermal affinity of up to +19.5 degrees C per modification against DNA targets in particular. In contrast, incorporation of building blocks with small nonaromatic N2'-functionalities such as 2'-N-acetyl-2'-amino-alpha-L-LNA (monomer V) had detrimental effects on thermal affinity toward DNA/RNA complements with decreases of as much as -16.5 degrees C per modification. Extensive thermal DNA selectivity, favorable entropic contributions upon duplex formation, hybridization-induced bathochromic shifts of pyrene absorption maxima and increases in circular dichroism signal intensity, and molecular modeling studies suggest that pyrene-functionalized 2'-amino-alpha-L-LNA monomers W-Y having short linkers between the bicyclic skeleton and the pyrene moiety allow high-affinity hybridization with DNA complements and precise positioning of intercalators in nucleic acid duplexes. This rigorous positional control has been utilized for the development of probes for emerging therapeutic and diagnostic applications focusing on DNA targeting. PMID:19108636

  6. Functionalized 2′-Amino-α-L-LNA - Directed Positioning of Intercalators for DNA Targeting

    PubMed Central

    Kumar, T. Santhosh; Madsen, Andreas S.; Østergaard, Michael E.; Sau, Sujay P.; Wengel, Jesper; Hrdlicka, Patrick J.

    2010-01-01

    Chemically modified oligonucleotides are increasingly applied in nucleic acid based therapeutics and diagnostics. LNA (Locked Nucleic Acid) and its diastereomer α-L-LNA are two promising examples hereof that exhibit increased thermal and enzymatic stability. Herein, the synthesis, biophysical characterization and molecular modeling of N2′-functionalized 2′-amino-α-L-LNA is described. Chemoselective N2′-functionalization of protected amino alcohol 1 followed by phosphitylation afforded a structurally varied set of target phosphoramidites, which were incorporated into oligodeoxyribonucleotides. Incorporation of pyrene-functionalized building blocks such as 2′-N-(pyren-1-yl)carbonyl-2′-amino-α-L-LNA (monomer X) led to extraordinary increases in thermal affinity of up to +19.5 °C per modification against DNA targets in particular. In contrast, incorporation of building blocks with small non-aromatic N2′-functionalities such as 2′-N-acetyl-2′-amino-α-L-LNA (monomer V) had detrimental effects on thermal affinity toward DNA/RNA complements with decreases of as much as −16.5 °C per modification. Extensive thermal DNA selectivity, favorable entropic contributions upon duplex formation, hybridization-induced bathochromic shifts of pyrene absorption maxima and increases of circular dichroism signals, and molecular modeling studies suggest that pyrene functionalized 2′-amino-α-L-LNA monomers W-Y having short linkers between the bicyclic skeleton and the pyrene moiety, allow high-affinity hybridization with DNA complements and precise positioning of intercalators in nucleic acid duplexes. This rigorous positional control has been utilized for the development probes for emerging therapeutic and diagnostic applications focusing on DNA-targeting. PMID:19108636

  7. RGD-functionalized spherulites as targeted vectors captured by adherent cultured cells.

    PubMed

    Chenevier, P; Delord, B; Amédée, J; Bareille, R; Ichas, F; Roux, D

    2002-12-16

    Spherulites are multilamellar vesicles consisting of concentric shells that can encapsulate small organic molecules or macromolecules. We investigate the possibility of targeting neutral spherulites to adherent culture cells by functionalizing their surface with RGD-containing ligands. The strength and specificity of association of RGD spherulites with several cell lines (EAhy 926 endothelial cell line, human umbilical vein endothelial cell (HUVEC) and human osteoprogenitor (HOP) primary cells) was studied, and the molecular interaction of RGD spherulites with the EAhy 926 cell surface was investigated. We show that, after binding to cells, spherulites are internalized. PMID:12431780

  8. Targeting Molecular Chaperones for the Treatment of Cystic Fibrosis: Is It a Viable Approach?

    PubMed

    Heard, Ashley; Thompson, Jake; Carver, Jessica; Bakey, Michelle; Wang, X Robert

    2015-01-01

    Cystic Fibrosis (CF) is largely caused by protein misfolding and the loss of function of a plasma membrane anion channel known as the cystic fibrosis transmembrane conductance regulator (CFTR). The most common CF-causing mutation, F508del, leads to severe conformational defect in CFTR. The cellular chaperone machinery plays an important role in CFTR biogenesis and quality control. Multiple attempts have been made to improve the cell surface functional expression of the mutant CFTR by modulating the expression of components of the cellular chaperone machinery. The efficacy of such an approach has been low largely due to the severe intrinsic folding defects of the F508del CFTR. Moreover, the impact of chaperone perturbation on the chaperone machinery itself and on other physiologically important proteins might lead to potentially severe side effects. Approaches aimed at disrupting chaperone-CFTR interactions show greater efficacy, and are compatible with small-molecule drug discovery and gene therapy. Combination between chaperone modulators and F508del correctors might further enhance potency and specificity. As molecular chaperones play important roles in regulating inflammation and immunity, they can be potential targets for controlling airway infection and inflammation in patients. If such effects can be synergized with chaperone-mediated regulation of CFTR biogenesis and quality control, more efficacious therapeutics will be developed to combat CF lung disease. PMID:25981601

  9. Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies

    PubMed Central

    Matsuoka, Tasuku; Yashiro, Masakazu

    2016-01-01

    Pancreatic cancer is the fourth most common cause of cancer deaths worldwide. Although recent therapeutic developments for patients with pancreatic cancer have provided survival benefits, the outcomes for patients with pancreatic cancer remain unsatisfactory. Molecularly targeted cancer therapy has advanced in the past decade with the use of a number of pathways as candidates of therapeutic targets. This review summarizes the molecular features of this refractory disease while focusing on the recent clinical and experimental findings on pancreatic cancer. It also discusses the data supporting current standard clinical outcomes, and offers conclusions that may improve the management of pancreatic cancer in the future. PMID:26811624

  10. Molecular targets for the treatment of pancreatic cancer: Clinical and experimental studies.

    PubMed

    Matsuoka, Tasuku; Yashiro, Masakazu

    2016-01-14

    Pancreatic cancer is the fourth most common cause of cancer deaths worldwide. Although recent therapeutic developments for patients with pancreatic cancer have provided survival benefits, the outcomes for patients with pancreatic cancer remain unsatisfactory. Molecularly targeted cancer therapy has advanced in the past decade with the use of a number of pathways as candidates of therapeutic targets. This review summarizes the molecular features of this refractory disease while focusing on the recent clinical and experimental findings on pancreatic cancer. It also discusses the data supporting current standard clinical outcomes, and offers conclusions that may improve the management of pancreatic cancer in the future. PMID:26811624

  11. A molecular switch for targeting between endoplasmic reticulum (ER) and mitochondria: conversion of a mitochondria-targeting element into an ER-targeting signal in DAKAP1.

    PubMed

    Ma, Yuliang; Taylor, Susan S

    2008-04-25

    dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31). PMID:18287098

  12. Molecularly Targeted Agents as Radiosensitizers in Cancer Therapy—Focus on Prostate Cancer

    PubMed Central

    Alcorn, Sara; Walker, Amanda J.; Gandhi, Nishant; Narang, Amol; Wild, Aaron T.; Hales, Russell K.; Herman, Joseph M.; Song, Danny Y.; DeWeese, Theodore L.; Antonarakis, Emmanuel S.; Tran, Phuoc T.

    2013-01-01

    As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer. PMID:23863691

  13. Data Mining FAERS to Analyze Molecular Targets of Drugs Highly Associated with Stevens-Johnson Syndrome.

    PubMed

    Burkhart, Keith K; Abernethy, Darrell; Jackson, David

    2015-06-01

    Drug features that are associated with Stevens-Johnson syndrome (SJS) have not been fully characterized. A molecular target analysis of the drugs associated with SJS in the FDA Adverse Event Reporting System (FAERS) may contribute to mechanistic insights into SJS pathophysiology. The publicly available version of FAERS was analyzed to identify disproportionality among the molecular targets, metabolizing enzymes, and transporters for drugs associated with SJS. The FAERS in-house version was also analyzed for an internal comparison of the drugs most highly associated with SJS. Cyclooxygenases 1 and 2, carbonic anhydrase 2, and sodium channel 2 alpha were identified as disproportionately associated with SJS. Cytochrome P450 (CYPs) 3A4 and 2C9 are disproportionately represented as metabolizing enzymes of the drugs associated with SJS adverse event reports. Multidrug resistance protein 1 (MRP-1), organic anion transporter 1 (OAT1), and PEPT2 were also identified and are highly associated with the transport of these drugs. A detailed review of the molecular targets identifies important roles for these targets in immune response. The association with CYP metabolizing enzymes suggests that reactive metabolites and oxidative stress may have a contributory role. Drug transporters may enhance intracellular tissue concentrations and also have vital physiologic roles that impact keratinocyte proliferation and survival. Data mining FAERS may be used to hypothesize mechanisms for adverse drug events by identifying molecular targets that are highly associated with drug-induced adverse events. The information gained may contribute to systems biology disease models. PMID:25876064

  14. Reversible Masking Using Low-Molecular-Weight Neutral Lipids to Achieve Optimal-Targeted Delivery

    PubMed Central

    Templeton, Nancy Smyth; Senzer, Neil

    2012-01-01

    Intravenous injection of therapeutics is required to effectively treat or cure metastatic cancer, certain cardiovascular diseases, and other acquired or inherited diseases. Using this route of delivery allows potential uptake in all disease targets that are accessed by the bloodstream. However, normal tissues and organs also have the potential for uptake of therapeutic agents. Therefore, investigators have used targeted delivery to attempt delivery solely to the target cells; however, use of ligands on the surface of delivery vehicles to target specific cell surface receptors is not sufficient to avoid nonspecific uptake. PEGylation has been used for decades to try to avoid nonspecific uptake but suffers from many problems known as “The PEGylation Dilemma.” We have solved this dilemma by replacing PEGylation with reversible masking using low-molecular-weight neutral lipids in order to achieve optimal-targeted delivery solely to target cells. Our paper will focus on this topic. PMID:22655199

  15. Functional and mechanistic analysis of telomerase: An antitumor drug target.

    PubMed

    Chen, Yinnan; Zhang, Yanmin

    2016-07-01

    The current research on anticancer drugs focuses on exploiting particular traits or hallmarks unique to cancer cells. Telomerase, a special reverse transcriptase, has been recognized as a common factor in most tumor cells, and in turn a distinctive characteristic with respect to non-malignant cells. This feature has made telomerase a preferred target for anticancer drug development and cancer therapy. This review aims to analyze the pharmacological function and mechanism and role of telomerase in oncogenesis; to provide fundamental knowledge for research on the structure, function, and working mechanism of telomerase; to expound the role that telomerase plays in the initiation and development of tumor and its relationship with tumor cell growth, proliferation, apoptosis, and related pathway molecules; and to display potential targets of antitumor drug for inhibiting the expression, reconstitution, and trafficking of the enzyme. We therefore summarize recent advances in potential telomerase inhibitors for antitumor including natural products, synthetic small molecules, peptides and proteins, which indicate that optimizing the delivery method and drug combination could be of help in a combinatorial drug treatment for tumor. More extensive understanding of the structure, biogenesis, and mechanism of telomerase will provide invaluable information for increasing the efficiency of rational antitumor drug design. PMID:27118336

  16. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status.

    PubMed

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors' ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  17. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status

    PubMed Central

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  18. Genome-wide analysis of Musashi-2 targets reveals novel functions in governing epithelial cell migration

    PubMed Central

    Bennett, Christopher G.; Riemondy, Kent; Chapnick, Douglas A.; Bunker, Eric; Liu, Xuedong; Kuersten, Scott; Yi, Rui

    2016-01-01

    The Musashi-2 (Msi2) RNA-binding protein maintains stem cell self-renewal and promotes oncogenesis by enhancing cell proliferation in hematopoietic and gastrointestinal tissues. However, it is unclear how Msi2 recognizes and regulates mRNA targets in vivo and whether Msi2 primarily controls cell growth in all cell types. Here we identified Msi2 targets with HITS-CLIP and revealed that Msi2 primarily recognizes mRNA 3′UTRs at sites enriched in multiple copies of UAG motifs in epithelial progenitor cells. RNA-seq and ribosome profiling demonstrated that Msi2 promotes targeted mRNA decay without affecting translation efficiency. Unexpectedly, the most prominent Msi2 targets identified are key regulators that govern cell motility with a high enrichment in focal adhesion and extracellular matrix-receptor interaction, in addition to regulators of cell growth and survival. Loss of Msi2 stimulates epithelial cell migration, increases the number of focal adhesions and also compromises cell growth. These findings provide new insights into the molecular mechanisms of Msi2's recognition and repression of targets and uncover a key function of Msi2 in restricting epithelial cell migration. PMID:27034466

  19. Visualization of molecular composition and functionality of cancer cells using nanoparticle-augmented ultrasound-guided photoacoustics

    PubMed Central

    Mallidi, Srivalleesha; Kim, Seungsoo; Karpiouk, Andrei; Joshi, Pratixa P.; Sokolov, Konstantin; Emelianov, Stanislav

    2015-01-01

    Assessment of molecular signatures of tumors in addition to their anatomy and morphology is desired for effective diagnostic and therapeutic procedures. Development of in vivo imaging techniques that can identify and monitor molecular composition of tumors remains an important challenge in pre-clinical research and medical practice. Here we present a molecular photoacoustic imaging technique that can visualize the presence and activity of an important cancer biomarker – epidermal growth factor receptor (EGFR), utilizing the effect of plasmon resonance coupling between molecular targeted gold nanoparticles. Specifically, spectral analysis of photoacoustic images revealed profound changes in the optical absorption of systemically delivered EGFR-targeted gold nanospheres due to their molecular interactions with tumor cells overexpressing EGFR. In contrast, no changes in optical properties and, therefore, photoacoustic signal, were observed after systemic delivery of non-targeted gold nanoparticles to the tumors. The results indicate that multi-wavelength photoacoustic imaging augmented with molecularly targeted gold nanoparticles has the ability to monitor molecular specific interactions between nanoparticles and cell-surface receptors, allowing visualization of the presence and functional activity of tumor cells. Furthermore, the approach can be used for other cancer cell-surface receptors such as human epidermal growth factor receptor 2 (HER2). Therefore, ultrasound-guided molecular photoacoustic imaging can potentially aid in tumor diagnosis, selection of customized patient-specific treatment, and monitor the therapeutic progression and outcome in vivo. PMID:25893171

  20. Factorized molecular wave functions: Analysis of the nuclear factor

    SciTech Connect

    Lefebvre, R.

    2015-06-07

    The exact factorization of molecular wave functions leads to nuclear factors which should be nodeless functions. We reconsider the case of vibrational perturbations in a diatomic species, a situation usually treated by combining Born-Oppenheimer products. It was shown [R. Lefebvre, J. Chem. Phys. 142, 074106 (2015)] that it is possible to derive, from the solutions of coupled equations, the form of the factorized function. By increasing artificially the interstate coupling in the usual approach, the adiabatic regime can be reached, whereby the wave function can be reduced to a single product. The nuclear factor of this product is determined by the lowest of the two potentials obtained by diagonalization of the potential matrix. By comparison with the nuclear wave function of the factorized scheme, it is shown that by a simple rectification, an agreement is obtained between the modified nodeless function and that of the adiabatic scheme.

  1. Optical spectroscopy of molecular junctions: Nonequilibrium Green's functions perspective.

    PubMed

    Gao, Yi; Galperin, Michael

    2016-05-01

    We consider optical spectroscopy of molecular junctions from the quantum transport perspective when radiation field is quantized and optical response of the system is simulated as photon flux. Using exact expressions for photon and electronic fluxes derived within the nonequilibrium Green function (NEGF) methodology and utilizing fourth order diagrammatic perturbation theory (PT) in molecular coupling to radiation field, we perform simulations employing realistic parameters. Results of the simulations are compared to the bare PT which is usually employed in studies on nonlinear optical spectroscopy to classify optical processes. We show that the bare PT violates conservation laws, while flux conserving NEGF formulation mixes optical processes. PMID:27155631

  2. Optical spectroscopy of molecular junctions: Nonequilibrium Green's functions perspective

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Galperin, Michael

    2016-05-01

    We consider optical spectroscopy of molecular junctions from the quantum transport perspective when radiation field is quantized and optical response of the system is simulated as photon flux. Using exact expressions for photon and electronic fluxes derived within the nonequilibrium Green function (NEGF) methodology and utilizing fourth order diagrammatic perturbation theory (PT) in molecular coupling to radiation field, we perform simulations employing realistic parameters. Results of the simulations are compared to the bare PT which is usually employed in studies on nonlinear optical spectroscopy to classify optical processes. We show that the bare PT violates conservation laws, while flux conserving NEGF formulation mixes optical processes.

  3. Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle.

    PubMed

    Kim, Jin Kyeoung; Choi, Kyung-Ju; Lee, Minhyung; Jo, Mi-hee; Kim, Soonhag

    2012-01-01

    MicroRNAs (miRNA, miR) have been reported as cancer biomarkers that regulate tumor suppressor genes. Hence, simultaneous detecting and inhibiting of miRNA function will be useful as a cancer theragnostics probe to minimize side effects and invasiveness. In this study, we developed a cancer-targeting therangostics probe in a single system using an AS1411 aptamer - and miRNA-221 molecular beacon (miR-221 MB)-conjugated magnetic fluorescence (MF) nanoparticle (MFAS miR-221 MB) to simultaneously target to cancer tissue, image intracellularly expressed miRNA-221 and treat miRNA-221-involved carcinogenesis. AS1411 aptamer-conjugated MF (MFAS) nanoparticles displayed a great selectivity and delivery into various cancer cell lines. The miR-221 MB detached from the MFAS miR-221 MB in the cytoplasm of C6 cells clearly imaged miRNA-221 biogenesis and simultaneously resulted in antitumor therapeutic effects by inhibiting miRNA function, indicating a successful astrocytoma-targeting theragnostics. MFAS miRNA MB can be easily applied to other cancers by simply changing a targeted miRNA highly expressed in cancers. PMID:21944470

  4. Investigating the correlations among the chemical structures, bioactivity profiles and molecular targets of small molecules

    PubMed Central

    Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.

    2010-01-01

    Motivation: Most of the previous data mining studies based on the NCI-60 dataset, due to its intrinsic cell-based nature, can hardly provide insights into the molecular targets for screened compounds. On the other hand, the abundant information of the compound–target associations in PubChem can offer extensive experimental evidence of molecular targets for tested compounds. Therefore, by taking advantages of the data from both public repositories, one may investigate the correlations between the bioactivity profiles of small molecules from the NCI-60 dataset (cellular level) and their patterns of interactions with relevant protein targets from PubChem (molecular level) simultaneously. Results: We investigated a set of 37 small molecules by providing links among their bioactivity profiles, protein targets and chemical structures. Hierarchical clustering of compounds was carried out based on their bioactivity profiles. We found that compounds were clustered into groups with similar mode of actions, which strongly correlated with chemical structures. Furthermore, we observed that compounds similar in bioactivity profiles also shared similar patterns of interactions with relevant protein targets, especially when chemical structures were related. The current work presents a new strategy for combining and data mining the NCI-60 dataset and PubChem. This analysis shows that bioactivity profile comparison can provide insights into the mode of actions at the molecular level, thus will facilitate the knowledge-based discovery of novel compounds with desired pharmacological properties. Availability: The bioactivity profiling data and the target annotation information are publicly available in the PubChem BioAssay database (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay/). Contact: ywang@ncbi.nlm.nih.gov; bryant@ncbi.nlm.nih.gov Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20947527

  5. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  6. A Investigation of a Possible Molecular Effect in Ion Atom Collision Using a Gaseous Argon Target

    NASA Astrophysics Data System (ADS)

    Arora, Sanjeev

    1992-01-01

    The present work deals with an investigation of the molecular effect, which is defined as the difference in experimental results using isotachic atomic ion and molecular ion beams in ion atom collisions. Previous studies have dealt almost exclusively with total cross section measurements. This thesis explores the idea that the molecular effect may be more pronounced in the differential ionization probability of the target atoms. Also, a gaseous argon target of sufficiently low density was used in order to ensure that the two correlated protons in the H _2^{+} beam did not interact with two adjacent target atoms simultaneously. We report that, contrary to the expectations noted above, the molecular effect in the K shell differential ionization probability of argon for scattering angles up to 90^circ appears to be no more than the molecular effect in the total ionization probability. The uncertainity in our results is statistical in nature and can be improved upon by running the experiment for a longer duration of time.

  7. [Frontier researches for the development of molecular-targeted therapies for familial Parkinson disease].

    PubMed

    Imai, Yuzuru; Takahashi, Ryosuke

    2009-08-01

    Parkinson disease (PD), is a movement disorder pathologically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the inherited forms of PD account for only 5 to 10% of PD cases, the identification of gene mutations in the genes implicated in familial PD in the past 10 years, including the findings regarding the a-synuclein, Parkin, ubiquitin-C-terminal hydrolase-L1 (UCH-L1), PINK1, DJ-1 and the ATP13A2 genes, has advanced understanding of the molecular mechanisms in each case of genetic PD. Most familial forms of PD develop at an early onset. However, recent identification of the leucine-rich repeat kinase (LRRK) 2 gene for a late-onset PD, the clinicopathological feature of which closely resembles that of sporadic PD, is expected to enable the clarification of the underlying causes of general PD. Recent studies on the physiological and pathological functions of these identified gene products have revealed overlapping pathogenetic pathways. The common features of these aberrant pathways are impaired protein degradation/quality control, mitochondrial dysfunction, and altered vesicle transport. Several attempts have been made towards developing molecular-targeted therapies directed against mitochondria (e.g., antioxidants, permeability transition pore modulators, and mitochondrial biogenesis stimulators), protein quality control and vesicle transport (e.g., gene silencing, immunization of asynuclein, and protofibril-destabilizing reagents). To ensure the successful implementation of such strategies, it is important to understand the events occuring at an early stage of PD. Further, studies using mammalian PD models for pharmacological analysis combined with studies employing lower organisms for genetic analyses such as worm, fly, and yeast will be helpful to determine effective prevention and treatment strategies for PD, which will replace the conventional symptomatic treatments for PD. PMID:19697879

  8. Animal models and therapeutic molecular targets of cancer: utility and limitations

    PubMed Central

    Cekanova, Maria; Rathore, Kusum

    2014-01-01

    Cancer is the term used to describe over 100 diseases that share several common hallmarks. Despite prevention, early detection, and novel therapies, cancer is still the second leading cause of death in the USA. Successful bench-to-bedside translation of basic scientific findings about cancer into therapeutic interventions for patients depends on the selection of appropriate animal experimental models. Cancer research uses animal and human cancer cell lines in vitro to study biochemical pathways in these cancer cells. In this review, we summarize the important animal models of cancer with focus on their advantages and limitations. Mouse cancer models are well known, and are frequently used for cancer research. Rodent models have revolutionized our ability to study gene and protein functions in vivo and to better understand their molecular pathways and mechanisms. Xenograft and chemically or genetically induced mouse cancers are the most commonly used rodent cancer models. Companion animals with spontaneous neoplasms are still an underexploited tool for making rapid advances in human and veterinary cancer therapies by testing new drugs and delivery systems that have shown promise in vitro and in vivo in mouse models. Companion animals have a relatively high incidence of cancers, with biological behavior, response to therapy, and response to cytotoxic agents similar to those in humans. Shorter overall lifespan and more rapid disease progression are factors contributing to the advantages of a companion animal model. In addition, the current focus is on discovering molecular targets for new therapeutic drugs to improve survival and quality of life in cancer patients. PMID:25342884

  9. Investigations on the Usefulness of CEACAMs as Potential Imaging Targets for Molecular Imaging Purposes

    PubMed Central

    Heine, Markus; Nollau, Peter; Masslo, Christoph; Nielsen, Peter; Freund, Barbara; Bruns, Oliver T.; Reimer, Rudolph; Hohenberg, Heinrich; Peldschus, Kersten; Ittrich, Harald; Schumacher, Udo

    2011-01-01

    Members of the carcinoembryonic antigen cell adhesion molecules (CEACAMs) family are the prototype of tumour markers. Classically they are used as serum markers, however, CEACAMs could serve as targets for molecular imaging as well. In order to test the anti CEACAM monoclonal antibody T84.1 for imaging purposes, CEACAM expression was analysed using this antibody. Twelve human cancer cell lines from different entities were screened for their CEACAM expression using qPCR, Western Blot and FACS analysis. In addition, CEACAM expression was analyzed in primary tumour xenografts of these cells. Nine of 12 tumour cell lines expressed CEACAM mRNA and protein when grown in vitro. Pancreatic and colon cancer cell lines showed the highest expression levels with good correlation of mRNA and protein level. However, when grown in vivo, the CEACAM expression was generally downregulated except for the melanoma cell lines. As the CEACAM expression showed pronounced expression in FemX-1 primary tumours, this model system was used for further experiments. As the accessibility of the antibody after i.v. application is critical for its use in molecular imaging, the binding of the T84.1 monoclonal antibody was assessed after i.v. injection into SCID mice harbouring a FemX-1 primary tumour. When applied i.v., the CEACAM specific T84.1 antibody bound to tumour cells in the vicinity of blood vessels. This binding pattern was particularly pronounced in the periphery of the tumour xenograft, however, some antibody binding was also observed in the central areas of the tumour around blood vessels. Still, a general penetration of the tumour by i.v. application of the anti CEACAM antibody could not be achieved despite homogenous CEACAM expression of all melanoma cells when analysed in tissue sections. This lack of penetration is probably due to the increased interstitial fluid pressure in tumours caused by the absence of functional lymphatic vessels. PMID:22162753

  10. Novel strategy for biofilm inhibition by using small molecules targeting molecular chaperone DnaK.

    PubMed

    Arita-Morioka, Ken-ichi; Yamanaka, Kunitoshi; Mizunoe, Yoshimitsu; Ogura, Teru; Sugimoto, Shinya

    2015-01-01

    Biofilms are complex communities of microorganisms that attach to surfaces and are embedded in a self-produced extracellular matrix. Since these cells acquire increased tolerance against antimicrobial agents and host immune systems, biofilm-associated infectious diseases tend to become chronic. We show here that the molecular chaperone DnaK is important for biofilm formation and that chemical inhibition of DnaK cellular functions is effective in preventing biofilm development. Genetic, microbial, and microscopic analyses revealed that deletion of the dnaK gene markedly reduced the production of the extracellular functional amyloid curli, which contributes to the robustness of Escherichia coli biofilms. We tested the ability of DnaK inhibitors myricetin (Myr), telmisartan, pancuronium bromide, and zafirlukast to prevent biofilm formation of E. coli. Only Myr, a flavonol widely distributed in plants, inhibited biofilm formation in a concentration-dependent manner (50% inhibitory concentration [IC50] = 46.2 μM); however, it did not affect growth. Transmission electron microscopy demonstrated that Myr inhibited the production of curli. Phenotypic analyses of thermosensitivity, cell division, intracellular level of RNA polymerase sigma factor RpoH, and vulnerability to vancomycin revealed that Myr altered the phenotype of E. coli wild-type cells to make them resemble those of the isogenic dnaK deletion mutant, indicating that Myr inhibits cellular functions of DnaK. These findings provide insights into the significance of DnaK in curli-dependent biofilm formation and indicate that DnaK is an ideal target for antibiofilm drugs. PMID:25403660

  11. Novel Strategy for Biofilm Inhibition by Using Small Molecules Targeting Molecular Chaperone DnaK

    PubMed Central

    Arita-Morioka, Ken-ichi; Yamanaka, Kunitoshi; Mizunoe, Yoshimitsu; Ogura, Teru

    2014-01-01

    Biofilms are complex communities of microorganisms that attach to surfaces and are embedded in a self-produced extracellular matrix. Since these cells acquire increased tolerance against antimicrobial agents and host immune systems, biofilm-associated infectious diseases tend to become chronic. We show here that the molecular chaperone DnaK is important for biofilm formation and that chemical inhibition of DnaK cellular functions is effective in preventing biofilm development. Genetic, microbial, and microscopic analyses revealed that deletion of the dnaK gene markedly reduced the production of the extracellular functional amyloid curli, which contributes to the robustness of Escherichia coli biofilms. We tested the ability of DnaK inhibitors myricetin (Myr), telmisartan, pancuronium bromide, and zafirlukast to prevent biofilm formation of E. coli. Only Myr, a flavonol widely distributed in plants, inhibited biofilm formation in a concentration-dependent manner (50% inhibitory concentration [IC50] = 46.2 μM); however, it did not affect growth. Transmission electron microscopy demonstrated that Myr inhibited the production of curli. Phenotypic analyses of thermosensitivity, cell division, intracellular level of RNA polymerase sigma factor RpoH, and vulnerability to vancomycin revealed that Myr altered the phenotype of E. coli wild-type cells to make them resemble those of the isogenic dnaK deletion mutant, indicating that Myr inhibits cellular functions of DnaK. These findings provide insights into the significance of DnaK in curli-dependent biofilm formation and indicate that DnaK is an ideal target for antibiofilm drugs. PMID:25403660

  12. atpE gene as a new useful specific molecular target to quantify Mycobacterium in environmental samples

    PubMed Central

    2013-01-01

    Background The environment is the likely source of many pathogenic mycobacterial species but detection of mycobacteria by bacteriological tools is generally difficult and time-consuming. Consequently, several molecular targets based on the sequences of housekeeping genes, non-functional RNA and structural ribosomal RNAs have been proposed for the detection and identification of mycobacteria in clinical or environmental samples. While certain of these targets were proposed as specific for this genus, most are prone to false positive results in complex environmental samples that include related, but distinct, bacterial genera. Nowadays the increased number of sequenced genomes and the availability of software for genomic comparison provide tools to develop novel, mycobacteria-specific targets, and the associated molecular probes and primers. Consequently, we conducted an in silico search for proteins exclusive to Mycobacterium spp. genomes in order to design sensitive and specific molecular targets. Results Among the 3989 predicted proteins from M. tuberculosis H37Rv, only 11 proteins showed 80% to 100% of similarity with Mycobacterium spp. genomes, and less than 50% of similarity with genomes of closely related Corynebacterium, Nocardia and Rhodococcus genera. Based on DNA sequence alignments, we designed primer pairs and a probe that specifically detect the atpE gene of mycobacteria, as verified by quantitative real-time PCR on a collection of mycobacteria and non-mycobacterial species. The real-time PCR method we developed was successfully used to detect mycobacteria in tap water and lake samples. Conclusions The results indicate that this real-time PCR method targeting the atpE gene can serve for highly specific detection and precise quantification of Mycobacterium spp. in environmental samples. PMID:24299240

  13. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics.

    PubMed

    Winkler, Gian C; Barle, Ester Lovsin; Galati, Giuseppe; Kluwe, William M

    2014-10-01

    There is no nationally or internationally binding definition of the term "cytotoxic drug" although this term is used in a variety of regulations for pharmaceutical development and manufacturing of drugs as well as in regulations for protecting medical personnel from occupational exposure in pharmacy, hospital, and other healthcare settings. The term "cytotoxic drug" is frequently used as a synonym for any and all oncology or antineoplastic drugs. Pharmaceutical companies generate and receive requests for assessments of the potential hazards of drugs regularly - including cytotoxicity. This publication is intended to provide functional definitions that help to differentiate between generically-cytotoxic cancer drugs of significant risk to normal human tissues, and targeted cancer therapeutics that pose much lesser risks. Together with specific assessments, it provides comprehensible guidance on how to assess the relevant properties of cancer drugs, and how targeted therapeutics discriminate between cancer and normal cells. The position of several regulatory agencies in the long-term is clearly to regulate all drugs regardless of classification, according to scientific risk based data. Despite ongoing discussions on how to replace the term "cytotoxic drugs" in current regulations, it is expected that its use will continue for the near future. PMID:24956585

  14. Regulating the Rate of Molecular Self-Assembly for Targeting Cancer Cells.

    PubMed

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2016-05-01

    Besides tight and specific ligand-receptor interactions, the rate regulation of the formation of molecular assemblies is one of fundamental features of cells. But the latter receives little exploration for developing anticancer therapeutics. Here we show that a simple molecular design of the substrates of phosphatases-tailoring the number of phosphates on peptidic substrates-is able to regulate the rate of molecular self-assembly of the enzyme reaction product. Such a rate regulation allows selective inhibition of osteosarcoma cells over hepatocytes, which promises to target cancer cells in a specific organ. Moreover, our result reveals that the direct measurement of the rate of the self-assembly in a cell-based assay provides precise assessment of the cell targeting capability of self-assembly. This work, as the first report establishing rate regulation of a multiple-step process to inhibit cells selectively, illustrates a fundamentally new approach for controlling the fate of cells. PMID:27062481

  15. Functions of astrocytes and their potential as therapeutic targets

    PubMed Central

    Kimelberg, Harold K.; Nedergaard, Maiken

    2010-01-01

    Astrocytes are often referred to, and historically have been regarded as, support cells of the mammalian CNS. Work over the last decade suggests otherwise, that astrocytes may in fact play a more active role in higher neural processing than previously recognized. Because astrocytes can potentially serve as novel therapeutic targets, it is critical to understand how astrocytes execute their diverse supportive tasks while maintaining neuronal health. To that end, this review will focus on the supportive roles of astrocytes, a line of study relevant to essentially all acute and chronic neurological diseases. Furthermore, this review will critically re-evaluate our concepts of the functional properties of astrocytes and relate these tasks to their intricate morphology. PMID:20880499

  16. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design

    PubMed Central

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M.

    2016-01-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents. PMID:27147293

  17. Mechanistic and quantitative insight into cell surface targeted molecular imaging agent design

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Bhatnagar, Sumit; Deschenes, Emily; Thurber, Greg M.

    2016-05-01

    Molecular imaging agent design involves simultaneously optimizing multiple probe properties. While several desired characteristics are straightforward, including high affinity and low non-specific background signal, in practice there are quantitative trade-offs between these properties. These include plasma clearance, where fast clearance lowers background signal but can reduce target uptake, and binding, where high affinity compounds sometimes suffer from lower stability or increased non-specific interactions. Further complicating probe development, many of the optimal parameters vary depending on both target tissue and imaging agent properties, making empirical approaches or previous experience difficult to translate. Here, we focus on low molecular weight compounds targeting extracellular receptors, which have some of the highest contrast values for imaging agents. We use a mechanistic approach to provide a quantitative framework for weighing trade-offs between molecules. Our results show that specific target uptake is well-described by quantitative simulations for a variety of targeting agents, whereas non-specific background signal is more difficult to predict. Two in vitro experimental methods for estimating background signal in vivo are compared – non-specific cellular uptake and plasma protein binding. Together, these data provide a quantitative method to guide probe design and focus animal work for more cost-effective and time-efficient development of molecular imaging agents.

  18. Cellular function of neuropathy target esterase in lysophosphatidylcholine action

    SciTech Connect

    Vose, Sarah C.; Fujioka, Kazutoshi; Gulevich, Alex G.; Lin, Amy Y.; Holland, Nina T.; Casida, John E.

    2008-11-01

    Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action.

  19. Fast molecular beacon hybridization in organic solvents with improved target specificity.

    PubMed

    Dave, Neeshma; Liu, Juewen

    2010-12-01

    DNA hybridization is of tremendous importance in biology, bionanotechnology, and biophysics. Molecular beacons are engineered DNA hairpins with a fluorophore and a quencher labeled on each of the two ends. A target DNA can open the hairpin to give an increased fluorescence signal. To date, the majority of molecular beacon detections have been performed only in aqueous buffers. We describe herein DNA detection in nine different organic solvents, methanol, ethanol, isopropanol, acetonitrile, formamide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylene glycol, and glycerol, varying each up to 75% (v/v). In comparison with detection in water, the detection in organic solvents showed several important features. First, the molecular beacon hybridizes to its target DNA in the presence of all nine solvents up to a certain percentage. Second, the rate of this hybridization was significantly faster in most organic solvents compared with water. For example, in 56% ethanol, the beacon showed a 70-fold rate enhancement. Third, the ability of the molecular beacon to discriminate single-base mismatch is still maintained. Lastly, the DNA melting temperature in the organic solvents showed a solvent concentration-dependent decrease. This study suggests that molecular beacons can be used for applications where organic solvents must be involved or organic solvents can be intentionally added to improve the molecular beacon performance. PMID:21062084

  20. Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells.

    PubMed

    Kadioglu, Onat; Efferth, Thomas

    2016-08-01

    Bioinformatics screening and molecular docking analyses were utilized to select high affinity peptides targeting translationally controlled tumor protein (TCTP). Selected peptide aptamers were tested towards cancer cell lines with different levels of TCTP expression. One peptide (WGQWPYHC) revealed specific cytotoxicity according to the TCTP expression in tumor cells without affecting normal cells. Western blot analysis showed peptide-induced down-regulation of TCTP as primary target as well as of cell-cycle related downstream proteins (CDK2, CDK6, Cyclin D3) in MOLT-4 leukemia cells. "WGQWPYHC" deserves further analysis for targeted therapy of TCTP-expressing tumor cells. Graphical abstract Molecular docking on TCTP, cytotoxicity toward MOLT-4 leukemia cell line and downregulation of CDK2, CDK6, CyclinD3 and TCTP proteins. PMID:26972431

  1. Prediction of the molecular mechanisms and potential therapeutic targets for diabetic nephropathy by bioinformatics methods

    PubMed Central

    WANG, WAN-NING; ZHANG, WEN-LONG; ZHOU, GUANG-YU; MA, FU-ZHE; SUN, TAO; SU, SEN-SEN; XU, ZHONG-GAO

    2016-01-01

    In this study, we aimed to explore the molecular mechanisms of and genetic factors influencing diabetic nephropathy (DN). Gene expression profiles associated with DN were obtained from the GEO database (Accession no. GSE20844). The differentially expressed genes (DEGs) between diabetic mice and non-diabetic mice were screened. Subsequently, the DEGs were subjected to functional and pathway analysis. The protein-protein interaction (PPI) network was constructed and the transcription factors (TFs) were screened among the DEGs. A total of 92 upregulated and 118 downregulated genes were screened. Pathway analysis revealed that the p53 signaling pathway, the transforming growth factor (TGF)-β signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway were significantly enriched by upregulated genes. Serpine1 (also known as plasminogen activator inhibitor-1), early growth response 1 (Egr1) and Mdk were found to be significant nodes in the PPI network by three methods. A total of 12 TFs were found to be differentially expressed, of which nuclear receptor subfamily 4, group A, member 1 (Nr4a1) and peroxisome proliferator-activated receptor gamma (Pparg) were found to have multiple interactions with other DEGs. We demonstrated that the p53 signaling pathway, the TGF-β signaling pathway and the MAPK signaling pathway were dysregulated in the diabetic mice. The significant nodes (Serpine1, Egr1 and Mdk) and differentially expressed TFs (Nr4a1 and Pparg) may provide a novel avenue for the targeted therapy of DN. PMID:26986014

  2. Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing

    PubMed Central

    Calvo, Sarah E.; Compton, Alison G.; Hershman, Steven G.; Lim, Sze Chern; Lieber, Daniel S.; Tucker, Elena J.; Laskowski, Adrienne; Garone, Caterina; Liu, Shangtao; Jaffe, David B.; Christodoulou, John; Fletcher, Janice M.; Bruno, Damien L; Goldblatt, Jack; DiMauro, Salvatore; Thorburn, David R.; Mootha, Vamsi K.

    2012-01-01

    Advances in next-generation sequencing (NGS) promise to facilitate diagnosis of inherited disorders. While in research settings NGS has pinpointed causal alleles using segregation in large families, the key challenge for clinical diagnosis is application to single individuals. To explore its diagnostic utility, we performed targeted NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease, who were refractory to traditional molecular diagnosis. These devastating mitochondrial disorders are characterized by phenotypic and genetic heterogeneity, with over 100 causal genes identified to date. We performed “MitoExome” sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 nuclear genes encoding mitochondrial proteins and prioritized rare mutations predicted to disrupt function. Since patients and controls harbored a comparable number of such heterozygous alleles, we could not prioritize dominant acting genes. However, patients showed a five-fold enrichment of genes with two such mutations that could underlie recessive disease. In total, 23/42 (55%) patients harbored such recessive genes or pathogenic mtDNA variants. Firm diagnoses were enabled in 10 patients (24%) who had mutations in genes previously linked to disease. 13 patients (31%) had mutations in nuclear genes never linked to disease. The pathogenicity of two such genes, NDUFB3 and AGK, was supported by cDNA complementation and evidence from multiple patients, respectively. The results underscore the immediate potential and challenges of deploying NGS in clinical settings. PMID:22277967

  3. The kinetic mechanism of Human Thymidine Phosphorylase - a molecular target for cancer drug development.

    PubMed

    Deves, Candida; Rostirolla, Diana Carolina; Martinelli, Leonardo Kras Borges; Bizarro, Cristiano Valim; Santos, Diogenes Santiago; Basso, Luiz Augusto

    2014-03-01

    Human Thymidine Phosphorylase (HTP), also known as the platelet-derived endothelial cell growth factor (PD-ECGF) or gliostatin, catalyzes the reversible phosphorolysis of thymidine (dThd) to thymine and 2-deoxy-α-d-ribose-1-phosphate (2dR1P). HTP is a key enzyme in the pyrimidine salvage pathway involved in dThd homeostasis in cells. HTP is a target for anticancer drug development as its enzymatic activity promotes angiogenesis. Here, we describe cloning, expression, and purification to homogeneity of recombinant TYMP-encoded HTP. Peptide fingerprinting and the molecular mass value of the homogenous protein confirmed its identity as HTP assessed by mass spectrometry. Size exclusion chromatography showed that HTP is a dimer in solution. Kinetic studies revealed that HTP displayed substrate inhibition for dThd. Initial velocity and isothermal titration calorimetry (ITC) studies suggest that HTP catalysis follows a rapid-equilibrium random bi-bi kinetic mechanism. ITC measurements also showed that dThd and Pi binding are favorable processes. The pH-rate profiles indicated that maximal enzyme activity was achieved at low pH values. Functional groups with apparent pK values of 5.2 and 9.0 are involved in dThd binding and groups with pK values of 6.1 and 7.8 are involved in phosphate binding. PMID:24407036

  4. Microphthalmia-associated transcription factor as the molecular target of cadmium toxicity in human melanocytes.

    PubMed

    Chantarawong, Wipa; Takeda, Kazuhisa; Sangartit, Weerapon; Yoshizawa, Miki; Pradermwong, Kantimanee; Shibahara, Shigeki

    2014-11-28

    Dietary intake of cadmium is inevitable, causing age-related increase in cadmium accumulation in many organs, including hair, choroid and retinal pigment epithelium (RPE). Cadmium has been implicated in the pathogenesis of hearing loss and macular degeneration. The functions of cochlea and retina are maintained by melanocytes and RPE, respectively, and the differentiation of these pigment cells is regulated by microphthalmia-associated transcription factor (MITF). In the present study, we explored the potential toxicity of cadmium in the cochlea and retina by using cultured human melanocytes and human RPE cell lines. MITF consists of multiple isoforms, including melanocyte-specific MITF-M and widely expressed MITF-H. Levels of MITF-M protein and its mRNA in human epidermal melanocytes and HMV-II melanoma cells were decreased significantly by cadmium. In parallel with the MITF reduction, mRNA levels of tyrosinase, the key enzyme of melanin biosynthesis that is regulated by MITF-M, were also decreased. In RPE cells, however, the levels of total MITF protein, constituting mainly MITF-H, were not decreased by cadmium. We thus identify MITF-M as the molecular target of cadmium toxicity in melanocytes, thereby accounting for the increased risk of disability from melanocyte malfunction, such as hearing and vision loss among people with elevated cadmium exposure. PMID:25449283

  5. Advanced Glycation End Products: A Molecular Target for Vascular Complications in Diabetes

    PubMed Central

    Yamagishi, Sho-ichi; Nakamura, Nobutaka; Suematsu, Mika; Kaseda, Kuniyoshi; Matsui, Takanori

    2015-01-01

    A nonenzymatic reaction between reducing sugars and amino groups of proteins, lipids and nucleic acids contributes to the aging of macromolecules and subsequently alters their structural integrity and function. This process has been known to progress at an accelerated rate under hyperglycemic and/or oxidative stress conditions. Over a course of days to weeks, early glycation products undergo further reactions such as rearrangements and dehydration to become irreversibly cross-linked, fluorescent and senescent macroprotein derivatives termed advanced glycation end products (AGEs). There is a growing body of evidence indicating that interaction of AGEs with their receptor (RAGE) elicits oxidative stress generation and as a result evokes proliferative, inflammatory, thrombotic and fibrotic reactions in a variety of cells. This evidence supports AGEs’ involvement in diabetes- and aging-associated disorders such as diabetic vascular complications, cancer, Alzheimer’s disease and osteoporosis. Therefore, inhibition of AGE formation could be a novel molecular target for organ protection in diabetes. This report summarizes the pathophysiological role of AGEs in vascular complications in diabetes and discusses the potential clinical utility of measurement of serum levels of AGEs for evaluating organ damage in diabetes. PMID:26605646

  6. Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8.

    PubMed

    Sehgal, Sheikh Arslan; Mannan, Shazia; Ali, Sannia

    2016-01-01

    Charcot-Marie-Tooth (CMT) disease is an inherited peripheral neuromuscular disorder characterized by length-dependent and progressive degeneration of peripheral nerves, leading to muscular weakness. Research has shown that mutated HSPB8 may be responsible for depression, neurodegenerative disorders, and improper functioning of peripheral nerves, resulting in neuromuscular disorders like CMT. In the current work, a hybrid approach of virtual screening and molecular docking studies was followed by homology modeling and pharmacophore identification. Detailed screening analyses were carried out by 2-D similarity search against prescribed antidepressant drugs with physicochemical properties. LigandScout was employed to ascertain novel molecules and pharmacophore properties. In this study, we report three novel compounds that showed maximum binding affinity with HSPB8. Docking analysis elucidated that Met37, Ser57, Ser58, Trp60, Thr63, Thr114, Lys115, Asp116, Gly117, Val152, Val154, Leu186, Asp189, Ser190, Gln191, and Glu192 are critical residues for ligand-receptor interactions. Our analyses suggested paroxetine as a potent compound for targeting HSPB8. Selected compounds have more effective energy scores than the selected drug analogs. Additionally, site-directed mutagenesis could be significant for further analysis of the binding pocket. The novel findings based on an in silico approach may be momentous for potent drug design against depression and CMT. PMID:27226709

  7. Molecular Targets of Antihypertensive Peptides: Understanding the Mechanisms of Action Based on the Pathophysiology of Hypertension

    PubMed Central

    Majumder, Kaustav; Wu, Jianping

    2014-01-01

    There is growing interest in using functional foods or nutraceuticals for the prevention and treatment of hypertension or high blood pressure. Although numerous preventive and therapeutic pharmacological interventions are available on the market, unfortunately, many patients still suffer from poorly controlled hypertension. Furthermore, most pharmacological drugs, such as inhibitors of angiotensin-I converting enzyme (ACE), are often associated with significant adverse effects. Many bioactive food compounds have been characterized over the past decades that may contribute to the management of hypertension; for example, bioactive peptides derived from various food proteins with antihypertensive properties have gained a great deal of attention. Some of these peptides have exhibited potent in vivo antihypertensive activity in both animal models and human clinical trials. This review provides an overview about the complex pathophysiology of hypertension and demonstrates the potential roles of food derived bioactive peptides as viable interventions targeting specific pathways involved in this disease process. This review offers a comprehensive guide for understanding and utilizing the molecular mechanisms of antihypertensive actions of food protein derived peptides. PMID:25547491

  8. Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8

    PubMed Central

    Sehgal, Sheikh Arslan; Mannan, Shazia; Ali, Sannia

    2016-01-01

    Charcot–Marie–Tooth (CMT) disease is an inherited peripheral neuromuscular disorder characterized by length-dependent and progressive degeneration of peripheral nerves, leading to muscular weakness. Research has shown that mutated HSPB8 may be responsible for depression, neurodegenerative disorders, and improper functioning of peripheral nerves, resulting in neuromuscular disorders like CMT. In the current work, a hybrid approach of virtual screening and molecular docking studies was followed by homology modeling and pharmacophore identification. Detailed screening analyses were carried out by 2-D similarity search against prescribed antidepressant drugs with physicochemical properties. LigandScout was employed to ascertain novel molecules and pharmacophore properties. In this study, we report three novel compounds that showed maximum binding affinity with HSPB8. Docking analysis elucidated that Met37, Ser57, Ser58, Trp60, Thr63, Thr114, Lys115, Asp116, Gly117, Val152, Val154, Leu186, Asp189, Ser190, Gln191, and Glu192 are critical residues for ligand–receptor interactions. Our analyses suggested paroxetine as a potent compound for targeting HSPB8. Selected compounds have more effective energy scores than the selected drug analogs. Additionally, site-directed mutagenesis could be significant for further analysis of the binding pocket. The novel findings based on an in silico approach may be momentous for potent drug design against depression and CMT. PMID:27226709

  9. Molecular evolution of SRP cycle components: functional implications.

    PubMed Central

    Althoff, S; Selinger, D; Wise, J A

    1994-01-01

    Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location

  10. New insight into the molecular control of bacterial functional amyloids

    PubMed Central

    Taylor, Jonathan D.; Matthews, Steve J.

    2015-01-01

    Amyloid protein structure has been discovered in a variety of functional or pathogenic contexts. What distinguishes the former from the latter is that functional amyloid systems possess dedicated molecular control systems that determine the timing, location, and structure of the fibers. Failure to guide this process can result in cytotoxicity, as observed in several pathologies like Alzheimer's and Parkinson's Disease. Many gram-negative bacteria produce an extracellular amyloid fiber known as curli via a multi-component secretion system. During this process, aggregation-prone, semi-folded curli subunits have to cross the periplasm and outer-membrane and self-assemble into surface-attached fibers. Two recent breakthroughs have provided molecular details regarding periplasmic chaperoning and subunit secretion. This review offers a combined perspective on these first mechanistic insights into the curli system. PMID:25905048

  11. Toxicological implications of esterases-From molecular structures to functions

    SciTech Connect

    Satoh, Tetsuo . E-mail: satohbri@peach.ifnet.or.jp

    2005-09-01

    This article reports on a keynote lecture at the 10th International Congress of Toxicology sponsored by the International Union of Toxicology and held on July 2004. Current developments in molecular-based studies into the structure and function of cholinesterases, carboxylesterases, and paraoxonases are described. This article covers mechanisms of regulation of gene expression of the various esterases by developmental factors and xenobiotics, as well as the interplay between physiological and chemical regulation of the enzyme activity.

  12. Multi-scale Functional and Molecular Photoacoustic Tomography

    PubMed Central

    Yao, Junjie; Xia, Jun; Wang, Lihong V.

    2015-01-01

    Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617

  13. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function.

    PubMed

    Carraretto, Luca; Teardo, Enrico; Checchetto, Vanessa; Finazzi, Giovanni; Uozumi, Nobuyuki; Szabo, Ildiko

    2016-03-01

    Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future. PMID:26751960

  14. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase.

    PubMed

    Gajula, Kiran S; Huwe, Peter J; Mo, Charlie Y; Crawford, Daniel J; Stivers, James T; Radhakrishnan, Ravi; Kohli, Rahul M

    2014-09-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9-11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  15. High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase

    PubMed Central

    Gajula, Kiran S.; Huwe, Peter J.; Mo, Charlie Y.; Crawford, Daniel J.; Stivers, James T.; Radhakrishnan, Ravi; Kohli, Rahul M.

    2014-01-01

    Antibody maturation is a critical immune process governed by the enzyme activation-induced deaminase (AID), a member of the AID/APOBEC DNA deaminase family. AID/APOBEC deaminases preferentially target cytosine within distinct preferred sequence motifs in DNA, with specificity largely conferred by a small 9–11 residue protein loop that differs among family members. Here, we aimed to determine the key functional characteristics of this protein loop in AID and to thereby inform our understanding of the mode of DNA engagement. To this end, we developed a methodology (Sat-Sel-Seq) that couples saturation mutagenesis at each position across the targeting loop, with iterative functional selection and next-generation sequencing. This high-throughput mutational analysis revealed dominant characteristics for residues within the loop and additionally yielded enzymatic variants that enhance deaminase activity. To rationalize these functional requirements, we performed molecular dynamics simulations that suggest that AID and its hyperactive variants can engage DNA in multiple specific modes. These findings align with AID's competing requirements for specificity and flexibility to efficiently drive antibody maturation. Beyond insights into the AID-DNA interface, our Sat-Sel-Seq approach also serves to further expand the repertoire of techniques for deep positional scanning and may find general utility for high-throughput analysis of protein function. PMID:25064858

  16. Mining experimental evidence of molecular function claims from the literature

    PubMed Central

    Crangle, Colleen E.; Cherry, J. Michael; Hong, Eurie L.; Zbyslaw, Alex; Wong, Limsoon

    2011-01-01

    Motivation The rate at which gene-related findings appear in the scientific literature makes it difficult if not impossible for biomedical scientists to keep fully informed and up to date. The importance of these findings argues for the development of automated methods that can find, extract and summarize this information. This article reports on methods for determining the molecular function claims that are being made in a scientific article, specifically those that are backed by experimental evidence. Results The most significant result is that for molecular function claims based on direct assays, our methods achieved recall of 70.7% and precision of 65.7%. Furthermore, our methods correctly identified in the text 44.6% of the specific molecular function claims backed up by direct assays, but with a precision of only 0.92%, a disappointing outcome that led to an examination of the different kinds of errors. These results were based on an analysis of 1823 articles from the literature of Saccharomyces cerevisiae (budding yeast). Availability The annotation files for S.cerevisiae are available from ftp://genome-ftp.stanford.edu/pub/yeast/data_download/literature_curation/gene_association.sgd.gz. The draft protocol vocabulary is available by request from the first author. Contact crangle@converspeech.com PMID:17942445

  17. Nanoparticle Probes for Structural and Functional Photoacoustic Molecular Tomography

    PubMed Central

    Chen, Haobin; Yuan, Zhen; Wu, Changfeng

    2015-01-01

    Nowadays, nanoparticle probes have received extensive attention largely due to its potential biomedical applications in structural, functional, and molecular imaging. In addition, photoacoustic tomography (PAT), a method based on the photoacoustic effect, is widely recognized as a robust modality to evaluate the structure and function of biological tissues with high optical contrast and high acoustic resolution. The combination of PAT with nanoparticle probes holds promises for detecting and imaging diseased tissues or monitoring their treatments with high sensitivity. This review will introduce the recent advances in the emerging field of nanoparticle probes and their preclinical applications in PAT, as well as relevant perspectives on future development. PMID:26609534

  18. Transport properties of water at functionalized molecular interfaces

    PubMed Central

    Feng, Jun; Wong, Ka-Yiu; Dyer, Kippi; Pettitt, B. Montgomery

    2009-01-01

    Understanding transport properties of solvent such as diffusion and viscosity at interfaces with biomacromolecules and hard materials is of fundamental importance to both biology and biotechnology. Our study utilizes equilibrium molecular dynamics simulations to calculate solvent transport properties at a model peptide and microarray surface. Both diffusion and selected components of viscosity are considered. Solvent diffusion is found to be affected near the peptide and surface. The stress-stress correlation function of solvent near the hard surface exhibits long time memory. Both diffusion and viscosity are shown to be closely correlated with the density distribution function of water along the microarray surface. PMID:19791920

  19. Transport properties of water at functionalized molecular interfaces

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Wong, Ka-Yiu; Dyer, Kippi; Pettitt, B. Montgomery

    2009-09-01

    Understanding transport properties of solvent such as diffusion and viscosity at interfaces with biomacromolecules and hard materials is of fundamental importance to both biology and biotechnology. Our study utilizes equilibrium molecular dynamics simulations to calculate solvent transport properties at a model peptide and microarray surface. Both diffusion and selected components of viscosity are considered. Solvent diffusion is found to be affected near the peptide and surface. The stress-stress correlation function of solvent near the hard surface exhibits long time memory. Both diffusion and viscosity are shown to be closely correlated with the density distribution function of water along the microarray surface.

  20. Septic acute kidney injury: molecular mechanisms and the importance of stratification and targeting therapy.

    PubMed

    Morrell, Eric D; Kellum, John A; Pastor-Soler, Núria M; Hallows, Kenneth R

    2014-01-01

    The most common cause of acute kidney injury (AKI) in hospitalized patients is sepsis. However, the molecular pathways and mechanisms that mediate septic AKI are not well defined. Experiments performed over the past 20 years suggest that there are profound differences in the pathogenesis between septic and ischemic AKI. Septic AKI often occurs independently of hypoperfusion, and is mediated by a concomitant pro- and anti-inflammatory state that is activated in response to various pathogen-associated molecular patterns, such as endotoxin, as well as damage-associated molecular patterns. These molecular patterns are recognized by Toll-like receptors (TLRs) found in the kidney, and effectuate downstream inflammatory pathways. Additionally, apoptosis has been proposed to play a role in the pathogenesis of septic AKI. However, targeted therapies designed to mitigate the above aspects of the inflammatory state, TLR-related pathways, and apoptosis have failed to show significant clinical benefit. This failure is likely due to the protean nature of septic AKI, whereby different patients present at different points along the immunologic spectrum. While one patient may benefit from targeted therapy at one end of the spectrum, another patient at the other end may be harmed by the same therapy. We propose that a next important step in septic AKI research will be to identify where patients lie on the immunologic spectrum in order to appropriately target therapies at the inflammatory cascade, TLRs, and possibly apoptosis. PMID:25575158

  1. Molecular and Cellular Pathobiology of Ehrlichia Infection: Targets for New Therapeutics and Immunomodulation Strategies

    PubMed Central

    McBride, Jere W.; Walker, David H.

    2013-01-01

    Ehrlichia are small gram-negative obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. Ehrlichia are able to subvert both innate and adaptive host defenses, and advances in understanding molecular Ehrlichia-eukaryotic host cell interactions and the cellular and immunologic basis of disease are important for developing effective next generation therapies. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between these intracellular pathogens and host cell components and identified new targets for therapeutic and vaccine development including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathologic mechanisms that contribute significantly to understanding severe disease manifestations that will lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics and prospects for treating immunologic dysregulation that occurs during acute infection leading to life-threatening complications. PMID:21276277

  2. Molecular beacons with a homo-DNA stem: improving target selectivity

    PubMed Central

    Crey-Desbiolles, Caroline; Ahn, Dae-Ro; Leumann, Christian J.

    2005-01-01

    Molecular beacons (MBs) are stem–loop DNA probes used for identifying and reporting the presence and localization of nucleic acid targets in vitro and in vivo via target-dependent dequenching of fluorescence. A drawback of conventional MB design is present in the stem sequence that is necessary to keep the MBs in a closed conformation in the absence of a target, but that can participate in target binding in the open (target-on) conformation, giving rise to the possibility of false-positive results. In order to circumvent these problems, we designed MBs in which the stem was replaced by an orthogonal DNA analog that does not cross-pair with natural nucleic acids. Homo-DNA seemed to be specially suited, as it forms stable adenine-adenine base pairs of the reversed Hoogsteen type, potentially reducing the number of necessary building blocks for stem design to one. We found that MBs in which the stem part was replaced by homo-adenylate residues can easily be synthesized using conventional automated DNA synthesis. As conventional MBs, such hybrid MBs show cooperative hairpin to coil transitions in the absence of a DNA target, indicating stable homo-DNA base pair formation in the closed conformation. Furthermore, our results show that the homo-adenylate stem is excluded from DNA target binding, which leads to a significant increase in target binding selectivity. PMID:15879349

  3. [Molecular biological foundation of targeted therapy for metastatic renal cell carcinoma].

    PubMed

    Lai, Chong; Teng, Xiaodong

    2016-01-01

    The incidence of renal cell carcinoma (RCC) is increasing. Radical cure by surgery can only be achieved in patients with early stage tumors. How to precisely use antineoplastic agents after surgery is an important problem to be solved. Most metastatic RCCs are pathologically identified as clear cell RCC (ccRCC), thus to develop agents targeting ccRCC is critical. Most clinically available targeted therapies are based on targeting some spots in specific pathways; or based on targeting new anti-tumor mechanisms, such as programmed death-1(PD-1), antibody-drug conjugates (ADC) and stem cells. There is still no targeted therapy having definite effect to most RCC patients. Only von Hippel-Lindau (VHL) pathway so far has been confirmed to be related to ccRCC development and progression; the inactivation of VHL gene causes many significant downstream gene changes. The key proteins involved in VHL pathway may be potential therapeutic targets for ccRCC. In this article, we review the current progress of targeted therapy for RCC, focus on the molecular characteristics of ccRCC, its relation to VHL pathway, the potential therapeutic targets and future clinical application for metastatic ccRCC. PMID:27045248

  4. The Molecular Basis for Kinesin Functional Specificity During Mitosis

    PubMed Central

    Welburn, Julie P I

    2013-01-01

    Microtubule-based motor proteins play key roles during mitosis to assemble the bipolar spindle, define the cell division axis, and align and segregate the chromosomes. The majority of mitotic motors are members of the kinesin superfamily. Despite sharing a conserved catalytic core, each kinesin has distinct functions and localization, and is uniquely regulated in time and space. These distinct behaviors and functional specificity are generated by variations in the enzymatic domain as well as the non-conserved regions outside of the kinesin motor domain and the stalk. These flanking regions can directly modulate the properties of the kinesin motor through dimerization or self-interactions, and can associate with extrinsic factors, such as microtubule or DNA binding proteins, to provide additional functional properties. This review discusses the recently identified molecular mechanisms that explain how the control and functional specification of mitotic kinesins is achieved. © 2013 Wiley Periodicals, Inc. PMID:24039047

  5. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy

    PubMed Central

    Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

  6. Functionalized Single-Walled Carbon Nanotubes as Rationally Designed Vehicles for Tumor-Targeted Drug Delivery

    SciTech Connect

    Chen,J.; Wong,S.; Chen, S.; Zhao, X.; Kuznetsova, L.V.; and Ojima, I.

    2008-11-14

    A novel single-walled carbon nanotube (SWNT)-based tumor-targeted drug delivery system (DDS) has been developed, which consists of a functionalized SWNT linked to tumor-targeting modules as well as prodrug modules. There are three key features of this nanoscale DDS: (a) use of functionalized SWNTs as a biocompatible platform for the delivery of therapeutic drugs or diagnostics, (b) conjugation of prodrug modules of an anticancer agent (taxoid with a cleavable linker) that is activated to its cytotoxic form inside the tumor cells upon internalization and in situ drug release, and (c) attachment of tumor-recognition modules (biotin and a spacer) to the nanotube surface. To prove the efficacy of this DDS, three fluorescent and fluorogenic molecular probes were designed, synthesized, characterized, and subjected to the analysis of the receptor-mediated endocytosis and drug release inside the cancer cells (L1210FR leukemia cell line) by means of confocal fluorescence microscopy. The specificity and cytotoxicity of the conjugate have also been assessed and compared with L1210 and human noncancerous cell lines. Then, it has unambiguously been proven that this tumor-targeting DDS works exactly as designed and shows high potency toward specific cancer cell lines, thereby forming a solid foundation for further development.

  7. Molecular Investigations of Protriptyline as a Multi-Target Directed Ligand in Alzheimer's Disease

    PubMed Central

    Bansode, Sneha B.; Jana, Asis K.; Batkulwar, Kedar B.; Warkad, Shrikant D.; Joshi, Rakesh S.; Sengupta, Neelanjana; Kulkarni, Mahesh J.

    2014-01-01

    Alzheimer's disease (AD) is a complex neurodegenerative disorder involving multiple cellular and molecular processes. The discovery of drug molecules capable of targeting multiple factors involved in AD pathogenesis would greatly facilitate in improving therapeutic strategies. The repositioning of existing non-toxic drugs could dramatically reduce the time and costs involved in developmental and clinical trial stages. In this study, preliminary screening of 140 FDA approved nervous system drugs by docking suggested the viability of the tricyclic group of antidepressants against three major AD targets, viz. Acetylcholinesterase (AChE), β-secretase (BACE-1), and amyloid β (Aβ) aggregation, with one member, protriptyline, showing highest inhibitory activity. Detailed biophysical assays, together with isothermal calorimetry, fluorescence quenching experiments, kinetic studies and atomic force microscopy established the strong inhibitory activity of protriptyline against all three major targets. The molecular basis of inhibition was supported with comprehensive molecular dynamics simulations. Further, the drug inhibited glycation induced amyloid aggregation, another important causal factor in AD progression. This study has led to the discovery of protriptyline as a potent multi target directed ligand and established its viability as a promising candidate for AD treatment. PMID:25141174

  8. In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes

    NASA Astrophysics Data System (ADS)

    Wang, Huina; Liu, Chengbo; Gong, Xiaojing; Hu, Dehong; Lin, Riqiang; Sheng, Zonghai; Zheng, Cuifang; Yan, Meng; Chen, Jingqin; Cai, Lintao; Song, Liang

    2014-11-01

    As an optical-acoustic hybrid imaging technology, photoacoustic imaging uniquely combines the advantages of rich optical contrast with high ultrasonic resolution in depth, opening up many new possibilities not attainable with conventional pure optical imaging technologies. To perform photoacoustic molecular imaging, optically absorbing exogenous contrast agents are needed to enhance the signals from specifically targeted disease activity. In this work, we designed and developed folate receptor targeted, indocyanine green dye doped poly(d,l-lactide-co-glycolide) lipid nanoparticles (FA-ICG-PLGA-lipid NPs) for molecular photoacoustic imaging of tumor. The fabricated FA-ICG-PLGA-lipid NPs exhibited good aqueous stability, a high folate-receptor targeting efficiency, and remarkable optical absorption in near-infrared wavelengths, providing excellent photoacoustic signals in vitro. Furthermore, after intravenous administration of FA-ICG-PLGA-lipid NPs, mice bearing MCF-7 breast carcinomas showed significantly enhanced photoacoustic signals in vivo in the tumor regions, compared with those using non-targeted ICG-PLGA-lipid NPs. Given the existing wide clinical use of ICG and PLGA, the developed FA-ICG-PLGA-lipid NPs, in conjunction with photoacoustic imaging technology, offer a great potential to be translated into the clinic for non-ionizing molecular imaging of breast cancer in vivo.

  9. Systems Toxicology of Male Reproductive Development: Profiling 774 Chemicals for Molecular Targets and Adverse Outcomes

    PubMed Central

    Leung, Maxwell C.K.; Phuong, Jimmy; Baker, Nancy C.; Sipes, Nisha S.; Klinefelter, Gary R.; Martin, Matthew T.; McLaurin, Keith W.; Setzer, R. Woodrow; Darney, Sally Perreault; Judson, Richard S.; Knudsen, Thomas B.

    2015-01-01

    Background: Trends in male reproductive health have been reported for increased rates of testicular germ cell tumors, low semen quality, cryptorchidism, and hypospadias, which have been associated with prenatal environmental chemical exposure based on human and animal studies. Objective: In the present study we aimed to identify significant correlations between environmental chemicals, molecular targets, and adverse outcomes across a broad chemical landscape with emphasis on developmental toxicity of the male reproductive system. Methods: We used U.S. EPA’s animal study database (ToxRefDB) and a comprehensive literature analysis to identify 774 chemicals that have been evaluated for adverse effects on male reproductive parameters, and then used U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) to profile their bioactivity across approximately 800 molecular and cellular features. Results: A phenotypic hierarchy of testicular atrophy, sperm effects, tumors, and malformations, a composite resembling the human testicular dysgenesis syndrome (TDS) hypothesis, was observed in 281 chemicals. A subset of 54 chemicals with male developmental consequences had in vitro bioactivity on molecular targets that could be condensed into 156 gene annotations in a bipartite network. Conclusion: Computational modeling of available in vivo and in vitro data for chemicals that produce adverse effects on male reproductive end points revealed a phenotypic hierarchy across animal studies consistent with the human TDS hypothesis. We confirmed the known role of estrogen and androgen signaling pathways in rodent TDS, and importantly, broadened the list of molecular targets to include retinoic acid signaling, vascular remodeling proteins, G-protein coupled receptors (GPCRs), and cytochrome P450s. Citation: Leung MC, Phuong J, Baker NC, Sipes NS, Klinefelter GR, Martin MT, McLaurin KW, Setzer RW, Darney SP, Judson RS, Knudsen TB. 2016. Systems toxicology of male

  10. Ultrasound Molecular Imaging of Tumor Angiogenesis with a Neuropilin-1-Targeted Microbubble

    PubMed Central

    Zhang, Hua; Tam, Sarah; Ingham, Elizabeth S.; Mahakian, Lisa M.; Lai, Chun-Yen; Tumbale, Spencer K.; Teesalu, Tambet; Hubbard, Neil E.; Borowsky, Alexander D.; Ferrara, Katherine W.

    2015-01-01

    Ultrasound molecular imaging has great potential to impact early disease diagnosis, evaluation of disease progression and the development of target-specific therapy. In this paper, two neuropilin-1 (NRP) targeted peptides, CRPPR and ATWLPPR, were conjugated onto the surface of lipid microbubbles (MBs) to evaluate molecular imaging of tumor angiogenesis in a breast cancer model. Development of a molecular imaging agent using CRPPR has particular importance due to the previously demonstrated internalizing capability of this and similar ligands. In vitro, CRPPR MBs bound to an NRP-expressing cell line 2.6 and 15.6 times more than ATWLPPR MBs and non-targeted (NT) MBs, respectively, and the binding was inhibited by pretreating the cells with an NRP antibody. In vivo, the backscattered intensity within the tumor, relative to nearby vasculature, increased over time during the ~6 min circulation of the CRPPR-targeted contrast agents providing high contrast images of angiogenic tumors. Approximately 67% of the initial signal from CRPPR MBs remained bound after the majority of circulating MBs had cleared (8 min), 8 and 4.5 times greater than ATWLPPR and NT MBs, respectively. Finally, at 7–21 days after the first injection, we found that CRPPR MBs cleared faster from circulation and tumor accumulation was reduced likely due to a complement-mediated recognition of the targeted microbubble and a decrease in angiogenic vasculature, respectively. In summary, we find that CRPPR MBs specifically bind to NRP-expressing cells and provide an effective new agent for molecular imaging of angiogenesis. PMID:25934284

  11. Molecular genetics and mechanisms of apoptosis in carcinomas of the lung and pleura: therapeutic targets.

    PubMed

    Motadi, L R; Misso, N L; Dlamini, Z; Bhoola, K D

    2007-12-20

    Cancers of the lung and pleura remain a major cause of cancer deaths, both in men and women, with strong causal relationships between cigarette smoking and asbestos fibres, and deaths from lung cancer and mesothelioma, respectively. The poor survival rates for small cell lung cancer and mesotheliomas argue powerfully for greater understanding of mechanisms of carcinogenesis, genetic abnormalities and the role of tumour suppressor genes and proteins in carcinomas of the lung and pleura. Despite progress in the development of newer cytotoxic drugs, lung cancer remains a lethal disease. Chemotherapy and radiotherapy produce only a modest improvement in survival of patients with advanced disease. Increased knowledge of molecular mechanisms of lung cancer and apoptosis are providing opportunities for treating lung cancer with new classes of molecularly targeted drugs. These novel therapies should target the abnormalities in lung cancer by maximizing the effects of anti-tumour molecules, with minimal side effects on normal tissues. Of the several molecular targets, those receiving attention are p53 gene replacement, Bcl-2 downregulation, apoptosis by induced by TNF, the FAS/CD95 receptor system and TRAIL, and inhibition of NF-kappaB. Although several studies have shown benefits, there is a need for well planned clinical trials of drugs that target the apoptotic cascade. Stem cell therapy and gene replacement offer the prospect of novel approaches that are likely in the near future to play a definitive role in the treatment of advanced lung cancer. Furthermore, with their apparent minimal toxicity to normal tissues, the newer molecular targets represent attractive investigational directions for innovative cancer therapies. PMID:18039530

  12. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    PubMed Central

    Joshi, Bishnu P.; Wang, Thomas D.

    2010-01-01

    Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839

  13. Molecular Basis of Klotho: From Gene to Function in Aging

    PubMed Central

    Xu, Yuechi

    2015-01-01

    The discovery of the Klotho (KL) gene, which was originally identified as a putative aging-suppressor gene, has generated tremendous interest and has advanced understanding of the aging process. In mice, the overexpression of the KL gene extends the life span, whereas mutations to the KL gene shorten the life span. The human KL gene encodes the α-Klotho protein, which is a multifunctional protein that regulates the metabolism of phosphate, calcium, and vitamin D. α-Klotho also may function as a hormone, although the α-Klotho receptor(s) has not been found. Point mutations of the KL gene in humans are associated with hypertension and kidney disease, which suggests that α-Klotho may be essential to the maintenance of normal renal function. Three α-Klotho protein types with potentially different functions have been identified: a full-length transmembrane α-Klotho, a truncated soluble α-Klotho, and a secreted α-Klotho. Recent evidence suggests that α-Klotho suppresses the insulin and Wnt signaling pathways, inhibits oxidative stress, and regulates phosphatase and calcium absorption. In this review, we provide an update on recent advances in the understanding of the molecular, genetic, biochemical, and physiological properties of the KL gene. Specifically, this review focuses on the structure of the KL gene and the factors that regulate KL gene transcription, the key sites in the regulation of α-Klotho enzyme activity, the α-Klotho signaling pathways, and the molecular mechanisms that underlie α-Klotho function. This current understanding of the molecular biology of the α-Klotho protein may offer new insights into its function and role in aging. PMID:25695404

  14. Antagonistic molecular interactions of photosynthetic pigments with molecular disease targets: a new approach to treat AD and ALS.

    PubMed

    Krishnaraj, R Navanietha; Kumari, S S Sreeja; Mukhopadhyay, Sudit Sekhar

    2016-01-01

    Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS) are progressive neurodegenerative diseases that affect the neurons in the brain and the spinal cord. Neuroinflamation and apoptosis are key players in the progressive damage of the neurons in AD and ALS. Currently, there is no drug to offer complete cure for both these diseases. Riluzole is the only available drug that can prolong the life time of the ALS patients for nearly 3 months. Molecules that offer good HIT to the molecular targets of ALS will help to treat AD and ALS patients. P53 kinase receptor (4AT3), EphA4 (3CKH) and histone deacetylase (3SFF) are the promising disease targets of AD and ALS. This paper discusses on a new approach to combat neurodegenerative diseases using photosynthetic pigments. The docking studies were performed with the Autodock Vina algorithm to predict the binding of the natural pigments such as β carotene, chlorophyll a, chlorophyll b, phycoerythrin and phycocyanin on these targets. The β carotene, phycoerythrin and phycocyanin had higher binding energies indicating the antagonistic activity to the disease targets. These pigments serve as a potential therapeutic molecule to treat neuroinflammation and apoptosis in the AD and ALS patients. PMID:26053508

  15. Targeting protein function: the expanding toolkit for conditional disruption

    PubMed Central

    Campbell, Amy E.; Bennett, Daimark

    2016-01-01

    A major objective in biological research is to understand spatial and temporal requirements for any given gene, especially in dynamic processes acting over short periods, such as catalytically driven reactions, subcellular transport, cell division, cell rearrangement and cell migration. The interrogation of such processes requires the use of rapid and flexible methods of interfering with gene function. However, many of the most widely used interventional approaches, such as RNAi or CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated 9), operate at the level of the gene or its transcripts, meaning that the effects of gene perturbation are exhibited over longer time frames than the process under investigation. There has been much activity over the last few years to address this fundamental problem. In the present review, we describe recent advances in disruption technologies acting at the level of the expressed protein, involving inducible methods of protein cleavage, (in)activation, protein sequestration or degradation. Drawing on examples from model organisms we illustrate the utility of fast-acting techniques and discuss how different components of the molecular toolkit can be employed to dissect previously intractable biochemical processes and cellular behaviours. PMID:27574023

  16. Molecular Mechanism and Potential Targets for Blocking HPV-Induced Lesion Development

    PubMed Central

    Guzmán-Olea, E.; Bermúdez-Morales, V. H.; Peralta-Zaragoza, O.; Torres-Poveda, K.; Madrid-Marina, V.

    2012-01-01

    Persistent infection with high-risk HPV is the etiologic agent associated with the development of cervical cancer (CC) development. However, environmental, social, epidemiological, genetic, and host factors may have a joint influence on the risk of disease progression. Cervical lesions caused by HPV infection can be removed naturally by the host immune response and only a small percentage may progress to cancer; thus, the immune response is essential for the control of precursor lesions and CC. We present a review of recent research on the molecular mechanisms that allow HPV-infected cells to evade immune surveillance and potential targets of molecular therapy to inhibit tumor immune escape. PMID:22220169

  17. Molecular Mechanism and Potential Targets for Blocking HPV-Induced Lesion Development.

    PubMed

    Guzmán-Olea, E; Bermúdez-Morales, V H; Peralta-Zaragoza, O; Torres-Poveda, K; Madrid-Marina, V

    2012-01-01

    Persistent infection with high-risk HPV is the etiologic agent associated with the development of cervical cancer (CC) development. However, environmental, social, epidemiological, genetic, and host factors may have a joint influence on the risk of disease progression. Cervical lesions caused by HPV infection can be removed naturally by the host immune response and only a small percentage may progress to cancer; thus, the immune response is essential for the control of precursor lesions and CC. We present a review of recent research on the molecular mechanisms that allow HPV-infected cells to evade immune surveillance and potential targets of molecular therapy to inhibit tumor immune escape. PMID:22220169

  18. Surmounting Chemotherapy and Radioresistance in Chondrosarcoma: Molecular Mechanisms and Therapeutic Targets

    PubMed Central

    Onishi, Anne C.; Hincker, Alexander M.; Lee, Francis Y.

    2011-01-01

    Chondrosarcoma, a primary malignancy of bone, has eluded successful treatment with modern chemotherapeutic and radiation regimens. To date, surgical resection of these tumors remains the only curative treatment offered to patients with this diagnosis. Understanding and exploring the nature of chemotherapy and radiation resistance in chondrosarcoma could lead to new molecular targets and more directed therapy for these notoriously difficult-to-treat tumors. Here we review the most current hypotheses regarding the molecular mechanisms mediating chemotherapy and radiation resistance and the future direction of chondrosarcoma therapy research. PMID:21234363

  19. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops

    PubMed Central

    Podzimska-Sroka, Dagmara; O’Shea, Charlotte; Gregersen, Per L.; Skriver, Karen

    2015-01-01

    Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, ArabidopsisNAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality. PMID:27135336

  20. Molecular targeted therapies in advanced or metastatic chordoma patients: facts and hypotheses.

    PubMed

    Lebellec, Loïc; Aubert, Sébastien; Zaïri, Fahed; Ryckewaert, Thomas; Chauffert, Bruno; Penel, Nicolas

    2015-07-01

    Chordomas, derived from undifferentiated notochordal remnants, represent less than 4% of bone primary tumors. Despite surgery followed by radiotherapy, local and metastatic relapses are frequent. In case of locally advanced or metastatic chordomas, medical treatment is frequently discussed. While chemotherapy is ineffective, it would appear that some molecular targeted therapies, in particular imatinib, could slow down the tumor growth in case-reports, retrospective series, and phase I or II trials. Nineteen publications, between January 1990 and September 2014, have been found describing the activity of these targeted therapies. A systematic analysis of these publications shows that the best objective response with targeted therapies was stabilization in 52 to 69% of chordomas. Given the indolent course of advanced chordoma and because of the absence of randomized trial, the level of evidence to treat chordomas with molecular therapy is low (level III), whatever the drug. Furthermore, we could not draw firm conclusion on the activity of imatinib. Other putative targets have also been described. Therefore, further clinical trials are expected, especially with these targets. Nevertheless, it seems essential, in those future studies, to consider the naturally slow course of the disease. PMID:25682222

  1. Molecular Motions in Functional Self-Assembled Nanostructures

    PubMed Central

    Dhotel, Alexandre; Chen, Ziguang; Delbreilh, Laurent; Youssef, Boulos; Saiter, Jean-Marc; Tan, Li

    2013-01-01

    The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted. PMID:23348927

  2. New molecular and cellular targets for chemoprevention and treatment of skin tumors by plant polyphenols: a critical review.

    PubMed

    Korkina, L G; Pastore, S; Dellambra, E; De Luca, C

    2013-01-01

    As the incidence of skin tumors has been steadily growing, there is an urgent need for the preventive measures as well as the improved therapeutic approaches. In the last two decades, natural plant derived polyphenols (PPs, resveratrol, silibinin, green tea polyphenols, flavonoids, anthocyanins, etc.) have been drawing particular interest as emerging active substances in dermatological/cosmeceutical compositions for the prevention, slowing, or reversion of skin tumorigenesis (chemoprevention). When chronically applied to the skin, they supposedly would not damage normal skin cells or negatively affect their functions while they would suppress tumorigenic cell transformation, inhibit tumor cell proliferation, and activate tumor cell apoptosis. PPs are also reported to synergize with conventional anti-cancer therapies. The major aim of this critical review is to provide recent updates on the molecular and cellular targets for the prevention and therapy of skin tumors with a special focus on the crossroad between inflammation and carcinogenesis as the most promising approach to chemoprevention. Novel therapeutic targets as different as epidermal stem cells, cellular senescence, epigenetic enzymes involved in carcinogenesis, epidermal growth factor and aryl hydrocarbon receptors, and metabolic CYP1 subfamily enzymes are highlighted. The mechanisms of PPs interaction with these molecular and cellular targets are reviewed. The feasibility of PPs to prevent/ cure specific cutaneous toxicity connected to anti-EGFR therapy and to reduce multidrug resistance of skin tumors is also discussed. PMID:23210776

  3. MOLECULARLY TARGETED THERAPIES IN NON-SMALL CELL LUNG CANCER ANNUAL UPDATE 2014

    PubMed Central

    Morgensztern, Daniel; Campo, Meghan J.; Dahlberg, Suzanne E.; Doebele, Robert C.; Garon, Edward; Gerber, David E.; Goldberg, Sarah B.; Hammerman, Peter S.; Heist, Rebecca; Hensing, Thomas; Horn, Leora; Ramalingam, Suresh S.; Rudin, Charles M.; Salgia, Ravi; Sequist, Lecia; Shaw, Alice T.; Simon, George R.; Somaiah, Neeta; Spigel, David R.; Wrangle, John; Johnson, David; Herbst, Roy S.; Bunn, Paul; Govindan, Ramaswamy

    2015-01-01

    There have been significant advances in the understanding of the biology and treatment of non-small cell lung cancer (NSCLC) over the past few years. A number of molecularly targeted agents are in the clinic or in development for patients with advanced NSCLC (Table 1). We are beginning to understand the mechanisms of acquired resistance following exposure to tyrosine kinase inhibitors in patients with oncogene addicted NSCLC. The advent of next generation sequencing has enabled to study comprehensively genomic alterations in lung cancer. Finally, early results from immune checkpoint inhibitors are very encouraging. This review summarizes recent advances in the area of cancer genomics, targeted therapies and immunotherapy. PMID:25535693

  4. Advances in multimodality molecular imaging of bone structure and function

    PubMed Central

    Lambers, Floor M; Kuhn, Gisela; Müller, Ralph

    2012-01-01

    The skeleton is important to the body as a source of minerals and blood cells and provides a structural framework for strength, mobility and the protection of organs. Bone diseases and disorders can have deteriorating effects on the skeleton, but the biological processes underlying anatomical changes in bone diseases occurring in vivo are not well understood, mostly due to the lack of appropriate analysis techniques. Therefore, there is ongoing research in the development of novel in vivo imaging techniques and molecular markers that might help to gain more knowledge of these pathological pathways in animal models and patients. This perspective provides an overview of the latest developments in molecular imaging applied to bone. It emphasizes that multimodality imaging, the combination of multiple imaging techniques encompassing different image modalities, enhances the interpretability of data, and is imperative for the understanding of the biological processes and the associated changes in bone structure and function relationships in vivo. PMID:27127622

  5. Molecular Classification, Pathway Addiction, and Therapeutic Targeting in Diffuse Large B-cell Lymphoma

    PubMed Central

    Puvvada, Soham; Kendrick, Samantha; Rimsza, Lisa

    2015-01-01

    The rapid emergence of molecularly-based techniques to detect changes in the genetic landscape of diffuse large B-cell lymphoma (DLBCL) including gene expression, DNA and RNA sequencing, and epigenetic profiling, has significantly impacted the understanding and therapeutic targeting of DLBCL. In this review, we will briefly discuss the new methods used in the study of DLBCL. We will describe the influence of the generated data on DLBCL classification and the identification of new entities and altered cell survival strategies with a focus on the renewed interest in some classic oncogenic pathways that are currently targeted for new therapy. Lastly, we will examine the molecular genomic studies that revealed the importance of the tumor microenvironment in the pathogenesis of DLBCL. PMID:24080457

  6. Molecularly targeted therapy for advanced hepatocellular carcinoma - a drug development crisis?

    PubMed Central

    Thillai, Kiruthikah; Ross, Paul; Sarker, Debashis

    2016-01-01

    Hepatocellular carcinoma is the fastest growing cause of cancer related death globally. Sorafenib, a multi-targeted kinase inhibitor, is the only drug proven to improve outcomes in patients with advanced disease offering modest survival benefit. Although comprehensive genomic mapping has improved understanding of the genetic aberrations in hepatocellular cancer (HCC), this knowledge has not yet impacted clinical care. The last few years have seen the failure of several first and second line phase III clinical trials of novel molecularly targeted therapies, warranting a change in the way new therapies are investigated in HCC. Potential reasons for these failures include clinical and molecular heterogeneity, trial design and a lack of biomarkers. This review discusses the current crisis in HCC drug development and how we should learn from recent trial failures to develop a more effective personalised treatment paradigm for patients with HCC. PMID:26909132

  7. Biomarkers of Aging: From Function to Molecular Biology.

    PubMed

    Wagner, Karl-Heinz; Cameron-Smith, David; Wessner, Barbara; Franzke, Bernhard

    2016-01-01

    Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products. PMID:27271660

  8. Biomarkers of Aging: From Function to Molecular Biology

    PubMed Central

    Wagner, Karl-Heinz; Cameron-Smith, David; Wessner, Barbara; Franzke, Bernhard

    2016-01-01

    Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products. PMID:27271660

  9. Molecularly-Targeted Gold-Based Nanoparticles for Cancer Imaging and Near-Infrared Photothermal Therapy

    NASA Astrophysics Data System (ADS)

    Day, Emily Shannon

    2011-12-01

    This thesis advances the use of nanoparticles as multifunctional agents for molecularly-targeted cancer imaging and photothermal therapy. Cancer mortality has remained relatively unchanged for several decades, indicating a significant need for improvements in care. Researchers are evaluating strategies incorporating nanoparticles as exogenous energy absorbers to deliver heat capable of inducing cell death selectively to tumors, sparing normal tissue. Molecular targeting of nanoparticles is predicted to improve photothermal therapy by enhancing tumor retention. This hypothesis is evaluated with two types of nanoparticles. The nanoparticles utilized, silica-gold nanoshells and gold-gold sulfide nanoparticles, can convert light energy into heat to damage cancerous cells. For in vivo applications nanoparticles are usually coated with poly(ethylene glycol) (PEG) to increase blood circulation time. Here, heterobifunctional PEG links nanoparticles to targeting agents (antibodies and growth factors) to provide cell-specific binding. This approach is evaluated through a series of experiments. In vitro, antibody-coated nanoparticles can bind breast carcinoma cells expressing the targeted receptor and act as contrast agents for multiphoton microscopy prior to inducing cell death via photoablation. Furthermore, antibody-coated nanoparticles can bind tissue ex vivo at levels corresponding to receptor expression, suggesting they should bind their target even in the complex biological milieu. This is evaluated by comparing the accumulation of antibody-coated and PEG-coated nanoparticles in subcutaneous glioma tumors in mice. Contrary to expectations, antibody targeting did not yield more nanoparticles within tumors. Nevertheless, these studies established the sensitivity of glioma to photothermal therapy; mice treated with PEG-coated nanoshells experienced 57% complete tumor regression versus no regression in control mice. Subsequent experiments employed intracranial tumors to

  10. Molecular therapy targeting Sonic hedgehog and hepatocyte growth factor signaling in a mouse model of medulloblastoma.

    PubMed

    Coon, Valerie; Laukert, Tamara; Pedone, Carolyn A; Laterra, John; Kim, K Jin; Fults, Daniel W

    2010-09-01

    The use of genetically engineered mice has provided insights into the molecular pathogenesis of the pediatric brain tumor medulloblastoma and revealed promising therapeutic targets. Ectopic expression of Sonic hedgehog (Shh) in cerebellar neural progenitor cells induces medulloblastomas in mice, and coexpression of hepatocyte growth factor (HGF) enhances Shh-induced tumor formation. To determine whether Shh + HGF-driven medulloblastomas were responsive to Shh signaling blockade and whether treatment response could be enhanced by combination therapy targeting both HGF and Shh signaling pathways, we carried out a survival study in mice. We induced medulloblastomas by retrovirus-mediated expression of Shh and HGF, after which we treated the mice systemically with (a) HGF-neutralizing monoclonal antibody L2G7, (b) Shh signaling inhibitor cyclopamine, (c) Shh-neutralizing monoclonal antibody 5E1, (d) L2G7 + cyclopamine, or (e) L2G7 + 5E1. We report that monotherapy targeting either HGF signaling or Shh signaling prolonged survival and that anti-HGF therapy had a more durable response than Shh-targeted therapy. The effect of L2G7 + 5E1 combination therapy on cumulative survival was equivalent to that of L2G7 monotherapy and that of L2G7 + cyclopamine therapy was worse. The principal mechanism by which Shh- and HGF-targeted therapies inhibited tumor growth was a potent apoptotic death response in tumor cells, supplemented by a weaker suppressive effect on proliferation. Our observation that combination therapy either failed to improve or even reduced survival in mice bearing Shh + HGF-induced medulloblastomas compared with monotherapy underscores the importance of preclinical testing of molecular-targeted therapies in animal models of tumors in which the targeted pathways are known to be active. PMID:20807782

  11. Molecular Therapy Targeting Sonic Hedgehog and Hepatocyte Growth Factor Signaling in a Mouse Model of Medulloblastoma

    PubMed Central

    Coon, Valerie; Laukert, Tamara; Pedone, Carolyn A.; Laterra, John; Kim, K. Jin; Fults, Daniel W.

    2010-01-01

    The use of genetically engineered mice has provided insights into the molecular pathogenesis of the pediatric brain tumor medulloblastoma and revealed promising therapeutic targets. Ectopic expression of Sonic Hedgehog (Shh) in cerebellar neural progenitor cells induces medulloblastomas in mice, and coexpression of hepatocyte growth factor (HGF) enhances Shh-induced tumor formation. To determine whether Shh+HGF–driven medulloblastomas were responsive to Shh signaling blockade and whether treatment response could be enhanced by combination therapy targeting both HGF and Shh signaling pathways, we carried out a survival study in mice. We induced medulloblastomas by retrovirus-mediated expression of Shh and HGF, after which we treated the mice systemically with (a) HGF-neutralizing monoclonal antibody L2G7, (b) Shh signaling inhibitor cyclopamine, (c) Shh-neutralizing monoclonal antibody 5E1, (d) L2G7+cyclopamine, or (e) L2G7+5E1. We report that monotherapy targeting either HGF signaling or Shh signaling prolonged survival and that anti-HGF therapy had a more durable response than Shh-targeted therapy. The effect of L2G7+5E1 combination therapy on cumulative survival was equivalent to that of L2G7 monotherapy and that of L2G7+cyclopamine therapy was worse. The principal mechanism by which Shh- and HGF-targeted therapies inhibited tumor growth was a potent apoptotic death response in tumor cells, supplemented by a weaker suppressive effect on proliferation. Our observation that combination therapy either failed to improve or even reduced survival in mice bearing Shh+HGF induced medulloblastomas compared with monotherapy underscores the importance of preclinical testing of molecular-targeted therapies in animal models of tumors in which the targeted pathways are known to be active. PMID:20807782

  12. Molecular adsorption at Pt(111). How accurate are DFT functionals?

    PubMed

    Gautier, Sarah; Steinmann, Stephan N; Michel, Carine; Fleurat-Lessard, Paul; Sautet, Philippe

    2015-11-21

    Molecular chemisorption at a metal surface is a key step for many processes, such as catalysis, electrochemistry, surface treatment, tribology and friction. Modeling with density functional theory is largely used on these systems. From a detailed comparison with accurate micro-calorimetric data on ten systems (involving ethylene, cyclohexene, benzene, naphthalene, CO, O2, H2, methane, ethane), we study the accuracy, for chemisorption on Pt(111), of five exchange-correlation functionals including one generalized gradient approximation functional (PBE) and four functionals that take into account van der Waals interactions (optPBE-vdW, optB86b-vdW, BEEF-vdW, PBE-dDsC). If the functionals used provide very similar geometries and electronic structures, as shown by projected density of states, they give strikingly different results for the adsorption energy of molecules on Pt(111). Among the set of chemisorption data, the lowest mean absolute deviations (MAD) are obtained with the optPBE-vdW and PBE-dDsC functionals (∼0.2 eV) while PBE and optB86b-vdW give twice larger MAD (∼0.45 eV). BEEF-vdW is intermediate with a MAD of 0.33 eV. For laterally π-bound unsaturated hydrocarbons (cyclohexene, benzene, naphthalene) the PBE and the BEEF-vdW functionals are severally under-bound, while optPBE-vdW and PBE-dDsC provide a good match with experiments. Hence both the incorporation of van der Waals dispersive forces and the choice of the exchange functional have a key influence on the chemisorption energy. Vertically bound ethylidyne and CO are in contrast over-bound with all functionals, the best agreement being obtained with BEEF-vdW. None of the selected functionals hence provides a universally accurate treatment of chemisorption energies. PMID:26455444

  13. Molecular magnetic resonance probe targeting VEGF165: preparation and in vitro and in vivo evaluation.

    PubMed

    You, Xiao-Guang; Tu, Rong; Peng, Ming-Li; Bai, Yu-Jie; Tan, Mingqian; Li, Han-Jian; Guan, Jing; Wen, Li-Jun

    2014-01-01

    A new method for imaging the tumor human vascular endothelial growth factor 165 (VEGF 165) is presented. A magnetic resonance imaging (MRI) probe was prepared by crosslinking ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to the aptamer for tumor vascular endothelial growth factor 165 (VEGF165-aptamer). The molecular probe was evaluated for its in vitro and in vivo activities toward VEGF165. Enzyme-linked immunosorbent assay showed that the VEGF165-aptamer-USPIO nanoparticles conjugate specifically binds to VEGF165 in vitro. A cell proliferation test showed that VEGF165-aptamer-USPIO seems to block the proliferation of human umbilical vein endothelial cells induced by free VEGF165, suggesting that VEGF165 is an effective target of this molecular probe. In xenograft mice carrying liver cancer that expresses VEGF165, T2-weighted imaging of the tumor displayed marked negative enhancement 3 h after the intravenous administration of VEGF165-aptamer-USPIO. The enhancement disappeared 6 h after administration of the probe. These results suggest the targeted imaging effect of VEGF165-aptamer-USPIO probe in vivo for VEGF165-expressing tumors. This is the first report of a targeted MRI molecular probe based on USPIO and VEGF165-aptamer. PMID:24729581

  14. Breast Cancer Detection by B7-H3 Targeted Ultrasound Molecular Imaging

    PubMed Central

    Bachawal, Sunitha V.; Jensen, Kristin C.; Wilson, Katheryne E.; Tian, Lu; Lutz, Amelie M.; Willmann, Jürgen K.

    2015-01-01

    Ultrasound complements mammography as an imaging modality for breast cancer detection, especially in patients with dense breast tissue, but its utility is limited by low diagnostic accuracy. One emerging molecular tool to address this limitation involves contrast-enhanced ultrasound using microbubbles targeted to molecular signatures on tumor neovasculature. In this study, we illustrate how tumor vascular expression of B7-H3 (CD276), a member of the B7 family of ligands for T cell co-regulatory receptors, can be incorporated into an ultrasound method that can distinguish normal, benign, precursor and malignant breast pathologies for diagnostic purposes. Through an immunohistochemical analysis of 248 human breast specimens, we found that vascular expression of B7-H3 was selectively and significantly higher in breast cancer tissues. B7-H3 immunostaining on blood vessels distinguished benign/precursors from malignant lesions with high diagnostic accuracy in human specimens. In a transgenic mouse model of cancer, the B7-H3-targeted ultrasound imaging signal was increased significantly in breast cancer tissues and highly correlated with ex vivo expression levels of B7-H3 on quantitative immunofluorescence. Our findings offer a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging as a tool to improve the diagnostic accuracy of breast cancer detection in patients. PMID:25899053

  15. Molecular Targets Related to Inflammation and Insulin Resistance and Potential Interventions

    PubMed Central

    Hirabara, Sandro M.; Gorjão, Renata; Vinolo, Marco A.; Rodrigues, Alice C.; Nachbar, Renato T.; Curi, Rui

    2012-01-01

    Inflammation and insulin resistance are common in several chronic diseases, such as obesity, type 2 diabetes mellitus, metabolic syndrome, cancer, and cardiovascular diseases. Various studies show a relationship between these two factors, although the mechanisms involved are not completely understood yet. Here, we discuss the molecular basis of insulin resistance and inflammation and the molecular aspects on inflammatory pathways interfering in insulin action. Moreover, we explore interventions based on molecular targets for preventing or treating correlated disorders, advances for a better characterization, and understanding of the mechanisms and mediators involved in the different inflammatory and insulin resistance conditions. Finally, we address biotechnological studies for the development of new potential therapies and interventions. PMID:23049242

  16. The probability density function in molecular gas in the G333 and Vela C molecular clouds

    NASA Astrophysics Data System (ADS)

    Cunningham, Maria

    2015-08-01

    The probability density function (PDF) is a simple analytical tool for determining the hierarchical spatial structure of molecular clouds. It has been used frequently in recent years with dust continuum emission, such as that from the Herschel space telescope and ALMA. These dust column density PDFs universally show a log-normal distribution in low column density gas, characteristic of unbound turbulent gas, and a power-law tail at high column densities, indicating the presence of gravitationally bound gas. We have recently conducted a PDF analysis of the molecular gas in the G333 and Vela C giant molecular cloud complexes, using transitions of CO, HCN, HNC, HCO+ and N2H+.The results show that CO and its isotopologues trace mostly the log-normal part of the PDF, while HCN and HCO+ trace both a log-normal part and a power law part to the distribution. On the other hand, HNC and N2H+ mostly trace only the power law tail. The difference between the PDFs of HCN and HNC is surprising, as is the similarity between HNC and the N2H+ PDFs. The most likely explanation for the similar distributions of HNC and N2H+ is that N2H+ is known to be enhanced in cool gas below 20K, where CO is depleted, while the reaction that forms HNC or HCN favours the former at similar low temperatures. The lack of evidence for a power law tail in 13CO and C18O, in conjunction for the results for the N2H+ PDF suggest that depletion of CO in the dense cores of these molecular clouds is significant. In conclusion, the PDF has proved to be a surprisingly useful tool for investigating not only the spatial distribution of molecular gas, but also the wide scale chemistry of molecular clouds.

  17. PREFACE: International Symposium on Molecular Conductors: Novel Functions of Molecular Conductors under Extreme Conditions (ISMC 2008)

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshihiro; Suzumura, Yoshikazu

    2008-02-01

    The International Symposium on Molecular Conductors 2008 (ISMC2008) was held as the second international symposium of the project entitled `Novel Functions of Molecular Conductors under Extreme Conditions', which was supported by the Grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology in Japan. The project lasted from September 2003 to March 2008, and was completed by this symposium held at Okazaki Conference Center, Institute for Molecular Science, Okazaki, Japan (23-25 July 2008), which about 100 scientists attended. During the symposium, five project teams gave summary talks and exciting talks were given on the topics developed recently not only by the members of the project but also by other scientists including invited speakers from abroad, who are doing active research on molecular conductors. It is expected that papers presented in the symposium will give valuable hints for the next step in the research of this field. Therefore the organizers of this symposium decided to publish this proceedings in order to demonstrate these activities, not only for the local community of the project, but also for the broad society of international scientists who are interested in molecular conductors. The editors, who are also the organizers of this symposium, believe that this proceedings provides a significant and relevant contribution to the field of molecular conductors since it is the first time we have published such a proceedings as an electronic journal. We note that all papers published in this volume of Journal of Physics: Conference Series have been peer reviewed by expert referees. Editors made every effort to satisfy the criterion of a proceedings journal published by IOP Publishing. Toshihiro Takahashi and Yoshikazu Suzumura Editors: Toshihiro Takahashi (Gakushuin University) (Chairman) Kazushi Kanoda (University of Tokyo) Seiichi Kagoshima (University of Tokyo) Takehiko Mori (Tokyo

  18. An improved approach for predicting drug-target interaction: proteochemometrics to molecular docking.

    PubMed

    Shaikh, Naeem; Sharma, Mahesh; Garg, Prabha

    2016-02-23

    Proteochemometric (PCM) methods, which use descriptors of both the interacting species, i.e. drug and the target, are being successfully employed for the prediction of drug-target interactions (DTI). However, unavailability of non-interacting dataset and determining the applicability domain (AD) of model are a main concern in PCM modeling. In the present study, traditional PCM modeling was improved by devising novel methodologies for reliable negative dataset generation and fingerprint based AD analysis. In addition, various types of descriptors and classifiers were evaluated for their performance. The Random Forest and Support Vector Machine models outperformed the other classifiers (accuracies >98% and >89% for 10-fold cross validation and external validation, respectively). The type of protein descriptors had negligible effect on the developed models, encouraging the use of sequence-based descriptors over the structure-based descriptors. To establish the practical utility of built models, targets were predicted for approved anticancer drugs of natural origin. The molecular recognition interactions between the predicted drug-target pair were quantified with the help of a reverse molecular docking approach. The majority of predicted targets are known for anticancer therapy. These results thus correlate well with anticancer potential of the selected drugs. Interestingly, out of all predicted DTIs, thirty were found to be reported in the ChEMBL database, further validating the adopted methodology. The outcome of this study suggests that the proposed approach, involving use of the improved PCM methodology and molecular docking, can be successfully employed to elucidate the intricate mode of action for drug molecules as well as repositioning them for new therapeutic applications. PMID:26822863

  19. A Transcriptome—Targeting EcoChip for Assessing Functional Mycodiversity

    PubMed Central

    Peršoh, Derek; Weig, Alfons R.; Rambold, Gerhard

    2011-01-01

    A functional biodiversity microarray (EcoChip) prototype has been developed to facilitate the analysis of fungal communities in environmental samples with broad functional and phylogenetic coverage and to enable the incorporation of nucleic acid sequence data as they become available from large-scale (next generation) sequencing projects. A dual probe set (DPS) was designed to detect a) functional enzyme transcripts at conserved protein sites and b) phylogenetic barcoding transcripts at ITS regions present in precursor rRNA. Deviating from the concept of GeoChip-type microarrays, the presented EcoChip microarray phylogenetic information was obtained using a dedicated set of barcoding microarray probes, whereas functional gene expression was analyzed by conserved domain-specific probes. By unlinking these two target groups, the shortage of broad sequence information of functional enzyme-coding genes in environmental communities became less important. The novel EcoChip microarray could be successfully applied to identify specific degradation activities in environmental samples at considerably high phylogenetic resolution. Reproducible and unbiased microarray signals could be obtained with chemically labeled total RNA preparations, thus avoiding the use of enzymatic labeling steps. ITS precursor rRNA was detected for the first time in a microarray experiment, which confirms the applicability of the EcoChip concept to selectively quantify the transcriptionally active part of fungal communities at high phylogenetic resolution. In addition, the chosen microarray platform facilitates the conducting of experiments with high sample throughput in almost any molecular biology laboratory.

  20. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation.

    PubMed

    Zsuga, Judit; Tajti, Gabor; Papp, Csaba; Juhasz, Bela; Gesztelyi, Rudolf

    2016-05-01

    Interventions focusing on the prevention and treatment of chronic non-communicable diseases are on rise. In the current article, we propose that dysfunction of the mesocortico-limbic reward system contributes to the emergence of the WHO-identified risk behaviors (tobacco use, unhealthy diet, physical inactivity and harmful use of alcohol), behaviors that underlie the evolution of major non-communicable diseases (e.g. cardiovascular diseases, cancer, diabetes and chronic respiratory diseases). Given that dopaminergic neurons of the mesocortico-limbic system are tightly associated with reward-related processes and motivation, their dysfunction may fundamentally influence behavior. While nicotine and alcohol alter dopamine neuron function by influencing some receptors, mesocortico-limbic system dysfunction was associated with elevation of metabolic set-point leading to hedonic over-eating. Although there is some empirical evidence, precise molecular mechanism for linking physical inactivity and mesocortico-limbic dysfunction per se seems to be missing; identification of which may contribute to higher success rates for interventions targeting lifestyle changes pertaining to physical activity. In the current article, we compile evidence in support of a link between exercise and the mesocortico-limbic system by elucidating interactions on the axis of muscle - irisin - brain derived neurotrophic factor (BDNF) - and dopaminergic function of the midbrain. Irisin is a contraction-regulated myokine formed primarily in skeletal muscle but also in the brain. Irisin stirred considerable interest, when its ability to induce browning of white adipose tissue parallel to increasing thermogenesis was discovered. Furthermore, it may also play a role in the regulation of behavior given it readily enters the central nervous system, where it induces BDNF expression in several brain areas linked to reward processing, e.g. the ventral tegmental area and the hippocampus. BDNF is a

  1. Cholecystokinin: A multi-functional molecular switch of neuronal circuits

    PubMed Central

    Lee, Soo Yeun; Soltesz, Ivan

    2010-01-01

    Cholecystokinin (CCK), a peptide originally discovered in the gastrointestinal tract, is one of the most the abundant and widely distributed neuropeptides in the brain. In spite of its abundance, recent data indicate that that CCK modulates intrinsic neuronal excitability and synaptic transmission in a surprisingly cell-type specific manner, acting as a key molecular switch to regulate the functional output of neuronal circuits. The central importance of CCK in neuronal networks is also reflected in its involvement in a variety of neuropsychiatric and neurological disorders including panic attacks and epilepsy. PMID:21154912

  2. Prediction of the molecular mechanisms and potential therapeutic targets for diabetic nephropathy by bioinformatics methods.

    PubMed

    Wang, Wan-Ning; Zhang, Wen-Long; Zhou, Guang-Yu; Ma, Fu-Zhe; Sun, Tao; Su, Sen-Sen; Xu, Zhong-Gao

    2016-05-01

    In this study, we aimed to explore the molecular mechanisms of and genetic factors influencing diabetic nephropathy (DN). Gene expression profiles associated with DN were obtained from the GEO database (Accession no. GSE20844). The differentially expressed genes (DEGs) between diabetic mice and non-diabetic mice were screened. Subsequently, the DEGs were subjected to functional and pathway analysis. The protein-protein interaction (PPI) network was constructed and the transcription factors (TFs) were screened among the DEGs. A total of 92 upregulated and 118 downregulated genes were screened. Pathway analysis revealed that the p53 signaling pathway, the transforming growth factor (TGF)-β signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway were significantly enriched by upregulated genes. Serpine1 (also known as plasminogen activator inhibitor-1), early growth response 1 (Egr1) and Mdk were found to be significant nodes in the PPI network by three methods. A total of 12 TFs were found to be differentially expressed, of which nuclear receptor subfamily 4, group A, member 1 (Nr4a1) and peroxisome proliferator-activated receptor gamma (Pparg) were found to have multiple interactions with other DEGs. We demonstrated that the p53 signaling pathway, the TGF-β signaling pathway and the MAPK signaling pathway were dysregulated in the diabetic mice. The significant nodes (Serpine1, Egr1 and Mdk) and differentially expressed TFs (Nr4a1 and Pparg) may provide a novel avenue for the targeted therapy of DN. PMID:26986014

  3. CAM and cell fate targeting: molecular and energetic insights into cell growth and differentiation.

    PubMed

    Ventura, Carlo

    2005-09-01

    Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM) offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence-based CAM. PMID:16136206

  4. Investigations on nanoconfinement of low-molecular antineoplastic agents into biocompatible magnetic matrices for drug targeting.

    PubMed

    Tomoiaga, Alina Maria; Cioroiu, Bogdan Ionel; Nica, Valentin; Vasile, Aurelia

    2013-11-01

    Magnetic mesoporous silica nanoparticles are employed as biocompatible matrices to host low-molecular antineoplastic drugs. 5-Fluorouracil is a well-known antimetabolite drug used to treat many malignancies: colon, rectal, breast, head and neck, pancreatic, gastric, esophageal, liver and G-U (bladder, penile, vulva, prostate), skin cancers (basal cell and keratosis). Unfortunately severe gastrointestinal, hematological, neural, cardiac and dermatological toxic effects are often registered due to its cytotoxicity. Thus, this work focuses on development of a magnetic silica nanosystem, capable of hosting high amounts of 5-fluorouracil and delivers it in a targeted manner, under the influence of external magnetic field. There are few reports on nanoconfinement of this particular small molecule antimetabolite on mesoporous silica hosts. Therefore we have investigated different ways to confine high amounts of 5-FU within amino-modified and non-modified mesopores of the silica shell, from water and ethanol, under magnetic stirring and ultrasound irradiation. Also, we have studied the adsorption process from water as a function of pH in order to rationalize drug-support interactions. It is shown that nature of the solvent has great influence on diffusion of small molecules into mesopores, which is slower from alcoholic solutions. More importantly, sonication is proven as an excellent alternative to long adsorption tests, since the time necessary to reach equilibrium is drastically reduced to 1h and higher amounts of drug may be immobilized within the mesopores of amino-modified magnetic silica nanoparticles. These results are highly important for optimization of drug immobilization process in order to attain desired release profile. PMID:23777792

  5. From Molecular Meccano to Nano-Functional Materials for Molecular Electronics Applications

    NASA Astrophysics Data System (ADS)

    Sue, Chi-Hau

    resulting MOF-1001 and MOF-1002, which adopt the primitive cubic structure, are capable of docking paraquat cation guests within the crown ethers inside in a stereoelectronically controlled fashion, a behavior similar to enzymes binding incoming substrates. And MOF-1030, which is synthesized from an exceptionally long [2]catenane organic strut, is a three-dimensional MOF structure with vast openness, allowing MIMs-based prototypical molecular switches to be anchored at precise locations and with uniform relative orientations throughout the framework as a whole. These studies not only represent efficient approaches to the preparation of MOFs with complex functionalities, but also set the stage for the development of next-generation nano-functional materials for molecular electronics applications.

  6. Dependable and Efficient Clinical Molecular Diagnosis of Chinese RP Patient with Targeted Exon Sequencing

    PubMed Central

    Yin, Xiaobei; Dou, Hongliang; Zhao, Lin; Chen, Ningning; Zhang, Jinlu; Zhang, Huirong; Li, Genlin; Ma, Zhizhong

    2015-01-01

    Retinitis pigmentosa (RP) is the most common inherited retinal disease. It is a clinically and genetically heterogeneous disorder, which is why it is particularly challenging to diagnose. The aim of this study was to establish a targeted next-generation sequencing (NGS) approach for the comprehensive, rapid, and cost-effective clinical molecular diagnosis of RP. A specific hereditary eye disease enrichment panel (HEDEP) based on exome capture technology was used to collect the protein coding regions of 371 targeted hereditary eye disease genes, followed by high-throughput sequencing on the Illumina HiSeq2000 platform. From a cohort of 34 Chinese RP families, 13 families were successfully diagnosed; thus, the method achieves a diagnostic rate of approximately 40%. Of 16 pathogenic mutations identified, 11 were novel. Our study demonstrates that targeted capture sequencing offers a rapid and effective method for the molecular diagnosis of RP, which helps to provide a more accurate clinical diagnosis and paves the way for genetic counseling, family planning, and future gene-targeted treatment. PMID:26496393

  7. Molecular Targeted Therapies for the Treatment of Leptomeningeal Carcinomatosis: Current Evidence and Future Directions

    PubMed Central

    Lee, Dae-Won; Lee, Kyung-Hun; Kim, Jin Wook; Keam, Bhumsuk

    2016-01-01

    Leptomeningeal carcinomatosis (LMC) is the multifocal seeding of cerebrospinal fluid and leptomeninges by malignant cells. The incidence of LMC is approximately 5% in patients with malignant tumors overall and the rate is increasing due to increasing survival time of cancer patients. Eradication of the disease is not yet possible, so the treatment goals of LMC are to improve neurologic symptoms and to prolong survival. A standard treatment for LMC has not been established due to low incidences of LMC, the rapidly progressing nature of the disease, heterogeneous populations with LMC, and a lack of randomized clinical trial results. Treatment options for LMC include intrathecal chemotherapy, systemic chemotherapy, and radiation therapy, but the prognoses remain poor with a median survival of <3 months. Recently, molecular targeted agents have been applied in the clinic and have shown groundbreaking results in specific patient groups epidermal growth factor receptor (EGFR)-targeted therapy or an anaplastic lymphoma kinase (ALK) inhibitor in lung cancer, human epidermal growth factor receptor 2 (HER2)-directed therapy in breast cancer, and CD20-targeted therapy in B cell lymphoma). Moreover, there are results indicating that the use of these agents under proper dose and administration routes can be effective for managing LMC. In this article, we review molecular targeted agents for managing LMC. PMID:27399673

  8. Magnetic trapping with simultaneous photoacoustic detection of molecularly targeted rare circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan M.; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2013-03-01

    Photoacoustic (PA) imaging has been widely used in molecular imaging to detect diseased cells by targeting them with nanoparticle-based contrast agents. However, the sensitivity and specificity are easily degraded because contrast agent signals can be masked by the background. Magnetomotive photoacoustic imaging uses a new type of multifunctional composite particle combining an optically absorptive gold nanorod core and magnetic nanospheres, which can potentially accumulate and concentrate targeted cells while simultaneously enhancing their specific contrast compared to background signals. In this study, HeLa cells molecularly targeted using nanocomposites with folic acid mimicking targeted rare circulating tumor cells (CTCs) were circulated at a 6 ml/min flow rate for trapping and imaging studies. Preliminary results show that the cells accumulate rapidly in the presence of an externally applied magnetic field produced by a dual magnet system. The sensitivity of the current system can reach up to 1 cell/ml in clear water. By manipulating the trapped cells magnetically, the specificity of detecting cells in highly absorptive ink solution can be enhanced with 16.98 dB background suppression by applying motion filtering on PA signals to remove unwanted background signals insensitive to the magnetic field. The results appear promising for future preclinical studies on a small animal model and ultimate clinical detection of rare CTCs in the vasculature.

  9. Original triazine inductor of new specific molecular targets, with antitumor activity against nonsmall cell lung cancer.

    PubMed

    Moreau, Dimitri; Jacquot, Catherine; Tsita, Polyxeni; Chinou, Ioanna; Tomasoni, Cristophe; Juge, Marcel; Antoniadou-Vyza, Ekaterini; Martignat, Lionel; Pineau, Alain; Roussakis, Christos

    2008-12-01

    Despite our growing insight into carcinogenesis, treatment of tumors, especially nonsmall cell lung cancer (NSCLC), remains limited and it is urgent to develop strategies that target tumor cells and their genetic features. Drug discovery efforts have historically focused on the search for compounds that modulate the protein products of genes. Current drug therapy targets only a few hundred endogenous targets, mainly proteins, such as receptors and enzymes. But now, the interest in specifically targeting RNA is increasing, both for target validation and/or therapeutic purposes. In this regard, our work was concerned with the induction of new molecular targets correlated to a cytostatic effect on NSCLC cell line, after treatment with a new triazin named A190. The in vitro study of cell cycle and apoptosis induction demonstrated the antiproliferative potential of this new compounds, and the use of quantitative RT-PCR analysis permit to display an original mechanism of action involving 2 genes: HEF1 and B2. The antitumor effect was also confirmed by the good results in vivo on nude mice xenografts. PMID:18798255

  10. Predicting Molecular Targets for Small-Molecule Drugs with a Ligand-Based Interaction Fingerprint Approach.

    PubMed

    Cao, Ran; Wang, Yanli

    2016-06-20

    The computational prediction of molecular targets for small-molecule drugs remains a great challenge. Herein we describe a ligand-based interaction fingerprint (LIFt) approach for target prediction. Together with physics-based docking and sampling methods, we assessed the performance systematically by modeling the polypharmacology of 12 kinase inhibitors in three stages. First, we examined the capacity of this approach to differentiate true targets from false targets with the promiscuous binder staurosporine, based on native complex structures. Second, we performed large-scale profiling of kinase selectivity on the clinical drug sunitinib by means of computational simulation. Third, we extended the study beyond kinases by modeling the cross-inhibition of bromodomain-containing protein 4 (BRD4) for 10 well-established kinase inhibitors. On this basis, we made prospective predictions by exploring new kinase targets for the anticancer drug candidate TN-16, originally known as a colchicine site binder and microtubule disruptor. As a result, p38α was highlighted from a panel of 187 different kinases. Encouragingly, our prediction was validated by an in vitro kinase assay, which showed TN-16 as a low-micromolar p38α inhibitor. Collectively, our results suggest the promise of the LIFt approach in predicting potential targets for small-molecule drugs. PMID:26222196

  11. Functions of multiple instances for sub-pixel target characterization in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zare, Alina; Jiao, Changzhe

    2015-05-01

    In this paper, the Multi-target Extended Function of Multiple Instances (Multi-target eFUMI) method is developed and described. The method is capable of learning multiple target spectral signatures from weakly- and inaccurately-labeled hyperspectral imagery. Multi-target eFUMI is a generalization of the Function of Multiple Instances approach (FUMI). The FUMI approach differs significantly from standard Multiple Instance Learning (MIL) approach in that it assumes each data is a function of target and non-target "concepts." In this paper, data points which are convex combinations of multiple target and several non-target "concepts" are considered. Moreover, it allows both "proportion-level" and "bag-level" uncertainties in training data. Training data needs only binary labels indicating whether some spatial area contains or does not contain some proportion of target; the specific target proportions for the training data are not needed. Multi-target eFUMI learns the target and non-target concepts, the number of non-target concepts, and the proportions of all the concepts for each data point. After learning the target concepts using the binary "bag-level" labeled training data, target detection can be performed on test data. Results for sub-pixel target detection on simulated and real airborne hyperspectral data are shown.

  12. Molecular strategies targeting the host component of cancer to enhance tumor response to radiation therapy

    SciTech Connect

    Kim, Dong Wook; Huamani, Jessica; Fu, Allie; Hallahan, Dennis E. . E-mail: dennis.hallahan@vanderbilt.edu

    2006-01-01

    The tumor microenvironment, in particular, the tumor vasculature, as an important target for the cytotoxic effects of radiation therapy is an established paradigm for cancer therapy. We review the evidence that the phosphoinositide 3-kinase (PI3K)/Akt pathway is activated in endothelial cells exposed to ionizing radiation (IR) and is a molecular target for the development of novel radiation sensitizing agents. On the basis of this premise, several promising preclinical studies that targeted the inhibition of the PI3K/Akt activation as a potential method of sensitizing the tumor vasculature to the cytotoxic effects of IR have been conducted. An innovative strategy to guide cytotoxic therapy in tumors treated with radiation and PI3K/Akt inhibitors is presented. The evidence supports a need for further investigation of combined-modality therapy that involves radiation therapy and inhibitors of PI3K/Akt pathway as a promising strategy for improving the treatment of patients with cancer.

  13. The development of molecularly targeted anticancer therapies: an Eli Lilly and Company perspective.

    PubMed

    Perry, William L; Weitzman, Aaron

    2005-03-01

    The ability to identify activated pathways that drive the growth and progression of cancer and to develop specific and potent inhibitors of key proteins in these pathways promises to dramatically change the treatment of cancer: A patient's cancer could be characterized at the molecular level and the information used to select the best treatment options. The development of successful therapies not only requires extensive target validation, but also new approaches to evaluating drug efficacy in animal models and in the clinic compared to the development of traditional cytotoxic agents. This article highlights Eli Lilly and Company's approach to developing targeted therapies, from target identification and validation through evaluation in the clinic. A selection of drugs in the Lilly Oncology pipeline is also discussed. PMID:16166991

  14. Molecularly targeted therapies for advanced or metastatic non-small-cell lung carcinoma

    PubMed Central

    Bayraktar, Soley; Rocha-Lima, Caio M

    2013-01-01

    Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related death in both men and women in the United States. Platinum-based doublet chemotherapy has been a standard for patients with advanced stage disease. Improvements in overall survival and quality of life have been modest. Improved knowledge of the aberrant molecular signaling pathways found in NSCLC has led to the development of biomarkers with associated targeted therapeutics, thus changing the treatment paradigm for many NSCLC patients. In this review, we present a summary of many of the currently investigated biologic targets in NSCLC, discuss their current clinical trial status, and also discuss the potential for development of other targeted agents. PMID:23696960

  15. A comparative analysis of different molecular targets using PCR for diagnosis of old world leishmaniasis.

    PubMed

    Koltas, Ismail S; Eroglu, Fadime; Uzun, Soner; Alabaz, Derya

    2016-05-01

    The different sensitivity values were obtained in each study conducted for the diagnosis of leishmaniasis with the polymerase chain reaction (PCR). However, a standardized PCR target for the diagnosis of leishmaniasis does not exist. The aim of the current study, the most ideal PCR target was determined for diagnosis of leishmaniasis. A total of 72 smear and 48 bone marrow samples were analyzed with six different molecular targets to determine their potential as a tool for the specific molecular diagnosis of leishmaniasis using PCR. The positivity-negativity value and the sensitivity-specificity of each PCR targets were calculated. The positivity value of PCR targets were sequenced in different levels in the diagnosis of leishmaniasis from highest to lowest in the order of kDNA-PCR > SSU rRNA-PCR > ITS2-PCR > ITS1-PCR > ME-PCR > HSP70-PCR. The sensitivities of PCR targets except ITS1-PCR, ME-PCR and HSP70-PCR were found to be 100% in cutaneous leishmaniasis (CL) and visceral leishmaniasis (VL) cases as compared to microscopic examination accepted as a gold standard. The sensitivities of ITS1-PCR, ME-PCR and HSP70-PCR were found 96.6%, 90.0% and 86.6%, respectively, in CL-cases. In addition, the sensitivities of ITS1-PCR, ME-PCR and HSP70-PCR were found 90.0%, 70.0% and 60.0%, respectively, in VL-cases. The kDNA genomic region was the most sensitive for routine diagnosis of leishmaniasis. ITS1-PCR restriction fragment length polymorphism, the alternative method for the identification of Old World Leishmania species, did not require culturing of the parasites. PMID:26896641

  16. Myriad Functions of Stanniocalcin-1 (STC1) Cover Multiple Therapeutic Targets in the Complicated Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF)

    PubMed Central

    Ohkouchi, Shinya; Ono, Manabu; Kobayashi, Makoto; Hirano, Taizou; Tojo, Yutaka; Hisata, Shu; Ichinose, Masakazu; Irokawa, Toshiya; Ogawa, Hiromasa; Kurosawa, Hajime

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is an intractable disease for which the pathological findings are characterized by temporal and spatial heterogeneity. The pathogenesis is composed of myriad factors, including repetitive injuries to epithelial cells, alterations in immunity, the formation of vascular leakage and coagulation, abnormal wound healing, fibrogenesis, and collagen accumulation. Therefore, the molecular target drugs that are used or attempted for treatment or clinical trials may not cover the myriad therapeutic targets of IPF. In addition, the complicated pathogenesis results in a lack of informative biomarkers to diagnose accurately the status of IPF. These facts point out the necessity of using a combination of drugs, that is, each single drug with molecular targets or a single drug with multiple therapeutic targets. In this review, we introduce a humoral factor, stanniocalcin-1 (STC1), which has myriad functions, including the maintenance of calcium homeostasis, the promotion of early wound healing, uncoupling respiration (aerobic glycolysis), reepithelialization in damaged tissues, the inhibition of vascular leakage, and the regulation of macrophage functions to keep epithelial and endothelial homeostasis, which may adequately cover the myriad therapeutic targets of IPF. PMID:26740747

  17. Molecular Design for Tuning Work Functions of Transparent Conducting Electrodes.

    PubMed

    Koldemir, Unsal; Braid, Jennifer L; Morgenstern, Amanda; Eberhart, Mark; Collins, Reuben T; Olson, Dana C; Sellinger, Alan

    2015-06-18

    In this Perspective, we provide a brief background on the use of aromatic phosphonic acid modifiers for tuning work functions of transparent conducting oxides, for example, zinc oxide (ZnO) and indium tin oxide (ITO). We then introduce our preliminary results in this area using conjugated phosphonic acid molecules, having a substantially larger range of dipole moments than their unconjugated analogues, leading to the tuning of ZnO and ITO electrodes over a 2 eV range as derived from Kelvin probe measurements. We have found that these work function changes are directly correlated to the magnitude and the direction of the computationally derived molecular dipole of the conjugated phosphonic acids, leading to the predictive power of computation to drive the synthesis of new and improved phosphonic acid ligands. PMID:26266603

  18. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    SciTech Connect

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety of applications such as scavenging of heavy metals.

  19. Molecular electric moments calculated by using natural orbital functional theory.

    PubMed

    Mitxelena, Ion; Piris, Mario

    2016-05-28

    The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods. PMID:27250280

  20. Molecular electric moments calculated by using natural orbital functional theory

    NASA Astrophysics Data System (ADS)

    Mitxelena, Ion; Piris, Mario

    2016-05-01

    The molecular electric dipole, quadrupole, and octupole moments of a selected set of 21 spin-compensated molecules are determined employing the extended version of the Piris natural orbital functional 6 (PNOF6), using the triple-ζ Gaussian basis set with polarization functions developed by Sadlej, at the experimental geometries. The performance of the PNOF6 is established by carrying out a statistical analysis of the mean absolute errors with respect to the experiment. The calculated PNOF6 electric moments agree satisfactorily with the corresponding experimental data and are in good agreement with the values obtained by accurate ab initio methods, namely, the coupled-cluster single and doubles and multi-reference single and double excitation configuration interaction methods.

  1. Implementation of Green's function molecular dynamics: An extension to LAMMPS

    NASA Astrophysics Data System (ADS)

    Kong, Ling Ti; Bartels, Guido; Campañá, Carlos; Denniston, Colin; Müser, Martin H.

    2009-06-01

    The Green's function molecular dynamics method, which enables one to study the elastic response of a three-dimensional solid to an external stress field by taking into consideration only the surface atoms, was implemented as an extension to an open source classical molecular dynamics simulation code LAMMPS. This was done in the style of fixes. The first fix, FixGFC, measures the elastic stiffness coefficients for a (small) solid block of a given material by making use of the fluctuation-dissipation theorem. With the help of the second fix, FixGFMD, the coefficients obtained from FixGFC can then be used to compute the elastic forces for a (large) block of the same material. Both fixes are designed to be run in parallel and to exploit the functions provided by LAMMPS. Program summaryProgram title: FixGFC/FixGFMD Catalogue identifier: AECW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 33 469 No. of bytes in distributed program, including test data, etc.: 1 383 631 Distribution format: tar.gz Programming language: C++ Computer: All Operating system: Linux Has the code been vectorized or parallelized?: Parallelized via MPI RAM: Depends on the problem Classification: 7.7 External routines: MPI, FFTW 2.1.5 ( http://www.fftw.org/), LAMMPS version May 21, 2008 ( http://lammps.sandia.gov/) Nature of problem: Using molecular dynamics to study elastically deforming solids imposes very high computational costs because portions of the solid far away from the interface or contact points need to be included in the simulation to reproduce the effects of long-range elastic deformations. Green's function molecular dynamics (GFMD) incorporates the full elastic response of semi-infinite solids so that only surface atoms have to be considered in molecular dynamics simulations, thus

  2. The molecular basis of multiple vector insertion by gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration. PMID:10049930

  3. Optimized DNA-targeting using triplex forming C5-alkynyl functionalized LNA.

    PubMed

    Sau, Sujay P; Kumar, Pawan; Anderson, Brooke A; Østergaard, Michael E; Deobald, Lee; Paszczynski, Andrzej; Sharma, Pawan K; Hrdlicka, Patrick J

    2009-11-28

    Triplex forming oligonucleotides (TFOs) modified with C5-alkynyl functionalized LNA (locked nucleic acid) monomers display extraordinary thermal affinity toward double stranded DNA targets, excellent discrimination of Hoogsteen-mismatched targets, and high stability against 3?-exonucleases. PMID:19885469

  4. Molecular and functional characterization of broccoli EMBRYONIC FLOWER 2 genes.

    PubMed

    Liu, Mao-Sen; Chen, Long-Fang O; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-07-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  5. Using RNA as Molecular Code for Programming Cellular Function.

    PubMed

    Kushwaha, Manish; Rostain, William; Prakash, Satya; Duncan, John N; Jaramillo, Alfonso

    2016-08-19

    RNA is involved in a wide-range of important molecular processes in the cell, serving diverse functions: regulatory, enzymatic, and structural. Together with its ease and predictability of design, these properties can lead RNA to become a useful handle for biological engineers with which to control the cellular machinery. By modifying the many RNA links in cellular processes, it is possible to reprogram cells toward specific design goals. We propose that RNA can be viewed as a molecular programming language that, together with protein-based execution platforms, can be used to rewrite wide ranging aspects of cellular function. In this review, we catalogue developments in the use of RNA parts, methods, and associated computational models that have contributed to the programmability of biology. We discuss how RNA part repertoires have been combined to build complex genetic circuits, and review recent applications of RNA-based parts and circuitry. We explore the future potential of RNA engineering and posit that RNA programmability is an important resource for firmly establishing an era of rationally designed synthetic biology. PMID:26999422

  6. Biomarker Tests for Molecularly Targeted Therapies: Laying the Foundation and Fulfilling the Dream.

    PubMed

    Lyman, Gary H; Moses, Harold L

    2016-06-10

    Precision medicine focuses on the management of individual patients on the basis of biomarkers and other distinguishing characteristics, with the overarching objective of improving clinical outcomes. The rapid proliferation of biomarker tests and targeted therapies has revolutionized patient care in a variety of serious disorders. Targeted cancer therapies interrupt oncogenic molecular pathways driven by mutations, overexpression, or translocation of specific genes. However, there is concern that the emergence of large-scale genomic data is exceeding our capacity to appropriately analyze and interpret the results.In 2014, the Institute of Medicine convened the Committee on Policy Issues in the Clinical Development and Use of Biomarkers for Molecularly Targeted Therapies. This committee conducted a study to develop recommendations to address diverse and interconnected development, regulatory, clinical practice, and reimbursement issues. The committee conducted an extensive search of the relevant literature and invited testimony from a wide range of experts in the field. The final report of the committee's study and deliberations was released on March 4, 2016, focusing on ways to achieve 10 goals to further advance the development and appropriate clinical use of biomarker tests for molecularly targeted therapies.This article presents an overview of the committee's study and resulting recommendations, which cover establishment of clinical utility, regulatory oversight, coverage and reimbursement, health system data integration, as well as education and access. The committee's recommendations presented and discussed here are fundamentally grounded in the understanding that, when properly validated and appropriately implemented, these assays and corresponding therapies hold considerable promise to enhance the quality of patient care and improve meaningful clinical outcomes. PMID:27069080

  7. Single ionization of hydrogen molecules by fast protons as a function of the molecular alignment

    SciTech Connect

    Johnson, Nora G.; Mello, R. N.; Lundy, Michael E.; Kapplinger, J.; Wells, E.; Parke, Eli; Carnes, K. D.; Ben-Itzhak, I.

    2005-11-15

    Relative cross sections for the 4 MeV H{sup +}+D{sub 2} ({sup 1}{sigma}{sub g}{sup +}){yields}H{sup +}+D{sub 2}{sup +}(1s{sigma})+e{sup -} ionization process were measured as a function of the molecular alignment during the interaction. The angle between the molecular axis and the projectile was obtained by using a momentum imagining technique and isolating the events in which the D{sub 2}{sup +}(1s{sigma}) ions are excited to the vibrational continuum and subsequently dissociate. While anisotropic cross sections have been observed in the past for a number of collision processes involving both target electrons, the one electron process investigated here is isotropic within our experimental uncertainties.

  8. Specific binding of molecularly targeted agents to pancreas tumors and impact on observed optical contrast

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Hextrum, Shannon K.; Pardesi, Omar; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.

    2010-02-01

    In optical imaging it is thought that optimum tumor contrast can be achieved with the use of small-labeled molecular tracers that have high affinity to their targets and fast clearance rates from the blood stream and healthy tissues. An example of this is fluorescently tagged EGF to monitor the molecular activity of tumors, such as pancreatic cancer. Extensive fluorescence contrast analysis for fluorescence molecular tomography has been performed on the AsPC-1 pancreas tumor, grown orthotopically in mice; yet, the binding dynamics of the EGF-fluorescent agent in vivo is not completely known. The bulk pancreatic tumor displays 3:1 contrast relative to the normal pancreas at long times after injection; however, even higher levels of fluorescence in the liver, kidney and intestine suggest that molecular specificity for the tumor may be low. Mice were administered a fluorescently labeled EGF agent and were sacrificed at various time points post-injection. To analyze the amount of specific binding at each time point frozen tissue samples were fluorescently imaged, washed with saline to remove the interstitially distributed contrast agent, and then imaged again. This technique demonstrated that approximately ~10% of the molecular target was firmly bound to the cell, while 90% was mobile or unbound. This low binding ratio suggests that the contrast observed is from inherent properties of the tumor (i.e. enhanced permeability and retention effect) and not from specific bound contrast as previously anticipated. The use of EGF contrast agents in MRI-guided fluorescence tomography and the impact of low binding specificity are discussed.

  9. [Molecular genetics of functional articulation disorder in children].

    PubMed

    Zhao, Yun-Jing; Ma, Hong-Wei

    2012-04-01

    Genetic factors are an important cause of functional articulation disorder in children. This article reviews some genes and chromosome regions associated with a genetic susceptibility to functional articulation disorders. The forkhead box P2 (FOXP2) gene on chromosome 7 is introduced in details including its structure, expression and function. The relationship between the FOXP2 gene and developmental apraxia of speech is discussed. As a transcription factor, FOXP2 gene regulates the expression of many genes. CNTNAP2 as an important target gene of FOXP2 is a key gene influencing language development. Functional articulation disorder may be developed to dyslexia, therefore some candidate regions and genes related to dyslexia, such as 3p12-13, 15q11-21, 6p22 and 1p34-36, are also introduced. ROBO1 gene in 3p12.3, ZNF280D gene, TCF12 gene, EKN1 gene in 15q21, and KIAA0319 gene in 6p22 have been candidate genes for the study of functional articulation disorder. PMID:22537967

  10. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer

    PubMed Central

    Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei

    2014-01-01

    Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer. PMID:25988156

  11. Design and function of molecular and bioelectronics devices.

    PubMed

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-24

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  12. EDITORIAL: Design and function of molecular and bioelectronics devices

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-01

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  13. DNA aptamers are functional molecular recognition sensors in protic ionic liquids.

    PubMed

    Machado, Isabel; Özalp, Veli Cengiz; Rezabal, Elixabete; Schäfer, Thomas

    2014-09-01

    The function and structural changes of an AMP molecular aptamer beacon and its molecular recognition capacity for its target, adenosine monophosphate (AMP), was systematically explored in solution with a protic ionic liquid, ethylammonium nitrate (EAN). It could be proven that up to 2 M of EAN in TBS buffer, the AMP molecular aptamer beacon was still capable of recognizing AMP while also maintaining its specificity. The specificity was proven by using the guanosine monophosphate (GMP) as target; GMP is structurally similar to AMP but was not recognized by the aptamer. We also found that in highly concentrated EAN solutions the overall amount of double stranded DNA formed, as well as its respective thermal stability, diminished gradually, but surprisingly the hybridization rate (kh ) of single stranded DNA was significantly accelerated in the presence of EAN. The latter may have important implications in DNA technology for the design of biosensing and DNA-based nanodevices in nonconventional solvents, such as ionic liquids. PMID:25065686

  14. Towards simple orbital-dependent density functionals for molecular dissociation

    NASA Astrophysics Data System (ADS)

    Zhang, Igor Ying; Richter, Patrick; Scheffler, Matthias

    2015-03-01

    Density functional theory (DFT) is one of the leading first-principles electronic-structure theories. However, molecular dissociation remains a challenge, because it requires a well-balanced description of the drastically different electronic structure at different bond lengths. One typical and well-documented case is the dissociation of both H2+ and H2, for which all popular DFT functionals fail. We start from the Bethe-Goldstone equation to propose a simple orbital-dependent correlation functional which generalizes the linear adiabatic connection approach. The resulting scheme is based on second-order perturbation theory (PT2), but includes the self-consistent coupling of electron-hole pairs, which ensures the correct H2 dissociation limit and gives a finite correlation energy for systems with a (near)-degenerate energy gap. This coupling PT2-like (CPT2) approximation delivers a significant improvement over all existing functionals for both H2 and H2+ dissociation. We will demonstrate the reason for this improvement analytically for H2 in a minimal basis.

  15. Molecular tools for investigating ANME community structure and function

    SciTech Connect

    Hallam, Steven J.; Page, Antoine P.; Constan, Lea; Song, Young C.; Norbeck, Angela D.; Brewer, Heather M.; Pasa-Tolic, Ljiljana

    2011-05-20

    Methane production and consumption in anaerobic marine sediments 1 is catalyzed by a series of reversible tetramethanopterin (H4MPT)-linked C1 transfer reactions. Although many of these reactions are conserved between one-carbon compound utilizing microorganisms, two remain diagnostic for archaeal methane metabolism. These include reactions catalyzed by N5-methyltetrahydromethanopterin: coenzyme M methyltransferase and methyl coenzyme M reductase. The latter enzyme is central to C-H bond formation and cleavage underlying methanogenic and reverse methanogenic phenotypes. Here we describe a set of novel tools for the detection and functional analysis of H4MPT-linked C1 transfer reactions mediated by uncultivated anaerobic methane oxidizing archaea (ANME). These tools include polymerase chain reaction primers targeting ANME methyl coenzyme M reductase subunit A subgroups and protein extraction methods from marine sediments compatible with high-resolution mass spectrometry for profiling population structure and functional dynamics. [910, 1,043

  16. Target-protecting dumbbell molecular probe against exonucleases digestion for sensitive detection of ATP and streptavidin.

    PubMed

    Chen, Jinyang; Liu, Yucheng; Ji, Xinghu; He, Zhike

    2016-09-15

    In this work, a versatile dumbbell molecular (DM) probe was designed and employed in the sensitively homogeneous bioassay. In the presence of target molecule, the DM probe was protected from the digestion of exonucleases. Subsequently, the protected DM probe specifically bound to the intercalation dye and resulted in obvious fluorescence signal which was used to determine the target molecule in return. This design allows specific and versatile detection of diverse targets with easy operation and no sophisticated fluorescence labeling. Integrating the idea of target-protecting DM probe with adenosine triphosphate (ATP) involved ligation reaction, the DM probe with 5'-end phosphorylation was successfully constructed for ATP detection, and the limitation of detection was found to be 4.8 pM. Thanks to its excellent selectivity and sensitivity, this sensing strategy was used to detect ATP spiked in human serum as well as cellular ATP. Moreover, the proposed strategy was also applied in the visual detection of ATP in droplet-based microfluidic platform with satisfactory results. Similarly, combining the principle of target-protecting DM probe with streptavidin (SA)-biotin interaction, the DM probe with 3'-end biotinylation was developed for selective and sensitive SA determination, which demonstrated the robustness and versatility of this design. PMID:27131994

  17. Site-targeted acoustic contrast agent detects molecular expression of tissue factor after balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Hall, Christopher S.; Abendschein, Dana R.; Scherrer, David E.; Scott, Michael J.; Marsh, Jon N.; Wickline, Samuel A.; Lanza, Gregory M.

    2000-04-01

    Complex molecular signaling heralds the early stages of pathologies such as angiogenesis, inflammation, and cellular responses to mechanically damaged coronary arteries after balloon angioplasty. In previous studies, we have demonstrated acoustic enhancement of blood clot morphology with the use of a nongaseous, ligand-targeted acoustic nanoparticle emulsion delivered to areas of thrombosis both in vitro and in vivo. In this paper, we characterize the early expression of tissue factor which contributes to subsequent arterial restenosis. Tissue factor is a 42kd glycoprotein responsible for blood coagulation but also plays a well-described role in cancer metastasis, angiogenesis, and vascular restenosis. This study was designed to determine whether the targeted contrast agent could localize tissue factor expressed within the wall of balloon-injured arteries. Both carotid arteries of five pigs (20 kg) were injured using an 8 X 20 mm angioplasty balloon. The carotids were treated in situ with a perfluorocarbon nanoparticle emulsion covalently complexed to either specific anti-tissue factor polyclonal F(ab) fragments (treatment) or non-specific IgG F(ab) fragments (control). Intravascular ultrasound (30 MHz) images of the arteries were obtained before and after exposure to the emulsions. Tissue- factor targeted ultrasonic contrast agent acoustically enhanced the subintima and media at the site of balloon- induced injury compared with control contrast arteries (p less than 0.05). Immunohistochemical staining confirmed the presence of increased tissue factor at the sites of acoustic enhancement. Binding of the targeted agents was demonstrated in vitro by scanning electron microscope images of cultured smooth muscle cells that constitutively express tissue factor. This study demonstrates the concept of molecular imaging and localization of carotid arteries' tissue factor in vivo using a new, nanoparticulate emulsion. Enhancement of the visualization of the molecular

  18. The Molecular Phenotype of Endocapillary Proliferation: Novel Therapeutic Targets for IgA Nephropathy

    PubMed Central

    John, Rohan; Grone, Elisabeth; Porubsky, Stefan; Gröne, Hermann-Josef; Herzenberg, Andrew M.; Scholey, James W.; Hladunewich, Michelle; Cattran, Daniel C.

    2014-01-01

    IgA nephropathy (IgAN) is a clinically and pathologically heterogeneous disease. Endocapillary proliferation is associated with higher risk of progressive disease, and clinical studies suggest that corticosteroids mitigate this risk. However, corticosteroids are associated with protean cellular effects and significant toxicity. Furthermore the precise mechanism by which they modulate kidney injury in IgAN is not well delineated. To better understand molecular pathways involved in the development of endocapillary proliferation and to identify novel specific therapeutic targets, we evaluated the glomerular transcriptome of microdissected kidney biopsies from 22 patients with IgAN. Endocapillary proliferation was defined according to the Oxford scoring system independently by 3 nephropathologists. We analyzed mRNA expression using microarrays and identified transcripts differentially expressed in patients with endocapillary proliferation compared to IgAN without endocapillary lesions. Next, we employed both transcription factor analysis and in silico drug screening and confirmed that the endocapillary proliferation transcriptome is significantly enriched with pathways that can be impacted by corticosteroids. With this approach we also identified novel therapeutic targets and bioactive small molecules that may be considered for therapeutic trials for the treatment of IgAN, including resveratrol and hydroquinine. In summary, we have defined the distinct molecular profile of a pathologic phenotype associated with progressive renal insufficiency in IgAN. Exploration of the pathways associated with endocapillary proliferation confirms a molecular basis for the clinical effectiveness of corticosteroids in this subgroup of IgAN, and elucidates new therapeutic strategies for IgAN. PMID:25133636

  19. Molecular crowding effect on dynamics of DNA-binding proteins search for their targets

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Luo, Kaifu

    2014-12-01

    DNA-binding proteins locate and bind their target sequences positioned on DNA in crowded environments, but the molecular crowding effect on this search process is not clear. Using analytical techniques and Langevin dynamics simulations in two dimensions (2D), we find that the essential physics for facilitated diffusion in 2D search and 3D search is the same. We observe that the average search times have minima at the same optimal nonspecific binding energy for the cases with and without the crowding particle. Moreover, the molecular crowding increases the search time by increasing the average search rounds and the one-dimensional (1D) sliding time of a round, but almost not changing the average 2D diffusion time of a round. In addition, the fraction of 1D sliding time out of the total search time increases with increasing the concentration of crowders. For 2D diffusion, the molecular crowding decreases the jumping length and narrows its distribution due to the cage effect from crowders. These results shed light on the role of facilitated diffusion in DNA targeting kinetics in living cells.

  20. Target Product Profile of a Molecular Drug-Susceptibility Test for Use in Microscopy Centers

    PubMed Central

    Denkinger, Claudia M.; Dolinger, David; Schito, Marco; Wells, William; Cobelens, Frank; Pai, Madhukar; Zignol, Matteo; Cirillo, Daniela Maria; Alland, David; Casenghi, Martina; Gallarda, Jim; Boehme, Catharina C.; Perkins, Mark D.

    2015-01-01

    Background. Current phenotypic testing for drug resistance in patients with tuberculosis is inadequate primarily with respect to turnaround time. Molecular tests hold the promise of an improved time to diagnosis. Methods. A target product profile for a molecular drug-susceptibility test (DST) was developed on the basis of a collaborative effort that included opinions gathered from researchers, clinicians, policy makers, and test developers on optimal clinical and operational characteristics in settings of intended use. In addition, the current diagnostic ecosystem and the diagnostic development landscape were mapped. Results. Molecular DSTs for detecting tuberculosis in microscopy centers should ideally evaluate for resistance to rifampin, fluoroquinolones, isoniazid, and pyrazinamide and enable the selection of the most appropriate treatment regimen. Performance characteristics of DSTs need to be optimized, but compromises can be made that depend on the trade-off between a false-positive result and a false-negative result. The operational requirements of a test will vary depending on the site of implementation. However, the most-important considerations pertain to quality control, maintenance and calibration, and the ability to export data. Conclusion. This target product profile defines the needs as perceived by the tuberculosis stakeholder community and attempts to provide a means of communication with test developers to ensure that fit-for-purpose DSTs are being developed. PMID:25765105

  1. Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission.

    PubMed

    Parnell, John; Cullen, David; Sims, Mark R; Bowden, Stephen; Cockell, Charles S; Court, Richard; Ehrenfreund, Pascale; Gaubert, Francois; Grant, William; Parro, Victor; Rohmer, Michel; Sephton, Mark; Stan-Lotter, Helga; Steele, Andrew; Toporski, Jan; Vago, Jorge

    2007-08-01

    The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn. PMID:17723091

  2. Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes

    PubMed Central

    Stefan, Christopher P.; Koehler, Jeffrey W.; Minogue, Timothy D.

    2016-01-01

    Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300–1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions. PMID:27174456

  3. Fluorescent-Guided Surgical Resection of Glioma with Targeted Molecular Imaging Agents: A Literature Review.

    PubMed

    Craig, Sonya E L; Wright, James; Sloan, Andrew E; Brady-Kalnay, Susann M

    2016-06-01

    The median life expectancy after a diagnosis of glioblastoma is 15 months. Although chemotherapeutics may someday cure glioblastoma by killing the highly dispersive malignant cells, the most important contribution that clinicians can currently offer to improve survival is by maximizing the extent of resection and providing concurrent chemo-radiation, which has become standard. Strides have been made in this area with the advent and implementation of methods of improved intraoperative tumor visualization. One of these techniques, optical fluorescent imaging with targeted molecular imaging agents, allows the surgeon to view fluorescently labeled tumor tissue during surgery with the use of special microscopy, thereby highlighting where to resect and indicating when tumor-free margins have been obtained. This advantage is especially important at the difficult-to-observe margins where tumor cells infiltrate normal tissue. Targeted fluorescent agents also may be valuable for identifying tumor versus nontumor tissue. In this review, we briefly summarize nontargeted fluorescent tumor imaging agents before discussing several novel targeted fluorescent agents being developed for glioma imaging in the context of fluorescent-guided surgery or live molecular navigation. Many of these agents are currently undergoing preclinical testing. As the agents become available, however, it is necessary to understand the strengths and weaknesses of each. PMID:26915698

  4. Target Definition in Salvage Radiotherapy for Recurrent Prostate Cancer: The Role of Advanced Molecular Imaging

    PubMed Central

    Amzalag, Gaël; Rager, Olivier; Tabouret-Viaud, Claire; Wissmeyer, Michael; Sfakianaki, Electra; de Perrot, Thomas; Ratib, Osman; Miralbell, Raymond; Giovacchini, Giampiero; Garibotto, Valentina; Zilli, Thomas

    2016-01-01

    Salvage radiotherapy (SRT) represents the main treatment option for relapsing prostate cancer in patients after radical prostatectomy. Several open questions remain unanswered in terms of target volumes definition and delivered doses for SRT: the effective dose necessary to achieve biochemical control in the SRT setting may be different if the tumor recurrence is micro- or macroscopic. At the same time, irradiation of only the prostatic bed or of the whole pelvis will depend on the localization of the recurrence, local or locoregional. In the “theragnostic imaging” era, molecular imaging using positron emission tomography (PET) constitutes a useful tool for clinicians to define the site of the recurrence, the extent of disease, and individualize salvage treatments. The best option currently available in clinical routine is the combination of radiolabeled choline PET imaging and multiparametric magnetic resonance imaging (MRI), associating the nodal and distant metastases identification based on PET with the local assessment by MRI. A new generation of targeted tracers, namely, prostate-specific membrane antigen, show promising results, with a contrast superior to choline imaging and a higher detection rate even for low prostate-specific antigen levels; validation studies are ongoing. Finally, imaging targeting bone remodeling, using whole-body SPECT–CT, is a relevant complement to molecular/metabolic PET imaging when bone involvement is suspected. PMID:27065024

  5. Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor.

    PubMed

    Yang, Hengli; Cai, Wenbin; Xu, Lei; Lv, Xiuhua; Qiao, Youbei; Li, Pan; Wu, Hong; Yang, Yilin; Zhang, Li; Duan, Yunyou

    2015-01-01

    Nanobubbles (NBs), as novel ultrasound contrast agents (UCAs), have attracted increasing attention in the field of molecular ultrasound imaging for tumors. However, the preparation of uniform-sized NBs is considered to be controversial, and poor tumor selectivity in in vivo imaging has been reported. In this study, we fabricated uniform nano-sized NBs (478.2 ± 29.7 nm with polydispersity index of 0.164 ± 0.044, n = 3) using a thin-film hydration method by controlling the thickness of phospholipid films; we then conjugated the NBs with Affibody molecules to produce nano-sized UCAs referred to as NB-Affibody with specific affinity to human epidermal growth factor receptor type 2 (HER2)-overexpressing tumors. NB-Affibody presented good ultrasound enhancement, demonstrating a peak intensity of 104.5 ± 2.1 dB under ultrasound contrast scanning. Ex vivo experiments further confirmed that the NB-Affibody conjugates were capable of targeting HER2-expressing tumor cells in vivo with high affinity. The newly prepared nano-sized NB-Affibody conjugates were observed to be novel targeted UCAs for efficient and safe specific molecular imaging and may have potential applications in early cancer quantitative diagnosis and targeted therapy in the future. PMID:25453958

  6. Molecular signature of pancreatic adenocarcinoma: an insight from genotype to phenotype and challenges for targeted therapy

    PubMed Central

    Sahin, Ibrahim H; Iacobuzio-Donahue, Christine A; O’Reilly, Eileen M

    2016-01-01

    Introduction Pancreatic adenocarcinoma remains one of the most clinically challenging cancers despite an in-depth characterization of the molecular underpinnings and biology of this disease. Recent whole-genome-wide studies have elucidated the diverse and complex genetic alterations which generate a unique oncogenic signature for an individual pancreatic cancer patient and which may explain diverse disease behavior in a clinical setting. Areas covered In this review article, we discuss the key oncogenic pathways of pancreatic cancer including RAS-MAPK, PI3KCA and TGF-β signaling, as well as the impact of these pathways on the disease behavior and their potential targetability. The role of tumor suppressors particularly BRCA1 and BRCA2 genes and their role in pancreatic cancer treatment are elaborated upon. We further review recent genomic studies and their impact on future pancreatic cancer treatment. Expert opinion Targeted therapies inhibiting pro-survival pathways have limited impact on pancreatic cancer outcomes. Activation of pro-apoptotic pathways along with suppression of cancer-stem-related pathways may reverse treatment resistance in pancreatic cancer. While targeted therapy or a ‘precision medicine’ approach in pancreatic adenocarcinoma remains an elusive challenge for the majority of patients, there is a real sense of optimism that the strides made in understanding the molecular underpinnings of this disease will translate into improved outcomes. PMID:26439702

  7. Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes.

    PubMed

    Stefan, Christopher P; Koehler, Jeffrey W; Minogue, Timothy D

    2016-01-01

    Antibiotic resistance (AR) is an epidemic of increasing magnitude requiring rapid identification and profiling for appropriate and timely therapeutic measures and containment strategies. In this context, ciprofloxacin is part of the first-line of countermeasures against numerous high consequence bacteria. Significant resistance can occur via single nucleotide polymorphisms (SNP) and deletions within ciprofloxacin targeted genes. Ideally, use of ciprofloxacin would be prefaced with AR determination to avoid overuse or misuse of the antibiotic. Here, we describe the development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the detection of genetic variants known to confer ciprofloxacin resistance in Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Sequencing results demonstrate MIPs capture and amplify targeted regions of interest at significant levels of coverage. Depending on the genetic variant, limits of detection (LOD) for high-throughput pooled sequencing ranged from approximately 300-1800 input genome copies. LODs increased 10-fold in the presence of contaminating human genome DNA. In addition, we show that MIPs can be used as an enrichment step with high resolution melt (HRM) real-time PCR which is a sensitive assay with a rapid time-to-answer. Overall, this technology is a multiplexable upfront enrichment applicable with multiple downstream molecular assays for the detection of targeted genetic regions. PMID:27174456

  8. Trypanosoma cruzi Invasion into Host Cells: A Complex Molecular Targets Interplay.

    PubMed

    Campo, Vanessa Leiria; Martins-Teixeira, Maristela Braga; Carvalho, Ivone

    2016-01-01

    Chagas' disease is still a worldwide threat, with estimated from 6 to 7 million infected people, mainly in Latin America. Despite all efforts, especially from international consortia (DNDi, NMTrypI), to develop an innovative therapeutic strategy against this disease, no candidate has achieved full requirements for clinical use yet. In this review, we point out the general molecular and cellular mechanisms involved in T. cruzi cell invasion and elucidate the roles of specific parasite and host targets in the progress of Chagas' disease. Among these molecular targets are Gp85/transsialidase, mucins, cruzipain and oligopeptidase B, found in parasite cell surface, and Galectin-3 and Toll-like receptors present in host cells. Thus, the deep understanding of their interplay and involvement on T. cruzi host cell adhesion, invasion and evasion from host immune may expand the chances for discovering new therapeutic agents against this neglected disease. Additionally, these targets may represent a remarkable strategy to block parasite invasion in the early stages of infection. PMID:27281167

  9. STAT3 Inhibition by Microtubule-Targeted Drugs: Dual Molecular Effects of Chemotherapeutic Agents

    PubMed Central

    Walker, Sarah R.; Chaudhury, Mousumi; Frank, David A.

    2011-01-01

    To improve the effectiveness of anti-cancer therapies, it is necessary to identify molecular targets that are essential to a tumor cell but dispensable in a normal cell. Increasing evidence indicates that the transcription factor STAT3, which regulates the expression of genes controlling proliferation, survival, and self-renewal, constitutes such a target. Recently it has been found that STAT3 can associate with the cytoskeleton. Since many of the tumors in which STAT3 is activated, such as breast cancer and ovarian cancer, are responsive to drugs that target microtubules, we examined the effect of these compounds on STAT3. We found that microtubule stabilizers, such as paclitaxel, or microtubule inhibitors, such as vinorelbine, decrease the activating tyrosine phosphorylation of STAT3 in tumor cells and inhibit the expression of STAT3 target genes. Paclitaxel decreases the association between STAT3 and microtubules, and appears to decrease STAT3 phosphorylation through induction of a negative feedback regulator. The cytotoxic activity of paclitaxel in breast cancer cell lines correlates with its ability to decrease STAT3 phosphorylation. However, consistent with the necessity for expression of a negative regulator, treatment of resistant MDA-MB-231 cells with the DNA demethylating agent 5-azacytidine restores the ability of paclitaxel to block STAT3-dependent gene expression. Finally, the combination of paclitaxel and agents that directly target STAT3 has beneficial effects in killing STAT3-dependent cell lines. Thus, microtubule-targeted agents may exert some of their effects by inhibiting STAT3, and understanding this interaction may be important for optimizing rational targeted cancer therapies. PMID:21949561

  10. A molecular nanodevice for targeted degradation of mRNA during protein synthesis

    PubMed Central

    Lee, Kyung-Ho; Min, Seung-Eui; Kim, Haseong; Lee, Seung-Goo; Kim, Dong-Myung

    2016-01-01

    RNase H is an endonuclease that catalyzes the cleavage of RNA. Because it only acts on RNA in RNA:DNA hybrids, RNase H can be used for targeted degradation of RNA when used in combination with antisense oligodeoxyribonucleotides (ASODNs) designed against a specific sequence of the target RNA. In this study, ASODN and RNase H were co-conjugated on magnetic nanoparticles. The resulting nanoparticles, having integrated functions of probing and processing target RNA, were able to remove target mRNA sequences more effectively than free ASODNs. The paramagnetic property of the nanoparticles also enabled timed engagement and disengagement of the RNA-degrading components in a given system, and these nanoparticles were able to be used for ON/OFF control of gene expression during cell-free protein synthesis reactions. PMID:26857021

  11. Investigation of apoptotic events at molecular level induced by SERS guided targeted theranostic nanoprobe.

    PubMed

    Narayanan, Nisha; Nair, Lakshmi V; Karunakaran, Varsha; Joseph, Manu M; Nair, Jyothi B; N, Ramya A; Jayasree, Ramapurath S; Maiti, Kaustabh Kumar

    2016-06-01

    Herein, we have examined distinctive structural and functional variations of cellular components during apoptotic cell death induced by a targeted theranostic nanoprobe, MMP-SQ@GNR@LAH-DOX, which acted as a SERS "on/off" probe in the presence of a MMP protease and executed synergistic photothermal chemotherapy, as reflected by the SERS fingerprinting, corresponding to the phosphodiester backbone of DNA. PMID:27211810

  12. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H. L.; Hemingway, Janet; Biagini, Giancarlo A.; O’Neill, Paul M.; Ward, Stephen A.

    2016-01-01

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  13. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7.

    PubMed

    Ismail, Hanafy M; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H L; Hemingway, Janet; Biagini, Giancarlo A; O'Neill, Paul M; Ward, Stephen A

    2016-02-23

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography-MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  14. Personalizing therapies for gastric cancer: Molecular mechanisms and novel targeted therapies

    PubMed Central

    Luis, Michael; Tavares, Ana; Carvalho, Liliana S; Lara-Santos, Lúcio; Araújo, António; de Mello, Ramon Andrade

    2013-01-01

    Globally, gastric cancer is the 4th most frequently diagnosed cancer and the 2nd leading cause of death from cancer, with an estimated 990000 new cases and 738000 deaths registered in 2008. In the advanced setting, standard chemotherapies protocols acquired an important role since last decades in prolong survival. Moreover, recent advances in molecular therapies provided a new interesting weapon to treat advanced gastric cancer through anti-human epidermal growth factor receptor 2 (HER2) therapies. Trastuzumab, an anti-HER2 monoclonal antibody, was the first target drug in the metastatic setting that showed benefit in overall survival when in association with platinum-5-fluorouracil based chemotherapy. Further, HER2 overexpression analysis acquired a main role in predict response for trastuzumab in this field. Thus, we conducted a review that will discuss the main points concerning trastuzumab and HER2 in gastric cancer, providing a comprehensive overview of molecular mechanisms and novel trials involved. PMID:24151357

  15. Precision Medicine for Molecularly Targeted Agents and Immunotherapies in Early-Phase Clinical Trials

    PubMed Central

    Lopez, Juanita; Harris, Sam; Roda, Desam; Yap, Timothy A

    2015-01-01

    Precision medicine in oncology promises the matching of genomic, molecular, and clinical data with underlying mechanisms of a range of novel anticancer therapeutics to develop more rational and effective antitumor strategies in a timely manner. However, despite the remarkable progress made in the understanding of novel drivers of different oncogenic processes, success rates for the approval of oncology drugs remain low with substantial fiscal consequences. In this article, we focus on how recent rapid innovations in technology have brought greater clarity to the biological and clinical complexities of different cancers and advanced the development of molecularly targeted agents and immunotherapies in clinical trials. We discuss the key challenges of identifying and validating predictive biomarkers of response and resistance using both tumor and surrogate tissues, as well as the hurdles associated with intratumor heterogeneity. Finally, we outline evolving strategies employed in early-phase trial designs that incorporate omics-based technologies. PMID:26609214

  16. Small Molecular-Sized Artesunate Attenuates Ocular Neovascularization via VEGFR2, PKCα, and PDGFR Targets.

    PubMed

    Zong, Yao; Yuan, Yongguang; Qian, Xiaobing; Huang, Zhen; Yang, Wei; Lin, Leilei; Zheng, Qishan; Li, Yujie; He, Huining; Gao, Qianying

    2016-01-01

    Ocular neovascularization (NV) is the primary cause of blindness in many ocular diseases. Large molecular weight anti- vascular endothelial growth factor (VEGF) protein drugs, such as Avastin and Lucentis, have saved the vision of millions. However, approximately 20-30% of patients respond poorly to anti-VEGF treatment. We found that artesunate (ART), a small molecular derivative of artemisinin, had a significant inhibitory effect on ocular NV by downregulating the expression of VEGFR2, PKCα, and PDGFR. ART significantly inhibited retinal NV in rabbits and macular edema in monkeys with greater anterior chamber penetrability and more durable efficacy than Avastin. Our pilot study showed that intravitreal injection of 80 μg ART significantly inhibited iris and corneal NV in a severe retinal detachment case. Our results suggest that ART might be a potential persistent small-molecule drug to manage ocular NV via multi-targets. PMID:27480521

  17. Small Molecular-Sized Artesunate Attenuates Ocular Neovascularization via VEGFR2, PKCα, and PDGFR Targets

    PubMed Central

    Zong, Yao; Yuan, Yongguang; Qian, Xiaobing; Huang, Zhen; Yang, Wei; Lin, Leilei; Zheng, Qishan; Li, Yujie; He, Huining; Gao, Qianying

    2016-01-01

    Ocular neovascularization (NV) is the primary cause of blindness in many ocular diseases. Large molecular weight anti- vascular endothelial growth factor (VEGF) protein drugs, such as Avastin and Lucentis, have saved the vision of millions. However, approximately 20–30% of patients respond poorly to anti-VEGF treatment. We found that artesunate (ART), a small molecular derivative of artemisinin, had a significant inhibitory effect on ocular NV by downregulating the expression of VEGFR2, PKCα, and PDGFR. ART significantly inhibited retinal NV in rabbits and macular edema in monkeys with greater anterior chamber penetrability and more durable efficacy than Avastin. Our pilot study showed that intravitreal injection of 80 μg ART significantly inhibited iris and corneal NV in a severe retinal detachment case. Our results suggest that ART might be a potential persistent small-molecule drug to manage ocular NV via multi-targets. PMID:27480521

  18. FXR is a molecular target for the effects of vertical sleeve gastrectomy

    PubMed Central

    Ryan, Karen K.; Tremaroli, Valentina; Clemmensen, Christoffer; Kovatcheva-Datchary, Petia; Myronovych, Andriy; Karns, Rebekah; Wilson-Pérez, Hilary E.; Sandoval, Darleen A.; Kohli, Rohit; Bäckhed, Fredrik; Seeley, Randy J.

    2014-01-01

    SUMMARY Bariatric surgical procedures, such as vertical sleeve gastrectomy (VSG), are currently the most effective therapy for the treatment of obesity, and are associated with substantial improvements in co-morbidities, including type-2 diabetes mellitus. The underlying molecular mechanisms contributing to these benefits remain largely undetermined, despite offering tremendous potential to reveal new targets for therapeutic intervention. The present study demonstrates that the therapeutic value of VSG does not result from mechanical restriction imposed by a smaller stomach. Rather, we report that VSG is associated with increased circulating bile acids, and associated changes to gut microbial communities. Moreover, in the absence of nuclear bile acid receptor FXR, the ability of VSG to reduce body weight and improve glucose tolerance is substantially reduced. These results point to bile acids and FXR signaling as an important molecular underpinning for the beneficial effects of this weight-loss surgery. PMID:24670636

  19. Molecularly targeted agents and immunotherapy for the treatment of head and neck squamous cell cancer (HNSCC).

    PubMed

    Azoury, SaÏd C; Gilmore, Richard C; Shukla, Vivek

    2016-06-01

    Squamous cell carcinoma is one of the most frequent tumors of the head and neck and often presents at an advanced-stage. Traditionally, treatment for head and neck squamous cell carcinoma (HNSCC) has included surgery, radiation, and chemotherapy depending on both the site and stage of disease. Although the treatment approach for local disease is often standardized, the management of recurrent and advanced disease is evolving. A better understanding of the molecular mechanisms of HNSCC has led to numerous promising investigations and the push for the development of novel therapies. Similarly, over the past several decades, growing data supports the notion that an individual's immune system can be manipulated in such a way to help eradicate cancer. The success of immunotherapeutic agents such as interleukin therapy and immune checkpoint inhibitor blockade in cancer, particularly advanced-stage melanoma, has stimulated researchers to uncover similar success stories in HNSCC. Examples of immunotherapeutics that are being studied for the treatment of HNSCC include adoptive T-cell therapy, vaccines, and immune checkpoint inhibitor proteins (e.g., anti-CTLA-4, -PD-1, -PD-L1). Molecularly targeted agents of interest include inhibitors of transmembrane growth factor receptors, angiogenesis, and PI3K/AKT/mTOR and NOTCH signaling pathways. To date, cetuximab, an epidermal growth factor receptor inhibitor, is the only targeted agent for HNSCC that was approved by the Federal Food and Drug Administration (FDA) on the basis that it improves overall survival when combined with chemotherapy or radiation. Herein, the authors provide an up-to-date review of immunotherapeutic and molecularly targeted agents for the treatment of HNSCC. PMID:27448787

  20. Molecular targets of dietary agents for prevention and therapy of cancer.

    PubMed

    Aggarwal, Bharat B; Shishodia, Shishir

    2006-05-14

    While fruits and vegetables are recommended for prevention of cancer and other diseases, their active ingredients (at the molecular level) and their mechanisms of action less well understood. Extensive research during the last half century has identified various molecular targets that can potentially be used not only for the prevention of cancer but also for treatment. However, lack of success with targeted monotherapy resulting from bypass mechanisms has forced researchers to employ either combination therapy or agents that interfere with multiple cell-signaling pathways. In this review, we present evidence that numerous agents identified from fruits and vegetables can interfere with several cell-signaling pathways. The agents include curcumin (turmeric), resveratrol (red grapes, peanuts and berries), genistein (soybean), diallyl sulfide (allium), S-allyl cysteine (allium), allicin (garlic), lycopene (tomato), capsaicin (red chilli), diosgenin (fenugreek), 6-gingerol (ginger), ellagic acid (pomegranate), ursolic acid (apple, pears, prunes), silymarin (milk thistle), anethol (anise, camphor, and fennel), catechins (green tea), eugenol (cloves), indole-3-carbinol (cruciferous vegetables), limonene (citrus fruits), beta carotene (carrots), and dietary fiber. For instance, the cell-signaling pathways inhibited by curcumin alone include NF-kappaB, AP-1, STAT3, Akt, Bcl-2, Bcl-X(L), caspases, PARP, IKK, EGFR, HER2, JNK, MAPK, COX2, and 5-LOX. The active principle identified in fruit and vegetables and the molecular targets modulated may be the basis for how these dietary agents not only prevent but also treat cancer and other diseases. This work reaffirms what Hippocrates said 25 centuries ago, let food be thy medicine and medicine be thy food. PMID:16563357

  1. Functional proteomic and structural insights into molecular recognition in the nitrilase family enzymes

    PubMed Central

    Barglow, Katherine T.; Saikatendu, Kumar S.; Bracey, Michael H.; Huey, Ruth; Morris, Garrett M.; Olson, Arthur J.; Stevens, Raymond C.; Cravatt, Benjamin F.

    2009-01-01

    Nitrilases are a large and diverse family of non-peptidic C-N hydrolases. The mammalian genome encodes eight nitrilase enzymes, several of which remain poorly characterized. Prominent among these are nitrilase-1 (Nit1) and nitrilase-2 (Nit2), which, despite having been shown to exert effects on cell growth and possibly serving as tumor suppressor genes, are without known substrates or selective inhibitors. In previous studies, we identified several nitrilases, including Nit1 and Nit2, as targets for dipeptide-chloroacetamide activity-based proteomics probes. Here, we have used these probes, in combination with high-resolution crystallography and molecular modeling, to systematically map the active site of Nit2 and identify residues involved in molecular recognition. We report the 1.4 Å crystal structure of mouse Nit2, and use this structure to identify residues that discriminate probe-labeling between the Nit1 and Nit2 enzymes. Interestingly, some of these residues are conserved across all vertebrate Nit2 enzymes and, conversely, not found in any vertebrate Nit1 enzymes, suggesting that they are key discriminators of molecular recognition between these otherwise highly homologous enzymes. Our findings thus point to a limited set of active site residues that establish distinct patterns of molecular recognition among nitrilases and provide chemical probes to selectively perturb the function of these enzymes in biological systems. PMID:19053248

  2. A Molecular Framework for Tunable Functional Response of Programmable Polyesters

    NASA Astrophysics Data System (ADS)

    Jha, Kshitij C.; Joy, Abraham; Tsige, Mesfin

    All-atom molecular dynamics (MD) simulations, using the OPLS force field, were carried out on a library of multifunctional polyesters with peptide-like functional pendant groups. The polyesters are structural peptidomimetics and can be utilized for applications in sensing, and separation, and as biomedical scaffolds. The modular design of the polyesters affords a range of hydrophilic and hydrophobic behavior. We used MD to quantify the hydrogen bond dynamics, end-to-end distance, and radii of gyration with changes in side group functionality, concentration, and temperature. We discerned trends for the physical behavior of polyesters with change in nature and ratio of the side groups. We also observed functional assembly for dissimilar polyesters, and correlated the assembly to the affinity of side groups. The trends in physical behavior and dissimilar assembly can be mined for iterative design towards programmatic assembly of the modular multifunctional polyesters under study. This work was made possible by funding from the ACS Petroleum Research Fund (ACS PRF 54801- ND5).

  3. Electroless Functionalization of Silver Films by Its Molecular Doping.

    PubMed

    Naor, Hadas; Avnir, David

    2015-12-01

    We present a methodology which by far extends the potential applications of thin conductive silver films achieved by an electroless molecular doping process of the metal with any of the endless functional molecules that the large library of organic molecules offer. The resulting metallic films within which the molecule is entrapped--molecule@Ag--carry both the classical chemical and physical properties of silver films, as well as the function of the entrapped molecule. Raman measurements of the organic molecules from within the silver films provide the first spectroscopic observations from within silver, and clearly show that entrapment, a three-dimensional process, and adsorption, a two-dimensional process, on silver films are distinctly different processes. Three organic molecules, the cationic Neutral red, the anionic Congo red, and the antibacterial agent chlorhexidine digluconate (CH), were used to demonstrate the generality of this method for various types of molecules. We studied the sensitivity of the film conductivity to the type of the molecule entrapped within the film, to its concentration, and to temperature. Dual functionality was demonstrated with CH@Ag films, which are both conductive and have prolonged and high antibacterial activity, a combination of properties that has been unknown so far. PMID:26571199

  4. Molecular Design of Bisphosphonate-Modified Proteins for Efficient Bone Targeting In Vivo

    PubMed Central

    Katsumi, Hidemasa; Sano, Jun-ichi; Nishikawa, Makiya; Hanzawa, Keiko; Sakane, Toshiyasu; Yamamoto, Akira

    2015-01-01

    To establish a rational molecular design for bisphosphonate (BP)-modified proteins for efficient bone targeting, a pharmacokinetic study was performed using a series of alendronate (ALN), a nitrogen-containing BP, modified proteins with various molecular weights and varying degrees of modification. Four proteins with different molecular weight—yeast glutathione reductase (GR; MW: 112,000 Da), bovine serum albumin (BSA; MW: 67,000 Da), recombinant human superoxide dismutase (SOD; MW: 32,000 Da), and chicken egg white lysozyme (LZM; MW: 14,000 Da)—were modified with ALN to obtain ALN-modified proteins. Pharmacokinetic analysis of the tissue distribution of the ALN-modified and unmodified proteins was performed after radiolabeling them with indium-111 (111In) by using a bifunctional chelating agent. Calculation of tissue uptake clearances revealed that the bone uptake clearances of 111In-ALN-modified proteins were proportional to the degree of ALN modification. 111In-GR-ALN and BSA-ALN, the two high-molecular-weight proteins, efficiently accumulated in bones, regardless of the degree of ALN modification. Approximately 36 and 34% of the dose, respectively, was calculated to be delivered to the bones. In contrast, the maximum amounts taken up by bone were 18 and 13% of the dose for 111In-SOD-ALN(32) and LZM-ALN(9), respectively, because of their high renal clearance. 111In-SOD modified with both polyethylene glycol (PEG) and ALN (111In-PEG-SOD-ALN) was efficiently delivered to the bone. Approximately 36% of the dose was estimated to be delivered to the bones. In an experimental bone metastasis mouse model, treatment with PEG-SOD-ALN significantly reduced the number of tumor cells in the bone of the mice. These results indicate that the combination of PEG and ALN modification is a promising approach for efficient bone targeting of proteins with a high total-body clearance. PMID:26287482

  5. Magnetic Resonance Spectroscopy and Imaging Guidance in Molecular Medicine: Targeting and Monitoring of Choline and Glucose Metabolism in Cancer

    PubMed Central

    Glunde, Kristine; Jiang, Lu; Moestue, Siver A.; Gribbestad, Ingrid S.

    2011-01-01

    Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are valuable tools to detect metabolic changes in tumors. The currently emerging era of molecular medicine, which is shaped by molecularly targeted anticancer therapies combined with molecular imaging of the effects of such therapies, requires powerful imaging technologies that are able to detect molecular information. MRS and MRSI (MRS/I) are such technologies that are able to detect metabolites arising from glucose and choline metabolism in noninvasive in vivo settings and at higher resolution in tissue samples. The roles that MRS/I plays in diagnosing different types of cancer as well as in early monitoring of tumor response to traditional chemotherapies are reviewed. Emerging roles of MRS/I in the development and detection of novel targeted anticancer therapies that target oncogenic signaling pathways or targets in choline or glucose metabolism are discussed. PMID:21793073

  6. Targeting damage-associated molecular pattern molecules (DAMPs) and DAMP receptors in melanoma.

    PubMed

    Boone, Brian A; Lotze, Michael T

    2014-01-01

    Damage-associated molecular pattern molecules (DAMPs) are proteins released from cells under stress due to nutrient deprivation, hypoxia, trauma, or treatment with chemotherapy, among a variety of other causes. When released, DAMPs activate innate immunity, providing a pathway to a systemic inflammatory response in the absence of infection. By regulating inflammation in the tumor microenvironment, promoting angiogenesis, and increasing autophagy with evasion of apoptosis, DAMPs facilitate cancer growth. DAMPs and DAMP receptors have a key role in melanoma pathogenesis. Due to their crucial role in the development of melanoma and chemoresistance, DAMPs represent intriguing targets at a time when novel treatments are desperately needed. PMID:24258998

  7. Molecular control and function of endoreplication in development and physiology.

    PubMed

    De Veylder, Lieven; Larkin, John C; Schnittger, Arp

    2011-11-01

    Endoreplication, also called endoreduplication, is a cell cycle variant of multicellular eukaryotes in which mitosis is skipped and cells repeatedly replicate their DNA, resulting in cellular polyploidy. In recent years, research results have shed light on the molecular mechanism of endoreplication control, but the function of this cell-cycle variant has remained elusive. However, new evidence is at last providing insight into the biological relevance of cellular polyploidy, demonstrating that endoreplication is essential for developmental processes, such as cell fate maintenance, and is a prominent response to physiological conditions, such as pathogen attack or DNA damage. Thus, endoreplication is being revealed as an important module in plant growth that contributes to the robustness of plant life. PMID:21889902

  8. Fundamental gap of molecular crystals via constrained density functional theory

    NASA Astrophysics Data System (ADS)

    Droghetti, Andrea; Rungger, Ivan; Das Pemmaraju, Chaitanya; Sanvito, Stefano

    2016-05-01

    The energy gap of a molecular crystal is one of the most important properties since it determines the crystal charge transport when the material is utilized in electronic devices. This is, however, a quantity difficult to calculate and standard theoretical approaches based on density functional theory (DFT) have proven unable to provide accurate estimates. In fact, besides the well-known band-gap problem, DFT completely fails in capturing the fundamental gap reduction occurring when molecules are packed in a crystal structures. The failure has to be associated with the inability of describing the electronic polarization and the real space localization of the charged states. Here we describe a scheme based on constrained DFT, which can improve upon the shortcomings of standard DFT. The method is applied to the benzene crystal, where we show that accurate results can be achieved for both the band gap and also the energy level alignment.

  9. Anatomical, functional and molecular biomarker applications of magnetic resonance neuroimaging

    PubMed Central

    Liu, Christina H

    2015-01-01

    MRI and magnetic resonance spectroscopy (MRS) along with computed tomography and PET are the most common imaging modalities used in the clinics to detect structural abnormalities and pathological conditions in the brain. MRI generates superb image resolution/contrast without radiation exposure that is associated with computed tomography and PET; MRS and spectroscopic imaging technologies allow us to measure changes in brain biochemistry. Increasingly, neurobiologists and MRI scientists are collaborating to solve neuroscience problems across sub-cellular through anatomical levels. To achieve successful cross-disciplinary collaborations, neurobiologists must have sufficient knowledge of magnetic resonance principles and applications in order to effectively communicate with their MRI colleagues. This review provides an overview of magnetic resonance techniques and how they can be used to gain insight into the active brain at the anatomical, functional and molecular levels with the goal of encouraging neurobiologists to include MRI/MRS as a research tool in their endeavors. PMID:25774094

  10. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma

    PubMed Central

    ADACHI, Mami; HOSHINO, Yuki; IZUMI, Yusuke; TAKAGI, Satoshi

    2015-01-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA. PMID:26685984

  11. Molecular mechanisms that underpin EML4-ALK driven cancers and their response to targeted drugs.

    PubMed

    Bayliss, Richard; Choi, Jene; Fennell, Dean A; Fry, Andrew M; Richards, Mark W

    2016-03-01

    A fusion between the EML4 (echinoderm microtubule-associated protein-like) and ALK (anaplastic lymphoma kinase) genes was identified in non-small cell lung cancer (NSCLC) in 2007 and there has been rapid progress in applying this knowledge to the benefit of patients. However, we have a poor understanding of EML4 and ALK biology and there are many challenges to devising the optimal strategy for treating EML4-ALK NSCLC patients. In this review, we describe the biology of EML4 and ALK, explain the main features of EML4-ALK fusion proteins and outline the therapies that target EML4-ALK. In particular, we highlight the recent advances in our understanding of the structures of EML proteins, describe the molecular mechanisms of resistance to ALK inhibitors and assess current thinking about combinations of ALK drugs with inhibitors that target other kinases or Hsp90. PMID:26755435

  12. Molecular Targets of β-Lactam-Based Antimicrobials: Beyond the Usual Suspects

    PubMed Central

    Konaklieva, Monika I.

    2014-01-01

    The common practice in antibacterial drug development has been to rapidly make an attempt to find ever-more stable and broad-spectrum variants for a particular antibiotic, once a drug resistance for that antibiotic is detected. We are now facing bacterial resistance toward our clinically relevant antibiotics of such a magnitude that the conversation for antimicrobial drug development ought to include effective new antibiotics with alternative mechanisms of action. The electrophilic β-lactam ring is amenable for the inhibition of different enzyme classes by a suitable decoration of the core scaffold. Monocyclic β-lactams lacking an ionizable group at the lactam nitrogen exhibit target preferences toward bacterial enzymes important for resistance and virulence. The present review intends to draw attention to the versatility of the β-lactams as antimicrobials with “unusual” molecular targets. PMID:27025739

  13. Immunohistochemical detection of a potential molecular therapeutic target for canine hemangiosarcoma.

    PubMed

    Adachi, Mami; Hoshino, Yuki; Izumi, Yusuke; Takagi, Satoshi

    2016-05-01

    Canine hemangiosarcoma (HSA) is a progressive malignant neoplasm of dogs for which there is currently no effective treatment. A recent study suggested that receptor tyrosine kinases (RTKs), the PI3K/Akt/m-TOR and MAPK pathways are all activated in canine and human HSA. The aim of the present study was to investigate the overexpression of these proteins by immunohistochemistry in canine splenic HSA to identify potential molecular therapeutic targets. A total of 10 splenic HSAs and two normal splenic samples surgically resected from dogs were sectioned and stained with hematoxylin and eosin for histological diagnosis or analyzed using immunohistochemistry. The expression of RTKs, c-kit, VEGFR-2 and PDGFR-2, as well as PI3K/Akt/m-TOR and MEK was higher in canine splenic HSAs compared to normal spleens. These proteins may therefore be potential therapeutic targets in canine splenic HSA. PMID:26685984

  14. Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation.

    PubMed

    Ripoll-Rozada, Jorge; García-Cazorla, Yolanda; Getino, María; Machón, Cristina; Sanabria-Ríos, David; de la Cruz, Fernando; Cabezón, Elena; Arechaga, Ignacio

    2016-06-01

    Bacterial conjugation is the main mechanism responsible for the dissemination of antibiotic resistance genes. Hence, the search for specific conjugation inhibitors is paramount in the fight against the spread of these genes. In this pursuit, unsaturated fatty acids have been found to specifically inhibit bacterial conjugation. Despite the growing interest on these compounds, their mode of action and their specific target remain unknown. Here, we identified TrwD, a Type IV secretion traffic ATPase, as the molecular target for fatty acid-mediated inhibition of conjugation. Moreover, 2-alkynoic fatty acids, which are also potent inhibitors of bacterial conjugation, are also powerful inhibitors of the ATPase activity of TrwD. Characterization of the kinetic parameters of ATPase inhibition has led us to identify the catalytic mechanism by which fatty acids exert their activity. These results open a new avenue for the rational design of inhibitors of bacterial conjugation in the fight against the dissemination of antibiotic resistance genes. PMID:26915347

  15. Inflammatory therapeutic targets in coronary atherosclerosis—from molecular biology to clinical application

    PubMed Central

    Linden, Fabian; Domschke, Gabriele; Erbel, Christian; Akhavanpoor, Mohammadreza; Katus, Hugo A.; Gleissner, Christian A.

    2014-01-01

    Atherosclerosis is the leading cause of death worldwide. Over the past two decades, it has been clearly recognized that atherosclerosis is an inflammatory disease of the arterial wall. Accumulating data from animal experiments have supported this hypothesis, however, clinical applications making use of this knowledge remain scarce. In spite of optimal interventional and medical therapy, the risk for recurrent myocardial infarction remains by about 20% over 3 years after acute coronary syndromes, novel therapies to prevent atherogenesis or treat atherosclerosis are urgently needed. This review summarizes selected potential molecular inflammatory targets that may be of clinical relevance. We also review recent and ongoing clinical trails that target inflammatory processes aiming at preventing adverse cardiovascular events. Overall, it seems surprising that translation of basic science into clinical practice has not been a great success. In conclusion, we propose to focus on specific efforts that promote translational science in order to improve outcome and prognosis of patients suffering from atherosclerosis. PMID:25484870

  16. New molecular targeted therapies for advanced non-small-cell lung cancer

    PubMed Central

    Méndez, Míriam; Custodio, Ana; Provencio, Mariano

    2011-01-01

    Non-small-cell lung cancer (NSCLC) is a uniformly fatal disease and most patients will present with advanced stage. Treatment outcomes remain unsatisfactory, with low long-term survival rates. Standard treatment, such as palliative chemotherapy and radiotherapy, offers a median survival not exceeding 1 year. Hence, considerable efforts have started to be made in order to identify new biological agents which may safely and effectively be administered to advanced NSCLC patients. Two cancer cell pathways in particular have been exploited, the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR) pathways. However, novel targeted therapies that interfere with other dysregulated pathways in lung cancer are already in the clinic. This review outlines the most promising research approaches to the treatment of NSCLC, discussed according to the specific molecular pathway targeted. PMID:22263060

  17. Molecular chaperones: multiple functions, pathologies, and potential applications.

    PubMed

    Macario, Alberto J L; Conway de Macario, Everly

    2007-01-01

    Cell stressors are ubiquitous and frequent, challenging cells often, which leads to the stress response with activation of anti-stress mechanisms. These mechanisms involve a variety of molecules, including molecular chaperones also known as heat-shock proteins (Hsp). The chaperones treated in this article are proteins that assist other proteins to fold, refold, travel to their place of residence (cytosol, organelle, membrane, extracellular space), and translocate across membranes. Molecular chaperones participate in a variety of physiological processes and are widespread in organisms, tissues, and cells. It follows that chaperone failure will have an impact, possibly serious, on one or more cellular function, which may lead to disease. Chaperones must recognize and interact with proteins in need of assistance or client polypeptides (e.g., nascent at the ribosome, or partially denatured by stressors), and have to interact with other chaperones because the chaperoning mechanism involves teams of chaperone molecules, i.e., multimolecular assemblies or chaperone machines. Consequently, chaperone molecules have structural domains with distinctive functions: bind the client polypeptide, interact with other chaperone molecules to build a machine, and interact with other complexes that integrate the chaperoning network. Also, various chaperones have ATP-binding and ATPase sites because the chaperoning process requires as, a rule, energy from ATP hydrolysis. Alterations in any one of these domains due to a mutation or an aberrant post-translational modification can disrupt the chaperoning process and cause diseases termed chaperonopathies. This article presents the pathologic concept of chaperonopathy with examples, and discusses the potential of using chaperones (genes or proteins) in treatment (chaperonotherapy). In addition, emerging topics within the field of study of chaperones (chaperonology) are highlighted, e.g., genomics (chaperonomics), systems biology

  18. Applying cognitive training to target executive functions during early development

    PubMed Central

    Wass, Sam V.

    2015-01-01

    Developmental psychopathology is increasingly recognizing the importance of distinguishing causal processes (i.e., the mechanisms that cause a disease) from developmental outcomes (i.e., the symptoms of the disorder as it is eventually diagnosed). Targeting causal processes early in disordered development may be more effective than waiting until outcomes are established and then trying to reverse the pathogenic process. In this review, I evaluate evidence suggesting that neural and behavioral plasticity may be greatest at very early stages of development. I also describe correlational evidence suggesting that, across a number of conditions, early emerging individual differences in attentional control and working memory may play a role in mediating later-developing differences in academic and other forms of learning. I review the currently small number of studies that applied direct and indirect cognitive training targeted at young individuals and discuss methodological challenges associated with targeting this age group. I also discuss a number of ways in which early, targeted cognitive training may be used to help us understand the developmental mechanisms subserving typical and atypical cognitive development. PMID:24511910

  19. Molecular Inversion Probes for targeted resequencing in non-model organisms

    PubMed Central

    Niedzicka, M.; Fijarczyk, A.; Dudek, K.; Stuglik, M.; Babik, W.

    2016-01-01

    Applications that require resequencing of hundreds or thousands of predefined genomic regions in numerous samples are common in studies of non-model organisms. However few approaches at the scale intermediate between multiplex PCR and sequence capture methods are available. Here we explored the utility of Molecular Inversion Probes (MIPs) for the medium-scale targeted resequencing in a non-model system. Markers targeting 112 bp of exonic sequence were designed from transcriptome of Lissotriton newts. We assessed performance of 248 MIP markers in a sample of 85 individuals. Among the 234 (94.4%) successfully amplified markers 80% had median coverage within one order of magnitude, indicating relatively uniform performance; coverage uniformity across individuals was also high. In the analysis of polymorphism and segregation within family, 77% of 248 tested MIPs were confirmed as single copy Mendelian markers. Genotyping concordance assessed using replicate samples exceeded 99%. MIP markers for targeted resequencing have a number of advantages: high specificity, high multiplexing level, low sample requirement, straightforward laboratory protocol, no need for preparation of genomic libraries and no ascertainment bias. We conclude that MIP markers provide an effective solution for resequencing targets of tens or hundreds of kb in any organism and in a large number of samples. PMID:27046329

  20. Molecular Inversion Probes for targeted resequencing in non-model organisms.

    PubMed

    Niedzicka, M; Fijarczyk, A; Dudek, K; Stuglik, M; Babik, W

    2016-01-01

    Applications that require resequencing of hundreds or thousands of predefined genomic regions in numerous samples are common in studies of non-model organisms. However few approaches at the scale intermediate between multiplex PCR and sequence capture methods are available. Here we explored the utility of Molecular Inversion Probes (MIPs) for the medium-scale targeted resequencing in a non-model system. Markers targeting 112 bp of exonic sequence were designed from transcriptome of Lissotriton newts. We assessed performance of 248 MIP markers in a sample of 85 individuals. Among the 234 (94.4%) successfully amplified markers 80% had median coverage within one order of magnitude, indicating relatively uniform performance; coverage uniformity across individuals was also high. In the analysis of polymorphism and segregation within family, 77% of 248 tested MIPs were confirmed as single copy Mendelian markers. Genotyping concordance assessed using replicate samples exceeded 99%. MIP markers for targeted resequencing have a number of advantages: high specificity, high multiplexing level, low sample requirement, straightforward laboratory protocol, no need for preparation of genomic libraries and no ascertainment bias. We conclude that MIP markers provide an effective solution for resequencing targets of tens or hundreds of kb in any organism and in a large number of samples. PMID:27046329

  1. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    PubMed

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic. PMID:23267123

  2. A targeted, self-delivered, and photocontrolled molecular beacon for mRNA detection in living cells.

    PubMed

    Qiu, Liping; Wu, Cuichen; You, Mingxu; Han, Da; Chen, Tao; Zhu, Guizhi; Jiang, Jianhui; Yu, Ruqin; Tan, Weihong

    2013-09-01

    The spatiotemporal dynamics of specific mRNA molecules are difficult to image and detect inside living cells, and this has been a significant challenge for the chemical and biomedical communities. To solve this problem, we have developed a targeted, self-delivered, and photocontrolled aptamer-based molecular beacon (MB) for intracellular mRNA analysis. An internalizing aptamer connected via a double-stranded DNA structure was used as a carrier probe (CP) for cell-specific delivery of the MB designed to signal target mRNA. A light activation strategy was employed by inserting two photolabile groups in the CP sequence, enabling control over the MB's intracellular function. After the probe was guided to the target cell via specific binding of aptamer AS1411 to nucleolin on the cell membrane, light illumination released the MB for mRNA monitoring. Consequently, the MB is able to perform live-cell mRNA imaging with precise spatiotemporal control, while the CP acts as both a tracer for intracellular distribution of the MB before photoinitiation and an internal reference for mRNA ratiometric detection. PMID:23931073

  3. Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury.

    PubMed

    Hussain, Salik; Ji, Zhaoxia; Taylor, Alexia J; DeGraff, Laura M; George, Margaret; Tucker, Charles J; Chang, Chong Hyun; Li, Ruibin; Bonner, James C; Garantziotis, Stavros

    2016-08-23

    Commercialization of multiwalled carbon nanotubes (MWCNT)-based applications has been hampered by concerns regarding their lung toxicity potential. Hyaluronic acid (HA) is a ubiquitously found polysaccharide, which is anti-inflammatory in its native high molecular weight form. HA-functionalized smart MWCNTs have shown promise as tumor-targeting drug delivery agents and can enhance bone repair and regeneration. However, it is unclear whether HA functionalization could reduce the pulmonary toxicity potential of MWCNTs. Using in vivo and in vitro approaches, we investigated the effectiveness of MWCNT functionalization with HA in increasing nanotube biocompatibility and reducing lung inflammatory and fibrotic effects. We utilized three-dimensional cultures of differentiated primary human bronchial epithelia to translate findings from rodent assays to humans. We found that HA functionalization increased stability and dispersion of MWCNTs and reduced postexposure lung inflammation, fibrosis, and mucus cell metaplasia compared with nonfunctionalized MWCNTs. Cocultures of fully differentiated bronchial epithelial cells (cultivated at air-liquid interface) and human lung fibroblasts (submerged) displayed significant reduction in injury, oxidative stress, as well as pro-inflammatory gene and protein expression after exposure to HA-functionalized MWCNTs compared with MWCNTs alone. In contrast, neither type of nanotubes stimulated cytokine production in primary human alveolar macrophages. In aggregate, our results demonstrate the effectiveness of HA functionalization as a safer design approach to eliminate MWCNT-induced lung injury and suggest that HA functionalization works by reducing MWCNT-induced epithelial injury. PMID:27459049

  4. Renal effects of molecular targeted therapies in oncology: a review by the Cancer and the Kidney International Network (C-KIN).

    PubMed

    Launay-Vacher, V; Aapro, M; De Castro, G; Cohen, E; Deray, G; Dooley, M; Humphreys, B; Lichtman, S; Rey, J; Scotté, F; Wildiers, H; Sprangers, B

    2015-08-01

    A number of cancer therapy agents are cleared by the kidney and may affect renal function, including cytotoxic chemotherapy agents, molecular targeted therapies, analgesics, antibiotics, radiopharmaceuticals and radiation therapy, and bone-targeted therapies. Many of these agents can be nephrotoxic, including targeted cancer therapies. The incidence, severity, and pattern of renal toxicities may vary according to the respective target of the drug. Here, we review the renal effects associated with a selection of currenty approved targeted cancer therapies, directed to vascular endothelial growth factor or VEGF receptor(s) (VEGF/VEGFR), epidermal growth factor receptor (EGFR), human epidermal growth factor receptor2 (HER2), BRAF, anaplastic lymphoma kinase (ALK), programmed cell death protein-1 or its ligand (PD-1/PDL-1), receptor activator of nuclear factor kappa-B ligand (RANKL), and mammalian target of rapamycin (mTOR). The early diagnosis and prompt treatment of these renal alterations are essential in the daily practice where molecular targeted therapies have a definitive role in the armamentarium used in many cancers. PMID:25735315

  5. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    PubMed Central

    Comasco, Erika; Frokjaer, Vibe G.; Sundström-Poromaa, Inger

    2014-01-01

    The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. The present review summarizes the findings of thirty-five studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women's brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the left inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in several cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal

  6. Molecular Mechanoneurobiology: An Emerging Angle to Explore Neural Synaptic Functions

    PubMed Central

    2015-01-01

    Neural synapses are intercellular asymmetrical junctions that transmit biochemical and biophysical information between a neuron and a target cell. They are very tight, dynamic, and well organized by many synaptic adhesion molecules, signaling receptors, ion channels, and their associated cytoskeleton that bear forces. Mechanical forces have been an emerging factor in regulating axon guidance and growth, synapse formation and plasticity in physiological and pathological brain activity. Therefore, mechanical forces are undoubtedly exerted on those synaptic molecules and modulate their functions. Here we review current progress on how mechanical forces regulate receptor-ligand interactions, protein conformations, ion channels activation, and cytoskeleton dynamics and discuss how these regulations potentially affect synapse formation, stabilization, and plasticity. PMID:26106609

  7. CD22ΔE12 as a molecular target for RNAi therapy

    PubMed Central

    Uckun, Fatih M.; Ma, Hong; Cheng, Jianjun; Myers, Dorothea E.; Qazi, Sanjive

    2015-01-01

    B-precursor acute lymphoblastic leukemia (BPL) is the most common form of cancer in children and adolescents. Our recent studies have demonstrated that CD22ΔE12 is a characteristic genetic defect of therapy-refractory clones in pediatric BPL and implicated the CD22ΔE12 genetic defect in the aggressive biology of relapsed or therapy-refractory pediatric BPL. The purpose of the present study was to evaluate the biologic significance of the CD22ΔE12 molecular lesion in BPL and determine if it could serve as a molecular target for RNA interference (RNAi) therapy. Here we report a previously unrecognized causal link between CD22ΔE12 and aggressive biology of human BPL cells by demonstrating that siRNA-mediated knockdown of CD22ΔE12 in primary leukemic B-cell precursors is associated with a marked inhibition of their clonogenicity. Additionally, we report a nanoscale liposomal formulation of CD22ΔE12-specific siRNA with potent in vitro and in vivo anti-leukemic activity against primary human BPL cells as a first-in-class RNAi therapeutic candidate targeting CD22ΔE12. PMID:25659406

  8. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy

    PubMed Central

    Chen, Chuan; Wang, Ge

    2015-01-01

    The incidence and mortality of hepatocellular carcinoma (HCC) have fallen dramatically in China and elsewhere over the past several decades. Nonetheless, HCC remains a major public health issue as one of the most common malignant tumors worldwide and one of the leading causes of death caused by cancer in China. Hepatocarcinogenesis is a very complex biological process associated with many environmental risk factors and factors in heredity, including abnormal activation of cellular and molecular signaling pathways such as Wnt/β-catenin, hedgehog, MAPK, AKT, and ERK signaling pathways, and the balance between the activation and inactivation of the proto-oncogenes and anti-oncogenes, and the differentiation of liver cancer stem cells. Molecule-targeted therapy, a new approach for the treatment of liver cancer, blocks the growth of cancer cells by interfering with the molecules required for carcinogenesis and tumor growth, making it both specific and selective. However, there is no one drug completely designed for liver cancer, and further development in the research of liver cancer targeted drugs is now almost stagnant. The purpose of this review is to discuss recent advances in our understanding of the molecular mechanisms underlying the development of HCC and in the development of novel strategies for cancer therapeutics. PMID:26244070

  9. [Economic Loss of Remaining Contents in Molecular Target Drug Preparation and the Simulation for Cost Saving].

    PubMed

    Usami, Eiseki; Kimura, Michio; Fukuoka, Tomohiro; Okada, Kazutomo; Yoshimura, Tomoaki

    2016-06-01

    While preparing an anticancer drug, even if it is an expensive molecular target drug, the remainder is not divided and saved for use in other patients; instead, it is discarded, resulting in waste of medical resources. In this study, we examined the economic loss in terms of medical costs by calculating the discarded amounts of 12 commonly used molecular target drugs at Ogaki Municipal Hospital, Japan between January 2012 and December 2014. We found, on average, that drugs valued at ¥ 52,593,182 were discarded annually. In particular, the discarded amounts of relatively expensive drugs, such as bevacizumab, bortezomib, and rituximab, were valued at ¥ 16,646,300, ¥ 15,866,289, and ¥ 8,401,324, respectively. Among these, the average amount of waste per administration of bortezomib was particularly expensive, at a cost of ¥ 67,325. Bortezomib is a commonly used treatment, resulting in excessive cumulative discarded cost. In an effort to save cost, we should consider using small capacity standard injections. Development of a simulation that used the remaining drug contents from only 1 day showed that bevacizumab alone accounts for an average cost saving of ¥1 2,542,191(75.3%) per year. This study suggests that effectively utilizing the remaining drug contents would ensure efficient use of medical resources, thereby reducing economic losses. PMID:27306812

  10. A low molecular weight artificial RNA of unique size with multiple probe target regions

    NASA Technical Reports Server (NTRS)

    Pitulle, C.; Dsouza, L.; Fox, G. E.

    1997-01-01

    Artificial RNAs (aRNAs) containing novel sequence segments embedded in a deletion mutant of Vibrio proteolyticus 5S rRNA have previously been shown to be expressed from a plasmid borne growth rate regulated promoter in E. coli. These aRNAs accumulate to high levels and their detection is a promising tool for studies in molecular microbial ecology and in environmental monitoring. Herein a new construct is described which illustrates the versatility of detection that is possible with aRNAs. This 3xPen aRNA construct carries a 72 nucleotide insert with three copies of a unique 17 base probe target sequence. This aRNA is 160 nucleotides in length and again accumulates to high levels in the E. coli cytoplasm without incorporating into ribosomes. The 3xPen aRNA illustrates two improvements in detection. First, by appropriate selection of insert size, we obtained an aRNA which provides a unique and hence, easily quantifiable peak, on a high resolution gel profile of low molecular weight RNAs. Second, the existence of multiple probe targets results in a nearly commensurate increase in signal when detection is by hybridization. These aRNAs are naturally amplified and carry sequence segments that are not found in known rRNA sequences. It thus may be possible to detect them directly. An experimental step involving RT-PCR or PCR amplification of the gene could therefore be avoided.

  11. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology.

    PubMed

    Gao, Li; Wang, Xiao-Dong; Niu, Yang-Yang; Duan, Dan-Dan; Yang, Xue; Hao, Jian; Zhu, Cui-Hong; Chen, Dan; Wang, Ke-Xin; Qin, Xue-Mei; Wu, Xiong-Zhi

    2016-01-01

    Traditional Chinese medicine (TCM) has been used to treat tumors for years and has been demonstrated to be effective. However, the underlying molecular mechanisms of herbs remain unclear. This study aims to ascertain molecular targets of herbs prolonging survival time of patients with advanced hepatocellular carcinoma (HCC) based on network pharmacology, and to establish a research method for accurate treatment of TCM. The survival benefit of TCM treatment with Chinese herbal medicine (CHM) was proved by Kaplan-Meier method and Cox regression analysis among 288 patients. The correlation between herbs and survival time was performed by bivariate correlation analysis. Network pharmacology method was utilized to construct the active ingredient-target networks of herbs that were responsible for the beneficial effects against HCC. Cox regression analysis showed CHM was an independent favorable prognostic factor. The median survival time was 13 months and the 5-year overall survival rates were 2.61% in the TCM group, while there were 6 months, 0 in the non-TCM group. Correlation analysis demonstrated that 8 herbs closely associated with prognosis. Network pharmacology analysis revealed that the 8 herbs regulated multiple HCC relative genes, among which the genes affected proliferation (KRAS, AKT2, MAPK), metastasis (SRC, MMP), angiogenesis (PTGS2) and apoptosis (CASP3) etc. PMID:27143508

  12. Opportunities and Challenges in the Era of Molecularly Targeted Agents and Radiation Therapy

    PubMed Central

    2013-01-01

    The first annual workshop for preclinical and clinical development of radiosensitizers took place at the National Cancer Institute on August 8–9, 2012. Radiotherapy is one of the most commonly applied and effective oncologic treatments for solid tumors. It is well recognized that improved clinical efficacy of radiotherapy would make a substantive impact in clinical practice and patient outcomes. Advances in genomic technologies and high-throughput drug discovery platforms have brought a revolution in cancer treatment by providing molecularly targeted agents for various cancers. Development of predictive biomarkers directed toward specific subsets of cancers has ushered in a new era of personalized therapeutics. The field of radiation oncology stands to gain substantial benefit from these advances given the concerted effort to integrate this progress into radiation therapy. This workshop brought together expert clinicians and scientists working in various disease sites to identify the exciting opportunities and expected challenges in the development of molecularly targeted agents in combination with radiation therapy. PMID:23503600

  13. Computer-aided Molecular Design of Compounds Targeting Histone Modifying Enzymes

    PubMed Central

    Andreoli, Federico; Del Rio, Alberto

    2015-01-01

    Growing evidences show that epigenetic mechanisms play crucial roles in the genesis and progression of many physiopathological processes. As a result, research in epigenetic grew at a fast pace in the last decade. In particular, the study of histone post-translational modifications encountered an extraordinary progression and many modifications have been characterized and associated to fundamental biological processes and pathological conditions. Histone modifications are the catalytic result of a large set of enzyme families that operate covalent modifications on specific residues at the histone tails. Taken together, these modifications elicit a complex and concerted processing that greatly contribute to the chromatin remodeling and may drive different pathological conditions, especially cancer. For this reason, several epigenetic targets are currently under validation for drug discovery purposes and different academic and industrial programs have been already launched to produce the first pre-clinical and clinical outcomes. In this scenario, computer-aided molecular design techniques are offering important tools, mainly as a consequence of the increasing structural information available for these targets. In this mini-review we will briefly discuss the most common types of known histone modifications and the corresponding operating enzymes by emphasizing the computer-aided molecular design approaches that can be of use to speed-up the efforts to generate new pharmaceutically relevant compounds. PMID:26082827

  14. Molecular targets of naturopathy in cancer research: bridge to modern medicine.

    PubMed

    Ahmad, Aamir; Ginnebaugh, Kevin R; Li, Yiwei; Padhye, Subhash B; Sarkar, Fazlul H

    2015-01-01

    The relevance of naturopathy (defined as the practice of medicine for the treatment of human diseases with natural agents) in human cancer is beginning to be appreciated, as documented by renewed interest in nutraceutical research, the natural anticancer agents of dietary origin. Because of their pleiotropic effects and the ability to modulate multiple signaling pathways, which is a good attribute of natural agents, nutraceuticals have frequently been demonstrated to re-sensitize drug-resistant cancers. The effectiveness of nutraceuticals can be further enhanced if the tools for the relative assessment of their molecular targets are readily available. Such information can be critical for determining their most effective uses. Here, we discuss the anticancer potential of nutraceuticals and the associated challenges that have interfered with their translational potential as a naturopathic approach for the management of cancers. In the years to come, an efficient screening and assessment of molecular targets will be the key to make rapid progress in the area of drug design and discovery, especially focusing on evidence-based development of naturopathy for the treatment of human malignancies. PMID:25569626

  15. Checkpoint kinase 1 inhibitors as targeted molecular agents for clear cell carcinoma of the ovary

    PubMed Central

    KOBAYASHI, HIROSHI; SHIGETOMI, HIROSHI; YOSHIMOTO, CHIHARU

    2015-01-01

    In clear cell carcinoma of the ovary, chemoresistance frequently results in treatment failure. The present study aimed to review the potential association of transcription factor hepatocyte nuclear factor (HNF)-1β with cell cycle checkpoint machinery, as a mechanism for chemoresistance. The English-language literature on the subject was reviewed to identify genomic alterations and aberrant molecular pathways interacting with chemoresistance in clear cell carcinoma. Oxidative stress induced by repeated hemorrhage induces greater susceptibility of endometriotic cells to DNA damage, and subsequent malignant transformation results in endometriosis-associated ovarian cancer. Molecular changes, including those in HNF-1β and checkpoint kinase 1 (Chk1), may be a manifestation of essential alterations in cell cycle regulation, detoxification and chemoresistance in clear cell carcinoma. Chk1 is a critical signal transducer in the cell cycle checkpoint machinery. DNA damage, in turn, increases persistent phosphorylation of Chk1 and induction of G2/M phase cell cycle arrest in cells overexpressing HNF-1β. HNF-1β deletion induces apoptosis, suggesting that enhanced levels of HNF-1β may be associated with chemoresistance. Targeted therapy with Chk1 inhibitors may be explored as a potential treatment modality for patients with clear cell carcinoma. This provides a novel direction for combination therapy, including targeting of Chk1, which may overcome drug resistance and improve treatment efficacy. PMID:26622535

  16. Molecular targets