Science.gov

Sample records for molecular mechanics approach

  1. Atopic dermatitis: molecular mechanisms, clinical aspects and new therapeutical approaches.

    PubMed

    Galli, E; Cicconi, R; Rossi, P; Casati, A; Brunetti, E; Mancino, G

    2003-03-01

    Atopic dermatitis (AD) is a genetically determinated, chronic inflammatory skin disorder associated with cutaneous erythema and severe pruritus, affecting 10-15% of children with increasing incidence and socio-economical relevance. Frequently, AD is associated with development of allergic rhinitis and/or asthma later in childhood. In most of patients AD is associated with a sensitization to food and/or environmental allergens and increased serum-IgE, while only a fewer percentage missed links to the classical atopic diathesis. Currently investigated pathogenetic aspects of AD include imbalanced Th1/Th2 responses, altered prostaglandin metabolism, intrinsic defects in the keratinocyte function, delayed eosinophil apoptosis, and IgE-mediated facilitated antigen presentation by epidermal dendritic cells. An inflammatory response of the two-phase-type and the effects of staphylococcal superantigens (SAgs) are also reported. At present a standardized cure of AD and a consensus on therapeutical approach of the severe form of the disease have not been established. Current management of AD is directed to the reduction of cutaneous inflammation and infection, mainly by S. aureus, and to the elimination of exacerbating factors (irritants, allergens, emotional stresses). Since patient with AD show abnormalities in immunoregulation, therapy directed to adjustment of their immune function could represent an alternative approach, particularly in the severe form of the disease. In this review, we analyse the clinical and genetic aspects of AD, the related molecular mechanisms, and the immunobiology of the disease, focusing our attention on current treatments and future perspectives on this topic. PMID:12630559

  2. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    NASA Astrophysics Data System (ADS)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  3. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    PubMed

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio

  4. Complement involvement in periodontitis: molecular mechanisms and rational therapeutic approaches

    PubMed Central

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D.

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis. PMID:26306443

  5. Ab initio quantum mechanical/molecular mechanical simulation of electron transfer process: Fractional electron approach

    NASA Astrophysics Data System (ADS)

    Zeng, Xiancheng; Hu, Hao; Hu, Xiangqian; Cohen, Aron J.; Yang, Weitao

    2008-03-01

    Electron transfer (ET) reactions are one of the most important processes in chemistry and biology. Because of the quantum nature of the processes and the complicated roles of the solvent, theoretical study of ET processes is challenging. To simulate ET processes at the electronic level, we have developed an efficient density functional theory (DFT) quantum mechanical (QM)/molecular mechanical (MM) approach that uses the fractional number of electrons as the order parameter to calculate the redox free energy of ET reactions in solution. We applied this method to study the ET reactions of the aqueous metal complexes Fe(H2O)62+/3+ and Ru(H2O)62+/3+. The calculated oxidation potentials, 5.82 eV for Fe(II/III) and 5.14 eV for Ru(II/III), agree well with the experimental data, 5.50 and 4.96 eV, for iron and ruthenium, respectively. Furthermore, we have constructed the diabatic free energy surfaces from histogram analysis based on the molecular dynamics trajectories. The resulting reorganization energy and the diabatic activation energy also show good agreement with experimental data. Our calculations show that using the fractional number of electrons (FNE) as the order parameter in the thermodynamic integration process leads to efficient sampling and validate the ab initio QM/MM approach in the calculation of redox free energies.

  6. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    PubMed

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data. PMID:26592414

  7. Calcific Aortic Valve Disease: Molecular Mechanisms and Therapeutic Approaches

    PubMed Central

    Lerman, Daniel Alejandro; Prasad, Sai; Alotti, Nasri

    2016-01-01

    Calcification occurs in atherosclerotic vascular lesions and In the aortic valve. Calcific aortic valve disease (CAVD) is a slow, progressive disorder that ranges from mild valve thickening without obstruction of blood flow, termed aortic sclerosis, to severe calcification with impaired leaflet motion, termed aortic stenosis. In the past, this process was thought to be ‘degenerative’ because of time-dependent wear and tear of the leaflets, with passive calcium deposition. The presence of osteoblasts in atherosclerotic vascular lesions and in CAVD implies that calcification is an active, regulated process akin to atherosclerosis, with lipoprotein deposition and chronic inflammation. If calcification is active, via pro-osteogenic pathways, one might expect that development and progression of calcification could be inhibited. The overlap in the clinical factors associated with calcific valve disease and atherosclerosis provides further support for a shared disease mechanism. In our recent research we used an in vitro porcine valve interstitial cell model to study spontaneous calcification and potential promoters and inhibitors. Using this model, we found that denosumab, a human monoclonal antibody targeting the receptor activator of nuclear factor-κB ligand may, at a working concentration of 50 μg/mL, inhibit induced calcium deposition to basal levels.

  8. Molecular Mechanics

    PubMed Central

    Vanommeslaeghe, Kenno; Guvench, Olgun; MacKerell, Alexander D.

    2014-01-01

    Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and weaknesses. Variations and recent developments such as polarizable force fields are discussed. The section ends with a brief overview of common force fields in CSBDD. PMID:23947650

  9. Exploring host-guest complexation mechanisms by a molecular dynamics/quantum mechanics/continuum solvent model approach

    NASA Astrophysics Data System (ADS)

    Ye, Renlong; Nie, Xuemei; Zhou, Yumei; Wong, Chung F.; Gong, Xuedong; Jiang, Wei; Tang, Weihua; Wang, Yan A.; Heine, Thomas; Zhou, Baojing

    2016-03-01

    We introduce a molecular dynamics/quantum mechanics/continuum solvent model (MD/QM/CSM) approach to investigate binding mechanisms of host-guest systems. The representative conformations of host, guest, and their complex generated from MD simulations at the molecular-mechanics level are used for binding free energy calculations based on a QM/CSM model. We use this approach to explore the binding mechanisms of β-cyclodextrin (β-CD) and 2, 6-di-methyl-β-CD (DM-β-CD) with various guest molecules. Our results suggest that solvent effects play a more important role in determining the relative binding affinities of DM-β-CD than those of β-CD mainly because the former is more flexible than the latter.

  10. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases

    PubMed Central

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A.

    2015-01-01

    Background: A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. Objectives: We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. Methods: For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Conclusions: Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Citation: Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that

  11. A NEW APPROACH TO UNDERSTANDING THE MOLECULAR MECHANISMS THROUGH WHICH ESTROGENS AFFECT COGNITION

    PubMed Central

    Frick, Karyn M.; Fernandez, Stephanie M.; Harburger, Lauren L.

    2009-01-01

    Traditional approaches to the study of hormones and cognition have been primarily observational or correlational in nature. Because this work does not permit causal relationships to be identified, very little is known about the specific molecules and cellular events through which hormones affect cognitive function. In this review, we propose a new approach to study hormones and memory, where the systematic blocking of cellular events can reveal which such events are necessary for hormones to influence memory consolidation. The discussion will focus on the modulation of the hippocampus and hippocampal memory by estrogens, given the extensive literature on this subject, and will illustrate how the application of this approach is beginning to reveal important new information about the molecular mechanisms through which estrogens modulate memory consolidation. The clinical relevance of this work will also be discussed. PMID:19913600

  12. Acceleration of Semiempirical Quantum Mechanical Calculations by Extended Lagrangian Molecular Dynamics Approach.

    PubMed

    Nam, Kwangho

    2013-08-13

    The implementation and performance of the atom-centered density matrix propagation (ADMP) [J. Chem. Phys. 2001, 114, 9758] and the curvy-steps (CURV) methods [J. Chem. Phys. 2004, 121, 1152] are described. These methods solve the electronic Schrödinger equation approximately by propagating the electronic degrees of freedom using the extended Lagrangian molecular dynamics (ELMD) simulation approach. The ADMP and CURV methods are implemented and parallelized to accelerate semiempirical quantum mechanical (QM) methods (such as the MNDO, AM1, PM3, MNDO/d, and AM1/d methods). Test calculations show that both the ADMP and the CURV methods are 2∼4 times faster than the Born-Oppenheimer molecular dynamics (BOMD) method and conserve the total energy well. The accuracy of the ADMP and CURV simulations is comparable to the BOMD simulations. The parallel implementation accelerates the MD simulation by up to 28 fold for the ADMP method and 25 fold for the CURV method, respectively, relative to the speed of the single core BOMD. In addition, a multiple time scale (MTS) approach is introduced to further speed up the semiempirical QM and QM/MM ELMD simulations. Since a larger integration time step is used for the propagation of the nuclear coordinates than that for the electronic degrees of freedom, the MTS approach allows the ELMD simulation to be carried out with a time step that is larger than the time step accessible by the original ADMP and CURV methods. It renders MD simulation to be carried out about 20 times faster than the BOMD simulation, and yields results that are comparable to the single time scale simulation results. The use of the methods introduced in the present work provides an efficient way to extend the length of the QM and QM/MM molecular dynamics simulations beyond the length accessible by BOMD simulation. PMID:26584095

  13. The mechanism of M.HhaI DNA C5 cytosine methyltransferase enzyme: A quantum mechanics/molecular mechanics approach

    PubMed Central

    Zhang, Xiaodong; Bruice, Thomas C.

    2006-01-01

    The mechanism of DNA cytosine-5-methylation catalyzed by the bacterial M.HhaI enzyme has been considered as a stepwise nucleophilic addition of Cys-81-S− to cytosine C6 followed by C5 nucleophilic replacement of the methyl of S-adenosyl-l-methionine to produce 5-methyl-6-Cys-81-S-5,6-dihydrocytosine. In this study, we show that the reaction is concerted from a series of energy calculations by using the quantum mechanical/molecular mechanical hybrid method. Deprotonation of 5-methyl-6-Cys-81-S-5,6-dihydrocytosine and expulsion of Cys-81-S− provides the product DNA 5-methylcytosine. A required base catalyst for this deprotonation is not available as a member of the active site structure. A water channel between the active site and bulk water allows entrance of solvent to the active site. Hydroxide at 10−7 mole fraction (pH = 7) is shown to be sufficient for the required catalysis. We also show that Glu-119-CO2H can divert the reaction by protonating cytosine N3 when Cys-81-S− attacks cytosine, to form the 6-Cys-81-S-3-hydrocytosine. The reactants and 6-Cys-81-S-3-hydrocytosine product are in rapid equilibrium, and this explains the observed hydrogen exchange of cytosine with solvent. PMID:16606828

  14. Moving beyond molecular mechanisms

    PubMed Central

    2015-01-01

    A major goal in cell biology is to bridge the gap in our understanding of how molecular mechanisms contribute to cell and organismal physiology. Approaches well established in the physical sciences could be instrumental in achieving this goal. A better integration of the physical sciences with cell biology will therefore be an important step in our quest to decipher how cells work together to construct a living organism. PMID:25601400

  15. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    DOE PAGESBeta

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-02-02

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in themore » microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Lastly, cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane.« less

  16. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach.

    PubMed

    Yoo, Brian; Jing, Benxin; Jones, Stuart E; Lamberti, Gary A; Zhu, Yingxi; Shah, Jindal K; Maginn, Edward J

    2016-01-01

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called "green solvents" because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in the microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane. PMID:26831599

  17. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach

    PubMed Central

    Yoo, Brian; Jing, Benxin; Jones, Stuart E.; Lamberti, Gary A.; Zhu, Yingxi; Shah, Jindal K.; Maginn, Edward J.

    2016-01-01

    Ionic liquids (ILs) are salts that remain liquid down to low temperatures, and sometimes well below room temperature. ILs have been called “green solvents” because of their extraordinarily low vapor pressure and excellent solvation power, but ecotoxicology studies have shown that some ILs exhibit greater toxicity than traditional solvents. A fundamental understanding of the molecular mechanisms responsible for IL toxicity remains elusive. Here we show that one mode of IL toxicity on unicellular organisms is driven by swelling of the cell membrane. Cytotoxicity assays, confocal laser scanning microscopy, and molecular simulations reveal that IL cations nucleate morphological defects in the microbial cell membrane at concentrations near the half maximal effective concentration (EC50) of several microorganisms. Cytotoxicity increases with increasing alkyl chain length of the cation due to the ability of the longer alkyl chain to more easily embed in, and ultimately disrupt, the cell membrane. PMID:26831599

  18. Mechanical Properties of Carbon Nanofiber Reinforced Polymer Composites-Molecular Dynamics Approach

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Chandra, Rakesh; Kumar, Pramod; Kumar, Navin

    2016-06-01

    Molecular dynamics simulation has been used to study the effect of carbon nanofiber (CNF) volume fraction ( V f) and aspect ratio ( l/d) on mechanical properties of CNF-reinforced polypropylene (PP) composites. Materials Studio 5.5 has been used as a tool for finding the modulus and damping in composites. CNF composition in PP was varied by volume from 0% to 16%. The aspect ratio of CNF was varied from l/d = 5 to l/d = 100. Results show that, with only 2% addition by volume of CNF in PP, E 11 increases 748%. Increase in E 22 is much less in comparison to the increase in E 11. With the increase in the CNF aspect ratio ( l/d) up to l/d = 60, the longitudinal loss factor ( η 11) decreases rapidly. The results of this study have been compared with those available in the literature.

  19. Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach

    PubMed Central

    Liddelow, Shane A.; Temple, Sally; Møllgård, Kjeld; Gehwolf, Renate; Wagner, Andrea; Bauer, Hannelore; Bauer, Hans-Christian; Phoenix, Timothy N.; Dziegielewska, Katarzyna M.; Saunders, Norman R.

    2012-01-01

    Exchange mechanisms across the blood–cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their molecular or developmental characteristics. We examined the transcriptome of lateral ventricular choroid plexus in embryonic day 15 (E15) and adult mice. Numerous genes identified in the adult were expressed at similar levels at E15, indicating substantial plexus maturity early in development. Some genes coding for key functions (intercellular/tight junctions, influx/efflux transporters) changed expression during development and their expression patterns are discussed in the context of available physiological/permeability results in the developing brain. Three genes: Secreted protein acidic and rich in cysteine (Sparc), Glycophorin A (Gypa) and C (Gypc), were identified as those whose gene products are candidates to target plasma proteins to choroid plexus cells. These were investigated using quantitative- and single-cell-PCR on plexus epithelial cells that were albumin- or total plasma protein-immunopositive. Results showed a significant degree of concordance between plasma protein/albumin immunoreactivity and expression of the putative transporters. Immunohistochemistry identified SPARC and GYPA in choroid plexus epithelial cells in the embryo with a subcellular distribution that was consistent with transport of albumin from blood to cerebrospinal fluid. In adult plexus this pattern of immunostaining was absent. We propose a model of the cellular mechanism in which SPARC and GYPA, together with identified vesicle-associated membrane proteins (VAMPs) may act as receptors/transporters in developmentally regulated transfer of plasma proteins at the blood–CSF interface. PMID:22457777

  20. Molecular mechanics approach for design and conformational studies of macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Rohini, Akbar, Rifat; Kanungo, B. K.

    2015-08-01

    Computational Chemistry has revolutionized way of viewing molecules at the quantum mechanical scale by allowing simulating various chemical scenarios that are not possible to study in a laboratory. The remarkable applications of computational chemistry have promoted to design and test of the effectiveness of various methods for searching the conformational space of highly flexible molecules. In this context, we conducted a series of optimization and conformational searches on macrocyclic based ligands, 9N3Me5Ox, (1,4,7-tris(5-methyl-8-hydroxyquinoline)-1,4,7-triazacyclononane) and 12N3Me5Ox, (1,5,9-tris(5-methyl-8-hydroxyquinoline)-1,5,9-triazacyclododecane) and studied their selectivity and coordination behavior with some lanthanide metal ions in molecular mechanics and semiempirical methods. The methods include both systematic and random conformational searches for dihedral angles, torsion angles and Cartesian coordinates. Structural studies were carried out by using geometry optimization, coordination scans and electronic properties were evaluated. The results clearly show that chair-boat conformational isomer of 9N3Me5Ox ligand is more stable due to lower eclipsing ethane interaction and form stronger adduct complexes with lanthanide metal ion. This is because of the fact that, in a central unit of 9N3 of the ligand form six endo type bonds out of nine. The rest of bonds have trans conformation. In contrast, for the adduct of 12N3Me5Ox, two C-C bonds have on eclipsed conformation, and others have synclinal and antiperiplanar confirmations. The distortion of the two eclipsed conformations may affect the yields and the stability of the complexes.

  1. Molecular mechanics approach for design and conformational studies of macrocyclic ligands

    SciTech Connect

    Rohini,; Akbar, Rifat; Kanungo, B. K.

    2015-08-28

    Computational Chemistry has revolutionized way of viewing molecules at the quantum mechanical scale by allowing simulating various chemical scenarios that are not possible to study in a laboratory. The remarkable applications of computational chemistry have promoted to design and test of the effectiveness of various methods for searching the conformational space of highly flexible molecules. In this context, we conducted a series of optimization and conformational searches on macrocyclic based ligands, 9N3Me5Ox, (1,4,7-tris(5-methyl-8-hydroxyquinoline)-1,4,7-triazacyclononane) and 12N3Me5Ox, (1,5,9-tris(5-methyl-8-hydroxyquinoline)-1,5,9-triazacyclododecane) and studied their selectivity and coordination behavior with some lanthanide metal ions in molecular mechanics and semiempirical methods. The methods include both systematic and random conformational searches for dihedral angles, torsion angles and Cartesian coordinates. Structural studies were carried out by using geometry optimization, coordination scans and electronic properties were evaluated. The results clearly show that chair-boat conformational isomer of 9N3Me5Ox ligand is more stable due to lower eclipsing ethane interaction and form stronger adduct complexes with lanthanide metal ion. This is because of the fact that, in a central unit of 9N3 of the ligand form six endo type bonds out of nine. The rest of bonds have trans conformation. In contrast, for the adduct of 12N3Me5Ox, two C-C bonds have on eclipsed conformation, and others have synclinal and antiperiplanar confirmations. The distortion of the two eclipsed conformations may affect the yields and the stability of the complexes.

  2. Waterlogging Tolerance of Crops: Breeding, Mechanism of Tolerance, Molecular Approaches, and Future Prospects

    PubMed Central

    Ahmed, F.; Rafii, M. Y.; Ismail, M. R.; Juraimi, A. S.; Rahim, H. A.; Asfaliza, R.; Latif, M. A.

    2013-01-01

    Submergence or flood is one of the major harmful abiotic stresses in the low-lying countries and crop losses due to waterlogging are considerably high. Plant breeding techniques, conventional or genetic engineering, might be an effective and economic way of developing crops to grow successfully in waterlogged condition. Marker assisted selection (MAS) is a new and more effective approach which can identify genomic regions of crops under stress, which could not be done previously. The discovery of comprehensive molecular linkage maps enables us to do the pyramiding of desirable traits to improve in submergence tolerance through MAS. However, because of genetic and environmental interaction, too many genes encoding a trait, and using undesirable populations the mapping of QTL was hampered to ensure proper growth and yield under waterlogged conditions Steady advances in the field of genomics and proteomics over the years will be helpful to increase the breeding programs which will help to accomplish a significant progress in the field crop variety development and also improvement in near future. Waterlogging response of soybean and major cereal crops, as rice, wheat, barley, and maize and discovery of QTL related with tolerance of waterlogging, development of resistant variety, and, in addition, future prospects have also been discussed. PMID:23484164

  3. Waterlogging tolerance of crops: breeding, mechanism of tolerance, molecular approaches, and future prospects.

    PubMed

    Ahmed, F; Rafii, M Y; Ismail, M R; Juraimi, A S; Rahim, H A; Asfaliza, R; Latif, M A

    2013-01-01

    Submergence or flood is one of the major harmful abiotic stresses in the low-lying countries and crop losses due to waterlogging are considerably high. Plant breeding techniques, conventional or genetic engineering, might be an effective and economic way of developing crops to grow successfully in waterlogged condition. Marker assisted selection (MAS) is a new and more effective approach which can identify genomic regions of crops under stress, which could not be done previously. The discovery of comprehensive molecular linkage maps enables us to do the pyramiding of desirable traits to improve in submergence tolerance through MAS. However, because of genetic and environmental interaction, too many genes encoding a trait, and using undesirable populations the mapping of QTL was hampered to ensure proper growth and yield under waterlogged conditions Steady advances in the field of genomics and proteomics over the years will be helpful to increase the breeding programs which will help to accomplish a significant progress in the field crop variety development and also improvement in near future. Waterlogging response of soybean and major cereal crops, as rice, wheat, barley, and maize and discovery of QTL related with tolerance of waterlogging, development of resistant variety, and, in addition, future prospects have also been discussed. PMID:23484164

  4. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches

    PubMed Central

    Rosenbaum, Anton I.; Maxfield, Frederick R.

    2010-01-01

    Cholesterol is an important lipid of mammalian cells. Its unique physicochemical properties modulate membrane behavior and it serves as the precursor for steroid hormones, oxysterols and vitamin D. Cholesterol is effluxed from the late endosomes/lysosomes via the concerted action of at least two distinct proteins: Niemann-Pick C1 and Niemann-Pick C2. Mutations in these two proteins manifest as Niemann-Pick type C disease – a very rare, usually fatal, autosomal, recessive, neurovisceral, lysosomal storage disorder. In this review we discuss the possible mechanisms of action for NPC1 and NPC2 in mediating cholesterol efflux, as well as the different therapeutic approaches being pursued for the treatment of this lipid storage disorder. PMID:20807315

  5. Multi-Omics Approach Identifies Molecular Mechanisms of Plant-Fungus Mycorrhizal Interaction

    PubMed Central

    Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika; Desai, Shalaka; Dai, Yang; Cseke, Leland J.; Collart, Frank R.

    2016-01-01

    In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root—mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensor systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with 15 transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and jasmonic acid. This multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation. PMID:26834754

  6. Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction

    DOE PAGESBeta

    Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika; Desai, Shalaka D.; Dai, Yang; Cseke, Leland; Collart, Frank R.

    2016-01-19

    In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less

  7. A hierarchical approach to accurate predictions of macroscopic thermodynamic behavior from quantum mechanics and molecular simulations

    NASA Astrophysics Data System (ADS)

    Garrison, Stephen L.

    2005-07-01

    The combination of molecular simulations and potentials obtained from quantum chemistry is shown to be able to provide reasonably accurate thermodynamic property predictions. Gibbs ensemble Monte Carlo simulations are used to understand the effects of small perturbations to various regions of the model Lennard-Jones 12-6 potential. However, when the phase behavior and second virial coefficient are scaled by the critical properties calculated for each potential, the results obey a corresponding states relation suggesting a non-uniqueness problem for interaction potentials fit to experimental phase behavior. Several variations of a procedure collectively referred to as quantum mechanical Hybrid Methods for Interaction Energies (HM-IE) are developed and used to accurately estimate interaction energies from CCSD(T) calculations with a large basis set in a computationally efficient manner for the neon-neon, acetylene-acetylene, and nitrogen-benzene systems. Using these results and methods, an ab initio, pairwise-additive, site-site potential for acetylene is determined and then improved using results from molecular simulations using this initial potential. The initial simulation results also indicate that a limited range of energies important for accurate phase behavior predictions. Second virial coefficients calculated from the improved potential indicate that one set of experimental data in the literature is likely erroneous. This prescription is then applied to methanethiol. Difficulties in modeling the effects of the lone pair electrons suggest that charges on the lone pair sites negatively impact the ability of the intermolecular potential to describe certain orientations, but that the lone pair sites may be necessary to reasonably duplicate the interaction energies for several orientations. Two possible methods for incorporating the effects of three-body interactions into simulations within the pairwise-additivity formulation are also developed. A low density

  8. A Molecular Mechanics Approach to Modeling Protein-Ligand Interactions: Relative Binding Affinities in Congeneric Series

    PubMed Central

    Rapp, Chaya S.; Kalyanaraman, Chakrapani; Schiffmiller, Aviva; Schoenbrun, Esther Leah; Jacobson, Matthew P.

    2011-01-01

    We introduce the “Prime-ligand” method for ranking ligands in congeneric series. The method employs a single scoring function, the OPLS-AA/GBSA molecular mechanics/implicit solvent model, for all stages of sampling and scoring. We evaluate the method using 12 test sets of congeneric series for which experimental binding data is available in the literature, as well as the structure of one member of the series bound to the protein. Ligands are ‘docked’ by superimposing a common stem fragment among the compounds in the series using a crystal complex from the Protein Databank, and sampling the conformational space of the variable region. Our results show good correlation between our predicted rankings and experimental data for cases in which binding affinities differ by at least one order of magnitude. For 11 out of 12 cases, >90% of such ligand pairs could be correctly ranked, while for the remaining case, Factor Xa, 76% of such pairs were correctly ranked. A small number of compounds could not be docked using the current protocol due to the large size of functional groups that could not be accommodated by a rigid receptor. CPU requirements for the method, involving CPU-minutes per ligand, are modest compared with more rigorous methods that use similar force fields, such as free energy perturbation. We also benchmark the scoring function using series of ligand bound to the same protein within the CSAR data set. We demonstrate that energy minimization of ligand in the crystal structures is critical to obtain any correlation with experimentally determined binding affinities. PMID:21780805

  9. A Module Analysis Approach to Investigate Molecular Mechanism of TCM Formula: A Trial on Shu-feng-jie-du Formula

    PubMed Central

    Zhang, Fangbo; Tang, Shihuan; Liu, Xi; Gao, Yibo; Wang, Yanping

    2013-01-01

    At the molecular level, it is acknowledged that a TCM formula is often a complex system, which challenges researchers to fully understand its underlying pharmacological action. However, module detection technique developed from complex network provides new insight into systematic investigation of the mode of action of a TCM formula from the molecule perspective. We here proposed a computational approach integrating the module detection technique into a 2-class heterogeneous network (2-HN) which models the complex pharmacological system of a TCM formula. This approach takes three steps: construction of a 2-HN, identification of primary pharmacological units, and pathway analysis. We employed this approach to study Shu-feng-jie-du (SHU) formula, which aimed at discovering its molecular mechanism in defending against influenza infection. Actually, four primary pharmacological units were identified from the 2-HN for SHU formula and further analysis revealed numbers of biological pathways modulated by the four pharmacological units. 24 out of 40 enriched pathways that were ranked in top 10 corresponding to each of the four pharmacological units were found to be involved in the process of influenza infection. Therefore, this approach is capable of uncovering the mode of action underlying a TCM formula via module analysis. PMID:24376467

  10. Molecular mechanisms of epilepsy

    PubMed Central

    Staley, Kevin

    2015-01-01

    Decades of experimental work have established an imbalance of excitation and inhibition as the leading mechanism of the transition from normal brain function to seizure. In epilepsy, these transitions are rare and abrupt. Transition processes incorporating positive feedback, such as activity-dependent disinhibition, could provide these unique timing features. A rapidly expanding array of genetic etiologies will help delineate the molecular mechanism(s). This delineation will entail quite a bit of cell biology. The genes discovered to date are currently more remarkable for their diversity than their similarities. PMID:25710839

  11. Systematic Analysis of the Molecular Mechanism Underlying Decidualization Using a Text Mining Approach.

    PubMed

    Liu, Ji-Long; Wang, Tong-Song

    2015-01-01

    Decidualization is a crucial process for successful embryo implantation and pregnancy in humans. Defects in decidualization during early pregnancy are associated with several pregnancy complications, such as pre-eclampsia, intrauterine growth restriction and recurrent pregnancy loss. However, the mechanism underlying decidualization remains poorly understood. In the present study, we performed a systematic analysis of decidualization-related genes using text mining. We identified 286 genes for humans and 287 genes for mice respectively, with an overlap of 111 genes shared by both species. Through enrichment test, we demonstrated that although divergence was observed, the majority of enriched gene ontology terms and pathways were shared by both species, suggesting that functional categories were more conserved than individual genes. We further constructed a decidualization-related protein-protein interaction network consisted of 344 nodes connected via 1,541 edges. We prioritized genes in this network and identified 12 genes that may be key regulators of decidualization. These findings would provide some clues for further research on the mechanism underlying decidualization. PMID:26222155

  12. Systematic Analysis of the Molecular Mechanism Underlying Decidualization Using a Text Mining Approach

    PubMed Central

    Liu, Ji-Long; Wang, Tong-Song

    2015-01-01

    Decidualization is a crucial process for successful embryo implantation and pregnancy in humans. Defects in decidualization during early pregnancy are associated with several pregnancy complications, such as pre-eclampsia, intrauterine growth restriction and recurrent pregnancy loss. However, the mechanism underlying decidualization remains poorly understood. In the present study, we performed a systematic analysis of decidualization-related genes using text mining. We identified 286 genes for humans and 287 genes for mice respectively, with an overlap of 111 genes shared by both species. Through enrichment test, we demonstrated that although divergence was observed, the majority of enriched gene ontology terms and pathways were shared by both species, suggesting that functional categories were more conserved than individual genes. We further constructed a decidualization-related protein-protein interaction network consisted of 344 nodes connected via 1,541 edges. We prioritized genes in this network and identified 12 genes that may be key regulators of decidualization. These findings would provide some clues for further research on the mechanism underlying decidualization. PMID:26222155

  13. Combining classical and molecular approaches elaborates on the complexity of mechanisms underpinning anterior regeneration.

    PubMed

    Evans, Deborah J; Owlarn, Suthira; Tejada Romero, Belen; Chen, Chen; Aboobaker, A Aziz

    2011-01-01

    The current model of planarian anterior regeneration evokes the establishment of low levels of Wnt signalling at anterior wounds, promoting anterior polarity and subsequent elaboration of anterior fate through the action of the TALE class homeodomain PREP. The classical observation that decapitations positioned anteriorly will regenerate heads more rapidly than posteriorly positioned decapitations was among the first to lead to the proposal of gradients along an anteroposterior (AP) axis in a developmental context. An explicit understanding of this phenomenon is not included in the current model of anterior regeneration. This raises the question what the underlying molecular and cellular basis of this temporal gradient is, whether it can be explained by current models and whether understanding the gradient will shed light on regenerative events. Differences in anterior regeneration rate are established very early after amputation and this gradient is dependent on the activity of Hedgehog (Hh) signalling. Animals induced to produce two tails by either Smed-APC-1(RNAi) or Smed-ptc(RNAi) lose anterior fate but form previously described ectopic anterior brain structures. Later these animals form peri-pharyngeal brain structures, which in Smed-ptc(RNAi) grow out of the body establishing a new A/P axis. Combining double amputation and hydroxyurea treatment with RNAi experiments indicates that early ectopic brain structures are formed by uncommitted stem cells that have progressed through S-phase of the cell cycle at the time of amputation. Our results elaborate on the current simplistic model of both AP axis and brain regeneration. We find evidence of a gradient of hedgehog signalling that promotes posterior fate and temporarily inhibits anterior regeneration. Our data supports a model for anterior brain regeneration with distinct early and later phases of regeneration. Together these insights start to delineate the interplay between discrete existing, new, and then

  14. Molecular mechanisms of medullary thyroid carcinoma: current approaches in diagnosis and treatment.

    PubMed

    Boikos, S A; Stratakis, C A

    2008-01-01

    Medullary thyroid carcinoma is the most common cause of death among patients with multiple endocrine neoplasia (MEN) 2. Dominant-activating mutations in the RET proto-oncogene have been shown to have a central role in the development of MEN 2 and sporadic medullary thyroid cancer (MTC): about half of sporadic MTCs are caused by somatic genetic changes of the RET oncogene. Inactivating mutations of the same gene lead to Hirschprung disease and other developmental defects. Thus, RET genetic changes lead to phenotypes that largely depend on their location in the gene and the function and timing of developmental expression of the RET protein. The reproducibility of the phenotype caused by each RET genotype led to MEN 2/MTC being among the first conditions in Medicine where a drastic measure is applied to prevent cancer, following genetic testing: thyroidectomy is currently routinely done in young children that are carriers of MTC-predisposing RET mutations. RET inhibitors have been also developed recently and are used in various types of thyroid and other cancers. This report reviews the RET involvement in the etiology of MEN 2 and MTC and updates the therapeutic approach in preclinical and clinical studies. PMID:17952863

  15. Ecotoxicogenomic Approaches for Understanding Molecular Mechanisms of Environmental Chemical Toxicity Using Aquatic Invertebrate, Daphnia Model Organism

    PubMed Central

    Kim, Hyo Jeong; Koedrith, Preeyaporn; Seo, Young Rok

    2015-01-01

    Due to the rapid advent in genomics technologies and attention to ecological risk assessment, the term “ecotoxicogenomics” has recently emerged to describe integration of omics studies (i.e., transcriptomics, proteomics, metabolomics, and epigenomics) into ecotoxicological fields. Ecotoxicogenomics is defined as study of an entire set of genes or proteins expression in ecological organisms to provide insight on environmental toxicity, offering benefit in ecological risk assessment. Indeed, Daphnia is a model species to study aquatic environmental toxicity designated in the Organization for Economic Co-operation and Development’s toxicity test guideline and to investigate expression patterns using ecotoxicology-oriented genomics tools. Our main purpose is to demonstrate the potential utility of gene expression profiling in ecotoxicology by identifying novel biomarkers and relevant modes of toxicity in Daphnia magna. These approaches enable us to address adverse phenotypic outcomes linked to particular gene function(s) and mechanistic understanding of aquatic ecotoxicology as well as exploration of useful biomarkers. Furthermore, key challenges that currently face aquatic ecotoxicology (e.g., predicting toxicant responses among a broad spectrum of phytogenetic groups, predicting impact of temporal exposure on toxicant responses) necessitate the parallel use of other model organisms, both aquatic and terrestrial. By investigating gene expression profiling in an environmentally important organism, this provides viable support for the utility of ecotoxicogenomics. PMID:26035755

  16. Toward a new approach for determination of solute's charge distribution to analyze interatomic electrostatic interactions in quantum mechanical/molecular mechanical simulations.

    PubMed

    Yamada, Kenta; Koyano, Yoshiyuki; Okamoto, Takuya; Asada, Toshio; Koga, Nobuaki; Nagaoka, Masataka

    2011-11-15

    We present an alternative approach to determine "density-dependent property"-derived charges for molecules in the condensed phase. In the case of a solution, it is essential to take into consideration the electron polarization of molecules in the active site of this system. The solute and solvent molecules in this site have to be described by a quantum mechanical technique and the others are allowed to be treated by a molecular mechanical method (QM/MM scheme). For calculations based on this scheme, using the forces and interaction energy as density-dependent property our charges from interaction energy and forces (CHIEF) approach can provide the atom-centered charges on the solute atoms. These charges reproduce well the electrostatic potentials around the solvent molecules and present properly the picture of the electron density of the QM subsystem in the solution system. Thus, the CHIEF charges can be considered as the atomic charges under the conditions of the QM/MM simulation, and then enable one to analyze electrostatic interactions between atoms in the QM and MM regions. This approach would give a view of the QM nuclei and electrons different from the conventional methods. PMID:21815177

  17. MOLECULAR MECHANISMS OF PREECLAMPSIA

    PubMed Central

    Mutter, Walter P.; Karumanchi, S. Ananth

    2008-01-01

    Preeclampsia is a major cause of maternal, fetal, and neonatal mortality worldwide. The mechanisms that initiate preeclampsia in humans have been elusive, but some parts of the puzzle have begun to come together. A key discovery in the field was the realization that its major phenotypes, such as hypertension and proteinuria, are due to excess circulating soluble fms-like tyrosine kinase-1 (sFlt-1, also referred to as sVEGFR-1). sFlt-1 is an endogenous anti-angiogenic protein that is made by the placenta and acts by neutralizing the pro-angiogenic proteins vascular endothelial growth factor (VEGF) and placental growth factor (PlGF). More recently, soluble endoglin, another circulating anti-angiogenic protein was found to synergize with sFlt1 and contribute to the pathogenesis of preeclampsia. Abnormalities in these circulating angiogenic proteins are not only present during clinical preeclampsia, but also antedate clinical symptoms by several weeks. This review will summarize our current understanding of the molecular mechanism of preeclampsia, with an emphasis on the recently characterized circulating anti-angiogenic proteins. PMID:17553534

  18. Molecular mechanisms of cancer.

    PubMed Central

    Koeffler, H. P.; McCormick, F.; Denny, C.

    1991-01-01

    Cancer is caused by specific DNA damage. Several common mechanisms that cause DNA damage result in specific malignant disorders: First, proto-oncogenes can be activated by translocations. For example, translocation of the c-myc proto-oncogene from chromosome 8 to one of the immunoglobulin loci on chromosomes 2, 14, or 22 results in Burkitt's lymphomas. Translocation of the c-abl proto-oncogene from chromosome 9 to the BCR gene located on chromosome 22 produces a hybrid BCR/ABL protein resulting in chronic myelogenous leukemia. Second, proto-oncogenes can be activated by point mutations. For example, point mutations of genes coding for guanosine triphosphate-binding proteins, such as H-, K-, or N-ras or G proteins, can be oncogenic as noted in a large variety of malignant neoplasms. Proteins from these mutated genes are constitutively active rather than being faithful second messengers of periodic extracellular signals. Third, mutations that inactivate a gene can result in tumors if the product of the gene normally constrains cellular proliferation. Functional loss of these "tumor suppressor genes" is found in many tumors such as colon and lung cancers. The diagnosis, classification, and treatment of cancers will be greatly enhanced by understanding their abnormalities at the molecular level. PMID:1815390

  19. Molecular Approaches to Malaria 2000.

    PubMed

    Cowman, Alan F.; Cooke, Brian M.

    2000-04-01

    For more than 20 years now, Australia has been officially free of endemic malaria, but this devastating disease once again made a major impact on the continent in February 2000 when Melbourne hosted Australia's first major international conference on 'Molecular Approaches to Malaria' (Lorne, Australia, 2-5 February 2000). The global research effort toward our increased understanding of the pathogenesis and control of malaria in the post-genomics era was discussed and debated at length over 4 days packed with science encompassing molecular biology, cell biology, clinical studies, genomics, vaccines and pathogenic mechanisms. More than 260 researchers from 18 countries worldwide participated in this interdisciplinary meeting which comprised 57 oral presentations and 122 posters. Here we summarize some presentations pertinent to the field of drug action and resistance. Copyright 2000 Harcourt Publishers Ltd. PMID:11498369

  20. Investigation of mechanical strength of 2D nanoscale structures using a molecular dynamics based computational intelligence approach

    NASA Astrophysics Data System (ADS)

    Garg, A.; Vijayaraghavan, V.; Wong, C. H.; Tai, K.; Singru, Pravin M.; Mahapatra, S. S.; Sangwan, K. S.

    2015-09-01

    A molecular dynamics (MD) based computational intelligence (CI) approach is proposed to investigate the Young modulus of two graphene sheets: Armchair and Zigzag. In this approach, the effect of aspect ratio, the temperature, the number of atomic planes and the vacancy defects on the Young modulus of two graphene sheets are first analyzed using the MD simulation. The data obtained using the MD simulation is then fed into the paradigm of a CI cluster comprising of genetic programming, which was specifically designed to formulate the explicit relationship of Young modulus of two graphene structures. We find that the MD-based-CI model is able to model the Young modulus of two graphene structures very well, which compiles in good agreement with that of experimental results obtained from the literature. Additionally, we also conducted sensitivity and parametric analysis and found that the number of defects has the most dominating influence on the Young modulus of two graphene structures.

  1. Polarization effects in molecular mechanical force fields

    PubMed Central

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2014-01-01

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594

  2. Polarization effects in molecular mechanical force fields.

    PubMed

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. PMID:21828594

  3. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest

    PubMed Central

    Arenz, Stefan; Bock, Lars V.; Graf, Michael; Innis, C. Axel; Beckmann, Roland; Grubmüller, Helmut; Vaiana, Andrea C.; Wilson, Daniel N.

    2016-01-01

    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation. PMID:27380950

  4. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest.

    PubMed

    Arenz, Stefan; Bock, Lars V; Graf, Michael; Innis, C Axel; Beckmann, Roland; Grubmüller, Helmut; Vaiana, Andrea C; Wilson, Daniel N

    2016-01-01

    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation. PMID:27380950

  5. A combined cryo-EM and molecular dynamics approach reveals the mechanism of ErmBL-mediated translation arrest

    NASA Astrophysics Data System (ADS)

    Arenz, Stefan; Bock, Lars V.; Graf, Michael; Innis, C. Axel; Beckmann, Roland; Grubmüller, Helmut; Vaiana, Andrea C.; Wilson, Daniel N.

    2016-07-01

    Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained 3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin. The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in a previously unseen rotated position. Together with molecular dynamics simulations, the structures indicate that peptide-bond formation is inhibited by displacement of the peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb peptide-bond formation by increasing the distance between the attacking Lys11 amine and the Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here also provides insight into the fundamental mechanism of peptide-bond formation.

  6. A Novel Perspective and Approach to Intestinal Octreotide Absorption: Sinomenine-Mediated Reversible Tight Junction Opening and Its Molecular Mechanism

    PubMed Central

    Li, Yuling; Duan, Zhijun; Tian, Yan; Liu, Zhen; Wang, Qiuming

    2013-01-01

    In this work, we assessed the effects of sinomenine (SN) on intestinal octreotide (OCT) absorption both in Caco-2 cell monolayers and in rats. We also investigated the molecular mechanisms of tight junction (TJ) disruption and recovery by SN-mediated changes in the claudin-1 and protein kinase C (PKC) signaling pathway. The data showed that exposure to SN resulted in a significant decrease in the expression of claudin-1, which represented TJ weakening and paracellular permeability enhancement. Then, the recovery of TJ after SN removal required an increase in claudin-1, which demonstrated the transient and reversible opening for TJ. Meanwhile, the SN-mediated translocation of PKC-α from the cytosol to the membrane was found to prove PKC activation. Finally, SN significantly improved the absolute OCT bioavailability in rats and the transport rate in Caco-2 cell monolayers. We conclude that SN has the ability to enhance intestinal OCT absorption and that these mechanisms are related at least in part to the important role of claudin-1 in SN-mediated, reversible TJ opening via PKC activation. PMID:23787475

  7. Molecular Approaches to Sarcoma Therapy

    PubMed Central

    Olsen, R. J.; Tarantolo, S. R.

    2002-01-01

    Soft tissue sarcomas comprise a heterogeneous group of aggressive tumors that have a relatively poor prognosis. Although conventional therapeutic regimens can effectively cytoreduce the overall tumor mass, they fail to consistently achieve a curative outcome. Alternative gene-based approaches that counteract the underlying neoplastic process by eliminating the clonal aberrations that potentiate malignant behavior have been proposed. As compared to the accumulation of gene alterations associated with epithelial carcinomas, sarcomas are frequently characterized by the unique presence of a single chromosomal translocation in each histological subtype. Similar to the Philadelphia chromosome associated with CML, these clonal abnormalities result in the fusion of two independent unrelated genes to generate a unique chimeric protein that displays aberrant activity believed to initiate cellular transformation. Secondary gene mutations may provide an additional growth advantage that further contributes to malignant progression. The recent clinical success of the tyrosine kinase inhibitor, STI571, suggests that therapeutic approaches specifically directed against essential survival factors in sarcoma cells may be effective. This review summarizes published approaches targeting a specific molecular mechanism associated with sarcomagenesis. The strategy and significance of published translational studies in six distinct areas are presented. These include: (1) the disruption of chimeric transcription factor activity; (2) inhibition of growth stimulatory post-translational modifications; (3) restoration of tumor suppressor function; (4) interference with angiogenesis; (5) induction of apoptotic pathways; and (6) introduction of toxic gene products. The potential for improving outcomes in sarcoma patients and the conceptual obstacles to be overcome are discussed. PMID:18521343

  8. Carbyne: The Molecular Approach.

    PubMed

    Tykwinski, Rik R

    2015-12-01

    For the last 60+ years, the synthesis and study of cumulenes and polyynes have been the focus of a small, but dedicated, group of researchers. Many of the remarkable electronic, optical, and structural properties of cumulenes and polyynes had already been identified in the earliest reports. The molecular lengths achievable by the initial syntheses were, unfortunately, somewhat limited by synthetic methods available. For the past 15 years, we have worked toward expanding on the synthesis of cumulenes and polyynes through the development of new methods and stabilization motifs. As new compounds have become available, homologous series of cumulenes and polyynes have then been examined as a function of molecular length. While we are not yet there, we would like to eventually provide a general description of the sp-carbon allotrope carbyne, and this account presents some of our efforts toward this goal. PMID:26200096

  9. Insights into the inhibition and mechanism of compounds against LPS-induced PGE2 production: a pathway network-based approach and molecular dynamics simulations.

    PubMed

    Zhang, Xinzhuang; Gu, Jiangyong; Cao, Liang; Ma, Yimin; Su, Zhenzhen; Luo, Fang; Wang, Zhenzhong; Li, Na; Yuan, Gu; Chen, Lirong; Xu, Xiaojie; Xiao, Wei

    2014-12-01

    In comparison to the current target-based screening approach, it is increasingly evident that active lead compounds based on disease-related phenotypes are more likely to be translated to clinical trials during drug development. That is, because human diseases are in essence the outcome of the abnormal function of multiple genes, especially in complex diseases. Therefore, as a conventional technology in the early phase of active lead compound discovery, computational methods that can connect molecular interactions and disease-related phenotypes to evaluate the efficacy of compounds are in urgently required. In this work, a computational approach that integrates molecular docking and pathway network analysis (network efficiency and network flux) was developed to evaluate the efficacy of a compound against LPS-induced Prostaglandin E2(PGE2) production. The predicted results were then validated in vitro, and a correlation with the experimental results was analyzed using linear regression. In addition, molecular dynamics (MD) simulations were performed to explore the molecular mechanism of the most potent compounds. There were 12 hits out of 28 predicted ingredients separated from Reduning injection (RDN). The predicted results have a good agreement with the experimental inhibitory potency (IC50) (correlation coefficient = 0.80). The most potent compounds could target several proteins to regulate the pathway network. This might partly interpret the molecular mechanism of RDN on fever. Meanwhile, the good correlation of the computational model with the wet experimental results might bridge the gap between molecule-target interactions and phenotypic response, especially for multi-target compounds. Therefore, it would be helpful for active lead compound discovery, the understanding of the multiple targets and synergic essence of traditional Chinese medicine (TCM). PMID:25228393

  10. Molecular mechanism of preconditioning.

    PubMed

    Das, Manika; Das, Dipak K

    2008-04-01

    During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2-3 h) and (ii) late preconditioning (starting at 24 h lasting until 72-96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of K(ATP) channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion. PMID:18344203

  11. Classical Electrodynamics Coupled to Quantum Mechanics for Calculation of Molecular Optical Properties: a RT-TDDFT/FDTD Approach

    SciTech Connect

    Chen, Hanning; McMahon, J. M.; Ratner, Mark A.; Schatz, George C.

    2010-09-02

    A new multiscale computational methodology was developed to effectively incorporate the scattered electric field of a plasmonic nanoparticle into a quantum mechanical (QM) optical property calculation for a nearby dye molecule. For a given location of the dye molecule with respect to the nanoparticle, a frequency-dependent scattering response function was first determined by the classical electrodynamics (ED) finite-difference time-domain (FDTD) approach. Subsequently, the time-dependent scattered electric field at the dye molecule was calculated using the FDTD scattering response function through a multidimensional Fourier transform to reflect the effect of polarization of the nanoparticle on the local field at the molecule. Finally, a real-time time-dependent density function theory (RT-TDDFT) approach was employed to obtain a desired optical property (such as absorption cross section) of the dye molecule in the presence of the nanoparticle’s scattered electric field. Our hybrid QM/ED methodology was demonstrated by investigating the absorption spectrum of the N3 dye molecule and the Raman spectrum of pyridine, both of which were shown to be significantly enhanced by a 20 nm diameter silver sphere. In contrast to traditional quantum mechanical optical calculations in which the field at the molecule is entirely determined by intensity and polarization direction of the incident light, in this work we show that the light propagation direction as well as polarization and intensity are important to nanoparticle-bound dye molecule response. At no additional computation cost compared to conventional ED and QM calculations, this method provides a reliable way to couple the response of the dye molecule’s individual electrons to the collective dielectric response of the nanoparticle.

  12. Molecular Mechanism of Water Evaporation

    NASA Astrophysics Data System (ADS)

    Nagata, Yuki; Usui, Kota; Bonn, Mischa

    2015-12-01

    Evaporation is the process by which water changes from a liquid to a gas or vapor, and is a key step in Earth's water cycle. At the molecular level, evaporation requires breaking at least one very strong intermolecular bond between two water molecules at the interface. Despite the importance of this process the molecular mechanism by which an evaporating water molecule gains sufficient energy to escape from the surface has remained elusive. Here, we show, using molecular dynamics simulations at the water-air interface with polarizable classical force field models, that the high kinetic energy of the evaporated water molecule is enabled by a well-timed making and breaking of hydrogen bonds involving at least three water molecules at the interface, the recoil of which allows one of the molecules to escape. The evaporation of water is thus enabled by concerted, ultrafast hydrogen-bond dynamics of interfacial water, and follows one specific molecular pathway.

  13. An Investigation of the Molecular Mechanisms Engaged Prior and Subsequent to the Development of Alzheimer Disease Neuropathology in Down Syndrome: A Proteomics Approach

    PubMed Central

    Cenini, Giovanna; Fiorini, Ada; Sultana, Rukhsana; Perluigi, Marzia; Cai, Jian; Klein, Jon B.; Head, Elizabeth; Butterfield, D. Allan

    2014-01-01

    Down syndrome (DS) is one of the most common causes of intellectual disability, due to trisomy of all or part of chromosome 21. DS is also associated with the development of Alzheimer disease (AD) neuropathology after the age of 40 years. To better clarify the cellular and metabolic pathways that could contribute to the differences in DS brain, in particular those involved in the onset of neurodegeneration, we analyzed the frontal cortex of DS subjects with or without significant AD pathology in comparison with age-matched controls, using a proteomics approach. Proteomics represents an advantageous tool to investigate the molecular mechanisms underlying the disease. From these analyses, we investigated the effects that age, DS, and AD neuropathology could have on protein expression levels. Our results show overlapping and independent molecular pathways (including energy metabolism, oxidative damage, protein synthesis and autophagy) contributing to DS, to aging and to the presence of AD pathology in DS. Investigation of pathomechanisms involved in DS with AD, may provide putative targets for therapeutic approaches to slow the development of AD. PMID:25151119

  14. Molecular Mechanisms of Arterial Stiffening

    PubMed Central

    Cecelja, Marina; Chowienczyk, Phil

    2016-01-01

    Stiffening of large arteries is a hallmark of vascular aging and one of the most important determinants of the age-related increase in blood pressure and cardiovascular disease events. Despite a substantial genetic component, the molecular mechanisms underlying phenotypic variability in arterial stiffness remain unknown. Previous genetic studies have identified several genetic variants that are associated with measures of arterial stiffness. Here, we review the relevant advances in the identification of pathways underlying arterial stiffness from genomic studies. PMID:27493903

  15. Molecular Mechanisms of Nickel Allergy

    PubMed Central

    Saito, Masako; Arakaki, Rieko; Yamada, Akiko; Tsunematsu, Takaaki; Kudo, Yasusei; Ishimaru, Naozumi

    2016-01-01

    Allergic contact hypersensitivity to metals is a delayed-type allergy. Although various metals are known to produce an allergic reaction, nickel is the most frequent cause of metal allergy. Researchers have attempted to elucidate the mechanisms of metal allergy using animal models and human patients. Here, the immunological and molecular mechanisms of metal allergy are described based on the findings of previous studies, including those that were recently published. In addition, the adsorption and excretion of various metals, in particular nickel, is discussed to further understand the pathogenesis of metal allergy. PMID:26848658

  16. [Molecular mechanisms for collective cell migration--perspectives and approaches from the studies on the actin-binding protein Girdin].

    PubMed

    Enomoto, Atsushi; Kato, Takuya; Asai, Naoya; Takahashi, Masahide

    2016-03-01

    In embryonal development and pathogenesis of diseases, cells often get connected and form small groups to undergo "collective migration", rather than spread out individually. The examples include the migration of neural crest cells and neuroblasts during development and the invasion of cancers in surrounding stroma, indicating the importance and significance of collective behavior of cells in the body. Recent studies have revealed the mechanisms for collective cell migration, which had seemed not to be the subject of traditional cell biology on single cells in culture. The heterogeneity in cell groups is also a key in understanding the mechanisms for collective cell migration. In this article, we describe recently emerging mechanisms for collective cell migration, with a particular focus on our studies on the actin-binding protein Girdin and tripartite motif containing 27. PMID:27025099

  17. A Systems Biological Approach Reveals Multiple Crosstalk Mechanism between Gram-Positive and Negative Bacterial Infections: An Insight into Core Mechanism and Unique Molecular Signatures

    PubMed Central

    Thangam, Berla; Ahmed, Shiek S. S. J.

    2014-01-01

    Background Bacterial infections remain a major threat and a leading cause of death worldwide. Most of the bacterial infections are caused by gram-positive and negative bacteria, which are recognized by Toll-like receptor (TLR) 2 and 4, respectively. Activation of these TLRs initiates multiple pathways that subsequently lead to effective immune response. Although, both the TLRs share common signaling mechanism yet they may exhibit specificity as well, resulting in the release of diverse range of inflammatory mediators which could be used as candidate biomolecules for bacterial infections. Results We adopted systems biological approach to identify signaling pathways mediated by TLRs to determine candidate molecules associated with bacterial infections. We used bioinformatics concepts, including literature mining to construct protein-protein interaction network, prioritization of TLRs specific nodes using microarray data and pathway analysis. Our constructed PPI network for TLR 2 (nodes: 4091 and edges: 66068) and TLR 4 (node: 4076 and edges: 67898) showed 3207 common nodes, indicating that both the TLRs might share similar signaling events that are attributed to cell migration, MAPK pathway and several inflammatory cascades. Our results propose the potential collaboration between the shared signaling pathways of both the receptors may enhance the immune response against invading pathogens. Further, to identify candidate molecules, the TLRs specific nodes were prioritized using microarray differential expressed genes. Of the top prioritized TLR 2 molecules, 70% were co-expressed. A similar trend was also observed within TLR 4 nodes. Further, most of these molecules were preferentially found in blood plasma for feasible diagnosis. Conclusions The analysis reveals the common and unique mechanism regulated by both the TLRs that provide a broad perspective of signaling events in bacterial infections. Further, the identified candidate biomolecules could potentially aid

  18. Molecular mechanisms underlying alcohol-drinking behaviours.

    PubMed

    Ron, Dorit; Barak, Segev

    2016-09-01

    The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term 'stop pathways', and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term 'go pathways'. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways. PMID:27444358

  19. Theoretical design of the cyclic lipopeptide nanotube as a molecular channel in the lipid bilayer, molecular dynamics and quantum mechanics approach.

    PubMed

    Khavani, Mohammad; Izadyar, Mohammad; Housaindokht, Mohammad Reza

    2015-10-14

    In this article, cyclic peptides (CP) with lipid substituents were theoretically designed. The dynamical behavior of the CP dimers and the cyclic peptide nanotube (CPNT) without lipid substituents in the solution (water and chloroform) during the 50 ns molecular dynamic (MD) simulations has been investigated. As a result, the CP dimers and CPNT in a non-polar solvent are more stable than in a polar solvent and CPNT is a good container for non-polar small molecules such as chloroform. The effect of the lipid substituents on the CP dimers and CPNT has been investigated in the next stage of our studies. Accordingly, these substituents increase the stability of the CP dimers and CPNT, significantly, in polar solvents. MM-PBSA and MM-GBSA calculations confirm that substitution has an important effect on the stability of the CP dimers and CPNT. Finally, the dynamical behavior of CPNT with lipid substituents in a fully hydrated DMPC bilayer shows the high ability of this structure for molecule transmission across the lipid membrane. This structure is stable enough to be used as a molecular channel. DFT calculations on the CP dimers in the gas phase, water and chloroform, indicate that H-bond formation is the driving force for dimerization. CP dimers are more stable in the gas phase in comparison to in solution. HOMO-LUMO orbital analysis indicates that the interaction of the CP units in the dimer structures is due to the molecular orbital interactions between the NH and CO groups. PMID:26366633

  20. Superspreading: mechanisms and molecular design.

    PubMed

    Theodorakis, Panagiotis E; Müller, Erich A; Craster, Richard V; Matar, Omar K

    2015-03-01

    The intriguing ability of certain surfactant molecules to drive the superspreading of liquids to complete wetting on hydrophobic substrates is central to numerous applications that range from coating flow technology to enhanced oil recovery. Despite significant experimental efforts, the precise mechanisms underlying superspreading remain unknown to date. Here, we isolate these mechanisms by analyzing coarse-grained molecular dynamics simulations of surfactant molecules of varying molecular architecture and substrate affinity. We observe that for superspreading to occur, two key conditions must be simultaneously satisfied: the adsorption of surfactants from the liquid-vapor surface onto the three-phase contact line augmented by local bilayer formation. Crucially, this must be coordinated with the rapid replenishment of liquid-vapor and solid-liquid interfaces with surfactants from the interior of the droplet. This article also highlights and explores the differences between superspreading and conventional surfactants, paving the way for the design of molecular architectures tailored specifically for applications that rely on the control of wetting. PMID:25658859

  1. Molecular Mechanism of TRP Channels

    PubMed Central

    Zheng, Jie

    2013-01-01

    Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation. PMID:23720286

  2. Molecular Approaches to Studying Denitrification

    NASA Astrophysics Data System (ADS)

    Voytek, M. A.

    2001-05-01

    Denitrification is carried out by a diverse array of microbes, mainly as an alternative mode of respiration that allows the organisms to respire using oxidized N compounds instead of oxygen. A common approach in biogeochemistry to the study of the regulation of denitrification is to assess activity by mass balance of substrates and products or direct rate measurements and has intrinsically assumed resource regulation of denitrification. Reported rates can vary significantly even among ecosystems characterized by similar environmental conditions, thus indicating that direct control by abiotic factors often is not sufficient to predict denitrification rates accurately in natural environments. Alternatively, a microbiological approach would proceed with the identification of the organisms responsible and an evaluation of the effect of environmental factors on the biochemical pathways involved. Traditional studies have relied on culturing techniques, such as most probable number enrichments, and have failed to assess the role of the predominately uncultivable members of the microbial community. A combination of biogeochemical measurements and the assessment of the microbial community is necessary and becoming increasingly possible with the development and application of molecular techniques. In order to understand how the composition and physiological behavior of the microbial community affects denitrification rates, we use a suite of molecular techniques developed for phylogenetic and metabolic characterization of denitrifying communities. Molecular tools available for quantifying denitrifying bacteria and assessing their diversity and activity are summarized. Their application is illustrated with examples from marine and freshwater environments. Emerging techniques and their application to ground water studies will be discussed.

  3. Molecular Mechanisms of Synaptic Specificity

    PubMed Central

    Margeta, Milica A.; Shen, Kang

    2011-01-01

    Synapses are specialized junctions that mediate information flow between neurons and their targets. A striking feature of the nervous system is the specificity of its synaptic connections: an individual neuron will form synapses only with a small subset of available presynaptic and postsynaptic partners. Synaptic specificity has been classically thought to arise from homophilic or heterophilic interactions between adhesive molecules acting across the synaptic cleft. Over the past decade, many new mechanisms giving rise to synaptic specificity have been identified. Synapses can be specified by secreted molecules that promote or inhibit synaptogenesis, and their source can be a neighboring guidepost cell, not just presynaptic and postsynaptic neurons. Furthermore, lineage, fate, and timing of development can also play critical roles in shaping neural circuits. Future work utilizing large-scale screens will aim to elucidate the full scope of cellular mechanisms and molecular players that can give rise to synaptic specificity. PMID:19969086

  4. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  5. Molecular mechanisms of temperature adaptation.

    PubMed

    Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-08-15

    Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a 'choir' of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. PMID:25433072

  6. Molecular mechanisms of temperature adaptation

    PubMed Central

    Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a ‘choir’ of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. PMID:25433072

  7. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks.

    PubMed

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications. PMID:26881892

  8. A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host–Pathogen Interaction Networks

    PubMed Central

    Wu, Chia-Chou; Chen, Bor-Sen

    2016-01-01

    Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host–pathogen dynamic interaction networks. The consideration of host–pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host–pathogen molecular interaction networks, and consequent inferences of the host–pathogen relationship could be translated into biomedical applications. PMID:26881892

  9. Molecular mechanisms of induced pluripotency

    PubMed Central

    Wróblewska, Joanna; Mazurek, Sylwia; Liszewska, Ewa

    2015-01-01

    Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types. PMID:25691818

  10. Molecular mechanisms of microglial activation.

    PubMed

    Zielasek, J; Hartung, H P

    1996-01-01

    Microglial cells are brain macrophages which serve specific functions in the defense of the central nervous system (CNS) against microorganisms, the removal of tissue debris in neurodegenerative diseases or during normal development, and in autoimmune inflammatory disorders of the brain. In cultured microglial cells, several soluble inflammatory mediators such as cytokines and bacterial products like lipopolysaccharide (LPS) were demonstrated to induce a wide range of microglial activities, e.g. increased phagocytosis, chemotaxis, secretion of cytokines, activation of the respiratory burst and induction of nitric oxide synthase. Since heightened microglial activation was shown to play a role in the pathogenesis of experimental inflammatory CNS disorders, understanding the molecular mechanisms of microglial activation may lead to new treatment strategies for neurodegenerative disorders, multiple sclerosis and bacterial or viral infections of the nervous system. PMID:8876774

  11. Molecular mechanism of magnet formation in bacteria.

    PubMed

    Matsunaga, T; Sakaguchi, T

    2000-01-01

    Magnetic bacteria have an ability to synthesize intracellular ferromagnetic crystalline particles consisting of magnetite (Fe3O4) or greigite (Fe3S4) which occur within a specific size range (50-100 nm). Bacterial magnetic particles (BMPs) can be distinguished by the regular morphology and the presence of an thin organic membrane enveloping crystals from abiologically formed magnetite. The particle is the smallest magnetic crystal that has a regular morphology within the single domain size. Therefore, BMPs have an unfathomable amount of potential value for various technological applications not only scientific interests. However, the molecular and genetic mechanism of magnetite biomineralization is hardly understood although iron oxide formation occurs widely in many higher animals as well as microorganisms. In order to elucidate the molecular and genetic mechanisms of magnetite biomineralization, a magnetic bacterium Magnetospirillum sp. AMB-1, for which gene transfer and transposon mutagenesis techniques had been recently developed, has been used as a model organism. Several findings and information on the BMPs formation process have been obtained within this decade by means of studies with this model organism and its related one. Biomineralization mechanism and potential availability in biotechnology of bacterial magnets have been elucidated through molecular and genetic approach. PMID:16232810

  12. Molecular Mechanisms of Bacterial Pathogenicity

    NASA Astrophysics Data System (ADS)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  13. New approaches to molecular diagnosis.

    PubMed

    Korf, Bruce R; Rehm, Heidi L

    2013-04-10

    Advances in understanding the molecular basis of rare and common disorders, as well as in the technology of DNA analysis, are rapidly changing the landscape of molecular genetic and genomic testing. High-resolution molecular cytogenetic analysis can now detect deletions or duplications of DNA of a few hundred thousand nucleotides, well below the resolution of the light microscope. Diagnostic testing for "single-gene" disorders can be done by targeted analysis for specific mutations, by sequencing a specific gene to scan for mutations, or by analyzing multiple genes in which mutation may lead to a similar phenotype. The advent of massively parallel next-generation sequencing facilitates the analysis of multiple genes and now is being used to sequence the coding regions of the genome (the exome) for clinical testing. Exome sequencing requires bioinformatic analysis of the thousands of variants that are identified to find one that is contributing to the pathology; there is also a possibility of incidental identification of other medically significant variants, which may complicate genetic counseling. DNA testing can also be used to identify variants that influence drug metabolism or interaction of a drug with its cellular target, allowing customization of choice of drug and dosage. Exome and genome sequencing are being applied to identify specific gene changes in cancer cells to guide therapy, to identify inherited cancer risk, and to estimate prognosis. Genomic testing may be used to identify risk factors for common disorders, although the clinical utility of such testing is unclear. Genetic and genomic tests may raise new ethical, legal, and social issues, some of which may be addressed by existing genetic nondiscrimination legislation, but which also must be addressed in the course of genetic counseling. The purpose of this article is to assist physicians in recognizing where new approaches to genetic and genomic testing may be applied clinically and in being aware

  14. Molecular mechanisms of pancreatic carcinogenesis.

    PubMed

    Furukawa, Toru; Sunamura, Makoto; Horii, Akira

    2006-01-01

    Pancreatic ductal adenocarcinoma is one of the most fatal malignancies. Intensive investigation of molecular pathogenesis might lead to identifying useful molecules for diagnosis and treatment of the disease. Pancreatic ductal adenocarcinoma harbors complicated aberrations of alleles including losses of 1p, 6q, 9p, 12q, 17p, 18q, and 21q, and gains of 8q and 20q. Pancreatic cancer is usually initiated by mutation of KRAS and aberrant expression of SHH. Overexpression of AURKA mapping on 20q13.2 may significantly enhance overt tumorigenesity. Aberrations of tumor suppressor genes synergistically accelerate progression of the carcinogenic pathway through pancreatic intraepithelial neoplasia (PanIN) to invasive ductal adenocarcinoma. Abrogation of CDKN2A occurs in low-grade/early PanIN, whereas aberrations of TP53 and SMAD4 occur in high-grade/late PanIN. SMAD4 may play suppressive roles in tumorigenesis by inhibition of angiogenesis. Loss of 18q precedes SMAD4 inactivation, and restoration of chromosome 18 in pancreatic cancer cells results in tumor suppressive phenotypes regardless of SMAD4 status, indicating the possible existence of a tumor suppressor gene(s) other than SMAD4 on 18q. DUSP6 at 12q21-q22 is frequently abrogated by loss of expression in invasive ductal adenocarcinomas despite fairly preserved expression in PanIN, which suggests that DUSP6 works as a tumor suppressor in pancreatic carcinogenesis. Restoration of chromosome 12 also suppresses growths of pancreatic cancer cells despite the recovery of expression of DUSP6; the existence of yet another tumor suppressor gene on 12q is strongly suggested. Understanding the molecular mechanisms of pancreatic carcinogenesis will likely provide novel clues for preventing, detecting, and ultimately curing this life-threatening disease. PMID:16367914

  15. Molecular mechanisms of statin intolerance

    PubMed Central

    Franczyk, Beata; Toth, Peter P.; Rysz, Jacek; Banach, Maciej

    2016-01-01

    Statins reduce cardiovascular morbidity and mortality in primary and secondary prevention. Despite their efficacy, many persons are unable to tolerate statins due to adverse events such as hepatotoxicity and myalgia/myopathy. In the case of most patients, it seems that mild-to-moderate abnormalities in liver and muscle enzymes are not serious adverse effects and do not outweigh the benefits of coronary heart disease risk reduction. The risk for mortality or permanent organ damage ascribed to statin use is very small and limited to cases of myopathy and rhabdomyolysis. Statin-induced muscle-related adverse events comprise a highly heterogeneous clinical disorder with numerous, complex etiologies and a variety of genetic backgrounds. Every patient who presents with statin-related side effects cannot undergo the type of exhaustive molecular characterization that would include all of these mechanisms. Frequently the only solution is to either discontinue statin therapy/reduce the dose or attempt intermittent dosing strategies at a low dose. PMID:27279860

  16. Molecular pathways mediating mechanical signaling in bone

    PubMed Central

    Rubin, Janet; Rubin, Clinton; Jacobs, Christopher Rae

    2013-01-01

    Bone tissue has the capacity to adapt to its functional environment such that its morphology is “optimized” for the mechanical demand. The adaptive nature of the skeleton poses an interesting set of biological questions (e.g., how does bone sense mechanical signals, what cells are the sensing system, what are the mechanical signals that drive the system, what receptors are responsible for transducing the mechanical signal, what are the molecular responses to the mechanical stimuli). Studies of the characteristics of the mechanical environment at the cellular level, the forces that bone cells recognize, and the integrated cellular responses are providing new information at an accelerating speed. This review first considers the mechanical factors that are generated by loading in the skeleton, including strain, stress and pressure. Mechanosensitive cells placed to recognize these forces in the skeleton, osteoblasts, osteoclasts, osteocytes and cells of the vasculature are reviewed. The identity of the mechanoreceptor(s) is approached, with consideration of ion channels, integrins, connexins, the lipid membrane including caveolar and noncaveolar lipid rafts and the possibility that altering cell shape at the membrane or cytoskeleton alters integral signaling protein associations. The distal intracellular signaling systems on-line after the mechanoreceptor is activated are reviewed, including those emanating from G-proteins (e.g., intracellular calcium shifts), MAPKs, and nitric oxide. The ability to harness mechanical signals to improve bone health through devices and exercise is broached. Increased appreciation of the importance of the mechanical environment in regulating and determining the structural efficacy of the skeleton makes this an exciting time for further exploration of this area. PMID:16361069

  17. Quantum pharmacology for infectious diseases: a molecular connectivity approach.

    PubMed

    Singh, Shailza

    2012-09-01

    Infectious diseases are a major cause of global health, economic and social problems. Relationship between the infectious diseases and drugs designed to combat them can be understood by the Quantum Pharmacology approach. Quantum pharmacology which is an amalgamation of chemistry, quantum mechanics and computer modeling aims to understand the structure activity relationship of a drug. As compared to the classical MM, the hybrid QM/MM approach which takes into account the quantum mechanics along with the molecular mechanics facilitates the simulation of biological structures with greater accuracy and speed. This review highlights the importance of quantum mechanics for a better understanding of molecular systems and QSAR studies. PMID:22738083

  18. Molecular Mechanics: Illustrations of Its Application.

    ERIC Educational Resources Information Center

    Cox, Philip J.

    1982-01-01

    The application of molecular mechanics (a nonquantum mechanical method for solving problems concerning molecular geometries) to calculate force fields for n-butane and cyclohexane is discussed. Implications regarding the stable conformations of the example molecules are also discussed. (Author/SK)

  19. TOPICAL REVIEW: Polarization effects in molecular mechanical force fields

    NASA Astrophysics Data System (ADS)

    Cieplak, Piotr; Dupradeau, François-Yves; Duan, Yong; Wang, Junmei

    2009-08-01

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component—polarization energy—and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations.

  20. Driving Mechanisms for Molecular Outflows

    NASA Astrophysics Data System (ADS)

    Downes, Turlough P.

    Molecular outflows are observed to be closely associated with star formation. The cumulative momentum and the momentum injection rate in these outflows are important parameters in theories of star formation. The cumulative momentum in an outflow is a measure of the feed-back from star formation on molecular cloud turbulence. The level of turbulence in a cloud also effects the formation of further stars and, indeed, the survival of the cloud itself (e.g. [15]). In addition the rate of injection of momentum is an important constraint for theoretical models of outflows from young stars [10, 18]. Hence, while these outflows are interesting in themselves, it is also critical to understand their origin and behaviour as part of the general study of how stars themselves form.

  1. Molecular mechanisms of hepatic apoptosis

    PubMed Central

    Wang, K

    2014-01-01

    Apoptosis is a prominent feature of liver diseases. Causative factors such as alcohol, viruses, toxic bile acids, fatty acids, drugs, and immune response, can induce apoptotic cell death via membrane receptors and intracellular stress. Apoptotic signaling network, including membrane death receptor-mediated cascade, reactive oxygen species (ROS) generation, endoplasmic reticulum (ER) stress, lysosomal permeabilization, and mitochondrial dysfunction, is intermixed each other, but one mechanism may dominate at a particular stage. Mechanisms of hepatic apoptosis are complicated by multiple signaling pathways. The progression of liver disease is affected by the balance between apoptotic and antiapoptotic capabilities. Therapeutic options of liver injury are impacted by the clear understanding toward mechanisms of hepatic apoptosis. PMID:24434519

  2. Molecular Mechanisms Underlying Pituitary Pathogenesis.

    PubMed

    Sapochnik, Melanie; Nieto, Leandro Eduardo; Fuertes, Mariana; Arzt, Eduardo

    2016-04-01

    During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors. PMID:26718581

  3. Cellular and molecular mechanisms in kidney fibrosis

    PubMed Central

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution. PMID:24892703

  4. Molecular pathogenesis and mechanisms of thyroid cancer

    PubMed Central

    Xing, Mingzhao

    2013-01-01

    Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. PMID:23429735

  5. Molecular approaches to Taenia asiatica.

    PubMed

    Jeon, Hyeong-Kyu; Eom, Keeseon S

    2013-02-01

    Taenia solium, T. saginata, and T. asiatica are taeniid tapeworms that cause taeniasis in humans and cysticercosis in intermediate host animals. Taeniases remain an important public health concerns in the world. Molecular diagnostic methods using PCR assays have been developed for rapid and accurate detection of human infecting taeniid tapeworms, including the use of sequence-specific DNA probes, PCR-RFLP, and multiplex PCR. More recently, DNA diagnosis using PCR based on histopathological specimens such as 10% formalin-fixed paraffin-embedded and stained sections mounted on slides has been applied to cestode infections. The mitochondrial gene sequence is believed to be a very useful molecular marker for not only studying evolutionary relationships among distantly related taxa, but also for investigating the phylo-biogeography of closely related species. The complete sequence of the human Taenia tapeworms mitochondrial genomes were determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The multiplex PCR assay with the Ta4978F, Ts5058F, Tso7421F, and Rev7915 primers will be useful for differential diagnosis, molecular characterization, and epidemiological surveys of human Taenia tapeworms. PMID:23467738

  6. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history.

    PubMed

    Bhullar, Bhart-Anjan S; Morris, Zachary S; Sefton, Elizabeth M; Tok, Atalay; Tokita, Masayoshi; Namkoong, Bumjin; Camacho, Jasmin; Burnham, David A; Abzhanov, Arhat

    2015-07-01

    The avian beak is a key evolutionary innovation whose flexibility has permitted birds to diversify into a range of disparate ecological niches. We approached the problem of the mechanism behind this innovation using an approach bridging paleontology, comparative anatomy, and experimental developmental biology. First, we used fossil and extant data to show the beak is distinctive in consisting of fused premaxillae that are geometrically distinct from those of ancestral archosaurs. To elucidate underlying developmental mechanisms, we examined candidate gene expression domains in the embryonic face: the earlier frontonasal ectodermal zone (FEZ) and the later midfacial WNT-responsive region, in birds and several reptiles. This permitted the identification of an autapomorphic median gene expression region in Aves. To test the mechanism, we used inhibitors of both pathways to replicate in chicken the ancestral amniote expression. Altering the FEZ altered later WNT responsiveness to the ancestral pattern. Skeletal phenotypes from both types of experiments had premaxillae that clustered geometrically with ancestral fossil forms instead of beaked birds. The palatal region was also altered to a more ancestral phenotype. This is consistent with the fossil record and with the tight functional association of avian premaxillae and palate in forming a kinetic beak. PMID:25964090

  7. Dictyostelium discoideum: Molecular approaches to cell biology

    SciTech Connect

    Spudich, J.A.

    1987-01-01

    The central point of this book is to present Dictyostelium as a valuable eukaryotic organism for those interested in molecular studies that require a combined biochemical, structural, and genetic approach. The book is not meant to be a comprehensive compilation of all methods involving Dictyostelium, but instead is a selective set of chapters that demonstrates the utility of the organism for molecular approaches to interesting cell biological problems.

  8. Molecular mechanism of sweetness sensation.

    PubMed

    DuBois, Grant E

    2016-10-01

    The current understanding of peripheral molecular events involved in sweet taste sensation in humans is reviewed. Included are discussions of the sweetener receptor T1R2/T1R3, its agonists, antagonists, positive allosteric modulators, the transduction of its activation in taste bud cells and the coding of its signaling to the CNS. Areas of incomplete understanding include 1) signal communication with afferent nerve fibers, 2) contrasting concentration/response (C/R) functions for high-potency (HP) sweeteners (hyperbolic) and carbohydrate (CHO) sweeteners (linear), 3) contrasting temporal profiles for HP sweeteners (delayed onset and extinction) and CHO sweeteners (rapid onset and extinction) and 4) contrasting adaptation behaviors for HP sweeteners (moderate to strong adaptation) and CHO sweeteners (low adaptation). Evidence based on the sweet water aftertastes of several novel sweetness inhibitors is presented providing new support for constitutive activity in T1R2/T1R3. And a model is developed to rationalize the linear C/R functions of CHO sweeteners and hyperbolic C/R functions of HP sweeteners, where the former may activate T1R2/T1R3 by both binding and constitutive activity modulation (i.e., without binding) and the latter activate T1R2/T1R3 only by binding. PMID:26992959

  9. Molecular mechanism of cholangiocarcinoma carcinogenesis.

    PubMed

    Maemura, Kosei; Natsugoe, Shoji; Takao, Sonshin

    2014-10-01

    Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with a poor prognosis, which often arises from conditions causing long-term inflammation, injury, and reparative biliary epithelial cell proliferation. Several conditions are known to be major risk factors for cancer in the biliary tract or gallbladder, including primary sclerosing cholangitis, liver fluke infection, pancreaticobiliary maljunction, and chemical exposure in proof-printing workers. Abnormalities in various signaling cascades, molecules, and genetic mutations are involved in the pathogenesis of CCA. CCA is characterized by a series of highly recurrent mutations in genes, including KRAS, BRF, TP53, Smad, and p16(INK4a) . Cytokines that are affected by inflammatory environmental conditions, such as interleukin-6 (IL-6), transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and platelet-derived growth factor (PDGF), play an important role in cancer pathogenesis. Prominent signaling pathways important in carcinogenesis include TGF-β/Smad, IL-6/STAT-3, PI3K/AKT, Wnt, RAF/MEK/MAPK, and Notch. Additionally, some microRNAs regulate targets in critical pathways of CCA development and progression. This review article provides the understanding of the genetic and epigenetic mechanism(s) of carcinogenesis in CCA, which leads to the development of new therapeutic targets for the prevention and treatment of this devastating cancer. PMID:24895231

  10. Molecular mechanisms of ventricular hypoplasia.

    PubMed

    Srivastava, D; Gottlieb, P D; Olson, E N

    2002-01-01

    We have established the beginnings of a road map to understand how ventricular cells become specified, differentiate, and expand into a functional cardiac chamber (Fig. 5). The transcriptional networks described here provide clear evidence that disruption of pathways affecting ventricular growth could be the underlying etiology in a subset of children born with malformation of the right or left ventricle. As we learn details of the precise mechanisms through which the critical factors function, the challenge will lie in devising innovative methods to augment or modify the effects of gene mutations on ventricular development. Because most congenital heart disease likely occurs in a setting of heterozygous, predisposing mutations of one or more genes, modulation of activity of critical pathways in a preventive fashion may be useful in averting disease in genetically susceptible individuals. PMID:12858532

  11. Huntington Disease: Molecular Diagnostics Approach.

    PubMed

    Bastepe, Murat; Xin, Winnie

    2015-01-01

    Huntington disease (HD) is caused by expansion of a CAG trinucleotide repeat in the first exon of the Huntingtin (HTT) gene. Molecular testing of Huntington disease for diagnostic confirmation and disease prediction requires detection of the CAG repeat expansion. There are three main types of HD genetic testing: (1) diagnostic testing to confirm or rule out disease, (2) presymptomatic testing to determine whether an at-risk individual inherited the expanded allele, and (3) prenatal testing to determine whether the fetus has inherited the expanded allele. This unit includes protocols that describe the complementary use of polymerase chain reactions (PCR) and Southern blot hybridization to accurately measure the CAG trinucleotide repeat size and interpret the test results. In addition, an indirect linkage analysis that does not reveal the unwanted parental HD status in a prenatal testing will also be discussed. PMID:26439718

  12. [Mechanism and clinical progress of molecular targeted cancer therapy].

    PubMed

    Hu, Hong-xiang; Wang, Xue-qing; Zhang, Hua; Zhang, Qiang

    2015-10-01

    Molecular target-based cancer therapy is playing a more and more important role in cancer therapy because of its high specificity, good tolerance and so on. There are different kinds of molecular targeted drugs such as monoclonal antibodies and small molecular kinase inhibitors, and more than 50 drugs have been approved since 1997. When the first monoclonal antibody, rituximab, was on the market. The development of molecular target-based cancer therapeutics has become the main approach. Based on this, we summarized the drugs approved by FDA and introduced their mechanism of actions and clinical applications. In order to incorporate most molecular targeted drugs and describe clearly various characteristics, we divided them into four categories: drugs related to EGFR, drugs related to antiangiogenesis, drugs related to specific antigen and other targeted drugs. The purpose of this review is to provide a current status of this field and discover the main problems in the molecular targeted therapy. PMID:26837167

  13. A Hierarchical Approach to Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Taasan, Shlomo

    2004-01-01

    Recent research conducted under NASA LaRC's Creativity and Innovation Program has led to the development of an initial approach for a hierarchical fracture mechanics. This methodology unites failure mechanisms occurring at different length scales and provides a framework for a physics-based theory of fracture. At the nanoscale, parametric molecular dynamic simulations are used to compute the energy associated with atomic level failure mechanisms. This information is used in a mesoscale percolation model of defect coalescence to obtain statistics of fracture paths and energies through Monte Carlo simulations. The mathematical structure of predicted crack paths is described using concepts of fractal geometry. The non-integer fractal dimension relates geometric and energy measures between meso- and macroscales. For illustration, a fractal-based continuum strain energy release rate is derived for inter- and transgranular fracture in polycrystalline metals.

  14. Mechanism of a molecular electronic photoswitch

    NASA Astrophysics Data System (ADS)

    Zhuang, Min; Ernzerhof, Matthias

    2005-08-01

    We present a simple non-self-consistent method for the calculation of the molecular conductance under finite bias voltage. Our approach is applied to a molecular photoswitch that has recently been investigated in break junction experiments [D. Dulić , Phys. Rev. Lett. 91, 207402 (2003)]. We obtain I-V characteristics that are qualitatively in agreement with experimental measurements. Employing our electronic structure calculations, we provide a detailed explanation for the switching behavior observed in experiment.

  15. Modelling approaches for evaluating multiscale tendon mechanics.

    PubMed

    Fang, Fei; Lake, Spencer P

    2016-02-01

    Tendon exhibits anisotropic, inhomogeneous and viscoelastic mechanical properties that are determined by its complicated hierarchical structure and varying amounts/organization of different tissue constituents. Although extensive research has been conducted to use modelling approaches to interpret tendon structure-function relationships in combination with experimental data, many issues remain unclear (i.e. the role of minor components such as decorin, aggrecan and elastin), and the integration of mechanical analysis across different length scales has not been well applied to explore stress or strain transfer from macro- to microscale. This review outlines mathematical and computational models that have been used to understand tendon mechanics at different scales of the hierarchical organization. Model representations at the molecular, fibril and tissue levels are discussed, including formulations that follow phenomenological and microstructural approaches (which include evaluations of crimp, helical structure and the interaction between collagen fibrils and proteoglycans). Multiscale modelling approaches incorporating tendon features are suggested to be an advantageous methodology to understand further the physiological mechanical response of tendon and corresponding adaptation of properties owing to unique in vivo loading environments. PMID:26855747

  16. Molecular Mechanisms of Bone 18F-NaF Deposition

    PubMed Central

    Czernin, Johannes; Satyamurthy, Nagichettiar; Schiepers, Christiaan

    2011-01-01

    There is renewed interest in 18F-NaF bone imaging with PET or PET/CT. The current brief discussion focuses on the molecular mechanisms of 18F-NaF deposition in bone and presents model-based approaches to quantifying bone perfusion and metabolism in the context of preclinical and clinical applications of bone imaging with PET. PMID:21078790

  17. A molecular mechanics force field for lignin

    SciTech Connect

    Petridis, Loukas; Smith, Jeremy C

    2009-02-01

    A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this lignin force field will enable full simulations of lignocellulose.

  18. Molecular orbital studies on the mechanism of drug-receptor interaction. 2. beta-Adrenergic drugs. An approach to explain the role of the aromatic moiety.

    PubMed

    Petrongolo, C; Macchia, B; Macchia, F; Martinelli, A

    1977-12-01

    The role of the aromatic moiety of beta-adrenergic drugs in the interaction with the receptor was investigated using the quantum mechanical ab initio SCF-MO-LCAO method. The structure-activity relationship was essentially discussed by analyzing the electrostatic molecular potential of three compounds which constitute meaningful portions of isoproterenol, INPEA, and doberol, the first drug having a stimulating activity and the others a blocking one. The results obtained point out the different roles played in the drug-receptor interaction by the various regions of the drugs and they also show that the aromatic moiety influences both the affinity and the intrinsic activity of the drugs. Indeed, the spatial correspondence among zones with negative potentials, which are localized on the phenyl substitutents of isoproterenol and INPEA and on the phenyl ring of doberol, could contribute to the affinity. On the other hand, the intrinsic activity of isoproterenol might be associated both with the proton-donor tendency of one phenolic OH group and with the wide zone of negative potential which spreads on a large part of the aromati moiety. PMID:201757

  19. Molecular Proxy Approaches for Paleohydrology

    NASA Astrophysics Data System (ADS)

    Freeman, K. H.; Smith, F. A.; Polissar, P.; Turich, C. H.; Pedentchouk, N.

    2004-12-01

    There is a rich assembly of isotopic and mineral indicators for paleohydrologic properties of ancient environments. Commonly employed examples include mineral abundance ratios and the isotopic signatures of minerals and macromolecular organic phases such as cellulose. Preservation of these materials can be influenced strongly by natural processes in the environment, most notably resulting in the alteration or loss of carbonate mineral isotopic signatures. In order to expand our ability to document paleoclimatic conditions in continental environments, additional tools for both aquatic and terrestrial settings are in development based on the hydrogen isotopic signatures of individual lipids from microbes, algae and vascular plants. Plant leaf waxes (long-chain n-alkanes) preserve well in soils and aquatic sediments. Deuterium signatures in ancient leaf lipids potentially record isotopic properties of ancient plant water, reflecting isotopic signatures of rainfall and soil waters as well as the level of relative humidity. We have studied grasses, trees and other plant types from both greenhouse and field localities in order to understand the relative influences of plant physiology, physiognomy,and growth conditions (humidity) on lipids as recorders of plant water isotopic signatures. Submerged aquatic algae are not directly influenced by humidity, and recent work has shown their biomarkers to be promising paleolimnological proxies. We will discuss the potential for algal compounds as recorders of waters in modern high altitude sites and for ancient paleoaltimetry applications. Recent theoretical considerations in conjunction with analyses of lipids from ancient sediments point to the limitation of the preservation of paleohydrologic signatures set by thermal maturation approaching oil-generating conditions.

  20. Osteoarthritis Pathogenesis: A Review of Molecular Mechanisms

    PubMed Central

    Xia, Bingjiang; Chen, Di; Zhang, Jushi; Hu, Songfeng; Jin, Hongting; Tong, Peijian

    2016-01-01

    Osteoarthritis (OA), the most prevalent chronic joint disease, increases in prevalence with age, and affects majority of individuals over the age of 65 and is a leading musculoskeletal cause of impaired mobility in the elderly. Because the precise molecular mechanisms which are involved in the degradation of cartilage matrix and development of OA are poorly understood and there are currently no effective interventions to decelerate the progression of OA or retard the irreversible degradation of cartilage except for total joint replacement surgery. In this paper, the important molecular mechanisms related to OA pathogenesis will be summarized and new insights into potential molecular targets for the prevention and treatment of OA will be provided. PMID:25311420

  1. Disease resistance: Molecular mechanisms and biotechnological applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This special issue “Disease resistance: molecular mechanisms and biotechnological applications” contains 11 review articles and four original research papers. Research in the area of engineering for disease resistance continues to progress although only 10% of the transgenic plants registered for ...

  2. Ocular diseases: immunological and molecular mechanisms

    PubMed Central

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation. PMID:27275439

  3. [Molecular mechanisms for AMPA receptor trafficking].

    PubMed

    Fukata, Masaki; Fukata, Yuko

    2008-06-01

    Finely tuned synaptic transmission in the brain provides the molecular basis for learning and memory. The misregulation of synaptic transmission is involved in the pathogenesis of various neurological disorders like epilepsy. AMPA-typed glutamate receptors (AMPARs) mediate the most prominent form of excitatory neurotransmission in the brain. Dynamic regulation of AMPARs is thought to be a primary mechanism for controlling synaptic strength. We have analyzed the molecular mechanism for AMPAR-trafficking and function by focusing on PSD-95, a major postsynaptic scaffolding protein. Here, we review the novel regulatory mechanisms of AMPARs by 1) the PSD-95 palmitoylating enzyme, which determines the position of PSD-95 at postsynapses, and 2) the epilepsy related ligand/receptor, LGI1/ADAM22, identified as the PSD-95-interacting protein. PMID:18646599

  4. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution. PMID:27494227

  5. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    SciTech Connect

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineral surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.

  6. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGESBeta

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  7. Molecular Mechanisms of Inherited Demyelinating Neuropathies

    PubMed Central

    SCHERER, STEVEN S.; WRABETZ, LAWRENCE

    2008-01-01

    The past 15 years have witnessed the identification of more than 25 genes responsible for inherited neuropathies in humans, many associated with primary alterations of the myelin sheath. A remarkable body of work in patients, as well as animal and cellular models, has defined the clinical and molecular genetics of these illnesses and shed light on how mutations in associated genes produce the heterogeneity of dysmyelinating and demyelinating phenotypes. Here, we review selected recent developments from work on the molecular mechanisms of these disorders and their implications for treatment strategies. PMID:18803325

  8. Cellular and molecular mechanisms underlying presynapse formation

    PubMed Central

    Chia, Poh Hui; Li, Pengpeng

    2013-01-01

    Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation. PMID:24127213

  9. Cellular and molecular mechanisms underlying muscular dystrophy

    PubMed Central

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying muscle degeneration. Moreover, these studies have revealed distinct molecular and cellular mechanisms that link genetic mutations to diverse muscle wasting phenotypes. PMID:23671309

  10. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-01

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems. PMID:27276553

  11. Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.

    1992-03-01

    The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.

  12. Molecular mechanisms of membrane interaction at implantation.

    PubMed

    Davidson, Lien M; Coward, Kevin

    2016-03-01

    Successful pregnancy is dependent upon the implantation of a competent embryo into a receptive endometrium. Despite major advancement in our understanding of reproductive medicine over the last few decades, implantation failure still occurs in both normal pregnancies and those created artificially by assisted reproductive technology (ART). Consequently, there is significant interest in elucidating the etiology of implantation failure. The complex multistep process of implantation begins when the developing embryo first makes contact with the plasma membrane of epithelial cells within the uterine environment. However, although this biological interaction marks the beginning of a fundamental developmental process, our knowledge of the intricate physiological and molecular processes involved remains sparse. In this synopsis, we aim to provide an overview of our current understanding of the morphological changes which occur to the plasma membrane of the uterine endothelium, and the molecular mechanisms that control communication between the early embryo and the endometrium during implantation. A multitude of molecular factors have been implicated in this complex process, including endometrial integrins, extracellular matrix molecules, adhesion molecules, growth factors, and ion channels. We also explore the development of in vitro models for embryo implantation to help researchers investigate mechanisms which may underlie implantation failure. Understanding the precise molecular pathways associated with implantation failure could help us to generate new prognostic/diagnostic biomarkers, and may identify novel therapeutic targets. PMID:26969610

  13. Autocatalytic Decomposition Mechanisms in Energetic Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Kuklja, Maija; Rashkeev, Sergey

    2009-06-01

    Atomic scale mechanisms of the initiation of chemical processes in energetic molecular crystals, which lead to the decomposition and ultimately to an explosive chain reaction, are still far from being understood. In this work, we investigate the onset of the initiation processes in two high explosive crystals - diamino-dinitroethylene (DADNE) and triamino- trinitrobenzene (TATB). We found that an autocatalytic decomposition mechanism is likely to take place in DADNE crystal that consists of corrugated, dashboard-shaped molecular layers. The presence of a dissociated NO2 group in the interstitial space between two layers induces a significant shear-strain between these layers, which, in turn, facilitates the further dissociation of NO2 groups from surrounding molecules through lowering the C-NO2 decomposition barrier. Unlike this, in TATB (that consists of flat, graphite-like molecular layers), an interstitial NO2 group positioned between two layers tends to produce a tensile stress (rather than a shear-strain), which leads to local molecular disorder in these layers without any significant modification of the C-NO2 decomposition barrier. The observed differences between the two materials are discussed in terms of their structural, electronic, and chemical properties.

  14. Mechanisms and Molecular Probes of Sirtuins

    PubMed Central

    Smith, Brian C.; Hallows, William C.; Denu, John M.

    2008-01-01

    Summary Sirtuins are critical regulators of many cellular processes including insulin secretion, the cell cycle, and apoptosis. Sirtuins are associated with a variety of age-associated diseases such as type II diabetes, obesity, and Alzheimer’s disease. A thorough understanding of sirtuin chemical mechanisms will aid toward developing novel therapeutics that regulate metabolic disorders and combat associated diseases. In this review, we discuss the unique deacetylase mechanism of sirtuins and how this information might be employed to develop inhibitors and other molecular probes for therapeutic and basic research applications. We also cover physiological regulation of sirtuin activity and how these modes of regulation may be exploited to manipulate sirtuin activity in live cells. Development of molecular probes and drugs that specifically target sirtuins will further understanding of sirtuin biology and potentially afford new treatments of several human diseases. PMID:18940661

  15. Approaches towards molecular amplification for sensing.

    PubMed

    Goggins, Sean; Frost, Christopher G

    2016-06-01

    Diagnostic assays that rely on molecular interactions have come a long way; from initial reversible detection systems towards irreversible reaction indicator-based methods. More recently, the emergence of innovative molecular amplification methodologies has revolutionised sensing, allowing diagnostic assays to achieve ultra-low limits of detection. There have been a significant number of molecular amplification approaches developed over recent years to accommodate the wide variety of analytes that require sensitive detection. To celebrate this achievement, this comprehensive critical review has been compiled to give a broad overview of the many different approaches used to attain amplification in sensing with an aim to inspire the next generation of diagnostic assays looking to achieve the ultimate detection limit. This review has been created with the focus on how each conceptually unique molecular amplification methodology achieves amplification, not just its sensitivity, while highlighting any key processes. Excluded are any references that were not found to contain an obvious molecular amplifier or amplification component, or that did not use an appropriate signal readout that could be incorporated into a sensing application. Additionally, methodologies where amplification is achieved through advances in instrumentation are also excluded. Depending upon the type of approach employed, amplification strategies are divided into four categories: target, label, signal or receptor amplification. More recent, more complex protocols combine a number of approaches and are therefore categorised by which amplification component described within was considered as the biggest advancement. The advantages and disadvantages of each methodology are discussed along with any limits of detection, if stated in the original article. Any subsequent use of the methodology within sensing or any other application is also mentioned to draw attention to its practicality. The importance of

  16. Molecular Mechanism of Biological Proton Transport

    SciTech Connect

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  17. Molecular regulatory mechanism of tooth root development

    PubMed Central

    Huang, Xiao-Feng; Chai, Yang

    2012-01-01

    The root is crucial for the physiological function of the tooth, and a healthy root allows an artificial crown to function as required clinically. Tooth crown development has been studied intensively during the last few decades, but root development remains not well understood. Here we review the root development processes, including cell fate determination, induction of odontoblast and cementoblast differentiation, interaction of root epithelium and mesenchyme, and other molecular mechanisms. This review summarizes our current understanding of the signaling cascades and mechanisms involved in root development. It also sets the stage for de novo tooth regeneration. PMID:23222990

  18. Molecular and cellular mechanisms of cardiotoxicity.

    PubMed Central

    Kang, Y J

    2001-01-01

    Cardiotoxicity resulting from detrimental environmental insults has been recognized for a long time. However, extensive studies of the mechanisms involved had not been undertaken until recent years. Advances in molecular biology provide powerful tools and make such studies possible. We are gathering information about cellular events, signaling pathways, and molecular mechanisms of myocardial toxicologic responses to environmental toxicants and pollutants. Severe acute toxic insults cause cardiac cell death instantly. In the early response to mild environmental stimuli, biochemical changes such as alterations in calcium homeostasis occur. These may lead to cardiac arrhythmia, which most often is reversible. Prolonged stimuli activate transcription factors such as activator protein-1 through elevation of intracellular calcium and the subsequent activation of calcineurin. Upregulation by activated transcription factors of hypertrophic genes results in heart hypertrophy, which is a short-term adaptive response to detrimental factors. However, further development of hypertrophy will lead to severe and irreversible cardiomyopathy, and eventually heart failure. From cardiac hypertrophy to heart failure, myocardial cells undergo extensive biochemical and molecular changes. Cardiac hypertrophy causes tissue hypoperfusion, which activates compensatory mechanisms such as production of angiotensin II and norepinephrine. Both further stimulate cardiac hypertrophy and, importantly, activate counterregulatory mechanisms including overexpression of atrial natriuretic peptide and b-type natriuretic peptide, and production of cytokines such as tumor necrosis factor-alpha. This counterregulation leads to myocardial remodeling as well as cell death through apoptosis and necrosis. Cell death through activation of mitochondrial factors and other pathways constitutes an important cellular mechanism of heart failure. Our current knowledge of cardiotoxicity is limited. Further extensive

  19. Molecular mechanics methods for individual carbon nanotubes and nanotube assemblies

    NASA Astrophysics Data System (ADS)

    Eberhardt, Oliver; Wallmersperger, Thomas

    2015-04-01

    Since many years, carbon nanotubes (CNTs) have been considered for a wide range of applications due to their outstanding mechanical properties. CNTs are tubular structures, showing a graphene like hexagonal lattice. Our interest in the calculation of the mechanical properties is motivated by several applications which demand the knowledge of the material behavior. One application in which the knowledge of the material behavior is vital is the CNT based fiber. Due to the excellent stiffness and strength of the individual CNTs, these fibers are expected to be a promising successor for state of the art carbon fibers. However, the mechanical properties of the fibers fall back behind the properties of individual CNTs. It is assumed that this gap in the properties is a result of the van-der-Waals interactions of the individual CNTs within the fiber. In order to understand the mechanical behavior of the fibers we apply a molecular mechanics approach. The mechanical properties of the individual CNTs are investigated by using a modified structural molecular mechanics approach. This is done by calculating the properties of a truss-beam element framework representing the CNT with the help of a chemical force field. Furthermore, we also investigate the interactions of CNTs arranged in basic CNT assemblies, mimicking the ones in a simple CNT fiber. We consider the van-der-Waals interactions in the structure and calculate the potential surface of the CNT assemblies.

  20. Molecular mechanics of mussel adhesion proteins

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  1. A mechanical micro molecular mass sensor

    PubMed Central

    Kurhekar, A. S.; Apte, P. R.

    2014-01-01

    One of the bio-sensing mechanisms is mechanical. Rather than measuring shift in resonance frequency, we adopt to measure the change in spring constant due to adsorption, as one of the fundamental sensing mechanism. This study explains determination of spring constant of a surface functionalized micro machined micro cantilever, which resonates in a trapezoidal cavity-on Silicon <100> wafer, with the resonating frequency of 7000 cycles per second. This thin-flimsy-oxide micro-cantilever has a typical shape, and the tip of the micro-cantilever is dip-coated with chemically and biologically active material. The change in mass, due to adsorption, is detected by measuring the change in spring constant. The Force-Distance spectroscopy is used to detect the change in spring constant. The experimental results, show that the mechanical sensing scheme used, permit this surface functionalized micro machined micro cantilever to be used as a molecular mass sensor. The mechanical spring behaviour of a micro-cantilever, a micro-mechanical device can be used to develop ultra-tech micro-mechanical system using computer interface. PMID:24459585

  2. Molecular Mechanisms of Renal Ischemic Conditioning Strategies.

    PubMed

    Kierulf-Lassen, Casper; Nieuwenhuijs-Moeke, Gertrude J; Krogstrup, Nicoline V; Oltean, Mihai; Jespersen, Bente; Dor, Frank J M F

    2015-01-01

    Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized. PMID:26330099

  3. Molecular mechanisms for protein-encoded inheritance

    SciTech Connect

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  4. Mechanically induced luminescence changes in molecular assemblies.

    PubMed

    Sagara, Yoshimitsu; Kato, Takashi

    2009-11-01

    Altering the shape and properties of a material through external factors such as heat, light, pressure, pH, electric or magnetic fields, or the introduction of a guest molecule, is an attractive prospect. In this Perspective, piezochromic luminescent materials - which change the colour of their luminescence in response to mechanical stimuli - are described. Such piezochromism has been observed for a few molecular materials that contain luminescent cores in liquid-crystalline and crystalline solid states, as well as for polymeric materials doped with dyes. These changes in photoluminescent colour can be activated by various types of mechanical pressure such as shearing, grinding or elongation, which can trigger different mechanisms of producing the colour. Such stimuli-responsive materials have potential for various applications, including sensors, memory and displays. PMID:21378953

  5. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. PMID:22996381

  6. Molecular mechanism of viscoelasticity in aligned polyethylene

    NASA Astrophysics Data System (ADS)

    Hammad, Ali; Hasan, Hikmatyar; Swinburne, Thomas; Del Rosso, Stefano; Iannucci, Lorenzo; Sutton, Adrian

    2014-03-01

    Aligned polyethylene is used in industrial and medical applications due to its low density and high tensile strength. Extensive experimental work has been done to determine its mechanical properties, notably its viscoelasticity. However, the molecular processes that underlie these macroscopic properties are poorly understood. We develop a united atom model of aligned chains, in which intermolecular interactions are modelled by a Lennard-Jones potential, and the elastic energy within chains is modelled with harmonic springs. Using this simple model, we demonstrate the nucleation of solitons from chain ends, as one molecular chain is stretched with respect to another, and how load is transferred between chains in disregistry by intermolecular interactions. We develop an equation of motion for the movement of solitons along molecular chains, allowing us to replace a collection of aligned chains with a gas of solitons. Although solitons have been invoked to account for dielectric relaxation in crystalline regions of polyethylene, we believe this may be the first time they are discussed in the context of mechanical properties of aligned polyethylene.

  7. Molecular Mechanisms of Prolactin and Its Receptor

    PubMed Central

    2012-01-01

    Prolactin and the prolactin receptors are members of a family of hormone/receptor pairs which include GH, erythropoietin, and other ligand/receptor pairs. The mechanisms of these ligand/receptor pairs have broad similarities, including general structures, ligand/receptor stoichiometries, and activation of several common signaling pathways. But significant variations in the structural and mechanistic details are present among these hormones and their type 1 receptors. The prolactin receptor is particularly interesting because it can be activated by three sequence-diverse human hormones: prolactin, GH, and placental lactogen. This system offers a unique opportunity to compare the detailed molecular mechanisms of these related hormone/receptor pairs. This review critically evaluates selected literature that informs these mechanisms, compares the mechanisms of the three lactogenic hormones, compares the mechanism with those of other class 1 ligand/receptor pairs, and identifies information that will be required to resolve mechanistic ambiguities. The literature describes distinct mechanistic differences between the three lactogenic hormones and their interaction with the prolactin receptor and describes more significant differences between the mechanisms by which other related ligands interact with and activate their receptors. PMID:22577091

  8. Cellular and Molecular Mechanisms of AKI.

    PubMed

    Agarwal, Anupam; Dong, Zheng; Harris, Raymond; Murray, Patrick; Parikh, Samir M; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-05-01

    In this article, we review the current evidence for the cellular and molecular mechanisms of AKI, focusing on epithelial cell pathobiology and related cell-cell interactions, using ischemic AKI as a model. Highlighted are the clinical relevance of cellular and molecular targets that have been investigated in experimental models of ischemic AKI and how such models might be improved to optimize translation into successful clinical trials. In particular, development of more context-specific animal models with greater relevance to human AKI is urgently needed. Comorbidities that could alter patient susceptibility to AKI, such as underlying diabetes, aging, obesity, cancer, and CKD, should also be considered in developing these models. Finally, harmonization between academia and industry for more clinically relevant preclinical testing of potential therapeutic targets and better translational clinical trial design is also needed to achieve the goal of developing effective interventions for AKI. PMID:26860342

  9. Molecular mechanisms of ageing and related diseases.

    PubMed

    Liu, Jun-Ping

    2014-07-01

    Human and other multicellular life species age, and ageing processes become dominant during the late phase of life. Recent studies challenge this dogma, suggesting that ageing does not occur in some animal species. In mammals, cell replicative senescence occurs as early as before birth (i.e. in embryos) under physiological conditions. How the molecular machinery operates and why ageing cells dominate under some circumstances are intriguing questions. Recent studies show that cell ageing involves extensive cellular remodelling, including telomere attrition, heterochromatin formation, endoplasmic reticulum stress, mitochondrial disorders and lysosome processing organelles and chromatins. This article provides an update on the molecular mechanisms underlying the ageing of various cell types, the newly described developmental and programmed replicative senescence and the critical roles of cellular organelles and effectors in Parkinson's disease, diabetes, hypertension and dyskeratosis congenita. PMID:24798238

  10. Molecular mechanics conformational analysis of tylosin

    NASA Astrophysics Data System (ADS)

    Ivanov, Petko M.

    1998-01-01

    The conformations of the 16-membered macrolide antibiotic tylosin were studied with molecular mechanics (AMBER∗ force field) including modelling of the effect of the solvent on the conformational preferences (GB/SA). A Monte Carlo conformational search procedure was used for finding the most probable low-energy conformations. The present study provides complementary data to recently reported analysis of the conformations of tylosin based on NMR techniques. A search for the low-energy conformations of protynolide, a 16-membered lactone containing the same aglycone as tylosin, was also carried out, and the results were compared with the observed conformation in the crystal as well as with the most probable conformations of the macrocyclic ring of tylosin. The dependence of the results on force field was also studied by utilizing the MM3 force field. Some particular conformations were computed with the semiempirical molecular orbital methods AM1 and PM3.

  11. Molecular mechanisms of the EHF bioeffect

    SciTech Connect

    Serikov, A.A.

    1994-07-01

    A generalizing theoretical analysis of models of mechanisms of interaction of biological macromolecules with EHF electromagnetic fields is performed. It is shown that nonthermal EHF radiation has a biological effect when the dipole-active oscillation Q of the primary receptors is greater than or equal to 10{sup 3}-10{sup 4}, which is of the same magnitude as the corresponding characteristic of individual peaks in the radiation spectrum. From the analysis of model equations of the kinetics of synthesis and dissociation of molecular associates, an explanation of the EHF bioeffect is proposed that is based on the phenomenon of high sensitivity to external actions of responses in which high-molecular-weight aggregates participate.

  12. Molecular Mechanics of Tip-Link Cadherins

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos; Weihofen, Wilhelm A.; Gaudet, Rachelle; Corey, David P.

    2011-11-01

    The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is likely composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their complete molecular structure, elasticity, and deafness-related structural defects remain largely unknown. We present crystal structures of extracellular (EC) tip-link cadherin repeats involved in hereditary deafness and tip link formation. In addition, we show that the deafness mutation D101G, in the linker region between the repeats EC1 and EC2 of cadherin-23, causes a slight bend between repeats and decreases Ca2+ affinity. Molecular dynamics simulations suggest that tip-link cadherin repeats are stiff and that either removing Ca2+ or mutating Ca2+-binding residues reduces rigidity and unfolding strength. The structures and simulations also suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with protocadherin-15 to form the tip link.

  13. Molecular Mechanisms of Sex Determination in Reptiles

    PubMed Central

    Rhen, T.; Schroeder, A.

    2010-01-01

    Charles Darwin first provided a lucid explanation of how gender differences evolve nearly 140 years ago. Yet, a disconnect remains between his theory of sexual selection and the mechanisms that underlie the development of males and females. In particular, comparisons between representatives of different phyla (i.e., flies and mice) reveal distinct genetic mechanisms for sexual differentiation. Such differences are hard to comprehend unless we study organisms that bridge the phylogenetic gap. Analysis of variation within monophyletic groups (i.e., amniotes) is just as important if we hope to elucidate the evolution of mechanisms underlying sexual differentiation. Here we review the molecular, cellular, morphological, and physiological changes associated with sex determination in reptiles. Most research on the molecular biology of sex determination in reptiles describes expression patterns for orthologs of mammalian sex-determining genes. Many of these genes have evolutionarily conserved expression profiles (i.e., DMRT1 and SOX9 are expressed at a higher level in developing testes vs. developing ovaries in all species), which suggests functional conservation. However, expression profiling alone does not test gene function and will not identify novel sex-determining genes or gene interactions. For that reason, we provide a prospectus on various techniques that promise to reveal new sex-determining genes and regulatory interactions among these genes. We offer specific examples of novel candidate genes and a new signaling pathway in support of these techniques. PMID:20145384

  14. Adenosine triphosphate hydrolysis mechanism in kinesin studied by combined quantum-mechanical/molecular-mechanical metadynamics simulations.

    PubMed

    McGrath, Matthew J; Kuo, I-F Will; Hayashi, Shigehiko; Takada, Shoji

    2013-06-19

    Kinesin is a molecular motor that hydrolyzes adenosine triphosphate (ATP) and moves along microtubules against load. While motility and atomic structures have been well-characterized for various members of the kinesin family, not much is known about ATP hydrolysis inside the active site. Here, we study ATP hydrolysis mechanisms in the kinesin-5 protein Eg5 by using combined quantum mechanics/molecular mechanics metadynamics simulations. Approximately 200 atoms at the catalytic site are treated by a dispersion-corrected density functional and, in total, 13 metadynamics simulations are performed with their cumulative time reaching ~0.7 ns. Using the converged runs, we compute free energy surfaces and obtain a few hydrolysis pathways. The pathway with the lowest free energy barrier involves a two-water chain and is initiated by the Pγ-Oβ dissociation concerted with approach of the lytic water to PγO3-. This immediately induces a proton transfer from the lytic water to another water, which then gives a proton to the conserved Glu270. Later, the proton is transferred back from Glu270 to HPO(4)2- via another hydrogen-bonded chain. We find that the reaction is favorable when the salt bridge between Glu270 in switch II and Arg234 in switch I is transiently broken, which facilitates the ability of Glu270 to accept a proton. When ATP is placed in the ADP-bound conformation of Eg5, the ATP-Mg moiety is surrounded by many water molecules and Thr107 blocks the water chain, which together make the hydrolysis reaction less favorable. The observed two-water chain mechanisms are rather similar to those suggested in two other motors, myosin and F1-ATPase, raising the possibility of a common mechanism. PMID:23751065

  15. MODELING MOLECULAR TARGETS FOR TOXICITY, A COMPUTATIONAL APPROACH TO UNDERSTANDING KEY STEPS IN THE MECHANISMS FOR TOXICITY AND A TOOL FOR PRIORITIZING BIOASSAY REQUIREMENTS

    EPA Science Inventory

    The Agency frequently encounters situations where it must make decisions about the potential health and environmental effects of chemicals when all of the relevant data is not available. One rational approach to this problem is to estimate the relevant missing information by ext...

  16. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence.

    PubMed

    Qu, Zhilin; Weiss, James N

    2015-01-01

    Ventricular arrhythmias have complex causes and mechanisms. Despite extensive investigation involving many clinical, experimental, and computational studies, effective biological therapeutics are still very limited. In this article, we review our current understanding of the mechanisms of ventricular arrhythmias by summarizing the state of knowledge spanning from the molecular scale to electrical wave behavior at the tissue and organ scales and how the complex nonlinear interactions integrate into the dynamics of arrhythmias in the heart. We discuss the challenges that we face in synthesizing these dynamics to develop safe and effective novel therapeutic approaches. PMID:25340965

  17. Mechanisms of Ventricular Arrhythmias: From Molecular Fluctuations to Electrical Turbulence

    PubMed Central

    Qu, Zhilin; Weiss, James N.

    2015-01-01

    Ventricular arrhythmias have complex causes and mechanisms. Despite extensive investigation involving many clinical, experimental, and computational studies, effective biological therapeutics are still very limited. In this article, we review our current understanding of the mechanisms of ventricular arrhythmias by summarizing the state of knowledge spanning from the molecular scale to electrical wave behavior at the tissue and organ scales and how the complex nonlinear interactions integrate into the dynamics of arrhythmias in the heart. We discuss the challenges that we face in synthesizing these dynamics to develop safe and effective novel therapeutic approaches. PMID:25340965

  18. Pseudospectral approach to relativistic molecular theory.

    PubMed

    Nakajima, Takahito; Hirao, Kimihiko

    2004-08-22

    The efficient relativistic Dirac-Hartree-Fock (DHF) and Dirac-Kohn-Sham (DKS) methods are proposed by an application of the pseudospectral (PS) approach. The present PS-DHF/DKS method is a relativistic extension of the PS-HF/KS method of Friesner, though we aim at higher numerical accuracy by elimination of superfluous arbitrariness. The relativistic PS-DHF/DKS method is implemented into our REL4D programs. Several PS applications to molecular systems show that the relativistic PS-DHF/DKS approach is more efficient than the traditional approach without a loss of accuracy. The present PS-DKS method successfully assigns and predicts the photoelectron spectra of hexacarbonyl complexes of tungsten and seaborgium theoretically. PMID:15303907

  19. Molecular mechanisms of drug resistance and its reversal in cancer.

    PubMed

    Kartal-Yandim, Melis; Adan-Gokbulut, Aysun; Baran, Yusuf

    2016-08-01

    Chemotherapy is the main strategy for the treatment of cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance. The resistance can be intrinsic or acquired. The resistance phenotype is associated with the tumor cells that gain a cross-resistance to a large range of drugs that are structurally and functionally different. Multidrug resistance arises via many unrelated mechanisms, such as overexpression of energy-dependent efflux proteins, decrease in uptake of the agents, increase or alteration in drug targets, modification of cell cycle checkpoints, inactivation of the agents, compartmentalization of the agents, inhibition of apoptosis and aberrant bioactive sphingolipid metabolism. Exact elucidation of resistance mechanisms and molecular and biochemical approaches to overcome multidrug resistance have been a major goal in cancer research. This review comprises the mechanisms guiding multidrug resistance in cancer chemotherapy and also touches on approaches for reversing the resistance. PMID:25757878

  20. Molecular Mechanisms of Chemoresistance in Oral Cancer.

    PubMed

    Wang, Cheng; Liu, Xi Qiang; Hou, Jin Song; Wang, Jian Ning; Huang, Hong Zhang

    2016-03-01

    Oral cancer is an aggressive disease with the propensity for local recurrence and distal metastasis in the head and neck region. Currently, cisplatin-based chemotherapy or concurrent radiochemotherapy is still the first choice to treat the advanced stage cancers, in particular, the unresectable tumours. Unfortunately, innate and acquired resistance to chemotherapy agent greatly limited its effectiveness and often led to treatment failure in these patients. Hence, it is urgent to clarify the mechanisms underlying the development of chemoresistance in patients with oral cancer. In this article, the current understandings on molecular mechanisms of chemoresistance in oral cancer were reviewed, including drug efflux, apoptosis, DNA damage and repair, epithelial mesenchymal transition, autophagy and miRNA. PMID:26981604

  1. Emerging paramyxoviruses: molecular mechanisms and antiviral strategies

    PubMed Central

    Aguilar, Hector C.; Lee, Benhur

    2011-01-01

    In recent years, several paramyxoviruses have emerged to infect humans, including previously unidentified zoonoses. Hendra and Nipah virus (henipavirus (HNV)) zoonoses were first identified in 1994 or 1998, causing deaths in animals and humans in Australia or Malaysia, respectively. Other paramyxoviruses, such as menangle virus, tioman virus, human metapneumovirus, and avian paramyxovirus-1, with less morbidity in humans, have also been recently identified. Although the Paramyxoviridae family of viruses has been previously recognized as biomedically and veterinarily important, the recent emergence of these paramyxoviruses has increased our attention to this family. Antiviral drugs can be designed to target specific important determinants of the viral/cell life cycle. Therefore, identifying and understanding the mechanistic underpinnings of viral entry, replication, assembly, and budding will be critical in the development of antiviral therapeutic agents. This review focuses on the molecular mechanisms discovered and the antiviral strategies pursued in recent years for emerging paramyxoviruses, with a concentration on viral entry and exit mechanisms. PMID:21345285

  2. Molecular Tools and Approaches for Optogenetics

    PubMed Central

    Mei, Yuan; Zhang, Feng

    2012-01-01

    The mammalian brain poses a formidable challenge to the study and treatment of neuropsychiatric diseases – owing to the complex interaction of genetic, epigenetic, and circuit-level mechanisms underlying pathogenesis. Technologies that facilitate functional dissection of distinct brain circuits are necessary for systematic identification of disease origin and therapy. Recent developments in the optogenetics technology have begun to address this challenge by enabling precise perturbation of distinct cell types based on molecular signatures, functional projections, and intracellular biochemical signaling pathways. With high temporal precision and reversible neuromodulation, optogenetics promises to improve existing disease models and advance our understanding of psychiatric conditions. In this review, we will describe the current state of molecular optogenetic tools and future directions of development. PMID:22480664

  3. Molecular inhibitory mechanism of tricin on tyrosinase.

    PubMed

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-15

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation. PMID:23434549

  4. Molecular Mechanisms of Thoracic Aortic Dissection

    PubMed Central

    Wu, Darrell; Shen, Ying H.; Russell, Ludivine; Coselli, Joseph S.; LeMaire, Scott A.

    2013-01-01

    Thoracic aortic dissection (TAD) is a highly lethal vascular disease. In many patients with TAD, the aorta progressively dilates and ultimately ruptures. Dissection formation, progression, and rupture cannot be reliably prevented pharmacologically because the molecular mechanisms of aortic wall degeneration are poorly understood. The key histopathologic feature of TAD is medial degeneration, a process characterized by smooth muscle cell depletion and extracellular matrix degradation. These structural changes have a profound impact on the functional properties of the aortic wall and can result from excessive protease-mediated destruction of the extracellular matrix, altered signaling pathways, and altered gene expression. Review of the literature reveals differences in the processes that lead to ascending versus descending and sporadic versus hereditary TAD. These differences add to the complexity of this disease. Although tremendous progress has been made in diagnosing and treating TAD, a better understanding of the molecular, cellular, and genetic mechanisms that cause this disease is necessary to developing more effective preventative and therapeutic treatment strategies. PMID:23856125

  5. Molecular inhibitory mechanism of tricin on tyrosinase

    NASA Astrophysics Data System (ADS)

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-01

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation.

  6. Hyperinsulinemic Hypoglycemia – The Molecular Mechanisms

    PubMed Central

    Nessa, Azizun; Rahman, Sofia A.; Hussain, Khalid

    2016-01-01

    Under normal physiological conditions, pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5–5.5 mmol/L. In hyperinsulinemic hypoglycemia (HH), this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycemia. HH may be due to genetic causes (congenital) or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretion from the β-cells. At this moment, in time genetic abnormalities in nine genes (ABCC8, KCNJ11, GCK, SCHAD, GLUD1, SLC16A1, HNF1A, HNF4A, and UCP2) have been described that lead to the congenital forms of HH. Perinatal stress, intrauterine growth retardation, maternal diabetes mellitus, and a large number of developmental syndromes are also associated with HH in the neonatal period. In older children and adult’s insulinoma, non-insulinoma pancreatogenous hypoglycemia syndrome and post bariatric surgery are recognized causes of HH. This review article will focus mainly on describing the molecular mechanisms that lead to unregulated insulin secretion. PMID:27065949

  7. Understanding the molecular mechanisms of reprogramming.

    PubMed

    Krause, Marie N; Sancho-Martinez, Ignacio; Izpisua Belmonte, Juan Carlos

    2016-05-01

    Despite the profound and rapid advancements in reprogramming technologies since the generation of the first induced pluripotent stem cells (iPSCs) in 2006[1], the molecular basics of the process and its implications are still not fully understood. Recent work has suggested that a subset of TFs, so called "Pioneer TFs", play an important role during the stochastic phase of iPSC reprogramming [2-6]. Pioneer TFs activities differ from conventional transcription factors in their mechanism of action. They bind directly to condensed chromatin and elicit a series of chromatin remodeling events that lead to opening of the chromatin. Chromatin decondensation by pioneer factors progressively occurs during cell division and in turn exposes specific gene promoters in the DNA to which TFs can now directly bind to promoters that are readily accessible[2, 6]. Here, we will summarize recent advancements on our understanding of the molecular mechanisms underlying reprogramming to iPSC as well as the implications that pioneer Transcription Factor activities might play during different lineage conversion processes. PMID:26655812

  8. Molecular mechanisms regulating macrophage response to hypoxia.

    PubMed

    Rahat, Michal A; Bitterman, Haim; Lahat, Nitza

    2011-01-01

    Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ. PMID:22566835

  9. Molecular Mechanisms Regulating Macrophage Response to Hypoxia

    PubMed Central

    Rahat, Michal A.; Bitterman, Haim; Lahat, Nitza

    2011-01-01

    Monocytes and Macrophages (Mo/Mɸ) exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mɸ), combating invading pathogens and tumor cells (classically activated or M1 Mo/Mɸ), orchestrating wound healing (alternatively activated or M2 Mo/Mɸ), and restoring homeostasis after an inflammatory response (resolution Mɸ). Hypoxia is an important factor in the Mɸ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mɸ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mɸ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators hypoxia-induced factor-1 and NF-κB, as well as other transcription factors (e.g., AP-1, Erg-1), but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mɸ pro-angiogenic mediators, suppress M1 Mɸ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mɸ into an activation state which approximate the alternatively activated or resolution Mɸ. PMID:22566835

  10. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  11. Cellular and molecular mechanisms of fibrosis.

    PubMed

    Wynn, T A

    2008-01-01

    Fibrosis is defined by the overgrowth, hardening, and/or scarring of various tissues and is attributed to excess deposition of extracellular matrix components including collagen. Fibrosis is the end result of chronic inflammatory reactions induced by a variety of stimuli including persistent infections, autoimmune reactions, allergic responses, chemical insults, radiation, and tissue injury. Although current treatments for fibrotic diseases such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis typically target the inflammatory response, there is accumulating evidence that the mechanisms driving fibrogenesis are distinct from those regulating inflammation. In fact, some studies have suggested that ongoing inflammation is needed to reverse established and progressive fibrosis. The key cellular mediator of fibrosis is the myofibroblast, which when activated serves as the primary collagen-producing cell. Myofibroblasts are generated from a variety of sources including resident mesenchymal cells, epithelial and endothelial cells in processes termed epithelial/endothelial-mesenchymal (EMT/EndMT) transition, as well as from circulating fibroblast-like cells called fibrocytes that are derived from bone-marrow stem cells. Myofibroblasts are activated by a variety of mechanisms, including paracrine signals derived from lymphocytes and macrophages, autocrine factors secreted by myofibroblasts, and pathogen-associated molecular patterns (PAMPS) produced by pathogenic organisms that interact with pattern recognition receptors (i.e. TLRs) on fibroblasts. Cytokines (IL-13, IL-21, TGF-beta1), chemokines (MCP-1, MIP-1beta), angiogenic factors (VEGF), growth factors (PDGF), peroxisome proliferator-activated receptors (PPARs), acute phase proteins (SAP), caspases, and components of the renin-angiotensin-aldosterone system (ANG II) have been identified as important regulators of fibrosis and are being

  12. Cellular and molecular mechanisms of fibrosis

    PubMed Central

    Wynn, TA

    2009-01-01

    Fibrosis is defined by the overgrowth, hardening, and/or scarring of various tissues and is attributed to excess deposition of extracellular matrix components including collagen. Fibrosis is the end result of chronic inflammatory reactions induced by a variety of stimuli including persistent infections, autoimmune reactions, allergic responses, chemical insults, radiation, and tissue injury. Although current treatments for fibrotic diseases such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis typically target the inflammatory response, there is accumulating evidence that the mechanisms driving fibrogenesis are distinct from those regulating inflammation. In fact, some studies have suggested that ongoing inflammation is needed to reverse established and progressive fibrosis. The key cellular mediator of fibrosis is the myofibroblast, which when activated serves as the primary collagen-producing cell. Myofibroblasts are generated from a variety of sources including resident mesenchymal cells, epithelial and endothelial cells in processes termed epithelial/endothelial-mesenchymal (EMT/EndMT) transition, as well as from circulating fibroblast-like cells called fibrocytes that are derived from bone-marrow stem cells. Myofibroblasts are activated by a variety of mechanisms, including paracrine signals derived from lymphocytes and macrophages, autocrine factors secreted by myofibroblasts, and pathogen-associated molecular patterns (PAMPS) produced by pathogenic organisms that interact with pattern recognition receptors (i.e. TLRs) on fibroblasts. Cytokines (IL-13, IL-21, TGF-β1), chemokines (MCP-1, MIP-1β), angiogenic factors (VEGF), growth factors (PDGF), peroxisome proliferator-activated receptors (PPARs), acute phase proteins (SAP), caspases, and components of the renin–angiotensin–aldosterone system (ANG II) have been identified as important regulators of fibrosis and are being

  13. Molecular genetic approaches to understanding disease.

    PubMed Central

    Savill, J.

    1997-01-01

    Molecular genetics has greatly increased the understanding of diseases in which there is a single gene defect such as cystic fibrosis. Discovering the gene responsible and its function not only helps determine the pathogenesis of the disease but also offers a possible treatment-gene therapy. Polygenic disorders such as diabetes may soon yield their secrets to the same approach. Animal models of genetic diseases are proving useful research tools, and transgenesis has made xenografting possible. Furthermore, antisense technology allows specific inhibition of undesirably overexpressed genes such as those driving unwanted vascular cell proliferation and restenosis after angioplasty. The completion of the human genome project should make the search for "disease" gene much quicker and will increase still further the importance of these gene based approaches toward diseases. PMID:9006475

  14. Molecular and cellular mechanisms of anthracycline cardiotoxicity.

    PubMed

    Chen, Billy; Peng, Xuyang; Pentassuglia, Laura; Lim, Chee Chew; Sawyer, Douglas B

    2007-01-01

    The molecular and cellular mechanisms that cause cumulative dose-dependent anthracycline-cardiotoxicity remain controversial and incompletely understood. Studies examining the effects of anthracyclines in cardiac myocytes inA vitro have demonstrated several forms of cellular injury. Cell death in response to anthracyclines can be observed by one of several mechanisms including apoptosis and necrosis. Cell death by apoptosis can be inhibited by dexrazoxane, the iron chelator that is known to prevent clinical development of heart failure at high cumulative anthracycline exposure. Together with clinical evidence for myocyte death after anthracycline exposure, in the form of elevations in serum troponin, make myocyte cell death a probable mechanism for anthracycline-induced cardiac injury. Other mechanisms of myocyte injury include the development of cellular \\'sarcopenia\\' characterized by disruption of normal sarcomere structure. Anthracyclines suppress expression of several cardiac transcription factors, and this may play a role in the development of myocyte death as well as sarcopenia. Degradation of the giant myofilament protein titin may represent an important proximal step that leads to accelerated myofilament degradation. Titin is an entropic spring element in the sarcomere that regulates length-dependent calcium sensitivity. Thus titin degradation may lead to impaired diastolic as well as systolic dysfunction, as well as potentiate the effect of suppression of transcription of sarcomere proteins. An interesting interaction has been noted clinically between anthracyclines and newer cancer therapies that target the erbB2 receptor tyrosine kinase. Studies of erbB2 function in viro suggest that signaling through erbB2 by the growth factor neuregulin may regulate cardiac myocyte sarcomere turnover, as well as myocyte-myocyte/myocyte-matrix force coupling. A combination of further in vitro studies, with more careful monitoring of cardiac function after exposure to

  15. Screened Electrostatic Interactions in Molecular Mechanics.

    PubMed

    Wang, Bo; Truhlar, Donald G

    2014-10-14

    In a typical application of molecular mechanics (MM), the electrostatic interactions are calculated from parametrized partial atomic charges treated as point charges interacting by radial Coulomb potentials. This does not usually yield accurate electrostatic interactions at van der Waals distances, but this is compensated by additional parametrized terms, for example Lennard-Jones potentials. In the present work, we present a scheme involving radial screened Coulomb potentials that reproduces the accurate electrostatics much more accurately. The screening accounts for charge penetration of one subsystem's charge cloud into that of another subsystem, and it is incorporated into the interaction potential in a way similar to what we proposed in a previous article (J. Chem. Theory Comput. 2010, 6, 3330) for combined quantum mechanical and molecular mechanical (QM/MM) simulations, but the screening parameters are reoptimized for MM. The optimization is carried out with electrostatic-potential-fitted partial atomic charges, but the optimized parameters should be useful with any realistic charge model. In the model we employ, the charge density of an atom is approximated as the sum of a point charge representing the nucleus and inner electrons and a smeared charge representing the outermost electrons; in particular, for all atoms except hydrogens, the smeared charge represents the two outermost electrons in the present model. We find that the charge penetration effect can cause very significant deviations from the popular point-charge model, and by comparison to electrostatic interactions calculated by symmetry-adapted perturbation theory, we find that the present results are considerably more accurate than point-charge electrostatic interactions. The mean unsigned error in electrostatics for a large and diverse data set (192 interaction energies) decreases from 9.2 to 3.3 kcal/mol, and the error in the electrostatics for 10 water dimers decreases from 1.7 to 0.5 kcal

  16. A Systems Biology-Based Approach to Uncovering the Molecular Mechanisms Underlying the Effects of Dragon's Blood Tablet in Colitis, Involving the Integration of Chemical Analysis, ADME Prediction, and Network Pharmacology

    PubMed Central

    Gao, Xiumei; Zhai, Huaqiang; Lin, Na; Tang, Shihuan; Liang, Rixin; Ma, Yan; Li, Defeng; Zhang, Yi; Zhu, Guangrong; Yang, Hongjun; Huang, Luqi

    2014-01-01

    Traditional Chinese medicine (TCM) is one of the oldest East Asian medical systems. The present study adopted a systems biology-based approach to provide new insights relating to the active constituents and molecular mechanisms underlying the effects of dragon's blood (DB) tablets for the treatment of colitis. This study integrated chemical analysis, prediction of absorption, distribution, metabolism, and excretion (ADME), and network pharmacology. Firstly, a rapid, reliable, and accurate ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry method was employed to identify 48 components of DB tablets. In silico prediction of the passive absorption of these compounds, based on Caco-2 cell permeability, and their P450 metabolism enabled the identification of 22 potentially absorbed components and 8 metabolites. Finally, networks were constructed to analyze interactions between these DB components/metabolites absorbed and their putative targets, and between the putative DB targets and known therapeutic targets for colitis. This study provided a great opportunity to deepen the understanding of the complex pharmacological mechanisms underlying the effects of DB in colitis treatment. PMID:25068885

  17. Measuring the mechanical properties of molecular conformers

    PubMed Central

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-01-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules. PMID:26388232

  18. Molecular Mechanisms of Neonatal Brain Injury

    PubMed Central

    Thornton, Claire; Rousset, Catherine I.; Kichev, Anton; Miyakuni, Yasuka; Vontell, Regina; Baburamani, Ana A.; Fleiss, Bobbi; Gressens, Pierre; Hagberg, Henrik

    2012-01-01

    Fetal/neonatal brain injury is an important cause of neurological disability. Hypoxia-ischemia and excitotoxicity are considered important insults, and, in spite of their acute nature, brain injury develops over a protracted time period during the primary, secondary, and tertiary phases. The concept that most of the injury develops with a delay after the insult makes it possible to provide effective neuroprotective treatment after the insult. Indeed, hypothermia applied within 6 hours after birth in neonatal encephalopathy reduces neurological disability in clinical trials. In order to develop the next generation of treatment, we need to know more about the pathophysiological mechanism during the secondary and tertiary phases of injury. We review some of the critical molecular events related to mitochondrial dysfunction and apoptosis during the secondary phase and report some recent evidence that intervention may be feasible also days-weeks after the insult. PMID:22363841

  19. [Molecular mechanisms of niclosamide antitumor activity].

    PubMed

    Moskaleva, E Yu; Perevozchikova, V G; Zhirnik, A S; Severin, S E

    2015-01-01

    In this review the recent data regarding the antitumor activity of niclosamide and the molecular mechanisms of its antitumor activity are presented. Niclosamide has been used in the clinic for the treatment of intestinal parasite infections. In recent years in several screening investigations of various drugs and chemical compounds niclosamide was identified as a potential anticancer agent. Niclosamide not only inhibits the Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways, but also targets mitochondria in cancer cells to induce growth inhibition and apoptosis. A number of studies have established the anticancer activity of niclosamide in both in vitro and in vivo in xenotransplantation models using human tumors and immunodeficient mice. It is important that niclosamide is active not only against tumor cells but also cancer stem cells. Normal cells are resistant to niclosamide. The accumulated experimental data suggest niclosamide is a promising drug for the treatment of various types of cancer. PMID:26716739

  20. Molecular Mechanisms of Mouse Skin Tumor Promotion

    PubMed Central

    Rundhaug, Joyce E.; Fischer, Susan M.

    2010-01-01

    Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion. PMID:21297902

  1. Pilocytic astrocytoma: pathology, molecular mechanisms and markers.

    PubMed

    Collins, V Peter; Jones, David T W; Giannini, Caterina

    2015-06-01

    Pilocytic astrocytomas (PAs) were recognized as a discrete clinical entity over 70 years ago. They are relatively benign (WHO grade I) and have, as a group, a 10-year survival of over 90%. Many require merely surgical removal and only very infrequently do they progress to more malignant gliomas. While most show classical morphology, they may present a spectrum of morphological patterns, and there are difficult cases that show similarities to other gliomas, some of which are malignant and require aggressive treatment. Until recently, almost nothing was known about the molecular mechanisms involved in their development. The use of high-throughput sequencing techniques interrogating the whole genome has shown that single abnormalities of the mitogen-activating protein kinase (MAPK) pathway are exclusively found in almost all cases, indicating that PA represents a one-pathway disease. The most common mechanism is a tandem duplication of a ≈2 Mb-fragment of #7q, giving rise to a fusion between two genes, resulting in a transforming fusion protein, consisting of the N-terminus of KIAA1549 and the kinase domain of BRAF. Additional infrequent fusion partners have been identified, along with other abnormalities of the MAP-K pathway, affecting tyrosine kinase growth factor receptors at the cell surface (e.g., FGFR1) as well as BRAF V600E, KRAS, and NF1 mutations among others. However, while the KIAA1549-BRAF fusion occurs in all areas, the incidence of the various other mutations identified differs in PAs that develop in different regions of the brain. Unfortunately, from a diagnostic standpoint, almost all mutations found have been reported in other brain tumor types, although some retain considerable utility. These molecular abnormalities will be reviewed, and the difficulties in their potential use in supporting a diagnosis of PA, when the histopathological findings are equivocal or in the choice of individualized therapy, will be discussed. PMID:25792358

  2. Ambient-Potential Composite Ewald Method for ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation.

    PubMed

    Giese, Timothy J; York, Darrin M

    2016-06-14

    A new approach for performing Particle Mesh Ewald in ab initio quantum mechanical/molecular mechanical (QM/MM) simulations with extended atomic orbital basis sets is presented. The new approach, the Ambient-Potential Composite Ewald (CEw) method, does not perform the QM/MM interaction with Mulliken charges nor electrostatically fit charges. Instead the nuclei and electron density interact directly with the MM environment, but in a manner that avoids the use of dense Fourier transform grids. By performing the electrostatics with the underlying QM density, the CEw method avoids self-consistent field instabilities that have been encountered with simple charge mapping procedures. Potential of mean force (PMF) profiles of the p-nitrophenyl phosphate dissociation reaction in explicit solvent are computed from PBE0/6-31G* QM/MM molecular dynamics simulations with various electrostatic protocols. The CEw profiles are shown to be stable with respect to real-space Ewald cutoff, whereas the PMFs computed from truncated and switched electrostatics produce artifacts. PBE0/6-311G**, AM1/d-PhoT, and DFTB2 QM/MM simulations are performed to generate two-dimensional PMF profiles of the phosphoryl transesterification reactions with ethoxide and phenoxide leaving groups. The semiempirical models incorrectly produce a concerted ethoxide mechanism, whereas PBE0 correctly produces a stepwise mechanism. The ab initio reaction barriers agree more closely to experiment than the semiempirical models. The failure of Mulliken-charge QM/MM-Ewald is analyzed. PMID:27171914

  3. Boltzmann's Approach to Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Goldstein, Sheldon

    In the last quarter of the nineteenth century, Ludwig Boltzmann explained how irreversible macroscopic laws, in particular the second law of thermodynamics, originate in the time-reversible laws of microscopic physics. Boltzmann's analysis, the essence of which I shall review here, is basically correct. The most famous criticisms of Boltzmann's later work on the subject have little merit. Most twentieth century innovations - such as the identification of the state of a physical system with a probability distribution \\varrho on its phase space, of its thermodynamic entropy with the Gibbs entropy of \\varrho, and the invocation of the notions of ergodicity and mixing for the justification of the foundations of statistical mechanics - are thoroughly misguided.

  4. Molecular mechanism of phototropin light signaling.

    PubMed

    Okajima, Koji

    2016-03-01

    Phototropin (phot) is a blue light (BL) receptor kinase involved in the BL responses of several species, ranging from green algae to higher plants. Phot converts BL signals from the environment into biochemical signals that trigger cellular responses. In phot, the LOV1 and LOV2 domains of the N-terminal region utilize BL for cyclic photoreactions and regulate C-terminal serine/threonine kinase (STK) activity. LOV2-STK peptides are the smallest functional unit of phot and are useful for understanding regulation mechanisms. The combined analysis of spectroscopy and STK activity assay in Arabidopsis phots suggests that the decay speed of the photo-intermediate S390 in LOV2 is one of the factors contributing to light sensitive kinase activity. LOV2 and STK are thought to be adjacent to each other in LOV2-STK with small angle scattering (SAXS). BL irradiation induces LOV2-STK elongation, resulting in LOV2 shifting away from STK. The N- and C-terminal lateral regions of LOV2, A'α-helix, Jα-helix, and A'α/Aβ gap are responsible for the propagation of the BL signal to STK via conformational changes. The comparison between LOV2-STK and full-length phot from Chlamydomonas suggests that LOV1 is directly adjacent to LOV2 in LOV2-STK; therefore, LOV1 may indirectly regulate STK. The molecular mechanism of phot is discussed. PMID:26815763

  5. Insulin Resistance and Heart Failure: Molecular Mechanisms

    PubMed Central

    Aroor, Annayya R.; Mandavia, Chirag H.; Sowers, James R.

    2012-01-01

    Insulin resistance and associated reductions in cardiac insulin metabolic signaling is emerging as a major factor for the development of heart failure and assumes more importance because of an epidemic increase in obesity and the cardiorenal metabolic syndrome and our aging population. Major factors contributing to the development of cardiac insulin resistance are oxidative stress, hyperglycemia, hyperlipidemia, dysregulated secretion of adipokines/cytokines and inappropriate activation of renin-angiotensin II-aldosterone system (RAAS) and the sympathetic nervous system. The effects of cardiac insulin resistance are exacerbated by metabolic, endocrine and cytokine alterations associated with systemic insulin resistance. The aggregate of these various alterations leads to an insulin resistant phenotype with metabolic inflexibility, impaired calcium handling, mitochondrial dysfunction and oxidative stress, dysregulated myocardial-endothelial interactions resulting in energy deficiency, impaired diastolic dysfunction, myocardial cell death and cardiac fibrosis. Therefore, understanding the molecular mechanisms linking insulin resistance and heart failure may help to design new and more effective mechanism-based drugs to improve myocardial and systemic insulin resistance. PMID:22999243

  6. The strawberry plant defense mechanism: a molecular review.

    PubMed

    Amil-Ruiz, Francisco; Blanco-Portales, Rosario; Muñoz-Blanco, Juan; Caballero, José L

    2011-11-01

    Strawberry, a small fruit crop of great importance throughout the world, has been considered a model plant system for Rosaceae, and is susceptible to a large variety of phytopathogenic organisms. Most components and mechanisms of the strawberry defense network remain poorly understood. However, from current knowledge, it seems clear that the ability of a strawberry plant to respond efficiently to pathogens relies first on the physiological status of injured tissue (pre-formed mechanisms of defense) and secondly on the general ability to recognize and identify the invaders by surface plant receptors, followed by a broad range of induced mechanisms, which include cell wall reinforcement, production of reactive oxygen species, phytoalexin generation and pathogenesis-related protein accumulation. Dissection of these physiological responses at a molecular level will provide valuable information to improve future breeding strategies for new strawberry varieties and to engineer strawberry plants for durable and broad-spectrum disease resistance. In turn, this will lead to a reduction in use of chemicals and in environmental risks. Advances in the understanding of the molecular interplay between plant (mainly those considered model systems) and various classes of microbial pathogens have been made in the last two decades. However, major progress in the genetics and molecular biology of strawberry is still needed to uncover fully the way in which this elaborate plant innate immune system works. These fundamental insights will provide a conceptual framework for rational human intervention through new strawberry research approaches. In this review, we will provide a comprehensive overview and discuss recent advances in molecular research on strawberry defense mechanisms against pathogens. PMID:21984602

  7. Computational approaches to detect allosteric pathways in transmembrane molecular machines.

    PubMed

    Stolzenberg, Sebastian; Michino, Mayako; LeVine, Michael V; Weinstein, Harel; Shi, Lei

    2016-07-01

    Many of the functions of transmembrane proteins involved in signal processing and transduction across the cell membrane are determined by allosteric couplings that propagate the functional effects well beyond the original site of activation. Data gathered from breakthroughs in biochemistry, crystallography, and single molecule fluorescence have established a rich basis of information for the study of molecular mechanisms in the allosteric couplings of such transmembrane proteins. The mechanistic details of these couplings, many of which have therapeutic implications, however, have only become accessible in synergy with molecular modeling and simulations. Here, we review some recent computational approaches that analyze allosteric coupling networks (ACNs) in transmembrane proteins, and in particular the recently developed Protein Interaction Analyzer (PIA) designed to study ACNs in the structural ensembles sampled by molecular dynamics simulations. The power of these computational approaches in interrogating the functional mechanisms of transmembrane proteins is illustrated with selected examples of recent experimental and computational studies pursued synergistically in the investigation of secondary active transporters and GPCRs. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26806157

  8. Molecular mechanisms for tumour resistance to chemotherapy.

    PubMed

    Pan, Shu-Ting; Li, Zhi-Ling; He, Zhi-Xu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2016-08-01

    Chemotherapy is one of the prevailing methods used to treat malignant tumours, but the outcome and prognosis of tumour patients are not optimistic. Cancer cells gradually generate resistance to almost all chemotherapeutic drugs via a variety of distinct mechanisms and pathways. Chemotherapeutic resistance, either intrinsic or acquired, is caused and sustained by reduced drug accumulation and increased drug export, alterations in drug targets and signalling transduction molecules, increased repair of drug-induced DNA damage, and evasion of apoptosis. In order to better understand the mechanisms of chemoresistance, this review highlights our current knowledge of the role of altered drug metabolism and transport and deregulation of apoptosis and autophagy in the development of tumour chemoresistance. Reduced intracellular activation of prodrugs (e.g. thiotepa and tegafur) or enhanced drug inactivation by Phase I and II enzymes contributes to the development of chemoresistance. Both primary and acquired resistance can be caused by alterations in the transport of anticancer drugs which is mediated by a variety of drug transporters such as P-glycoprotein (P-gp), multidrug resistance associated proteins, and breast cancer resistance protein. Presently there is a line of evidence indicating that deregulation of programmed cell death including apoptosis and autophagy is also an important mechanism for tumour resistance to anticancer drugs. Reversal of chemoresistance is likely via pharmacological and biological approaches. Further studies are warranted to grasp the full picture of how each type of cancer cells develop resistance to anticancer drugs and to identify novel strategies to overcome it. PMID:27097837

  9. Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations.

    PubMed

    Omelyan, I P

    2006-09-01

    A class of symplectic algorithms is introduced to integrate the equations of motion in many-body systems. The algorithms are derived on the basis of an advanced gradientlike decomposition approach. Its main advantage over the standard gradient scheme is the avoidance of time-consuming evaluations of force gradients by force extrapolation without any loss of precision. As a result, the efficiency of the integration improves significantly. The algorithms obtained are analyzed and optimized using an error-function theory. The best among them are tested in actual molecular dynamics and celestial mechanics simulations for comparison with well-known nongradient and gradient algorithms such as the Störmer-Verlet, Runge-Kutta, Cowell-Numerov, Forest-Ruth, Suzuki-Chin, and others. It is demonstrated that for moderate and high accuracy, the extrapolated algorithms should be considered as the most efficient for the integration of motion in molecular dynamics simulations. PMID:17025782

  10. Molecular mechanisms of muscle plasticity with exercise.

    PubMed

    Hoppeler, Hans; Baum, Oliver; Lurman, Glenn; Mueller, Matthias

    2011-07-01

    The skeletal muscle phenotype is subject to considerable malleability depending on use. Low-intensity endurance type exercise leads to qualitative changes of muscle tissue characterized mainly by an increase in structures supporting oxygen delivery and consumption. High-load strength-type exercise leads to growth of muscle fibers dominated by an increase in contractile proteins. In low-intensity exercise, stress-induced signaling leads to transcriptional upregulation of a multitude of genes with Ca(2+) signaling and the energy status of the muscle cells sensed through AMPK being major input determinants. Several parallel signaling pathways converge on the transcriptional co-activator PGC-1α, perceived as being the coordinator of much of the transcriptional and posttranscriptional processes. High-load training is dominated by a translational upregulation controlled by mTOR mainly influenced by an insulin/growth factor-dependent signaling cascade as well as mechanical and nutritional cues. Exercise-induced muscle growth is further supported by DNA recruitment through activation and incorporation of satellite cells. Crucial nodes of strength and endurance exercise signaling networks are shared making these training modes interdependent. Robustness of exercise-related signaling is the consequence of signaling being multiple parallel with feed-back and feed-forward control over single and multiple signaling levels. We currently have a good descriptive understanding of the molecular mechanisms controlling muscle phenotypic plasticity. We lack understanding of the precise interactions among partners of signaling networks and accordingly models to predict signaling outcome of entire networks. A major current challenge is to verify and apply available knowledge gained in model systems to predict human phenotypic plasticity. PMID:23733647

  11. Decomposition of Amino Diazeniumdiolates (NONOates): Molecular Mechanisms

    SciTech Connect

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to slowly release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a qualitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = -N(C2H5)2 (1), -N(C3H4NH2)2 (2), or -N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1-H, 3.5 and 83 x 10-3 s-1 for 2-H, and 3.8 and 3.3 x 10-3 s-1 for 3-H. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~0.01%, for 1) undergoes the N-N heterolytic bond cleavage (k ~102 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all these NONOates are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.

  12. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms

    DOE PAGESBeta

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO]-) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO]-, where R = —N(C2H5)2(1), —N(C3H4NH2)2(2), or —N(C2H4NH2)2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO]- group with the apparent pKa and decomposition rate constants of 4.6 and 1 s-1 for 1; 3.5 and 0.083 s-1 for 2; andmore » 3.8 and 0.0033 s-1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~ 10-7, for 1) undergoes the N—N heterolytic bond cleavage (kd ~ 107 s-1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO]- group.« less

  13. Molecular mechanism of pore formation by actinoporins.

    PubMed

    Kristan, Katarina Crnigoj; Viero, Gabriella; Dalla Serra, Mauro; Macek, Peter; Anderluh, Gregor

    2009-12-15

    Actinoporins are effective pore-forming toxins produced by sea anemones. These extremely potent, basic 20 kDa proteins readily form pores in membranes that contain sphingomyelin. Much has been learned about the molecular basis of their pore-forming mechanism in recent years. Pore formation is a multi-step process that involves recognition of membrane sphingomyelin, firm binding to the membrane accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerisation of three to four monomers. The final conductive pathway is formed by amphipathic alpha-helices, hence actinoporins are an important example of so-called alpha-helical pore-forming toxins. Actinoporins have become useful model proteins to study protein-membrane interactions, specific recognition of lipids in the membrane, and protein oligomerisation in the lipid milieu. Recent sequence and structural data of proteins similar to actinoporins indicate that they are not a unique family restricted to sea anemones as was long believed. An AF domain superfamily (abbreviated from actinoporin-like proteins and fungal fruit-body lectins) was defined and shown to contain members from three animal and two plant phyla. On the basis of functional properties of some members we hypothesise that AF domain proteins are peripheral membrane proteins. Finally, ability of actinoporins to form transmembrane pores has been exploited in some novel biomedical applications. PMID:19268680

  14. Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis

    PubMed Central

    Strippoli, Raffaele; Moreno-Vicente, Roberto; Battistelli, Cecilia; Cicchini, Carla; Noce, Valeria; Amicone, Laura; Marchetti, Alessandra; del Pozo, Miguel Angel; Tripodi, Marco

    2016-01-01

    Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane. PMID:26941801

  15. Molecular Mechanisms Underlying Psychological Stress and Cancer.

    PubMed

    Shin, Kyeong Jin; Lee, Yu Jin; Yang, Yong Ryoul; Park, Seorim; Suh, Pann-Ghill; Follo, Matilde Yung; Cocco, Lucio; Ryu, Sung Ho

    2016-01-01

    Psychological stress is an emotion experienced when people are under mental pressure or encounter unexpected problems. Extreme or repetitive stress increases the risk of developing human disease, including cardiovascular disease (CVD), immune diseases, mental disorders, and cancer. Several studies have shown an association between psychological stress and cancer growth and metastasis in animal models and case studies of cancer patients. Stress induces the secretion of stress-related mediators, such as catecholamine, cortisol, and oxytocin, via the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis or the sympathetic nervous system (SNS). These stress-related hormones and neurotransmitters adversely affect stress-induced tumor progression and cancer therapy. Catecholamine is the primary factor that influences tumor progression. It can regulate diverse cellular signaling pathways through adrenergic receptors (ADRs), which are expressed by several types of cancer cells. Activated ADRs enhance the proliferation and invasion abilities of cancer cells, alter cell activity in the tumor microenvironment, and regulate the interaction between cancer and its microenvironment to promote tumor progression. Additionally, other stress mediators, such as glucocorticoids and oxytocin, and their cognate receptors are involved in stress-induced cancer growth and metastasis. Here, we will review how each receptor-mediated signal cascade contributes to tumor initiation and progression and discuss how we can use these molecular mechanisms for cancer therapy. PMID:26916018

  16. Cellular and molecular mechanisms in liver fibrogenesis.

    PubMed

    Novo, Erica; Cannito, Stefania; Paternostro, Claudia; Bocca, Claudia; Miglietta, Antonella; Parola, Maurizio

    2014-04-15

    Liver fibrogenesis is a dynamic and highly integrated molecular, tissue and cellular process, potentially reversible, that drives the progression of chronic liver diseases (CLD) towards liver cirrhosis and hepatic failure. Hepatic myofibroblasts (MFs), the pro-fibrogenic effector cells, originate mainly from activation of hepatic stellate cells and portal fibroblasts being characterized by a proliferative and survival attitude. MFs also contract in response to vasoactive agents, sustain angiogenesis and recruit and modulate activity of cells of innate or adaptive immunity. Chronic activation of wound healing and oxidative stress as well as derangement of epithelial-mesenchymal interactions are "major" pro-fibrogenic mechanisms, whatever the etiology. However, literature has outlined a complex network of pro-fibrogenic factors and mediators proposed to modulate CLD progression, with some of them being at present highly debated in the field, including the role of epithelial to mesenchymal transition and Hedgehog signaling pathways. Hypoxia and angiogenesis as well as inflammasomes are recently emerged as ubiquitous pro-inflammatory and pro-fibrogenic determinants whereas adipokines are mostly involved in CLD related to metabolic disturbances (metabolic syndrome and/or obesity and type 2 diabetes). Finally, autophagy as well as natural killer and natural killer-T cells have been recently proposed to significantly affect fibrogenic CLD progression. PMID:24631571

  17. Molecular mechanism of anaerobic ammonium oxidation.

    PubMed

    Kartal, Boran; Maalcke, Wouter J; de Almeida, Naomi M; Cirpus, Irina; Gloerich, Jolein; Geerts, Wim; Op den Camp, Huub J M; Harhangi, Harry R; Janssen-Megens, Eva M; Francoijs, Kees-Jan; Stunnenberg, Hendrik G; Keltjens, Jan T; Jetten, Mike S M; Strous, Marc

    2011-11-01

    Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle. PMID:21964329

  18. Rectification mechanism in diblock oligomer molecular diodes.

    PubMed

    Oleynik, I I; Kozhushner, M A; Posvyanskii, V S; Yu, L

    2006-03-10

    We investigated a mechanism of rectification in diblock oligomer diode molecules that have recently been synthesized and showed a pronounced asymmetry in the measured I-V spectrum. The observed rectification effect is due to the resonant nature of electron transfer in the system and the localization properties of bound state wave functions of resonant states of the tunneling electron interacting with an asymmetric molecule in an electric field. The asymmetry of the tunneling wave function is enhanced or weakened depending on the polarity of the applied bias. The conceptually new theoretical approach, the Green's function theory of sub-barrier scattering, is able to provide a physically transparent explanation of this rectification effect based on the concept of the bound state spectrum of a tunneling electron. The theory predicts the characteristic features of the I-V spectrum in qualitative agreement with experiment. PMID:16606295

  19. Anemia: Progress in molecular mechanisms and therapy

    PubMed Central

    Sankaran, Vijay G.; Weiss, Mitchell J.

    2015-01-01

    Anemia is a major source of morbidity and mortality worldwide. Here we review recent insights into how red blood cells (RBCs) are produced, the pathogenic mechanisms underlying various forms of anemia, and novel therapies derived from these findings. It is likely that these new insights, mainly arising from basic scientific studies, will contribute immensely to understanding frequently debilitating forms of anemia and the ability to treat affected patients. Major worldwide diseases that may stand to benefit from the new advances include the hemoglobinopathies (β-thalassemia and sickle cell disease), rare genetic disorders of red blood cell production, and anemias associated with chronic kidney disease, inflammation, and cancer. Promising new treatment approaches include drugs that target recently defined pathways in red blood cell production, iron metabolism, and fetal globin gene expression, as well as gene therapies using improved viral vectors and newly developed genome editing technologies. PMID:25742458

  20. Teaching Classical Statistical Mechanics: A Simulation Approach.

    ERIC Educational Resources Information Center

    Sauer, G.

    1981-01-01

    Describes a one-dimensional model for an ideal gas to study development of disordered motion in Newtonian mechanics. A Monte Carlo procedure for simulation of the statistical ensemble of an ideal gas with fixed total energy is developed. Compares both approaches for a pseudoexperimental foundation of statistical mechanics. (Author/JN)

  1. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms

    ERIC Educational Resources Information Center

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections…

  2. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

    PubMed

    Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

    2015-08-01

    Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. PMID:26209732

  3. Molecular and Mechanical Causes of Microtubule Catastrophe and Aging.

    PubMed

    Zakharov, Pavel; Gudimchuk, Nikita; Voevodin, Vladimir; Tikhonravov, Alexander; Ataullakhanov, Fazoil I; Grishchuk, Ekaterina L

    2015-12-15

    Tubulin polymers, microtubules, can switch abruptly from the assembly to shortening. These infrequent transitions, termed "catastrophes", affect numerous cellular processes but the underlying mechanisms are elusive. We approached this complex stochastic system using advanced coarse-grained molecular dynamics modeling of tubulin-tubulin interactions. Unlike in previous simplified models of dynamic microtubules, the catastrophes in this model arise owing to fluctuations in the composition and conformation of a growing microtubule tip, most notably in the number of protofilament curls. In our model, dynamic evolution of the stochastic microtubule tip configurations over a long timescale, known as the system's "aging", gives rise to the nonexponential distribution of microtubule lifetimes, consistent with experiment. We show that aging takes place in the absence of visible changes in the microtubule wall or tip, as this complex molecular-mechanical system evolves slowly and asymptotically toward the steady-state level of the catastrophe-promoting configurations. This new, to our knowledge, theoretical basis will assist detailed mechanistic investigations of the mechanisms of action of different microtubule-binding proteins and drugs, thereby enabling accurate control over the microtubule dynamics to treat various pathologies. PMID:26682815

  4. Molecular mechanical properties of short-sequence peptide enzyme mimics.

    PubMed

    Takahashi, Tsukasa; Vo Ngo, Bao C; Xiao, Leyang; Arya, Gaurav; Heller, Michael J

    2016-03-01

    While considerable attempts have been made to recreate the high turnover rates of enzymes using synthetic enzyme mimics, most have failed and only a few have produced minimal reaction rates that can barely be considered catalytic. One particular approach we have focused on is the use of short-sequence peptides that contain key catalytic groups in close proximity. In this study, we designed six different peptides and tested their ability to mimic the catalytic mechanism of the cysteine proteases. Acetylation and deacylation by Ellman's Reagent trapping experiments showed the importance of having phenylalanine groups surrounding the catalytic sites in order to provide greater proximity between the cysteine, histidine, and aspartate amino acid R-groups. We have also carried out all-atom molecular dynamics simulations to determine the distance between these catalytic groups and the overall mechanical flexibility of the peptides. We found strong correlations between the magnitude of fluctuations in the Cys-His distance, which determines the flexibility and interactions between the cysteine thiol and histidine imidazole groups, and the deacylation rate. We found that, in general, shorter Cys-His distance fluctuations led to a higher deacylation rate constant, implying that greater confinement of the two residues will allow a higher frequency of the acetyl exchange between the cysteine thiol and histidine imidazole R-groups. This may be the key to future design of peptide structures with molecular mechanical properties that lead to viable enzyme mimics. PMID:25921736

  5. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism

    NASA Astrophysics Data System (ADS)

    Morse, D. E.; Weaver, J. C.

    2001-12-01

    substitutions of specific amino acid sidechains, in conjunction with computer-assisted molecular modeling and biomimetic synthesis, allowed us to probe the determinants of catalytic activity and confirm the identification of the amino acid sidechains required for hydrolysis of the silicon alkoxides. If, as suggested by the data of others, silicic acid is conjugated with organic moieties after its transport into the cell, the catalytic mechanism described here may be important in biosilicification by sponges. As is often the case, we have been better able to answer mechanistic questions about "how" silica can be formed biologically, than "why" the diversity of structures is elaborated. Studies of spicule formation during cellular regeneration in Tethya aurantia reveal that synthesis of the larger silica needles (megascleres) and smaller starburst-shaped microscleres may be independently regulated, presumably at the genetic level. The spatial segregation of these morphologically-distinct spicule types within the sponge further suggests an adaptive significance of the different skeletal elements.

  6. Approaches to USJ Formation Beyond Molecular Implantation

    SciTech Connect

    Hatem, C.; Renau, A.; Godet, L.; Kontos, A.; Papasouliotis, G.; England, J.; Arevalo, E.

    2008-11-03

    As junction depth requirements approach sub 10 nm and the sensitivity to residual implant damage continues to increase, the capability to produce abrupt, shallow profiles while maintaining low residual damage becomes a difficult challenge. Implantation induced amorphization has been widely applied to reduce channeling tails of implanted dopant profiles for integrated circuit manufacturing. This has been required to meet aggressive junction depth targets. The problem, however, is that pre-amorphization creates high defect densities that remain near the former amorphous-crystalline interface post anneal. These end of range (EOR) defects become of greater concern as the industry begins to move towards millisecond anneal technologies. Millisecond anneal, while capable of close to diffusionless activation and abrupt junctions, has caused concern for its inability to fully repair these EOR defects. There has been a recent focus on removing traditional PAI through molecular implantation with limited success. Towards this end we have investigated alternative techniques to reduce EOR damage while maintaining the junction depth, sheet resistance and abruptness. Here we describe the results of two of these techniques. The subsequent reduction in EOR through the use of each process and the resultant Rs, junction depth and abruptness are detailed.

  7. Approaches to USJ Formation Beyond Molecular Implantation

    NASA Astrophysics Data System (ADS)

    Hatem, C.; Renau, A.; Godet, L.; Kontos, A.; Papasouliotis, G.; England, J.; Arevalo, E.

    2008-11-01

    As junction depth requirements approach sub 10 nm and the sensitivity to residual implant damage continues to increase, the capability to produce abrupt, shallow profiles while maintaining low residual damage becomes a difficult challenge. Implantation induced amorphization has been widely applied to reduce channeling tails of implanted dopant profiles for integrated circuit manufacturing. This has been required to meet aggressive junction depth targets. The problem, however, is that pre-amorphization creates high defect densities that remain near the former amorphous-crystalline interface post anneal. These end of range (EOR) defects become of greater concern as the industry begins to move towards millisecond anneal technologies. Millisecond anneal, while capable of close to diffusionless activation and abrupt junctions, has caused concern for its inability to fully repair these EOR defects. There has been a recent focus on removing traditional PAI through molecular implantation with limited success. Towards this end we have investigated alternative techniques to reduce EOR damage while maintaining the junction depth, sheet resistance and abruptness. Here we describe the results of two of these techniques. The subsequent reduction in EOR through the use of each process and the resultant Rs, junction depth and abruptness are detailed.

  8. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    SciTech Connect

    Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A{sub 1} symmetry on the 9a{sub 1} momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  9. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    PubMed

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-01

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches. PMID:26539729

  10. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    PubMed Central

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  11. Approaches to uncovering cancer diagnostic and prognostic molecular signatures

    PubMed Central

    Hong, Shengjun; Huang, Yi; Cao, Yaqiang; Chen, Xingwei; Han, Jing-Dong J

    2014-01-01

    The recent rapid development of high-throughput technology enables the study of molecular signatures for cancer diagnosis and prognosis at multiple levels, from genomic and epigenomic to transcriptomic. These unbiased large-scale scans provide important insights into the detection of cancer-related signatures. In addition to single-layer signatures, such as gene expression and somatic mutations, integrating data from multiple heterogeneous platforms using a systematic approach has been proven to be particularly effective for the identification of classification markers. This approach not only helps to uncover essential driver genes and pathways in the cancer network that are responsible for the mechanisms of cancer development, but will also lead us closer to the ultimate goal of personalized cancer therapy. PMID:27308330

  12. Molecular Mechanics: The Method and Its Underlying Philosophy.

    ERIC Educational Resources Information Center

    Boyd, Donald B.; Lipkowitz, Kenny B.

    1982-01-01

    Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…

  13. Recent molecular approaches to understanding astrocyte function in vivo

    PubMed Central

    Davila, David; Thibault, Karine; Fiacco, Todd A.; Agulhon, Cendra

    2013-01-01

    Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions. PMID:24399932

  14. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Schiffmann, Christoph; Sebastiani, Daniel

    2011-05-10

    We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules. PMID:26610125

  15. Comparison of Quantum Mechanics and Molecular Mechanics Dimerization Energy Landscapes for Pairs of Ring-Containing Amino Acids in Proteins

    SciTech Connect

    Morozov, Alexandre V.; Misura M. S., Kira; Tsemekhman, Kiril; Baker, David

    2004-06-17

    A promising approach to developing improved potential functions for modeling macromolecular interactions consists of combining protein structural analysis, quantum mechanical calculations on small molecule models, and molecular mechanics potential decomposition. Here we apply this approach to the interactions of pairs of ring-containing amino acids in proteins. We find reasonable qualitative agreement between molecular mechanics and quantum chemistry calculations, both over one-dimensional projections of the binding free energy landscape for amino acid homodimers and over a set of homodimers and heterodimers from experimentally observed protein crystal structures. The molecular mechanics landscapes are a sum of charge-charge and Lennard-Jones contributions; short-range quantum mechanical effects such as charge transfer appear not to be significant in ring side chain interactions. We also find a reasonable degree of correlation between the molecular mechanics energy landscapes and the distributions of dimer geometries observed in protein structures, suggesting that the intrinsic dimer interaction energies do contribute to packing of side chains in proteins rather than being overwhelmed by the numerous interactions with other protein atoms and solvent. These results demonstrate that interactions involving aromatic residues and proline can be fairly well modeled using current molecular mechanics force fields, but there is still room for improvement, particularly for interactions involving proline and tyrosine.

  16. Water Assisted Reaction Mechanism of OH- with CCl4 in Aqueous Solution - Hybrid Quantum Mechanical and Molecular Mechanics Investigation

    SciTech Connect

    Chen, Jie; Yin, Hongyun; Wang, Dunyou; Valiev, Marat

    2013-02-20

    The OH- (H2O) + CCl4 reaction in aqueous solution was investigated using the combined quantum mechanical and molecular mechanics approach. The reaction mechanism of OH- (H2O) + CCl4 consists of two concerted steps - formation of OH- in the favorable attack conformation via the proton transfer process, and the nucleophilic substitution process in which the newly formed OH- attacks the CCl4. The free energy activation barrier is 38.2 kcal/mol at CCSD(T)/MM level of theory for this reaction, which is about 10.3 kcal/mol higher than that of the direct nucleophilic substitution mechanism of the OH- + CCl4 reaction in aqueous solution.

  17. Phosphorylation Reaction in cAPK Protein Kinase - Free Energy Quantum Mechanic/Molecular Mechanics Simulations.

    SciTech Connect

    Valiev, Marat; Yang, Jie; Adams, Joseph; Taylor, Susan S.; Weare, John H.

    2007-11-29

    Protein kinases catalyze the transfer of the γ-phosphoryl group from ATP, a key regulatory process governing signalling pathways in eukaryotic cells. The structure of the active site in these enzymes is highly conserved implying common catalytic mechanism. In this work we investigate the reaction process in cAPK protein kinase (PKA) using a combined quantum mechanics and molecular mechanics approach. The novel computational features of our work include reaction pathway determination with nudged elastic band methodology and calculation of free energy profiles of the reaction process taking into account finite temperature fluctuations of the protein environment. We find that the transfer of the γ-phosphoryl group in the protein environment is an exothermic reaction with the reaction barrier of 15 kcal/mol.

  18. The Role of Gln61 in HRas GTP Hydrolysis: A Quantum Mechanics/Molecular Mechanics Study

    PubMed Central

    Martín-García, Fernando; Mendieta-Moreno, Jesús Ignacio; López-Viñas, Eduardo; Gómez-Puertas, Paulino; Mendieta, Jesús

    2012-01-01

    Activation of the water molecule involved in GTP hydrolysis within the HRas⋅RasGAP system is analyzed using a tailored approach based on hybrid quantum mechanics/molecular mechanics (QM/MM) simulation. A new path emerges: transfer of a proton from the attacking water molecule to a second water molecule, then a different proton is transferred from this second water molecule to the GTP. Gln61 will stabilize the transient OH− and H3O+ molecules thus generated. This newly proposed mechanism was generated by using, for the first time to our knowledge, the entire HRas-RasGAP protein complex in a QM/MM simulation context. It also offers a rational explanation for previous experimental results regarding the decrease of GTPase rate found in the HRas Q61A mutant and the increase exhibited by the HRas Q61E mutant. PMID:22225809

  19. Quantum mechanical/molecular mechanical (QM/MM) docking: an evaluation for known test systems

    NASA Astrophysics Data System (ADS)

    Beierlein, Frank; Lanig, Harald; Schürer, Gudrun; Horn, Anselm H. C.; Clark, Timothy

    A combined quantum mechanical/molecular mechanical (QM/MM) docking approach for the investigation of protein-inhibitor complexes is presented. Starting points for QM/MM optimizations are generated with AutoDock. The subsequent semiempirical AM1 QM/MM optimization of the complex obtained by the docking procedure gives a more detailed description of the binding mode and the electronic properties of the ligand. As we use a flexible protein environment in the QM/MM optimizations, we are able to simulate limited structural changes of the enzyme upon binding a ligand, even within a simple geometry optimization. The method was validated using a set of structurally known protein-inhibitor complexes, whose crystallographic data were taken from the Protein Data Bank. In addition to protein structures taken directly from complexes with the inhibitors, structures of uncomplexed HIV-1-protease and thrombin were also used successfully for QM/MM docking experiments. By comparing the resulting structures with those obtained using protein structures from protein-inhibitor complexes, we find that the method is able to simulate the effect of the induced fit when a simple optimization is adequate to reproduce the protein movement. Describing the ligand quantum mechanically gives a detailed view of its electronic properties, for example its polarization within the active site of the enzyme. This study suggests strongly that a QM/MM molecular dynamics approach will be able to simulate the induced fit in general cases.

  20. The cognitive life of mechanical molecular models.

    PubMed

    Charbonneau, Mathieu

    2013-12-01

    The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations. PMID:23910718

  1. Hybrid Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations of HIV-1 Integrase/Inhibitor Complexes

    PubMed Central

    Nunthaboot, Nadtanet; Pianwanit, Somsak; Parasuk, Vudhichai; Ebalunode, Jerry O.; Briggs, James M.; Kokpol, Sirirat

    2007-01-01

    Human immunodeficiency virus (HIV)-1 integrase (IN) is an attractive target for development of acquired immunodeficiency syndrome chemotherapy. In this study, conventional and coupled quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations of HIV-1 IN complexed with 5CITEP (IN-5CITEP) were carried out. In addition to differences in the bound position of 5CITEP, significant differences at the two levels of theory were observed in the metal coordination geometry and the areas involving residues 116–119 and 140–166. In the conventional MD simulation, the coordination of Mg2+ was found to be a near-perfect octahedral geometry whereas a distorted octahedral complex was observed in QM/MM. All of the above reasons lead to a different pattern of protein-ligand salt link formation that was not observed in the classical MD simulation. Furthermore to provide a theoretical understanding of inhibition mechanisms of 5CITEP and its derivative (DKA), hybrid QM/MM MD simulations of the two complexes (IN-5CITEP and IN-DKA) have been performed. The results reveal that areas involving residues 60–68, 116–119, and 140–149 were substantially different among the two systems. The two systems show similar pattern of metal coordination geometry, i.e., a distorted octahedron. In IN-DKA, both OD1 and OD2 of Asp-64 coordinate the Mg2+ in a monodentate fashion whereas only OD1 is chelated to the metal as observed in IN-5CITEP. The high potency of DKA as compared to 5CITEP is supported by a strong salt link formed between its carboxylate moiety and the ammonium group of Lys-159. Detailed comparisons between HIV-1 IN complexed with DKA and with 5CITEP provide information about ligand structure effects on protein-ligand interactions in particular with the Lys-159. This is useful for the design of new selective HIV-1 IN inhibitors. PMID:17693479

  2. Developing accurate molecular mechanics force fields for conjugated molecular systems.

    PubMed

    Do, Hainam; Troisi, Alessandro

    2015-10-14

    A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic structure methods, because it is possible to build force fields that are consistent with electronic structure calculations that follow classical simulations. Such applications are commonly encountered in organic electronics, spectroscopy of complex systems and photobiology (e.g. photosynthetic systems). We illustrate the method by parameterizing the force fields of a molecule used in molecular semiconductors (2,2-dicyanovinyl-capped S,N-heteropentacene or DCV-SN5), a polymeric semiconductor (thieno[3,2-b]thiophene-diketopyrrolopyrrole TT-DPP) and a chromophore embedded in a protein environment (15,16-dihydrobiliverdin or DBV) where several hundreds of parameters need to be optimized in parallel. PMID:26349916

  3. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms

    PubMed Central

    Kschonsak, Marc; Haering, Christian H

    2015-01-01

    How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss – in light of these recent insights – the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles. PMID:25988527

  4. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms.

    PubMed

    Kschonsak, Marc; Haering, Christian H

    2015-07-01

    How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss - in light of these recent insights - the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles. PMID:25988527

  5. Identifying the mechanisms of polymer friction through molecular dynamics simulation.

    PubMed

    Dai, Ling; Minn, M; Satyanarayana, N; Sinha, Sujeet K; Tan, V B C

    2011-12-20

    Mechanisms governing the tribological behavior of polymer-on-polymer sliding were investigated by molecular dynamics simulations. Three main mechanisms governing frictional behavior were identified. Interfacial "brushing" of molecular chain ends over one another was observed as the key contribution to frictional forces. With an increase of the sliding speed, fluctuations in frictional forces reduced in both magnitude and periodicity, leading to dynamic frictional behavior. While "brushing" remained prevalent, two additional irreversible mechanisms, "combing" and "chain scission", of molecular chains were observed when the interfaces were significantly diffused. PMID:22044344

  6. Molecular mechanisms involved in convergent crop domestication.

    PubMed

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. PMID:24035234

  7. Molecular chaperones: functional mechanisms and nanotechnological applications.

    PubMed

    Fernández-Fernández, M Rosario; Sot, Begoña; Valpuesta, José María

    2016-08-12

    Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures. PMID:27363314

  8. Molecular chaperones: functional mechanisms and nanotechnological applications

    NASA Astrophysics Data System (ADS)

    Rosario Fernández-Fernández, M.; Sot, Begoña; María Valpuesta, José

    2016-08-01

    Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.

  9. Characterizing Cardiac Molecular Mechanisms of Mammalian Hibernation via Quantitative Proteogenomics.

    PubMed

    Vermillion, Katie L; Jagtap, Pratik; Johnson, James E; Griffin, Timothy J; Andrews, Matthew T

    2015-11-01

    This study uses advanced proteogenomic approaches in a nonmodel organism to elucidate cardioprotective mechanisms used during mammalian hibernation. Mammalian hibernation is characterized by drastic reductions in body temperature, heart rate, metabolism, and oxygen consumption. These changes pose significant challenges to the physiology of hibernators, especially for the heart, which maintains function throughout the extreme conditions, resembling ischemia and reperfusion. To identify novel cardioadaptive strategies, we merged large-scale RNA-seq data with large-scale iTRAQ-based proteomic data in heart tissue from 13-lined ground squirrels (Ictidomys tridecemlineatus) throughout the circannual cycle. Protein identification and data analysis were run through Galaxy-P, a new multiomic data analysis platform enabling effective integration of RNA-seq and MS/MS proteomic data. Galaxy-P uses flexible, modular workflows that combine customized sequence database searching and iTRAQ quantification to identify novel ground squirrel-specific protein sequences and provide insight into molecular mechanisms of hibernation. This study allowed for the quantification of 2007 identified cardiac proteins, including over 350 peptide sequences derived from previously uncharacterized protein products. Identification of these peptides allows for improved genomic annotation of this nonmodel organism, as well as identification of potential splice variants, mutations, and genome reorganizations that provides insights into novel cardioprotective mechanisms used during hibernation. PMID:26435507

  10. Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration.

    PubMed

    Tosso, Rodrigo D; Andujar, Sebastian A; Gutierrez, Lucas; Angelina, Emilio; Rodríguez, Ricaurte; Nogueras, Manuel; Baldoni, Héctor; Suvire, Fernando D; Cobo, Justo; Enriz, Ricardo D

    2013-08-26

    A molecular modeling study on dihydrofolate reductase (DHFR) inhibitors was carried out. By combining molecular dynamics simulations with semiempirical (PM6), ab initio, and density functional theory (DFT) calculations, a simple and generally applicable procedure to evaluate the binding energies of DHFR inhibitors interacting with the human enzyme is reported here, providing a clear picture of the binding interactions of these ligands from both structural and energetic viewpoints. A reduced model for the binding pocket was used. This approach allows us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the quantum theory of atoms in molecules (QTAIM) technique. Thus, molecular aspects of the binding interactions between inhibitors and the DHFR are discussed in detail. A significant correlation between binding energies obtained from DFT calculations and experimental IC₅₀ values was obtained, predicting with an acceptable qualitative accuracy the potential inhibitor effect of nonsynthesized compounds. Such correlation was experimentally corroborated synthesizing and testing two new inhibitors reported in this paper. PMID:23834278

  11. Molecular Mechanisms of External Genitalia Development

    PubMed Central

    Blaschko, Sarah D.; Cunha, Gerald R.; Baskin, Laurence S.

    2012-01-01

    External genitalia development occurs through a combination of hormone independent, hormone dependent, and endocrine pathways. Perturbation of these pathways can lead to abnormal external genitalia development. We review human and animal mechanisms of normal and abnormal external genitalia development, and we evaluate abnormal mechanisms that lead to hypospadias. We also discuss recent laboratory findings that further our understanding of animal models of hypospadias. PMID:22790208

  12. Symposium on molecular and cellular mechanisms of mutagenesis

    SciTech Connect

    Not Available

    1981-01-01

    These proceedings contain abstracts only of the 21 papers presented at the Sympsoium. The papers dealt with molecular mechanisms of mutagenesis and cellular responses to chemical and physical mutagenic agents. (ERB)

  13. Insect pathogens: molecular approaches and techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book serves as a primer for molecular techniques in insect pathology and is tailored for a wide scientific audience. Contributing authors are internationally recognized experts. The book comprises four sections: 1) pathogen identification and diagnostics, 2) pathogen population genetics and p...

  14. Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities

    PubMed Central

    Lefevre, Sophie; Sliwa, Dominika; Seguin, Alexandra; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2010-01-01

    Abstract Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron–sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment. Antioxid. Redox Signal. 13, 0000–0000. PMID:20156111

  15. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2013-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients.

  16. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2014-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients. PMID:23909719

  17. Natural Agents: Cellular and Molecular Mechanisms of Photoprotection

    PubMed Central

    Afaq, Farrukh

    2010-01-01

    The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection. PMID:21147060

  18. GPU-accelerated molecular mechanics computations.

    PubMed

    Anthopoulos, Athanasios; Grimstead, Ian; Brancale, Andrea

    2013-10-01

    In this article, we describe an improved cell-list approach designed to match the Kepler architecture of General-purpose graphics processing units (GPGPU). We explain how our approach improves load balancing for the above algorithm and how warp intrinsics are used to implement Newton's third law for the nonbonded force calculations. We also talk through our approach to exclusions handling together with a method to calculate bonded forces and 1-4 electrostatic scaling using a single Cuda kernel. Performance benchmarks are included in the last sections to show the linear scaling of our implementation using a step minimization method. In addition, multiple performance benchmarks demonstrate the contribution of various optimizations we used for our implementations. © 2013 Wiley Periodicals, Inc. PMID:23861143

  19. Molecular and cellular mechanisms of pulmonary fibrosis

    PubMed Central

    2012-01-01

    Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease. PMID:22824096

  20. Molecular mechanisms of STIM/Orai communication

    PubMed Central

    Derler, Isabella; Jardin, Isaac

    2016-01-01

    Ca2+ entry into the cell via store-operated Ca2+ release-activated Ca2+ (CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca2+ channels open after depletion of intracellular Ca2+ stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca2+ sensor, while Orai forms a highly Ca2+-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca2+ permeation into the cell. PMID:26825122

  1. Molecular mechanisms of STIM/Orai communication.

    PubMed

    Derler, Isabella; Jardin, Isaac; Romanin, Christoph

    2016-04-15

    Ca(2+)entry into the cell via store-operated Ca(2+)release-activated Ca(2+)(CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca(2+)channels open after depletion of intracellular Ca(2+)stores, and their main features are fully reconstituted by the two molecular key players: the stromal interaction molecule (STIM) and Orai. STIM represents an endoplasmic reticulum-located Ca(2+)sensor, while Orai forms a highly Ca(2+)-selective ion channel in the plasma membrane. Functional as well as mutagenesis studies together with structural insights about STIM and Orai proteins provide a molecular picture of the interplay of these two key players in the CRAC signaling cascade. This review focuses on the main experimental advances in the understanding of the STIM1-Orai choreography, thereby establishing a portrait of key mechanistic steps in the CRAC channel signaling cascade. The focus is on the activation of the STIM proteins, the subsequent coupling of STIM1 to Orai1, and the consequent structural rearrangements that gate the Orai channels into the open state to allow Ca(2+)permeation into the cell. PMID:26825122

  2. An Approach with Hybrid Segmental Mechanics

    PubMed Central

    Mishra, Harsh Ashok

    2016-01-01

    Present case report provides an insight into the hybrid segmental mechanics with treatment of 13-year-old male, considering the side effects of sole continuous arch wire sliding mechanics. Patient was diagnosed as a case of skeletal class I jaw relationship, low mandibular plane angle, class II molar relation on right and class I molar relation on left side, anterior cross bite, crowding of 12mm in upper, 5mm in lower arch. He also had proclined upper and lower anteriors by 2mm, convex profile and incompetent lips. Total treatment duration was 20 months, during which segmental canine retraction was performed with TMA (Titanium, Molybdenum, Aluminum) ‘T’ loop retraction spring followed by consolidation of spaces with continuous arch mechanics. Most of the treatment objectives were met with good intraoral and facial results within reasonable framework of time. This approach used traditional twin brackets, which offered the versatility to use continuous arch-wire mechanics, segmental mechanics and hybrid sectional mechanics.

  3. Molecular and Mechanical Behavior of Elastomers.

    ERIC Educational Resources Information Center

    Etzel, A. J.; And Others

    1986-01-01

    Describes an experiment in which stretching a rubber band can be used to compare the statistical theory of rubber elasticity with its continuum mechanics counterpart. Employs the use of the equation of the state of rubber elasticity and the Mooney-Rivlin equation. (TW)

  4. Molecular Mechanisms of Action of BPA

    PubMed Central

    Acconcia, Filippo; Pallottini, Valentina

    2015-01-01

    Bisphenol A (BPA) exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in toxicological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms are at the root of the effect of low dose of BPA on endocrine system. PMID:26740804

  5. Selectivity and molecular mechanisms of toxicity

    SciTech Connect

    DeMatteis, F. ); Lock, E. A. )

    1987-01-01

    This book contains 11 chapters. Some of the titles are: Mechanisms of genotoxicity of chlorinated aliphatic hydrocarbons; Drugs as suicide substrates of cytochrome P-450; Cellular specific toxicity in the lung; The nephrotoxicity of haloalkane and haloalkene glutathione conjugates; and dioxin and organotin compounds as model immunotoxic chemicals.

  6. Light-powered, artificial molecular pumps: a minimalistic approach.

    PubMed

    Ragazzon, Giulio; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita; Credi, Alberto

    2015-01-01

    The realization of artificial molecular motors capable of converting energy into mechanical work is a fascinating challenge of nanotechnology and requires reactive systems that can operate away from chemical equilibrium. This article describes the design and construction of a simple, supramolecular ensemble in which light irradiation causes the directional transit of a macrocycle along a nonsymmetric molecular axle, thus forming the basis for the development of artificial molecular pumps. PMID:26665081

  7. Light-powered, artificial molecular pumps: a minimalistic approach

    PubMed Central

    Ragazzon, Giulio; Baroncini, Massimo; Silvi, Serena; Venturi, Margherita

    2015-01-01

    Summary The realization of artificial molecular motors capable of converting energy into mechanical work is a fascinating challenge of nanotechnology and requires reactive systems that can operate away from chemical equilibrium. This article describes the design and construction of a simple, supramolecular ensemble in which light irradiation causes the directional transit of a macrocycle along a nonsymmetric molecular axle, thus forming the basis for the development of artificial molecular pumps. PMID:26665081

  8. Emerging mechanisms of molecular pathology in ALS

    PubMed Central

    Peters, Owen M.; Ghasemi, Mehdi; Brown, Robert H.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating degenerative disease characterized by progressive loss of motor neurons in the motor cortex, brainstem, and spinal cord. Although defined as a motor disorder, ALS can arise concurrently with frontotemporal lobal dementia (FTLD). ALS begins focally but disseminates to cause paralysis and death. About 10% of ALS cases are caused by gene mutations, and more than 40 ALS-associated genes have been identified. While important questions about the biology of this disease remain unanswered, investigations of ALS genes have delineated pathogenic roles for (a) perturbations in protein stability and degradation, (b) altered homeostasis of critical RNA- and DNA-binding proteins, (c) impaired cytoskeleton function, and (d) non-neuronal cells as modifiers of the ALS phenotype. The rapidity of progress in ALS genetics and the subsequent acquisition of insights into the molecular biology of these genes provide grounds for optimism that meaningful therapies for ALS are attainable. PMID:25932674

  9. Molecular mechanisms in multiple myeloma drug resistance

    PubMed Central

    Nikesitch, Nicholas; Ling, Silvia C W

    2016-01-01

    Multiple myeloma (MM) is predominantly an incurable malignancy despite high-dose chemotherapy, autologous stem cell transplant and novel agents. MM is a genetically heterogeneous disease and the complexity increases as the disease progresses to a more aggressive stage. MM arises from a plasma cell, which produces and secretes non-functioning immunoglobulins. Most MM cells are sensitive to proteasome inhibitors (PIs), which have become the main drug in the treatment of newly diagnosed and relapsed MM. However, not all MM is sensitive to PIs. This review summarises the literature regarding molecular biology of MM with a focus on the unfolded protein response and explores how this could affect drug sensitivity and progression of disease. PMID:26598624

  10. Molecular mechanisms of polyploidy and hybrid vigor

    PubMed Central

    Chen, Z. Jeffrey

    2010-01-01

    Hybrids such as maize (Zea mays) or domestic dog (Canis lupus familiaris) grow bigger and stronger than their parents. This is also true for allopolyploids such as wheat (Triticum spp.) or frog (i.e. Xenopus and Silurana) that contain two or more sets of chromosomes from different species. The phenomenon, known as hybrid vigor or heterosis, was systematically characterized by Charles Darwin (1876). The rediscovery of heterosis in maize a century ago has revolutionized plant and animal breeding and production. Although genetic models for heterosis have been rigorously tested, the molecular bases remain elusive. Recent studies have determined the roles of nonadditive gene expression, small RNAs, and epigenetic regulation, including circadian-mediated metabolic pathways, in hybrid vigor and incompatibility, which could lead to better use and exploitation of the increased biomass and yield in hybrids and allopolyploids for food, feed, and biofuels. PMID:20080432

  11. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  12. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  13. Shared Molecular Mechanisms of Membrane Transporters.

    PubMed

    Drew, David; Boudker, Olga

    2016-06-01

    The determination of the crystal structures of small-molecule transporters has shed light on the conformational changes that take place during structural isomerization from outward- to inward-facing states. Rather than using a simple rocking movement of two bundles around a central substrate-binding site, it has become clear that even the most simplistic transporters utilize rearrangements of nonrigid bodies. In the most dramatic cases, one bundle is fixed while the other, structurally divergent, bundle carries the substrate some 18 Å across the membrane, which in this review is termed an elevator alternating-access mechanism. Here, we compare and contrast rocker-switch, rocking-bundle, and elevator alternating-access mechanisms to highlight shared features and novel refinements to the basic alternating-access model. PMID:27023848

  14. Molecular mechanisms regulating NLRP3 inflammasome activation

    PubMed Central

    Jo, Eun-Kyeong; Kim, Jin Kyung; Shin, Dong-Min; Sasakawa, Chihiro

    2016-01-01

    Inflammasomes are multi-protein signaling complexes that trigger the activation of inflammatory caspases and the maturation of interleukin-1β. Among various inflammasome complexes, the NLRP3 inflammasome is best characterized and has been linked with various human autoinflammatory and autoimmune diseases. Thus, the NLRP3 inflammasome may be a promising target for anti-inflammatory therapies. In this review, we summarize the current understanding of the mechanisms by which the NLRP3 inflammasome is activated in the cytosol. We also describe the binding partners of NLRP3 inflammasome complexes activating or inhibiting the inflammasome assembly. Our knowledge of the mechanisms regulating NLRP3 inflammasome signaling and how these influence inflammatory responses offers further insight into potential therapeutic strategies to treat inflammatory diseases associated with dysregulation of the NLRP3 inflammasome. PMID:26549800

  15. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    NASA Astrophysics Data System (ADS)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  16. Molecular mechanisms of bone formation in spondyloarthritis.

    PubMed

    González-Chávez, Susana Aideé; Quiñonez-Flores, Celia María; Pacheco-Tena, César

    2016-07-01

    Spondyloarthritis comprise a group of inflammatory rheumatic diseases characterized by its association to HLA-B27 and the presence of arthritis and enthesitis. The pathogenesis involves both an inflammatory process and new bone formation, which eventually lead to ankylosis of the spine. To date, the intrinsic mechanisms of the pathogenic process have not been fully elucidated, and our progress is remarkable in the identification of therapeutic targets to achieve the control of the inflammatory process, yet our ability to inhibit the excessive bone formation is still insufficient. The study of new bone formation in spondyloarthritis has been mostly conducted in animal models of the disease and only few experiments have been done using human biopsies. The deregulation and overexpression of molecules involved in the osteogenesis process have been observed in bone cells, mesenchymal cells, and fibroblasts. The signaling associated to the excessive bone formation is congruent with those involved in the physiological processes of bone remodeling. Bone morphogenetic proteins and Wnt pathways have been found deregulated in this disease; however, the cause for uncontrolled stimulation remains unknown. Mechanical stress appears to play an important role in the pathological osteogenesis process; nevertheless, the association of other important factors, such as the presence of HLA-B27 and environmental factors, remains uncertain. The present review summarizes the experimental findings that describe the signaling pathways involved in the new bone formation process in spondyloarthritis in animal models and in human biopsies. The role of mechanical stress as the trigger of these pathways is also reviewed. PMID:26838262

  17. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms

    PubMed Central

    Das, Atze T.; Berkhout, Ben

    2010-01-01

    Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach. PMID:20478891

  18. Molecular mechanisms underlying the exceptional adaptations of batoid fins

    PubMed Central

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R.; Shubin, Neil H.

    2015-01-01

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)–Fibroblast growth factor (Fgf)–Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  19. Molecular mechanisms underlying the exceptional adaptations of batoid fins.

    PubMed

    Nakamura, Tetsuya; Klomp, Jeff; Pieretti, Joyce; Schneider, Igor; Gehrke, Andrew R; Shubin, Neil H

    2015-12-29

    Extreme novelties in the shape and size of paired fins are exemplified by extinct and extant cartilaginous and bony fishes. Pectoral fins of skates and rays, such as the little skate (Batoid, Leucoraja erinacea), show a strikingly unique morphology where the pectoral fin extends anteriorly to ultimately fuse with the head. This results in a morphology that essentially surrounds the body and is associated with the evolution of novel swimming mechanisms in the group. In an approach that extends from RNA sequencing to in situ hybridization to functional assays, we show that anterior and posterior portions of the pectoral fin have different genetic underpinnings: canonical genes of appendage development control posterior fin development via an apical ectodermal ridge (AER), whereas an alternative Homeobox (Hox)-Fibroblast growth factor (Fgf)-Wingless type MMTV integration site family (Wnt) genetic module in the anterior region creates an AER-like structure that drives anterior fin expansion. Finally, we show that GLI family zinc finger 3 (Gli3), which is an anterior repressor of tetrapod digits, is expressed in the posterior half of the pectoral fin of skate, shark, and zebrafish but in the anterior side of the pelvic fin. Taken together, these data point to both highly derived and deeply ancestral patterns of gene expression in skate pectoral fins, shedding light on the molecular mechanisms behind the evolution of novel fin morphologies. PMID:26644578

  20. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing

    PubMed Central

    Reid, Brian; Zhao, Min

    2014-01-01

    Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358

  1. Molecular Mechanisms of Chronic Intermittent Hypoxia and Hypertension

    PubMed Central

    Sunderram, J.; Androulakis, I.P.

    2013-01-01

    Obstructive sleep apnea (OSA) is characterized by episodes of repeated airway obstruction resulting in cessation (apnea) or reduction (hypopnea) in airflow during sleep. These events lead to intermittent hypoxia and hypercapnia, sleep fragmentation, and changes in intrathoracic pressure, and are associated with a marked surge in sympathetic activity and an abrupt increase in blood pressure. Blood pressure remains elevated during wakefulness despite the absence of obstructive events resulting in a high prevalence of hypertension in patients with OSA. There is substantial evidence that suggests that chronic intermittent hypoxia (CIH) leads to sustained sympathoexcitation during the day and changes in vasculature resulting in hypertension in patients with OSA. Mechanisms of sympathoexcitation include augmentation of peripheral chemoreflex sensitivity and a direct effect on central sites of sympathetic regulation. Interestingly, the vascular changes that occur with CIH have been ascribed to the same molecules that have been implicated in the augmented sympathetic tone in CIH. This review will discuss the hypothesized molecular mechanisms involved in the development of hypertension with CIH, will build a conceptual model for the development of hypertension following CIH, and will propose a systems biology approach in further elucidating the relationship between CIH and the development of hypertension. PMID:23140119

  2. Molecular Mechanisms of Circadian Regulation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Zanello, Susana; Boyle, Richard

    2011-01-01

    Disruption of the regular environmental circadian cues in addition to stringent and demanding operational schedules are two main factors that undoubtedly impact sleep patterns and vigilant performance in the astronaut crews during spaceflight. Most research is focused on the behavioral aspects of the risk of circadian desynchronization, characterized by fatigue and health and performance decrement. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate this risk. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. The molecular clock consists of sets of proteins that perform different functions within the clock machinery: circadian oscillators (genes whose expression levels cycle during the day, keep the pass of cellular time and regulate downstream effector genes), the effector or output genes (those which impact the physiology of the tissue or organism), and the input genes (responsible for sensing the environmental cues that allow circadian entrainment). The main environmental cue is light. As opposed to the known photoreceptors (rods and cones), the non-visual light stimulus is received by a subset of the population of retinal ganglion cells called intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin (opsin 4 -Opn4-) as the photoreceptor. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight. To answer this question, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (animal enclosure module) mice were used as ground controls. Opn4 expression was analyzed by real time RT/qPCR and retinal sections were stained for Opn4

  3. A theoretical study of the molecular mechanism of the GAPDH Trypanosoma cruzi enzyme involving iodoacetate inhibitor

    NASA Astrophysics Data System (ADS)

    Carneiro, Agnaldo Silva; Lameira, Jerônimo; Alves, Cláudio Nahum

    2011-10-01

    The glyceraldehyde-3-phosphate dehydrogenase enzyme (GAPDH) is an important biological target for the development of new chemotherapeutic agents against Chagas disease. In this Letter, the inhibition mechanism of GAPDH involving iodoacetate (IAA) inhibitor was studied using the hybrid quantum mechanical/molecular mechanical (QM/MM) approach and molecular dynamic simulations. Analysis of the potential energy surface and potential of mean force show that the covalent attachment of IAA inhibitor to the active site of the enzyme occurs as a concerted process. In addition, the energy terms decomposition shows that NAD+ plays an important role in stabilization of the reagents and transition state.

  4. An ab initio molecular dynamics study of the roaming mechanism of the H2+HOC+ reaction

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Gen

    2011-08-01

    We report here a direct ab initio molecular dynamics study of the p-/o-H2+HOC+ reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H2+HOC+ reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.

  5. Uncouplers and the molecular mechanism of uncoupling in mitochondria.

    PubMed Central

    Kessler, R J; Vande Zande, H; Tyson, C A; Blondin, G A; Fairfield, J; Glasser, P; Green, D E

    1977-01-01

    Uncouplers are molecules with protonophoric and ionophoric capabilities that mediate coupled cyclical transport of cations--a transport that takes precedence over all other coupled processes. Uncouplers form cation-containing complexes with electrogenic ionophores that potentiate cyclical transport of cations. The molecular mechanism of uncoupling sheds strong light on the mechanism of coupling. PMID:142250

  6. Novel molecular approaches to cystic fibrosis gene therapy

    PubMed Central

    Lee, Tim W. R.; Matthews, David A.; Blair, G. Eric

    2005-01-01

    Gene therapy holds promise for the treatment of a range of inherited diseases, such as cystic fibrosis. However, efficient delivery and expression of the therapeutic transgene at levels sufficient to result in phenotypic correction of cystic fibrosis pulmonary disease has proved elusive. There are many reasons for this lack of progress, both macroscopically in terms of airway defence mechanisms and at the molecular level with regard to effective cDNA delivery. This review of approaches to cystic fibrosis gene therapy covers these areas in detail and highlights recent progress in the field. For gene therapy to be effective in patients with cystic fibrosis, the cDNA encoding the cystic fibrosis transmembrane conductance regulator protein must be delivered effectively to the nucleus of the epithelial cells lining the bronchial tree within the lungs. Expression of the transgene must be maintained at adequate levels for the lifetime of the patient, either by repeat dosage of the vector or by targeting airway stem cells. Clinical trials of gene therapy for cystic fibrosis have demonstrated proof of principle, but gene expression has been limited to 30 days at best. Results suggest that viral vectors such as adenovirus and adeno-associated virus are unsuited to repeat dosing, as the immune response reduces the effectiveness of each subsequent dose. Nonviral approaches, such as cationic liposomes, appear more suited to repeat dosing, but have been less effective. Current work regarding non-viral gene delivery is now focused on understanding the mechanisms involved in cell entry, endosomal escape and nuclear import of the transgene. There is now increasing evidence to suggest that additional ligands that facilitate endosomal escape or contain a nuclear localization signal may enhance liposome-mediated gene delivery. Much progress in this area has been informed by advances in our understanding of the mechanisms by which viruses deliver their genomes to the nuclei of host

  7. Plant regeneration: cellular origins and molecular mechanisms.

    PubMed

    Ikeuchi, Momoko; Ogawa, Yoichi; Iwase, Akira; Sugimoto, Keiko

    2016-05-01

    Compared with animals, plants generally possess a high degree of developmental plasticity and display various types of tissue or organ regeneration. This regenerative capacity can be enhanced by exogenously supplied plant hormones in vitro, wherein the balance between auxin and cytokinin determines the developmental fate of regenerating organs. Accumulating evidence suggests that some forms of plant regeneration involve reprogramming of differentiated somatic cells, whereas others are induced through the activation of relatively undifferentiated cells in somatic tissues. We summarize the current understanding of how plants control various types of regeneration and discuss how developmental and environmental constraints influence these regulatory mechanisms. PMID:27143753

  8. A Rapid Molecular Approach for Chromosomal Phasing

    PubMed Central

    Legler, Tina; Cooper, Samantha; Klitgord, Niels; Karlin-Neumann, George; Wong, Catherine; Hodges, Shawn; Koehler, Ryan; Tzonev, Svilen; McCarroll, Steven A.

    2015-01-01

    Determining the chromosomal phase of pairs of sequence variants – the arrangement of specific alleles as haplotypes – is a routine challenge in molecular genetics. Here we describe Drop-Phase, a molecular method for quickly ascertaining the phase of pairs of DNA sequence variants (separated by 1-200 kb) without cloning or manual single-molecule dilution. In each Drop-Phase reaction, genomic DNA segments are isolated in tens of thousands of nanoliter-sized droplets together with allele-specific fluorescence probes, in a single reaction well. Physically linked alleles partition into the same droplets, revealing their chromosomal phase in the co-distribution of fluorophores across droplets. We demonstrated the accuracy of this method by phasing members of trios (revealing 100% concordance with inheritance information), and demonstrate a common clinical application by phasing CFTR alleles at genomic distances of 11–116 kb in the genomes of cystic fibrosis patients. Drop-Phase is rapid (requiring less than 4 hours), scalable (to hundreds of samples), and effective at long genomic distances (200 kb). PMID:25739099

  9. Molecular Imaging of Myocardial Injury: A Magnetofluorescent Approach

    PubMed Central

    Sosnovik, David E.

    2009-01-01

    The role of molecular imaging in enhancing the understanding of myocardial injury and repair is rapidly expanding. Moreover, in recent years magnetic resonance and fluorescence-based approaches have been added to the molecular imaging armamentarium and have been used to image selected molecular and cellular targets in the myocardium. Apoptosis, necrosis, macrophage infiltration, myeloperoxidase activity, cathepsin activity, and type 1 collagen have all been imaged in vivo with a magnetofluorescent (MRI and/or fluorescence) approach. This review highlights the potential of these and other magnetofluorescent agents, with particular focus on their role in ischemic heart disease. PMID:20090858

  10. Multiple Sclerosis: Molecular Mechanisms and Therapeutic Opportunities

    PubMed Central

    Miljković, Djordje; Spasojević, Ivan

    2013-01-01

    Abstract The pathophysiology of multiple sclerosis (MS) involves several components: redox, inflammatory/autoimmune, vascular, and neurodegenerative. All of them are supported by the intertwined lines of evidence, and none of them should be written off. However, the exact mechanisms of MS initiation, its development, and progression are still elusive, despite the impressive pace by which the data on MS are accumulating. In this review, we will try to integrate the current facts and concepts, focusing on the role of redox changes and various reactive species in MS. Knowing the schedule of initial changes in pathogenic factors and the key turning points, as well as understanding the redox processes involved in MS pathogenesis is the way to enable MS prevention, early treatment, and the development of therapies that target specific pathophysiological components of the heterogeneous mechanisms of MS, which could alleviate the symptoms and hopefully stop MS. Pertinent to this, we will outline (i) redox processes involved in MS initiation; (ii) the role of reactive species in inflammation; (iii) prooxidative changes responsible for neurodegeneration; and (iv) the potential of antioxidative therapy. Antioxid. Redox Signal. 19, 2286–2334. PMID:23473637