Science.gov

Sample records for molecular imaging non-invasive

  1. Non-invasive Optical Molecular Imaging for Cancer Detection

    NASA Astrophysics Data System (ADS)

    Luo, Zhen

    Cancer is a leading cause of death worldwide. It remains the second most common cause of death in the US, accounting for nearly 1 out of every 4 deaths. Improved fundamental understanding of molecular processes and pathways resulting in cancer development has catalyzed a shift towards molecular analysis of cancer using imaging technologies. It is expected that the non-invasive or minimally invasive molecular imaging analysis of cancer can significantly aid in improving the early detection of cancer and will result in reduced mortality and morbidity associated with the disease. The central hypothesis of the proposed research is that non-invasive imaging of changes in metabolic activity of individual cells, and extracellular pH within a tissue will improve early stage detection of cancer. The specific goals of this research project were to: (a) develop novel optical imaging probes to image changes in choline metabolism and tissue pH as a function of progression of cancer using clinically isolated tissue biopsies; (b) correlate changes in tissue extracellular pH and metabolic activity of tissues as a function of disease state using clinically isolated tissue biopsies; (c) provide fundamental understanding of relationship between tumor hypoxia, acidification of the extracellular space and altered cellular metabolism with progression of cancer. Three novel molecular imaging probes were developed to detect changes in choline and glucose metabolism and extracellular pH in model systems and clinically isolated cells and biopsies. Glucose uptake and metabolism was measured using a fluorescence analog of glucose, 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose), while choline metabolism was measured using a click chemistry analog of choline, propargyl choline, which can be in-situ labeled with a fluorophore Alexa-488 azide via a click chemistry reaction. Extracellular pH in tissue were measured by Alexa-647 labeled pHLIP (pH low insertion peptide

  2. Non-invasive molecular profiling of cancer using photoacoustic imaging of functionalized gold nanorods

    NASA Astrophysics Data System (ADS)

    Shah, Anant J.; Alles, Erwin J.; Box, Carol; Eccles, Suzanne A.; Robinson, Simon P.; deSouza, Nandita; Bamber, Jeffrey C.

    2014-03-01

    Although molecularly targeted cancer therapies have shown great promise, it is now evident that responses are dependent upon the molecular genetic context. Spatial and temporal tumour heterogeneity renders biopsy of solid tumours unsuitable for determining the genetic profile of the disease, making adaptation of appropriate therapy difficult. We have utilized the tunable optical absorption characteristic of gold nanorods to assess the potential of photoacoustics for non-invasive multiplexed molecular imaging. Gold nanorods with resonance peaks at 700nm and 900nm were functionalised with in-house antibodies ICR55 and ICR62, targeted to HER2 and EGFR transmembrane receptors, respectively. Three human squamous carcinoma cell lines (LICR-LON-HN4 expressing high HER2 and low EGFR, LICR-LON-HN3 expressing intermediate levels of HER2 and EGFR and A431 expressing high EGFR and low HER2) were incubated with the targeted nanorods for 24 hours. Cells were then incorporated as simulated tumours in tissue-like phantoms composed of 7.5% gelatin containing 0.5% Intralipid® for optical scattering and imaged at a depth of 2.5 cm, using a new clinical in-house multi-spectral photoacoustic imaging system. Images were obtained from the cell inclusions for wavelengths ranging from 710 to 950 nm at 40 nm intervals, and the mean amplitude of the photoacoustic image was computed for each wavelength, to determine their relative receptor expression levels. The molecular profile of the cells obtained using multi-wavelength photoacoustics had substantial similarity to that obtained using flow cytometry. These preliminary results confirm selective uptake of the functionalised nanorods, which reflects the cellular expression of therapeutically important oncoproteins, and give an indication of the potential of photoacoustics for multiplexed molecular profiling.

  3. Monitoring molecular, functional and morphologic aspects of bone metastases using non-invasive imaging.

    PubMed

    Bauerle, Tobias; Komljenovic, Dorde; Semmler, Wolfhard

    2012-03-01

    Bone is among the most common locations of metastasis and therefore represents an important clinical target for diagnostic follow-up in cancer patients. In the pathogenesis of bone metastases, disseminated tumor cells proliferating in bone interact with the local microenvironment stimulating or inhibiting osteoclast and osteoblast activity. Non-invasive imaging methods monitor molecular, functional and morphologic changes in both compartments of these skeletal lesions - the bone and the soft tissue tumor compartment. In the bone compartment, morphologic information on skeletal destruction is assessed by computed tomography (CT) and radiography. Pathogenic processes of osteoclast and osteoblast activity, however, can be imaged using optical imaging, positron emission tomography (PET), single photon emission CT (SPECT) and skeletal scintigraphy. Accordingly, conventional magnetic resonance imaging (MRI) and CT as well as diffusion- weighted MRI and optical imaging are used to assess morphologic aspects on the macroscopic and cellular level of the soft tissue tumor compartment. Imaging methods such as PET, MR spectroscopy, dynamic contrast-enhanced techniques and vessel size imaging further elucidate on pathogenic processes in this compartment including information on metabolism and vascularization. By monitoring these aspects in bone lesions, new insights in the pathogenesis of skeletal metastases can be gained. In translation to the clinical situation, these novel methods for the monitoring of bone metastases might be applied in patients to improve follow-up of these lesions, in particular after therapeutic intervention. This review summarizes established and experimental imaging techniques for the monitoring of tumor and bone cell activity including molecular, functional and morphological aspects in bone metastases. PMID:22214500

  4. Visualization and quantification of simian immunodeficiency virus-infected cells using non-invasive molecular imaging.

    PubMed

    Song, Jiasheng; Cai, Zhengxin; White, Alexander G; Jin, Tao; Wang, Xiaolei; Kadayakkara, Deepak; Anderson, Carolyn J; Ambrose, Zandrea; Young, Won-Bin

    2015-10-01

    In vivo imaging can provide real-time information and three-dimensional (3D) non-invasive images of deep tissues and organs, including the brain, whilst allowing longitudinal observation of the same animals, thus eliminating potential variation between subjects. Current in vivo imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT) and bioluminescence imaging (BLI), can be used to pinpoint the spatial location of target cells, which is urgently needed for revealing human immunodeficiency virus (HIV) dissemination in real-time and HIV-1 reservoirs during suppressive antiretroviral therapy (ART). To demonstrate that in vivo imaging can be used to visualize and quantify simian immunodeficiency virus (SIV)-transduced cells, we genetically engineered SIV to carry different imaging reporters. Based on the expression of the reporter genes, we could visualize and quantify the SIV-transduced cells via vesicular stomatitis virus glycoprotein pseudotyping in a mouse model using BLI, PET-CT or MRI. We also engineered a chimeric EcoSIV for in vivo infection study. Our results demonstrated that BLI is sensitive enough to detect as few as five single cells transduced with virus, whilst PET-CT can provide 3D images of the spatial location of as few as 10 000 SIV-infected cells. We also demonstrated that MRI can provide images with high spatial resolution in a 3D anatomical context to distinguish a small population of SIV-transduced cells. The in vivo imaging platform described here can potentially serve as a powerful tool to visualize lentiviral infection, including when and where viraemia rebounds, and how reservoirs are formed and maintained during latency or suppressive ART. PMID:26297664

  5. Non-Invasive Molecular Imaging of Fibrosis Using a Collagen-Targeted Peptidomimetic of the Platelet Collagen Receptor Glycoprotein VI

    PubMed Central

    Loyau, Stéphane; Meulemans, Alain; Louedec, Liliane; Bantsimba-Malanda, Claudie; Hervatin, Florence; Marchal-Somme, Joëlle; Michel, Jean Baptiste; Le Guludec, Dominique; Billiald, Philippe; Jandrot-Perrus, Martine

    2009-01-01

    Background Fibrosis, which is characterized by the pathological accumulation of collagen, is recognized as an important feature of many chronic diseases, and as such, constitutes an enormous health burden. We need non-invasive specific methods for the early diagnosis and follow-up of fibrosis in various disorders. Collagen targeting molecules are therefore of interest for potential in vivo imaging of fibrosis. In this study, we developed a collagen-specific probe using a new approach that takes advantage of the inherent specificity of Glycoprotein VI (GPVI), the main platelet receptor for collagens I and III. Methodology/Principal Findings An anti-GPVI antibody that neutralizes collagen-binding was used to screen a bacterial random peptide library. A cyclic motif was identified, and the corresponding peptide (designated collagelin) was synthesized. Solid-phase binding assays and histochemical analysis showed that collagelin specifically bound to collagen (Kd 10−7 M) in vitro, and labelled collagen fibers ex vivo on sections of rat aorta and rat tail. Collagelin is therefore a new specific probe for collagen. The suitability of collagelin as an in vivo probe was tested in a rat model of healed myocardial infarctions (MI). Injecting Tc-99m-labelled collagelin and scintigraphic imaging showed that uptake of the probe occurred in the cardiac area of rats with MI, but not in controls. Post mortem autoradiography and histological analysis of heart sections showed that the labeled areas coincided with fibrosis. Scintigraphic molecular imaging with collagelin provides high resolution, and good contrast between the fibrotic scars and healthy tissues. The capacity of collagelin to image fibrosis in vivo was confirmed in a mouse model of lung fibrosis. Conclusion/Significance Collagelin is a new collagen-targeting agent which may be useful for non-invasive detection of fibrosis in a broad spectrum of diseases. PMID:19440310

  6. Non-Invasive Imaging of Vascular Inflammation

    PubMed Central

    Ammirati, Enrico; Moroni, Francesco; Pedrotti, Patrizia; Scotti, Isabella; Magnoni, Marco; Bozzolo, Enrica P.; Rimoldi, Ornella E.; Camici, Paolo G.

    2014-01-01

    In large-vessel vasculitides, inflammatory infiltrates may cause thickening of the involved arterial vessel wall leading to progressive stenosis and occlusion. Dilatation, aneurysm formation, and thrombosis may also ensue. Activated macrophages and T lymphocytes are fundamental elements in vascular inflammation. The amount and density of the inflammatory infiltrate is directly linked to local disease activity. Additionally, patients with autoimmune disorders have an increased cardiovascular (CV) risk compared with age-matched healthy individuals as a consequence of accelerated atherosclerosis. Molecular imaging techniques targeting activated macrophages, neovascularization, or increased cellular metabolic activity can represent effective means of non-invasive detection of vascular inflammation. In the present review, novel non-invasive imaging tools that have been successfully tested in humans will be presented. These include contrast-enhanced ultrasonography, which allows detection of neovessels within the wall of inflamed arteries; contrast-enhanced CV magnetic resonance that can detect increased thickness of the arterial wall, usually associated with edema, or mural enhancement using T2 and post-contrast T1-weighted sequences, respectively; and positron emission tomography associated with radio-tracers such as [18F]-fluorodeoxyglucose and the new [11C]-PK11195 in combination with computed tomography angiography to detect activated macrophages within the vessel wall. Imaging techniques are useful in the diagnostic work-up of large- and medium-vessel vasculitides, to monitor disease activity and the response to treatments. Finally, molecular imaging targets can provide new clues about the pathogenesis and evolution of immune-mediated disorders involving arterial vessels. PMID:25183963

  7. Non-invasive and invasive imaging of vulnerable coronary plaque.

    PubMed

    Celeng, Csilla; Takx, Richard A P; Ferencik, Maros; Maurovich-Horvat, Pál

    2016-08-01

    Vulnerable plaque is characterized by a large necrotic core and an overlying thin fibrous cap. Non-invasive imaging modalities such as computed tomography angiography (CTA) and magnetic resonance imaging (MRI) allow for the assessment of morphological plaque characteristics, while positron emission tomography (PET) enables the detection of metabolic activity within the atherosclerotic lesions. Invasive imaging modalities such as intravascular ultrasound (IVUS), optical-coherence tomography (OCT), and intravascular MRI (IV-MRI) display plaques at a high spatial resolution. Near-infrared spectroscopy (NIRS) allows for the detection of chemical components of atherosclerotic plaques. In this review, we describe state-of-the-art non-invasive and invasive imaging modalities and stress the combination of their advantages to identify vulnerable plaque features. PMID:27079893

  8. Non-invasive diagnostic imaging of colorectal liver metastases

    PubMed Central

    Mainenti, Pier Paolo; Romano, Federica; Pizzuti, Laura; Segreto, Sabrina; Storto, Giovanni; Mannelli, Lorenzo; Imbriaco, Massimo; Camera, Luigi; Maurea, Simone

    2015-01-01

    Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases (CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liver-directed therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs. PMID:26217455

  9. Non-invasive imaging of microcirculation: a technology review

    PubMed Central

    Eriksson, Sam; Nilsson, Jan; Sturesson, Christian

    2014-01-01

    Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software. PMID:25525397

  10. Invasive and non-invasive modalities of imaging carotid stenosis.

    PubMed

    Tang, T Y; U-King-Im, J M; Walsh, S R; Young, V E; Sadat, U; Li, Z Y; Patterson, A J; Varty, K; Gillard, J H

    2009-12-01

    Despite recent therapeutic advances, acute ischemic complications of atherosclerosis remain the primary cause of morbidity and mortality in Western countries, with carotid atherosclerotic disease one of the major preventable causes of stroke. As the impact of this disease challenges our healthcare systems, we are becoming aware that factors influencing this disease are more complex than previously realized. In current clinical practice, risk stratification relies primarily on evaluation of the degree of luminal stenosis and patient symptomatology. Adequate investigation and optimal imaging are important factors that affect the quality of a carotid endarterectomy (CEA) service and are fundamental to patient selection. Digital subtraction angiography is still perceived as the most accurate imaging modality for carotid stenosis and historically has been the cornerstone of most of the major CEA trials but concerns regarding potential neurological complications have generated substantial interest in non-invasive modalities, such as contrast-enhanced magnetic resonance angiography. The purpose of this review is to give an overview to the vascular specialist of the current imaging modalities in clinical practice to identify patients with carotid stenosis. Advantages and disadvantages of each technique are outlined. Finally, limitations of assessing luminal stenosis in general are discussed. This article will not cover imaging of carotid atheroma morphology, function and other emerging imaging modalities of assessing plaque risk, which look beyond simple luminal measurements. PMID:19935602

  11. Autoimmune pancreatitis: Multimodality non-invasive imaging diagnosis.

    PubMed

    Crosara, Stefano; D'Onofrio, Mirko; De Robertis, Riccardo; Demozzi, Emanuele; Canestrini, Stefano; Zamboni, Giulia; Pozzi Mucelli, Roberto

    2014-12-01

    Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is the pancreatic manifestation of an IgG4-related systemic disease and is characterized by elevated IgG4 serum levels, infiltration of IgG4-positive plasma cells and extrapancreatic lesions. Type 2 AIP usually has none or very few IgG4-positive plasma cells, no serum IgG4 elevation and appears to be a pancreas-specific disorder without extrapancreatic involvement. AIP is diagnosed in approximately 2%-6% of patients that undergo pancreatic resection for suspected pancreatic cancer. There are three patterns of autoimmune pancreatitis: diffuse disease is the most common type, with a diffuse, "sausage-like" pancreatic enlargement with sharp margins and loss of the lobular contours; focal disease is less common and manifests as a focal mass, often within the pancreatic head, mimicking a pancreatic malignancy. Multifocal involvement can also occur. In this paper we describe the features of AIP at ultrasonography, computed tomography, magnetic resonance and positron emission tomography/computed tomography imaging, focusing on diagnosis and differential diagnosis with pancreatic ductal adenocarcinoma. It is of utmost importance to make an early correct differential diagnosis between these two diseases in order to identify the optimal therapeutic strategy and to avoid unnecessary laparotomy or pancreatic resection in AIP patients. Non-invasive imaging plays also an important role in therapy monitoring, in follow-up and in early identification of disease recurrence. PMID:25493001

  12. Autoimmune pancreatitis: Multimodality non-invasive imaging diagnosis

    PubMed Central

    Crosara, Stefano; D'Onofrio, Mirko; De Robertis, Riccardo; Demozzi, Emanuele; Canestrini, Stefano; Zamboni, Giulia; Pozzi Mucelli, Roberto

    2014-01-01

    Autoimmune pancreatitis (AIP) is characterized by obstructive jaundice, a dramatic clinical response to steroids and pathologically by a lymphoplasmacytic infiltrate, with or without a pancreatic mass. Type 1 AIP is the pancreatic manifestation of an IgG4-related systemic disease and is characterized by elevated IgG4 serum levels, infiltration of IgG4-positive plasma cells and extrapancreatic lesions. Type 2 AIP usually has none or very few IgG4-positive plasma cells, no serum IgG4 elevation and appears to be a pancreas-specific disorder without extrapancreatic involvement. AIP is diagnosed in approximately 2%-6% of patients that undergo pancreatic resection for suspected pancreatic cancer. There are three patterns of autoimmune pancreatitis: diffuse disease is the most common type, with a diffuse, “sausage-like” pancreatic enlargement with sharp margins and loss of the lobular contours; focal disease is less common and manifests as a focal mass, often within the pancreatic head, mimicking a pancreatic malignancy. Multifocal involvement can also occur. In this paper we describe the features of AIP at ultrasonography, computed tomography, magnetic resonance and positron emission tomography/computed tomography imaging, focusing on diagnosis and differential diagnosis with pancreatic ductal adenocarcinoma. It is of utmost importance to make an early correct differential diagnosis between these two diseases in order to identify the optimal therapeutic strategy and to avoid unnecessary laparotomy or pancreatic resection in AIP patients. Non-invasive imaging plays also an important role in therapy monitoring, in follow-up and in early identification of disease recurrence. PMID:25493001

  13. Diagnostic and prognostic utility of non-invasive imaging in diabetes management

    PubMed Central

    Barsanti, Cristina; Lenzarini, Francesca; Kusmic, Claudia

    2015-01-01

    Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed. PMID:26131322

  14. Estimating Trabecular Bone Mechanical Properties From Non-Invasive Imaging

    NASA Technical Reports Server (NTRS)

    Hogan, Harry A.; Webster, Laurie

    1997-01-01

    An important component in developing countermeasures for maintaining musculoskeletal integrity during long-term space flight is an effective and meaningful method of monitoring skeletal condition. Magnetic resonance imaging (MRI) is an attractive non-invasive approach because it avoids the exposure to radiation associated with X-ray based imaging and also provides measures related to bone microstructure rather than just density. The purpose of the research for the 1996 Summer Faculty Fellowship period was to extend the usefulness of the MRI data to estimate the mechanical properties of trabecular bone. The main mechanical properties of interest are the elastic modulus and ultimate strength. Correlations are being investigated between these and fractal analysis parameters, MRI relaxation times, apparent densities, and bone mineral densities. Bone specimens from both human and equine donors have been studied initially to ensure high-quality MR images. Specimens were prepared and scanned from human proximal tibia bones as well as the equine distal radius. The quality of the images from the human bone appeared compromised due to freezing artifact, so only equine bone was included in subsequent procedures since these specimens could be acquired and imaged fresh before being frozen. MRI scans were made spanning a 3.6 cm length on each of 5 equine distal radius specimens. The images were then sent to Dr. Raj Acharya of the State University of New York at Buffalo for fractal analysis. Each piece was cut into 3 slabs approximately 1.2 cm thick and high-resolution contact radiographs were made to provide images for comparing fractal analysis with MR images. Dual energy X-ray absorptiometry (DEXA) scans were also made of each slab for subsequent bone mineral density determination. Slabs were cut into cubes for mechanical using a slow-speed diamond blade wafering saw (Buehler Isomet). The dimensions and wet weights of each cube specimen were measured and recorded. Wet weights

  15. Real time non invasive imaging of fatty acid uptake in vivo

    PubMed Central

    Henkin, Amy H.; Cohen, Allison S.; Dubikovskaya, Elena A.; Park, Hyo Min; Nikitin, Gennady F.; Auzias, Mathieu G.; Kazantzis, Melissa; Bertozzi, Carolyn R.; Stahl, Andreas

    2012-01-01

    Detection and quantification of fatty acid fluxes in animal model systems following physiological, pathological, or pharmacological challenges is key to our understanding of complex metabolic networks as these macronutrients also activate transcription factors and modulate signaling cascades including insulin-sensitivity. To enable non-invasive, real-time, spatiotemporal quantitative imaging of fatty acid fluxes in animals, we created a bioactivatable molecular imaging probe based on long-chain fatty acids conjugated to a reporter molecule (luciferin). We show that this probe faithfully recapitulates cellular fatty acid uptake and can be used in animal systems as a valuable tool to localize and quantitate in real-time lipid fluxes such as intestinal fatty acid absorption and brown adipose tissue activation. This imaging approach should further our understanding of basic metabolic processes and pathological alterations in multiple disease models. PMID:22928772

  16. A non-invasive tissue-specific molecular delivery method of cancer gene therapy.

    PubMed

    Kodama, Tetsuya; Aoi, Atsuko; Vassaux, Georges; Mori, Shiro; Morikawa, Hidehiro; Koshiyama, Keni-Chiro; Yano, Takeru; Fujikawa, Shigeo; Tomita, Yukio

    2006-01-01

    A Japanese word, monozukuri (literally translated "making things") is the philosophy of first having the idea and then the faith in the technical expertise and experience to accomplish the result. We believe that the concept of engineering is monozukuri. Through the process of monozukuri, engineered natural science based on mathematics and physics has been developed. Medicine is the field of study which has been developed for maintaining daily healthy life with diagnosis, treatment, examination, and protection. Biomedical engineering is the interdisciplinary study of engineering and medicine, and should be developed based on monozukuri. In this particular research, we have developed a physical molecular delivery method for cancer gene therapy using nano/microbubbles and ultrasound. First, the behavior of cavitation bubbles and subsequent shock wave phenomena involved in the mechanism of molecular delivery were analyzed, combining theory and computer simulation. In a second step, the methodology was optimized in vitro and in vivo. Finally, the therapeutic potential of the method in pre-clinical models was evaluated using transgenes relevant to cancer gene therapy instead of reporter genes, and whole body, non-invasive imaging using single photon emission computed tomography (SPECT/CT) was used to evaluate the selectivity of gene delivery in vivo. PMID:16966136

  17. Non-invasive imaging through opaque scattering layers

    NASA Astrophysics Data System (ADS)

    Bertolotti, Jacopo; van Putten, E. G.; Blum, C.; Lagendijk, A.; Vos, W. L.; Mosk, A. P.

    2015-03-01

    Light scattering is known for blurring images to the point of making them appear as a white halo. For this reason imaging through thick clouds or deep into biological tissues is difficult. Here we discuss in details a method we developed recently to retrieve the shape of an object hidden behind a diffusing screen.

  18. Quantitative spectroscopic imaging for non-invasive early cancer detection.

    PubMed

    Yu, Chung-Chieh; Lau, Condon; O'Donoghue, Geoffrey; Mirkovic, Jelena; McGee, Sasha; Galindo, Luis; Elackattu, Alphi; Stier, Elizabeth; Grillone, Gregory; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2008-09-29

    We report a fully quantitative spectroscopy imaging instrument for wide area detection of early cancer (dysplasia). This instrument provides quantitative maps of tissue biochemistry and morphology, making it a potentially powerful surveillance tool for objective early cancer detection. We describe the design, construction, calibration, and first clinical application of this new system. We demonstrate its accuracy using physical tissue models. We validate its diagnostic ability on a resected colon adenoma, and demonstrate feasibility of in vivo imaging in the oral cavity. PMID:18825262

  19. Non-invasive Imaging of Idiopathic Pulmonary Fibrosis Using Cathepsin Protease Probes

    PubMed Central

    Withana, Nimali P.; Ma, Xiaowei; McGuire, Helen M.; Verdoes, Martijn; van der Linden, Wouter A.; Ofori, Leslie O.; Zhang, Ruiping; Li, Hao; Sanman, Laura E.; Wei, Ke; Yao, Shaobo; Wu, Peilin; Li, Fang; Huang, Hui; Xu, Zuojun; Wolters, Paul J.; Rosen, Glenn D.; Collard, Harold R.; Zhu, Zhaohui; Cheng, Zhen; Bogyo, Matthew

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal, chronic, progressive disease characterized by formation of scar tissue within the lungs. Because it is a disease of unknown etiology, it is difficult to diagnose, to predict disease course and to devise treatment strategies. Recent evidence suggests that activated macrophages play key roles in the pathology of IPF. Therefore, imaging probes that specifically recognize these pools of activated immune cells could provide valuable information about how these cells contribute to the pathobiology of the disease. Here we demonstrate that cysteine cathepsin-targeted imaging probes can be used to monitor the contribution of macrophages to fibrotic disease progression in the bleomycin-induced murine model of pulmonary fibrosis. Furthermore, we show that the probes highlight regions of macrophage involvement in fibrosis in human biopsy tissues from IPF patients. Finally, we present first-in-human results demonstrating non-invasive imaging of active cathepsins in fibrotic lesions of patients with IPF. Together, our findings validate small molecule cysteine cathepsin probes for clinical PET imaging and suggest that they have the potential to be used to generate mechanistically-informative molecular information regarding cellular drivers of IPF disease severity and progression. PMID:26797565

  20. Non-invasive Imaging of Staphylococcus aureus Infections with a Nuclease-Activated Probe

    PubMed Central

    Hernandez, Frank J.; Huang, Lingyan; Olson, Michael E.; Powers, Kristy M.; Hernandez, Luiza I.; Meyerholz, David K.; Thedens, Daniel R.; Behlke, Mark A.; Horswill, Alexander R.; McNamara, James O.

    2013-01-01

    Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, non-invasive detection of S. aureus based on the activity of its secreted nuclease, micrococcal nuclease (MN). Several short, synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications, flanked with a fluorophore and quencher, were activated upon degradation by recombinant MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2′-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing bioluminescent S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This novel bacterial imaging approach has potential clinical applicability for S. aureus and several other medically significant pathogens. PMID:24487433

  1. Murine Model for Non-invasive Imaging to Detect and Monitor Ovarian Cancer Recurrence

    PubMed Central

    Sumi, Natalia J.; Lima, Eydis; Pizzonia, John; Orton, Sean P.; Craveiro, Vinicius; Joo, Wonduk; Holmberg, Jennie C.; Gurrea, Marta; Yang-Hartwich, Yang; Alvero, Ayesha; Mor, Gil

    2014-01-01

    Epithelial ovarian cancer is the most lethal gynecologic malignancy in the United States. Although patients initially respond to the current standard of care consisting of surgical debulking and combination chemotherapy consisting of platinum and taxane compounds, almost 90% of patients recur within a few years. In these patients the development of chemoresistant disease limits the efficacy of currently available chemotherapy agents and therefore contributes to the high mortality. To discover novel therapy options that can target recurrent disease, appropriate animal models that closely mimic the clinical profile of patients with recurrent ovarian cancer are required. The challenge in monitoring intra-peritoneal (i.p.) disease limits the use of i.p. models and thus most xenografts are established subcutaneously. We have developed a sensitive optical imaging platform that allows the detection and anatomical location of i.p. tumor mass. The platform includes the use of optical reporters that extend from the visible light range to near infrared, which in combination with 2-dimensional X-ray co-registration can provide anatomical location of molecular signals. Detection is significantly improved by the use of a rotation system that drives the animal to multiple angular positions for 360 degree imaging, allowing the identification of tumors that are not visible in single orientation. This platform provides a unique model to non-invasively monitor tumor growth and evaluate the efficacy of new therapies for the prevention or treatment of recurrent ovarian cancer. PMID:25407815

  2. [Cerebral arteriovenous malformations: value of the non invasive vascular imaging techniques].

    PubMed

    Leclerc, X; Gauvrit, J Y; Trystram, D; Reyns, N; Pruvo, J P; Meder, J F

    2004-12-01

    Imaging evaluation of cerebral arteriovenous malformations (AVM) requires selective visualization of the different compartments of the malformation in order to select the therapeutic management. Conventional angiography remains the reference to analyze intracranial vessel conspicuity but non-invasive methods constitute an excellent alternative. Among these techniques, CT angiography is rarely used because of the need to inject iodinated contrast material and because of irradiation. MR angiography provides useful information and can be performed using several techniques: time of flight with or without contrast material injection, phase contrast, three-dimensional (3D) gradient echo acquisition after contrast material injection and, more recently, MR digital subtraction angiography. The purpose of this review article is to summarize the different non-invasive techniques for vascular imaging and to analyze the usefulness of these techniques for the assessment of brain AVMs. PMID:15687950

  3. The potential of label-free nonlinear optical molecular microscopy to non-invasively characterize the viability of engineered human tissue constructs.

    PubMed

    Chen, Leng-Chun; Lloyd, William R; Kuo, Shiuhyang; Kim, Hyungjin Myra; Marcelo, Cynthia L; Feinberg, Stephen E; Mycek, Mary-Ann

    2014-08-01

    Nonlinear optical molecular imaging and quantitative analytic methods were developed to non-invasively assess the viability of tissue-engineered constructs manufactured from primary human cells. Label-free optical measures of local tissue structure and biochemistry characterized morphologic and functional differences between controls and stressed constructs. Rigorous statistical analysis accounted for variability between human patients. Fluorescence intensity-based spatial assessment and metabolic sensing differentiated controls from thermally-stressed and from metabolically-stressed constructs. Fluorescence lifetime-based sensing differentiated controls from thermally-stressed constructs. Unlike traditional histological (found to be generally reliable, but destructive) and biochemical (non-invasive, but found to be unreliable) tissue analyses, label-free optical assessments had the advantages of being both non-invasive and reliable. Thus, such optical measures could serve as reliable manufacturing release criteria for cell-based tissue-engineered constructs prior to human implantation, thereby addressing a critical regulatory need in regenerative medicine. PMID:24854093

  4. Multispectral retinal image analysis: a novel non-invasive tool for retinal imaging

    PubMed Central

    Calcagni, A; Gibson, J M; Styles, I B; Claridge, E; Orihuela-Espina, F

    2011-01-01

    Purpose To develop a non-invasive method for quantification of blood and pigment distributions across the posterior pole of the fundus from multispectral images using a computer-generated reflectance model of the fundus. Methods A computer model was developed to simulate light interaction with the fundus at different wavelengths. The distribution of macular pigment (MP) and retinal haemoglobins in the fundus was obtained by comparing the model predictions with multispectral image data at each pixel. Fundus images were acquired from 16 healthy subjects from various ethnic backgrounds and parametric maps showing the distribution of MP and of retinal haemoglobins throughout the posterior pole were computed. Results The relative distributions of MP and retinal haemoglobins in the subjects were successfully derived from multispectral images acquired at wavelengths 507, 525, 552, 585, 596, and 611 nm, providing certain conditions were met and eye movement between exposures was minimal. Recovery of other fundus pigments was not feasible and further development of the imaging technique and refinement of the software are necessary to understand the full potential of multispectral retinal image analysis. Conclusion The distributions of MP and retinal haemoglobins obtained in this preliminary investigation are in good agreement with published data on normal subjects. The ongoing development of the imaging system should allow for absolute parameter values to be computed. A further study will investigate subjects with known pathologies to determine the effectiveness of the method as a screening and diagnostic tool. PMID:21904394

  5. A REVIEW OF NON-INVASIVE IMAGING METHODS AND APPLICATIONS IN CONTAMINANT HYDROGEOLOGY RESEARCH

    SciTech Connect

    Werth, Charles J.; Zhang, Changyong; Brusseau, M. L.; Oostrom, Martinus; Baumann, T.

    2010-03-08

    Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. The most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma-radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods’ advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three

  6. A review of non-invasive imaging methods and applications in contaminant hydrogeology research.

    PubMed

    Werth, Charles J; Zhang, Changyong; Brusseau, Mark L; Oostrom, Mart; Baumann, Thomas

    2010-04-01

    Contaminant hydrogeological processes occurring in porous media are typically not amenable to direct observation. As a result, indirect measurements (e.g., contaminant breakthrough at a fixed location) are often used to infer processes occurring at different scales, locations, or times. To overcome this limitation, non-invasive imaging methods are increasingly being used in contaminant hydrogeology research. Four of the most common methods, and the subjects of this review, are optical imaging using UV or visible light, dual-energy gamma radiation, X-ray microtomography, and magnetic resonance imaging (MRI). Non-invasive imaging techniques have provided valuable insights into a variety of complex systems and processes, including porous media characterization, multiphase fluid distribution, fluid flow, solute transport and mixing, colloidal transport and deposition, and reactions. In this paper we review the theory underlying these methods, applications of these methods to contaminant hydrogeology research, and methods' advantages and disadvantages. As expected, there is no perfect method or tool for non-invasive imaging. However, optical methods generally present the least expensive and easiest options for imaging fluid distribution, solute and fluid flow, colloid transport, and reactions in artificial two-dimensional (2D) porous media. Gamma radiation methods present the best opportunity for characterization of fluid distributions in 2D at the Darcy scale. X-ray methods present the highest resolution and flexibility for three-dimensional (3D) natural porous media characterization, and 3D characterization of fluid distributions in natural porous media. And MRI presents the best option for 3D characterization of fluid distribution, fluid flow, colloid transport, and reaction in artificial porous media. Obvious deficiencies ripe for method development are the ability to image transient processes such as fluid flow and colloid transport in natural porous media in three

  7. Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells

    PubMed Central

    Jullien, Denis; Vignard, Julien; Fedor, Yoann; Béry, Nicolas; Olichon, Aurélien; Crozatier, Michèle; Erard, Monique; Cassard, Hervé; Ducommun, Bernard; Salles, Bernard

    2016-01-01

    ABSTRACT Chromatin function is involved in many cellular processes, its visualization or modification being essential in many developmental or cellular studies. Here, we present the characterization of chromatibody, a chromatin-binding single-domain, and explore its use in living cells. This non-intercalating tool specifically binds the heterodimer of H2A–H2B histones and displays a versatile reactivity, specifically labeling chromatin from yeast to mammals. We show that this genetically encoded probe, when fused to fluorescent proteins, allows non-invasive real-time chromatin imaging. Chromatibody is a dynamic chromatin probe that can be modulated. Finally, chromatibody is an efficient tool to target an enzymatic activity to the nucleosome, such as the DNA damage-dependent H2A ubiquitylation, which can modify this epigenetic mark at the scale of the genome and result in DNA damage signaling and repair defects. Taken together, these results identify chromatibody as a universal non-invasive tool for either in vivo chromatin imaging or to manipulate the chromatin landscape. PMID:27206857

  8. Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography.

    PubMed

    Page, Michael J; Lourenço, André L; David, Tovo; LeBeau, Aaron M; Cattaruzza, Fiore; Castro, Helena C; VanBrocklin, Henry F; Coughlin, Shaun R; Craik, Charles S

    2015-01-01

    Functional imaging of proteolytic activity is an emerging strategy to quantify disease and response to therapy at the molecular level. We present a new peptide-based imaging probe technology that advances these goals by exploiting enzymatic activity to deposit probes labelled with near-infrared (NIR) fluorophores or radioisotopes in cell membranes of disease-associated proteolysis. This strategy allows for non-invasive detection of protease activity in vivo and ex vivo by tracking deposited probes in tissues. We demonstrate non-invasive detection of thrombin generation in a murine model of pulmonary embolism using our protease-activated peptide probes in microscopic clots within the lungs with NIR fluorescence optical imaging and positron-emission tomography. Thrombin activity is imaged deep in tissue and tracked predominantly to platelets within the lumen of blood vessels. The modular design of our probes allows for facile investigation of other proteases, and their contributions to disease by tailoring the protease activation and cell-binding elements. PMID:26423607

  9. Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography

    PubMed Central

    Page, Michael J.; Lourenço, André L.; David, Tovo; LeBeau, Aaron M.; Cattaruzza, Fiore; Castro, Helena C.; VanBrocklin, Henry F.; Coughlin, Shaun R.; Craik, Charles S.

    2015-01-01

    Functional imaging of proteolytic activity is an emerging strategy to quantify disease and response to therapy at the molecular level. We present a new peptide-based imaging probe technology that advances these goals by exploiting enzymatic activity to deposit probes labelled with near-infrared (NIR) fluorophores or radioisotopes in cell membranes of disease-associated proteolysis. This strategy allows for non-invasive detection of protease activity in vivo and ex vivo by tracking deposited probes in tissues. We demonstrate non-invasive detection of thrombin generation in a murine model of pulmonary embolism using our protease-activated peptide probes in microscopic clots within the lungs with NIR fluorescence optical imaging and positron-emission tomography. Thrombin activity is imaged deep in tissue and tracked predominantly to platelets within the lumen of blood vessels. The modular design of our probes allows for facile investigation of other proteases, and their contributions to disease by tailoring the protease activation and cell-binding elements. PMID:26423607

  10. A simple approach for non-invasive transcranial optical vascular imaging (nTOVI).

    PubMed

    Kalchenko, Vyacheslav; Israeli, David; Kuznetsov, Yuri; Meglinski, Igor; Harmelin, Alon

    2015-11-01

    In vivo imaging of cerebral vasculature is highly vital for clinicians and medical researchers alike. For a number of years non-invasive optical-based imaging of brain vascular network by using standard fluorescence probes has been considered as impossible. In the current paper controverting this paradigm, we present a robust non-invasive optical-based imaging approach that allows visualize major cerebral vessels at the high temporal and spatial resolution. The developed technique is simple to use, utilizes standard fluorescent dyes, inexpensive micro-imaging and computation procedures. The ability to clearly visualize middle cerebral artery and other major vessels of brain vascular network, as well as the measurements of dynamics of blood flow are presented. The developed imaging approach has a great potential in neuroimaging and can significantly expand the capabilities of preclinical functional studies of brain and notably contribute for analysis of cerebral blood circulation in disorder models. An example of 1 × 1.5 cm color-coded image of brain blood vessels of mouse obtained in vivo by transcranial optical vascular imaging (TOVI) approach through the intact cranium. PMID:25924020

  11. Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines

    NASA Astrophysics Data System (ADS)

    Zhang, Yumiao; Jeon, Mansik; Rich, Laurie J.; Hong, Hao; Geng, Jumin; Zhang, Yin; Shi, Sixiang; Barnhart, Todd E.; Alexandridis, Paschalis; Huizinga, Jan D.; Seshadri, Mukund; Cai, Weibo; Kim, Chulhong; Lovell, Jonathan F.

    2014-08-01

    There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and provide good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ∼20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1,000). Unlike conventional chromophores, nanonaps exhibit non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole-body imaging.

  12. Non-invasive, Multimodal Functional Imaging of the Intestine with Frozen Micellar Naphthalocyanines

    PubMed Central

    Zhang, Yumiao; Jeon, Mansik; Rich, Laurie J.; Hong, Hao; Geng, Jumin; Zhang, Yin; Shi, Sixiang; Barnhart, Todd E.; Alexandridis, Paschalis; Huizinga, Jan D.; Seshadri, Mukund; Cai, Weibo; Kim, Chulhong; Lovell, Jonathan F.

    2014-01-01

    Overview There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and give rise to good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ~20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1000). Unlike conventional chromophores, nanonaps exhibited non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution with 0.5 cm depth, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole body imaging. PMID:24997526

  13. Non-invasive measurements of granular flows by magnetic resonance imaging

    SciTech Connect

    Nakagawa, M.; Altobelli, S.A.; Caprihan, A.; Fukushima, E.; Jeong, E.K.

    1993-01-20

    Magnetic Resonance Imaging (MRI) was used to measure granular-flow in a partially filled, steadily rotating, long, horizontal cylinder. This non-invasive technique can yield statistically averaged two-dimensional concentrations and velocity profiles anywhere in the flow of suitable granular materials. First, rigid body motion of a cylinder fill with granular material was studied to confirm the validity of this method. Then, the density variation of the flowing layer where particles collide and dilate, and the depth of the flowing layer and the flow velocity profile were obtained as a function of the cylinder rotation rate.

  14. Quantitative molecular characterization of bovine vitreous and lens with non-invasive dynamic light scattering

    NASA Technical Reports Server (NTRS)

    Ansari, R. R.; Suh, K. I.; Dunker, S.; Kitaya, N.; Sebag, J.

    2001-01-01

    The non-invasive technique of dynamic light scattering (DLS) was used to quantitatively characterize vitreous and lens structure on a molecular level by measuring the sizes of the predominant particles and mapping the three-dimensional topographic distribution of these structural macromolecules in three spatial dimensions. The results of DLS measurements in five fresh adult bovine eyes were compared to DLS measurements in model solutions of hyaluronan (HA) and collagen (Coll). In the bovine eyes DLS measurements were obtained from excised samples of gel and liquid vitreous and compared to the model solutions. Measurements in whole vitreous were obtained at multiple points posterior to the lens to generate a three-dimensional 'map' of molecular structure. The macromolecule distribution in bovine lens was similarly characterized.In each bovine vitreous (Bo Vit) specimen, DLS predominantly detected two distinct particles, which differed in diffusion properties and hence size. Comparisons with model vitreous solutions demonstrated that these most likely corresponded to the Coll and HA components of vitreous. Three-dimensional mapping of Bo Vit found heterogeneity throughout the vitreous body, with different particle size distributions for Coll and HA at different loci. In contrast, the three-dimensional distribution of lens macromolecules was more homogeneous. Thus, the non-invasive DLS technique can quantitate the average sizes of vitreous and lens macromolecules and map their three-dimensional distribution. This method to assess quantitatively the macromolecular structure of vitreous and lens should be useful for clinical as well as experimental applications in health and disease. Copyright 2001 Academic Press.

  15. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals

    PubMed Central

    Manzano-Szalai, Krisztina; Pali-Schöll, Isabella; Krishnamurthy, Durga; Stremnitzer, Caroline; Flaschberger, Ingo; Jensen-Jarolim, Erika

    2016-01-01

    In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i) milk allergy, ii) peanut allergy and iii) egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour. PMID:26963393

  16. A servo-mechanical load frame for in situ, non-invasive, imaging of damage development

    SciTech Connect

    Breunig, T.M.; Nichols, M.C.; Gruver, J.S.; Kinney, J.H.; Haupt, D.L.

    1993-12-31

    The X-ray tomographic microscope (XTM) is a non-invasive X-ray imaging instrument for characterizing a material`s structure three-dimensionally with microscopic spatial resolution. The authors have designed a servomechanical load frame for use with the XTM which will allow imaging of samples under load. The load frame is capable of generating tensile or compressive forces up to 15.6 kN with a design system stiffness of 8.76 {times} 10{sup 8} N/m. The test specimen can be rotated through 360{degree}, without induced bending or torque. Torqueless motion is accomplished by synchronously rotating the grips on precision bearings with an accuracy of 0.01{degree}. With this load frame it will be possible, for the first time, to image the initiation and accumulation of internal damage (0.5 {mu}m detectability) formed in a 6 mm diameter specimen during the application of a monotonic or low frequency cyclic load. This is accomplished by interrupting the test and maintaining a fixed load (or displacement) during the non-invasive XTM data collection procedure. This paper describes the in situ load frame design and experimental capabilities. This system can be used to enhance the understanding of failure in composite materials.

  17. Non-invasive in vivo imaging of calcium signaling in mice.

    PubMed

    Rogers, Kelly L; Picaud, Sandrine; Roncali, Emilie; Boisgard, Raphaël; Colasante, Cesare; Stinnakre, Jacques; Tavitian, Bertrand; Brûlet, Philippe

    2007-01-01

    Rapid and transient elevations of Ca(2+) within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca(2+) concentration ([Ca(2+)]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca(2+)-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca(2+)] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca(2+)] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca(2+)] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca(2+) signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies. PMID:17912353

  18. Non-invasive detection of murals with pulsed terahertz reflected imaging system

    NASA Astrophysics Data System (ADS)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Ye, Jiasheng; Wang, Sen; Zhang, Qunxi; Zhang, Yan

    2015-11-01

    Pulsed terahertz reflected imaging technology has been expected to have great potential for the non-invasive analysis of artworks. In this paper, three types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by a pulsed terahertz reflected imaging system. These preset defects include a circular groove, a cross-shaped slit and a piece of "Y-type" metal plate built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. Additionally, three-dimensional analyses have been performed in order to reveal the internal structure of defects. Terahertz reflective imaging can be applied to the defect investigation of the murals.

  19. Insights into Parkinson's disease models and neurotoxicity using non-invasive imaging

    SciTech Connect

    Sanchez-Pernaute, Rosario; Jenkins, Bruce G.; Isacson, Ole

    2005-09-01

    Loss of dopamine in the nigrostriatal system causes a severe impairment in motor function in patients with Parkinson's disease and in experimental neurotoxic models of the disease. We have used non-invasive imaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (MRI) to investigate in vivo the changes in the dopamine system in neurotoxic models of Parkinson's disease. In addition to classic neurotransmitter studies, in these models, it is also possible to characterize associated and perhaps pathogenic factors, such as the contribution of microglia activation and inflammatory responses to neuronal damage. Functional imaging techniques are instrumental to our understanding and modeling of disease mechanisms, which should in turn lead to development of new therapies for Parkinson's disease and other neurodegenerative disorders.

  20. Non-invasive imaging of flow and vascular function in disease of the aorta

    PubMed Central

    Whitlock, Matthew C.; Hundley, W. Gregory

    2015-01-01

    With advancements in technology and a better understanding of human cardiovascular physiology, research as well as clinical care can go beyond dimensional anatomy offered by traditional imaging and investigate aortic functional properties and the impact disease has on this function. Linking the knowledge of the histopathological changes with the alterations in aortic function observed on noninvasive imaging results in a better understanding of disease pathophysiology. Translating this to clinical medicine, these noninvasive imaging assessments of aortic function are proving to be able to diagnosis disease, better predict risk, and assess response to therapies. This review is designed to summarize the various hemodynamic measures that can characterize the aorta, the various non-invasive techniques, and applications for various disease states. PMID:26381770

  1. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein

    PubMed Central

    Chu, Jun; Haynes, Russell D; Corbel, Stéphane Y; Li, Pengpeng; González-González, Emilio; Burg, John S; Ataie, Niloufar J; Lam, Amy J; Cranfill, Paula J; Baird, Michelle A; Davidson, Michael W; Ng, Ho-Leung; Garcia, K Christopher; Contag, Christopher H; Shen, Kang; Blau, Helen M; Lin, Michael Z

    2014-01-01

    A method for non-invasive visualization of genetically labelled cells in animal disease models with micron-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the “optical window” above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune, previously the brightest monomeric FP when excited beyond 600 nm. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence, while the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts and stem cells into myocytes in living mice with high anatomical detail. PMID:24633408

  2. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Farahi, Faramarz

    2014-05-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition.

  3. Non-invasive diagnostics in pathological fossils by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Mietchen, D.; Keupp, H.; Manz, B.; Volke, F.

    2005-03-01

    For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows to non-invasively study anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly in soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological scenarios directly derived from 3D Magnetic Resonance images with microscopic resolution. These syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. Finally, the potential of Magnetic Resonance techniques for further paleontological applications is being discussed.

  4. Non-invasive diagnostics in fossils - Magnetic Resonance Imaging of pathological belemnites

    NASA Astrophysics Data System (ADS)

    Mietchen, D.; Keupp, H.; Manz, B.; Volke, F.

    2005-06-01

    For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.

  5. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.

    PubMed

    Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred

    2016-01-01

    Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization. PMID:26137889

  6. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  7. Non-invasive Detection of Breast Cancer Lymph Node Metastasis using Carbonic Anhydrases IX and XII Targeted Imaging Probes

    PubMed Central

    Tafreshi, Narges K.; Bui, Marilyn M.; Bishop, Kellsey; Lloyd, Mark C.; Enkemann, Steven A.; Lopez, Alexis S.; Abrahams, Dominique; Carter, Bradford W.; Vagner, Josef; Grobmyer, Stephen R.; Gillies, Robert J.; Morse, David L.

    2014-01-01

    Purpose To develop targeted molecular imaging probes for the non-invasive detection of breast cancer lymph node metastasis. Methods Six cell surface or secreted markers were identified by expression profiling and from the literature as being highly expressed in breast cancer lymph node metastases. Two of these markers were cell surface carbonic anhydrase isozymes (CAIX and/or CAXII) and were validated for protein expression by immunohistochemistry (IHC) of patient tissue samples on a breast cancer tissue microarray containing 47 normal breast tissue samples, 42 ductal carcinoma in situ, 43 invasive ductal carcinomas without metastasis, 46 invasive ductal carcinomas with metastasis and 49 lymph node macrometastases of breast carcinoma. Targeted probes were developed by conjugation of CAIX and CAXII specific monoclonal antibodies (mAbs) to a near-infrared fluorescent dye. Results Together, these two markers were expressed in 100% of the lymph node metastases surveyed. Selectivity of the imaging probes were confirmed by intravenous injection into nude mice bearing mammary fat pad tumors of marker expressing cells, and non-expressing cells or by pre-injection of unlabeled antibody. Imaging of LN metastases showed that peritumorally-injected probes detected nodes harboring metastatic tumor cells. As few as 1,000 cells were detected, as determined by implanting, under ultrasound guidance, a range in number of CAIX and CAXII expressing cells into the axillary LNs. Conclusion These imaging probes have potential for non-invasive staging of breast cancer in the clinic and elimination of unneeded surgery, which is costly and associated with morbidities. PMID:22016510

  8. Non-Invasive Imaging of Neuroanatomical Structures and Neural Activation with High-Resolution MRI

    PubMed Central

    Herberholz, Jens; Mishra, Subrata H.; Uma, Divya; Germann, Markus W.; Edwards, Donald H.; Potter, Kimberlee

    2011-01-01

    Several years ago, manganese-enhanced magnetic resonance imaging (MEMRI) was introduced as a new powerful tool to image active brain areas and to identify neural connections in living, non-human animals. Primarily restricted to studies in rodents and later adapted for bird species, MEMRI has recently been discovered as a useful technique for neuroimaging of invertebrate animals. Using crayfish as a model system, we highlight the advantages of MEMRI over conventional techniques for imaging of small nervous systems. MEMRI can be applied to image invertebrate nervous systems at relatively high spatial resolution, and permits identification of stimulus-evoked neural activation non-invasively. Since the selection of specific imaging parameters is critical for successful in vivo micro-imaging, we present an overview of different experimental conditions that are best suited for invertebrates. We also compare the effects of hardware and software specifications on image quality, and provide detailed descriptions of the steps necessary to prepare animals for successful imaging sessions. Careful consideration of hardware, software, experiments, and specimen preparation will promote a better understanding of this novel technique and facilitate future MEMRI studies in other laboratories. PMID:21503138

  9. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations

    NASA Astrophysics Data System (ADS)

    Katz, Ori; Heidmann, Pierre; Fink, Mathias; Gigan, Sylvain

    2014-10-01

    Optical imaging through and inside complex samples is a difficult challenge with important applications in many fields. The fundamental problem is that inhomogeneous samples such as biological tissue randomly scatter and diffuse light, preventing the formation of diffraction-limited images. Despite many recent advances, no current method can perform non-invasive imaging in real-time using diffused light. Here, we show that, owing to the ‘memory-effect’ for speckle correlations, a single high-resolution image of the scattered light, captured with a standard camera, encodes sufficient information to image through visually opaque layers and around corners with diffraction-limited resolution. We experimentally demonstrate single-shot imaging through scattering media and around corners using spatially incoherent light and various samples, from white paint to dynamic biological samples. Our single-shot lensless technique is simple, does not require wavefront-shaping nor time-gated or interferometric detection, and is realized here using a camera-phone. It has the potential to enable imaging in currently inaccessible scenarios.

  10. Bacterial Thymidine Kinase as a Non-Invasive Imaging Reporter for Mycobacterium tuberculosis in Live Animals

    PubMed Central

    Davis, Stephanie L.; Be, Nicholas A.; Lamichhane, Gyanu; Nimmagadda, Sridhar; Pomper, Martin G.; Bishai, William R.; Jain, Sanjay K.

    2009-01-01

    Background Bacteria can be selectively imaged in experimentally-infected animals using exogenously administered 1-(2′deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-[125I]-iodouracil ([125I]-FIAU), a nucleoside analog substrate for bacterial thymidine kinase (TK). Our goal was to use this reporter and develop non-invasive methods to detect and localize Mycobacterium tuberculosis. Methodology/Principal Findings We engineered a M. tuberculosis strain with chromosomally integrated bacterial TK under the control of hsp60 - a strong constitutive mycobacterial promoter. [125I]FIAU uptake, antimicrobial susceptibilities and in vivo growth characteristics were evaluated for this strain. Using single photon emission computed tomography (SPECT), M. tuberculosis Phsp60 TK strain was evaluated in experimentally-infected BALB/c and C3HeB/FeJ mice using the thigh inoculation or low-dose aerosol infection models. M. tuberculosis Phsp60 TK strain actively accumulated [125I]FIAU in vitro. Growth characteristics of the TK strain and susceptibility to common anti-tuberculous drugs were similar to the wild-type parent strain. M. tuberculosis Phsp60 TK strain was stable in vivo and SPECT imaging could detect and localize this strain in both animal models tested. Conclusion We have developed a novel tool for non-invasive assessment of M. tuberculosis in live experimentally-infected animals. This tool will allow real-time pathogenesis studies in animal models of TB and has the potential to simplify preclinical studies and accelerate TB research. PMID:19606217

  11. Thermal Imaging to Study Stress Non-invasively in Unrestrained Birds.

    PubMed

    Jerem, Paul; Herborn, Katherine; McCafferty, Dominic; McKeegan, Dorothy; Nager, Ruedi

    2015-01-01

    Stress, a central concept in biology, describes a suite of emergency responses to challenges. Among other responses, stress leads to a change in blood flow that results in a net influx of blood to key organs and an increase in core temperature. This stress-induced hyperthermia is used to assess stress. However, measuring core temperature is invasive. As blood flow is redirected to the core, the periphery of the body can cool. This paper describes a protocol where peripheral body temperature is measured non-invasively in wild blue tits (Cyanistes caeruleus) using infrared thermography. In the field we created a set-up bringing the birds to an ideal position in front of the camera by using a baited box. The camera takes a short thermal video recording of the undisturbed bird before applying a mild stressor (closing the box and therefore capturing the bird), and the bird's response to being trapped is recorded. The bare skin of the eye-region is the warmest area in the image. This allows an automated extraction of the maximum eye-region temperature from each image frame, followed by further steps of manual data filtering removing the most common sources of errors (motion blur, blinking). This protocol provides a time series of eye-region temperature with a fine temporal resolution that allows us to study the dynamics of the stress response non-invasively. Further work needs to demonstrate the usefulness of the method to assess stress, for instance to investigate whether eye-region temperature response is proportional to the strength of the stressor. If this can be confirmed, it will provide a valuable alternative method of stress assessment in animals and will be useful to a wide range of researchers from ecologists, conservation biologists, physiologists to animal welfare researchers. PMID:26575985

  12. Thermal Imaging to Study Stress Non-invasively in Unrestrained Birds

    PubMed Central

    Jerem, Paul; Herborn, Katherine; McCafferty, Dominic; McKeegan, Dorothy; Nager, Ruedi

    2015-01-01

    Stress, a central concept in biology, describes a suite of emergency responses to challenges. Among other responses, stress leads to a change in blood flow that results in a net influx of blood to key organs and an increase in core temperature. This stress-induced hyperthermia is used to assess stress. However, measuring core temperature is invasive. As blood flow is redirected to the core, the periphery of the body can cool. This paper describes a protocol where peripheral body temperature is measured non-invasively in wild blue tits (Cyanistes caeruleus) using infrared thermography. In the field we created a set-up bringing the birds to an ideal position in front of the camera by using a baited box. The camera takes a short thermal video recording of the undisturbed bird before applying a mild stressor (closing the box and therefore capturing the bird), and the bird’s response to being trapped is recorded. The bare skin of the eye-region is the warmest area in the image. This allows an automated extraction of the maximum eye-region temperature from each image frame, followed by further steps of manual data filtering removing the most common sources of errors (motion blur, blinking). This protocol provides a time series of eye-region temperature with a fine temporal resolution that allows us to study the dynamics of the stress response non-invasively. Further work needs to demonstrate the usefulness of the method to assess stress, for instance to investigate whether eye-region temperature response is proportional to the strength of the stressor. If this can be confirmed, it will provide a valuable alternative method of stress assessment in animals and will be useful to a wide range of researchers from ecologists, conservation biologists, physiologists to animal welfare researchers. PMID:26575985

  13. Molecular classification of non-invasive breast lesions for personalised therapy and chemoprevention.

    PubMed

    Buckley, Niamh; Boyle, David; McArt, Darragh; Irwin, Gareth; Harkin, D Paul; Lioe, Tong; McQuaid, Stephen; James, Jacqueline A; Maxwell, Perry; Hamilton, Peter; Mullan, Paul B; Salto-Tellez, Manuel

    2015-12-22

    Breast cancer screening has led to a dramatic increase in the detection of pre-invasive breast lesions. While mastectomy is almost guaranteed to treat the disease, more conservative approaches could be as effective if patients can be stratified based on risk of co-existing or recurrent invasive disease.Here we use a range of biomarkers to interrogate and classify purely non-invasive lesions (PNL) and those with co-existing invasive breast cancer (CEIN). Apart from Ductal Carcinoma In Situ (DCIS), relative homogeneity is observed. DCIS contained a greater spread of molecular subtypes. Interestingly, high expression of p-mTOR was observed in all PNL with lower expression in DCIS and invasive carcinoma while the opposite expression pattern was observed for TOP2A.Comparing PNL with CEIN, we have identified p53 and Ki67 as predictors of CEIN with a combined PPV and NPV of 90.48% and 43.3% respectively. Furthermore, HER2 expression showed the best concordance between DCIS and its invasive counterpart.We propose that these biomarkers can be used to improve the management of patients with pre-invasive breast lesions following further validation and clinical trials. p53 and Ki67 could be used to stratify patients into low and high-risk groups for co-existing disease. Knowledge of expression of more actionable targets such as HER2 or TOP2A can be used to design chemoprevention or neo-adjuvant strategies. Increased knowledge of the molecular profile of pre-invasive lesions can only serve to enhance our understanding of the disease and, in the era of personalised medicine, bring us closer to improving breast cancer care. PMID:26657114

  14. Molecular classification of non-invasive breast lesions for personalised therapy and chemoprevention

    PubMed Central

    McArt, Darragh; Irwin, Gareth; Harkin, D. Paul; Lioe, Tong; McQuaid, Stephen; James, Jacqueline A.; Maxwell, Perry; Hamilton, Peter; Mullan, Paul B.; Salto-Tellez, Manuel

    2015-01-01

    Breast cancer screening has led to a dramatic increase in the detection of pre-invasive breast lesions. While mastectomy is almost guaranteed to treat the disease, more conservative approaches could be as effective if patients can be stratified based on risk of co-existing or recurrent invasive disease. Here we use a range of biomarkers to interrogate and classify purely non-invasive lesions (PNL) and those with co-existing invasive breast cancer (CEIN). Apart from Ductal Carcinoma in situ (DCIS), relative homogeneity is observed. DCIS contained a greater spread of molecular subtypes. Interestingly, high expression of p-mTOR was observed in all PNL with lower expression in DCIS and invasive carcinoma while the opposite expression pattern was observed for TOP2A. Comparing PNL with CEIN, we have identified p53 and Ki67 as predictors of CEIN with a combined PPV and NPV of 90.48% and 43.3% respectively. Furthermore, HER2 expression showed the best concordance between DCIS and its invasive counterpart. We propose that these biomarkers can be used to improve the management of patients with pre-invasive breast lesions following further validation and clinical trials. p53 and Ki67 could be used to stratify patients into low and high-risk groups for co-existing disease. Knowledge of expression of more actionable targets such as HER2 or TOP2A can be used to design chemoprevention or neo-adjuvant strategies. Increased knowledge of the molecular profile of pre-invasive lesions can only serve to enhance our understanding of the disease and, in the era of personalised medicine, bring us closer to improving breast cancer care. PMID:26657114

  15. Non-invasive PET Imaging of PARP1 Expression in Glioblastoma Models

    PubMed Central

    Carney, Brandon; Carlucci, Giuseppe; Salinas, Beatriz; Di Gialleonardo, Valentina; Kossatz, Susanne; Vansteene, Axel; Longo, Valerie A.; Bolaender, Alexander; Chiosis, Gabriela; Keshari, Kayvan R.; Weber, Wolfgang A.; Reiner, Thomas

    2015-01-01

    Purpose The current study presents [18F]PARPi as imaging agent for PARP1 expression. Procedures [18F]PARPi was generated by conjugating a 2H-phthalazin-1-one scaffold to 4-[18F]fluorobenzoic acid. Biochemical assays, optical in vivo competition, biodistribution analysis, positron emission tomography (PET)/X-ray computed tomography, and PET/ magnetic resonance imaging studies were performed in subcutaneous and orthotopic mouse models of glioblastoma. Results [18F]PARPi shows suitable pharmacokinetic properties for brain tumor imaging (IC50=2.8±1.1 nM; logPCHI=2.15±0.41; plasma-free fraction=63.9±12.6 %) and accumulates selectively in orthotopic brain tumor tissue. Tracer accumulation in subcutaneous brain tumors was 1.82±0.21 %ID/g, whereas in healthy brain, the uptake was only 0.04±0.01 %ID/g. Conclusions [18F]PARPi is a selective PARP1 imaging agent that can be used to visualize glioblastoma in xenograft and orthotopic mouse models with high precision and good signal/noise ratios. It offers new opportunities to non-invasively image tumor growth and monitor interventions. PMID:26493053

  16. Using Non-Invasive Multi-Spectral Imaging to Quantitatively Assess Tissue Vasculature

    SciTech Connect

    Vogel, A; Chernomordik, V; Riley, J; Hassan, M; Amyot, F; Dasgeb, B; Demos, S G; Pursley, R; Little, R; Yarchoan, R; Tao, Y; Gandjbakhche, A H

    2007-10-04

    This research describes a non-invasive, non-contact method used to quantitatively analyze the functional characteristics of tissue. Multi-spectral images collected at several near-infrared wavelengths are input into a mathematical optical skin model that considers the contributions from different analytes in the epidermis and dermis skin layers. Through a reconstruction algorithm, we can quantify the percent of blood in a given area of tissue and the fraction of that blood that is oxygenated. Imaging normal tissue confirms previously reported values for the percent of blood in tissue and the percent of blood that is oxygenated in tissue and surrounding vasculature, for the normal state and when ischemia is induced. This methodology has been applied to assess vascular Kaposi's sarcoma lesions and the surrounding tissue before and during experimental therapies. The multi-spectral imaging technique has been combined with laser Doppler imaging to gain additional information. Results indicate that these techniques are able to provide quantitative and functional information about tissue changes during experimental drug therapy and investigate progression of disease before changes are visibly apparent, suggesting a potential for them to be used as complementary imaging techniques to clinical assessment.

  17. Non-Invasive Detection of Lung Inflammation by Near-Infrared Fluorescence Imaging Using Bimodal Liposomes.

    PubMed

    Desu, Hari R; Wood, George C; Thoma, Laura A

    2016-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome results in respiratory obstruction and severe lung inflammation. Critical characteristics of ALI are alveolar edema, infiltration of leukocytes (neutrophils and monocytes), release of pro-inflammatory cytokines and chemokines into broncho-alveolar lavage fluid, and activation of integrin receptors. The purpose of the study was to demonstrate non-invasive detection of lung inflammation using integrin receptor targeted fluorescence liposomes. An inflammation similar to that observed in ALI was elicited in rodents by intra-tracheal instillation of interleukin-1beta (IL-1beta). Cyclic arginine glycine-(D)-aspartic acid-peptide (cRGD-peptide) grafted fluorescence liposomes were administered to ALI induced male Sprague-Dawley rats for targeting lung integrin receptors. Near-infrared fluorescence imaging (NIRFI) was applied for visualization and quantitation of lung inflammation. NIRFI signals were correlated with inflammatory cellular and biochemical markers of lungs. A positive correlation was observed between NIRF signals and lung inflammation markers. Compared to control group, an intense NIRF signal was observed in ALI induced rats in the window 6-24 h post-IL-1beta instillation. Interaction of integrin receptors with targeted liposomes was assumed to contribute to intense NIRF signal. RT-PCR studies showed an elevated lung expression of alphavbeta5 integrin receptors, 12 h post-IL-1beta instillation. In vitro studies demonstrated integrin receptor specificity of targeted liposomes. These targeted liposomes showed binding to alphavbeta5 integrin receptors expressed on alveolar cells. Non-invasive detection of lung inflammation was demonstrated using a combination of integrin receptor targeting and NIRFI. PMID:26527222

  18. Non-invasive in vivo imaging of early metabolic tumor response to therapies targeting choline metabolism.

    PubMed

    Mignion, Lionel; Danhier, Pierre; Magat, Julie; Porporato, Paolo E; Masquelier, Julien; Gregoire, Vincent; Muccioli, Giulio G; Sonveaux, Pierre; Gallez, Bernard; Jordan, Bénédicte F

    2016-04-15

    The cholinic phenotype, characterized by elevated phosphocholine and a high production of total-choline (tCho)-containing metabolites, is a metabolic hallmark of cancer. It can be exploited for targeted therapy. Non-invasive imaging biomarkers are required to evaluate an individual's response to targeted anticancer agents that usually do not rapidly cause tumor shrinkage. Because metabolic changes can manifest at earlier stages of therapy than changes in tumor size, the aim of the current study was to evaluate (1)H-MRS and diffusion-weighted MRI (DW-MRI) as markers of tumor response to the modulation of the choline pathway in mammary tumor xenografts. Inhibition of choline kinase activity was achieved with the direct pharmacological inhibitor H-89, indirect inhibitor sorafenib and down-regulation of choline-kinase α (ChKA) expression using specific short-hairpin RNA (shRNA). While all three strategies significantly decreased tCho tumor content in vivo, only sorafenib and anti-ChKA shRNA significantly repressed tumor growth. The increase of apparent-diffusion-coefficient of water (ADCw) measured by DW-MRI, was predictive of the induced necrosis and inhibition of the tumor growth in sorafenib treated mice, while the absence of change in ADC values in H89 treated mice predicted the absence of effect in terms of tumor necrosis and tumor growth. In conclusion, (1)H-choline spectroscopy can be useful as a pharmacodynamic biomarker for choline targeted agents, while DW-MRI can be used as an early marker of effective tumor response to choline targeted therapies. DW-MRI combined to choline spectroscopy may provide a useful non-invasive marker for the early clinical assessment of tumor response to therapies targeting choline signaling. PMID:26595604

  19. Non-invasive mechanical properties estimation of embedded objects using tactile imaging sensor

    NASA Astrophysics Data System (ADS)

    Saleheen, Firdous; Oleksyuk, Vira; Sahu, Amrita; Won, Chang-Hee

    2013-05-01

    Non-invasive mechanical property estimation of an embedded object (tumor) can be used in medicine for characterization between malignant and benign lesions. We developed a tactile imaging sensor which is capable of detecting mechanical properties of inclusions. Studies show that stiffness of tumor is a key physiological discerning parameter for malignancy. As our sensor compresses the tumor from the surface, the sensing probe deforms, and the light scatters. This forms the tactile image. Using the features of the image, we can estimate the mechanical properties such as size, depth, and elasticity of the embedded object. To test the performance of the method, a phantom study was performed. Silicone rubber balls were used as embedded objects inside the tissue mimicking substrate made of Polydimethylsiloxane. The average relative errors for size, depth, and elasticity were found to be 67.5%, 48.2%, and 69.1%, respectively. To test the feasibility of the sensor in estimating the elasticity of tumor, a pilot clinical study was performed on twenty breast cancer patients. The estimated elasticity was correlated with the biopsy results. Preliminary results show that the sensitivity of 67% and the specificity of 91.7% for elasticity. Results from the clinical study suggest that the tactile imaging sensor may be used as a tumor malignancy characterization tool.

  20. Terahertz imaging systems: a non-invasive technique for the analysis of paintings

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Hosako, I.; Duling, I. N., III; Picollo, M.

    2009-07-01

    Terahertz (THz) imaging is an emerging technique for non-invasive analysis. Since THz waves can penetrate opaque materials, various imaging systems that use THz waves have been developed to detect, for instance, concealed weapons, illegal drugs, and defects in polymer products. The absorption of THz waves by water is extremely strong, and hence, THz waves can be used to monitor the water content in various objects. THz imaging can be performed either by transmission or by reflection of THz waves. In particular, time domain reflection imaging uses THz pulses that propagate in specimens, and in this technique, pulses reflected from the surface and from the internal boundaries of the specimen are detected. In general, the internal structure is observed in crosssectional images obtained using micro-specimens taken from the work that is being analysed. On the other hand, in THz time-domain imaging, a map of the layer of interest can be easily obtained without collecting any samples. When realtime imaging is required, for example, in the investigation of the effect of a solvent or during the monitoring of water content, a THz camera can be used. The first application of THz time-domain imaging in the analysis of a historical tempera masterpiece was performed on the panel painting Polittico di Badia by Giotto, of the permanent collection of the Uffizi Gallery. The results of that analysis revealed that the work is composed of two layers of gypsum, with a canvas between these layers. In the paint layer, gold foils covered by paint were clearly observed, and the consumption or ageing of gold could be estimated by noting the amount of reflection. These results prove that THz imaging can yield useful information for conservation and restoration purposes.

  1. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.

    PubMed

    Hynynen, Kullervo; Jones, Ryan M

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy. PMID:27494561

  2. Graft complications following orthotopic liver transplantation: Role of non-invasive cross-sectional imaging techniques.

    PubMed

    Boraschi, Piero; Della Pina, Maria Clotilde; Donati, Francescamaria

    2016-07-01

    Orthotopic liver transplantation is the treatment of choice in adult patients with endstage liver disease. Survival of both graft and patient has progressively improved over time due to improvements in surgical and medical treatment. However, post-transplant complications still have a significant impact on morbidity and mortality associated with transplant surgery. The most common adverse events of the graft include vascular (arterial and venous stenosis and thrombosis), biliary (leakage, strictures, stones) and parenchymal complications (hepatitis virus C infection, HCC recurrence, liver abscesses). The diagnosis of these adverse events is often challenging because of the low specificity of clinical and biologic findings. Different diagnostic algorithms have been proposed for the detection of graft complications and, in this setting, radiological evaluation plays a key role in differential diagnosis of graft complications and the exclusion of other adverse events. Ultrasound examination is established the first-line method of identifying adverse events in liver transplant recipients but a normal or a technically unsatisfactory study cannot exclude the presence of biliary, vascular and/or parenchymal complications. In these circumstances, before planning any treatment, multi-detector CT and/or MR imaging and MR cholangiography should be performed for the evaluation of vascular structures, biliary system, liver parenchyma and fluid collections. The aim of this review is to illustrate the role and state-of-the-art of non-invasive cross-sectional imaging techniques in the diagnosis and management of complications which primarily affect the graft in patients after liver transplantation. PMID:27235874

  3. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy

    NASA Astrophysics Data System (ADS)

    Hynynen, Kullervo; Jones, Ryan M.

    2016-09-01

    Focused ultrasound offers a non-invasive way of depositing acoustic energy deep into the body, which can be harnessed for a broad spectrum of therapeutic purposes, including tissue ablation, the targeting of therapeutic agents, and stem cell delivery. Phased array transducers enable electronic control over the beam geometry and direction, and can be tailored to provide optimal energy deposition patterns for a given therapeutic application. Their use in combination with modern medical imaging for therapy guidance allows precise targeting, online monitoring, and post-treatment evaluation of the ultrasound-mediated bioeffects. In the past there have been some technical obstacles hindering the construction of large aperture, high-power, densely-populated phased arrays and, as a result, they have not been fully exploited for therapy delivery to date. However, recent research has made the construction of such arrays feasible, and it is expected that their continued development will both greatly improve the safety and efficacy of existing ultrasound therapies as well as enable treatments that are not currently possible with existing technology. This review will summarize the basic principles, current statures, and future potential of image-guided ultrasound phased arrays for therapy.

  4. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Sipaun, S. M.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.

    2008-05-01

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper.

  5. Development of an X-ray Computed Tomography System for Non-Invasive Imaging of Industrial Materials

    SciTech Connect

    Abdullah, J.; Sipaun, S. M.; Mustapha, I.; Zain, R. M.; Rahman, M. F. A.; Mustapha, M.; Shaari, M. R.; Hassan, H.; Said, M. K. M.; Mohamad, G. H. P.; Ibrahim, M. M.

    2008-05-20

    X-ray computed tomography is a powerful non-invasive imaging technique for viewing an object's inner structures in two-dimensional cross-section images without the need to physically section it. The invention of CT techniques revolutionised the field of medical diagnostic imaging because it provided more detailed and useful information than any previous non-invasive imaging techniques. The method is increasingly being used in industry, aerospace, geosciences and archaeology. This paper describes the development of an X-ray computed tomography system for imaging of industrial materials. The theoretical aspects of CT scanner, the system configurations and the adopted algorithm for image reconstruction are discussed. The penetrating rays from a 160 kV industrial X-ray machine were used to investigate structures that manifest in a manufactured component or product. Some results were presented in this paper.

  6. The impact of new trends in POCTs for companion diagnostics, non-invasive testing and molecular diagnostics.

    PubMed

    Huckle, David

    2015-06-01

    Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications. PMID:25990929

  7. Non-Invasive Imaging of Reactor Cores Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Milner, Edward

    2011-10-01

    Cosmic ray muons penetrate deeply in material, with some passing completely through very thick objects. This penetrating quality is the basis of two distinct, but related imaging techniques. The first measures the number of cosmic ray muons transmitted through parts of an object. Relatively fewer muons are absorbed along paths in which they encounter less material, compared to higher density paths, so the relative density of material is measured. This technique is called muon transmission imaging, and has been used to infer the density and structure of a variety of large masses, including mine overburden, volcanoes, pyramids, and buildings. In a second, more recently developed technique, the angular deflection of muons is measured by trajectory-tracking detectors placed on two opposing sides of an object. Muons are deflected more strongly by heavy nuclei, since multiple Coulomb scattering angle is approximately proportional to the nuclear charge. Therefore, a map showing regions of large deflection will identify the location of uranium in contrast to lighter nuclei. This technique is termed muon scattering tomography (MST) and has been developed to screen shipping containers for the presence of concealed nuclear material. Both techniques are a good way of non-invasively inspecting objects. A previously unexplored topic was applying MST to imaging large objects. Here we demonstrate extending the MST technique to the task of identifying relatively thick objects inside very thick shielding. We measured cosmic ray muons passing through a physical arrangement of material similar to a nuclear reactor, with thick concrete shielding and a heavy metal core. Newly developed algorithms were used to reconstruct an image of the ``mock reactor core,'' with resolution of approximately 30 cm.

  8. Non-invasive single-cell biomechanical analysis using live-imaging datasets.

    PubMed

    Pearson, Yanthe E; Lund, Amanda W; Lin, Alex W H; Ng, Chee P; Alsuwaidi, Aysha; Azzeh, Sara; Gater, Deborah L; Teo, Jeremy C M

    2016-09-01

    The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization. PMID:27422102

  9. Non-invasive fluorescent imaging of gliosis in transgenic mice for profiling developmental neurotoxicity

    SciTech Connect

    Ho, Gideon; Zhang Chunyan; Zhuo Lang . E-mail: lzhuo@ibn.a-star.edu.sg

    2007-05-15

    Gliosis is a universal response of Brain to almost all types of neural insults, including neurotoxicity, neurodegeneration, viral infection, and stroke. A hallmark of gliotic reaction is the up-regulation of the astrocytic biomarker GFAP (glial fibrillary acidic protein), which often precedes the anatomically apparent damages in Brain. In this study, neonatal transgenic mice at postnatal day (PD) 4 expressing GFP (green fluorescent protein) under the control of a widely used 2.2-kb human GFAP promoter in Brain are treated with two model neurotoxicants, 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH{sub 3}-MPTP), and kainic acid (KA), respectively, to induce gliosis. Here we show that the neurotoxicant-induced acute gliosis can be non-invasively imaged and quantified in Brain of conscious (un-anesthetized) mice in real-time, at 0, 2, 4, 6, and 8 h post-toxicant dosing. Therefore the current methodology could be a useful tool for studying the developmental aspects of neuropathies and neurotoxicity.

  10. Combined Neutron and X-ray Imaging for Non-invasive Investigations of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Mannes, D.; Schmid, F.; Frey, J.; Schmidt-Ott, K.; Lehmann, E.

    The combined utilization of neutron and X-ray imaging for non-invasive investigations of cultural heritage objects is demonstrated on the example of a short sword found a few years ago in lake Zug, Switzerland. After conservation treatments carried out at the Swiss National Museum the sword was examined at the Paul Scherrer Institut (PSI), Villigen (CH), by means of neutron and X-ray computer tomography (CT). The two types of radiation show different interaction behavior with matter, which makes the two methods complementary. While X-rays show a strong correlation of the attenuation with the atomic number, neutrons demonstrate a high sensitivity for some light elements, such as Hydrogen and thus organic material, while some heavy elements (such as Lead) show high penetrability. The examined object is a composite of metal and organic material, which makes it an ideal example to show the complementarity of the two methods as it features materials, which are rather transparent for one type of radiation, while yielding at the same time high contrast for the other. Only the combination of the two methods made an exhaustive examination of the object possible and allowed to rebuild an accurate replica of the sword.

  11. Non-invasive imaging of transgenic GFP expression in neonatal mouse brain

    NASA Astrophysics Data System (ADS)

    Ho, Gideon; Zhang, Chunyan; Zhuo, Lang

    2007-02-01

    Glial fibrillary acidic protein (GFAP) is a traditional biomarker for astrocytes of the central nervous system. In this study, non-invasive in vivo imaging of GFAP-GFP (green fluorescent protein) expression in the brain of neonatal transgenic mice is used as a novel method to investigate the relationship between the expression of the transgene at 0, 2, 4, 6 and 8 hr post-treatment in mice subjected to a single administration of 12 mg/kg of neurotoxin 1-methyl-4(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH 3-MPTP). The GFP elevation was found to peak at 6 hr and lasted to at least 8 hr after the toxin treatment. Histological examination of fixed brain sections using immunohistochemistry (IHC) shows an increase in GFP and GFAP signal from the substantia nigra pars compacta (SNpc) and the hippocampus. The results have provided quantitative fluorescence and qualitative histological evidence for the activation of the GFAP-GFP transgene in astrocytes following neurotoxin 2'-CH 3-MPTP administration, suggesting that the model described here could be used to study neuronal degeneration such as Parkinson's disease and in general, developmental neurotoxicity in live animals.

  12. Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging.

    PubMed

    White, Steven K; Sado, Daniel M; Flett, Andrew S; Moon, James C

    2012-05-01

    The myocardial interstitial or extracellular space exists as a complex and dynamic environment, vital for normal cardiac structure and function. The physiological pathways for normal control of collagen turnover, and the pathological development of fibrosis are beginning to be understood, as are their relationships to cardiac remodelling and adverse outcomes. Emerging non-invasive imaging techniques (echocardiography, cardiovascular magnetic resonance, positron emission tomography) may allow a clearer understanding and measurement of these processes in vivo. Preliminary results are exciting, spanning valvular and congenital heart disease, cardiomyopathy and rarer diseases such as amyloid. In this review, such developments and research directions are explored, including the rapid developments in cardiovascular magnetic resonance T1 mapping and its use with contrast to derive extracellular volume. The authors present a state-of-the-art assessment of the strengths and weaknesses of each modality, and distil a framework to equip the reader with an understanding of the technical issues useful for the interpretation of emerging clinical studies. PMID:22422587

  13. Non-invasive imaging of breast cancer: synthesis and study of novel near-infrared fluorescent estrogen conjugate

    NASA Astrophysics Data System (ADS)

    Jose, Iven; Vishnoi, Gargi; Deodhar, Kodand; Desai, Uday

    2005-04-01

    The use of near-infrared (NIR) spectroscopy to interrogate deeper tissue volume has shown enormous potential for molecular-based non-invasive imaging when coupled with appropriate excitable dyes. As most of the breast cancers are hormone dependent hence determination of the hormonal receptor status gains paramount importance when deciding the treatment regime for the patient. Since proliferations of the breast cancer cells are often driven by estrogen, we focus on to developing a technique to detect estrogen receptor status. As a first step, the objective of this work was to synthesize and characterize one such novel NIR fluorescent (NIRF) conjugate, which could potentially be used to detect estrogen receptors. The conjugate was synthesized by ester formation between 17-b estradiol and a cyanine dye namely: bis-1, 1-(4-sulfobutyl) indotricarbocyanine-5-carboxylic acid, sodium salt. The cyanine dye is a hydrophilic derivative of indocyanine green (ICG). The ester formed was found to have an extra binding ability with the receptor cites as compared to ICG, which was established by the partition coefficient studies. This cyanine dye has a partition coefficient less than 0.005 as compared to that of ICG (>200)[1]. In addition the ester showed enhanced fluorescent quantum yield than ICG. The replacement of the sodium ion in the ester by a larger glucosammonium ion was found to enhance the hydrophilicity and reduce the toxic effect on the cell lines. The excitation and emission peaks for the conjugate were recorded in the NIR region as 750nm and 788nm respectively. The ester developed was tested on the breast cancer cell lines MCF-7 and found non-toxic. The tagging characteristics were pivotal determinants underlying the ability of the fluorescent conjugate in binding the estrogen receptor of the breast cancer cells. This technique offers the potential of non-invasive detection of hormone receptor status in vivo and may help in decreasing the load of unnecessary biopsies

  14. Future Imaging Alternatives: The Clinical Non-invasive Modalities in Diagnosis of Oral Squamous Cell Carcinoma (OSCC)

    PubMed Central

    Omar, Esam

    2015-01-01

    Background : Oral squamous cell carcinoma (OSCC) has a remarkably high incidence worldwide, and a fairly serious prognosis. This is encouraging further research into advanced technologies for non-invasive methods of making early diagnoses, ideally in primary care settings. Method : In this article, the available objective Non-imaging methods for diagnosing OSCC have been reviewed. MEDLINE, EMBASE, the Cochrane Library, and CINAHL have been searched for advanced technologies of non-invasive methods in diagnosis of OSCC, including oral brush biopsy, optical biopsy, saliva-based oral cancer diagnosis and others. Results : Toluidine blue, one of the oldest non-invasive methods for diagnosing OSCC, is unreliable because of its subjectivity, as it is dependent on the experience of the examiner. The diagnosis of Oral carcinoma by Oral brush biopsy with exfoliative cytology based on nano-bio-chip sensor platform shows 97–100% sensitivity and 86% specificity. Another promising non-invasive technique for OSCC diagnosis is saliva-based oral cancer diagnosis, which is an alternative to serum testing. Optical biopsy, which uses the technology of spectroscopy, can be used to detect changes at a sub-cellular level; thus, it provides information that may not be available with conventional histology with reliable sensitivity and specificity. Conclusion : It is clearly evident that screening and early effective detection of cancer and pre-cancerous lesions have the potential to reduce the morbidity and mortality of this disease. The imaging technologies are subjective procedures since all of them require interpretation and significantly affected by the examiner experience. These make further research for advanced objective procedures. Saliva-based oral cancer diagnosis and optical biopsy are promising objective non-invasive methods for diagnosing OSCC. They are easy to perform clinically at primary care set. They show promising pathways for future development of more effective

  15. Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation.

    PubMed

    Sale, Martin V; Mattingley, Jason B; Zalesky, Andrew; Cocchi, Luca

    2015-10-01

    The flexible integration of segregated neural processes is essential to healthy brain function. Advances in neuroimaging techniques have revealed that psychiatric and neurological disorders are characterized by anomalies in the dynamic integration of widespread neural populations. Re-establishing optimal neural activity is an important component of the treatment of such disorders. Non-invasive brain stimulation is emerging as a viable tool to selectively restore both local and widespread neural activity in patients affected by psychiatric and neurological disorders. Importantly, the different forms of non-invasive brain stimulation affect neural activity in distinct ways, which has important ramifications for their clinical efficacy. In this review, we discuss how non-invasive brain stimulation techniques influence widespread neural integration across brain regions. We suggest that the efficacy of such techniques in the treatment of psychiatric and neurological conditions is contingent on applying the appropriate stimulation paradigm to restore specific aspects of altered neural integration. PMID:26409343

  16. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various obstacles are encountered by mammalian spermatozoa during their journey through the female genital tract, and only few or none will reach the site of fertilization. Currently, there are limited technical approaches for non-invasive investigation of spermatozoa migration after insemination. A...

  17. The investigation of Mitogen-Activated Protein kinase Phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging

    PubMed Central

    2010-01-01

    Background Invasiveness and metastasis are the most common characteristics of non small cell lung cancer (NSCLC) and causes of tumour-related morbidity and mortality. Mitogen-activated protein kinases (MAPKs) signalling pathways have been shown to play critical roles in tumorigenesis. However, the precise pathological role(s) of mitogen-activated protein kinase phosphatase-1 (MKP-1) in different cancers has been controversial such that the up-regulation of MKP-1 in different cancers does not always correlate to a better prognosis. In this study, we showed that the induction of MKP-1 lead to a significant retardation of proliferation and metastasis in NSCLC cells. We also established that rosiglitazone (a PPARγ agonist) elevated MKP-1 expression level in NSCLC cells and inhibited tumour metastasis. Methods Both wildtype and dominant negative forms of MKP-1 were constitutively expressed in NSCLC cell line H441GL. The migration and invasion abilities of these cells were examined in vitro. MKP-1 modulating agents such as rosiglitazone and triptolide were used to demonstrate MKP-1's role in tumorigenesis. Bioluminescent imaging was utilized to study tumorigenesis of MKP-1 over-expressing H441GL cells and anti-metastatic effect of rosiglitazone. Results Over-expression of MKP-1 reduced NSCLC cell proliferation rate as well as cell invasive and migratory abilities, evident by the reduced expression levels of MMP-2 and CXCR4. Mice inoculated with MKP-1 over-expressing H441 cells did not develop NSCLC while their control wildtype H441 inoculated littermates developed NSCLC and bone metastasis. Pharmacologically, rosiglitazone, a peroxisome proliferator activated receptor-γ (PPARγ) agonist appeared to induce MKP-1 expression while reduce MMP-2 and CXCR4 expression. H441GL-inoculated mice receiving daily oral rosiglitazone treatment demonstrated a significant inhibition of bone metastasis when compared to mice receiving sham treatment. We found that rosiglitazone treatment

  18. High-Resolution Harmonics Ultrasound Imaging for Non-Invasive Characterization of Wound Healing in a Pre-Clinical Swine Model

    PubMed Central

    Mathew-Steiner, Shomita S.; Dixith, Sriteja; Vanzant, Daniel; Kim, Jayne; Dickerson, Jennifer L.; Datta, Soma; Powell, Heather; Roy, Sashwati; Bergdall, Valerie; Sen, Chandan K.

    2015-01-01

    This work represents the first study employing non-invasive high-resolution harmonic ultrasound imaging to longitudinally characterize skin wound healing. Burn wounds (day 0-42), on the dorsum of a domestic Yorkshire white pig were studied non-invasively using tandem digital planimetry, laser speckle imaging and dual mode (B and Doppler) ultrasound imaging. Wound depth, as measured by B-mode imaging, progressively increased until day 21 and decreased thereafter. Initially, blood flow at the wound edge increased up to day 14 and subsequently regressed to baseline levels by day 21, when the wound was more than 90% closed. Coinciding with regression of blood flow at the wound edge, there was an increase in blood flow in the wound bed. This was observed to regress by day 42. Such changes in wound angiogenesis were corroborated histologically. Gated Doppler imaging quantitated the pulse pressure of the primary feeder artery supplying the wound site. This pulse pressure markedly increased with a bimodal pattern following wounding connecting it to the induction of wound angiogenesis. Finally, ultrasound elastography measured tissue stiffness and visualized growth of new tissue over time. These studies have elegantly captured the physiological sequence of events during the process of wound healing, much of which is anticipated based on certain dynamics in play, to provide the framework for future studies on molecular mechanisms driving these processes. We conclude that the tandem use of non-invasive imaging technologies has the power to provide unprecedented insight into the dynamics of the healing skin tissue. PMID:25799513

  19. High-resolution harmonics ultrasound imaging for non-invasive characterization of wound healing in a pre-clinical swine model.

    PubMed

    Gnyawali, Surya C; Barki, Kasturi G; Mathew-Steiner, Shomita S; Dixith, Sriteja; Vanzant, Daniel; Kim, Jayne; Dickerson, Jennifer L; Datta, Soma; Powell, Heather; Roy, Sashwati; Bergdall, Valerie; Sen, Chandan K

    2015-01-01

    This work represents the first study employing non-invasive high-resolution harmonic ultrasound imaging to longitudinally characterize skin wound healing. Burn wounds (day 0-42), on the dorsum of a domestic Yorkshire white pig were studied non-invasively using tandem digital planimetry, laser speckle imaging and dual mode (B and Doppler) ultrasound imaging. Wound depth, as measured by B-mode imaging, progressively increased until day 21 and decreased thereafter. Initially, blood flow at the wound edge increased up to day 14 and subsequently regressed to baseline levels by day 21, when the wound was more than 90% closed. Coinciding with regression of blood flow at the wound edge, there was an increase in blood flow in the wound bed. This was observed to regress by day 42. Such changes in wound angiogenesis were corroborated histologically. Gated Doppler imaging quantitated the pulse pressure of the primary feeder artery supplying the wound site. This pulse pressure markedly increased with a bimodal pattern following wounding connecting it to the induction of wound angiogenesis. Finally, ultrasound elastography measured tissue stiffness and visualized growth of new tissue over time. These studies have elegantly captured the physiological sequence of events during the process of wound healing, much of which is anticipated based on certain dynamics in play, to provide the framework for future studies on molecular mechanisms driving these processes. We conclude that the tandem use of non-invasive imaging technologies has the power to provide unprecedented insight into the dynamics of the healing skin tissue. PMID:25799513

  20. Non-Invasive Early Detection and Molecular Analysis of Low X-ray Dose Effects in the Lens

    SciTech Connect

    Goldstein, Lee

    2014-07-02

    This is the Final Progress Report for DOE-funded research project DE-PS02-08ER08-01 titled “Non-Invasive Early Detection and Molecular Analysis of Low X-ray Dose Effects in the Lens”. The project focuses on the effects of low-linear energy transfer (LET) radiation on the ocular lens. The lens is an exquisitely radiosensitive tissue with a highly-ordered molecular structure that is amenable to non-invasive optical study from the periphery. These merits point to the lens as an ideal target for laser-based molecular biodosimetry (MBD). Following exposure to different types of ionizing radiations, the lens demonstrates molecular changes (e.g., oxidation, racemization, crosslinkage, truncation, aggregation, etc.) that impact the structure and function of the long-lived proteins in the cytosol of lens fiber cells. The vast majority of proteins in the lens comprise the highly-ordered crystallins. These highly conserved lens proteins are amongst the most concentrated and stable in the body. Once synthesized, the crystallins are retained in the fiber cell cytoplasm for life. Taken together, these properties point to the lens as an ideal system for quantitative in vivo MBD assessment using quasi-elastic light scattering (QLS) analysis. In this project, we deploy a purpose-designed non-invasive infrared laser QLS instrument as a quantitative tool for longitudinal assessment of pre-cataractous molecular changes in the lenses of living mice exposed to low-dose low-LET radiation compared to non-irradiated sham controls. We hypothesize that radiation exposure will induce dose-dependent changes in the molecular structure of matrix proteins in the lens. Mechanistic assays to ascertain radiation-induced molecular changes in the lens focus on protein aggregation and gene/protein expression patterns. We anticipate that this study will contribute to our understanding of early molecular changes associated with radiation-induced tissue pathology. This study also affords potential for

  1. Non-Invasive Imaging for Studying Anti-Angiogenic Therapy Effects

    PubMed Central

    Ehling, Josef; Lammers, Twan; Kiessling, Fabian

    2013-01-01

    Noninvasive imaging plays an emerging role in preclinical and clinical cancer research and has high potential to improve clinical translation of new drugs. This article summarizes and discusses tools and methods to image tumor angiogenesis and monitor anti-angiogenic therapy effects. In this context, micro-computed tomography (μCT) is recommended to visualize and quantify the micro-architecture of functional tumor vessels. Contrast-enhanced ultrasound (US) and magnetic resonance imaging (MRI) are favorable tools to assess functional vascular parameters, such as perfusion and relative blood volume. These functional parameters have been shown to indicate anti-angiogenic therapy response at an early stage, before changes in tumor size appear. For tumor characterization, the imaging of the molecular characteristics of tumor blood vessels, such as receptor expression, might have an even higher diagnostic potential and has been shown to be highly suitable for therapy monitoring as well. In this context, US using targeted microbubbles is currently evaluated in clinical trials as an important tool for the molecular characterization of the angiogenic endothelium. Other modalities, being preferably used for molecular imaging of vessels and their surrounding stroma, are photoacoustic imaging (PAI), near-infrared fluorescence optical imaging (OI), MRI, positron emission tomography (PET) and single photon emission computed tomography (SPECT). The latter two are particularly useful if very high sensitivity is needed, and/or if the molecular target is difficult to access. Carefully considering the pros and cons of different imaging modalities in a multimodal imaging setup enables a comprehensive longitudinal assessment of the (micro)morphology, function and molecular regulation of tumor vessels. PMID:23407722

  2. Evaluation of BEBIG HDR 60Co system for non-invasive image-guided breast brachytherapy

    PubMed Central

    Zehtabian, Mehdi; Sina, Sedigheh; Rivard, Mark J.

    2015-01-01

    Purpose HDR 60Co system has recently been developed and utilized for brachytherapy in many countries outside of the U.S. as an alternative to 192Ir. In addition, the AccuBoost® technique has been demonstrated to be a successful non-invasive image-guided breast brachytherapy treatment option. The goal of this project is to evaluate the possibility of utilizing the BEBIG HDR 60Co system for AccuBoost treatment. These evaluations are performed with Monte Carlo (MC) simulation technique. Material and methods In this project, the MC calculated dose distributions from HDR 60Co for various breast sizes have been compared with the simulated data using an HDR 192Ir source. These calculations were performed using the MCNP5 code. The initial calculations were made with the same applicator dimensions as the ones used with the HDR 192Ir system (referred here after as standard applicator). The activity of the 60Co source was selected such that the dose at the center of the breast would be the same as the values from the 192Ir source. Then, the applicator wall-thickness for the HDR 60Co system was increased to diminish skin dose to levels received when using the HDR 192Ir system. With this geometry, dose values to the chest wall and the skin were evaluated. Finally, the impact of a conical attenuator with the modified applicator for the HDR 60Co system was analyzed. Results These investigations demonstrated that loading the 60Co sources inside the thick-walled applicators created similar dose distributions to those of the 192Ir source in the standard applicators. However, dose to the chest wall and breast skin with 60Co source was reduced using the thick-walled applicators relative to the standard applicators. The applicators with conical attenuator reduced the skin dose for both source types. Conclusions The AccuBoost treatment can be performed with the 60Co source and thick-wall applicators instead of 192Ir with standard applicators. PMID:26816504

  3. Non-Invasive Optical Imaging of Eosinophilia during the Course of an Experimental Allergic Airways Disease Model and in Response to Therapy

    PubMed Central

    Markus, M. Andrea; Dullin, Christian; Mitkovski, Miso; Prieschl-Grassauer, Eva; Epstein, Michelle M.; Alves, Frauke

    2014-01-01

    Background Molecular imaging of lung diseases, including asthma, is limited and either invasive or non-specific. Central to the inflammatory process in asthma is the recruitment of eosinophils to the airways, which release proteases and proinflammatory factors and contribute to airway remodeling. The aim of this study was to establish a new approach to non-invasively assess lung eosinophilia during the course of experimental asthma by combining non-invasive near-infrared fluorescence (NIRF) imaging with the specific detection of Siglec-F, a lectin found predominantly on eosinophils. Methodology/Principal Findings An ovalbumin (OVA)-based model was used to induce asthma-like experimental allergic airway disease (EAAD) in BALB/c mice. By means of a NIRF imager, we demonstrate that 48 h–72 h after intravenous (i.v.) application of a NIRF-labeled anti-Siglec-F antibody, mice with EAAD exhibited up to 2 times higher fluorescence intensities compared to lungs of control mice. Furthermore, average lung intensities of dexamethasone-treated as well as beta-escin-treated mice were 1.8 and 2 times lower than those of untreated, EAAD mice, respectively and correlated with the reduction of cell infiltration in the lung. Average fluorescence intensities measured in explanted lungs confirmed the in vivo findings of significantly higher values in inflamed lungs as compared to controls. Fluorescence microscopy of lung cryosections localized the i.v. applied NIRF-labeled anti-Siglec-F antibody predominantly to eosinophils in the peribronchial areas of EAAD lungs as opposed to control lungs. Conclusion/Significance We show that monitoring the occurrence of eosinophils, a prominent feature of allergic asthma, by means of a NIRF-labeled antibody directed against Siglec-F is a novel and powerful non-invasive optical imaging approach to assess EAAD and therapeutic response in mice over time. PMID:24587190

  4. Profiling neuronal ion channelopathies with non-invasive brain imaging and dynamic causal models: Case studies of single gene mutations

    PubMed Central

    Gilbert, Jessica R.; Symmonds, Mkael; Hanna, Michael G.; Dolan, Raymond J.; Friston, Karl J.; Moran, Rosalyn J.

    2016-01-01

    Clinical assessments of brain function rely upon visual inspection of electroencephalographic waveform abnormalities in tandem with functional magnetic resonance imaging. However, no current technology proffers in vivo assessments of activity at synapses, receptors and ion-channels, the basis of neuronal communication. Using dynamic causal modeling we compared electrophysiological responses from two patients with distinct monogenic ion channelopathies and a large cohort of healthy controls to demonstrate the feasibility of assaying synaptic-level channel communication non-invasively. Synaptic channel abnormality was identified in both patients (100% sensitivity) with assay specificity above 89%, furnishing estimates of neurotransmitter and voltage-gated ion throughput of sodium, calcium, chloride and potassium. This performance indicates a potential novel application as an adjunct for clinical assessments in neurological and psychiatric settings. More broadly, these findings indicate that biophysical models of synaptic channels can be estimated non-invasively, having important implications for advancing human neuroimaging to the level of non-invasive ion channel assays. PMID:26342528

  5. Non-invasive imaging methods applied to neo- and paleontological cephalopod research

    NASA Astrophysics Data System (ADS)

    Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.

    2013-11-01

    Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum-maximum size of objects that can be studied, of the degree of post-processing needed and availability. Main application of the methods is seen in morphometry and volumetry of cephalopod shells in order to improve our understanding of diversity and disparity, functional morphology and biology of extinct and extant cephalopods.

  6. Non-invasive evaluation of arrhythmic risk in dilated cardiomyopathy: From imaging to electrocardiographic measures

    PubMed Central

    Iacoviello, Massimo; Monitillo, Francesco

    2014-01-01

    Malignant ventricular arrhythmias are a major adverse event and worsen the prognosis of patients affected by ischemic and non-ischemic dilated cardiomyopathy. The main parameter currently used to stratify arrhythmic risk and guide decision making towards the implantation of a cardioverter defibrillator is the evaluation of the left ventricular ejection fraction. However, this strategy is characterized by several limitations and consequently additional parameters have been suggested in order to improve arrhythmic risk stratification. The aim of this review is to critically revise the prognostic significance of non-invasive diagnostic tools in order to better stratify the arrhythmic risk prognosis of dilated cardiomyopathy patients. PMID:25068017

  7. Non-invasive imaging to monitor lupus nephritis and neuropsychiatric systemic lupus erythematosus

    PubMed Central

    Thurman, Joshua M.; Serkova, Natalie J.

    2015-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect multiple different organs, including the kidneys and central nervous system (CNS). Conventional radiological examinations in SLE patients include volumetric/ anatomical computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US). The utility of these modalities is limited, however, due to the complexity of the disease. Furthermore, standard CT and MRI contrast agents are contraindicated in patients with renal impairment. Various radiologic methods are currently being developed to improve disease characterization in patients with SLE beyond simple anatomical endpoints. Physiological non-contrast MRI protocols have been developed to assess tissue oxygenation, glomerular filtration, renal perfusion, interstitial diffusion, and inflammation-driven fibrosis in lupus nephritis (LN) patients. For neurological symptoms, vessel size imaging (VSI, an MRI approach utilizing T2-relaxing iron oxide nanoparticles) has shown promise as a diagnostic tool. Molecular imaging probes (mostly for MRI and nuclear medicine imaging) have also been developed for diagnosing SLE with high sensitivity, and for monitoring disease activity. This paper reviews the challenges in evaluating disease activity in patients with LN and neuropsychiatric systemic lupus erythematosus (NPSLE). We describe novel MRI and positron-emission tomography (PET) molecular imaging protocols using targeted iron oxide nanoparticles and radioactive ligands, respectively, for detection of SLE-associated inflammation. PMID:26309728

  8. Visceral anatomy of ocean sunfish (Mola mola (L., 1758), Molidae, Tetraodontiformes) and angler (Lophius piscatorius (L., 1758), Lophiidae, Lophiiformes) investigated by non-invasive imaging techniques.

    PubMed

    Chanet, Bruno; Guintard, Claude; Boisgard, Thierry; Fusellier, Marion; Tavernier, Cédric; Betti, Eric; Madec, Stéphane; Richaudeau, Yvan; Raphaël, Christian; Dettaï, Agnès; Lecointre, Guillaume

    2012-12-01

    The purpose of this work is to examine the gross visceral anatomy of ocean sunfish and angler using non-invasive imaging techniques: computed tomography imaging (CT) and magnetic resonance imaging (MRI). Similarities and differences in the internal organisation of these two species are verified. Both species lack a swimbladder and present a significant asymmetry in the hepatic lobes, an elongated bile duct terminating close to the stomach, a compact thyroid embedded in a blood lacuna, and very reduced brain and spinal cord. These observations are important in regard to the close relationships between Tetraodontiformes and Lophiiformes, established by several molecular works, but not yet confirmed by morpho-anatomical data. However the occurrence of these features has to be examined in other taxa before phylogenetic hypotheses are proposed. PMID:23312298

  9. The impact of oxidative stress on islet transplantation and monitoring the graft survival by non-invasive imaging.

    PubMed

    Ramkumar, K M; Sekar, T V; Bhakkiyalakshmi, E; Foygel, Kira; Rajaguru, P; Berger, F; Paulmurugan, R

    2013-01-01

    and C-peptide levels. These biochemical measurements provide markers at only the late stages of islet rejection. Use of molecular imaging techniques has the potential for real-time non-invasive monitoring of the functional status and viability of transplanted islet grafts in living animals. This review mainly focuses on the current status of islet transplantations, potential preventive strategies used to reduce oxidative stress-mediated toxicity in islet grafts, and use of molecular imaging as a tool to quantitatively evaluate the functional status of the transplanted islets in living animals. PMID:23317098

  10. Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Viola, Kirsten L.; Sbarboro, James; Sureka, Ruchi; de, Mrinmoy; Bicca, Maíra A.; Wang, Jane; Vasavada, Shaleen; Satpathy, Sreyesh; Wu, Summer; Joshi, Hrushikesh; Velasco, Pauline T.; Macrenaris, Keith; Waters, E. Alex; Lu, Chang; Phan, Joseph; Lacor, Pascale; Prasad, Pottumarthi; Dravid, Vinayak P.; Klein, William L.

    2015-01-01

    One way to image the molecular pathology in Alzheimer's disease is by positron emission tomography using probes that target amyloid fibrils. However, these fibrils are not closely linked to the development of the disease. It is now thought that early-stage biomarkers that instigate memory loss are composed of Aβ oligomers. Here, we report a sensitive molecular magnetic resonance imaging contrast probe that is specific for Aβ oligomers. We attach oligomer-specific antibodies onto magnetic nanostructures and show that the complex is stable and binds to Aβ oligomers on cells and brain tissues to give a magnetic resonance imaging signal. When intranasally administered to an Alzheimer's disease mouse model, the probe readily reached hippocampal Aβ oligomers. In isolated samples of human brain tissue, we observed a magnetic resonance imaging signal that distinguished Alzheimer's disease from controls. Such nanostructures that target neurotoxic Aβ oligomers are potentially useful for evaluating the efficacy of new drugs and ultimately for early-stage Alzheimer's disease diagnosis and disease management.

  11. A New Imaging Platform for Visualizing Biological Effects of Non-Invasive Radiofrequency Electric-Field Cancer Hyperthermia

    PubMed Central

    Corr, Stuart J.; Shamsudeen, Sabeel; Vergara, Leoncio A.; Ho, Jason Chak-Shing; Ware, Matthew J.; Keshishian, Vazrik; Yokoi, Kenji; Savage, David J.; Meraz, Ismail M.; Kaluarachchi, Warna; Cisneros, Brandon T.; Raoof, Mustafa; Nguyen, Duy Trac; Zhang, Yingchun; Wilson, Lon J.; Summers, Huw; Rees, Paul; Curley, Steven A.; Serda, Rita E.

    2015-01-01

    Herein, we present a novel imaging platform to study the biological effects of non-invasive radiofrequency (RF) electric field cancer hyperthermia. This system allows for real-time in vivo intravital microscopy (IVM) imaging of radiofrequency-induced biological alterations such as changes in vessel structure and drug perfusion. Our results indicate that the IVM system is able to handle exposure to high-power electric-fields without inducing significant hardware damage or imaging artifacts. Furthermore, short durations of low-power (< 200 W) radiofrequency exposure increased transport and perfusion of fluorescent tracers into the tumors at temperatures below 41°C. Vessel deformations and blood coagulation were seen for tumor temperatures around 44°C. These results highlight the use of our integrated IVM-RF imaging platform as a powerful new tool to visualize the dynamics and interplay between radiofrequency energy and biological tissues, organs, and tumors. PMID:26308617

  12. Application of fluorescence spectroscopy and multispectral imaging for non-invasive estimation of GFP transfection efficiency

    NASA Astrophysics Data System (ADS)

    Tamošiūnas, M.; Jakovels, D.; Lihačovs, A.; Kilikevičius, A.; Baltušnikas, J.; Kadikis, R.; Šatkauskas, S.

    2014-10-01

    Electroporation and ultrasound induced sonoporation has been showed to induce plasmid DNA transfection to the mice tibialis cranialis muscle. It offers new prospects for gene therapy and cancer treatment. However, numerous experimental data are still needed to deliver the plausible explanation of the mechanisms governing DNA electro- or sono-transfection, as well as to provide the updates on transfection protocols for transfection efficiency increase. In this study we aimed to apply non-invasive optical diagnostic methods for the real time evaluation of GFP transfection levels at the reduced costs for experimental apparatus and animal consumption. Our experimental set-up allowed monitoring of GFP levels in live mice tibialis cranialis muscle and provided the parameters for DNA transfection efficiency determination.

  13. Simplified Models of Non-Invasive Fractional Flow Reserve Based on CT Images

    PubMed Central

    Zhang, Jun-Mei; Zhong, Liang; Luo, Tong; Lomarda, Aileen Mae; Huo, Yunlong; Yap, Jonathan; Lim, Soo Teik; Tan, Ru San; Wong, Aaron Sung Lung; Tan, Jack Wei Chieh; Yeo, Khung Keong; Fam, Jiang Ming; Keng, Felix Yung Jih; Wan, Min; Su, Boyang; Zhao, Xiaodan; Allen, John Carson; Kassab, Ghassan S.; Chua, Terrance Siang Jin; Tan, Swee Yaw

    2016-01-01

    Invasive fractional flow reserve (FFR) is the gold standard to assess the functional coronary stenosis. The non-invasive assessment of diameter stenosis (DS) using coronary computed tomography angiography (CTA) has high false positive rate in contrast to FFR. Combining CTA with computational fluid dynamics (CFD), recent studies have shown promising predictions of FFRCT for superior assessment of lesion severity over CTA alone. The CFD models tend to be computationally expensive, however, and require several hours for completing analysis. Here, we introduce simplified models to predict noninvasive FFR at substantially less computational time. In this retrospective pilot study, 21 patients received coronary CTA. Subsequently a total of 32 vessels underwent invasive FFR measurement. For each vessel, FFR based on steady-state and analytical models (FFRSS and FFRAM, respectively) were calculated non-invasively based on CTA and compared with FFR. The accuracy, sensitivity, specificity, positive predictive value and negative predictive value were 90.6% (87.5%), 80.0% (80.0%), 95.5% (90.9%), 88.9% (80.0%) and 91.3% (90.9%) respectively for FFRSS (and FFRAM) on a per-vessel basis, and were 75.0%, 50.0%, 86.4%, 62.5% and 79.2% respectively for DS. The area under the receiver operating characteristic curve (AUC) was 0.963, 0.954 and 0.741 for FFRSS, FFRAM and DS respectively, on a per-patient level. The results suggest that the CTA-derived FFRSS performed well in contrast to invasive FFR and they had better diagnostic performance than DS from CTA in the identification of functionally significant lesions. In contrast to FFRCT, FFRSS requires much less computational time. PMID:27187726

  14. Irradiation, Cisplatin, and 5-Azacytidine Upregulate Cytomegalovirus Promoter in Tumors and Muscles: Implementation of Non-invasive Fluorescence Imaging

    PubMed Central

    Kamensek, Urska; Sersa, Gregor; Vidic, Suzana; Tevz, Gregor; Kranjc, Simona

    2010-01-01

    Purpose The cytomegalovirus (CMV) promoter is one of the most commonly used promoters for expression of transgenes in mammalian cells. The aim of our study was to evaluate the role of methylation and upregulation of the CMV promoter by irradiation and the chemotherapeutic agent cisplatin in vivo using non-invasive fluorescence in vivo imaging. Procedures Murine fibrosarcoma LPB and mammary carcinoma TS/A cells were stably transfected with plasmids encoding CMV and p21 promoter-driven green fluorescent protein (GFP) gene. Solid TS/A tumors were induced by subcutaneous injection of fluorescent tumor cells, while leg muscles were transiently transfected with plasmid encoding GFP under the control of the CMV promoter. Cells, tumors, and legs were treated either by DNA methylation inhibitor 5-azacytidine, irradiation, or cisplatin. GFP expression was determined using a fluorescence microplate reader in vitro and by non-invasive fluorescence imaging in vivo. Results Treatment of cells, tumors, and legs with 5-azacytidine (re)activated the CMV promoter. Furthermore, treatment with irradiation or cisplatin resulted in significant upregulation of GFP expression both in vitro and in vivo. Conclusions Observed alterations in the activity of the CMV promoter limit the usefulness of this widely used promoter as a constitutive promoter. On the other hand, inducibility of CMV promoters can be beneficially used in gene therapy when combined with standard cancer treatment, such as radiotherapy and chemotherapy. PMID:20396957

  15. USPIO-labeled textile materials for non-invasive MR imaging of tissue-engineered vascular grafts.

    PubMed

    Mertens, Marianne E; Koch, Sabine; Schuster, Philipp; Wehner, Jakob; Wu, Zhuojun; Gremse, Felix; Schulz, Volkmar; Rongen, Lisanne; Wolf, Frederic; Frese, Julia; Gesché, Valentine N; van Zandvoort, Marc; Mela, Petra; Jockenhoevel, Stefan; Kiessling, Fabian; Lammers, Twan

    2015-01-01

    Non-invasive imaging might assist in the clinical translation of tissue-engineered vascular grafts (TEVG). It can e.g. be used to facilitate the implantation of TEVG, to longitudinally monitor their localization and function, and to provide non-invasive and quantitative feedback on their remodeling and resorption. We here incorporated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles into polyvinylidene fluoride (PVDF)-based textile fibers, and used them to prepare imageable tissue-engineered vascular grafts (iTEVG). The USPIO-labeled scaffold materials were molded with a mixture of fibrin, fibroblasts and smooth muscle cells, and then endothelialized in a bioreactor under physiological flow conditions. The resulting grafts could be sensitively detected using T1-, T2- and T2*-weighted MRI, both during bioreactor cultivation and upon surgical implantation into sheep, in which they were used as an arteriovenous shunt between the carotid artery and the jugular vein. In vivo, the iTEVG were shown to be biocompatible and functional. Post-mortem ex vivo analyses provided evidence for efficient endothelialization and for endogenous neo-vascularization within the biohybrid vessel wall. These findings show that labeling polymer-based textile materials with MR contrast agents is straightforward and safe, and they indicate that such theranostic tissue engineering approaches might be highly useful for improving the production, performance, personalization and translation of biohybrid vascular grafts. PMID:25465443

  16. Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma

    PubMed Central

    GHITA, MIHAELA A.; CARUNTU, CONSTANTIN; ROSCA, ADRIAN E.; KALESHI, HARILLAQ; CARUNTU, ANA; MORARU, LILIANA; DOCEA, ANCA OANA; ZURAC, SABINA; BODA, DANIEL; NEAGU, MONICA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Superficial basal cell carcinoma (sBCC) is the second most frequent histological type of basal cell carcinoma (BCC), usually requiring a skin biopsy to confirm the diagnosis. It usually appears on the upper trunk and shoulders as erythematous and squamous lesions. Although it has a slow growth and seldom metastasizes, early diagnosis and management are of crucial importance in preventing local invasion and subsequent disfigurement. Dermoscopy is nowadays an indispensable tool for the dermatologist when evaluating skin tumors. Reflectance confocal microscopy (RCM) is a novel imaging technique that allows the non-invasive, in vivo quasi-microscopic morphological and dynamic assessment of superficial skin tumors. Moreover, it offers the advantage of performing infinite repeatable determinations to monitor disease progression and non-surgical treatment for sBCC. Herein, we present three lesions of sBCC evaluated using in vivo and non-invasive imaging techniques, emphasizing the usefulness of combining RCM with dermoscopy for increasing the diagnostic accuracy of sBCC. PMID:27123056

  17. Spectroscopic imaging of blood vessels only near the skin surface for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Fujiwara, Masaru; Sato, Shun; Abeygunawardhana, Pradeep K. W.; Suzuki, Satoru; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2015-07-01

    To realize the non-invasive blood glucose measurement, it will be effective to acquire the spectroscopic imaging of blood vessels only near the skin surface for eliminating other biological-component's disturbances. Our proposed imaging-type 2-dimensional Fourier spectroscopic imaging can limit the measuring depth into focal plane with high light detection sensitivity. Thus, the proposed method will be suitable for measuring only near the skin surface with detecting weak reflected light from inner biomembrane. But reflectance of skin surface is more than 1000 times larger than inner skin's reflectance. Paying attention on Fresnel reflection, fingers what were illuminated by p-polarized beam from Brewster's angle were observed with crossed-Nicol dark field optics. We successfully acquired spectroscopic characteristics of hemoglobin at vein area near the skin surface.

  18. Next-generation Raman tomography instrument for non-invasive in vivo bone imaging.

    PubMed

    Demers, Jennifer-Lynn H; Esmonde-White, Francis W L; Esmonde-White, Karen A; Morris, Michael D; Pogue, Brian W

    2015-03-01

    Combining diffuse optical tomography methods with Raman spectroscopy of tissue provides the ability for in vivo measurements of chemical and molecular characteristics, which have the potential for being useful in diagnostic imaging. In this study a system for Raman tomography was developed and tested. A third generation microCT coupled system was developed to combine 10 detection fibers and 5 excitation fibers with laser line filtering and a Cytop reference signal. Phantom measurements of hydroxyapatite concentrations from 50 to 300 mg/ml had a linear response. Fiber placement and experiment design was optimized using cadaver animals with live animal measurements acquired to validate the systems capabilities. Promising results from the initial animal experiments presented here, pave the way for a study of longitudinal measurements during fracture healing and the scaling of the Raman tomography system towards human measurements. PMID:25798304

  19. Next-generation Raman tomography instrument for non-invasive in vivo bone imaging

    PubMed Central

    Demers, Jennifer-Lynn H.; Esmonde-White, Francis W.L.; Esmonde-White, Karen A.; Morris, Michael D.; Pogue, Brian W.

    2015-01-01

    Combining diffuse optical tomography methods with Raman spectroscopy of tissue provides the ability for in vivo measurements of chemical and molecular characteristics, which have the potential for being useful in diagnostic imaging. In this study a system for Raman tomography was developed and tested. A third generation microCT coupled system was developed to combine 10 detection fibers and 5 excitation fibers with laser line filtering and a Cytop reference signal. Phantom measurements of hydroxyapatite concentrations from 50 to 300 mg/ml had a linear response. Fiber placement and experiment design was optimized using cadaver animals with live animal measurements acquired to validate the systems capabilities. Promising results from the initial animal experiments presented here, pave the way for a study of longitudinal measurements during fracture healing and the scaling of the Raman tomography system towards human measurements. PMID:25798304

  20. Image-assisted non-invasive and dynamic biomechanical analysis of human joints

    NASA Astrophysics Data System (ADS)

    Muhit, Abdullah A.; Pickering, Mark R.; Scarvell, Jennifer M.; Ward, Tom; Smith, Paul N.

    2013-07-01

    Kinematic analysis provides a strong link between musculoskeletal injuries, chronic joint conditions, treatment planning/monitoring and prosthesis design/outcome. However, fast and accurate 3D kinematic analysis still remains a challenge in order to translate this procedure into clinical scenarios. 3D computed tomography (CT) to 2D single-plane fluoroscopy registration is a promising non-invasive technology for biomechanical examination of human joints. Although this technique has proven to be very precise in terms of in-plane translation and rotation measurements, out-of-plane motion estimations have been a difficulty so far. Therefore, to enable this technology into clinical translation, precise and fast estimation of both in-plane and out-of-plane movements is crucial, which is the aim of this paper. Here, a fast and accurate 3D/2D registration technique is proposed to evaluate biomechanical/kinematic analysis. The proposed algorithm utilizes a new multi-modal similarity measure called ‘sum of conditional variances’, a coarse-to-fine Laplacian of Gaussian filtering approach for robust gradient-descent optimization and a novel technique for the analytic calculation of the required gradients for out-of-plane rotations. Computer simulations and in vitro experiments showed that the new approach was robust in terms of the capture range, required significantly less iterations to converge and achieved good registration and kinematic accuracy when compared to existing techniques and to the ‘gold-standard’ Roentgen stereo analysis.

  1. Functional photoacoustic tomography for non-invasive imaging of cerebral blood oxygenation and blood volume in rat brain in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Xie, Xueyi; Ku, Geng; Stoica, George; Wang, Lihong V.

    2005-04-01

    Based on the multi-wavelength laser-based photoacoustic tomography, non-invasive in vivo imaging of functional parameters, including the hemoglobin oxygen saturation and the total concentration of hemoglobin, in small-animal brains was realized. The high sensitivity of this technique is based on the spectroscopic differences between oxy- and deoxy-hemoglobin while its spatial resolution is bandwidth-limited by the photoacoustic signals rather than by the optical diffusion as in optical imaging. The point-by-point distributions of blood oxygenation and blood volume in the cerebral cortical venous vessels, altered by systemic physiological modulations including hyperoxia, normoxia and hypoxia, were visualized successfully through the intact skin and skull. This technique, with its prominent intrinsic advantages, can potentially accelerate the progress in neuroscience and provide important new insights into cerebrovascular physiology and brain function that are of great significance to the neuroscience community.

  2. [Markers for non-invasive molecular genetic diagnosis of oncourological diseases].

    PubMed

    Mikhaĭlenko, D S; Perepechin, D V; Apolikhin, O I; Efremov, G D; Sivkov, A V

    2014-01-01

    Currently, there is accumulated mass of data on the molecular-genetic disorders in prostate cancer (PCa), bladder cancer (BC) and renal cancer (RC). Tumor cells in these diseases are present in the urine sediment; their number is sufficient for molecular genetic analysis that makes possible the development of noninvasive diagnosis of oncourological diseases. A characteristic feature of PCa includes the overexpression of the PCA3 gene; assay kit Progensa™ to quantify such overexpression has been developed; approximately 50% of tumors express a TMPRSS2-ERG chimeric oncogene. Combined analysis of PCA3 and TMPRSS2-ERG allows to detect PCa with a diagnostic accuracy of 84%, which is significantly higher than that of prostate specific antigen test. As a potential markers of BC, there are somatic mutations in FGFR3, PIK3CA, TERT genes in urine sediment, which are found in this disease with a frequency of about 60, 30 and 50%, respectively. The basis of the test system for DNA diagnosis of BC in urine sediment may include a definition of a combination of mutations in these genes with microsatellite instability. Aberrant methylation of the 5'-regulatory regions of tumor suppressor genes, integrated in the panel, also is considered as a tool in the diagnosis of RC (VHL, RASSF1, RARB2, CDH1), PCa (GSTP1, PTGS2, LGALS3) and BC (RASSF1, APC, SFRP2) after standardization of panels of loci investigated, sample preparation methods, bisulfite conversion, and the design of primers and probes. Thus, a test systems for molecular genetic diagnosis of oncourological diseases in urine sediment are currently available or may be developed in the near future. PMID:25807773

  3. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.

    PubMed

    Yeshurun, Lilach; Azhari, Haim

    2016-01-01

    Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p < 0.041). The fact that there is a substantial difference between agar and fat implies that non-invasive all-ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning. PMID:26489364

  4. Non-invasive genetic sampling for molecular sexing and microsatellite genotyping of hyacinth macaw (Anodorhynchus hyacinthinus)

    PubMed Central

    Presti, Flavia T.; Meyer, Janaína; Antas, Paulo T.Z.; Guedes, Neiva M.R.; Miyaki, Cristina Y.

    2013-01-01

    Molted feather sampling is a useful tool for genetic analyses of endangered species, but it is often very laborious due to the low quality and quantity of the DNA obtained. In the present study we show the parts of feathers that resulted in better yield of DNA. In descending order these were: blood clot outside the umbilicus, umbilicus (without blood clot), tip, inner membrane, and small calamus. Compared to DNA extracted from blood samples, DNA extracted from feathers produced microsatellite alleles of poorer quality and had to be processed immediately after extraction. As expected due to the level of DNA degradation, molecular sexing protocols that result in shorter PCR products were more efficient. PMID:23569419

  5. Diagnosing Bladder Outlet Obstruction Using Non-invasive Decorrelation-Based Ultrasound Imaging: A Feasibility Study in Healthy Male Volunteers.

    PubMed

    Arif, Muhammad; Idzenga, Tim; van Mastrigt, Ron; de Korte, Chris L

    2015-12-01

    A feasibility study on the applicability of an ultrasound decorrelation method to urinary flow imaging was carried out in 20 healthy male volunteers, to provide a basis for a non-invasive approach to diagnose bladder outlet obstruction. Each volunteer voided five times in a flow meter in standing position. During each voiding, ultrasound radiofrequency frames were acquired transperineally at different flow rates. The results indicated that the decrease in correlation (decorrelation) of ultrasound radiofrequency signals had no unique relation with flow rate, but decreased distinctively with urinary flow velocity. In most of the healthy volunteers, the decorrelation was small because of the low flow velocity. However, because of the different flow velocities in volunteers, the variation in slope between volunteers was statistically significant. Therefore, it is probably possible to use the decorrelation method to differentiate between healthy persons and patients with obstruction. PMID:26403699

  6. Capsaicin-induced mucus secretion in rat airways assessed in vivo and non-invasively by magnetic resonance imaging

    PubMed Central

    Karmouty-Quintana, H; Cannet, C; Sugar, R; Fozard, J R; Page, C P; Beckmann, N

    2007-01-01

    Background and purpose: An up-regulation of the sensory neural pathways in the lung has been implicated in asthma and chronic obstructive pulmonary disease (COPD) and is thought to contribute to mucus hypersecretion, an essential feature of both diseases. The aim of this study was to assess non-invasively the acute effects (up to 60 min) of sensory nerve stimulation by capsaicin in the lung, using magnetic resonance imaging (MRI). Experimental approach: Male Brown Norway rats were imaged prior to and 10, 30 and 60 min after intra-tracheal challenge with capsaicin (30 μgkg−1) or vehicle (0.5% ethanol solution). In subsequent studies, pre-treatment with the transient receptor potential vanilloid (TRPV)-1 antagonist, capsazepine; the dual neurokinin (NK) 1 and NK2 receptor antagonist, DNK333 and the mast cell stabilizer, di-sodium cromoglycate (DSCG) was used to modulate the effects of capsaicin. Key results: Diffuse fluid signals were detected by MRI in the lung as early as 10 min after capsaicin, remaining constant 30 and 60 min after treatment. Broncho-alveolar lavage (BAL) fluid analysis performed 60 min after capsaicin revealed increased mucin concentration. Capsazepine (3.5 mgkg−1), DNK333 (10 mgkg−1) but not DSCG (10 mgkg−1) administered prophylactically were able to block the effect of capsaicin in the airways. Conclusions and implications: These observations suggest that the fluid signals detected by MRI after capsaicin administration reflected predominantly the release of mucus following activation of sensory nerves. They point to the opportunity of non-invasively assessing with MRI the influence of neuronal mechanisms in animal models of asthma and COPD. PMID:17351665

  7. Non-invasive detection of liver fibrosis: MR imaging features vs. MR elastography

    PubMed Central

    Venkatesh, Sudhakar K.; Yin, Meng; Takahashi, Naoki; Glockner, James F.; Talwalkar, Jayant A.; Ehman, Richard L.

    2016-01-01

    Purpose To compare accuracy of morphological features of liver on MRI and liver stiffness with MR elastography (MRE) for detection of significant liver fibrosis and cirrhosis. Materials and Methods In this retrospective study, we evaluated 62 patients who underwent liver MRI with MRE and histological confirmation of liver fibrosis within 6 months. Two radiologists, blinded to histology results, independently evaluated liver parenchyma texture, surface nodularity, signs of volumetric changes and portal hypertension for presence of significant fibrosis and cirrhosis. Two more readers independently calculated mean liver stiffness values with MRE. Interobserver agreement was evaluated with kappa and intra-class correlation coefficient (ICC) analysis. Diagnostic accuracy was assessed with area under receiver operating characteristic (AUROC) analysis. Comparison of AUROCs of MRI and MRE was performed. Results Liver fibrosis was present in 37 patients. The interobserver agreement was poor to good (kappa= 0.12 - 0.74) for MRI features and excellent for MRE (ICC, 0.97, 95% CI, 0.95-0.98). MRI features had 48.5-87.9%sensitivity, 55.2%-100%specificity and 71.5-81.6% accuracy //for detection of significant fibrosis. MRE performed better with 100% sensitivity, 96.5% specificity and 98.9% accuracy .For the detection of cirrhosis, MRE performed better than MRI features with 88.2% sensitivity (vs.41.2-82.3%), 91.1% specificity (vs. 64.4-95.6%) and 93.5% accuracy (vs. 60.6%-80.5%) Among the MRI features, surface nodularity and overall impression had the best accuracies of 80.3% and 81.6% for detection of significant fibrosis respectively. For cirrhosis, parenchyma texture and overall impression had the best accuracies of 80.5% and 79.7% respectively . Overall, MRE had significantly greater AUROC than MRI features for detection of both significant fibrosis (0.98.9 vs 0.71-0.82, p<0.001) and cirrhosis (0.93.5-vs. 0.61 -0.80.5, p<0.01). Conclusion MRE is superior to MRI for the non-invasive

  8. Non-Invasive Magnetic Resonance Imaging in Rats for Prediction of the Fate of Grafted Kidneys from Cardiac Death Donors

    PubMed Central

    Kaimori, Jun-Ya; Iwai, Satomi; Hatanaka, Masaki; Teratani, Takumi; Obi, Yoshitsugu; Tsuda, Hidetoshi; Isaka, Yoshitaka; Yokawa, Takashi; Kuroda, Kagayaki; Ichimaru, Naotsugu; Okumi, Masayoshi; Yazawa, Koji; Rakugi, Hiromi; Nonomura, Norio; Takahara, Shiro; Kobayashi, Eiji

    2013-01-01

    The main objective of this study was to assess cardiac death (CD) kidney grafts before transplantation to determine whether blood oxygen level-dependent (BOLD) and diffusion MRI techniques can predict damage to these grafts after transplantation. We assessed CD kidney tissue by BOLD and diffusion MRI. We also examined pathological and gene expression changes in CD kidney grafts before and after transplantation. Although there was significantly more red cell congestion (RCC) in the inner stripe of the outer medulla (IS) in both 1 h after cardiac death (CD1h) and CD2h kidneys destined for grafts before transplantation compared with CD0h (p<0.05), CD2h, but not CD1h, kidney grafts had significantly different RCC in the IS 2 days after transplantation (p<0.05). Consistent with these pathological findings, tissue plasminogen activator (tPA) gene expression was increased only in the cortex and medulla of CD2h kidney grafts after transplantation. BOLD MRI successfully and non-invasively imaged and quantified RCC in the IS in both CD1h and CD2h kidney grafts (p<0.05). Diffusion MRI also non-invasively assessed increased the apparent diffusion coefficient in the IS and decreased it in the outer stripe (OS) of CD2h grafts, in concordance with interstitial edema in the IS and tubule cellular edema in the OS. These two types of edema in the outer medulla could explain the prolonged RCC in the IS only of CD2h kidney grafts, creating part of a vicious cycle inhibiting red cells coming out of capillary vessels in the IS. Perfusion with University of Wisconsin solution before MRI measurements did not diminish the difference in tissue damage between CD1h and CD2h kidney grafts. BOLD and diffusion MRI, which are readily available non-invasive tools for evaluating CD kidney grafts tissue damage, can predict prolonged organ damage, and therefore the outcome, of transplanted CD kidney grafts. PMID:23667641

  9. Near-infrared quantum-dot-based non-invasive in vivo imaging of squamous cell carcinoma U14

    NASA Astrophysics Data System (ADS)

    Cao, Yu'an; Yang, Kai; Li, Zhigang; Zhao, Cheng; Shi, Chunmeng; Yang, Jia

    2010-11-01

    Near-infrared (near-ir) quantum dots (QDs) are well known for their excellent optical characteristics. They hold great potential for applications in non-invasive long term observation and tracing of cells in vivo. Here, near-ir QDs with an emission wavelength of 800 nm (QD800) were used to label squamous cell carcinoma cell line U14 (U14/QD800). The effect of tissue depth and animal fur on the imaging sensitivity and stability was evaluated following subcutaneous and intramuscular injection into Kunming mice, employing an in vivo imaging system. We have demonstrated that QD800-based visual in vivo imaging increased the sensitivity of cancer early detection by a factor of 100 compared with traditional detection methods. More importantly, this study proved for the first time that animal fur has a serious impact on the detection sensitivity and duration of QD-based in vivo imaging. In general, the duration and sensitivity of QD800 for in vivo imaging were not greatly affected by a depth less than 1.8 ± 0.21 mm (subcutaneous or intramuscular). This study provides critical reference data for further research on near-ir QD-based early detection and in vivo visual observation of cancer.

  10. Molecular Analysis of Rising Fluoroquinolone Resistance in Belgian Non-Invasive Streptococcus pneumoniae Isolates (1995-2014).

    PubMed

    Ceyssens, Pieter-Jan; Van Bambeke, Françoise; Mattheus, Wesley; Bertrand, Sophie; Fux, Frédéric; Van Bossuyt, Eddie; Damée, Sabrina; Nyssen, Henry-Jean; De Craeye, Stéphane; Verhaegen, Jan; Tulkens, Paul M; Vanhoof, Raymond

    2016-01-01

    We present the results of a longitudinal surveillance study (1995-2014) on fluoroquinolone resistance (FQ-R) among Belgian non-invasive Streptococcus pneumoniae isolates (n = 5,602). For many years, the switch to respiratory fluoroquinolones for the treatment of (a)typical pneumonia had no impact on FQ-R levels. However, since 2011 we observed a significant decrease in susceptibility towards ciprofloxacin, ofloxacin and levofloxacin with peaks of 9.0%, 6.6% and 3.1% resistant isolates, respectively. Resistance to moxifloxacin arised sporadically, and remained <1% throughout the entire study period. We observed classical topoisomerase mutations in gyrA (n = 25), parC (n = 46) and parE (n = 3) in varying combinations, arguing against clonal expansion of FQ-R. The impact of recombination with co-habiting commensal streptococci on FQ-R remains marginal (10.4%). Notably, we observed that a rare combination of DNA Gyrase mutations (GyrA_S81L/GyrB_P454S) suffices for high-level moxifloxacin resistance, contrasting current model. Interestingly, 85/422 pneumococcal strains display MICCIP values which were lowered by at least four dilutions by reserpine, pointing at involvement of efflux pumps in FQ-R. In contrast to susceptible strains, isolates resistant to ciprofloxacin significantly overexpressed the ABC pump PatAB in comparison to reference strain S. pneumoniae ATCC 49619, but this could only be linked to disruptive terminator mutations in a fraction of these. Conversely, no difference in expression of the Major Facilitator PmrA, unaffected by reserpine, was noted between susceptible and resistant S. pneumoniae strains. Finally, we observed that four isolates displayed intermediate to high-level ciprofloxacin resistance without any known molecular resistance mechanism. Focusing future molecular studies on these isolates, which are also commonly found in other studies, might greatly assist in the battle against rising pneumococcal drug resistance. PMID:27227336

  11. Molecular Analysis of Rising Fluoroquinolone Resistance in Belgian Non-Invasive Streptococcus pneumoniae Isolates (1995-2014)

    PubMed Central

    Ceyssens, Pieter-Jan; Van Bambeke, Françoise; Mattheus, Wesley; Bertrand, Sophie; Fux, Frédéric; Van Bossuyt, Eddie; Damée, Sabrina; Nyssen, Henry-Jean; De Craeye, Stéphane; Verhaegen, Jan; Tulkens, Paul M.; Vanhoof, Raymond

    2016-01-01

    We present the results of a longitudinal surveillance study (1995–2014) on fluoroquinolone resistance (FQ-R) among Belgian non-invasive Streptococcus pneumoniae isolates (n = 5,602). For many years, the switch to respiratory fluoroquinolones for the treatment of (a)typical pneumonia had no impact on FQ-R levels. However, since 2011 we observed a significant decrease in susceptibility towards ciprofloxacin, ofloxacin and levofloxacin with peaks of 9.0%, 6.6% and 3.1% resistant isolates, respectively. Resistance to moxifloxacin arised sporadically, and remained <1% throughout the entire study period. We observed classical topoisomerase mutations in gyrA (n = 25), parC (n = 46) and parE (n = 3) in varying combinations, arguing against clonal expansion of FQ-R. The impact of recombination with co-habiting commensal streptococci on FQ-R remains marginal (10.4%). Notably, we observed that a rare combination of DNA Gyrase mutations (GyrA_S81L/GyrB_P454S) suffices for high-level moxifloxacin resistance, contrasting current model. Interestingly, 85/422 pneumococcal strains display MICCIP values which were lowered by at least four dilutions by reserpine, pointing at involvement of efflux pumps in FQ-R. In contrast to susceptible strains, isolates resistant to ciprofloxacin significantly overexpressed the ABC pump PatAB in comparison to reference strain S. pneumoniae ATCC 49619, but this could only be linked to disruptive terminator mutations in a fraction of these. Conversely, no difference in expression of the Major Facilitator PmrA, unaffected by reserpine, was noted between susceptible and resistant S. pneumoniae strains. Finally, we observed that four isolates displayed intermediate to high-level ciprofloxacin resistance without any known molecular resistance mechanism. Focusing future molecular studies on these isolates, which are also commonly found in other studies, might greatly assist in the battle against rising pneumococcal drug resistance. PMID:27227336

  12. Using non-invasive molecular spectroscopic techniques to detect unique aspects of protein Amide functional groups and chemical properties of modeled forage from different sourced-origins

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The non-invasive molecular spectroscopic technique-FT/IR is capable to detect the molecular structure spectral features that are associated with biological, nutritional and biodegradation functions. However, to date, few researches have been conducted to use these non-invasive molecular spectroscopic techniques to study forage internal protein structures associated with biodegradation and biological functions. The objectives of this study were to detect unique aspects and association of protein Amide functional groups in terms of protein Amide I and II spectral profiles and chemical properties in the alfalfa forage (Medicago sativa L.) from different sourced-origins. In this study, alfalfa hay with two different origins was used as modeled forage for molecular structure and chemical property study. In each forage origin, five to seven sources were analyzed. The molecular spectral profiles were determined using FT/IR non-invasive molecular spectroscopy. The parameters of protein spectral profiles included functional groups of Amide I, Amide II and Amide I to II ratio. The results show that the modeled forage Amide I and Amide II were centered at 1653 cm- 1 and 1545 cm- 1, respectively. The Amide I spectral height and area intensities were from 0.02 to 0.03 and 2.67 to 3.36 AI, respectively. The Amide II spectral height and area intensities were from 0.01 to 0.02 and 0.71 to 0.93 AI, respectively. The Amide I to II spectral peak height and area ratios were from 1.86 to 1.88 and 3.68 to 3.79, respectively. Our results show that the non-invasive molecular spectroscopic techniques are capable to detect forage internal protein structure features which are associated with forage chemical properties.

  13. Non-invasive imaging and monitoring of rodent retina using simultaneous dual-band optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Cimalla, Peter; Burkhardt, Anke; Walther, Julia; Hoefer, Aline; Wittig, Dierk; Funk, Richard; Koch, Edmund

    2011-03-01

    Spectral domain dual-band optical coherence tomography for simultaneous imaging of rodent retina in the 0.8 μm and 1.3 μm wavelength region and non-invasive monitoring of the posterior eye microstructure in the field of retinal degeneration research is demonstrated. The system is illuminated by a supercontinuum laser source and allows three-dimensional imaging with high axial resolution better than 3.8 μm and 5.3 μm in tissue at 800 nm and 1250 nm, respectively, for precise retinal thickness measurements. A fan-shaped scanning pattern with the pivot point close to the eye's pupil and a contact lens are applied to obtain optical access to the eye's fundus. First in vivo experiments in a RCS (royal college of surgeons) rat model with gene-related degeneration of the photoreceptor cells show good visibility of the retinal microstructure with sufficient contrast for thickness measurement of individual retinal layers. An enhanced penetration depth at 1250 nm is clearly identifiable revealing sub-choroidal structures that are not visible at 800 nm. Furthermore, additional simultaneous imaging at 1250 nm improves image quality by frequency compounding speckle noise reduction. These results are encouraging for time course studies of the rodent retina concerning its development related to disease progression and treatment response.

  14. 3-D SPECTRAL IP IMAGING: NON-INVASIVE CHARACTERIZATION OF CONTAMINANT PLUMES

    EPA Science Inventory

    The objective of this study is to develop a noninvasive tomographic imaging technique,based on the spectral induced-polarization method, to characterize the in-situ distribution of organic and inorganic groundwater contaminants. Recent advances in tomographic imaging, applied to ...

  15. Multispectral imaging approach for simplified non-invasive in-vivo evaluation of gingival erythema

    NASA Astrophysics Data System (ADS)

    Eckhard, Timo; Valero, Eva M.; Nieves, Juan L.; Gallegos-Rueda, José M.; Mesa, Francisco

    2012-03-01

    Erythema is a common visual sign of gingivitis. In this work, a new and simple low-cost image capture and analysis method for erythema assessment is proposed. The method is based on digital still images of gingivae and applied on a pixel-by-pixel basis. Multispectral images are acquired with a conventional digital camera and multiplexed LED illumination panels at 460nm and 630nm peak wavelength. An automatic work-flow segments teeth from gingiva regions in the images and creates a map of local blood oxygenation levels, which relates to the presence of erythema. The map is computed from the ratio of the two spectral images. An advantage of the proposed approach is that the whole process is easy to manage by dental health care professionals in clinical environment.

  16. New trends in imaging spectroscopy: the non-invasive study of the Scrovegni Chapel stained glass windows

    NASA Astrophysics Data System (ADS)

    Rebollo, E.; Ratti, F.; Cortelazzo, G. M.; Poletto, L.; Bertoncello, R.

    2011-06-01

    Imaging spectroscopy (IS) extends the measurement of one-dimensional UV-VIS-NIR spectroscopy to two-dimensional domain providing material characterization and localization. The technique is gaining importance for the study of cultural heritage but its application is mainly focused on the analysis of pigments in paintings. An IS device has been developed and then applied to the study of chromophores in glassy objects. It consists of a visible imaging spectrograph, mounted on a rotation stage, which captures monochromatic images of the sample within a wavelength range from 420 nm to 850 nm. The system has been used for the characterization and mapping of chromophores of hundreds of coloured glass tesserae of the stained glass windows from the Scrovegni Chapel (Padua, Italy). Two measurement methodologies have been performed: transmission and double-transmission modes. In the first case, lamps used to illuminate the sample and the spectrograph are placed on the opposite side of the window, to acquire directly the signal transmitted from the glass. In the latter case, the lamps and the spectrograph are placed on the same side of the window, that is placed on a white scattering screen. The acquired signal comes from the light of the lamps transmitted through the glass, then diffused back by the opaque white screen and finally transmitted again through the glass. Results are discussed comparing both modalities in terms of signal-to-noise ratio and spectral contrast. Visible spectra acquired allow the clear identification of several chromophores, e.g. Co(II), Cr(III) or Mn(III). The IS device acquires numerous spectra in relatively short time in a non-invasive way. According to the authors knowledge, this is the first time in which visible imaging spectroscopy technique has been applied for the study of stained glass windows. As the results show, it could represent a powerful and innovative tool to map chromophores of this kind of artefact, particularly when integrated

  17. Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading

    PubMed Central

    Lorbergs, Amanda L.

    2012-01-01

    ABSTRACT Purpose: To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. Method: Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. Main Results: While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Conclusions: Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties. PMID:23449969

  18. The utilization of a non-invasive fluorescence imaging system to follow clinical dermatological MAL-PDT

    NASA Astrophysics Data System (ADS)

    Tyrrell, Jessica; Campbell, Sandra; Curnow, Alison

    2009-06-01

    This study employed a commercially available, non-invasive, fluorescence imaging system (Dyaderm, Biocam, Germany), to measure protoporphyrin IX (PpIX) concentration at several different stages during clinical dermatological methyl aminolevulinate photodynamic therapy (MAL-PDT). We validated the system prior to use to ensure that the PpIX changes witnessed were accurate and not due to environmental or user induced artifacts. The system was then employed to acquire color (morphological) and fluorescent (physiological) images simultaneously during dermatological PDT. Clinical data was collected from a range of licensed dermatological conditions (actinic keratosis, Bowen's disease and superficial basal cell carcinoma) during initial and subsequent PDT treatment cycles. The initial clinical data indicated that each type of licensed lesion considered responded in a similar manner following the application of Metvix (Galderma, U.K.) and the subsequent light irradiation (Aktilite, Galderma, U.K.). Images acquired three hours after Metvix application showed a significant increase in PpIX concentration within the lesion (P < 0.05), whilst PpIX levels in the surrounding normal tissue remained unaltered. After irradiation, the PpIX concentration was significantly decreased and returned to a level similar to the initial concentration originally observed. Lesions that received subsequent treatment cycles accumulated significantly less PpIX (P < 0.05) prior to irradiation.

  19. A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring.

    PubMed

    Höpfner, Tim; Bluma, Arne; Rudolph, Guido; Lindner, Patrick; Scheper, Thomas

    2010-02-01

    To observe and control cultivation processes, optical sensors are used increasingly. Important variables for controlling such processes are cell count, cell size distribution and the morphology of cells. Among turbidity measurement methods, imaging procedures are applied for determining these process values. A disadvantage of most previously developed imaging procedures is that they are only available offline, which requires sampling. On the other hand, available imaging inline probes can only deliver a limited number of process values so far. This contribution gives an overview of optical procedures for the inline determination of cell count, cell size distribution and other variables. In particular, by in situ microscopy, an imaging procedure will be described, which allows the determination of direct and non-direct cell variables in real time without sampling. PMID:19396466

  20. In vivo photothermal optical coherence tomography for non-invasive imaging of endogenous absorption agents

    PubMed Central

    Makita, Shuichi; Yasuno, Yoshiaki

    2015-01-01

    In vivo photothermal optical coherence tomography (OCT) is demonstrated for cross-sectional imaging of endogenous absorption agents. In order to compromise the sensitivity, imaging speed, and sample motion immunity, a new photothermal detection scheme and phase processing method are developed. Phase-resolved swept-source OCT and fiber-pigtailed laser diode (providing excitation at 406 nm) are combined to construct a high-sensitivity photothermal OCT system. OCT probe and excitation beam coaxially illuminate and are focused on tissues. The photothermal excitation and detection procedure is designed to obtain high efficiency of photothermal effect measurement. The principle and method of depth-resolved cross-sectional imaging of absorption agents with photothermal OCT has been derived. The phase-resolved thermal expansion detection algorithm without motion artifact enables in vivo detection of photothermal effect. Phantom imaging with a blood phantom and in vivo human skin imaging are conducted. A phantom with guinea-pig blood as absorber has been scanned by the photothermal OCT system to prove the concept of cross-sectional absorption agent imaging. An in vivo human skin measurement is also performed with endogenous absorption agents. PMID:26137374

  1. Continuing education course #1: non-invasive imaging as a problem-solving tool and translational biomarker strategy in toxicologic pathology.

    PubMed

    Peterson, Richard A; Gabrielson, Kathy L; Allan Johnson, G; Pomper, Martin G; Coatney, Robert W; Winkelmann, Christopher T

    2011-01-01

    The continuing education course "Non-Invasive Imaging as a Problem-Solving Tool and Translational Biomarker Strategy in Toxicologic Pathology" provided a thorough overview of commonly used imaging modalities and the logistics required for integration of small animal imaging into toxicologic pathology. Non-invasive imaging (NIN) is gaining acceptance as an important modality in toxicologic pathology. This technology allows nonterminal, time-course evaluation of functional and morphologic endpoints and can be used to translate biomarkers between preclinical animal models and human patients. NIN can support drug development as well as basic research in academic or industrial environments. An initial overview of theoretical principles was followed by focused presentations on magnetic resonance imaging (MRI)/magnetic resonance microscopy (MRM), positron emission tomography (PET)/single proton emission computed tomography (SPECT), ultrasonography (US, primarily focused on echocardiography), optical (bioluminescent) imaging, and computed tomography (CT). The choice of imaging modality will depend on the research question and the needed resolution. PMID:21147931

  2. Tomographic imaging of holographic GPR data for non-invasive structural assessment: the Musmeci bridge investigation

    NASA Astrophysics Data System (ADS)

    Catapano, I.; Crocco, L.; Morabito, A. F.; Soldovieri, F.

    2012-09-01

    The monitoring of the structural integrity of critical transport infrastructures is extremely important in order to prevent accidents, disasters and ensure urban safety. For this reason, several remote and in situ nondestructive electromagnetic technologies have been exploited as diagnostic tools, from which it is possible to obtain information and images of the infrastructure inner status at different spatial and temporal scales. In this framework, this paper deals with holographic ground-penetrating radar tomographic imaging, used as an in situ diagnostic tool to provide high-resolution images of shallowly buried metallic and dielectric objects. As a matter of fact, the need of integrating information gathered at different scales for a global assessment of the structure health makes the (local and high resolution) image obtained by means of this technique particularly valuable. In particular, we consider the Rascan-4/4000 radar system coupled with a tomographic imaging approach specifically tailored to process holographic data, which is adopted to improve the achievable spatial resolution. A proof of concept of the reconstruction capabilities is given against laboratory data. Moreover, on-field examples in the framework of concrete structures monitoring are shown by processing data collected at the Musmeci bridge in Potenza, Italy.

  3. Non-Invasive Magnetic Resonance Imaging of Nanoparticle Migration and Water Velocity Inside Sandstone

    NASA Astrophysics Data System (ADS)

    Phoenix, V. R.; Shukla, M.; Vallatos, A.; Riley, M. S.; Tellam, J. H.; Holmes, W. M.

    2015-12-01

    Manufactured nanoparticles (NPs) are already utilized in a diverse array of applications, including cosmetics, optics, medical technology, textiles and catalysts. Problematically, once in the natural environment, NPs can have a wide range of toxic effects. To protect groundwater from detrimental NPs we must be able to predict nanoparticle movement within the aquifer. The often complex transport behavior of nanoparticles ensures the development of NP transport models is not a simple task. To enhance our understanding of NP transport processes, we utilize novel magnetic resonance imaging (MRI) which enables us to look inside the rock and image the movement of nanoparticles within. For this, we use nanoparticles that are paramagnetic, making them visible to the MRI and enabling us to collect spatially resolved data from which we can develop more robust transport models. In this work, a core of Bentheimer sandstone (3 x 7 cm) was saturated with water and imaged inside a 7Tesla Bruker Biospec MRI. Firstly the porosity of the core was mapped using a MSME MRI sequence. Prior to imaging NP transport, the velocity of water (in absence on nanoparticles) was mapped using an APGSTE-RARE sequence. Nano-magnetite nanoparticles were then pumped into the core and their transport through the core was imaged using a RARE sequence. These images were calibrated using T2 parameter maps to provide fully quantitative maps of nanoparticle concentration at regular time intervals throughout the column (T2 being the spin-spin relaxation time of 1H nuclei). This work demonstrated we are able to spatially resolve porosity, water velocity and nanoparticle movement, inside rock, using a single technique (MRI). Significantly, this provides us with a unique and powerful dataset from which we are now developing new models of nanoparticle transport.

  4. Non-Invasive and Minimally Invasive Imaging Evaluation of CSF Rhinorrhoea – a Retrospective Study with Review of Literature

    PubMed Central

    Vimala, Leena Robinson; Jasper, Anitha; Irodi, Aparna

    2016-01-01

    Summary Background Localization of a cerebrospinal fluid [CSF] fistula is a diagnostic challenge. The choice of an optimal imaging technique is necessary to locate the site of CSF leak which is required for surgical/endoscopic repair of the CSF fistula. Material/Methods Retrospective analysis of imaging was performed in 33 patients who presented with symptoms suggestive of CSF rhinorrhoea over a period of two years. Either a bone defect on high resolution CT [HRCT] or CSF column extending extracranially from the subarachnoid space with or without brain/ meningeal herniation on magnetic resonance [MR] cisternography was considered positive for CSF leak. The MR imaging technique included 1-mm heavily T2-weighted [TR 2000 ms; TE-200 ms] fast spin echo study in coronal and sagittal planes. HRCT sections involved 0.625 to 0.8-mm sections in the coronal plane, with or without axial planes, through the paranasal sinuses, reconstructed in a sharp algorithm and acquired with the patient in prone position. Imaging findings were compared with endoscopic findings, being the gold standard for the assessment of CSF rhinorrhea. Results A total of 25 patients had a combination of HRCT and MR cisternography. The sensitivity, specificity, positive predictive value [PPV] and negative predictive value [NPV] of both MR cisternography and HRCT together were 93%, 100%, 100% and 50% respectively. Two patients underwent only MR cisternography, 5 patients underwent only HRCT and one patient underwent HRCT, MR cisternography and CT cisternography. Though PPV was 100% in the groups with HRCT alone, MR cisternography alone and combined CT cisternography, HRCT and MR cisternography, the results were not statistically significant as the number of patients in those groups was lower. Conclusions Combination of MR cisternography and HRCT appears to be complementary, accurate and non-invasive and should be considered as optimal imaging modality for pre-op imaging in the evaluation of CSF rhinorrhoea

  5. A novel imaging platform for non-invasive screening of abnormal glucose tolerance.

    PubMed

    Jeong, Bosu; Jung, Chang Hee; Lee, Yong-Ho; Shin, Il-Hyung; Kim, Hansuk; Bae, Soo-Jin; Lee, Dae-Sic; Kang, Eun Seok; Kang, Uk; Kim, Jong Jin; Park, Joong-Yeol

    2016-06-01

    Optical measurement of skin auto-fluorescence (SAF), most likely emanating from accumulated advanced glycation end-products (AGEs), has been proposed for the noninvasive diagnosis of glucose intolerance in clinical settings. Here, we developed a novel imaging system with transmission geometry for SAF measurement and compared its diagnostic performance in a Korean population. PMID:27321320

  6. Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non-invasive imaging for detection of cardiovascular disease

    PubMed Central

    Groarke, John D.; Nguyen, Paul L.; Nohria, Anju; Ferrari, Roberto; Cheng, Susan; Moslehi, Javid

    2014-01-01

    Radiation exposure to the thorax is associated with substantial risk for the subsequent development of cardiovascular disease. Thus, the increasing role of radiation therapy in the contemporary treatment of cancer, combined with improving survival rates of patients undergoing this therapy, contributes to a growing population at risk of cardiovascular morbidity and mortality. Associated cardiovascular injuries include pericardial disease, coronary artery disease, valvular disease, conduction disease, cardiomyopathy, and medium and large vessel vasculopathy—any of which can occur at varying intervals following irradiation. Higher radiation doses, younger age at the time of irradiation, longer intervals from the time of radiation, and coexisting cardiovascular risk factors all predispose to these injuries. The true incidence of radiation-related cardiovascular disease remains uncertain due to lack of large multicentre studies with a sufficient duration of cardiovascular follow-up. There are currently no consensus guidelines available to inform the optimal approach to cardiovascular surveillance of recipients of thoracic radiation. Therefore, we review the cardiovascular consequences of radiation therapy and focus on the potential role of non-invasive cardiovascular imaging in the assessment and management of radiation-related cardiovascular disease. In doing so, we highlight characteristics that can be used to identify individuals at risk for developing post-radiation cardiovascular disease and propose an imaging-based algorithm for their clinical surveillance. PMID:23666251

  7. Non-invasive Imaging of the Innate Immune Response in a Zebrafish Larval Model of Streptococcus iniae Infection

    PubMed Central

    Harvie, Elizabeth A.; Huttenlocher, Anna

    2015-01-01

    The aquatic pathogen, Streptococcus iniae, is responsible for over 100 million dollars in annual losses for the aquaculture industry and is capable of causing systemic disease in both fish and humans. A better understanding of S. iniae disease pathogenesis requires an appropriate model system. The genetic tractability and the optical transparency of the early developmental stages of zebrafish allow for the generation and non-invasive imaging of transgenic lines with fluorescently tagged immune cells. The adaptive immune system is not fully functional until several weeks post fertilization, but zebrafish larvae have a conserved vertebrate innate immune system with both neutrophils and macrophages. Thus, the generation of a larval infection model allows the study of the specific contribution of innate immunity in controlling S. iniae infection. The site of microinjection will determine whether an infection is systemic or initially localized. Here, we present our protocols for otic vesicle injection of zebrafish aged 2-3 days post fertilization as well as our techniques for fluorescent confocal imaging of infection. A localized infection site allows observation of initial microbe invasion, recruitment of host cells and dissemination of infection. Our findings using the zebrafish larval model of S. iniae infection indicate that zebrafish can be used to examine the differing contributions of host neutrophils and macrophages in localized bacterial infections. In addition, we describe how photolabeling of immune cells can be used to track individual host cell fate during the course of infection. PMID:25938624

  8. A Non-Invasive Imaging Approach to Understanding Speech Changes following Deep Brain Stimulation in Parkinson’s Disease

    PubMed Central

    Narayana, Shalini; Jacks, Adam; Robin, Donald A.; Poizner, Howard; Zhang, Wei; Franklin, Crystal; Liotti, Mario; Vogel, Deanie; Fox, Peter T.

    2009-01-01

    Purpose To explore the use of non-invasive functional imaging and “virtual” lesion techniques to study the neural mechanisms underlying motor speech disorders in Parkinson’s disease. Here, we report the use of Positron Emission Tomography (PET) and transcranial magnetic stimulation (TMS) to explain exacerbated speech impairment following subthalamic nucleus deep brain stimulation (STN-DBS) in a patient with Parkinson’s disease. Method Perceptual and acoustic speech measures as well as cerebral blood flow (CBF) during speech as measured by PET were obtained with STN-DBS on and off. TMS was applied to a region in the speech motor network found to be abnormally active during DBS. Speech disruption by TMS was compared both perceptually and acoustically with that resulting from DBS on. Results Speech production was perceptually inferior and acoustically less contrastive during left STN stimulation compared to no stimulation. Increased neural activity in left dorsal premotor cortex (PMd) was observed during DBS on. “Virtual” lesioning of this region resulted in speech characterized by decreased speech segment duration, increased pause duration, and decreased intelligibility. Conclusions This case report provides evidence that impaired speech production accompanying STN-DBS may be resulting from unintended activation of PMd. Clinical application of functional imaging and TMS may lead to optimizing the delivery of STN-DBS to improve outcomes for speech production as well as general motor abilities. PMID:19029533

  9. FMN-Coated Fluorescent USPIO for Cell Labeling and Non-Invasive MR Imaging in Tissue Engineering

    PubMed Central

    Mertens, Marianne E.; Frese, Julia; Bölükbas, Deniz Ali; Hrdlicka, Ladislav; Golombek, Susanne; Koch, Sabine; Mela, Petra; Jockenhövel, Stefan; Kiessling, Fabian; Lammers, Twan

    2014-01-01

    Non-invasive magnetic resonance imaging (MRI) is gaining significant attention in the field of tissue engineering, since it can provide valuable information on in vitro production parameters and in vivo performance. It can e.g. be used to monitor the morphology, location and function of the regenerated tissue, the integrity, remodeling and resorption of the scaffold, and the fate of the implanted cells. Since cells are not visible using conventional MR techniques, ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are routinely employed to label and monitor the cells embedded in tissue-engineered implants. We here set out to optimize cell labeling procedures with regard to labeling efficiency, biocompatibility and in vitro validation during bioreactor cultivation, using flavin mononucleotide (FMN)-coated fluorescent USPIO (FLUSPIO). Efficient FLUSPIO uptake is demonstrated in three different cell lines, applying relatively short incubation times and low labeling concentrations. FLUSPIO-labeled cells were successfully employed to visualize collagen scaffolds and tissue-engineered vascular grafts. Besides promoting safe and efficient cell uptake, an exquisite property of the non-polymeric FMN-coating is that it renders the USPIO fluorescent, providing a means for in vitro, in vivo and ex vivo validation via fluorescence microscopy and fluorescence reflectance imaging (FRI). FLUSPIO cell labeling is consequently considered to be a suitable tool for theranostic tissue engineering purposes. PMID:25157279

  10. Non-invasive airway health assessment: Synchrotron imaging reveals effects of rehydrating treatments on mucociliary transit in-vivo

    NASA Astrophysics Data System (ADS)

    Donnelley, Martin; Morgan, Kaye S.; Siu, Karen K. W.; Farrow, Nigel R.; Stahr, Charlene S.; Boucher, Richard C.; Fouras, Andreas; Parsons, David W.

    2014-01-01

    To determine the efficacy of potential cystic fibrosis (CF) therapies we have developed a novel mucociliary transit (MCT) measurement that uses synchrotron phase contrast X-ray imaging (PCXI) to non-invasively measure the transit rate of individual micron-sized particles deposited into the airways of live mice. The aim of this study was to image changes in MCT produced by a rehydrating treatment based on hypertonic saline (HS), a current CF clinical treatment. Live mice received HS containing a long acting epithelial sodium channel blocker (P308); isotonic saline; or no treatment, using a nebuliser integrated within a small-animal ventilator circuit. Marker particle motion was tracked for 20 minutes using PCXI. There were statistically significant increases in MCT in the isotonic and HS-P308 groups. The ability to quantify in vivo changes in MCT may have utility in pre-clinical research studies designed to bring new genetic and pharmaceutical treatments for respiratory diseases into clinical trials.

  11. Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging

    PubMed Central

    Beaton, L.; Mazzaferri, J.; Lalonde, F.; Hidalgo-Aguirre, M.; Descovich, D.; Lesk, M. R.; Costantino, S.

    2015-01-01

    We have developed a novel optical approach to determine pulsatile ocular volume changes using automated segmentation of the choroid, which, together with Dynamic Contour Tonometry (DCT) measurements of intraocular pressure (IOP), allows estimation of the ocular rigidity (OR) coefficient. Spectral Domain Optical Coherence Tomography (OCT) videos were acquired with Enhanced Depth Imaging (EDI) at 7Hz during ~50 seconds at the fundus. A novel segmentation algorithm based on graph search with an edge-probability weighting scheme was developed to measure choroidal thickness (CT) at each frame. Global ocular volume fluctuations were derived from frame-to-frame CT variations using an approximate eye model. Immediately after imaging, IOP and ocular pulse amplitude (OPA) were measured using DCT. OR was calculated from these peak pressure and volume changes. Our automated segmentation algorithm provides the first non-invasive method for determining ocular volume change due to pulsatile choroidal filling, and the estimation of the OR constant. Future applications of this method offer an important avenue to understanding the biomechanical basis of ocular pathophysiology. PMID:26137373

  12. Non-invasive imaging of allogeneic transplanted skin graft by 131I-anti-TLR5 mAb.

    PubMed

    Sun, Hukui; Yang, Guangjie; Liang, Ting; Zhang, Chao; Song, Jing; Han, Jiankui; Hou, Guihua

    2014-12-01

    Although (18)F-fluorodeoxyglucose ((18)F-FDG) uptake can be used for the non-invasive detection and monitoring of allograft rejection by activated leucocytes, this non-specific accumulation is easily impaired by immunosuppressants. Our aim was to evaluate a (131)I-radiolabelled anti-Toll-like receptor 5 (TLR5) mAb for non-invasive in vivo graft visualization and quantification in allogeneic transplantation mice model, compared with the non-specific radiotracer (18)F-FDG under using of immunosuppressant. Labelling, binding, and stability studies were performed. BALB/c mice transplanted with C57BL/6 skin grafts, with or without rapamycin treatment (named as allo-treated group or allo-rejection group), were injected with (131)I-anti-TLR5 mAb, (18)F-FDG, or mouse isotype (131)I-IgG, respectively. Whole-body phosphor-autoradiography and ex vivo biodistribution studies were obtained. Whole-body phosphor-autoradiography showed (131)I-anti-TLR5 mAb uptake into organs that were well perfused with blood at 1 hr and showed clear graft images from 12 hrs onwards. The (131)I-anti-TLR5 mAb had significantly higher graft uptake and target-to-non-target ratio in the allo-treated group, as determined by semi-quantification of phosphor-autoradiography images; these results were consistent with ex vivo biodistribution studies. However, high (18)F-FDG uptake was not observed in the allo-treated group. The highest allograft-skin-to-native-skin ratio (A:N) of (131)I-anti-TLR5 mAb uptake was significantly higher than the ratio for (18)F-FDG (7.68 versus 1.16, respectively). (131)I-anti-TLR5 mAb uptake in the grafts significantly correlated with TLR5 expression in the allograft area. The accumulation of (131)I-IgG was comparable in both groups. We conclude that radiolabelled anti-TLR5 mAb is capable of detecting allograft with high target specificity after treatment with the immunosuppressive drug rapamycin. PMID:25283154

  13. A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo

    NASA Astrophysics Data System (ADS)

    Navarro, Fabrice P.; Berger, Michel; Goutayer, Mathieu; Guillermet, Stéphanie; Josserand, Véronique; Rizo, Philippe; Vinet, Françoise; Texier, Isabelle

    2009-02-01

    Fluorescence imaging (FLI) allows the in vivo monitoring of biological events associated with disease and represents a new promising tool for drug discovery. In particular, it speeds up the development and assessment of new therapies in oncology, helps in diagnosis, and improves surgery by fluorescence-guided tumor resection. This technique is highly sensitive, non-ionizing, easy to use and relatively inexpensive. Nevertheless, the main limitation of FLI lies in the optical properties of biological tissues. Mainly because of haemoglobin and water absorption, only near-infrared (NIR) light is adapted to image tissues in depth. Using a contrasting agent absorbing and emitting in the NIR region is therefore necessary to improve the background signal ratio, and thus the image contrast. Among many commercially available NIR optical contrast agents, only indocyanine green (ICG), has been approved by the United State Food and Drug Administration (FDA) for various medical applications. However, its instability (photo-degradation, thermal-degradation and low aqueous solubility) limits its applications as a fluorescent probe for imaging purposes. In order to improve the effectiveness of ICG, we engineered ICG-doped lipid nanoparticles (LNP). In this communication, we will report the design of these novel fluorescent nanoparticle probes. These low cost nanocarriers have numerous advantages, including their high chemical stability and biocompatibility. The characterization of the optical properties of the nanoparticles entrapping ICG will also be discussed. Finally, the biodistribution in mice of ICG when delivered through nanoparticles in comparison to free ICG in solution is presented. It demonstrates the efficient accumulation of ICG-doped nanoparticles in the tumor site.

  14. A FRET sensor for non-invasive imaging of amyloid formation in vivo.

    PubMed

    Kaminski Schierle, Gabriele S; Bertoncini, Carlos W; Chan, Fiona T S; van der Goot, Annemieke T; Schwedler, Stefanie; Skepper, Jeremy; Schlachter, Simon; van Ham, Tjakko; Esposito, Alessandro; Kumita, Janet R; Nollen, Ellen A A; Dobson, Christopher M; Kaminski, Clemens F

    2011-02-25

    Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for a-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated. PMID:21308945

  15. Non-invasive optical imaging of tumor growth in intact animals

    NASA Astrophysics Data System (ADS)

    Lu, Jinling; Li, Pengcheng; Luo, Qingming; Zhu, Dan

    2003-12-01

    We describe here a system for rapidly visualizing tumor growth in intact rodent mice that is simple, rapid, and eminently accessible and repeatable. We have established new rodent tumor cell line -- SP2/0-GFP cells that stably express high level of green fluorescent protein (GFP) by transfected with a plasmid that encoded GFP using electroporation and selected with G418 for 3 weeks. 1 x 104 - 1x107 SP2/0-GFP mouse melanoma cells were injected s.c. in the ears and legs of 6- to 7-week-old syngeneic male BALB/c mice, and optical images visualized real-time the engrafted tumor growth. The tumor burden was monitored over time by cryogenically cooled charge coupled device (CCD) camera focused through a stereo microscope. The results show that the fluorescence intensity of GFP-expressing tumor is comparably with the tumor growth and/or depress. This in vivo optical imaging based on GFP is sensitive, external, and noninvasive. It affords continuous visual monitoring of malignant growth within intact animals, and may comprise an ideal tool for evaluating antineoplastic therapies.

  16. Comparison of electrical velocimetry and cardiac magnetic resonance imaging for the non-invasive determination of cardiac output.

    PubMed

    Trinkmann, Frederik; Berger, Manuel; Doesch, Christina; Papavassiliu, Theano; Schoenberg, Stefan O; Borggrefe, Martin; Kaden, Jens J; Saur, Joachim

    2016-08-01

    A novel algorithm of impedance cardiography referred to as electrical velocimetry (EV) has been introduced for non-invasive determination of cardiac output (CO). Previous validation studies yielded diverging results and no comparison with the non-invasive gold standard cardiac magnetic resonance imaging (CMR) has been performed. We therefore aimed to prospectively assess the accuracy and reproducibility of EV compared to CMR. 152 consecutive stable patients undergoing CMR were enrolled. EV measurements were taken twice before or after CMR in supine position and averaged over 20 s (AESCULON(®), Osypka Medical, Berlin, Germany). Bland-Altman analysis showed insufficient agreement of EV and CMR with a mean bias of 1.2 ± 1.4 l/min (bias 23 ± 26 %, percentage error 51 %). Reproducibility was high with 0.0 ± 0.3 l/min (bias 0 ± 8 %, percentage error 15 %). Outlier analysis revealed gender, height, CO and stroke volume (SV) by CMR as independent predictors for larger variation. Stratification of COCMR in quintiles demonstrated a good agreement for low values (<4.4 l/min) with bias increasing significantly with quintile as high as 3.1 ± 1.1 l/min (p < 0.001). Reproducibility was not affected (p = 0.71). Subgroup analysis in patients with arrhythmias (p = 0.19), changes in thoracic fluid content (p = 0.51) or left heart failure (p = 0.47) could not detect significant differences in accuracy. EV showed insufficient agreement with CMR and good reproducibility. Gender, height and increasing CO and SV were associated with increased bias while not affecting reproducibility. Therefore, absolute values should not be used interchangeably in clinical routine. EV yet may find its place for clinical application with further investigation on its trending ability pending. PMID:26115774

  17. Non-Invasive Imaging Serum Amyloid A Activation through the NF-κB Signal Pathway upon Gold Nanostructure Exposure.

    PubMed

    Zhang, Yulong; Zhou, Qianqian; Yan, Shaoduo; Zhang, Ning; Zhao, Man; Ma, Cong; He, Chulin; Fu, Qiuxia; Wu, Tao; Wang, Xiaohui; Zhan, Linsheng

    2016-06-01

    With the objective of investigating the acute activation of inflammatory cascades upon exposure to gold nanoparticles (GNPs) as well as detailing the mechanisms, a reporter mouse model that allows for non-invasive and longitudinal imaging of hepatic acute-phase serum amyloid A (SAA) activation is constructed. The model is able to visualize SAA activation at the transcriptional stage, with higher sensitivity than serum protein detection by ELISA. GNPs of various sizes (10-80 nm) and geometries are assessed using the reporter mice with results demonstrating that 50 nm nanospheres (GNS50) possess the highest capacity to induce hepatic SAA activation. Detailed analysis uncovers that resident macrophages in the liver are the main origins of these cytokines and that the exposure to GNS50 significantly induces the M1 macrophage phenotype. Moreover, those M1-polarized macrophages, together with the subsequently secreted pro-inflammatory cytokines, exert effects on hepatocytes and then initiate SAA transcription through the NF-κB signal pathway. The results detail the sequential reactions to GNPs among macrophages, inflammatory mediators, and SAA-synthesizing hepatocytes, which shed light on the acute effects of GNPs on the body. In addition, the established in situ and highly sensitive SAA detection system is expected to have vast applications in evaluating NP-induced acute inflammatory reactions. PMID:27167493

  18. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    NASA Astrophysics Data System (ADS)

    Reischig, Péter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-06-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art.

  19. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings

    PubMed Central

    Anumanchipalli, Gopala K.; Dichter, Benjamin; Chaisanguanthum, Kris S.; Johnson, Keith; Chang, Edward F.

    2016-01-01

    A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial—especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics. PMID:27019106

  20. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.

    PubMed

    Bouchard, Kristofer E; Conant, David F; Anumanchipalli, Gopala K; Dichter, Benjamin; Chaisanguanthum, Kris S; Johnson, Keith; Chang, Edward F

    2016-01-01

    A complete neurobiological understanding of speech motor control requires determination of the relationship between simultaneously recorded neural activity and the kinematics of the lips, jaw, tongue, and larynx. Many speech articulators are internal to the vocal tract, and therefore simultaneously tracking the kinematics of all articulators is nontrivial--especially in the context of human electrophysiology recordings. Here, we describe a noninvasive, multi-modal imaging system to monitor vocal tract kinematics, demonstrate this system in six speakers during production of nine American English vowels, and provide new analysis of such data. Classification and regression analysis revealed considerable variability in the articulator-to-acoustic relationship across speakers. Non-negative matrix factorization extracted basis sets capturing vocal tract shapes allowing for higher vowel classification accuracy than traditional methods. Statistical speech synthesis generated speech from vocal tract measurements, and we demonstrate perceptual identification. We demonstrate the capacity to predict lip kinematics from ventral sensorimotor cortical activity. These results demonstrate a multi-modal system to non-invasively monitor articulator kinematics during speech production, describe novel analytic methods for relating kinematic data to speech acoustics, and provide the first decoding of speech kinematics from electrocorticography. These advances will be critical for understanding the cortical basis of speech production and the creation of vocal prosthetics. PMID:27019106

  1. Non-invasive analysis of root-soil interaction using three complementary imaging approaches

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, Sabina; Tötzke, Christian; Pohlmeier, Andreas; Rudolph-Mohr, Nicole; Kardjilov, Nikolay; Lehmann, Eberhard; Oswald, Sascha E.

    2016-04-01

    Plant roots are known to modify physical, chemical and biological properties of the rhizosphere, thereby, altering conditions for water and nutrient uptake. We aim for capturing the dynamic processes occurring at the soil-root interface in situ. A combination of neutron (NI), magnetic resonance (MRI) and micro-focus X-ray tomography (CT) is applied to monitor the rhizosphere of young plants grown in sandy soil in cylindrical containers (diameter 3 cm). A novel transportable low field MRI system is operated directly at the neutron facility allowing for combined measurements of the very same sample capturing the same hydro-physiological state. The combination of NI, MRI and CT provides three-dimensional access to the root system in respect to structure and hydraulics of the rhizosphere and the transport of dissolved marker substances. The high spatial resolution of neutron imaging and its sensitivity for water can be exploited for the 3D analysis of the root morphology and detailed mapping of three-dimensional water content at the root soil interface and the surrounding soil. MRI has the potential to yield complementary information about the mobility of water, which can be bound in small pores or in the polymeric network of root exudates (mucilage layer). We inject combined tracers (GdDPTA or D2O) to study water fluxes through soil, rhizosphere and roots. Additional CT measurements reveal mechanical impacts of roots on the local microstructure of soil, e.g. showing soil compaction or the formation of cracks. We co-register the NT, MRI and CT data to integrate the complementary information into an aligned 3D data set. This allows, e.g., for co-localization of compacted soil regions or cracks with the specific local soil hydraulics, which is needed to distinguish the contribution of root exudation from mechanical impacts when interpreting altered hydraulic properties of the rhizosphere. Differences between rhizosphere and bulk soil can be detected and interpreted in

  2. Non-invasive functional imaging of Cerebral Blood Volume with Vascular-Space-Occupancy (VASO) MRI

    PubMed Central

    Lu, Hanzhang; Hua, Jun; van Zijl, Peter C.M.

    2013-01-01

    Functional MRI (fMRI) based on changes in cerebral blood volume (CBV) can directly probe vasodilatation and vasoconstriction during brain activation or physiologic challenges, and can provide important insights into the mechanism of Blood-Oxygenation-Level-Dependent (BOLD) signal changes. At present, the most widely used CBV fMRI technique in humans is called Vascular-Space-Occupancy (VASO) MRI and this article provides a technical review of this method. VASO MRI utilizes T1 differences between blood and tissue to distinguish these two compartments within a voxel and uses blood-nulling inversion recovery sequence to yield an MR signal proportional to 1-CBV. As such, vasodilatation will result in a VASO signal decrease and vasoconstriction will have the reverse effect. The VASO technique can be performed dynamically with a temporal resolution comparable to several other fMRI methods such as BOLD or Arterial-Spin-Labeling (ASL), and is particularly powerful when conducted in conjunction with these complementary techniques. The pulse sequence and imaging parameters of VASO can be optimized such that the signal change is predominantly of CBV origin, but careful considerations should be taken to minimize other contributions, such as those from the BOLD effect, CBF, and CSF. Sensitivity of the VASO technique remains to be the primary disadvantage when compared to BOLD, but this technique is increasingly demonstrating utility in neuroscientific and clinical applications. PMID:23355392

  3. Non invasive blood flow assessment in diabetic foot ulcer using laser speckle contrast imaging technique

    NASA Astrophysics Data System (ADS)

    Jayanthy, A. K.; Sujatha, N.; Reddy, M. Ramasubba; Narayanamoorthy, V. B.

    2014-03-01

    Measuring microcirculatory tissue blood perfusion is of interest for both clinicians and researchers in a wide range of applications and can provide essential information of the progress of treatment of certain diseases which causes either an increased or decreased blood flow. Diabetic ulcer associated with alterations in tissue blood flow is the most common cause of non-traumatic lower extremity amputations. A technique which can detect the onset of ulcer and provide essential information on the progress of the treatment of ulcer would be of great help to the clinicians. A noninvasive, noncontact and whole field laser speckle contrast imaging (LSCI) technique has been described in this paper which is used to assess the changes in blood flow in diabetic ulcer affected areas of the foot. The blood flow assessment at the wound site can provide critical information on the efficiency and progress of the treatment given to the diabetic ulcer subjects. The technique may also potentially fulfill a significant need in diabetic foot ulcer screening and management.

  4. Non-invasive Monitoring of Ultrasound-Stimulated Microbubble Radiation Enhancement Using Photoacoustic Imaging

    PubMed Central

    Briggs, Kaleigh; Al Mahrouki, Azza; Nofiele, Joris; El-Falou, Ahmad; Stanisz, Martin; Kim, Hyunjung Christina; Kolios, Michael C.; Czarnota, Gregory J.

    2014-01-01

    Modulation of the tumour microvasculature has been demonstrated to affect the effectiveness of radiation, stimulating the search for anti-angiogenic and vascular-disrupting treatment modalities. Microbubbles stimulated by ultrasound have recently been demonstrated as a radiation enhancer when used with different cancer models including PC3. Here, photoacoustics imaging technique was used to assess this treatment’s effects on haemoglobin levels and oxygen saturation. Correlations between this modality and power doppler assessments of blood flow, and histology measurements of vascular integrity and cell death were also investigated. Xenograft prostate tumours in SCID mice were treated with 0, 2, or 8 Gy radiation combined with microbubbles exposed to 500 kHz ultrasound at a peak negative pressure of 0, 570, and 750 kPa. Tumours were assessed and levels of total haemoglobin, oxygen saturation were measured using photoacoustics before and 24 hours after treatment along with power doppler measured blood flow. Mice were then sacrificed and tumours were assessed for cell death and vascular composition using immunohistochemistry. Treatments using 8 Gy and microbubbles resulted in oxygen saturation decreasing by 28 ± 10% at 570 kPa and 25 ± 29% at 750 kPa, which corresponded to 44 ± 9% and 40 ± 14% respective decreases in blood flow as measured with power doppler. Corresponding histology indicated 31 ± 5% at 570 kPa and 37 ± 5% at 750 kPa in terms of cell death. There were drops in intact vasculature of 15 ± 2% and 20 ± 2%, for treatments at 570 kPa and 750 kPa. In summary, photoacoustic measures of total haemoglobin and oxygen saturation paralleled changes in power doppler indicators of blood flow. Destruction of tumour microvasculature with microbubble-enhanced radiation also led to decreases in blood flow and was associated with increases in cell death and decreases in intact vasculature as detected with CD31 labeling. PMID:24000993

  5. Assessment of disease activity in patients with rheumatoid arthritis using optical spectral transmission measurements, a non-invasive imaging technique

    PubMed Central

    van Onna, M; Ten Cate, D F; Tsoi, K L; Meier, A J L; Jacobs, J W G; Westgeest, A A A; Meijer, P B L; van Beek, M C; Rensen, W H J; Bijlsma, J W J

    2016-01-01

    Objectives In rheumatoid arthritis (RA), treat-to-target strategies require instruments for valid detection of joint inflammation. Therefore, imaging modalities are increasingly used in clinical practice. Optical spectral transmission (OST) measurements are non-invasive and fast and may therefore have benefits over existing imaging modalities. We tested whether OST could measure disease activity validly in patients with RA. Methods In 59 patients with RA and 10 patients with arthralgia, OST, joint counts, Disease Activity Score (DAS) 28 and ultrasonography (US) were performed. Additionally, MRI was performed in patients with DAS28<2.6. We developed and validated within the same cohort an algorithm for detection of joint inflammation by OST with US as reference. Results At the joint level, OST and US performed similarly inproximal interphalangeal-joints (area under the receiver-operating curve (AUC) of 0.79, p<0.0001) andmetacarpophalangeal joints (AUC 0.78, p<0.0001). Performance was less similar in wrists (AUC 0.62, p=0.006). On the patient level, OST correlated moderately with clinical examination (DAS28 r=0.42, p=0.001), and US scores (r=0.64, p<0.0001). Furthermore, in patients with subclinical and low disease activity, there was a correlation between OST and MRI synovitis score (RAMRIS (Rheumatoid Arthritis MRI Scoring) synovitis), r=0.52, p=0.005. Conclusions In this pilot study, OST performed moderately in the detection of joint inflammation in patients with RA. Further studies are needed to determine the diagnostic performance in a new cohort of patients with RA. PMID:26452538

  6. Fast spectroscopic imaging for non-invasive thermometry using the Pr[MOE-DO3A] complex

    NASA Astrophysics Data System (ADS)

    Hentschel, M.; Dreher, W.; Wust, P.; Röll, S.; Leibfritz, D.; Felix, R.

    1999-10-01

    The praseodymium complex of 10-(2-methoxyethyl)-1,4,7,10-tetraaza-cyclo-dodecane-1,4,7-triacetate) was evaluated as a temperature-sensitive contrast agent using the temperature dependence (~0.12 ppm °C-1) of the chemical shift of its methoxy side group signal. Pr[MOE-DO3A] was employed in combination with spectroscopic imaging (SI) methods for the determination of spatially resolved 2D and 3D temperature distributions in phantoms. Conventional SI and fast echo planar SI sequences (EPSI) were implemented on a 4.7 T MR imaging system fulfilling the demands for non-invasive thermometry (NIT) with respect to thermal and temporal resolution, being <1 °C and <20 s total measuring time, respectively. The sequences are based on a fast spin echo SI method taking into account the very short relaxation times of the Pr complex methoxy group (T1 = 28 ms, T2 = 13 ms) and its chemical shift difference (-24 ppm) from water. Calibration curves were measured in a uniformly heated water phantom and 2D SI methods were applied to dynamic heating experiments. The average differences between the temperatures measured via fibreoptic thermometer and those derived from the spectroscopic methods were leq0.2 °C. Furthermore, 3D EPSI experiments with a 16 × 16 × 16 matrix size yielded temperature measurements within 17 s from voxels of size 3 × 3×3 mm3.

  7. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model.

    PubMed

    Burmeister, David M; Ponticorvo, Adrien; Yang, Bruce; Becerra, Sandra C; Choi, Bernard; Durkin, Anthony J; Christy, Robert J

    2015-09-01

    Surgical intervention of second degree burns is often delayed because of the difficulty in visual diagnosis, which increases the risk of scarring and infection. Non-invasive metrics have shown promise in accurately assessing burn depth. Here, we examine the use of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) for predicting burn depth. Contact burn wounds of increasing severity were created on the dorsum of a Yorkshire pig, and wounds were imaged with SFDI/LSI starting immediately after-burn and then daily for the next 4 days. In addition, on each day the burn wounds were biopsied for histological analysis of burn depth, defined by collagen coagulation, apoptosis, and adnexal/vascular necrosis. Histological results show that collagen coagulation progressed from day 0 to day 1, and then stabilized. Results of burn wound imaging using non-invasive techniques were able to produce metrics that correlate to different predictors of burn depth. Collagen coagulation and apoptosis correlated with SFDI scattering coefficient parameter [Formula: see text] and adnexal/vascular necrosis on the day of burn correlated with blood flow determined by LSI. Therefore, incorporation of SFDI scattering coefficient and blood flow determined by LSI may provide an algorithm for accurate assessment of the severity of burn wounds in real time. PMID:26138371

  8. 1NON-INVASIVE RADIOIODINE IMAGING FOR ACCURATE QUANTITATION OF NIS REPORTER GENE EXPRESSION IN TRANSPLANTED HEARTS

    PubMed Central

    Ricci, Davide; Mennander, Ari A; Pham, Linh D; Rao, Vinay P; Miyagi, Naoto; Byrne, Guerard W; Russell, Stephen J; McGregor, Christopher GA

    2008-01-01

    Objectives We studied the concordance of transgene expression in the transplanted heart using bicistronic adenoviral vector coding for a transgene of interest (human carcinoembryonic antigen: hCEA - beta human chorionic gonadotropin: βhCG) and for a marker imaging transgene (human sodium iodide symporter: hNIS). Methods Inbred Lewis rats were used for syngeneic heterotopic cardiac transplantation. Donor rat hearts were perfused ex vivo for 30 minutes prior to transplantation with University of Wisconsin (UW) solution (n=3), with 109 pfu/ml of adenovirus expressing hNIS (Ad-NIS; n=6), hNIS-hCEA (Ad-NIS-CEA; n=6) and hNIS-βhCG (Ad-NIS-CG; n=6). On post-operative day (POD) 5, 10, 15 all animals underwent micro-SPECT/CT imaging of the donor hearts after tail vein injection of 1000 μCi 123I and blood sample collection for hCEA and βhCG quantification. Results Significantly higher image intensity was noted in the hearts perfused with Ad-NIS (1.1±0.2; 0.9±0.07), Ad-NIS-CEA (1.2±0.3; 0.9±0.1) and Ad-NIS-CG (1.1±0.1; 0.9±0.1) compared to UW group (0.44±0.03; 0.47±0.06) on POD 5 and 10 (p<0.05). Serum levels of hCEA and βhCG increased in animals showing high cardiac 123I uptake, but not in those with lower uptake. Above this threshold, image intensities correlated well with serum levels of hCEA and βhCG (R2=0.99 and R2=0.96 respectively). Conclusions These data demonstrate that hNIS is an excellent reporter gene for the transplanted heart. The expression level of hNIS can be accurately and non-invasively monitored by serial radioisotopic single photon emission computed tomography (SPECT) imaging. High concordance has been demonstrated between imaging and soluble marker peptides at the maximum transgene expression on POD 5. PMID:17980613

  9. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review

    PubMed Central

    Fouré, Alexandre

    2016-01-01

    The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376

  10. A Biocompatible In Vivo Ligation Reaction and its Application for Non-Invasive Bioluminescent Imaging of Protease Activity in Living Mice

    PubMed Central

    Godinat, Aurélien; Park, Hyo Min; Miller, Stephen C.; Cheng, Ke; Hanahan, Douglas; Sanman, Laura E.; Bogyo, Matthew; Yu, Allen; Nikitin, Gennady F.; Stahl, Andreas; Dubikovskaya, Elena A.

    2013-01-01

    The discovery of biocompatible reactions has had a tremendous impact on chemical biology, allowing the study of numerous biological processes directly in complex systems. However, despite the fact that multiple biocompatible reactions have been developed in the past decade, very few work well in living mice. Here we report that D-cysteine and 2-cyanobenzothiazoles can selectively react with each other in vivo to generate a luciferin substrate for firefly luciferase. The success of this “split luciferin” ligation reaction has important implications for both in vivo imaging and biocompatible labeling strategies. First, the production of a luciferin substrate can be visualized in a live mouse by bioluminescence imaging (BLI), and furthermore allows interrogation of targeted tissues using a “caged” luciferin approach. We therefore applied this reaction to the real-time non-invasive imaging of apoptosis associated with caspase 3/7. Caspase-dependent release of free D-cysteine from the caspase 3/7 peptide substrate Asp-Glu-Val-Asp-D-Cys (DEVD-(D-Cys)) allowed selective reaction with 6-amino-2-cyanobenzothiazole (NH2-CBT) in vivo to form 6-amino-D-luciferin with subsequent light emission from luciferase. Importantly, this strategy was found to be superior to the commercially-available DEVD-aminoluciferin substrate for imaging of caspase 3/7 activity. Moreover, the split luciferin approach enables the modular construction of bioluminogenic sensors, where either or both reaction partners could be caged to report on multiple biological events. Lastly, the luciferin ligation reaction is three orders of magnitude faster than Staudinger ligation suggesting further applications for both bioluminescence and specific molecular targeting in vivo. PMID:23463944

  11. A double-blind controlled clinical trial assessing the effect of topical gels on striae distensae (stretch marks): a non-invasive imaging, morphological and immunohistochemical study.

    PubMed

    Ud-Din, Sara; McAnelly, Sarah-Louise; Bowring, Alison; Whiteside, Sigrid; Morris, Julie; Chaudhry, Iskander; Bayat, Ardeshir

    2013-09-01

    Striae distensae (SD) are cutaneous lesions often presenting post-pregnancy with atrophy and flattening of the epidermis. SD is poorly understood and treatment remains ill-defined. Our aim was to assess the effect of topical application of silicone gel compared with placebo on SD using non-invasive devices and by immunohistochemical analysis of sequential tissue biopsies in a double-blind controlled trial. Twenty volunteers massaged silicone and placebo gels into separate sides of the abdomen, daily for 6 weeks. Objective non-invasive imaging plus subjective self-assessment of SD were performed on days 0, 21, 42, 90, in addition to tissue biopsies on days 0 and 42. Non-invasive imaging demonstrated an increase in melanin and a decrease in haemoglobin, collagen and pliability over the 6-week period on both sides. Additionally, collagen levels in SD were significantly higher (p value = 0.001) and melanin levels lower (p value = 0.048) with silicone gel compared with placebo. Histological analysis revealed epidermal flattening with a reduction of rete ridges in SD on both sides. Vascular count significantly decreased with placebo gel (p = 0.002). Corroborating the clinical results, melanin levels increased, whilst collagen type 1 and elastin decreased on both sides. Non-invasive techniques showed that the application of silicone gel increased collagen levels and reduced pigmentation compared with placebo. However, both clinical and histological data revealed that melanin increased whilst collagen, elastin and pliability decreased over the 6-week period with both gels. Furthermore, vascularity significantly decreased with placebo gel. These findings provide preliminary evidence of the utility of topical gels in the clinical management of SD. PMID:23579949

  12. PET imaging to non-invasively study immune activation leading to antitumor responses with a 4-1BB agonistic antibody

    PubMed Central

    2013-01-01

    Background Molecular imaging with positron emission tomography (PET) may allow the non-invasive study of the pharmacodynamic effects of agonistic monoclonal antibodies (mAb) to 4-1BB (CD137). 4-1BB is a member of the tumor necrosis factor family expressed on activated T cells and other immune cells, and activating 4-1BB antibodies are being tested for the treatment of patients with advanced cancers. Methods We studied the antitumor activity of 4-1BB mAb therapy using [18 F]-labeled fluoro-2-deoxy-2-D-glucose ([18 F]FDG) microPET scanning in a mouse model of colon cancer. Results of microPET imaging were correlated with morphological changes in tumors, draining lymph nodes as well as cell subset uptake of the metabolic PET tracer in vitro. Results The administration of 4-1BB mAb to Balb/c mice induced reproducible CT26 tumor regressions and improved survival; complete tumor shrinkage was achieved in the majority of mice. There was markedly increased [18 F]FDG signal at the tumor site and draining lymph nodes. In a metabolic probe in vitro uptake assay, there was an 8-fold increase in uptake of [3H]DDG in leukocytes extracted from tumors and draining lymph nodes of mice treated with 4-1BB mAb compared to untreated mice, supporting the in vivo PET data. Conclusion Increased uptake of [18 F]FDG by PET scans visualizes 4-1BB agonistic antibody-induced antitumor immune responses and can be used as a pharmacodynamic readout to guide the development of this class of antibodies in the clinic. PMID:24829750

  13. Molecular imaging in ovarian cancer.

    PubMed

    Reyners, A K L; Broekman, K E; Glaudemans, A W J M; Brouwers, A H; Arts, H J G; van der Zee, A G J; de Vries, E G E; Jalving, M

    2016-04-01

    Ovarian cancer has a high mortality and novel-targeted treatment strategies have not resulted in breakthroughs for this disease. Insight into the molecular characteristics of ovarian tumors may improve diagnosis and selection of patients for treatment with targeted therapies. A potential way to achieve this is by means of molecular imaging. Generic tumor processes, such as glucose metabolism ((18)F-fluorodeoxyglucose) and DNA synthesis ((18)F-fluorodeoxythymidine), can be visualized non-invasively. More specific targets, such as hormone receptors, growth factor receptors, growth factors and targets of immunotherapy, can also be visualized. Molecular imaging can capture data on intra-patient tumor heterogeneity and is of potential value for individualized, target-guided treatment selection. Early changes in molecular characteristics during therapy may serve as early predictors of response. In this review, we describe the current knowledge on molecular imaging in the diagnosis and as an upfront or early predictive biomarker in patients with ovarian cancer. PMID:27141066

  14. Non-Invasive In Vivo Imaging and Quantification of Tumor Growth and Metastasis in Rats Using Cells Expressing Far-Red Fluorescence Protein.

    PubMed

    Christensen, Jon; Vonwil, Daniel; Shastri, V Prasad

    2015-01-01

    Non-invasive in vivo imaging is emerging as an important tool for basic and preclinical research. Near-infrared (NIR) fluorescence dyes and probes have been used for non-invasive optical imaging since in the NIR region absorption and auto fluorescence by body tissue is low, thus permitting for greater penetration depths and high signal to noise ratio. Currently, cell tracking systems rely on labeling cells prior to injection or administering probes targeting the cell population of choice right before imaging. These approaches do not enable imaging of tumor growth, as the cell label is diluted during cell division. In this study we have developed cell lines stably expressing the far-red fluorescence protein E2-Crimson, thus enabling continuous detection and quantification of tumor growth. In a xenograft rat model, we show that E2-Crimson expressing cells can be detected over a 5 week period using optical imaging. Fluorescence intensities correlated with tumor volume and weight and allowed for a reliable and robust quantification of the entire tumor compartment. Using a novel injection regime, the seeding of MDA-MB-231 breast cancer cells in the lungs in a rat model was established and verified. PMID:26186005

  15. Non-invasive measurements of granular flows by magnetic resonance imaging. Technical progress report for the quarter ending December 31, 1992

    SciTech Connect

    Nakagawa, M.; Altobelli, S.A.; Caprihan, A.; Fukushima, E.; Jeong, E.K.

    1993-01-20

    Magnetic Resonance Imaging (MRI) was used to measure granular-flow in a partially filled, steadily rotating, long, horizontal cylinder. This non-invasive technique can yield statistically averaged two-dimensional concentrations and velocity profiles anywhere in the flow of suitable granular materials. First, rigid body motion of a cylinder fill with granular material was studied to confirm the validity of this method. Then, the density variation of the flowing layer where particles collide and dilate, and the depth of the flowing layer and the flow velocity profile were obtained as a function of the cylinder rotation rate.

  16. Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging.

    PubMed

    Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong

    2016-09-15

    Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. PMID:27299677

  17. Non-Invasive Drosophila ECG Recording by Using Eutectic Gallium-Indium Alloy Electrode: A Feasible Tool for Future Research on the Molecular Mechanisms Involved in Cardiac Arrhythmia

    PubMed Central

    Kuo, Po-Hung; Tzeng, Te-Hsuen; Huang, Yi-Chun; Chen, Yu-Hao; Chang, Yi-Chung; Ho, Yi-Lwun; Wu, June-Tai; Lee, Hsiu-Hsian; Lai, Po-Jung; Liu, Kwei-Yan; Cheng, Ya-Chen; Lu, Shey-Shi

    2014-01-01

    Background Drosophila heart tube is a feasible model for cardiac physiological research. However, obtaining Drosophila electrocardiograms (ECGs) is difficult, due to the weak signals and limited contact area to apply electrodes. This paper presents a non-invasive Gallium-Indium (GaIn) based recording system for Drosophila ECG measurement, providing the heart rate and heartbeat features to be observed. This novel, high-signal-quality system prolongs the recording time of insect ECGs, and provides a feasible platform for research on the molecular mechanisms involved in cardiovascular diseases. Methods In this study, two types of electrode, tungsten needle probes and GaIn electrodes, were used respectively to noiselessly conduct invasive and noninvasive ECG recordings of Drosophila. To further analyze electrode properties, circuit models were established and simulated. By using electromagnetic shielded heart signal acquiring system, consisted of analog amplification and digital filtering, the ECG signals of three phenotypes that have different heart functions were recorded without dissection. Results and Discussion The ECG waveforms of different phenotypes of Drosophila recorded invasively and repeatedly with n value (n>5) performed obvious difference in heart rate. In long period ECG recordings, non-invasive method implemented by GaIn electrodes acts relatively stable in both amplitude and period. To analyze GaIn electrode, the correctness of GaIn electrode model established by this paper was validated, presenting accuracy, stability, and reliability. Conclusions Noninvasive ECG recording by GaIn electrodes was presented for recording Drosophila pupae ECG signals within a limited contact area and signal strength. Thus, the observation of ECG changes in normal and SERCA-depleted Drosophila over an extended period is feasible. This method prolongs insect survival time while conserving major ECG features, and provides a platform for electrophysiological signal research

  18. Non-Invasive In Vivo Imaging of Near Infrared-labeled Transferrin in Breast Cancer Cells and Tumors Using Fluorescence Lifetime FRET

    PubMed Central

    Periasamy, Ammasi; Intes, Xavier; Barroso, Margarida

    2013-01-01

    The conjugation of anti-cancer drugs to endogenous ligands has proven to be an effective strategy to enhance their pharmacological selectivity and delivery towards neoplasic tissues. Since cell proliferation has a strong requirement for iron, cancer cells express high levels of transferrin receptors (TfnR), making its ligand, transferrin (Tfn), of great interest as a delivery agent for therapeutics. However, a critical gap exists in the ability to non-invasively determine whether drugs conjugated to Tfn are internalized into target cells in vivo. Due to the enhanced permeability and retention (EPR) effect, it remains unknown whether these Tfn-conjugated drugs are specifically internalized into cancer cells or are localized non-specifically as a result of a generalized accumulation of macromolecules near tumors. By exploiting the dimeric nature of the TfnR that binds two molecules of Tfn in close proximity, we utilized a Förster Resonance Energy Transfer (FRET) based technique that can discriminate bound and internalized Tfn from free, soluble Tfn. In order to non-invasively visualize intracellular amounts of Tfn in tumors through live animal tissues, we developed a novel near infrared (NIR) fluorescence lifetime FRET imaging technique that uses an active wide-field time gated illumination platform. In summary, we report that the NIR fluorescence lifetime FRET technique is capable of non-invasively detecting bound and internalized forms of Tfn in cancer cells and tumors within a live small animal model, and that our results are quantitatively consistent when compared to well-established intensity-based FRET microscopy methods used in in vitro experiments. PMID:24278268

  19. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging

    NASA Astrophysics Data System (ADS)

    Ruan, Shaobo; Qian, Jun; Shen, Shun; Zhu, Jianhua; Jiang, Xinguo; He, Qin; Gao, Huile

    2014-08-01

    Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging. Additionally, several experiments demonstrated that CD possessed good serum stability and low cytotoxicity. In vitro, CD could be taken up into C6 glioma cells in a time- and concentration-dependent manner, with both endosomes and mitochondria involved. In vivo, CD could be used for non-invasive glioma imaging because of its high accumulation in the glioma site of the brain, which was demonstrated by both in vivo imaging and ex vivo tissue imaging. Furthermore, the fluorescent distribution in tissue slices also showed CD distributed in glioma with high intensity, while with a low intensity in normal brain tissue. In conclusion, CD were prepared using a simple method with relatively long excitation and emission wavelengths and could be used for non-invasive glioma imaging.Fluorescent carbon dots (CD) possess impressive potential in bioimaging because of their low photobleaching, absence of optical blinking and good biocompatibility. However, their relatively short excitation/emission wavelengths restrict their application in in vivo imaging. In the present study, a kind of CD was prepared by a simple heat treatment method using glycine as the only precursor. The diameter of CD was lower than 5 nm, and the highest emission wavelength was 500 nm. However, at 600 nm, there was still a relatively strong fluorescent emission, suggesting CD could be used for in vivo imaging

  20. Image quality and diagnostic accuracy of non-invasive coronary imaging with 16 detector slice spiral computed tomography with 188 ms temporal resolution

    PubMed Central

    Kuettner, A; Beck, T; Drosch, T; Kettering, K; Heuschmid, M; Burgstahler, C; Claussen, C D; Kopp, A F; Schroeder, S

    2005-01-01

    Objective: To evaluate image quality and clinical accuracy in detecting coronary artery lesions with a new multidetector spiral computed tomography (MDCT) generation with 16 detector slices and a temporal resolution of 188 ms. Methods: 124 consecutive patients scheduled for invasive coronary angiography (ICA) were additionally studied by MDCT (Sensation 16 Speed 4D). MDCTs were analysed with regard to image quality and presence of coronary artery lesions. The results were compared with ICA. Results: 120 of 124 scans were successful. The image quality of all remaining 120 scans was sufficient (mean (SD) heart rate 64.2 (9.8) beats/min, range 43–95). The mean calcium mass was 167 (223) mg (range 0–1038). Thirteen coronary segments were evaluated for each patient (1560 segments in total). Image quality was graded as follows: excellent, 422 (27.1%) segments; good, 540 (34.6%) segments; moderate, 277 (17.7%) segments; heavily calcified, 215 (13.8%) segments; and blurred, 106 (6.8%) segments. ICA detected 359 lesions with a diameter stenosis > 50% and MDCT detected 304 of 359 (85%). Sensitivity, specificity, and positive and negative predictive values were 85%, 98%, 91%, and 96%, respectively. The correct clinical diagnosis (presence or absence of at least one stenosis > 50%) was obtained for 110 of 120 (92%) patients. Conclusions: MDCT image quality can be further improved with 16 slices and faster gantry rotation time. These results in an unselected population underline the potential of MDCT to become a non-invasive diagnostic alternative, especially for the exclusion of coronary artery disease, in the near future. PMID:15958366

  1. Non-invasive, photonics-based diagnostic, imaging, monitoring, and light delivery techniques for the recognition, quantification and treatment of malignant and chronic inflammatory conditions

    NASA Astrophysics Data System (ADS)

    Davies, N.; Davies-Shaw, D.; Shaw, J. D.

    2007-02-01

    We report firsthand on innovative developments in non-invasive, biophotonic techniques for a wide range of diagnostic, imaging and treatment options, including the recognition and quantification of cancerous, pre-cancerous cells and chronic inflammatory conditions. These techniques have benefited from the ability to target the affected site by both monochromatic light and broad multiple wavelength spectra. The employment of such wavelength or color-specific properties embraces the fluorescence stimulation of various photosensitizing drugs, and the instigation and detection of identified fluorescence signatures attendant upon laser induced fluorescence (LIF) phenomena as transmitted and propagated by precancerous, cancerous and normal tissue. In terms of tumor imaging and therapeutic and treatment options, we have exploited the abilities of various wavelengths to penetrate to different depths, through different types of tissues, and have explored quantifiable absorption and reflection characteristics upon which diagnostic assumptions can be reliably based and formulated. These biophotonic-based diagnostic, sensing and imaging techniques have also benefited from, and have been further enhanced by, the integrated ability to provide various power levels to be employed at various stages in the procedure. Applications are myriad, including non-invasive, non destructive diagnosis of in vivo cell characteristics and functions; light-based tissue analysis; real-time monitoring and mapping of brain function and of tumor growth; real time monitoring of the surgical completeness of tumor removal during laser-imaged/guided brain resection; diagnostic procedures based on fluorescence life-time monitoring, the monitoring of chronic inflammatory conditions (including rheumatoid arthritis), and continuous blood glucose monitoring in the control of diabetes.

  2. Establishment of a Non-Invasive Semi-Quantitative Bioluminescent Imaging Method for Monitoring of an Orthotopic Esophageal Cancer Mouse Model

    PubMed Central

    Kuroda, Shinji; Kubota, Tetsushi; Aoyama, Katsuyuki; Kikuchi, Satoru; Tazawa, Hiroshi; Nishizaki, Masahiko; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2014-01-01

    Orthotopic models of various types of tumors are widely used in anti-tumor therapeutic experiments in preclinical studies. However, there are few ways to appropriately monitor therapeutic effect in orthotopic tumor models, especially for tumors invisible from the outside. In this study we aimed to establish a non-invasive semi-quantitative bioluminescent imaging method of monitoring an orthotopic esophageal cancer mouse model. We confirmed that the TE8 esophageal cancer cell line implanted orthotopically into the abdominal esophagus of nu/nu mice (n = 5) developed not only a main tumor at the implanted site, but also local lymph node metastases and peritoneal disseminations within 6 weeks after inoculation. We established a TE8 cell line that stably expressed the firefly luciferase gene (TE8-Luc). We showed that TE8-Luc cells implanted subcutaneously into nu/nu mice (n = 5) grew over time until 5 weeks after inoculation. Tumor volume was strongly correlated with luminescent intensity emitted from the tumor, which was quantified using the IVIS imaging system. We then showed that TE8-Luc cells implanted orthotopically into the mouse abdominal esophagus (n = 8) also formed a tumor and that the luminescent intensity of such a tumor, as detected by IVIS, increased over time until 7 weeks after inoculation and was therefore likely to reflect tumor progression. We therefore propose that this orthotopic esophageal cancer model, monitored using the non-invasive semi-quantitative IVIS imaging system, will be useful for in vivo therapeutic experiments against esophageal cancer. This experimental setting is expected to contribute to the development of novel therapeutic technologies for esophageal cancer in preclinical studies. PMID:25493557

  3. Using non-invasive magnetic resonance imaging (MRI) to assess the reduction of Cr(VI) using a biofilm-palladium catalyst.

    PubMed

    Beauregard, D A; Yong, P; Macaskie, L E; Johns, M L

    2010-09-01

    Industrial waste streams may contain contaminants that are valuable like Pd(II) and/or toxic and mutagenic like Cr(VI). Using Serratia sp. biofilm the former was biomineralized to produce a supported nanocrystalline Pd(0) catalyst, and this biofilm-Pd heterogeneous catalyst was then used to reduce Cr(VI) to less dangerous Cr(III) at room temperature, with formate as the electron donor. Cr(VI)((aq)) is non-paramagnetic while Cr(III)((aq)) is paramagnetic, which enabled spatial mapping of Cr species concentrations within the reactor cell using non-invasive magnetic resonance (MR) imaging experiments. Spatial reactivity heterogeneities were thus examined. In batch reactions, these could be attributed primarily to heterogeneity of Pd(0) distribution and to the development of gas bubbles within the reactor. In continuous flow reactions, spatial reactivity heterogeneities resulted primarily from heterogeneity of Cr(VI) delivery. PMID:20506297

  4. Non-invasive dual fluorescence in vivo imaging for detection of macrophage infiltration and matrix metalloproteinase (MMP) activity in inflammatory arthritic joints

    PubMed Central

    Cho, Hongsik; Bhatti, Fazal-Ur-Rehman; Yoon, Tae Won; Hasty, Karen A.; Stuart, John M.; Yi, Ae-Kyung

    2016-01-01

    Detection and intervention at an early stage is a critical factor to impede arthritis progress. Here we present a non-invasive method to detect inflammatory changes in joints of arthritic mice. Inflammation was monitored by dual fluorescence optical imaging for near-infrared fluorescent (750F) matrix-metalloproteinase activatable agent and allophycocyanin-conjugated anti-mouse CD11b. Increased intensity of allophycocyanin (indication of macrophage accumulation) and 750F (indication of matrix-metalloproteinase activity) showed a biological relationship with the arthritis severity score and the histopathology score of arthritic joints. Our results demonstrate that this method can be used to detect early stages of arthritis with minimum intervention in small animal models. PMID:27231625

  5. Liver glycogen storage diseases due to phosphorylase system deficiencies: diagnosis thanks to non invasive blood enzymatic and molecular studies.

    PubMed

    Davit-Spraul, Anne; Piraud, Monique; Dobbelaere, Dries; Valayannopoulos, Vassili; Labrune, Philippe; Habes, Dalila; Bernard, Olivier; Jacquemin, Emmanuel; Baussan, Christiane

    2011-01-01

    Glycogen storage disease (GSD) due to a deficient hepatic phosphorylase system defines a genetically heterogeneous group of disorders that mainly manifests in children. We investigated 45 unrelated children in whom a liver GSD VI or IX was suspected on the basis of clinical symptoms including hepatomegaly, increased serum transaminases, postprandial lactatemia and/or mild fasting hypoglycemia. Liver phosphorylase and phosphorylase b kinase activities studied in peripheral blood cells allowed to suspect diagnosis in 37 cases but was uninformative in 5. Sequencing of liver phosphorylase genes was useful to establish an accurate diagnosis. Causative mutations were found either in the PYGL (11 patients), PHKA2 (26 patients), PHKG2 (three patients) or in the PHKB (three patients) genes. Eleven novel disease causative mutations, five missense (p.N188K, p.D228Y, p.P382L, p.R491H, p.L500R) and six truncating mutations (c.501_502ins361pb, c.528+2T>C, c.856-29_c.1518+614del, c.1620+1G>C, p.E703del and c.2313-1G>T) were identified in the PYGL gene. Seventeen novel disease causative mutations, ten missense (p.A42P, p.Q95R, p.G131D, p.G131V, p.Q134R, p.G187R, p.G300V, p.G300A, p.C326Y, p.W820G) and seven truncating (c.537+5G>A, p.G396DfsX28, p.Q404X, p.N653X, p.L855PfsX87, and two large deletions) were identified in the PHKA2 gene. Four novel truncating mutations (p.R168X, p.Q287X, p.I268PfsX12 and c.272-1G>C) were identified in the PHKG2 gene and three (c.573_577del, p.R364X, c.2427+3A>G) in the PHKB gene. Patients with PHKG2 mutations evolved towards cirrhosis. Molecular analysis of GSD VI or IX genes allows to confirm diagnosis suspected on the basis of enzymatic analysis and to establish diagnosis and avoid liver biopsy when enzymatic studies are not informative in blood cells. PMID:21646031

  6. Targeted Non-invasive Imaging of EGFR-expressing Orthotopic Pancreatic Cancer using Multispectral Optoacoustic Tomography (MSOT)

    PubMed Central

    Hudson, Shanice V.; Huang, Justin S.; Yin, Wenyuan; Albeituni, Sabrin; Rush, Jamie; Khanal, Anil; Yan, Jun; Ceresa, Brian P.; Frieboes, Hermann B.; McNally, Lacey R.

    2014-01-01

    Detection of orthotopic xenograft tumors is difficult due to poor spatial resolution and reduced image fidelity with traditional optical imaging modalities. In particular, light scattering and attenuation in tissue at depths beyond subcutaneous implantation hinder adequate visualization. We evaluate the use of multispectral optoacoustic tomography (MSOT) to detect upregulated epidermal growth factor (EGF) receptor in orthotopic pancreatic xenografts using a near-infrared (NIR) EGF-conjugated CF-750 fluorescent probe. MSOT is based on the photoacoustic effect and thus not limited by photon scattering, resulting in high-resolution tomographic images. Pancreatic tumor-bearing mice with luciferase-transduced S2VP10L tumors were intravenously injected with EGF-750 probe prior to MSOT imaging. We characterized probe specificity and bioactivity via immunoblotting, immunocytochemistry, and flow cytometric analysis. In vitro data along with optical bioluminescence/fluorescence imaging were used to validate acquired MSOT in vivo images of probe biodistribution. Indocyanine green dye was used as a non-specific control to define specificity of EGF-probe accumulation. Maximum accumulation occurred at six hours post-injection, demonstrating specific intra-tumoral probe uptake and minimal liver and kidney off-target accumulation. Optical bioluminescence and fluorescence imaging confirmed tumor-specific probe accumulation consistent with MSOT images. These studies demonstrate the utility of MSOT to obtain volumetric images of ligand probe biodistribution in vivo to detect orthotopic pancreatic tumor lesions through active targeting of EGF receptor. PMID:25217521

  7. Non-invasive Parenchymal, Vascular and Metabolic High-frequency Ultrasound and Photoacoustic Rat Deep Brain Imaging

    PubMed Central

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-01-01

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  8. Non-invasive parenchymal, vascular and metabolic high-frequency ultrasound and photoacoustic rat deep brain imaging.

    PubMed

    Giustetto, Pierangela; Filippi, Miriam; Castano, Mauro; Terreno, Enzo

    2015-01-01

    Photoacoustics and high frequency ultrasound stands out as powerful tools for neurobiological applications enabling high-resolution imaging on the central nervous system of small animals. However, transdermal and transcranial neuroimaging is frequently affected by low sensitivity, image aberrations and loss of space resolution, requiring scalp or even skull removal before imaging. To overcome this challenge, a new protocol is presented to gain significant insights in brain hemodynamics by photoacoustic and high-frequency ultrasounds imaging with the animal skin and skull intact. The procedure relies on the passage of ultrasound (US) waves and laser directly through the fissures that are naturally present on the animal cranium. By juxtaposing the imaging transducer device exactly in correspondence to these selected areas where the skull has a reduced thickness or is totally absent, one can acquire high quality deep images and explore internal brain regions that are usually difficult to anatomically or functionally describe without an invasive approach. By applying this experimental procedure, significant data can be collected in both sonic and optoacoustic modalities, enabling to image the parenchymal and the vascular anatomy far below the head surface. Deep brain features such as parenchymal convolutions and fissures separating the lobes were clearly visible. Moreover, the configuration of large and small blood vessels was imaged at several millimeters of depth, and precise information were collected about blood fluxes, vascular stream velocities and the hemoglobin chemical state. This repertoire of data could be crucial in several research contests, ranging from brain vascular disease studies to experimental techniques involving the systemic administration of exogenous chemicals or other objects endowed with imaging contrast enhancement properties. In conclusion, thanks to the presented protocol, the US and PA techniques become an attractive noninvasive

  9. Design and Experimental Evaluation of a Non-Invasive Microwave Head Imaging System for Intracranial Haemorrhage Detection.

    PubMed

    Mobashsher, A T; Bialkowski, K S; Abbosh, A M; Crozier, S

    2016-01-01

    An intracranial haemorrhage is a life threatening medical emergency, yet only a fraction of the patients receive treatment in time, primarily due to the transport delay in accessing diagnostic equipment in hospitals such as Magnetic Resonance Imaging or Computed Tomography. A mono-static microwave head imaging system that can be carried in an ambulance for the detection and localization of intracranial haemorrhage is presented. The system employs a single ultra-wideband antenna as sensing element to transmit signals in low microwave frequencies towards the head and capture backscattered signals. The compact and low-profile antenna provides stable directional radiation patterns over the operating bandwidth in both near and far-fields. Numerical analysis of the head imaging system with a realistic head model in various situations is performed to realize the scattering mechanism of haemorrhage. A modified delay-and-summation back-projection algorithm, which includes effects of surface waves and a distance-dependent effective permittivity model, is proposed for signal and image post-processing. The efficacy of the automated head imaging system is evaluated using a 3D-printed human head phantom with frequency dispersive dielectric properties including emulated haemorrhages with different sizes located at different depths. Scattered signals are acquired with a compact transceiver in a mono-static circular scanning profile. The reconstructed images demonstrate that the system is capable of detecting haemorrhages as small as 1 cm3. While quantitative analyses reveal that the quality of images gradually degrades with the increase of the haemorrhage's depth due to the reduction of signal penetration inside the head; rigorous statistical analysis suggests that substantial improvement in image quality can be obtained by increasing the data samples collected around the head. The proposed head imaging prototype along with the processing algorithm demonstrates its feasibility for

  10. Design and Experimental Evaluation of a Non-Invasive Microwave Head Imaging System for Intracranial Haemorrhage Detection

    PubMed Central

    Mobashsher, A. T.; Bialkowski, K. S.; Abbosh, A. M.; Crozier, S.

    2016-01-01

    An intracranial haemorrhage is a life threatening medical emergency, yet only a fraction of the patients receive treatment in time, primarily due to the transport delay in accessing diagnostic equipment in hospitals such as Magnetic Resonance Imaging or Computed Tomography. A mono-static microwave head imaging system that can be carried in an ambulance for the detection and localization of intracranial haemorrhage is presented. The system employs a single ultra-wideband antenna as sensing element to transmit signals in low microwave frequencies towards the head and capture backscattered signals. The compact and low-profile antenna provides stable directional radiation patterns over the operating bandwidth in both near and far-fields. Numerical analysis of the head imaging system with a realistic head model in various situations is performed to realize the scattering mechanism of haemorrhage. A modified delay-and-summation back-projection algorithm, which includes effects of surface waves and a distance-dependent effective permittivity model, is proposed for signal and image post-processing. The efficacy of the automated head imaging system is evaluated using a 3D-printed human head phantom with frequency dispersive dielectric properties including emulated haemorrhages with different sizes located at different depths. Scattered signals are acquired with a compact transceiver in a mono-static circular scanning profile. The reconstructed images demonstrate that the system is capable of detecting haemorrhages as small as 1 cm3. While quantitative analyses reveal that the quality of images gradually degrades with the increase of the haemorrhage’s depth due to the reduction of signal penetration inside the head; rigorous statistical analysis suggests that substantial improvement in image quality can be obtained by increasing the data samples collected around the head. The proposed head imaging prototype along with the processing algorithm demonstrates its feasibility

  11. Non-invasive identification of traditional red lake pigments in fourteenth to sixteenth centuries paintings through the use of hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Vitorino, T.; Casini, A.; Cucci, C.; Melo, M. J.; Picollo, M.; Stefani, L.

    2015-11-01

    The present paper, which focuses on the identification of red lake pigments, in particular madder, brazilwood, and cochineal, addresses the advantages and drawbacks of using reflectance hyperspectral imaging in the visible and near-infrared ranges as a non-invasive method of discrimination between different red organic pigments in cultural heritage objects. Based on reconstructions of paints used in the period extending from the fourteenth to the sixteenth century, prepared with as far as possible historical accuracy, the analyses by means of visible/near-infrared reflectance hyperspectral imaging were carried out with the objective of understanding the most significant differences between these vegetal- and animal-based red lake pigments. The paper discusses the results that were obtained on four original Italian and North European paintings and compared with those from the paint reconstructions, in order to demonstrate how the hyperspectral imaging technique can be usefully and effectively applied to the identification and mapping of red lake pigments in painted surfaces of interest in the conservation field.

  12. Combination of Autofluorescence imaging and salivary protoporphyrin in Oral precancerous and cancerous lesions: Non-invasive tools

    PubMed Central

    Jacobs, Reinhilde

    2015-01-01

    Background Normal and cancerous tissues have distinct auto-fluorescence properties because of differences in their biophysical and biochemical agents. Scientific evidences related to diagnostic fluorescence imaging for detection of oral precancerous and cancerous lesions are very limited. Objectives The aim of this study was to find out potential relationships between serum, salivary and tissue protoporphyrin IX ( PX) levels in subjects with or without oral precancerous and cancerous lesions. Also , to find out diagnostic value of fluorescence imaging (VELscope® system , LED Dental Inc., White Rock, B.C.) and salivary protoporphyrin IX (PX) in oral precancerous and cancerous lesions. Furthermore this study attempts to find out diagnostic value of the combination of approaches of fluorescence imaging and salivary protoporphyrin for detection of oral precancerous and cancerous lesions. Material and Methods The study sample comprised 3 test groups, with biopsy confirmed precancerous (leukoplakia and lichen planus) and cancerous lesions (squamous cell carcinoma) and one control group of 25 healthy individuals. To find out sensitivity and specificity, another 100 patients presenting for routine dental care were selected and clinical examinations were followed by fluorescence imaging and normal photography, which were finally confirmed by biopsy. The clinical and histopathogical examinations were done in conjunction with photography of the oral cavity using digital camera and fluorescence imaging. Serum, tissue and salivary protoporphyrin (PX) levels were measured. Results Using fluorescence imaging, oral cancerous and precancerous lesions showed deep purple to deep brown and dark green colour respectively, while normal tissues showed pale green colour in contrast. The PX levels in serum, salivary and tissues were significantly higher in precancerous and cancerous lesions as compared to normal healthy tissues. Salivary and serum PX levels were highly correlated in all

  13. Non-invasive magnetic resonance imaging diagnosis of presumed intermedioradial carpal bone avascular necrosis in the dog.

    PubMed

    Pownder, Sarah L; Cooley, Stacy; Hayashi, Kei; Bezuidenhout, Abraham; Koff, Matthew F; Potter, Hollis G

    2016-08-01

    A 5-year-old, spayed female Weimaraner dog was evaluated for progressive left forelimb lameness localized to the carpus. Magnetic resonance imaging (MRI) was used to arrive at a presumptive diagnosis of intermedioradial carpal (IRC) bone fracture with avascular necrosis (AVN). To the authors' knowledge, this is the first report of naturally occurring AVN of the canine IRC diagnosed using MRI. PMID:27493290

  14. Nonlinear spectroscopy in the near-field: time resolved spectroscopy and subwavelength resolution non-invasive imaging

    NASA Astrophysics Data System (ADS)

    Namboodiri, Mahesh; Khan, Tahirzeb; Karki, Khadga; Kazemi, Mehdi Mohammad; Bom, Sidhant; Flachenecker, Günter; Namboodiri, Vinu; Materny, Arnulf

    2014-04-01

    The combination of near-field microscopy along with nonlinear optical spectroscopic techniques is presented here. The scanning near-field imaging technique can be integrated with nonlinear spectroscopic techniques to improve spatial and axial resolution of the images. Additionally, ultrafast dynamics can be probed down to nano-scale dimension. The review shows some examples for this combination, which resulted in an exciton map and vibrational contrast images with sub-wavelength resolution. Results of two-color femtosecond time-resolved pump-probe experiments using scanning near-field optical microscopy (SNOM) on thin films of the organic semiconductor 3,4,9,10 Perylenetetracarboxylic dianhydride (PTCDA) are presented. While nonlinear Raman techniques have been used to obtain highly resolved images in combination with near-field microscopy, the use of femtosecond laser pulses in electronic resonance still constitutes a big challenge. Here, we present our first results on coherent anti-Stokes Raman scattering (fs-CARS) with femtosecond laser pulses detected in the near-field using SNOM. We demonstrate that highly spatially resolved images can be obtained from poly(3-hexylthiophene) (P3HT) nano-structures where the fs-CARS process was in resonance with the P3HT absorption and with characteristic P3HT vibrational modes without destruction of the samples. Sub-diffraction limited lateral resolution is achieved. Especially the height resolution clearly surpasses that obtained with standard microCARS. These results will be the basis for future investigations of mode-selective dynamics in the near-field.

  15. Non-invasive quantitative micro-PIXE-RBS/EBS/EBS imaging reveals the lost polychromy and gilding of the Neo-Assyrian ivories from the Louvre collection.

    PubMed

    Albéric, Marie; Müller, Katharina; Pichon, Laurent; Lemasson, Quentin; Moignard, Brice; Pacheco, Claire; Fontan, Elisabeth; Reiche, Ina

    2015-05-01

    Antique objects are known to have been brightly colored. However, the appearance of these objects has changed over time and paint traces are rarely preserved. The surface of ivory objects (8th century B.C., Syria) from the Louvre museum collection (Paris) have been non-invasively studied by simultaneous particle-induced X-ray emission (PIXE) and Rutherford and elastic backscattering spectrometry (RBS/EBS) micro-imaging at the AGLAE facility (C2RMF, Paris). Qualitative 2D chemical images of elements ranging from Na to Pb on the surface of the ancient ivory carvings provide evidence of lost polychromy and gilding. Quantitative PIXE data of specific areas allow discrimination between traces of sediments and former polychromy. Different shades of blue can be differentiated from particular Pb/Cu ratios. The characterization of gilding based on RBS data demonstrates the exceptional technological skills of the Phoenician craftsmen supposed to have carved the Arslan Tash ivories. More precise reconstructions of the original polychromy compared to previous studies and a criterion for the authentication of ancient gilded ivory object are proposed. PMID:25770612

  16. Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology.

    PubMed

    Hillengass, Jens; Bäuerle, Tobias; Bartl, Reiner; Andrulis, Mindaugas; McClanahan, Fabienne; Laun, Frederik B; Zechmann, Christian Martin; Shah, Rajiv; Wagner-Gund, Barbara; Simon, Dirk; Heiss, Christiane; Neben, Kai; Ho, Anthony D; Schlemmer, Heinz-Peter; Goldschmidt, Hartmut; Delorme, Stefan; Stieltjes, Bram

    2011-06-01

    Bone marrow plasma cell infiltration is a crucial parameter of disease activity in monoclonal plasma cell disorders. Until now, the only way to quantify such infiltration was bone marrow biopsy or aspiration. Diffusion-weighted imaging (DWI) is a magnetic resonance imaging-technique that may mirror tissue cellularity by measuring random movements of water molecules. To investigate if DWI is capable of assessing bone marrow cellularity in monoclonal plasma cell disease, we investigated 56 patients with multiple myeloma or monoclonal gammopathy of undetermined significance, and 30 healthy controls using DWI of the pelvis and/or the lumbar spine. In 25 of 30 patients who underwent biopsy, bone marrow trephine and DWI could be compared. Of the patients with symptomatic disease 15 could be evaluated after systemic treatment. There was a positive correlation between the DWI-parameter apparent diffusion coefficient (ADC) and bone marrow cellularity as well as micro-vessel density (P<0·001 respectively). ADC was significantly different between patients and controls (P<0·01) and before and after systemic therapy (P<0·001). In conclusion, DWI enabled bone marrow infiltration to be monitored in a non-invasive, quantitative way, suggesting that after further investigations on larger patient groups this might become an useful tool in the clinical work-up to assess tumour burden. PMID:21517815

  17. Molecular imaging in atherosclerosis

    PubMed Central

    Glaudemans, Andor W. J. M.; Slart, Riemer H. J. A.; Bozzao, Alessandro; Bonanno, Elena; Arca, Marcello; Dierckx, Rudi A. J. O.

    2010-01-01

    Atherosclerosis is the major cause of cardiovascular disease, which still has the leading position in morbidity and mortality in the Western world. Many risk factors and pathobiological processes are acting together in the development of atherosclerosis. This leads to different remodelling stages (positive and negative) which are both associated with plaque physiology and clinical presentation. The different remodelling stages of atherosclerosis are explained with their clinical relevance. Recent advances in basic science have established that atherosclerosis is not only a lipid storage disease, but that also inflammation has a fundamental role in all stages of the disease. The molecular events leading to atherosclerosis will be extensively reviewed and described. Further on in this review different modalities and their role in the different stages of atherosclerosis will be discussed. Non-nuclear invasive imaging techniques (intravascular ultrasound, intravascular MRI, intracoronary angioscopy and intravascular optical coherence tomography) and non-nuclear non-invasive imaging techniques (ultrasound with Doppler flow, electron-bean computed tomography, coronary computed tomography angiography, MRI and coronary artery MR angiography) will be reviewed. After that we focus on nuclear imaging techniques for detecting atherosclerotic plaques, divided into three groups: atherosclerotic lesion components, inflammation and thrombosis. This emerging area of nuclear imaging techniques can provide measures of biological activity of atherosclerotic plaques, thereby improving the prediction of clinical events. As we will see in the future perspectives, at present, there is no special tracer that can be called the diagnostic tool to diagnose prospective stroke or infarction in patients. Nevertheless, we expect such a tracer to be developed in the next few years and maybe, theoretically, it could even be used for targeted therapy (in the form of a beta-emitter) to combat

  18. Non-Invasive imaging of small-animal tumors: high-frequency ultrasound vs. MicroPET.

    PubMed

    Liao, Ai-Ho; Li, Chen-Han; Cheng, Weng-Fang; Li, Pai-Chi

    2005-01-01

    Tumor volume measurement on small animals is important but currently invasive. We employ ultrasonic micro-imaging (UMI) in this study and demonstrate its feasibility. In addition, we use small animal positron emission tomography (microPET) as a preliminary effort to develop multi-modality small animal imaging techniques. The tumor growth curve from UMI is also compared to radioactivity from microPET. Both UMI and [18F] FDG microPET imaging were performed on C57BL/6J black mice bearing WF-3 ovary cancer cells at various stages from the second week till up to the eighth week. Segmentation and 3D reconstruction were also done. The growth curve was obtained in vivo noninvasively by UMI. The cell doubling time was 7.46 days according to UMI. This result was compared with vernier caliper measurement and radioactivity counting by microPET. In microPET, we obtained the time-activity curves from the tumor and the tumor-surrounding tissue. The tumor-to-normal-tissues ratios reached maximum at the fifth week after tumor cell implantation. PMID:17281549

  19. Quantitative phase imaging of cellular and subcellular structures for non-invasive screening diagnostics of socially significant diseases

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Metelin, Vladislav; Nasyrov, Marat; Belyakov, Vladimir; Kuznetsov, Alexander; Sukhenko, Evgeniy

    2015-03-01

    The objective of the present study is to increase the quality of the early diagnosis using cytological differential-diagnostic criteria for reactive changes in the nuclear structures of the immunocompetent cells. The morphofunctional status of living cells were estimated in the real time using new technologic platform of the hardware-software complex for phase cell imaging. The level of functional activity for lymphocyte subpopulations was determined on the base of modification of nuclear structures and decreasing of nuclear phase thickness. The dynamics of nuclear parameters was used as the quantitative measuring for cell activating level and increasing of proliferative potential.

  20. Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: first insights into the method.

    PubMed

    Ashtikar, Mukul; Matthäus, Christian; Schmitt, Michael; Krafft, Christoph; Fahr, Alfred; Popp, Jürgen

    2013-12-18

    The stratum corneum is a strong barrier that must be overcome to achieve successful transdermal delivery of a pharmaceutical agent. Many strategies have been developed to enhance the permeation through this barrier. Traditionally, drug penetration through the stratum corneum is evaluated by employing tape-stripping protocols and measuring the content of the analyte. Although effective, this method cannot provide a detailed information regarding the penetration pathways. To address this issue various microscopic techniques have been employed. Raman microscopy offers the advantage of label free imaging and provides spectral information regarding the chemical integrity of the drug as well as the tissue. In this paper we present a relatively simple method to obtain XZ-Raman profiles of human stratum corneum using confocal Raman microscopy on intact full thickness skin biopsies. The spectral datasets were analysed using a spectral unmixing algorithm. The spectral information obtained, highlights the different components of the tissue and the presence of drug. We present Raman images of untreated skin and diffusion patterns for deuterated water and beta-carotene after Franz-cell diffusion experiment. PMID:23764946

  1. Non-invasive skin oxygenation imaging using a multi-spectral camera system: effectiveness of various concentration algorithms applied on human skin

    NASA Astrophysics Data System (ADS)

    Klaessens, John H. G. M.; Noordmans, Herke Jan; de Roode, Rowland; Verdaasdonk, Rudolf M.

    2009-02-01

    This study describes noninvasive noncontact methods to acquire and analyze functional information from the skin. Multispectral images at several selected wavelengths in the visible and near infrared region are collected and used in mathematical methods to calculate concentrations of different chromophores in the epidermis and dermis of the skin. This is based on the continuous wave Near Infrared Spectroscopy method, which is a well known non-invasive technique for measuring oxygenation changes in the brain and in muscle tissue. Concentration changes of hemoglobin (dO2Hb, dHHb and dtHb) can be calculated from light attenuations using the modified Lambert Beer equation. We applied this technique on multi-spectral images taken from the skin surface using different algorithms for calculating changes in O2Hb, HHb and tHb. In clinical settings, the imaging of local oxygenation variations and/or blood perfusion in the skin can be useful for e.g. detection of skin cancer, detection of early inflammation, checking the level of peripheral nerve block anesthesia, study of wound healing and tissue viability by skin flap transplantations. Images from the skin are obtained with a multi-spectral imaging system consisting of a 12-bit CCD camera in combination with a Liquid Crystal Tunable Filter. The skin is illuminated with either a broad band light source or a tunable multi wavelength LED light source. A polarization filter is used to block the direct reflected light. The collected multi-spectral imaging data are images of the skin surface radiance; each pixel contains either the full spectrum (420 - 730 nm) or a set of selected wavelengths. These images were converted to reflectance spectra. The algorithms were validated during skin oxygen saturation changes induced by temporary arm clamping and applied to some clinical examples. The initial results with the multi-spectral skin imaging system show good results for detecting dynamic changes in oxygen concentration. However, the

  2. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy.

    PubMed

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Wu, Hailiang; Terada, Yasuko; Saga, Tsuneo; Aoki, Ichio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2016-08-01

    Engineered nanoparticles that respond to pathophysiological parameters, such as pH or redox potential, have been developed as contrast agents for the magnetic resonance imaging (MRI) of tumours. However, beyond anatomic assessment, contrast agents that can sense these pathological parameters and rapidly amplify their magnetic resonance signals are desirable because they could potentially be used to monitor the biological processes of tumours and improve cancer diagnosis. Here, we report an MRI contrast agent that rapidly amplifies magnetic resonance signals in response to pH. We confined Mn(2+) within pH-sensitive calcium phosphate (CaP) nanoparticles comprising a poly(ethylene glycol) shell. At a low pH, such as in solid tumours, the CaP disintegrates and releases Mn(2+) ions. Binding to proteins increases the relaxivity of Mn(2+) and enhances the contrast. We show that these nanoparticles could rapidly and selectively brighten solid tumours, identify hypoxic regions within the tumour mass and detect invisible millimetre-sized metastatic tumours in the liver. PMID:27183055

  3. A pH-activatable nanoparticle with signal-amplification capabilities for non-invasive imaging of tumour malignancy

    NASA Astrophysics Data System (ADS)

    Mi, Peng; Kokuryo, Daisuke; Cabral, Horacio; Wu, Hailiang; Terada, Yasuko; Saga, Tsuneo; Aoki, Ichio; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2016-08-01

    Engineered nanoparticles that respond to pathophysiological parameters, such as pH or redox potential, have been developed as contrast agents for the magnetic resonance imaging (MRI) of tumours. However, beyond anatomic assessment, contrast agents that can sense these pathological parameters and rapidly amplify their magnetic resonance signals are desirable because they could potentially be used to monitor the biological processes of tumours and improve cancer diagnosis. Here, we report an MRI contrast agent that rapidly amplifies magnetic resonance signals in response to pH. We confined Mn2+ within pH-sensitive calcium phosphate (CaP) nanoparticles comprising a poly(ethylene glycol) shell. At a low pH, such as in solid tumours, the CaP disintegrates and releases Mn2+ ions. Binding to proteins increases the relaxivity of Mn2+ and enhances the contrast. We show that these nanoparticles could rapidly and selectively brighten solid tumours, identify hypoxic regions within the tumour mass and detect invisible millimetre-sized metastatic tumours in the liver.

  4. Non Invasive High Resolution In Vivo Imaging of α-napthylisothiocyanate (ANIT) Induced Hepatobiliary Toxicity in STII Medaka

    PubMed Central

    Hardman, Ron; Kullman, Seth; Yuen, Bonny; Hinton, David E.

    2009-01-01

    A novel transparent stock of medaka (Oryzias latipes; STII), homozygous recessive for all four pigments (iridophores, xanthophores, leucophores, melanophores), permits transcutaneous, high resolution ( < 1μm) imaging of internal organs and tissues in living individuals. We applied this model to in vivo investigation of α-napthylisothiocyanate (ANIT) induced hepatobiliary toxicity. Distinct phenotypic responses to ANIT involving all aspects of intrahepatic biliary passageways (IHBPs), particularly bile preductular epithelial cells (BPDECs), associated with transitional passageways between canaliculi and bile ductules, were observed. Alterations included: attenuation/dilation of bile canaliculi, bile preductular lesions, hydropic vacuolation of hepatocytes and BPDECs, mild BPDEC hypertrophy, and biliary epithelial cell (BEC) hyperplasia. Ex vivo histological, immunohistochemical, and ultrastructural studies were employed to aid in interpretation of, and verify, in vivo findings. 3D reconstructions from in vivo investigations provided quantitative morphometric and volumetric evaluation of ANIT exposed and untreated livers. The findings presented show for the first time in vivo evaluation of toxicity in the STII medaka hepatobiliary system, and, in conjunction with prior in vivo work characterizing normalcy, advance our comparative understanding of this lower vertebrate hepatobiliary system and its response to toxic insult. PMID:18022256

  5. Chitosan derivatives cross-linked with iodinated 2,5-dimethoxy-2,5-dihydrofuran for non-invasive imaging.

    PubMed

    Ghosh, Paulomi; Das, Manisit; Rameshbabu, Arun Prabhu; Das, Dipankar; Datta, Sayanti; Pal, Sagar; Panda, Asit Baran; Dhara, Santanu

    2014-10-22

    Radiopaque polymer derivatives were successfully prepared through surface diffusion mediated cross-linking of chitosan with iodinated 2,5-dimethoxy-2,5-dihydrofuran. The incorporation of iodine in 2,5-dimethoxy-2,5-dihydrofuran was validated by (1)H NMR and mass spectroscopy. The cross-linking of the glucosamine moieties of chitosan with the iodinated product was confirmed by (13)C NMR and energy-dispersive X-ray spectroscopy. Radiography analysis proved inherent opacity of the iodinated fibrous sheets and microspheres that were comparable to the X-ray visibility of aluminum hollow rings of equivalent thickness and commercially available radiopaque tape, respectively. Microscopic studies evidenced retention of the fiber/microsphere morphology after the iodination/cross-linking reactions. The effects of iodination/cross-linking on the mechanical and biodegradation properties of fibers were studied by nanoindentation and enzymatic assay, respectively. In vitro and in vivo studies established the nontoxic, biodegradable nature of radiopaque derivatives. Iodinated fiber mesh implanted in a rabbit model was significantly X-ray opaque compared to the uncross-linked fiber mesh and medical grade surgical swabs. Further, opacity of the iodinated mesh was evident even after 60 days, though the intensity was reduced, which indicates the biodegradable nature of the iodinated polymer. The opacity of the iodinated sutures was also established in the computed tomography images. Finally, the sufficient in vivo contrast property of the radiopaque microspheres in the gastrointestinal tract indicates its possible role in clinical diagnostics. PMID:25265599

  6. Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity

    PubMed Central

    Fukuta, Tatsuya; Asai, Tomohiro; Ishii, Takayuki; Koide, Hiroyuki; Kiyokawa, Chiaki; Hashimoto, Masahiro; Kikuchi, Takashi; Shimizu, Kosuke; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto

    2016-01-01

    The development of a diagnostic technology that can accurately determine the pathological progression of ischemic stroke and evaluate the therapeutic effects of cerebroprotective agents has been desired. We previously developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-18F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) for detecting activity of mitochondrial complex I (MC-I). This probe was shown to visualize neuronal damage in the living brain of rodent and primate models of neurodegenerative diseases. In the present study, [18F]BCPP-EF was applied to evaluate the therapeutic effects of a neuroprotectant, liposomal FK506 (FK506-liposomes), on cerebral ischemia/reperfusion (I/R) injury in transient middle cerebral artery occlusion rats. The PET imaging using [18F]BCPP-EF showed a prominent reduction in the MC-I activity in the ischemic brain hemisphere. Treatment with FK506-liposomes remarkably increased the uptake of [18F]BCPP-EF in the ischemic side corresponding to the improvement of blood flow disorders and motor function deficits throughout the 7 days after I/R. Additionally, the PET scan could diagnose the extent of the brain damage accurately and showed the neuroprotective effect of FK506-liposomes at Day 7, at which 2, 3, 5-triphenyltetrazolium chloride staining couldn’t visualize them. Our study demonstrated that the PET technology using [18F]BCPP-EF has a potent capacity to evaluate the therapeutic effect of drug candidates in living brain. PMID:27440054

  7. Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity

    NASA Astrophysics Data System (ADS)

    Fukuta, Tatsuya; Asai, Tomohiro; Ishii, Takayuki; Koide, Hiroyuki; Kiyokawa, Chiaki; Hashimoto, Masahiro; Kikuchi, Takashi; Shimizu, Kosuke; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto

    2016-07-01

    The development of a diagnostic technology that can accurately determine the pathological progression of ischemic stroke and evaluate the therapeutic effects of cerebroprotective agents has been desired. We previously developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-18F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) for detecting activity of mitochondrial complex I (MC-I). This probe was shown to visualize neuronal damage in the living brain of rodent and primate models of neurodegenerative diseases. In the present study, [18F]BCPP-EF was applied to evaluate the therapeutic effects of a neuroprotectant, liposomal FK506 (FK506-liposomes), on cerebral ischemia/reperfusion (I/R) injury in transient middle cerebral artery occlusion rats. The PET imaging using [18F]BCPP-EF showed a prominent reduction in the MC-I activity in the ischemic brain hemisphere. Treatment with FK506-liposomes remarkably increased the uptake of [18F]BCPP-EF in the ischemic side corresponding to the improvement of blood flow disorders and motor function deficits throughout the 7 days after I/R. Additionally, the PET scan could diagnose the extent of the brain damage accurately and showed the neuroprotective effect of FK506-liposomes at Day 7, at which 2, 3, 5-triphenyltetrazolium chloride staining couldn’t visualize them. Our study demonstrated that the PET technology using [18F]BCPP-EF has a potent capacity to evaluate the therapeutic effect of drug candidates in living brain.

  8. Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity.

    PubMed

    Fukuta, Tatsuya; Asai, Tomohiro; Ishii, Takayuki; Koide, Hiroyuki; Kiyokawa, Chiaki; Hashimoto, Masahiro; Kikuchi, Takashi; Shimizu, Kosuke; Harada, Norihiro; Tsukada, Hideo; Oku, Naoto

    2016-01-01

    The development of a diagnostic technology that can accurately determine the pathological progression of ischemic stroke and evaluate the therapeutic effects of cerebroprotective agents has been desired. We previously developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-(18)F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([(18)F]BCPP-EF) for detecting activity of mitochondrial complex I (MC-I). This probe was shown to visualize neuronal damage in the living brain of rodent and primate models of neurodegenerative diseases. In the present study, [(18)F]BCPP-EF was applied to evaluate the therapeutic effects of a neuroprotectant, liposomal FK506 (FK506-liposomes), on cerebral ischemia/reperfusion (I/R) injury in transient middle cerebral artery occlusion rats. The PET imaging using [(18)F]BCPP-EF showed a prominent reduction in the MC-I activity in the ischemic brain hemisphere. Treatment with FK506-liposomes remarkably increased the uptake of [(18)F]BCPP-EF in the ischemic side corresponding to the improvement of blood flow disorders and motor function deficits throughout the 7 days after I/R. Additionally, the PET scan could diagnose the extent of the brain damage accurately and showed the neuroprotective effect of FK506-liposomes at Day 7, at which 2, 3, 5-triphenyltetrazolium chloride staining couldn't visualize them. Our study demonstrated that the PET technology using [(18)F]BCPP-EF has a potent capacity to evaluate the therapeutic effect of drug candidates in living brain. PMID:27440054

  9. Feasibility of non-invasive temperature estimation by the assessment of the average gray-level content of B-mode images.

    PubMed

    Teixeira, C A; Alvarenga, A V; Cortela, G; von Krüger, M A; Pereira, W C A

    2014-08-01

    This paper assesses the potential of the average gray-level (AVGL) from ultrasonographic (B-mode) images to estimate temperature changes in time and space in a non-invasive way. Experiments were conducted involving a homogeneous bovine muscle sample, and temperature variations were induced by an automatic temperature regulated water bath, and by therapeutic ultrasound. B-mode images and temperatures were recorded simultaneously. After data collection, regions of interest (ROIs) were defined, and the average gray-level variation computed. For the selected ROIs, the AVGL-Temperature relation were determined and studied. Based on uniformly distributed image partitions, two-dimensional temperature maps were developed for homogeneous regions. The color-coded temperature estimates were first obtained from an AVGL-Temperature relation extracted from a specific partition (where temperature was independently measured by a thermocouple), and then extended to the other partitions. This procedure aimed to analyze the AVGL sensitivity to changes not only in time but also in space. Linear and quadratic relations were obtained depending on the heating modality. We found that the AVGL-Temperature relation is reproducible over successive heating and cooling cycles. One important result was that the AVGL-Temperature relations extracted from one region might be used to estimate temperature in other regions (errors inferior to 0.5 °C) when therapeutic ultrasound was applied as a heating source. Based on this result, two-dimensional temperature maps were developed when the samples were heated in the water bath and also by therapeutic ultrasound. The maps were obtained based on a linear relation for the water bath heating, and based on a quadratic model for the therapeutic ultrasound heating. The maps for the water bath experiment reproduce an acceptable heating/cooling pattern, and for the therapeutic ultrasound heating experiment, the maps seem to reproduce temperature profiles

  10. The Assessment of Inter-Hemispheric Imbalance using Imaging and Non-Invasive Brain Stimulation in Patients with Chronic Stroke

    PubMed Central

    Cunningham, David A.; Machado, Andre; Janini, Daniel; Varnerin, Nicole; Bonnett, Corin; Yue, Guang; Jones, Stephen; Lowe, Mark; Beall, Erik; Sakaie, Ken; Plow, Ela B.

    2014-01-01

    OBJECTIVE To determine how inter-hemispheric balance in stroke, measured using transcranial magnetic stimulation (TMS), relates to balance defined using neuroimaging (functional magnetic resonance (fMRI) and diffusion tensor imaging (DTI)), and how these metrics of balance are associated with clinical measures of upper limb function and disability. DESIGN Cross-Sectional SETTING Clinical Research Laboratory PARTICIPANTS Ten chronic stroke patients (63±9 years) in a population based sample with unilateral upper-limb paresis. INTERVENTION Not applicable MAIN OUTCOME MEASURES Inter-hemispheric balance was measured with TMS, fMRI and DTI. TMS defined inter-hemispheric differences in recruitment of corticospinal output, the size of the corticomotor output maps and the degree of mutual transcallosal inhibition they exerted upon one another. fMRI studied whether cortical activation during the movement of the paretic hand was lateralized to the ipsilesional or to the contralesional primary motor (M1), premotor (PMC) and supplementary motor cortices (SMA). DTI was used to define inter-hemispheric differences in the integrity of the corticospinal tracts projecting from M1. Clinical outcomes tested function (upper-extremity Fugl-Meyer (UEFM) and the perceived disability in the use of the paretic hand [Motor Activity Log (MAL)]. RESULTS Inter-hemispheric balance assessed with TMS relates differently to fMRI and DTI. Patients with high fMRI lateralization to the ipsilesional hemisphere possessed stronger ipsilesional corticomotor output maps [M1 (r=.831, p=.006), PMC (r=.797, p=.01)], and better balance of mutual transcallosal inhibition (r=.810, p=.015). Conversely, we have found that patients with less integrity of the corticospinal tracts in the ipsilesional hemisphere show greater corticospinal output of homologous tracts in the contralesional hemisphere (r=.850, p=.004). However, neither an imbalance in their integrity nor an imbalance of their output relates to

  11. 3D magnetic resonance imaging as a non-invasive tool for investigating water-filled karst formations

    NASA Astrophysics Data System (ADS)

    Legchenko, A.; Ezersky, M.; Boucher, M.; Chevalier, A.; Vouillamoz, J.-M.

    2012-04-01

    Magnetic Resonance Sounding (MRS) is a geophysical technique developed for groundwater exploration. MRS can be used for reliable identification of karst aquifers because of the relaxation time of the magnetic resonance signal (T1) is longer for bulk water in karst caverns and channels (about 2 s) than for water in porous rock (few tens of ms). MRS is sensitive primary to groundwater volume but electrically conductive layers modify electromagnetic fields in the subsurface and thus may have an effect on MRS performance. Generally, the study of a karst requires a 3D field set-up and we developed a measuring procedure and interpretation software that makes it possible to image heterogeneous water-bearing geological formations down to about 80 m (3D-SNMR method). Numerical modeling results show that limited resolution of the method allows only identification of large karst formations. For example detectable karst should be larger than a few hundred cubic meters when karst is located close to the surface and a few thousand cubic meters when it is located at 60 m. Time Domain Electromagnetic method (TDEM) is known as an efficient tool for investigating electrical conductivity of rocks. TDEM results allow more accurate computing of the EM field in the subsurface and thus contribute for improving accuracy of MRS results. TDEM and 3D-SNMR methods were applied jointly in the Dead Sea coast of Israel (Nahal Hever South). The subsurface in this area is heterogeneous and composed of intercalated sand and clay layers over a salt rock, which is partly karstified. Groundwater is very saline, with a chloride concentration of 100-225 g/l thus rendering the resistivity of geological formations less than 1 ohm-m. We have shown numerically that under Dead Sea coast conditions, 3D-SNMR is able to detect and to locate the target within an error of a few tens of meters. In the investigated area (500×500 m2) our results reveal a very heterogeneous shallow aquifer that could be divided into

  12. An advanced design of non-radioactive image capturing and management system for applications in non-invasive skin disorder diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Carol Y. B.; Luk, David C. K.; Zhou, Kany S. Y.; So, Bryan M. K.; Louie, Derek C. H.

    2015-03-01

    Due to the increasing incidences of malignant melanoma, there is a rising demand for assistive technologies for its early diagnosis and improving the survival rate. The commonly used visual screening method is with limited accuracy as the early phase of melanoma shares many clinical features with an atypical nevus, while conventional dermoscopes are not user-friendly in terms of setup time and operations. Therefore, the development of an intelligent and handy system to assist the accurate screening and long-term monitoring of melanocytic skin lesions is crucial for early diagnosis and prevention of melanoma. In this paper, an advanced design of non-invasive and non-radioactive dermoscopy system was reported. Computer-aided simulations were conducted for optimizing the optical design and uniform illumination distribution. Functional prototype and the software system were further developed, which could enable image capturing at 10x amplified and general modes, convenient data transmission, analysis of dermoscopic features (e.g., asymmetry, border irregularity, color, diameter and dermoscopic structure) for assisting the early detection of melanoma, extract patient information (e.g. code, lesion location) and integrate with dermoscopic images, thus further support long term monitoring of diagnostic analysis results. A clinical trial study was further conducted on 185 Chinese children (0-18 years old). The results showed that for all subjects, skin conditions diagnosed based on the developed system accurately confirmed the diagnoses by conventional clinical procedures. Besides, clinical analysis on dermoscopic features and a potential standard approach by the developed system to support identifying specific melanocytic patterns for dermoscopic examination in Chinese children were also reported.

  13. Monitor Therapeutic Response of Human Ovarian Cancer to 17-DMAG by Non-invasive PET imaging with 64Cu-DOTA-Trastuzumab

    PubMed Central

    Niu, Gang; Li, Zibo; Cao, Qizhen; Chen, Xiaoyuan

    2012-01-01

    Purposes 17-DMAG, a heat shock protein 90 (Hsp90) inhibitor, has been intensively investigated for cancer therapy and is undergoing clinical trials. Human epidermal growth factor receptor 2 (HER-2) is one of the client proteins of Hsp90 and its expression is decreased upon 17-DMAG treatment. In this study, we aimed to non-invasively monitor the HER-2 response to 17-DMAG treatment in xenografted mice. Methods The sensitivity of human ovarian cancer SKOV-3 cells to 17-DMAG in vitro was measured by MTT assay. HER-2 expression of SKOV-3 cells was determined by flow cytometry. Nude mice bearing SKOV-3 tumors were treated with 17-DMAG and the therapeutic efficacy was evaluated by tumor size measurement. Both treated and control mice were imaged with microPET using 64Cu-DOTA-trastuzumab and 18F-FDG. Biodistribution studies, immunofluorescence staining were performed to validate the microPET results. Results SKOV-3 cells are sensitive to 17-DMAG treatment, in a dose dependent manner, with an IC50 value of 68.7 nM after 72 h incubation. The tumor growth curve supported the inhibition effect of 17-DMAG on SKOV-3 tumors. Quantitative microPET imaging showed that 64Cu-DOTA-trastuzumab had prominent tumor activity accumulation in untreated SKOV-3 tumors, which was significantly reduced in 17-DMAG treated tumors. There was no uptake difference detected by FDG PET. Immunofluorescence staining confirmed the significant reduction in tumor HER-2 level upon 17-DMAG treatment. Conclusion The early response to anti-Hsp90 therapy was successfully monitored by quantitative PET using 64Cu-DOTA-trastuzumab. This approach may be valuable in monitoring the therapeutic response in HER-2-positive cancer patients under 17-DMAG treatment. PMID:19440708

  14. Belowground plant development measured with magnetic resonance imaging (MRI): exploiting the potential for non-invasive trait quantification using sugar beet as a proxy

    PubMed Central

    Metzner, Ralf; van Dusschoten, Dagmar; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried

    2014-01-01

    Both structural and functional properties of belowground plant organs are critical for the development and yield of plants but, compared to the shoot, much more difficult to observe due to soil opacity. Many processes concerning the belowground plant performance are not fully understood, in particular spatial and temporal dynamics and their interrelation with environmental factors. We used Magnetic Resonance Imaging (MRI) as a noninvasive method to evaluate which traits can be measured when a complex plant organ is monitored in-vivo while growing in the soil. We chose sugar beet (Beta vulgaris ssp. vulgaris) as a model system. The beet consists mainly of root tissues, is rather complex regarding tissue structure and responses to environmental factors, and thereby a good object to test the applicability of MRI for 3D phenotyping approaches. Over a time period of up to 3 months, traits such as beet morphology or anatomy were followed in the soil and the effect of differently sized pots on beet fresh weight calculated from MRI data was studied. There was a clear positive correlation between the pot size and the increase in fresh weight of a sugar beet over time. Since knowledge of the development of internal beet structures with several concentric cambia, vascular and parenchyma rings is still limited, we consecutively acquired 3D volumetric images on individual plants using the MRI contrast parameter T2 to map the development of rings at the tissue level. This demonstrates that MRI provides versatile protocols to non-invasively measure plant traits in the soil. It opens new avenues to investigate belowground plant performance under adverse environmental conditions such as drought, nutrient shortage, or soil compaction to seek for traits of belowground organs making plants more resilient to stress. PMID:25278947

  15. Non-invasive high-resolution tracking of human neuronal pathways: diffusion tensor imaging at 7T with 1.2 mm isotropic voxel size

    NASA Astrophysics Data System (ADS)

    Lützkendorf, Ralf; Hertel, Frank; Heidemann, Robin; Thiel, Andreas; Luchtmann, Michael; Plaumann, Markus; Stadler, Jörg; Baecke, Sebastian; Bernarding, Johannes

    2013-03-01

    Diffusion tensor imaging (DTI) allows characterizing and exploiting diffusion anisotropy effects, thereby providing important details about tissue microstructure. A major application in neuroimaging is the so-called fiber tracking where neuronal connections between brain regions are determined non-invasively by DTI. Combining these neural pathways within the human brain with the localization of activated brain areas provided by functional MRI offers important information about functional connectivity of brain regions. However, DTI suffers from severe signal reduction due to the diffusion-weighting. Ultra-high field (UHF) magnetic resonance imaging (MRI) should therefore be advantageous to increase the intrinsic signal-to-noise ratio (SNR). This in turn enables to acquire high quality data with increased resolution, which is beneficial for tracking more complex fiber structures. However, UHF MRI imposes some difficulties mainly due to the larger B1 inhomogeneity compared to 3T MRI. We therefore optimized the parameters to perform DTI at a 7 Tesla whole body MR scanner equipped with a high performance gradient system and a 32-channel head receive coil. A Stesjkal Tanner spin-echo EPI sequence was used, to acquire 110 slices with an isotropic voxel-size of 1.2 mm covering the whole brain. 60 diffusion directions were scanned which allows calculating the principal direction components of the diffusion vector in each voxel. The results prove that DTI can be performed with high quality at UHF and that it is possible to explore the SNT benefit of the higher field strength. Combining UHF fMRI data with UHF DTI results will therefore be a major step towards better neuroimaging methods.

  16. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements.

    PubMed

    Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Gagnon, Louis; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A; Nizar, Krystal; Yaseen, Mohammad A; Hagler, Donald J; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A; Silva, Gabriel A; Masliah, Eliezer; Kleinfeld, David; Vinogradov, Sergei; Buxton, Richard B; Einevoll, Gaute T; Boas, David A; Dale, Anders M; Devor, Anna

    2016-10-01

    The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574309

  17. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    SciTech Connect

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-02-06

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure vari-ations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagran-gian tracking approach were used to model respiratory airflows and aerosol dynamics. Respira-tions of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug de-livery protocol.

  18. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: Towards non-invasive diagnosis and treatment of respiratory obstructive diseases

    SciTech Connect

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 μm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.

  19. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: Towards non-invasive diagnosis and treatment of respiratory obstructive diseases

    DOE PAGESBeta

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treatmore » the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 μm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.« less

  20. CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases

    PubMed Central

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol. PMID:25767612

  1. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: towards non-invasive diagnosis and treatment of respiratory obstructive diseases.

    PubMed

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A; Corley, Richard A; Kabilan, Senthil; Wang, Shengyu

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 µm at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol. PMID:25767612

  2. Non-invasive Characterization of Polyurethane-based Tissue Constructs in a Rat Abdominal Repair Model Using High Frequency Ultrasound Elasticity Imaging

    PubMed Central

    Yu, Jiao; Takanari, Keisuke; Hong, Yi; Lee, Kee-Won; Amoroso, Nicholas J.; Wang, Yadong; Wagner, William R.; Kim, Kang

    2013-01-01

    The evaluation of candidate materials and designs for soft tissue scaffolds would benefit from the ability to monitor the mechanical remodeling of the implant site without the need for periodic animal sacrifice and explant analysis. Toward this end, the ability of non-invasive ultrasound elasticity imaging (UEI) to assess temporal mechanical property changes in three different types of porous, biodegradable polyurethane scaffolds was evaluated in a rat abdominal wall repair model. The polymers utilized were salt-leached scaffolds of poly(carbonate urethane) urea, poly(ester urethane) urea and poly(ether ester urethane) urea at 85% porosity. A total of 60 scaffolds (20 each type) were implanted in a full thickness muscle wall replacement in the abdomens of 30 rats. The constructs were ultrasonically scanned every 2 weeks and harvested at weeks 4, 8 and 12 for compression testing or histological analysis. UEI demonstrated different temporal stiffness trends among the different scaffold types, while the stiffness of the surrounding native tissue remained unchanged. The changes in average normalized strains developed in the constructs from UEI compared well with the changes of mean compliance from compression tests and histology. The average normalized strains and the compliance for the same sample exhibited a strong linear relationship. The ability of UEI to identify herniation and to characterize the distribution of local tissue in-growth with high resolution was also investigated. In summary, the reported data indicate that UEI may allow tissue engineers to sequentially evaluate the progress of tissue construct mechanical behavior in vivo and in some cases may reduce the need for interim time point animal sacrifice. PMID:23347836

  3. Non-invasive characterization of polyurethane-based tissue constructs in a rat abdominal repair model using high frequency ultrasound elasticity imaging.

    PubMed

    Yu, Jiao; Takanari, Keisuke; Hong, Yi; Lee, Kee-Won; Amoroso, Nicholas J; Wang, Yadong; Wagner, William R; Kim, Kang

    2013-04-01

    The evaluation of candidate materials and designs for soft tissue scaffolds would benefit from the ability to monitor the mechanical remodeling of the implant site without the need for periodic animal sacrifice and explant analysis. Toward this end, the ability of non-invasive ultrasound elasticity imaging (UEI) to assess temporal mechanical property changes in three different types of porous, biodegradable polyurethane scaffolds was evaluated in a rat abdominal wall repair model. The polymers utilized were salt-leached scaffolds of poly(carbonate urethane) urea, poly(ester urethane) urea and poly(ether ester urethane) urea at 85% porosity. A total of 60 scaffolds (20 each type) were implanted in a full thickness muscle wall replacement in the abdomens of 30 rats. The constructs were ultrasonically scanned every 2 weeks and harvested at weeks 4, 8 and 12 for compression testing or histological analysis. UEI demonstrated different temporal stiffness trends among the different scaffold types, while the stiffness of the surrounding native tissue remained unchanged. The changes in average normalized strains developed in the constructs from UEI compared well with the changes of mean compliance from compression tests and histology. The average normalized strains and the compliance for the same sample exhibited a strong linear relationship. The ability of UEI to identify herniation and to characterize the distribution of local tissue in-growth with high resolution was also investigated. In summary, the reported data indicate that UEI may allow tissue engineers to sequentially evaluate the progress of tissue construct mechanical behavior in vivo and in some cases may reduce the need for interim time point animal sacrifice. PMID:23347836

  4. Non-invasive Mapping of Cardiac Arrhythmias.

    PubMed

    Shah, Ashok; Hocini, Meleze; Haissaguerre, Michel; Jaïs, Pierre

    2015-08-01

    Since more than 100 years, 12-lead electrocardiography (ECG) is the standard-of-care tool, which involves measuring electrical potentials from limited sites on the body surface to diagnose cardiac disorder, its possible mechanism, and the likely site of origin. Several decades of research has led to the development of a 252-lead ECG and computed tomography (CT) scan-based three-dimensional electro-imaging modality to non-invasively map abnormal cardiac rhythms including fibrillation. These maps provide guidance towards ablative therapy and thereby help advance the management of complex heart rhythm disorders. Here, we describe the clinical experience obtained using non-invasive technique in mapping the electrical disorder and guide the catheter ablation of atrial arrhythmias (premature atrial beat, atrial tachycardia, atrial fibrillation), ventricular arrhythmias (premature ventricular beats), and ventricular pre-excitation (Wolff-Parkinson-White syndrome). PMID:26072438

  5. [Non-invasive assessment of fatty liver].

    PubMed

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-01

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response. PMID:25819147

  6. Quantitative parameters to compare image quality of non-invasive coronary angiography with 16-slice, 64-slice and dual-source computed tomography.

    PubMed

    Burgstahler, Christof; Reimann, Anja; Brodoefel, Harald; Daferner, Ulrike; Herberts, Tina; Tsiflikas, Ilias; Thomas, Christoph; Drosch, Tanja; Schroeder, Stephen; Heuschmid, Martin

    2009-03-01

    Multi-slice computed tomography (MSCT) is a non-invasive modality to visualize coronary arteries with an overall good image quality. Improved spatial and temporal resolution of 64-slice and dual-source computed tomography (DSCT) scanners are supposed to have a positive impact on diagnostic accuracy and image quality. However, quantitative parameters to compare image quality of 16-slice, 64-slice MSCT and DSCT are missing. A total of 256 CT examinations were evaluated (Siemens, Sensation 16: n = 90; Siemens Sensation 64: n = 91; Siemens Definition: n = 75). Mean Hounsfield units (HU) were measured in the cavum of the left ventricle (LV), the ascending aorta (Ao), the left ventricular myocardium (My) and the proximal part of the left main (LM), the left anterior descending artery (LAD), the right coronary artery (RCA) and the circumflex artery (CX). Moreover, the ratio of intraluminal attenuation (HU) to myocardial attenuation was assessed for all coronary arteries. Clinical data [body mass index (BMI), gender, heart rate] were accessible for all patients. Mean attenuation (CA) of the coronary arteries was significantly higher for DSCT in comparison to 64- and 16-slice MSCT within the RCA [347 +/- 13 vs. 254 +/- 14 (64-MSCT) vs. 233 +/- 11 (16-MSCT) HU], LM (362 +/- 11/275 +/- 12/262 +/- 9), LAD (332 +/- 17/248 +/- 19/219 +/- 14) and LCX (310 +/- 12/210 +/- 13/221 +/- 10, all p < 0.05), whereas there was no significant difference between DSCT and 64-MSCT for the LV, the Ao and My. Heart rate had a significant impact on CA ratio in 16-slice and 64-slice CT only (p < 0.05). BMI had no impact on the CA ratio in DSCT only (p < 0.001). Improved spatial and temporal resolution of dual-source CT is associated with better opacification of the coronary arteries and a better contrast with the myocardium, which is independent of heart rate. In comparison to MSCT, opacification of the coronary arteries at DSCT is not affected by BMI. The main advantage of DSCT lies with the

  7. Use of Non-Invasive Phase Contrast Magnetic Resonance Imaging for Estimation of Atrial Septal Defect Size and Morphology: A Comparison with Transesophageal Echo

    SciTech Connect

    Piaw, Chin Sze; Kiam, Ong Tiong; Rapaee, Annuar Khoon, Liew Chee; Bang, Liew Houng; Ling, Chan Wei; Samion, Hasri; Hian, Sim Kui

    2006-04-15

    Background: Transesophageal echocardiography (TEE) is a trusted method of sizing atrial septal defect (ASD) prior to percutaneous closure but is invasive, uncomfortable, and may carry a small risk of morbidity and mortality. Magnetic resonance imaging (MRI) may be useful non-invasive alternative in such patients who refuse or are unable to tolerate TEE and may provide additional information on the shape of the A0SD. Purpose: To validate the accuracy of ASD sizing by MRI compared with TEE.Method: Twelve patients (mean age 30 years; range 11-60 years) scheduled for ASD closure underwent TEE, cine balanced fast field echo MRI (bFFE-MRI) in four-chamber and sagittal views and phase-contrast MRI (PC-MRI) with reconstruction using the two orthogonal planes of T2-weighted images as planning. The average of the three longest measurements for all imaging modalities was calculated for each patient. Results: Mean maximum ASD length on TEE was 18.8 {+-} 4.6 mm, mean length by bFFE-MRI was 20.0 {+-} 5.0 mm, and mean length by PC-MRI was 18.3 {+-} 3.6 mm. The TEE measurement was significantly correlated with the bFFE-MRI and PC-MRI measurements (Pearson r = 0.69, p = 0.02 and r = 0.59, p = 0.04, respectively). The mean difference between TEE and bFFE-MRI measurements was -1.2mm (95% CI: -3.7, 1.3) and between TEE and PC-MRI was 0.5 mm (95% CI: -1.9, 2.9). Bland-Altman analysis also determined general agreement between both MRI methods and TEE. The ASDs were egg-shaped in two cases, circular in 1 patient and oval in the remaining patients. Conclusion: ASD sizing by MRI using bFFE and phase-contrast protocols correlated well with TEE estimations. PC-MRI provided additional information on ASD shapes and proximity to adjacent structures.

  8. Non-invasive physiological measurements

    SciTech Connect

    Rolfe, P.

    1983-01-01

    This book discusses the diagnostic techniques of nondestructive type for monitoring the physiology of various organ systems. The topics covered are: non-invasive assessment of gastric activity; uterine activity, intestinal activity; monitoring of fetal cardiovascular system and bilirubin physiology of infants. Respiratory system of infants is monitored and ultrasonography of heart is discussed.

  9. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review.

    PubMed

    Scholz, A M; Bünger, L; Kongsro, J; Baulain, U; Mitchell, A D

    2015-07-01

    The ability to accurately measure body or carcass composition is important for performance testing, grading and finally selection or payment of meat-producing animals. Advances especially in non-invasive techniques are mainly based on the development of electronic and computer-driven methods in order to provide objective phenotypic data. The preference for a specific technique depends on the target animal species or carcass, combined with technical and practical aspects such as accuracy, reliability, cost, portability, speed, ease of use, safety and for in vivo measurements the need for fixation or sedation. The techniques rely on specific device-driven signals, which interact with tissues in the body or carcass at the atomic or molecular level, resulting in secondary or attenuated signals detected by the instruments and analyzed quantitatively. The electromagnetic signal produced by the instrument may originate from mechanical energy such as sound waves (ultrasound - US), 'photon' radiation (X-ray-computed tomography - CT, dual-energy X-ray absorptiometry - DXA) or radio frequency waves (magnetic resonance imaging - MRI). The signals detected by the corresponding instruments are processed to measure, for example, tissue depths, areas, volumes or distributions of fat, muscle (water, protein) and partly bone or bone mineral. Among the above techniques, CT is the most accurate one followed by MRI and DXA, whereas US can be used for all sizes of farm animal species even under field conditions. CT, MRI and US can provide volume data, whereas only DXA delivers immediate whole-body composition results without (2D) image manipulation. A combination of simple US and more expensive CT, MRI or DXA might be applied for farm animal selection programs in a stepwise approach. PMID:25743562

  10. Non-invasive evaluation of culprit lesions by PET imaging: shifting the clinical paradigm away from resultant anatomy toward causative physiology

    PubMed Central

    Bengel, Frank M.

    2014-01-01

    Although coronary angiography is the gold standard for assessing coronary artery disease (CAD), there is at best a weak correlation between degree of stenosis and the risk of developing cardiac events. Plaque rupture is the most common type of plaque complication, accounting for about 70% of fatal acute myocardial infarctions or sudden coronary deaths. Recently, the feasibility of 18F-fluoride PET/CT in the evaluation of atherosclerotic lesions was assessed. Radionuclide techniques allow non-invasive biologic assessment of atherosclerotic plaques. This may help to further shift the clinical paradigm in coronary disease away from anatomy toward causative physiology and biology. PMID:25610799

  11. Molecular Imaging with Theranostic Nanoparticles

    PubMed Central

    Jokerst, Jesse V.; Gambhir, Sanjiv S.

    2011-01-01

    Conspectus Nanoparticles offer diagnostic and therapeutic capabilities impossible with small molecules or micro-scale tools. As molecular biology merges with medical imaging to form the field of molecular imaging, nanoparticle imaging is increasingly common with both therapeutic and diagnostic applications. The term theranostic indicates technology with concurrent and complementary diagnostic and therapeutic capabilities. When performed with sub-micron materials, the field may be termed theranostic nanomedicine. Although nanoparticles have been FDA-approved for clinical use as transport vehicles for nearly 15 years, full translation of their theranostic potential is incomplete. Still, remarkable successes with nanoparticles have been realized in the areas of drug delivery and magnetic resonance imaging. Emerging applications include image-guided resection, optical/photoacoustic imaging in vivo, contrast-enhanced ultrasound, and thermoablative therapy. Diagnosis with nanoparticles in molecular imaging involves correlating signal to a phenotype. The disease’s size, stage, and biochemical signature can be gleaned from the location and intensity of nanoparticle signal emanating from a living subject. Therapy with NP uses the image for resection or delivery of small molecule or RNA thererapeutic. Ablation of the affected area is also possible via heat or radioactivity. The ideal theranostic NP: (1) selectively and rapidly accumulates in diseased tissue, (2) reports biochemical and morphological characteristics of the area, (3) delivers a non-invasive therapeutic, and (4) is safe and biodegrades with non-toxic byproducts. Above is a schematic of such a system which contains a central imaging core (yellow) surrounded by small molecule therapeutics (red). The system targets via ligands such as IgG (pink) and is protected from immune scavengers by a cloak of protective polymer (green). While no nanoparticle has achieved all of the above features, many NPs do fulfill one

  12. Non-invasive glucose monitor

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2001-01-01

    A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.

  13. An Open Source Image Processing Method to Quantitatively Assess Tissue Growth after Non-Invasive Magnetic Resonance Imaging in Human Bone Marrow Stromal Cell Seeded 3D Polymeric Scaffolds

    PubMed Central

    Leferink, Anne M.; Fratila, Raluca M.; Koenrades, Maaike A.; van Blitterswijk, Clemens A.; Velders, Aldrik; Moroni, Lorenzo

    2014-01-01

    Monitoring extracellular matrix (ECM) components is one of the key methods used to determine tissue quality in three-dimensional (3D) scaffolds for regenerative medicine and clinical purposes. This is even more important when multipotent human bone marrow stromal cells (hMSCs) are used, as it could offer a method to understand in real time the dynamics of stromal cell differentiation and eventually steer it into the desired lineage. Magnetic Resonance Imaging (MRI) is a promising tool to overcome the challenge of a limited transparency in opaque 3D scaffolds. Technical limitations of MRI involve non-uniform background intensity leading to fluctuating background signals and therewith complicating quantifications on the retrieved images. We present a post-imaging processing sequence that is able to correct for this non-uniform background intensity. To test the processing sequence we investigated the use of MRI for in vitro monitoring of tissue growth in three-dimensional poly(ethylene oxide terephthalate)–poly(butylene terephthalate) (PEOT/PBT) scaffolds. Results showed that MRI, without the need to use contrast agents, is a promising non-invasive tool to quantitatively monitor ECM production and cell distribution during in vitro culture in 3D porous tissue engineered constructs. PMID:25502022

  14. Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Balas, Costas

    2009-10-01

    This paper reviews the recent developments in the field of biomedical optical imaging, emphasizing technologies that have been moved from 'bench top to bedside'. Important new developments in this field allow for unprecedented visualization of the tissue microstructure and enable quantitative mapping of disease-specific endogenous and exogenous substances. With these advances, optical imaging technologies are becoming powerful clinical tools for non-invasive and objective diagnosis, guided treatment and monitoring therapies. Recent developments in visible and infrared diffuse spectroscopy and imaging, spectral imaging, optical coherence tomography, confocal imaging, molecular imaging and dynamic spectral imaging are presented together with their derivative medical devices. Their perspectives and challenges are discussed.

  15. Preclinical evaluation of destruxin B as a novel Wnt signaling target suppressing proliferation and metastasis of colorectal cancer using non-invasive bioluminescence imaging

    SciTech Connect

    Yeh, Chi-Tai; Rao, Yerra Koteswara; Ye, Min; Wu, Wen-Shi; Chang, Tung-Chen; Wang, Liang-Shun; Wu, Chih-Hsiung; Wu, Alexander T.H.; Tzeng, Yew-Min

    2012-05-15

    In continuation to our studies toward the identification of direct anti-cancer targets, here we showed that destruxin B (DB) from Metarhizium anisopliae suppressed the proliferation and induced cell cycle arrest in human colorectal cancer (CRC) HT29, SW480 and HCT116 cells. Additionally, DB induced apoptosis in HT29 cells by decreased expression level of anti-apoptotic proteins Bcl-2 and Bcl-xL while increased pro-apoptotic Bax. On the other hand, DB attenuated Wnt-signaling by downregulation of β-catenin, Tcf4 and β-catenin/Tcf4 transcriptional activity, concomitantly with decreased expression of β-catenin target genes cyclin D1, c-myc and survivin. Furthermore, DB affected the migratory and invasive ability of HT29 cells through suppressed MMPs-2 and -9 enzymatic activities. We also found that DB targeted the MAPK and/or PI3K/Akt pathway by reduced expression of Akt, IKK-α, JNK, NF-κB, c-Jun and c-Fos while increased that of IκBα. Finally, we demonstrated that DB inhibited tumorigenesis in HT29 xenograft mice using non-invasive bioluminescence technique. Consistently, tumor samples from DB-treated mice demonstrated suppressed expression of β-catenin, cyclin D1, survivin, and endothelial marker CD31 while increased caspase-3 expression. Collectively, our data supports DB as an inhibitor of Wnt/β-catenin/Tcf signaling pathway that may be beneficial in the CRC management. Highlights: ► Destruxin B (DB) inhibited colorectal cancer cells growth and induced apoptosis. ► MAPK and/or PI3K/Akt cascade cooperates in DB induced apoptosis. ► DB affected the migratory and invasive ability of HT29 cells through MMP-9. ► DB attenuated Wnt-signaling components β-catenin, Tcf4. ► DB attenuated cyclin D1, c-myc, survivin and tumorigenesis in HT29 xenograft mice.

  16. Molecular Ultrasound Imaging: Current Status and Future Directions

    PubMed Central

    Deshpande, Nirupama; Needles, Andrew; Willmann, Jürgen K.

    2011-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionizing irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of preclinical and clinical ultrasound systems , the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic. PMID:20541656

  17. Strategies for non-invasive delivery of biologics.

    PubMed

    Chung, Seung Woo; Hil-lal, Taslim A; Byun, Youngro

    2012-07-01

    Macromolecular therapeutics, in particular, many biologics, is the most advancing category of drugs over conventional chemical drugs. The potency and specificity of the biologics for curing certain disease made them to be a leading compound in the pharmaceutical industry. However, due to their intrinsic nature, including high molecular weight, hydrophilicity and instability, they are difficult to be administered via non-invasive route. This is a major quest especially in biologics, as they are frequently used clinically for chronic disorders, which requires long-term administration. Therefore, many efforts have been made to develop formulation for non-invasive administration, in attempt to improve patient compliance and convenience. In this review, strategies for non-invasive delivery, in particular, oral, pulmonary and nasal delivery, that are recently adopted for delivery of biologics are discussed. Insulin, calcitonin and heparin were mainly focused for the discussion as they could represent protein, polypeptide and polysaccharide drugs, respectively. Many recent attempts for non-invasive delivery of biologics are compared to provide an insight of developing successful delivery system. PMID:22632037

  18. Molecular imaging probe development: a chemistry perspective

    PubMed Central

    Nolting, Donald D; Nickels, Michael L; Guo, Ning; Pham, Wellington

    2012-01-01

    Molecular imaging is an attractive modality that has been widely employed in many aspects of biomedical research; especially those aimed at the early detection of diseases such as cancer, inflammation and neurodegenerative disorders. The field emerged in response to a new research paradigm in healthcare that seeks to integrate detection capabilities for the prediction and prevention of diseases. This approach made a distinct impact in biomedical research as it enabled researchers to leverage the capabilities of molecular imaging probes to visualize a targeted molecular event non-invasively, repeatedly and continuously in a living system. In addition, since such probes are inherently compact, robust, and amenable to high-throughput production, these probes could potentially facilitate screening of preclinical drug discovery, therapeutic assessment and validation of disease biomarkers. They could also be useful in drug discovery and safety evaluations. In this review, major trends in the chemical synthesis and development of positron emission tomography (PET), optical and magnetic resonance imaging (MRI) probes are discussed. PMID:22943038

  19. A Targeting Microbubble for Ultrasound Molecular Imaging

    PubMed Central

    Yeh, James Shue-Min; Sennoga, Charles A.; McConnell, Ellen; Eckersley, Robert; Tang, Meng-Xing; Nourshargh, Sussan; Seddon, John M.; Haskard, Dorian O.; Nihoyannopoulos, Petros

    2015-01-01

    Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described

  20. Applications of Molecular Imaging

    PubMed Central

    Galbán, Craig; Galbán, Stefanie; Van Dort, Marcian; Luker, Gary D.; Bhojani, Mahaveer S.; Rehemtualla, Alnawaz; Ross, Brian D.

    2015-01-01

    Today molecular imaging technologies play a central role in clinical oncology. The use of imaging techniques in early cancer detection, treatment response and new therapy development is steadily growing and has already significantly impacted clinical management of cancer. In this chapter we will overview three different molecular imaging technologies used for the understanding of disease biomarkers, drug development, or monitoring therapeutic outcome. They are (1) optical imaging (bioluminescence and fluorescence imaging) (2) magnetic resonance imaging (MRI), and (3) nuclear imaging (e.g, single photon emission computed tomography (SPECT) and positron emission tomography (PET)). We will review the use of molecular reporters of biological processes (e.g. apoptosis and protein kinase activity) for high throughput drug screening and new cancer therapies, diffusion MRI as a biomarker for early treatment response and PET and SPECT radioligands in oncology. PMID:21075334

  1. Non-invasive diagnostic methods in dentistry

    NASA Astrophysics Data System (ADS)

    Todea, Carmen

    2016-03-01

    The paper, will present the most important non-invasive methods for diagnostic, in different fields of dentistry. Moreover, the laser-based methods will be emphasis. In orthodontics, 3D laser scanners are increasingly being used to establish database for normative population and cross-sectional growth changes but also to asses clinical outcomes in orthognatic surgical and non-surgical treatments. In prevention the main methods for diagnostic of demineralization and caries detection in early stages are represented by laser fluorescence - Quantitative Light Florescence (QLF); DiagnoDent-system-655nm; FOTI-Fiberoptic transillumination; DIFOTI-Digital Imaging Fiberoptic transillumination; and Optical Coherence Tomography (OCT). In odontology, Laser Doppler Flowmetry (LDF) is a noninvasive real time method used for determining the tooth vitality by monitoring the pulp microcirculation in traumatized teeth, fractured teeth, and teeth undergoing different conservative treatments. In periodontology, recently study shows the ability of LDF to evaluate the health of gingival tissue in periodontal tissue diseases but also after different periodontal treatments.

  2. Wall Painting Investigation by Means of Non-invasive Terahertz Time-Domain Imaging (THz-TDI): Inspection of Subsurface Structures Buried in Historical Plasters

    NASA Astrophysics Data System (ADS)

    Dandolo, Corinna Ludovica Koch; Jepsen, Peter Uhd

    2016-02-01

    Characterization of subsurface features of wall paintings is important in conservation and technical art history as well as in building archaeology and architecture fields. In this study, an area of the apsidal wall painting of Nebbelunde Church (Rødby, Denmark) has been investigated by means of terahertz time-domain imaging (THz-TDI). Subsurface structures have been detected at different depths inside the lime-based plaster of the wall painting until approximately 1 cm from the surface. The surface morphology of the buried structures has been 3D imaged in detail, providing a substantial contribution in their characterization.

  3. EDITORIAL: Molecular Imaging Technology

    NASA Astrophysics Data System (ADS)

    Asai, Keisuke; Okamoto, Koji

    2006-06-01

    'Molecular Imaging Technology' focuses on image-based techniques using nanoscale molecules as sensor probes to measure spatial variations of various species (molecular oxygen, singlet oxygen, carbon dioxide, nitric monoxide, etc) and physical properties (pressure, temperature, skin friction, velocity, mechanical stress, etc). This special feature, starting on page 1237, contains selected papers from The International Workshop on Molecular Imaging for Interdisciplinary Research, sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, which was held at the Sendai Mediatheque, Sendai, Japan, on 8 9 November 2004. The workshop was held as a sequel to the MOSAIC International Workshop that was held in Tokyo in 2003, to summarize the outcome of the 'MOSAIC Project', a five-year interdisciplinary project supported by Techno-Infrastructure Program, the Special Coordination Fund for Promotion of Science Technology to develop molecular sensor technology for aero-thermodynamic research. The workshop focused on molecular imaging technology and its applications to interdisciplinary research areas. More than 110 people attended this workshop from various research fields such as aerospace engineering, automotive engineering, radiotechnology, fluid dynamics, bio-science/engineering and medical engineering. The purpose of this workshop is to stimulate intermixing of these interdisciplinary fields for further development of molecular sensor and imaging technology. It is our pleasure to publish the seven papers selected from our workshop as a special feature in Measurement and Science Technology. We will be happy if this issue inspires people to explore the future direction of molecular imaging technology for interdisciplinary research.

  4. Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging

    PubMed Central

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-01-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

  5. Non-invasive sensing for food reassurance.

    PubMed

    Xiaobo, Zou; Xiaowei, Huang; Povey, Malcolm

    2016-03-01

    Consumers and governments are increasingly interested in the safety, authenticity and quality of food commodities. This has driven attention towards non-invasive sensing techniques used for rapid analyzing these commodities. This paper provides an overview of the state of the art in, and available alternatives for, food assurance based on non-invasive sensing techniques. The main food quality traits of interest using non-invasive sensing techniques are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of non-invasive sensing techniques, from optical, acoustical, electrical, to nuclear magnetic, X-ray, biosensor, microwave and terahertz, are organized according to physical principle. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. With continued innovation and attention to key challenges, such non-invasive sensors and biosensors are expected to open up new exciting avenues in the field of portable and wearable wireless sensing devices and connecting with mobile networks, thus finding considerable use in a wide range of food assurance applications. The need for an appropriate regulatory framework is emphasized which acts to exclude unwanted components in foods and includes needed components, with sensors as part of a reassurance framework supporting regulation and food chain management. The integration of these sensor modalities into a single technological and commercial platform offers an opportunity for a paradigm shift in food reassurance. PMID:26835653

  6. Non-Invasive Neuromodulation for Headache Disorders.

    PubMed

    Zhu, Shuhan; Marmura, Michael J

    2016-02-01

    Migraine and other chronic headache disorders are common and if inadequately treated, can lead to significant disability. The effectiveness of medications can be limited by side effects, drug interactions, and comorbid diseases necessitating alternative methods. Technological developments in the past 5 years have made it possible to use non-invasive methods of neuromodulation to treat primary headache disorders. This field includes technologies such as supraorbital transcutaneous stimulation (STS), transcranial magnetic stimulation (TMS), and non-invasive vagal nerve stimulation (nVNS). Existing trials show these modalities are safe and well tolerated and can be combined with standard pharmacotherapy. We review the technologies, biological rationales, and trials involving non-invasive neuromodulation for the treatment of primary headache disorders. PMID:26750126

  7. Design of Experiments to Study the Impact of Process Parameters on Droplet Size and Development of Non-Invasive Imaging Techniques in Tablet Coating

    PubMed Central

    Dennison, Thomas J.; Smith, Julian; Hofmann, Michael P.; Bland, Charlotte E.; Badhan, Raj K.; Al-Khattawi, Ali; Mohammed, Afzal R.

    2016-01-01

    Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats. PMID:27548263

  8. Design of Experiments to Study the Impact of Process Parameters on Droplet Size and Development of Non-Invasive Imaging Techniques in Tablet Coating.

    PubMed

    Dennison, Thomas J; Smith, Julian; Hofmann, Michael P; Bland, Charlotte E; Badhan, Raj K; Al-Khattawi, Ali; Mohammed, Afzal R

    2016-01-01

    Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats. PMID:27548263

  9. Imaging of activated complement using ultrasmall superparamagnetic iron oxide particles (USPIO) - conjugated vectors: an in vivo in utero non-invasive method to predict placental insufficiency and abnormal fetal brain development

    PubMed Central

    Girardi, G; Fraser, J; Lennen, R; Vontell, R; Jansen, M; Hutchison, G

    2015-01-01

    In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders. PMID:25245499

  10. Non-invasive Intratracheal Instillation in Mice

    PubMed Central

    Ortiz-Muñoz, Guadalupe; Looney, Mark R.

    2016-01-01

    The intratracheal instillation technique is used to deliver a variety of agents to the lungs ranging from pathogens (bacteria, viruses), toxins, to therapeutic agents. To model lung inflammation and injury, LPS can be administrated via intranasal, intratracheal, or aerosol approaches. Each technique has its limitations. The intratracheal technique can involve the non-invasive instillation method (via the oro-tracheal route) or a direct injection into the trachea. Here, we describe an optimized method for direct visual instillation of LPS via the non-invasive oro-tracheal route.

  11. Molecular Imaging System for Monitoring Tumor Angiogenesis

    NASA Astrophysics Data System (ADS)

    Aytac, Esra; Burcin Unlu, Mehmet

    2012-02-01

    In cancer, non-invasive imaging techniques that monitor molecular processes associated with the tumor angiogenesis could have a central role in the evaluation of novel antiangiogenic and proangiogenic therapies as well as early detection of the disease. Matrix metalloproteinases (MMP) can serve as specific biological targets for imaging of angiogenesis since expression of MMPs is required for angiogenesis and has been found to be upregulated in every type of human cancer and correlates with stage, invasive, metastatic properties and poor prognosis. However, for most cancers it is still unknown when, where and how MMPs are involved in the tumor angiogenesis [1]. Development of high-resolution, high sensitivity imaging techniques in parallel with the tumor models could prove invaluable for assessing the physical location and the time frame of MMP enzymatic acitivity. The goal of this study is to understand where, when and how MMPs are involved in the tumor angiogenesis. We will accomplish this goal by following two objectives: to develop a high sensitivity, high resolution molecular imaging system, to develop a virtual tumor simulator that can predict the physical location and the time frame of the MMP activity. In order to achieve our objectives, we will first develop a PAM system and develop a mathematical tumor model in which the quantitative data obtained from the PAM can be integrated. So, this work will develop a virtual tumor simulator and a molecular imaging system for monitoring tumor angiogenesis. 1.Kessenbrock, K., V. Plaks, and Z. Werb, MMP:regulators of the tumor microenvironment. Cell, 2010. 141(1)

  12. Probing the in vivo changes in oxygen saturation with photoacoustic imaging as a non-invasive means of assessing treatment progression

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; May, Jonathan P.; Wirtzfeld, Lauren; Undzys, Elijus; Li, Shyh-Dar; Kolios, Michael C.

    2015-03-01

    In vivo photoacoustic estimations of tumor oxygenation were used to assess the therapeutic efficacy of a thermosensitive liposome treatment in a pre-clinical mouse model. The treated group (n = 12) was administered doxorubicin-loaded, heat sensitive liposomes and exposed to mild hyperthermia (43°C) in order to deliver doxorubicin locally within the tumor micro-vessels. Control groups received systemic doxorubicin (n = 7) or saline (n = 12). The changes in tumor blood vessels after treatment were probed by analyzing the frequency content of the photoacoustic radiofrequency signals. Tumor oxygenation dropped by 15-20% during the first 30 minutes post-treatment when the tumors were exposed to encapsulated (Heat-Activated cyToxic - HaT-DOX) or free doxorubicin (DOX). The early (30 minutes to 5 hours) decrease in oxygen saturation strongly correlated to the reduction in tumor size assessed by caliper measurements. Control animals did not exhibit significant changes in tumor oxygenation at the early time points. The oxygenation at 7 days increased significantly for all groups. Measurements of the spectral slope from the normalized power spectra of the photoacoustic signals could also be used to differentiate between responder and non-responder mice. The results of this study suggest that photoacoustic imaging of tumors undergoing vascular-targeted cancer therapy can be used to assess treatment response early (hours) post-treatment through a combined analysis of oxygen saturation and photoacoustic radiofrequency spectroscopy.

  13. Non-invasive Imaging of Sendai Virus Infection in Pharmacologically Immunocompromised Mice: NK and T Cells, but not Neutrophils, Promote Viral Clearance after Therapy with Cyclophosphamide and Dexamethasone.

    PubMed

    Mostafa, Heba H; Vogel, Peter; Srinivasan, Ashok; Russell, Charles J

    2016-09-01

    In immunocompromised patients, parainfluenza virus (PIV) infections have an increased potential to spread to the lower respiratory tract (LRT), resulting in increased morbidity and mortality. Understanding the immunologic defects that facilitate viral spread to the LRT will help in developing better management protocols. In this study, we immunosuppressed mice with dexamethasone and/or cyclophosphamide then monitored the spread of viral infection into the LRT by using a noninvasive bioluminescence imaging system and a reporter Sendai virus (murine PIV type 1). Our results show that immunosuppression led to delayed viral clearance and increased viral loads in the lungs. After cessation of cyclophosphamide treatment, viral clearance occurred before the generation of Sendai-specific antibody responses and coincided with rebounds in neutrophils, T lymphocytes, and natural killer (NK) cells. Neutrophil suppression using anti-Ly6G antibody had no effect on infection clearance, NK-cell suppression using anti-NK antibody delayed clearance, and T-cell suppression using anti-CD3 antibody resulted in no clearance (chronic infection). Therapeutic use of hematopoietic growth factors G-CSF and GM-CSF had no effect on clearance of infection. In contrast, treatment with Sendai virus-specific polysera or a monoclonal antibody limited viral spread into the lungs and accelerated clearance. Overall, noninvasive bioluminescence was shown to be a useful tool to study respiratory viral progression, revealing roles for NK and T cells, but not neutrophils, in Sendai virus clearance after treatment with dexamethasone and cyclophosphamide. Virus-specific antibodies appear to have therapeutic potential. PMID:27589232

  14. Radionuclide imaging - A molecular key to the atherosclerotic plaque

    PubMed Central

    Langer, Harald Franz; Haubner, Roland; Pichler, Bernd Juergen; Gawaz, Meinrad

    2008-01-01

    Despite primary and secondary prevention, serious cardiovascular events like unstable angina or myocardial infarction still account for one third of all deaths worldwide. Therefore, identifying individual patients with vulnerable plaques at high risk for plaque rupture is a central challenge in cardiovascular medicine. Several non-invasive techniques, such as MRI, multislice computed tomography and electron beam tomography are currently being tested for their ability to identify such patients by morphological criteria. In contrast, molecular imaging techniques use radiolabeled molecules to detect functional aspects in atherosclerotic plaques by visualizing its biological activity. Based upon the knowledge about the pathophysiology of atherosclerosis, various studies in vitro, in vivo and the first clinical trials have used different tracers for plaque imaging studies, including radioactive labelled lipoproteins, components of the coagulation system, cytokines, mediators of the metalloproteinase system, cell adhesion receptors and even whole cells. This review gives an update on the relevant non-invasive plaque imaging approaches using nuclear imaging techniques to detect atherosclerotic vascular lesions. PMID:18582628

  15. Non-invasive monitoring of spreading depression.

    PubMed

    Bastany, Zoya J R; Askari, Shahbaz; Dumont, Guy A; Speckmann, Erwin-Josef; Gorji, Ali

    2016-10-01

    Spreading depression (SD), a slow propagating depolarization wave, plays an important role in pathophysiology of different neurological disorders. Yet, research into SD-related disorders has been hampered by the lack of non-invasive recording techniques of SD. Here we compared the manifestations of SD in continuous non-invasive electroencephalogram (EEG) recordings to invasive electrocorticographic (ECoG) recordings in order to obtain further insights into generator structures and electrogenic mechanisms of surface recording of SD. SD was induced by KCl application and simultaneous SD recordings were performed by scalp EEG as well as ECoG electrodes of somatosensory neocortex of rats using a novel homemade EEG amplifier, AgCl recording electrodes, and high chloride conductive gel. Different methods were used to analyze the data; including the spectrogram, bi-spectrogram, pattern distribution, relative spectrum power, and multivariable Gaussian fit analysis. The negative direct current (DC) shifts recorded by scalp electrodes exhibited a high homogeneity to those recorded by ECoG electrodes. Furthermore, this novel method of recording and analysis was able to separate SD recorded by scalp electrodes from non-neuronal DC shifts induced by other potential generators, such as the skin, muscles, arteries, dura, etc. These data suggest a novel application for continuous non-invasive monitoring of DC potential changes, such as SD. Non-invasive monitoring of SD would allow early intervention and improve outcome in SD-related neurological disorders. PMID:27397413

  16. Non-invasive assessment of intracranial pressure.

    PubMed

    Robba, C; Bacigaluppi, S; Cardim, D; Donnelly, J; Bertuccio, A; Czosnyka, M

    2016-07-01

    Monitoring of intracranial pressure (ICP) is invaluable in the management of neurosurgical and neurological critically ill patients. Invasive measurement of ventricular or parenchymal pressure is considered the gold standard for accurate measurement of ICP but is not always possible due to certain risks. Therefore, the availability of accurate methods to non-invasively estimate ICP has the potential to improve the management of these vulnerable patients. This review provides a comparative description of different methods for non-invasive ICP measurement. Current methods are based on changes associated with increased ICP, both morphological (assessed with magnetic resonance, computed tomography, ultrasound, and fundoscopy) and physiological (assessed with transcranial and ophthalmic Doppler, tympanometry, near-infrared spectroscopy, electroencephalography, visual-evoked potentials, and otoacoustic emissions assessment). At present, none of the non-invasive techniques alone seem suitable as a substitute for invasive monitoring. However, following the present analysis and considerations upon each technique, we propose a possible flowchart based on the combination of non-invasive techniques including those characterizing morphologic changes (e.g., repetitive US measurements of ONSD) and those characterizing physiological changes (e.g., continuous TCD). Such an integrated approach, which still needs to be validated in clinical practice, could aid in deciding whether to place an invasive monitor, or how to titrate therapy when invasive ICP measurement is contraindicated or unavailable. PMID:26515159

  17. [Pulmonary non invasive infection by Scedosporium apiospermum].

    PubMed

    Cruz, Rodrigo; Barros, Manuel; Reyes, Mirtha

    2015-08-01

    We reported a case of non-invasive pulmonary infection by Scedosporium apiospermum in 67 years old female with bronchiectasis and caverns secondary to tuberculosis. Diagnosis was made with lung CT and bronchial lavage cultures. The patient was initially treated with itraconazole for six weeks without success and then voriconazole for 16 weeks, with good clinical response. PMID:26436797

  18. Cellular phone enabled non-invasive tissue classifier.

    PubMed

    Laufer, Shlomi; Rubinsky, Boris

    2009-01-01

    Cellular phone technology is emerging as an important tool in the effort to provide advanced medical care to the majority of the world population currently without access to such care. In this study, we show that non-invasive electrical measurements and the use of classifier software can be combined with cellular phone technology to produce inexpensive tissue characterization. This concept was demonstrated by the use of a Support Vector Machine (SVM) classifier to distinguish through the cellular phone between heart and kidney tissue via the non-invasive multi-frequency electrical measurements acquired around the tissues. After the measurements were performed at a remote site, the raw data were transmitted through the cellular phone to a central computational site and the classifier was applied to the raw data. The results of the tissue analysis were returned to the remote data measurement site. The classifiers correctly determined the tissue type with a specificity of over 90%. When used for the detection of malignant tumors, classifiers can be designed to produce false positives in order to ensure that no tumors will be missed. This mode of operation has applications in remote non-invasive tissue diagnostics in situ in the body, in combination with medical imaging, as well as in remote diagnostics of biopsy samples in vitro. PMID:19365554

  19. Non-invasive diagnosis of advanced fibrosis and cirrhosis.

    PubMed

    Sharma, Suraj; Khalili, Korosh; Nguyen, Geoffrey Christopher

    2014-12-01

    Liver cirrhosis is a common and growing public health problem globally. The diagnosis of cirrhosis portends an increased risk of morbidity and mortality. Liver biopsy is considered the gold standard for diagnosis of cirrhosis and staging of fibrosis. However, despite its universal use, liver biopsy is an invasive and inaccurate gold standard with numerous drawbacks. In order to overcome the limitations of liver biopsy, a number of non-invasive techniques have been investigated for the assessment of cirrhosis. This review will focus on currently available non-invasive markers of cirrhosis. The evidence behind the use of these markers will be highlighted, along with an assessment of diagnostic accuracy and performance characteristics of each test. Non-invasive markers of cirrhosis can be radiologic or serum-based. Radiologic techniques based on ultrasound, magnetic resonance imaging and elastography have been used to assess liver fibrosis. Serum-based biomarkers of cirrhosis have also been developed. These are broadly classified into indirect and direct markers. Indirect biomarkers reflect liver function, which may decline with the onset of cirrhosis. Direct biomarkers, reflect extracellular matrix turnover, and include molecules involved in hepatic fibrogenesis. On the whole, radiologic and serum markers of fibrosis correlate well with biopsy scores, especially when excluding cirrhosis or excluding fibrosis. This feature is certainly clinically useful, and avoids liver biopsy in many cases. PMID:25492996

  20. Nanobody: The “Magic Bullet” for Molecular Imaging?

    PubMed Central

    Chakravarty, Rubel; Goel, Shreya; Cai, Weibo

    2014-01-01

    Molecular imaging involves the non-invasive investigation of biological processes in vivo at the cellular and molecular level, which can play diverse roles in better understanding and treatment of various diseases. Recently, single domain antigen-binding fragments known as 'nanobodies' were bioengineered and tested for molecular imaging applications. Small molecular size (~15 kDa) and suitable configuration of the complementarity determining regions (CDRs) of nanobodies offer many desirable features suitable for imaging applications, such as rapid targeting and fast blood clearance, high solubility, high stability, easy cloning, modular nature, and the capability of binding to cavities and difficult-to-access antigens. Using nanobody-based probes, several imaging techniques such as radionuclide-based, optical and ultrasound have been employed for visualization of target expression in various disease models. This review summarizes the recent developments in the use of nanobody-based probes for molecular imaging applications. The preclinical data reported to date are quite promising, and it is expected that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of various diseases. PMID:24578722

  1. New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology

    PubMed Central

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying

    2014-01-01

    Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850

  2. Towards non-invasive characterization of breast cancer and cancer metabolism with diffuse optics

    PubMed Central

    Busch, David R.; Choe, Regine; Durduran, Turgut; Yodh, Arjun G.

    2013-01-01

    We review recent developments in diffuse optical imaging and monitoring of breast cancer, i.e. optical mammography. Optical mammography permits non-invasive, safe and frequent measurement of tissue hemodynamics oxygen metabolism and components (lipids, water, etc.), the development of new compound indices indicative of the risk and malignancy, and holds potential for frequent non-invasive longitudinal monitoring of therapy progression. PMID:24244206

  3. Multispectral optoacoustic and MRI coregistration for molecular imaging of orthotopic model of human glioblastoma.

    PubMed

    Attia, Amalina Binte Ebrahim; Ho, Chris Jun Hui; Chandrasekharan, Prashant; Balasundaram, Ghayathri; Tay, Hui Chien; Burton, Neal C; Chuang, Kai-Hsiang; Ntziachristos, Vasilis; Olivo, Malini

    2016-07-01

    Multi-modality imaging methods are of great importance in oncologic studies for acquiring complementary information, enhancing the efficacy in tumor detection and characterization. We hereby demonstrate a hybrid non-invasive in vivo imaging approach of utilizing magnetic resonance imaging (MRI) and Multispectral Optoacoustic Tomography (MSOT) for molecular imaging of glucose uptake in an orthotopic glioblastoma in mouse. The molecular and functional information from MSOT can be overlaid on MRI anatomy via image coregistration to provide insights into probe uptake in the brain, which is verified by ex vivo fluorescence imaging and histological validation. In vivo MSOT and MRI imaging of an orthotopic glioma mouse model injected with IRDye800-2DG. Image coregistration between MSOT and MRI enables multifaceted (anatomical, functional, molecular) information from MSOT to be overlaid on MRI anatomy images to derive tumor physiological parameters such as perfusion, haemoglobin and oxygenation. PMID:27091626

  4. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study

    PubMed Central

    Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829

  5. Ultrasonic non invasive techniques for microbiological instrumentation

    NASA Astrophysics Data System (ADS)

    Elvira, L.; Sierra, C.; Galán, B.; Resa, P.

    2010-01-01

    Non invasive techniques based on ultrasounds have advantageous features to study, characterize and monitor microbiological and enzymatic reactions. These processes may change the sound speed, viscosity or particle distribution size of the medium where they take place, which makes possible their analysis using ultrasonic techniques. In this work, two different systems for the analysis of microbiological liquid media based on ultrasounds are presented. In first place, an industrial application based on an ultrasonic monitoring technique for microbiological growth detection in milk is shown. Such a system may improve the quality control strategies in food production factories, being able to decrease the time required to detect possible contaminations in packed products. Secondly, a study about the growing of the Escherichia coli DH5 α in different conditions is presented. It is shown that the use of ultrasonic non invasive characterization techniques in combination with other conventional measurements like optical density provides complementary information about the metabolism of these bacteria.

  6. [Non-invasive assessment of liver fibrosis].

    PubMed

    Cohen-Ezra, Oranit; Ben-Ari, Ziv

    2015-03-01

    Chronic liver diseases represent a major public health problem, accounting for significant morbidity and mortality worldwide. Prognosis and management of chronic liver diseases depend on the amount of liver fibrosis. Liver biopsy has long remained the gold standard for assessment of liver fibrosis. Liver biopsy is an invasive procedure with associated morbidity, it is rarely the cause for mortality, and has a few limitations. During the past two decades, in an attempt to overcome the limitations of liver biopsy, non-invasive methods for the evaluation of liver fibrosis have been developed, mainly in the field of viral hepatitis. This review will focus on different methods available for non-invasive evaluation of liver fibrosis including a biological approach which quantifies serum levels of biomarkers of fibrosis and physical techniques which measure liver stiffness by transient elastography, ultrasound or magnetic resonance based elastography, their accuracy, advantages and disadvantages. PMID:25962254

  7. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have

    PubMed Central

    Bujanda, Luis

    2016-01-01

    Pancreatic cancer (PC) is probably the most lethal tumor being forecast as the second most fatal cancer by 2020 in developed countries. Only the earliest forms of the disease are a curable disease but it has to be diagnosed before symptoms starts. Detection at curable phase demands screening intervention for early detection and differential diagnosis. Unfortunately, no successful strategy or image technique has been concluded as effective approach and currently non-invasive biomarkers are the hope. Multiple translational research studies have explored minimally or non-invasive biomarkers in biofluids-blood, urine, stool, saliva or pancreatic juice, but diagnostic performance has not been validated yet. Nowadays no biomarker, alone or in combination, has been superior to carbohydrate antigen 19-9 (CA19-9) in sensitivity and specificity. Although the number of novel biomarkers for early diagnosis of PC has been increasing during the last couple of years, no molecular signature is ready to be implemented in clinical routine. Under the uncertain future, miRNAs profiling and methylation status seem to be the most promising biomarkers. However, good results in larger validations are urgently needed before application. Industry efforts through biotech and pharmaceutical companies are urgently required to demonstrate accuracy and validate promising results from basic and translational results. PMID:27162784

  8. Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have.

    PubMed

    Herreros-Villanueva, Marta; Bujanda, Luis

    2016-04-01

    Pancreatic cancer (PC) is probably the most lethal tumor being forecast as the second most fatal cancer by 2020 in developed countries. Only the earliest forms of the disease are a curable disease but it has to be diagnosed before symptoms starts. Detection at curable phase demands screening intervention for early detection and differential diagnosis. Unfortunately, no successful strategy or image technique has been concluded as effective approach and currently non-invasive biomarkers are the hope. Multiple translational research studies have explored minimally or non-invasive biomarkers in biofluids-blood, urine, stool, saliva or pancreatic juice, but diagnostic performance has not been validated yet. Nowadays no biomarker, alone or in combination, has been superior to carbohydrate antigen 19-9 (CA19-9) in sensitivity and specificity. Although the number of novel biomarkers for early diagnosis of PC has been increasing during the last couple of years, no molecular signature is ready to be implemented in clinical routine. Under the uncertain future, miRNAs profiling and methylation status seem to be the most promising biomarkers. However, good results in larger validations are urgently needed before application. Industry efforts through biotech and pharmaceutical companies are urgently required to demonstrate accuracy and validate promising results from basic and translational results. PMID:27162784

  9. Photoacoustic molecular imaging

    NASA Astrophysics Data System (ADS)

    Kiser, William L., Jr.; Reinecke, Daniel; DeGrado, Timothy; Bhattacharyya, Sibaprasad; Kruger, Robert A.

    2007-02-01

    It is well documented that photoacoustic imaging has the capability to differentiate tissue based on the spectral characteristics of tissue in the optical regime. The imaging depth in tissue exceeds standard optical imaging techniques, and systems can be designed to achieve excellent spatial resolution. A natural extension of imaging the intrinsic optical contrast of tissue is to demonstrate the ability of photoacoustic imaging to detect contrast agents based on optically absorbing dyes that exhibit well defined absorption peaks in the infrared. The ultimate goal of this project is to implement molecular imaging, in which Herceptin TM, a monoclonal antibody that is used as a therapeutic agent in breast cancer patients that over express the HER2 gene, is labeled with an IR absorbing dye, and the resulting in vivo bio-distribution is mapped using multi-spectral, infrared stimulation and subsequent photoacoustic detection. To lay the groundwork for this goal and establish system sensitivity, images were collected in tissue mimicking phantoms to determine maximum detection depth and minimum detectable concentration of Indocyanine Green (ICG), a common IR absorbing dye, for a single angle photoacoustic acquisition. A breast mimicking phantom was constructed and spectra were also collected for hemoglobin and methanol. An imaging schema was developed that made it possible to separate the ICG from the other tissue mimicking components in a multiple component phantom. We present the results of these experiments and define the path forward for the detection of dye labeled Herceptin TM in cell cultures and mice models.

  10. Physiology of non-invasive respiratory support.

    PubMed

    Alexiou, Stamatia; Panitch, Howard B

    2016-06-01

    Non-invasive ventilation (NIV) is used in neonates to treat extrathoracic and intrathoracic airway obstruction, parenchymal lung disease and disorders of control of breathing. Avoidance of airway intubation is associated with a reduction in the incidence of chronic lung disease among preterm infants with respiratory distress syndrome. Use of nasal continuous positive airway pressure (nCPAP) may help establish and maintain functional residual capacity (FRC), decrease respiratory work, and improve gas exchange. Other modes of non-invasive ventilation, which include heated humidified high-flow nasal cannula therapy (HHHFNC), nasal intermittent mandatory ventilation (NIMV), non-invasive pressure support ventilation (NI-PSV), and bi-level CPAP (SiPAP™), have also been shown to provide additional benefit in improving breathing patterns, reducing work of breathing, and increasing gas exchange when compared with nCPAP. Newer modes, such as neurally adjusted ventilatory assist (NAVA), hold the promise of improving patient-ventilator synchrony and so might ultimately improve outcomes for preterm infants with respiratory distress. PMID:26923501